

University of Bath

PHD

A demand driven multiprocessor.

Bakti, Zulkifli Abdul Kadir

Award date:
1985

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/a-demand-driven-multiprocessor(3d33014f-3a6f-4c48-b05e-848e800c09c3).html

A DEMAND DRIVEN MULTIPROCESSOR

submitted by

Zulkifli Abdul Kadir^Bakti

for the degree of Ph.D.

of the University of Bath

1985

Attention is drawn to the fact that copyright of this

thesis rests with its author. This copy of the thesis

has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests

with its author and that no quotation from the thesis

and no information derived from it may be published

without the prior written consent of the author.

This thesis may be made available for consultation

within the University Library and may be photocopied or

lent to other libraries for the purposes of

consultation.

Signed

ProQuest Number: U363393

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U363393

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr.

P.J. Willis and Professor J.P. Fitch for their

supervision of this work. He would also like to thank

the other members of the computing group in the School

of Mathematics, especially to Dr. D. Milford.

Appreciation is extended to the Science and

Engineering Research Council for making a grant

available under the Distributed Computing Systems (DCS)

programme for financing the construction of the

hardware.

Finally, his sincere thanks to Universiti Sains

Malaysia, Penang for providing the financial support.

SUMMARY

It is thought that fast low cost computers can be

built by employing large numbers of cheap

microprocessors working together in a system. However

increasing the number of microprocessors in a parallel

computer system may not produce a linear increase in

performance for general purpose programming. The

problems seem to lie in the communication between

processors and the method of exploiting parallelism.

A multiprocessor system was constructed using six

m c 68000 microprocessors. The problems of communication

and exploiting parallelism were tackled in the design

of the multiprocessor system.

The component processors in a multiprocessor system

communicate with each other through a communication

channel. It is essential that the communication

hardware has a high bandwidth. A fast communication

hardware was implemented based on a two port shared

memory.

One method of extracting parallelism in a computing

problem is by using divide and conquer. A software

system was developed that enables the multiprocessor to

exploit parallelism derived by the divide and conquer

method. A software kernel is employed to manage the

scheduling of parallel tasks to processors and the

communication between processors. The mode of

computation is based on the demand driven model.

CONTENTS
Chapter 1 Introduction.

Introduction
Approaches to parallelism

Multimicroprocessor system
Concurrent language concept
Semaphore
Monitor
Message based communication
Designing parallel programs

Array and vector processors
Non Von Neumann architectures

Data flow architectures
Reduction computers

Generating parallelism
Interprocessor connection
Objective

Chapter 2 Simulation

1
2
2 . 1
2 . 2
2.3
3
3. 1
U
U. 1
H . 2
5
5.1
6

Need for simulation
Model

Parallel Model
Sequential Model
Form adopted

Data flow machine
Results and discussion

Demand driven machine
Sparse tree evaluation
Results and discussion

Regular tree evaluation
Results and discussion

Conclusion

Chapter 3 Hardware

3.1 Introduction
3.2 Choice of processor
3.3 Choice of communication interface
3 .3.1 Programmed control or DMA
3 .3.2 Buffer memory
3 .3.3 Polling or interrupt
3 .Ü The solution adopted
3.5 Board space and connectors
3 .6 Design considerations
3.7 Two ported shared memory
3 .7.1 State machine arbiter
3 .7.2 Byte addressing considerations
3 .8 Buffers
3.9 Interrupt processing
3 .9.1 Interrupt controller with vector

generation

3.9-2 Interrupt controller with autovector
3.10 Input and output control ports
3.11 Address decoder
3.12 Summary

Chapter k Software

U . 1 Introduction
U .2 Language
k .3 Kernel
/I. 3.1 Components of the kernel
k .U Data structures
U .H .1 Task descriptor
lX.k.2 Instruction and result packet
li. 5 Scheduler process
k .6 Task processing
Ü.7 Communication
Ü..8 Dynamic storage management
k.9 Program development
U,10 Experiments
Ü.10.1 Quicksort
4.10.2 Parallel matrix computation
4.11 Conclusion

Chapter 5 Discussion

5. 1 Introduction
5.2 Performance
5.2.1 Effect of interface hardware on

performance
5.2.2 Effect of software on performance
5.2.3 Effect of interconnection topology on

performance
5.3 System improvement
5 .3.1 Hardware system enhancement
5 .3.2 Software develpment system
5 .4 General purpose programming
5.5 Parallel Lisp system
5.6 Conclusion

Reference
Appendix A

CHAPTER 1 INTRODUCTION

1.1 Introduction

Computers are used as tools in some applications

and as components of systems in other applications. In

some critical applications high speed is of

considerable importance. It is thought that employing

more than one processor working in parallel to each

other in a computer system will increase the processing

speed.

The component processors in a parallel computer

system can be off the shelf microprocessors (8) or

specially made. The simplest form of parallel computer

system consists of a collection of microcomputers

linked to each other by means of a communication path.

The communication path could either be a shared memory

or parallel or serial data link. Shared memory

architectures are classified as tightly coupled and

data link architectures as loosely coupled. In a

multiprocessor system the individual processors are

themselves complete computer systems, possibly having

an ample amount of memory and some input/output

capabilities. The notion of parallel processing is to

have several processors cooperating towards the

solution of a common problem. The vehicle through which

the processors are able to cooperate with one another

is provided by the interprocessor communication.

Typical of this type of parallel computer or

multiprocessor system is that there is no centralised

control.

At the other end of the scale, a highly synchronous

form of parallel computer replicates only the

arithmetic unit but not the control unit.AHigh degree

of parallelism is achieved when the same operation is

to be performed on a multitude of data elements.

However if the number of processing units available is

less than the number of the data elements part of the

processing has to be done serially. The advantage of

synchronous control is simpler communication as there

is little overhead involved in setting up.

With the above examples of parallel computers, one

thing that they share is the Von Neumann model with

regard to their programmability. Some circles within

the computing community believe that this restricts the

efficiency of parallel computers. New computer

architectures based on data flow, functional and

reduction models should be capable of exploiting

parallel processing to the fullest.

Generally the approaches to research in parallel

architectures are to concentrate on off the shelf

technology because of low cost or to use specialised

hardware in order fully to characterise the computing

models. The line of approach adopted in this thesis is

to find new methods of exploiting parallelism in a

multiprocessor system utilising an ensemble of

microprocessors. The factors that are of interest are

the method of interprocessor interface and the software

organisation. Both factors will determine the

performance of the system. With interprocessor

communication the topology of processor to processor

communication based on a system of graphs needs

investigation. With software organisation, a suitable

computing model and also the method of exploiting

parallelism needs choosing.

1.2 Approaches to parallelism

The sequential execution of one instruction at a
(Xtime and the updating ofAstate dependent data structure

is the basis for the uniprocessor. The imperative

programming languages such as Fortran, Pascal etc.

closely emulate this scheme. This will make these

languages unsuitable for programming multiprocessors.

Functional languages such as pure Lisp, do not depend

on state dependent variables and there is the

possibility for expressing parallel evaluation

implicitly. However the limitations of imperative

languages do not exclude them from being the basis for

some concurrent languages and the cleanness of

functional languages does not make them into a

universal multiprocessor programming language. There

are reasons for this being the case. The use of

microprocessors as component processors in the

multiprocessor system is the main reason. Another

reason is the nature of the applications for these

s ystems.

In real time applications, a suitable model can be

built by mappping the processes into individual

processors. It is sufficient to consider that all

processors are running their own programs or task. To

supervise an orderly interaction between tasks, new

constructs are introduced. This is the basis for some

concurrent languages such as Concurrent Pascal (45),

Ada (54) and Occam (25). The advantage of this approach

is that very little overhead is needed apart from that

required for establishing communication. The use of

functional languages will extend the capability of

multiprocessors to general purpose applications. The

disadvantage is the hardware based on off the shelf

microprocessor is not capable of emulating the

functional model directly. An extra level of software

is required to interpret the functional model.

