3,002 research outputs found

    On the Design, Analysis, and Implementation of Algorithms for Selected Problems in Graphs and Networks

    Get PDF
    This thesis studies three problems in network optimization, viz., the minimum spanning tree verification (MSTV) problem, the undirected negative cost cycle detection (UNCCD) problem, and the negative cost girth (NCG) problem. These problems find applications in several domains including program verification, proof theory, real-time scheduling, social networking, and operations research.;The MSTV problem is defined as follows: Given an undirected graph G = (V,E) and a spanning tree T, is T a minimum spanning tree of G? We focus on the case where the number of distinct edge weights is bounded. Using a bucketed data structure to organize the edge weights, we present an efficient algorithm for the MSTV problem, which runs in O (| E| + |V| · K) time, where K is the number of distinct edge weights. When K is a fixed constant, this algorithm runs in linear time. We also profile our MSTV algorithm with the current fastest known MSTV implementation. Our results demonstrate the superiority of our algorithm when K ≤ 24.;The UNCCD problem is defined as follows: Given an undirected graph G = (V,E) with arbitrarily weighted edges, does G contain a negative cost cycle? We discuss two polynomial time algorithms for solving the UNCCD problem: the b-matching approach and the T-join approach. We obtain new results for the case where the edge costs are integers in the range {lcub}--K ·· K{rcub}, where K is a positive constant. We also provide the first extensive empirical study that profiles the discussed UNCCD algorithms for various graph types, sizes, and experiments.;The NCG problem is defined as follows: Given a directed graph G = (V,E) with arbitrarily weighted edges, find the length, or number of edges, of the negative cost cycle having the least number of edges. We discuss three strongly polynomial NCG algorithms. The first NCG algorithm is known as the matrix multiplication approach in the literature. We present two new NCG algorithms that are asymptotically and empirically superior to the matrix multiplication approach for sparse graphs. We also provide a parallel implementation of the matrix multiplication approach that runs in polylogarithmic parallel time using a polynomial number of processors. We include an implementation profile to demonstrate the efficiency of the parallel implementation as we increase the graph size and number of processors. We also present an NCG algorithm for planar graphs that is asymptotically faster than the fastest topology-oblivious algorithm when restricted to planar graphs

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Man and machine thinking about the smooth 4-dimensional Poincar\'e conjecture

    Full text link
    While topologists have had possession of possible counterexamples to the smooth 4-dimensional Poincar\'{e} conjecture (SPC4) for over 30 years, until recently no invariant has existed which could potentially distinguish these examples from the standard 4-sphere. Rasmussen's s-invariant, a slice obstruction within the general framework of Khovanov homology, changes this state of affairs. We studied a class of knots K for which nonzero s(K) would yield a counterexample to SPC4. Computations are extremely costly and we had only completed two tests for those K, with the computations showing that s was 0, when a landmark posting of Akbulut (arXiv:0907.0136) altered the terrain. His posting, appearing only six days after our initial posting, proved that the family of ``Cappell--Shaneson'' homotopy spheres that we had geared up to study were in fact all standard. The method we describe remains viable but will have to be applied to other examples. Akbulut's work makes SPC4 seem more plausible, and in another section of this paper we explain that SPC4 is equivalent to an appropriate generalization of Property R (``in S^3, only an unknot can yield S^1 x S^2 under surgery''). We hope that this observation, and the rich relations between Property R and ideas such as taut foliations, contact geometry, and Heegaard Floer homology, will encourage 3-manifold topologists to look at SPC4.Comment: 37 pages; changes reflecting that the integer family of Cappell-Shaneson spheres are now known to be standard (arXiv:0907.0136

    Decomposition Methods for Large Scale LP Decoding

    Full text link
    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode error-correcting codes at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a "two-slice" characterization of the geometry of the parity polytope, which is the convex hull of all codewords of a single parity check code. This new characterization simplifies the representation of points in the polytope. Using this simplification, we develop an efficient algorithm for Euclidean norm projection onto the parity polytope. This projection is required by ADMM and allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for LDPC codes of lengths more than 1000. The waterfall region of LP decoding is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however an error floor is not observed for LP decoding, which is not the case for BP. Our implementation of LP decoding using ADMM executes as fast as our baseline sum-product BP decoder, is fully parallelizable, and can be seen to implement a type of message-passing with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the 49th Annual Allerton Conference, September 2011. This version to appear in IEEE Transactions on Information Theor

    Generation of cubic graphs

    Get PDF
    We describe a new algorithm for the efficient generation of all non-isomorphic connected cubic graphs. Our implementation of this algorithm is more than 4 times faster than previous generators. The generation can also be efficiently restricted to cubic graphs with girth at least 4 or 5

    Deriving Good LDPC Convolutional Codes from LDPC Block Codes

    Full text link
    Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework. Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this "convolutional gain," and we also discuss the --- mostly moderate --- decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010; revised August 2010, revised November 2010 (essentially final version). (Besides many small changes, the first and second revised versions contain corrected entries in Tables I and II.

    A demand driven multiprocessor.

    Get PDF

    System integration report

    Get PDF
    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment
    corecore