

A $(49,16,3,6)$ STRONGLY REGULAR GRAPH

 DOES NOT EXISTF.C. Bussemaker, W.H. Haemers, R. Mathon and H.A. Wilbrink

FEW 355

A $(49,16,3,6)$ STRONGLY REGULAR GRAPH DOES NOT EXIST ${ }^{+}$
by
F.C. BUSSEMAKER,

Technological University Eindhoven, The Netherlands,
W.H. HAEMERS, University of Tilburg, The Netherlands,
R. MATHON, University of Toronto, Canada, and
H.A. WILBRINK,

Technological University Eindhoven, The Netherlands.

ABSTRACT.
We prove the non-existence of a strongly regular graph with 49 vertices and degree 16.

[^0]1. INTRODUCTION.

A strongly regular graph with 49 vertices and degree 16 has parameters $(v, k, \lambda, \mu)=(49,16,3,6)$. In this paper we show that such a graph cannot exist. Up till now it was the smallest (with respect to the number of vertices) feasible strongly regular graph for which existence was not settled. Our result is the second "ad hoc" non-existence result for strongly regular graphs. Earlier Wilbrink and Brouwer [2] proved that (57,14,1,4) cannot be the parameter set of a strongly regular graph. At the moment the smallest unsettled case is $(65,32,15,16)$. See Brouwer and Van Lint [1] for a survey of recent results on strongly regular graphs.

The present proof involves counting techniques, enumeration, linear algebra, and the use of a computer. Although only little computing time was needed, we could not manage without a computer.

2. COUNTING

Let Γ denote a $(49,16,3,6)$ strongly regular graph, that is, Γ has 49 vertices, each vertex has 16 neighbours, any two adjacent vertices have 3 common neighbours and any two distinct non-adjacent vertices have 6 commom neighbours. For a vertex ∞ of Γ, let Γ_{∞} denote the subgraph of Γ induced by the 16 neighbours of ∞. Claerly, Γ_{∞} is regular of degree 3 , but we have more restrictions for Γ_{∞}.

LEMMA 1.
i. The girth of Γ_{∞} is at least 5.
ii. Any two distict pentagons of Γ_{∞} have at most one edge in common.

PROOF. For a subgraph H and a vertex α of Γ, let h_{1} denote the number of vertices outside H adjacent to exactly i vertices of H, and let h_{i}^{α} denote the number of vertices outside H adjacent to α and to exactly i vertices of H. Then for $H=K_{4}$ we have

$$
\sum_{i=0}^{4} h_{i}=45, \quad \sum_{i=1}^{4} i h_{i}=52, \quad \sum_{i=2}^{4}\left[\begin{array}{l}
i \\
2
\end{array}\right] h_{i}=6
$$

$$
-1=\sum_{i=0}^{4}\left(h_{i}-i h_{i}+\left[\begin{array}{l}
i \\
2
\end{array}\right] h_{i}\right)=h_{0}+h_{3}+3 h_{4} \geq 0
$$

a contradiction proving that Γ_{∞} has no triangles. Next suppose that Γ_{∞} contains a 4 -gon. Let H be the subgraph of Γ induced by ∞ and the $4-g o n$ (i.e. H is the wheel W_{5}). Then $h_{5}=0$, since Γ contains no K_{4}, and we have

$$
\sum_{i=0}^{4} h_{i}=44, \quad \sum_{i=1}^{4} i h_{i}=64, \sum_{i=2}^{4}\left[\begin{array}{l}
i \\
2
\end{array}\right] h_{i}=18
$$

This implies

$$
-2=\sum_{i=0}^{4}\left(h_{i}-i h_{i}+\left[\begin{array}{l}
i \\
2
\end{array}\right] h_{i}\right)=h_{0}+h_{3}+3 h_{4} \geq 0
$$

By this contradiction Γ_{∞} has no 4 -gons. This completes the proof of (i). Suppose Γ_{∞} contains a pentagon. Let H be the subgraph of Γ induced by ∞ and the pentagon (i.e. $H=W_{6}$). By (i) $h_{i}=0$ if $i \geq 4$, hence

$$
\sum_{i=0}^{3} h_{i}=43, \quad \sum_{i=1}^{3} i h_{i}=76, \quad \sum_{i=2}^{3}\left[\begin{array}{l}
i \\
2
\end{array}\right] h_{i}=35
$$