1.2.1 Multimicroprocessor system

Programming multiprocessors based on interacting

sequential processes is the first approach mentioned in

the last section. Originally this method was developed

for operating system and real time system programming.

Separating the various functions in an operating system

into individual processes that coexist in time results

in a more efficient and easily maintainable program.

The virtual parallel processes are simulated by time

multiplexing the physical processor.

The availability of cheap microprocessors tempts

many system designers to swap the virtual processors

for real processors. For existing applications this

transition provides an acceptable gain in speed

performance although with more hardware complexity.

1.2.2 Concurrent language concept

The main issues which a concurrent language

highlights are the concept of task and communication.

The communication can occur through a common area

shared by the tasks or by the passing of messages

through a channel from one task to another. For

communication to be effective there are certain

conditions that have to be imposed.

At) early concurrent language such as Concurrent Pascal

provides shared memory oriented communication. This is

due to the multitasking type of applications on

uniprocessors. The techniques developed for this

application can be applied wholesale to a shared memory

architecture.

With shared memory type of communications, the most

important aspect that needs to be tackled is

guaranteeing a determinate access to the shared

structures. Two methods which have gained wide

acceptance are based on semaphore (44) and monitors

(4 5).

1.2.3 Semaphore

A semaphore S is an integer variable which is

common to all the processes involved. Initially S is

assigned some value. Associated with this semaphore is

a queue which holds the names of the processes. Two

operations only are allowed on the semaphore. They are

Wait(S) and Signal(S), abbreviated to P(S) and V(S)

respectively by Dijkstra. The value S, is decremented

when a process executes a Wait(S). If the value of S is

negative the process is blocked from execution. This is

done by putting the process on the queue. If the value

of S is non-negative, the process is allowed to

continue without delay. A process executes Signal(S).

when it wants to release control of the shared data

structure. The operation Signal(S) increments S. If the

value of S is negative, the process at the head of the

queue is scheduled for execution. A simple case is a

binary semaphore, which can only assume binary values

and deal with two processes. A queue is not needed as

the delay operations can be performed by a simple busy

loop.

1.2.4 Monitor

The monitor provides a higher level of abstraction

than the semaphore. This allows operations on a shared

data to be more structured. The monitor defines a set

of shared data structures and a collection of

procedures that can perform operations on this data.

The procedures inside the monitor are accessible to all

the processes. The processes are not allowed to operate

on the shared variables directly but can only do so

through the monitor procedures. The executions of

monitor procedures are mutually exclusive. The process

that is executing a monitor procedure has exclusive

control. Other processes can only access the procedure

after the first process has released control. A process

can give up a monitor procedure in two ways. First, by

terminating the execution of the procedure. The second

method is by performing two complementary operations on

a conditional variable, Cond. The operations are

Delay(Cond) and Conti n u e (C o n d). When a Delay(Cond)

inside a monitor procedure is executed by another

process, a process that is currently held on a queue is

retrieved and its execution resumed.

1.2.5 Message based communication

In message based communication a channel is defined

over which communication can takes place. A writer

sends information through a channel. A reader receives

information from a channel. Provided both the writer

and reader specify the same channel, communication

between the two is said to be established. Again

synchronisation is necessary between the writer and

reader. A concept called rendezvous is used in message

based communication for this purpose. Transfer of

information over the channel can only occur when both

the writer and the reader meet inside the channel. If

either of them arrives earlier than the other, it must

wait for the other to arrive. In extended rendezvous

both the writer and reader maintain synchronisation for

an extended period before departing. Communication

Sequential Process(CSP) (24) describes a formalism for

message based communication.

Incorporating the notion of message based

communication in a high level language is easy. This

can be done using two system procedures -

S E N D (c h ,data) and R E C E I V E (c h ,data)

where ch is the channel number and data the value

send or received.

Ada and Occam are two languages that are based on

message passing.

Physically a hardware link between two processors

can represent the channel. Therefore Ada and Occam are

the ideal languages to program loosely coupled

multiprocessors. However shared memory multiprocessors

can also use message passing communication.

1.2.6 Designing parallel programs

The parallel programming constructs described in

the previous sections do not determine the method of

designing parallel programs. Structured programming

techniques have been developed for sequential

languages. A similar technique should be applicable to

concurrent programs. In structured programming the

program is decompose into smaller procedures. In a

sequential program there is only a single thread of

control. In concurrent programming the notion of

decomposing the program into procedures or processes is

still valid but the thread of control is capable of

replicating (17)(19). The processes that reside on

parallel threads are capable of being executed on

parallel processors. The parallel processes may not be

totally independent of each other. This is where

interprocessor communication has to take place.

1.3 Array and vector processors

Array and vector processors are based on

synchronous architectures. Using a typical sequential

language like Fortran, there are certain aspects of

parallelism that can be exploited. However this

potential is limited to some areas of application such

as numerical computing. In numerical computation, a lot

of array and matrix manipulation is involved. If the

elements of an array or matrix are independent of each

other, simultaneous operations on all the data elements

are possible. In normal sequential programming loops

are used to work on the data elements. Parallel

evaluation of the data elements has the effect of

unfolding the loops.

Programs written in ordinary Fortran are

automatically translated by compilers to produce code
iJiefor A parallel machine. To make the translation task

easier, special Fortran style languages are used.

Examples of such languages are CFT (48) for the Cray-1

and Ivtran (43) for the Illiac IV. Special constructs

are introduced, for example the parallel assignment of

data elements in Actus (42).

Array and vector architectures to date are the most

successful parallel architectures. There are a number

of commercial machines in this class, the so called

supercomputers. Two examples of array and vector

computers were mentioned in the previous paragraph, the

Cray-1 and the Illiac IV (46). Further examples are GDC

Star-100 (47) and ICL DAP (49).

1.4 Non Von Neumann architectures

It was found that parallelism cannot be exploited

efficiently on conventional architecture (6). Various

machine architectures and computing models have been

proposed as alternatives to the conventional Von

Neumann machine. The intrinsic characteristic of these

architectures is that they should be capable of

expressing parallelism naturally.

1.4.1 Data flow architectures

A data flow program is a system of graphs where the

nodes represent evaluation and the edge or arcs

represent the carriers for the arguments. A simple data

10

flow graph is shown in fig(l.l). The node or actor has

two inputs and one output. An actor is said to be

fireable if both inputs are valid and the output is

empty. The relationship between the inputs and the

output is dependent on the function of the actor.

Actors that can only do binary operations are not

sufficient to realise a complete computing model. Unary

operations are supported by actors having one input and

one output. To support conditionals, two type of actors

are required, switch and merge. A switch actor has two

inputs and two outputs. One of the inputs accepts

predicate values. A data from the other input is

directed to either output depending on the condition of

the predicate input. A merge actor has three inputs and

one output. One of the inputs receives the same

predicate as the switch actor. The data token at either

of the remaining inputs is directed to the output

depending on the predicate input.

On the language side, there are special languages

developed which would compile directly into a system of

data flow graphs. Two such languages are VAL (38)(39)

and SISAL (40). They are different from the normal

imperative languages. Basically only single assignment

is allowed.

The data flow has created a possibility of a

computer without a program counter. The actors can be

realised directly in hardware which could replace the

basic logic building blocks. What will result is a

11

Y

FIG. 1.1 A DATA FLOW ACTOR

OPERATION PACKETRESULT PACKET

INSTRUCTION
aUEUE

OPERATION

UNIT

FETCHupdate

ACTIVITY

STORE

— MESSAGE LINK

READ/WRITE ACCESS

READ ACCESS

FIG. 1.2 bASIC DATA FLOW.MACHINE

12

piece of computer program totally realised by an

Interconnection of hardware. Although this will

restrict programming In the normal sense. It can offer

true high speed performance for some applications.
ed

Albeit this has not galnXwlde acceptability apart from

a device manufactured by NEC Electronic Incorporation

(50). The device designated uPD728l is a VLSI

Implementation of the data flow logics.

The present research trend is to develop a data

flow architecture as a general purpose machine. The

approach is to emulate the data flow machine using a

high speed bit slice microprocessor. The actors are

represented in memory as activity templates. The

activity templates are grouped together in the activity

store. A unique address is required for referencing a

template.

A basic execution mechanism for a data flow

processor due to Dennis (16)(27) is shown in fig (1.2).

The data flow program is held as a system of activity

templates in the activity store. The instruction queue

contains the addresses of fireable activity templates.

The fetch function retrieves an instruction from the

queue. The instruction will specify an address of an

activity template. This activity template is fetched

from the activity store and made into an operation

packet. The operation unit will execute the instruction

to produce a result packet. The update unit will pass

the result to the destination templates. If this result

13

causes the destination to be fireable, the address of

the destination template will be placed on the queue.

A data flow multiprocessor consists of a collection

of data flow processing elements. The combination

of all the activity store will be asigned to a single

address space. A communication network is used to

transmit results to non-local activity templates. This

network also works as a router by routing the packets

to their appropriate destinations.

The Manchester Dataflow (20) follows the same

principles of the dataflow machine of Dennis. However

the Manchester dataflow introduces token labelling as a

means of supporting reentrant code structures.

1.Ü.2 Reduction computers

Parallelism is available in a functional language

at no extra cost. Consider a function which has several

arguments and the arguments themselves are function

calls. Before the values for the arguments can be used,

the arguments have to be evaluated. If there are more

than one argument, argument evaluations can be done in

parallel. The process of reducing the arguments to

useable values is called reduction. Reduction can

either be string or graph reduction. In string

reduction the process is done by redrawing a new

instruction stream for each reduction. In graph

reduction, the graph representing the computation is

modified for each reduction.

lU

The SKIM reduction machine (13) at Cambridge, uses

a combinary logic or combinators to represent programs.

Turner (10) originally developed the scheme of using

combinators in applicative programming. The idea of

combinators is to remove bound variables in applicative

programs. The internal representation of the program is

by cells of two elements.

A combinator system can be built typically using

five symbols S,K,I,B,C which represent functions with

reduction rules satisfying -

K xy = X

S fgx = fx (gx)

I X = X

B fgx = f (gx)

C fgx = fxg

Fig 1.3a shows a graph representing an expression

(x+l)*(x-l) where x=7. The textual form of the same

graph is S(B times(C plus l))(C minus 1)7. Figures 1.3a

to 1.3e show the steps in reducing the program graph

for the above expression. It can be seen that after the

S reduction there is a branching in the graph. There is

a possibility of parallel reduction from this point

onwards. What the graph represents here is that the two

sub-expressions, (x+1) and (x-1) can be evaluated in

parallel. There still is a problem in recognising when

this can be done safely. For this reason many of these

systems, including SKIM, ignore parallelism for the

security of normal order reduction.

15

GRAPH BEFORE REDUCTION

(S (B x (C + 1) (C - 1) 7)

y

APPLY S

1\
c -

y
F I G. 1 . 3 a (S (B % (C + 1) (C - 1) 7)

F I G . 1 . 3 b (B x { C+ 1) 7) ((C - 1)7)

APPLY 6

FI G. 1.3c (X (C + 1) 7) ({ C - 1) 7)

16

APPLY C

\
. ^

X

/
1

+ 7

7\
\ 1

\

C -

APPLY +

APPLY C

FIG. 1 . 3 d (x (+ 7 1)) ((C - 1) 7)

FIG. 1..3e (x 5 ((C-1 } 7)

F IG . 1 . 3 f (X 8 (- 7 1))

APPLY X

F I G. 1. 3 g (X 8 6)

17

The ALICE machine of Imperial College (1) also uses

graph reduction. However it differs from the SKIM

machine in that it does not use combinators.

Furthermore the graph is represented by a system of

packets. A packet consists of three primary and

secondary fields. The primary fields are identifier,

function and arguments list. The secondary fields are

status, reference count and signal list. The execution

node information is contained in the primary fields.

The identifier signifies a unique address for the

packet. The function field denotes the task of the

node. The arguments list contains the references and

values which form the input for the task. The secondary

fields hold the necessary information for the control

mechanism essential for execution. The status denotes

the state of the task which can be active or suspended.

The reference count is used in the garbage collection

process. The signal list contains the information on

the destination for the result of the task.

The ALICE machine exemplifies a typical demand

driven computation. A need for a computation causes a

demand packet to be created. This generates the node

packet mentioned in the previous paragraph. The result

is returned by the control packet.

In string reduction, programs are represented by a

system of nested delimited strings (9)(23). The string

is made up of characters from two alphabets. The first

alphabet defines the character set for the delimiters.

18

The second alphabet defines the character set for the

data.

A simple program fragment is -

(+ al a2) ...(si)

The * * determines the operations and, al and a2 can be

nested substrings. The program fragment will then be -

(opl (op2 bl b2) (op3 cl c2)) (s2)

The idea of string reduction is to take a string of
it

the form (s2) and replace^with a string of the form

(si) but with al and a2 having simple values. Every

time a reduction process is performed, a string is

produced based on the original string. This is unlike

graph reduction where the graph is redrawn by modifying

the original structure.

A string reduction machine mode of operation is as

follows. A string of the form (s2) is received at a

processor. The string is scanned from left to right.

Since there are nested strings present, the operation

on the original string is delayed. Instead two more

strings are produced which correspond to the nested

substrings of the original. The evaluation of the

smaller strings produces results that replace the

nested substring with real values. The original string

can then be evaluated and a final result produced.

1.6 Generating parallelism

In the multi microprocessor system of section

1.2.1, there is no debate whether the algorithm used

19

generates enough parallelism or not. In the context of

real time application, the network of multiprocessors

attempts to model the problem. In the vector and array

processors, the unlooping of iteration generates the

parallelism. In the non Von Neumann machine, although

the expression of parallelism is natural the problem to

be solved may not offer any parallelism. Unless the

architecture is modelled directly by hardware, the

availability of parallelism by multiple evaluation of

argument does not justify the cost of communication and

setting up the parallel processes. What is required is

a system that can generate an exponential growth of

parallelism. The situation is that parallelism can only

be extracted and exploited from a problem that has the

parallelism potential. This statement in a way reduces

the applicability of using parallelism to a restricted

set of problems only. Apart from numerical

applications, the other area where speed is needed is

in artificial intelligence systems. Array and vector

processors are not suitable in this application because

the nature of the problem does not involve numerical

computation to a great e x tent. It is more suitable to

use the reduction architecture for this type of

application.

The divide and conquer method (14) solves a problem

by continually subdividing it until the subproblem is

small enough for direct evaluation. The subdivision

produces a process tree. The results produced from the

20

leaf nodes are combined to form a partial result (if

the parent node is an intermediate node) or the final

result (if the parent node is a root node). A root node

or intermediate node that is waiting for results from

its subnodes is said to be in a suspended state.

Normally the type of the subproblem is the same as

the original problem. The divide and conquer algorithm

can be expressed more naturally as a recursive function

or procedure. A control expression for the divide and

conquer can be defined.

Program Divide-and-Conquer

Const n — Lnicycr .

Var A : array[l..n] of integer ; *

S : integer ;

Function DandC (v,w : integer) : integer ;

Var m,p,q ;

Begin

If Small(p.q) then DandC := G(p,q)

Else Begin

m := Divide(p,q) ;

DandC := Combine(D a n d C (p ,m) ,DandC(m+1,q))

End

End ;

Begin

S := D a n d C (1,n) ;

End

21

Small is a boolean function which returns true if the

problem cannot be subdivided further and returns false

otherwise. Divide is a function which divides the

problem. The Combine function combines the results

produced by the subproblems.

The divide and conquer can be applied to a number

of problems. The popular problem is sorting. NP

complete problems (37) potentially can produce an

enormous process tree. This makes NP complete problems

solvable using divide and conquer. The Fast Fourier

Transform algorithm (35) is an example of this class.

1.6 Interprocessor connection

Interprocessor communication is a very important

aspect of multiprocessor implementation. In a system

that employs hundreds or even thousands of

microprocessors, the potential increase in speed can

easily be upset by inefficient communication. With

shared memory or shared bus architectures the

performance begins to deterioriate with more than a few

processors. This is due to the limited bandwidth of

memory and bus that can be offered with present

technology.