This implies that $h_{0}+h_{3}=2$. Suppose $h_{0}>0$, that is, there exists a vertex ω adjacent to no vertex of H. Then

$$
\sum_{i=0}^{3} h_{i}^{\omega}=16, \quad \sum_{i=1}^{3} i h_{i}^{\omega}=36
$$

This gives $2 h_{0}^{\omega}+h_{1}^{\omega}-h_{3}^{\omega}=-4$, hence $h_{3} \geq h_{3}^{\omega} \geq 4$, a contradiction to $h_{0}+h_{3}=2$. So $h_{0}=0$, and we find $h_{1}=12, h_{2}=29$ and $h_{3}=2$. We easily have $h_{i}^{\infty}=0$ for $i \geq 3, h_{0}^{\infty}=0, h_{2}^{\infty}=5, h_{1}^{\infty}+h_{2}^{\infty}=11$, so $h_{1}^{\infty}=6$. Let X be the set of vertices of Γ not adjacent to ∞ and adjacent to exactly one vertex of H. Then $|X|=h_{1}-h_{1}^{\infty}=6$. Next suppose that there exist vertices α and β in Γ_{∞}, such that together with the vertices of H they induce the following graph H^{*}.

Then

$$
\sum_{i=0}^{3} h_{i}^{\alpha}=14, \quad \sum_{i=1}^{3} i h_{i}^{\alpha}=22
$$

Because $h_{0}^{\alpha} \leq h_{0}=0$, we have $h_{1}^{\alpha}=6+h_{3}^{\alpha}$. There is just one vertex outside H^{*} adjacent to both α and ∞. Therefore, since $h_{1}^{\alpha} \geq 6$, at least five of the vertices adjacent to α are contained in the set X. The same is true for β. Since $|x|=6$, at least four vertices of X are adjacent to both α and β. This is a contradiction. Therefore Γ does not contain H^{*}, and (ii) follows.

3. ENUMERATION.

The conditions of Lemma 1 are strong enough to enumerate (by hand) all feasible candidates for Γ_{∞}.
If Γ_{∞} contains no pentagon, then the girth is at least six. It is easily seen that the girth cannot be bigger than six and that there is a unique 3-regular graph on 16 vertices with girth six, being:

CANDIDATE 1.

Suppose Γ_{∞} contains a pentagon P. Then each vertex of P has just one neighbour outside P. By Lemma 1, these five neighbours are mutually distinct and non-adjacent. Thus Γ_{∞} contains the following graph P^{*} as an induced subgraph.

Consider the subgraph F of Γ_{∞}, induced by the remaining six vertices. One easily sees that F has just four edges and therefore, by Lemma 1, no cycles. Hence F is one of the following graphs:

1

2

3

4

5

In the case that F is graph number 1 or graph number 2, the isolated vertex in F is adjacent to three distinct vertices of P^{*}, so two vertices of P^{*} are adjacent to two vertices of the larger component of F. It is easily seen that this cannot be realised without violating Lemma 1. If F is graph number 3 or 4, the two vertices of the isolated edge in F are adjacent to four distinct vertices of P^{*}, so one vertex of P^{*} is adjacent to two vertices of the larger component of F. For number 3 this is clearly impossible, and for number 4 we find that Γ_{∞} can be obtained from the following graph by adding eight edges.

Thus, if F is graph number 4, we find in a straight forward way the following ten feasible structures for Γ_{∞}, where the adjacencies between the labelled vertices are given in the table below.

$\begin{aligned} & \alpha \\ & \beta \\ & \gamma \\ & \delta \end{aligned}$	$\begin{aligned} & \mathrm{a} \mathrm{a}^{\prime} \\ & \mathrm{bb}{ }^{\prime} \\ & \mathrm{cc}^{\prime} \\ & \mathrm{d} \mathrm{~d}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{aa}{ }^{\prime} \\ & \mathrm{bb}^{\prime} \\ & \mathrm{cd}^{\prime} \\ & \mathrm{d}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{aa}{ }^{\prime} \\ & \mathrm{bc}{ }^{\prime} \\ & \mathrm{cd}^{\prime} \\ & \mathrm{db}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{aa} \mathrm{a}^{\prime} \\ & \mathrm{bd}{ }^{\prime} \\ & \mathrm{cc}^{\prime} \\ & \mathrm{d}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{ad} \mathrm{~d}^{\prime} \\ & \mathrm{bc}{ }^{\prime} \\ & \mathrm{ca}{ }^{\prime} \\ & \mathrm{db}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{ad}^{\prime} \\ & \mathrm{bc} \mathrm{c}^{\prime} \\ & \mathrm{cb}^{\prime} \\ & \mathrm{da}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{a} \mathrm{a}^{\prime} \\ & \mathrm{cb}{ }^{\prime} \\ & \mathrm{bc} \mathrm{c}^{\prime} \\ & \mathrm{d} d^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{aa} \mathrm{a}^{\prime} \\ & \mathrm{cc}{ }^{\prime} \\ & \mathrm{bd} \\ & \mathrm{~d}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{aa}{ }^{\prime} \\ & \mathrm{cd}^{\prime} \\ & \mathrm{bc}{ }^{\prime} \\ & \mathrm{db}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{ad}^{\prime} \\ & \mathrm{ca} \\ & \mathrm{bc} \mathrm{c}^{\prime} \\ & \mathrm{d} \mathrm{~b}^{\prime} \end{aligned}$
0.	2	3	4	5	6	7	8	9	10	11