The present approach to interprocessor

communication is to employ high speed data links

between processors (53). There is a dedicated hardware

interface for each link. The data link can be serial or

parallel. The choice between the two is governed by the

22

ond
physical constraints^whether the reduced transfer rate

of a serial link is acceptable. Direct memory access

control can be used for a very high speed communication

but with added hardware complexity.

In principal a processor can communicate to any

other processor in the system irrespective of whether

the communication must be done via an intermediate

processor, but this kind of communication must be

restricted. The use of intermediate processors will tie

up valuable processing resourses and will be very

costly.

Having a fully interconnected path between all the

processors is feasible for a system with relatively few

number of processors. In a large system an

interconnection strategy must be found that would be

economical on the use of processors. One aspect that

needs to be avoided is to resort to the use of

intermediate processors for most communication.

Generally the nature of the problem determines the

way parallelism can be exploited. To make the most

efficient use of the parallelism, the hardware must be

able readily to exploit it. For example the array and

vector computers efficiently utilise the parallelism by

being capable of modelling the execution. There are

various topologies proposed, each having its own merits

and suitability to the nature of problems that they can

solve.

A binary tree of processors is capable of modelling

23

F IG . 1,4 PETERSEN'S GRAPH

/

\ \
V

F IG . 1.5 PETERSEN'S GRAPH AS A TREE

24

the process trees of divide and conquer evaluation

(55). The disadvantage is that a vast amount of

processors are required once the depth of the tree

exceeds a certain level. Processors will be idle during

the suspended state of a node. This will amount to a

very high wastage of valuable processing capabilities.

Redeploying the system to another problem where

subdivision is n ways is difficult as it entails

hardware modifications.

An interprocessor interconnection scheme is

proposed by Bowyer et al (7) based on a system of

graphs. The graph chosen for the purpose is the

P etersen’s graph (fig. 1.4) which has a valency of 3

and girth 5* The symmetry of the Petersen’s graph can

be shown clearly in the redrawn diagram (fig. 1.5). The

central node, chosen arbitrarily, can be seen to be the

root node of three binary trees. The interesting

properties of the Petersen graph is it has the maximum

depth achievable for a graph having ten nodes. Assuming

that a node in the graph represents a processor, a

divide and conquer division will be done the most

number of times before reaching the original root

processor. The root processor would be idle and with

the help of some software the root processor can be

redeployed.

A trivalent graph of maximal girth can be employed

for systems of different number of nodes. The criterion

of maximum depth should still be upheld. For practical

25

reasons graphs with very high valency may not be easily

implemented as a processor interconnection. A graph of

valency three might be an acceptable number. To achieve

a graph of certain girth a minimum number of nodes must

be employed (30). For a graph of valency three the

relationship between girth and number of nodes m is

m = 2(l+2+2-2+..2"(r-l)) (1)

where r = g/2 (2)

For example a girth 6 graph requires 14 nodes and a

girth 8 graph requires 30 nodes. An Increase of 2 for

the girth doubles the number of nodes required. It may

not be economical to built larger girth machine because

of the number of nodes required. It is important for a

particular girth the smallest graph should be employed.

The task, of finding a minimal sized graph for a

particular girth is hard, for example a trivalent graph

of girth 9 with 58 nodes (36).

26

1.7 Objectives

The Interconnection strategy of Bowyer et. a l .

forms the starting point for this research. There are

several ways in which a network of multiprocessors

based on the proposed interconnection strategy can be

driven. The reduction machine model was chosen

because it offers the possibility of making the

multiprocessor general purpose.

There are three main areas of research activities

involved in this thesis. Below are the descriptions of

each activity.

(1), The simulation studies of the behaviour of the

reduction machine on the interprocessor network. A

simulator model was developed. The basic structure of

the simulator describes the interconnection network.

The reduction machine model is built on top of the

basic simulator. The techniques experimentally

simulated are data flow execution, sparse and regular

tree evaluations.

(ii). The next activity was the construction of the

multiprocessor. The component processors employed were

MC68000 based microcomputers each with 256K memory.

These were acquired from an external source. However

the interprocessor interface hardware was designed and

built by the author. An important requirement for the

interface is that it should have a high data transfer

rate. The interface chosen was a shared memory which

resides between two adjacent processors on the network.

26 a

The shared memory is 2K bytes wide and allows

bidirectional communication. In order to aid

handshaking, interrupt hardware is provided. A complete

set of shared memory interfaces was built enabling the

construction of a six node trivalent graph network.

(iii). The final activity is the implementation of a run

time kernel and demand-pull schedulling for an abstract

reduction machine. The run time kernel is responsible

for task management and the organisation of

communication between processors. A system of data

structures records the information of every task

created. The information is kept valid until the task

is terminated. A task creates parallel subtasks by

issuing intructions that are placed on the instruction

queue. The instruction can be consumed locally by the

host processor or it could migrate onto one of the

neighbouring processors. A processor that requires

tasks does so by issuing a demand to one of its

neigbours. This is done by setting a flag in the shared

memory. In this way the migrating of tasks across the

network is done by the process of pulling as opposed to

the tasks being pushed to the idle processors.

26 b

CHAPTER 2 SIMULATION

2.1 Need for simulation

The behaviour of the interprocessor network can be

studied using a simulator (7) (11). The information that

can be obtained from the exercise are -

1. The speed at which all the processors can be

utilised;

2. The average processor utilisation during the

computation.

The exercise was done on several parallel evaluation

strategies. They are the following -

1. Data flow;

2. Demand driven for sparse tree;

3. Demand driven for regular tree.

From the simulation important design decisions can then

be made. The objective of the simulation is to study

the load distribution characteristic of the network.

2.2 Model

The simulator can be programmed using a sequential

or a concurrent language. The following sections

describe the model required for both sequential and

concurrent programs.

2.2.1 Parallel Model

Ideally a concurrent language like concurrent

Pascal or Ada should be used for programming the

simulator. The process or task construct of these

languages readily describes the n o d e ’s activity.

27

Logical characteristics of the interprocessor

communication can be represented by the communication

construct. However this is a very simplistic

communication model, because the physical behaviour of

the interface hardware cannot be modelled accurately.

The behaviour of the interface can be modelled more

accurately by an intermediate process linking the two

processes representing the nodes.

The basic structure of the simulator consists of a

system of processes representing the nodes and a system

of processes representing the communication Interface.

In a six nodes system there will be six processes

representing the nodes and nine processes representing

the interface. In the implementation of the run time

system for a concurrent language the effect of parallel

process is produced by interleaving the execution. The

scheduling of the process is controlled by a clock. If

the rate of this clock is sufficiently fast a true

parallelism effect can be produced.

The simulation is based on costs that represent the

time for computation and the time for communication.

Both the computation cost and communication cost are

dependent on the size of the problem to be executed.

However on top of these costs iS the cost incurred by

the intrinsic characteristic of the network. It is most

likely that this cost is constant. For the purpose of

the simulation exercise the costs are represented by

numbers whose initial values can be varied. Experiments

28

were done by assigning various values to the cost and

observing the load balancing, distribution and

processor utilisation effect on the network.

The cost is simulated by a delay function executed

by the processes. The delay function argument is a

number. The value of this argument determines the

length of the delay.

The computation cost is wholly dependent on the

size of the problem. However the cost for communication

is not wholly dependent on the size of the imformation

going through it. In the real network the communication

is asynchronous. With asynchronous communication the

response can be affected by a purely random chance. To

illustrate this effect let us observe how rendezvous

takes place. A sender for the sake of argument, sends

out a request for a transfer. The sender will wait an

indeterminate length of time for a response from the

receiver. The time necessary for both nodes to

rendezvous depends on the states the nodes are in. The

time taken for a node to get out of its present state

in order to rendezvous is not constant. One method of

simulating this random event is to incorporate a random

number generator in the delay function. The overall

delay effect of the delay function will be dependent on

the input argument and the random number produced

internally.

29

2.2.2 Sequential Model

It is possible to describe the simulator using

sequential language. However the accuracy of the model

will be less than that of a model described by a

concurrent language. In the concurrent run time system

the interleaving is done cxX, Q fioe g TaiD level

of the host processor. Using a sequential language the

lowest level of interleaving possible is at statement

level. However this can be messy to implememt. A

possible description of n processes running in parallel

but without communication is as below -

Repeat

processl

process2

processn

Until ..

The delaying effect can be realised as follows. The

argument to the process is initially set to some value.

On entering the process this number is decremented. If

this number is non zero no further action is done. The

parallelism effect is preserved because the rate the

processes are interleaved is equivalent to interleaving

at instruction level. The processes from 1 to n are

identical to each other. When there is more than one

30

class of identical processes it may not be clear where

to put the other set of processes. For example the

processes can be interleaved as -

processla

processlb

process2a

process2b

The alternative is to group the processes

processla

process2a

processlb

process2b

The ’b ’ sets of processes may be dependent on the ’ a ’

sets of processes. For example if process ’b ’ is the

communication process, it will only be invoked when

process ’a* wishes to use the communication facilities.

The logical interconnection can be set up in a

table. The nodes can be referred to by numbers, for a

six nodes system from one to six. Next a table of six

31

rows and six column is defined. In the entry for a

corresponding row and column is a value of 0,1,2 and 3.

A value zero signifies that there is no connection

between the corresponding row and column node. The

values 1,2 and 3 signify the port used to established

the connection.

2.2.3 Form adopted

At the time the simulation exercise was carried out

there wols no concurrent programming system available

locally. The objective of the exercise is not so much

at getting a precise result as obtaining a general feel

for how the network would behave for different parallel

evaluation strategies. Results obtained from an

approximate description by a sequential language should

be adequate and hence this form was chosen. The

following sections describe the various experiments

using the simulator. For the different parallel

evaluator appropriate systems are built on top of the

basic simulator.

2.3 Data Flow machine

A data flow machine of section 1.4.1 can be built on

top of the basic simulator of the previous section.

Recapitulating, the data flow machine mechanisms are

the fetch unit, arithmetic unit and update unit. In

addition there are the data structures corresponding to

the instruction queue and activity store. According to

32

the discussion in the previous section, the mechanism

must be treated as processes that represent all the

activities on a node. A fetching process involves

fetching instructions from the local instruction queue

or from one of the neighbouring n o d e s ’ queues. Fetching

instructions from neighbours is a communication

process. The activity store is treated as a unified

global memory space. There is no hardware global

memory. Each node is allocated a certain range in the

virtual memory space. If a memory reference falls on

non local allocated space, it assumes that the system

automatically issues the request through the

communication interface. For the purpose of simulation,

the activity store is a global array. The distinction

between a local access and non local access is that it

will take longer to serve a non local access. This can

be simulated easily in the update process.

The activity store is an array of activity

templates or records. The fields of this record as

already described in the last chapter are the

instruction, data receptors a and b, and destination.

The instruction queues contain pointers to active

templates.

The simulator should be able to simulate networks

of various nodes without extensive modification of the

program. Since the activities of the various processes

in the simulator are identical for all the nodes, the

program can be table driven. Variables are stored in an

33

array. When processing a particular node, the node

identifier is used as the index to refer to the

appropriate variable. The only data that needs to be

changed when simulating different sized networks is the

node size and the interconnection table.

In the simulator there is a subsidiary part of the

program which generates a binary tree of activity

templates. The tree generator accepts an argument which

specifies the depth of the tree. The le a v e s ’ activity

templates by definition are active and fireable. The

addresses of these templates are places on the

instruction queue of a node chosen as the central site.

An alternative to initial loading a central node is to

evenly load all the nodes.

The operation of the simulator is as follows. The

fetch function attempts to get instructions from the

local queue. If there are no instructions available

locally, the fetch process will try to steal an

instruction from the neighbours. If an instruction is

available from one of the neighbours, no further

attempt will be made to obtain instructions from the

other two neighbours. After the fetch processes for all

the nodes have been executed, the next step is the

computation process. The result from the computation is

use to update the destination template. If the

destination template is fireable, the address of the

template is placed in its host node. The destination

node is identified from the address of the template.

34

The time dependent characteristics of the various

mechanisms of a data flow machine were ignored. The

combined operations of fetch, computation and update

are performed in every simulation cycle. Effectively

the simulator developed is a synchronous parallel data

flow machine.

2.3.1 Results and discussion

Some measurements were performed on a 14 node

network. A binary tree of activity templates of

specific size is built in the activity store. The

addresses of activity templates at leaf level were

distributed evenly onto the queues of all nodes. The

processor utilisation against time is shown in fig 2.1

and fig 2.2. Looking at the first graph, all the nodes

are active for the first three cycles. The number of

active nodes began to drop gradually to two active

nodes. The computation progressed for a further four

cycles before decreasing to one and terminating. The

general shape of the second graph is similar to the

first, but the initial maximum utilisation of nodes

remains longer. This indicates there are large number

of active activity templates available locally. As the

computation progress towards the root, the number of

activity templates is halved with every level.

Theoretically, towards the end of computation the

number of active nodes should reduced by half for every

machine cycle. From the second graph, the tail off is

35

00
oo

AVERAGE UTILIZATION 7.06

NO OF NODES 14
NO OF ACTIVITY TEMPLATES 127

14 20 CYCLES

FIG . 2.1 DATA FLOW RESULT 1

14

n

10

00 8
ÜLIQOZ 6

4

2

AVERAGE U TIL IZATIO N 11.38

NO OF NODES 14
NO OF A C T IV IT Y TEMPLATES 511

1 11 1JL 1
12 1 6 20 24 28 32 36 40

FIG. 2.2 DATA FLOW RESULT 2

44 48 CYCLES

at a rate of one node for every machine cycle. The

reason for this is that the instructions for the

remaining active activity templates are not evenly

distributed. If the instruction templates are localised

on a few nodes, the rate at which the idle nodes can

grab the instructions are low. This is because the busy

nodes can service the request for instructions at

predefine point of the simulator cycle.

Below are results of average processor utilisation

against activity templates size. Average utilisation is

defined as the number of activity templates divided by

the number of machine cycles.

object size 127 512

average utilisation 7.06 11.38

A simple conclusion that can be drawn from this

experiment is:

When the object size is significantly larger than

the number of nodes the average utilisation is

high.

2.4 Demand driven machine

In a way the structure of a demand driven machine

shares some of the mechanism of data driven machine.

However the generation of the flow graph is done at run

time. An initial instruction is placed on the

instruction queue of a central node which is chosen

37

arbitrarily. The instruction is fetched by the host

node. Depending on the size of the problem which the

instruction represents, the node will attempt to

subdivide this problem. To sustain parallel execution,

at least two instructions must be produced. The

instructions generated are placed on the local

instruction queue. The local node has first priority to

the instruction. After the first instruction on the

queue has been retrieved, the remaining instruction

will be available to the neighbouring nodes. In a

normal divide and conquer evaluation, the problem is

recursively evaluated until the leaf computations are

reached. When this instant is reached a system of flow

graph similar to the data flow program tree has been

built. The computation can be stopped at the point

where the leaf computations are reached. This is when

the results demanded in the computation are the leaf

computations. The computation can be made to proceed

further by the leaves passing results to their parents.

The unwinding process continues until results from

subproblems reach the initial parent problem.