Finally we consider the case when F is graph number 5. Again it is a matter of straigt forward checking that this leads to just two new condidates:

CANDIDATE 12

CANDIDATE 13

This completes the enumeration of the thirteen candidates for Γ_{∞}.

4. LINEAR ALGEBRA

In terms of the adjacency matrix A the definition of a $(49,16,3,6)$ strongly regular graph reads
(*) $\quad A^{2}=-3 A+10 I+6 J$.
(We use I for the identity matrix, J for the all-one matrix and j for the all-one vector.) The eigenvalues of A are 16,2 and -5 with multiplicities 1,32 and 16 , respectively. We say that a graph Γ_{1} is extendable to a graph Γ, whenever Γ_{1} is a subgraph of Γ induced by the neighbours of some vertex of Γ.

LEMMA 2.

Let Γ_{1} be a 3-regular graph on 16 vertices with adjacency matrix A_{1}, and let 2 not be an eigenvalue of A_{1}. Then Γ_{1} is extendable to $a(49,16,3,6)$ strongly regular graph if and only if the vertex set of Γ_{1} admits 32 distinct 6 -subsets with charateristic vectors x_{1}, \ldots, x_{32} (say), such that
i.
ii.

$$
\begin{aligned}
& X X^{T}+A_{1}^{2}=-3 A_{1}+10 I+5 \mathrm{~J} \text {, where } X=\left[x_{1}, \ldots, x_{32}\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \tilde{x}_{i}=7 x_{i}-2 j(i=1, \ldots, 32) \text { and } \widetilde{A}_{1}=7 A_{1}-14 I-2 J \text {. }
\end{aligned}
$$

PROOF. First suppose we have 32 such subsets. Put $\widetilde{X}=7 X-2 J, \widetilde{A}_{2}=\widetilde{X}^{T} \widetilde{A}_{1}^{-1} \tilde{X}$ and

$$
\widetilde{A}=\left[\begin{array}{rcc}
-16 & 5 j^{T} & -2 j^{T} \\
5 j & \widetilde{A}_{1}^{1} & \widetilde{X} \\
-2 j & \widetilde{X}^{\mathrm{T}} & \widetilde{A}_{2}
\end{array}\right],
$$

then it follows by straight forward verification that $\widetilde{A}^{2}=49 \widetilde{A}$. Hence the $(0,1)$ matrix $A=\frac{1}{7}(\widetilde{A}+14 I+2 J)$ satisfies $\left(^{*}\right)$ and therefore A is the adjacency matrix of a $(49,16,3,6)$ strongly regular graph.
Next suppose Γ_{1} is extendable, that is, there exist matrices X and A_{2} such that the matrix

$$
A=\left[\begin{array}{ccc}
0 & j^{T} & 0^{T} \\
j & A_{1} & X \\
0 & X^{T} & A_{2}
\end{array}\right]
$$

is the adjacency matrix of a $(49,16,3,6)$ strongly regular graph. Let x_{1}, \ldots, x_{32} be the columns of X. Then clearly the $x_{i}^{\prime} s$ consist of 6 ones and 10 zeros, and (i) follows from (*). To prove (ii) define $\widetilde{A}=7 \mathrm{~A}-14 \mathrm{I}-2 \mathrm{~J}$. (In terms of association schemes, \widetilde{A} is a multiple of a minimal idempotent in the Bose-Messner algebra.) Since A has eigenvalue 16 with eigenvector j and eigenvalue 2 with multiplicity 32 , and since A, I and J have a common full set of eigenvectors, \tilde{A} must have an eigenvalue 0 of multiplicity 33 , so $\operatorname{rank}(\widetilde{A})=16$. Also A_{1}, I and J have a common full set of eigenvectors and therefore, because A_{1} has eigenvalue 3 with eigenvector j and no eigenvalue 2, $\widetilde{\mathrm{A}}_{1}$ has no eigenvalue 0 , so $\widetilde{\mathrm{A}}_{1}$ is non-singular. Thus the following submatrix of \widetilde{A} has rank 16.