2.4.1 Sparse tree evaluation

Quicksort (31)(33) is a fast array sorting

algorithm and can represent a suitable indicator for

testing the performance of an architecture. A brief

description of the quicksort algorithm is as follows:

An item x in the array is picked up at random. The

38

array is scanned from the left until an item ai>x is

found. The array is now scanned from the right until an

item aj<x is found. The two items are then swapped. The

scan and swap process is continued until the two scans

meet. The array is now partitioned with the left part

having items less than x and the right part having

items greater than x. The partitioning process is

repeated on both parts of the array and so on

recursively. Figure 2.3 is a quicksort program which

describes the algorithm using recursion and is written

in Pascal. The program is due to Wirth (32). The two

statements -

if 1<j then sort(l.j);

if i<r then sort(i.r)

determine whether further partitioning is necessary.

program quicksort;

procedure sort (l,r: index);

var i ,j : index; x,w: item;

begin i :=1; j := r ;

X := a[(l+r) div 2];

repeat

while a[i].key < x.key do i := i+1;

while x.key < a [j].key do j := j-1;

if i <= j then

begin w := a[i]; a[i] := a [j]; a[j] := w;

i : ̂ i + 1; j ; j-1

end

39

until i > j ;

if 1 < j then sort(l.j);

if i < r then sort(i,r)

end ;

begin s o r t (1,n)

end

figure 2.3

For example if 1<j is false the left part is not

partioned. However i<r can still be true. Therefore

only the right part is partitioned. The result is the

evaluation tree is not regular.

The time taken by each partioning step is

dependent on the size of the array and also a random

probability. The simulation can be described as

follows :

Starting Q(n)

after time

[where OC is a random variable a n d ^ Ç (1,n)]

Splits into

Q(P)
Q (n —^ -1)

where ̂ g'Cl.n-l) and Q (l) = ^ ^

2.4.2 Results and discussion

Experiments were done on quicksort. The results

presented here are for a 14 nodes machine. Two

different array size were fed into the simulator.

40

u

12

10

8

6

4

2

NO OF NODES 14

SIZE OF ARRAY 200

AVERAGE U T IL IZA T IO N 2.6

50 100 150 200 250 300 350 400 450 500 550 600 CYCLES

FIG. 2.3 QUICKSORT RESULT 1

NO OF NODES 14
SIZE OF ARRAY 40964

AVERAGE UTILIZATION 3.312

0

8

6

4

2

6 8 10

FIG. 2.4

12 14 16 18 20
QUICKSORT r e s u l t 2

X 1,000 CYCLES

lil

Figures 2.4 and 2.5 are the processor utilisation

graphs for the experiment. Average utilisation is

defined as the total number of executions divided by

the total machine cycles. It can be seen that the

processor utilisation is very low - 2.6. With the

larger problem, the utilisation is only slightly better

3 .3 . An improvement with a larger size problem is

expected simply because a larger size problem should

offer a higher degree of parallelism. The results do

not show that quicksort will work well on the

architecture. It seems that the generation of tasks is

not fast enough to sustain parallelism. When two tasks

are created as a result of a partition, the lives of

the two tasks may not be equal. Out of two tasks it is

expected that four more tasks are created. If this

occurs at the same time, four nodes can work at the

same time. However, if the four tasks are created one

after another, it suffices to have only one node for

doing the job.

2.5 Regular tree evaluation

A Fibonacci function is defined as

f(n) = f(n-l) + f(n-2) for n > 2

f (0) = 1

f C l) = 1.

This function is capable of creating two invocations of

itself whenever it is called. The potential concurrency

is high as the structure generated by the function is a

42

regular binary tree.

One structure built into the simulator skeleton is

a queue that is used to hold the instruction which is

responsible for creating the function. The argument to

the function is a number N. The function recursively

generates two further functions with arguments N-1 and

N-2. The function is suspended while waiting for the

results of the children functions to come back. In

order to be able to reactivateJ-suspended function, a

descriptor record is set up for every function invoked.

In the simulation, the parameters that were varied are;

1. N - the function's argument

2. Cn - number of cycles required for

computation.

2.5.1 Results and discussion

Figures 2.6 to 2.8 are the processor utilisation

during computation against machine cycles for the

Fibonacci's number experiment. The three graphs were

obtained for different computation times Cn. The graphs

exhibit a general shape that indicate heavy computation

occurs during the second quarter of the total machine

c y c l e s .

The efficiency is defined as-

e= (total splitting time) + (total computing time)*100

total machine cycles * number of nodes

The efficiency tends to increase with higher N.

N=10 Cn=l - e=35%

43

CO

V_J>-LJ

COm

som

cnm

o

cu

m

.

om
CD

so
Csl

sj-ÇS4
Csj<sj
OCSJ
QO

3
DC

WW<zo
00

inrsj
13

03

S3G0N

(/)
LUQ
o

U

12

1P

Cn ;=
8 e = 5?%

6

4

2

20 40 60 60 100 120 140 160 160 200 220 240 260

FIG, 2.6 FIBONACCI RESULT 2
CYCLES

00LUao

14

12

10

8

6

4

2

CYCLES

FIG. 2.7 FIBONACCI RESULT 3

N=15 Cn=l - e=55%

N=15 Cn=2 - e=Ü7.3%

For N=15 there is a drop in efficiency with Cn=2. The

result obtained from the simulation shows that an

efficiency of up to 55% is possible. This is

considerably better than that was obtained for

quicksort. A conclusion that can be derived from the

two simulations is the evaluation tree for the

computation must be regular and the availability of

large numbers of parallel tasks if the architecture is to

realise its potential parallelism.

2.6 Conclusion

The simulations were done on three methods of

driving parallel computers. The methods are data flow,

demand driven evaluation on sparse tree (quicksort) and

demand driven evaluation on regular tree (Fibonnaci's

number). The best result was obtained for the data flow

followed by the F i b o nacci’s number and lastly the

quicksort. A possible reason why data flow is faster

compared to demand driven is the evaluation tree is

already set up in the data flow machine prior to the

machine starting up.

For any computer network it is impossible tp

achieve the idealised efficiency of 100%. The factors

that reduced efficiency are

1. overhead associated with communication;

2. distribution of tasks onto processors.

46

The distribution of tasks can be affected by the nature

of the problem and the characteristic of the network

configuration.

In the experiments the efficiency increases with

larger problem size. For the problems simulated it can

be concluded that the tasks distribution is problem

bound rather than network bound. Since the tasks

distribution is problem bound, the use of Amore

complicated interprocessor network would not improve

the result. The trivalent graph of maximal girth

network minimised the number of nodes required for a

given girth, therefore it should be an economical

system for implementing multiprocessors.

47

CHAPTER 3 HARDWARE

3.1 Introduction

Having decided on the abstract architecture, it was

next desirable to identify a suitable node processor.

It was considered essential to choose one of the newer

microprocessors, to allow testing of substantial

problems. This had to be one which could provide with a.

basic software environment.

3.2 Choice of processor

The choice of MC68000 microprocessors as node

processors was made for the following reasons. The

m c 68000 supports high level languages efficiently due

to its consistent architecture, large number of

registers, large addressing range and special high

level oriented type of instructions. The MC68000 has a

total of seventeen 32 bits registers in addition to the

32 bits program counter and 16 bits status register.

The address bus is 24 bits wide and the data bus is l6

bits wide. Implementing an operating system is made

easy by the availability of priviledged instructions,

memory management and a multi level interrupt and trap

structure. The MC68000 was designed to support

multiprocessing. Both hardware and software interlocks

are provided for multiprocessor systems. Bus

arbitration logic is provided to handle access

contention in shared bus or shared memory environments.

The software interlock is provided by the special

instruction (TAS - test and set operands).

48

It would have been beyond the scope of the project

if the node microprocessor system had been built from

scratch. The best choice is to obtain board level

computers of the type normally supplied to the OEM

(original equipment manufacturer) market. A system that

suited this requirement was obtained from the School of

Electrical Engineering. The system comprises of a four

card set mounted in a cage. The cards making the set

are the MC68000 processor, rom card, 256K ram card and

the input output and front panel display card. The card

size is double eurocard. Six such systems were employed

for the multiprocessor system. The cages carrying the

individual microcomputer system are mounted in an

instrument rack. To realise the multiprocessor system a

set of communication hardware was designed and built by

the author. Subsequent text in this chapter describes

the design, implementation and testing of the interface

between processors.

3.3 Choice of communication interface

The communication interface can have a considerable

effect on the performance of the multiprocessor system.

A global shared memory, although capable of modelling

any logical interconnection scheme, is not suitable due

to the contention problem. A true high speed interface

can be provided by direct memory access hardware

controlling parallel data lines. However the pure

efficiency of a hardware scheme is not the only

49

criterion that has to be considered. The cost

constraint is a major factor that affects any design

decision. Another factor is the physical constraint.

Indirectly or directly the physical constraint is
related to the cost. The cost can be kept down if all

the interface hardware required for each processor can

be built on one card comprising of three seperate

interfaces. Each interface links one processor to

another processor.

3.3.1 Programmed control or DMA

The cheapest type of interface can be provided by

serial lines, but serial communication under program

control is too slow. Parallel communication under

program control is considerably faster and may satisfy

the speed requirement. Both methods of data transfer

can be made very fast by having direct memory access

control. However the circuitry of a direct memory

access controller is somewhat complex. To implement a

direct memory access controller using standard TTL

devices requires an enormous chip count. The circuitry

can be implemented using a VLSI direct memory access

controller for MC68000. However this device was not

available at the time the interface hardware was

designed. The decision not to pursue a DMA controlled

interface is partly due to this logistic situation. In

controlling the interface hardware tliere will be

intervention by software to some extent: even in DMA

50

communication where most of the difficult tasks have

been tackled by the hardware, the setting up of the

device is done by the program. It can be assumed that

under most circumstances the receiving processor is

always busy at the instant the transmitting processor

initiates a data transfer. In order to set up the DMA

hardware ready for reception the receiving processor

has to be interrupted from its current processing

state. If this request cannot be granted instantly the

transmitting node will be held up momentarily. This

situation does not occur if there is a buffer in

between the transmitting and the receiving node. The

buffer forms a pipeline. In a way this provides some

degree of parallelism.

3 .3.2 Buffer memory

Global shared memory was rejected initially

because of problems with memory contention, but if a

shared memory is only shared between two processors

there should not be any not'ceoWe degradation in

effeciency. The worst case memory access time is twice

the time for a normal access and this occurs when both

processors are reading or writing to the memory

simultaneously. The transfer rate possible by this kind

of shared memory is better than that possible by direct

parallel communication under program control. In such

program controlled parallel communication, handshaking

is required for every word transfered. Handshaking can

51

be expensive in processing time as it involves polling

and setting of a protocol flag. Considerable saving in

handshake processing can be achieved if handshaking is

only done for every block of data transferred.

3.3.3 Polling or interrupt

However some form of signalling is needed for

handshaking at the block level. The MC68000 Test and

Set instruction can be used to implement semaphore

logic. This is one solution but it relies on polling.

The disadvantage of polling is that the polling

processor is continually accessing the shared memory.

It will be more efficient if access to the shared

memory is only for actual data transfer. Interrupts

seems to be a better solution but at the expense of

additional interrupt hardware. The MC68000 provides

seven levels of interrupt: this is enough to implement

the handshake interrupt hierarchy. It is foreseeable

that the maximum number of interrupts required is two

levels. One level is required for signalling a request

and the other level for acknowledgement. The interrupt

vector can be supplied by the hardware or generated

automatically in the autovector mode.

3.4 The solution adopted

The dual ported shared memory based on the

discussion and arguments presented above was chosen for

the interface. At this stage the practicality of

52

putting three dual ported memories and the interrupt

circuitry on one card was still unknown. An attempt was

made to design the circuit with minimum chip count and,

by careful layout, all the circuits fitted on one

double size eurocard wirewrapping board. The normal

method to reduce chip count in a hardware design is to

use VLSI chips. Because of the specialised nature of

the circuitry this is not possible within the

constraint of the project. The circuit must be built

entirely using standard TTL device with the exception

of the memory device.

3.5 Board space and connectors

For a six node system there are nine

interconnection paths. Logically the shared memory is

midpoint between two nodes(fig. 3.1). Translating this

physically, the shared memory resides on a stand alone

card connected to the two processors by two sets of

cables. Cables from the processors cannot simply

emanate from the bus: the signals going to the cables

must be buffered. A card for buffers and cable

connectors is required in every cage. In all there will

be fifteen cards needed. The number of cards can be

reduced to six if the memory card is hosted by one

processor. The other processor only holds the buffer

card. In terms of cost, there will be considerable

savings because the other set of buffers is no longer

req u i r e d .

53

oc
o00in
wgCL >-cc

o

oc<X
I/o

oû.
<os

eszo13

q :
o
00I/o
LUw
oG:KL

However this creates organisation problems. On

which processors to place the memory cards and on which

processors to place the buffer cards?. The cards can be

organised as follows. The memory cards and buffer cards

are placed on alternate processors. Figure 3-2 shows a

six node system. This diagram shows that the scheme is

feasible. To handle any future expansion the card

arrangement v/lU work for larger node sizes. By means

of graphical exercises it was discovered that the

arrangement fits graphs with even girth and with an

even number of nodes. The reason for this is as

follows. To establish an interconnection both types of

cards are required. It is not difficult to see that if

the girth length is not divisible by two the remainder

represents an extra buffer or memory. The arrangement

will not work for the four node girth 3 graph and

Petersen's graph of ten nodes with girth 5* This

limitation should not be a major problem.

3.6 Design considerations

The limit decided earlier was to build a complete

set of communication interfaces on six boards. Three of

the boards must accommodate three shared memories and

the interrupt controller. The other three boards

accommodate three buffers and the interrupt

controllers. In addition both types of board require

further associated circuitries which are an address

decoder and an input port for control purpose. To build

55

0 MEMORY

O BUFFER

PROCESSOR WITH LOCAL MEMORY

FIGURE 3.2 . INTERFACE - CARO: ORGANISATION

56

the first type of board can pose a problem. It may not

be possible to build all the circuits on one board.

A size of two Kbyte should be ample for the shared

memory. Consequently eleven address lines and sixteen

data lines are required. Connection between Interface

boards is by forty way ribbon cable. Each board contain

three forty way connectors. The connectors occupy some

board space. This has to be taken into consideration

when designing the circuits.

In order to produce the design for the two ported

memory and the interrupt hardware it is imperative that

the functions of the MC68000 signals are fully

understood. The information on the MC68000 is obtained

from two Motorola publications, the MC68000 user's

manual (58) and the MC68000 data sheet (59). The

description of the MC68000 signals and bus operations

are given in appendix A.

3.7 Two ported shared memory

Viewed from either port the shared memory looks no

different from ordinary memory. The existence of

another processor hooked on the opposite port should

not interfere with the operations of the first

processor. The actual RAM device in the memory is a

shared resource. The addresses and data from both

processors cannot be applied simultaneosly on the RAM.

In this situation one of the processors must be blocked

from accessing the RAM until the first processor has

57

terminated its access cycle. The blocking should be

done transparently. The MC68000 asynchronous transfer

mode helps in the design of the shared memory. During a

blocked access the processor will treat the memory as a

slow device. The shared memory consists of o. RAM memory

device and a controller circuitry. The memory

controller coordinates the requests from the

processors. The memory controller serves as the

interface between the RAM and the MC68000 signals. It

is therefore essential for the memory controller to

interpret the MC68000 bus operations correctly.

Figure 3-3 shows the various components of the

memory. Control signals from the processors are fed to

the memory controller. The controller outputs signals

that control the RAM buffers and issues DTACK. The

controller has to perform arbitration when there is a

simultaneous request. The operations of the arbiter can

be quite complex. One condition that must be avoided at

all cost is the race hazard due to the processors being

totally asynchronous to each other. When the term

"simultaneous request” is used it is supposed to

encompass the following:

1. the difference between the time of arrival of

the first p r o c essor’s request and of the second

p rocessor’s request is zero;

2. the difference is finite but less than the

length of an access cycle.

58

REQUEST 1

R/W 1

to
GRANT1CQ

in
CD

on

o

R/W2

on

CO

on
LUu_
GO

§
ow

CS R/V?

2

GRANT 2

F IG .3.3 A TWO PORTED MEMORY

59

An arbiter hardware takes a finite time to make a

decision. There will not be any problems with the first

case. However with the second case, the late arrival of

the second request can upset the working of the

arbiter. The problem of race hazard can be partially

eliminated by adopting synchronous hardware design. In

synchronous design both requests will be sampled by a

clock and thus eliminate the second case effect above.