$$
\left[\begin{array}{cc}
\widetilde{\mathrm{A}}_{1}^{1} & \tilde{\mathrm{x}}_{\mathrm{j}} \\
\widetilde{\mathrm{x}}_{\mathrm{i}}^{\mathrm{T}} & \alpha
\end{array}\right]
$$

where $\alpha=-16$ if $i=j$, and $\alpha=-2$ or 5 otherwise. Therefore the last column is a linear combination of the other columns, that is, there exists a vector v such that $\tilde{A}_{1} v=\tilde{x}_{j}$ and $\widetilde{x}_{i}^{T} v=\alpha$. Hence $\alpha=\widetilde{x}_{i}^{T} \widetilde{A}_{i}^{-1} \tilde{x}_{j}$. This proves (ii). Finally, if $x_{i}=x_{j}$, then (ii) implies $i=j$, so all 32 vectors x_{i} are distinct.

We remark that the above lemma generalizes to strongly regular graphs for which the multiplicity of one of the eigenvalues equals the degree. These are precisely the so called latin square graphs, negative latin square graphs and conference graphs.

5. COMPUTER RESULTS

For all 13 candidates the eigenvalues of the adjacency matrix have been computed. None has an eigenvalue equal to 2 , so Lemma 2 applies in all cases. For each candidate we computed the matrix $\tilde{\mathrm{A}}_{1}^{-1}$, and made a list of all 6 -subsets for which the characteristic vector x_{i} satisfies $\widetilde{x}_{i}^{T} \widetilde{A}_{1}^{-1} \tilde{x}_{i}=-16$ (we use the notation of Lemma 2). For each candidate we searched by computer for 32 vectors in the list that also satisfy the other conditions of Lemma 2. For no candidate 32 suitable 6 -subsets were found. Hence, we have:

THEOREM.
There exists no $(49,16,3,6)$ strongly regular graph.

The mentioned computer search is not necessary. All candidates can be ruled out by ad hoc arguments ones the lists of feasible 6-subsets are computed. For instance, candidates number. 3, 4 and 10 do not work because the list is smaller than 32 , and candidates number 5 and 8 do not work because an edge (edge $\{a, d\}$ and $\{a, \alpha\}$ respectively) is contained in just one set of the list, whilst by Lemma 2.1 two sets are needed. For the other candidates the ad hoc arguments are more complicated. But it doesn't seem useful to spend a lot of place and effort to treat all these arguments, since a computer search is needed anyway to generate the lists of 6 -subsets.

REFERENCES

[1] A.E. Brouwer and J.H. van Lint, Strongly regular graphs and partial geometries, pp. 85-122 in: Enumeration and Designs - Proc. Silver Jubilee Conf. on Combinatorics, Waterloo, 1982 (eds. D.M. Jackson \& S.A. Vanstone), Academic Press, Toronto, 1984.
[2] H.A. Wilbrink and A.E. Brouwer, A $(57,14,1)$ strongly regular graph does not extst, KNAW A 86 (= Indag. Math. 45) (1983) 117-121.

IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
    Nonstationarity in job search theory
```

243 Annie Cuyt, Brigitte Verdonk
Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
Local Times of Bernoulli Walk
245 Arie Kapteyn, Peter Kooreman, Rob Willemse
Some methodological issues in the implementation
of subjective poverty definitions
246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel
Sampling for Quality Inspection and Correction: AOQL Performance
Criteria
247 D.B.J. Schouten
Algemene theorie van de internationale conjuncturele en strukturele
afhankelijkheden
248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence
On ($\mathrm{v}, \mathrm{k}, \lambda$) graphs and designs with trivial automorphism group
249 Peter M. Kort
The Influence of a Stochastic Environment on the Firm's Optimal Dyna-
mic Investment Policy
250 R.H.J.M. Gradus
Preliminary version
The reaction of the firm on governmental policy: a game-theoretical
approach

251 J.G. de Gooijer, R.M.J. Heuts Higher order moments of bilinear time series processes with symmetrically distributed errors

252 P.H. Stevers, P.A.M. Versteijne Evaluatie van marketing-activiteiten

253 H.P.A. Mulders, A.J. van Reeken DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen

254 P. Kooreman, A. Kapteyn
On the identifiability of household production functions with joint products: A comment

255 B. van Riel
Was er een profit-squeeze in de Nederlandse industrie?
256 R.P. Gilles
Economies with coalitional structures and core-like equilibrium concepts
257 P.H.M. Ruys, G. van der LaanComputation of an industrial equilibrium
258 W.H. Haemers, A.E. BrouwerAssociation schemes
259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equili- brium model of bargaining
260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competition, Risk Neutrality and Loan Commitments
261
A.W.A. Boot, A.V. Thakor, G.F. UdellCollateral and Borrower Risk
262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply
263 B. BettonvilA formal description of discrete event dynamic systems includingperturbation analysis
264 Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies
266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation
267 Aart de Zeeuw
Inflation and reputation: comment
268 A.J. de Zeeuw, F. van der PloegDifference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg Rationing in open economy and dynamic macroeconomics: a survey
270 G. van der Laan and A.J.J. Talman
Computing economic equilibria by variable dimension algorithms: state of the art
271 C.A.J.M. Dirven and A.J.J. Talman
A simplicial algorithm for finding equilibria in economies with linear production technologies
272 Th.E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed exogenous variables
273 Th.E. Nijman and F.C. PalmPredictive accuracy gain from disaggregate sampling in arima - models

274	```Raymond H.J.M. Gradus The net present value of governmental policy: a possible way to find the Stackelberg solutions```
275	Jack P.C. Kleijnen A DSS for production planning: a case study including simulation and optimization
276	A.M.H. Gerards A short proof of Tutte's characterization of totally unimodular matrices
277	```Th. van de Klundert and F. van der Ploeg Wage rigidity and capital mobility in an optimizing model of a small open economy```
278	Peter M. Kort The net present value in dynamic models of the firm
279	Th. van de Klundert A Macroeconomic Two-Country Model with Price-Discriminating Monopolists
280	Arnoud Boot and Anjan V. Thakor Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing
281	Arnoud Boot and Anjan V. Thakor Appendix: "Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing
282	Arnoud Boot, Anjan V. Thakor and Gregory F. Udell Credible commitments, contract enforcement problems and banks: intermediation as credibility assurance
283	Eduard Ponds Wage bargaining and business cycles a Goodwin-Nash model
284	Prof.Dr. hab. Stefan Mynarski The mechanism of restoring equilibrium and stability in polish market
285	P. Meulendijks An exercise in welfare economics (II)
286	S. Jørgensen, P.M. Kort, G.J.C.Th. van Schijndel Optimal investment, financing and dividends: a Stackelberg differential game
287	E. Nijssen, W. Reijnders Privatisering en commercialisering; een oriëntatie ten aanzien van verzelfstandiging
288	```C.B. Mulder Inefficiency of automatically linking unemployment benefits to priva- te sector wage rates```

289 M.H.C. Paardekooper
A Quadratically convergent parallel Jacobi process for almost diagonal matrices with distinct eigenvalues

290 Pieter H.M. Ruys
Industries with private and public enterprises
291 J.J.A. Moors \& J.C. van Houwelingen
Estimation of linear models with inequality restrictions
292 Arthur van Soest, Peter Kooreman
Vakantiebestemming en -bestedingen
293 Rob Alessie, Raymond Gradus, Bertrand Melenberg The problem of not observing small expenditures in a consumer expenditure survey

294 F. Boekema, L. Oerlemans, A.J. Hendriks
Kansrijkheid en economische potentie: Top-down en bottom-up analyses
295 Rob Alessie, Bertrand Melenberg, Guglielmo Weber Consumption, Leisure and Earnings-Related Liquidity Constraints: A Note

296 Arthur van Soest, Peter Kooreman
Estimation of the indirect translog demand system with binding nonnegativity constraints

IN 1988 REEDS VERSCHENEN

297 Bert Bettonvil
Factor screening by sequential bifurcation
298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure
299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry
300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method
301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note
302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in lineair models using cross sections, panels or both

303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

304 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in dilution series

305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteitsconcept

306 J.P.C. Kleijnen, J. Kriens, H. Timmermans and H. Van den Wildenberg Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages
308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study
309 Robert P. Gilles and Pieter H.M. Ruys
Relational constraints in coalition formation
310 Drs. H. Leo Theuns
Determinanten van de vraag naar vakantiereizen: een verkenning van materielle en immateriele factoren

311 Peter M. Kort
Dynamic Firm Behaviour within an Uncertain Environment
312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models

313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp Does Morkmon Matter?

314 Th. van de Klundert Wage differentials and employment in a two-sector model with a dual labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen On Credible Optimal Tax Rate Policies

316 Christian B. Mulder
Wage moderating effects of corporatism
Decentralized versus centralized wage setting in a union, firm, government context

317 Jörg Glombowski, Michael Krüger
A short-period Goodwin growth cycle
318 Theo Nijman, Marno Verbeek, Arthur van Soest
The optimal design of rotating panels in a simple analysis of variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne De toepassing en toekomst van public private partnership's bij de grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert Wage Rigidity, Capital Accumulation and Unemployment in a Small Open Economy

321 M.H.C. Paardekooper An upper and a lower bound for the distance of a manifold to a nearby point

322 Th. ten Raa, F. van der Ploeg A statistical approach to the problem of negatives in input-output analysis

323 P. Kooreman Household Labor Force Participation as a Cooperative Game; an Empirical Model

324 A.B.T.M. van Schaik
Persistent Unemployment and Long Run Growth
325 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans De lokale produktiestructuur doorgelicht. Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek

326 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for quality inspection and correction: AOQL performance criteria

327 Theo E. Nijman, Mark F.J. Steel
Exclusion restrictions in instrumental variables equations
328 B.B. van der Genugten
Estimation in linear regression under the presence of heteroskedasticity of a completely unknown form

329 Raymond H.J.M. Gradus
The employment policy of government: to create jobs or to let them create?

330 Hans Kremers, Dolf Talman
Solving the nonlinear complementarity problem with lower and upper bounds

331 Antoon van den Elzen
Interpretation and generalization of the Lemke-Howson algorithm
332 Jack P.C. Kleijnen
Analyzing simulation experiments with common random numbers, part II: Rao's approach

333 Jacek Osiewalski
Posterior and Predictive Densities for Nonlinear Regression. A Partly Linear Model Case

334 A.H. van den Elzen, A.J.J. Talman
A procedure for finding Nash equilibria in bi-matrix games
335 Arthur van Soest
Minimum wage rates and unemployment in The Netherlands
336 Arthur van Soest, Peter Kooreman, Arie Kapteyn
Coherent specification of demand systems with corner solutions and endogenous regimes

337 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestruktuur doorgelicht II. Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek. De zeescheepsnieuwbouwindustrie

338 Gerard J. van den Berg
Search behaviour, transitions to nonparticipation and the duration of unemployment

339 W.J.H. Groenendaal and J.W.A. Vingerhoets The new cocoa-agreement analysed

340 Drs. F.G. van den Heuvel, Drs. M.P.H. de Vor
Kwantificering van ombuigen en bezuinigen op collectieve uitgaven 1977-1990

341 Pieter J.F.G. Meulendijks An exercise in welfare economics (III)

342	W.J. Selen and R.M. Heuts A modified priority index for Günther's lot-sizing heuristic under capacitated single stage production
343	Linda J. Mittermaier, Willem J. Selen, Jeri B. Waggoner, Wallace R. Wood
	Accounting estimates as cost inputs to logistics models
344	Remy L. de Jong, Rashid I. Al Layla, Willem J. Selen Alternative water management scenarios for Saudi Arabia
345	W.J. Selen and R.M. Heuts Capacitated Single Stage Production Planning with Storage Constraints and Sequence-Dependent Setup Times
346	Peter Kort The Flexible Accelerator Mechanism in a Financial Adjustment Cost Model
347	W.J. Reijnders en W.F. Verstappen De toenemende importantie van het verticale marketing systeem
348	P.C. van Batenburg en J. Kriens E.O.Q.L. - A revised and improved version of A.O.Q.L.
349	Drs. W.P.C. van den Nieuwenhof Multinationalisatie en coördinatie De internationale strategie van Nederlandse ondernemingen nader beschouwd
350	K.A. Bubshait, W.J. Selen Estimation of the relationship between project attributes and the implementation of engineering management tools
351	M.P. Tummers, I. Woittiez A simultaneous wage and labour supply model with hours restrictions
352	Marco Versteijne Measuring the effectiveness of advertising in a positioning context with multi dimensional scaling techniques
353	Dr. F. Boekema, Drs. L. Oerlemans Innovatie en stedelijke economische ontwikkeling
354	J.M. Schumacher Discrete events: perspectives from system theory

Bibliotheek K. U. Brabant

17000010659648

[^0]: *) The research for this paper was done in 1979 at the Technological University of Eindhoven.