All the functions of the memory controller can be

realised using a state machine.

3 .7.1 State machine arbiter

The state machine can be designed using discrete

logic, ROM or programmable logic array(PLA). However it

is not feasible with discrete logic as this approach

uses a large amount of chips. The choice is between PLA

and ROM based machines. PLA devices are generally more

expensive than ROM, thus a ROM based machine was

selected.

The shared memory is selected by decoding its

address and qualifying it with address strobe(AS). The

state machine recognises this as a request. Figure 3 .Ü

shows the state diagram for processing the request. The

machine cycles through state 0 awaiting a request. When

a simultaneous request occurs it is logical to assume

that request 1 has higher priority than request 2. The

state machine has to generate DTACK and varj.ous buffer

and RAM control signals in response to the request.

60

NREQ1

NREQ2

FIG. 3 .4 ARBITRATION

NREQ

FIG. 3.5 WAIT LOOP

61

NRE&1

001

NREQ 2
ILSEL1 010

ILSEL2

NREQ1

NREQ2

O il

NREQ2

100

NREQ1
ILSEL2

101

ILSEL1

NREQ 2

NREQ1

F IG .3.6 STATE DIAGRAM FOR MEMORY ARBITER

62

NREQl NREQ2 A B C NA NB NO ILSELl ILSEL2

LI 0 X 0 0 0 0 0 1 1 1

L2 1 0 0 0 0 0 1 0 1 1

L3 1 1 0 0 0 0 0 0 1 1

LA 0 X 0 0 1 0 0 1 0 1

L5 1 X 0 0 1 O i l 1 1

L6 X 0 0 1 0 0 1 0 1 0

L7 X 1 0 1 0 O i l 1 1

L8 X 0 O i l 1 0 0 1 1

L9 X 0 1 0 0 1 0 0 1 0

LIO X 1 1 0 0 0 0 0 1 1

Lll 0 1 O i l 1 0 1 1 1

L12 1 1 O i l O i l 1 1

L13 0 X 1 0 1 1 0 1 O 1

LIA 1 X 1 0 1 0 0 0 1 1

Fig. 3.7 State table for arbiter

63

DTACK. must be issued before the end of state SA of the

processor if a wait state is to be avoided. This can be

achieved by deriving DTACK from the conditional output

(LSELl or LSEL2). DTACK is held low for as long as

address request (NREQl or N R E Q 2) is asserted. Figure

3.5 shows a wait loop for generating DTACK while

address request is held asserted. The same signal is

used for enabling the RAM. To give the second processor

the same chance as the first processor at getting

control of the memory, the priority of NREQl and NREQ2

should be rotated. Figure 3-6 shows the complete state

diagram and figure 3.7 shows the state assignment table

for the machine. The state table can be accommodated in

a 32 by 5 ROM.

The state machine is constructed using a fast

bipolar rom (TBPI8 0 3 0) and a 7ALS175 latch. The PROM

has a finite lookup time of the order of AOns. The

state clock is derived from one of the processors clocks

running at 8 Mhz. The combine propagation delay of the

state latch and the ROM access time must therefore be

less than 125 n s . The state machine is synchronised to

one of the processors bus operation. The bus operation

of the other processor is totally asynchronous. There

is a chance of the ROM giving false output when mput '

The result is glitches produced at the ROM

ou tpu t s . Since the LSELl and LSEL2 are conditional

outputs they cannot be buffered by the state

6A

LU

00
>-CD >-CD

5S3

=3
cc
w

oce
oLJ
GO
m
od

< m
w< <t: f-o oJi 2T

u
i*: on w ♦
g
§

Q

65

transition. It is therefore neccessary to buffer the

request inputs. But this inadvertently upset the timing

in relation to the MC68000. The request will be delayed

by one clock period. This means DTACK cannot be issued

before the end of state S Ü . The addition of one wait

state is not disastrous. The more damaging effect is

that DTACK cannot be negated before state SO of the

next cycle. However this problem can be solved by

gating the output by the non delayed memory request

input. ’OringV the request input with the output will

bring the signal high as soon as the input is brought

high (fig. 3.8).

3 .7.2 Byte addressing considerations

In order to allow byte access, the memory has to

use two RAM devices, one RAM for the low byte and

another RAM for the high byte. The upper and lower data

strobes gated with the controller signal are used to

select the appropriate RAM. For the RAM, two M K Ü I I 8-Ü

static rams from Hitachi are used. For proper

operation, the ram set up and hold time must be

observed. Although the MC68000 timing would have

tackled the characteristic of static RAM, the additions

of address and data buffers can upset hold and set up

time of the ram. Therefore the gating of the control

signals to the RAM is critical.

The MKÜll8-il is a 1 K by 8 device. There are ten

address inputs and eight data lines. There are four

66

control lines, write enable (WE), chip select (CS) ,

output enable (OE) and latch input signal (L). The

function of the latch input signal (L) is to determine

whether the mode of operation is asynchronous or

synchronous. In asynchronous mode where L is high, the

MKÜ118-Ü provides a fast address ripple through access

of data. In synchronous mode a transition of L from

high to low will latch the address and the CS inputs.

In the design the asynchronous mode of operation is

a dopted.

The select output from the state machine controls

the enabling of the address and data buffer, chip

select and gating of the write enable of the RAM. The

read write signal is routed through a tri-state

buffer(fig. 3.9). The buffered read write signals from

both processors are wired-ored together. This signal is

gated by the upper data strobe UDS for the upper RAM

and gated by the lower data strobe LDS for the lower

RAM.

In a read operation data will be valid after a

period of 250ns at the maximum for the MKÜ118-Ü. This

parameter is the address access time tAA. The data will

be valid for a maximum period of 125ns. This parameter

is the chip select data off time tCSZ.

In a write operation, the write cycle is initiated

by the WE pulled low. The CS must also be low. The CS

is always low by the time WE enable is applied because

of the propagation delay through the OR gate. Data is

67

00
00
LUcc8<

n:
DATA 0 0 - 0 7 DATA 0 0 - 0 7

HIGH RAM LOW RAM

ADDRESS A10-A1 ADDRESS A10-A1

<Q

LS365

l'I I I I I I I ' H T I I M I T

R/W A10 A7

BUFFER SELECT 2

LS245LS245LS365

rrrrn

PORT 2

08 07

LS365
,

R/W A10 A7

BUFFER SELECT 1

LS365

P0RT1

L \J. .\A -frX i:± U LL L
LS245

rrnTTTT
LS245

TT
08 07 00

FIG. 3.9 TWO PORTED MEMORY

68

written into the RAM on the positive transition of . the

WE signal. The data must be valid for a certain

duration prior to the transition and also the data must

be stable for a certain duration after the transition.

These parameters are known as data to write set up

time(tDSW) and data from write hold time(tDHW). The set

up time(tDSW) and data hold time(tDHW) for the MK4118-4

are both 50ns. To guarantee the hold time, the WE

signal must go up before the data buffer is disabled.

The chip select CS and WE signals to the RAM are

brought high when the data strobe signal(LDS or UDS) is

negated. There are three gate levels through which the

data strobe passes before reaching the WE pin of the

RAM. The approximate propagation delay is 50ns. The

buffer select signal from the state machine is *ored*

with the memory request signal. The memory request

signal is qualified by address strobe(AS). In decoding

the address the address strobe(AS) is introduced early

in the decoding chain(sec 3.11. fig. 3.19). There is a

long propagation delay from the transition of address

strobe(AS). The approximate propagation time through

five gate levels is SOns. The data must be held stable

at least 50ns after WE is negated. The data buffer must

take approximately 20ns for it to be disabled in order

to satisfy this requirement. It is recognised that

introducing delay by relying on propagation delay of

chips is not a good design practice. Two proper methods

of introducing delay are employing delay line and using

69

a clocked D type latch. It is not feasible to use a

clocked latch because delay can only be achieved for

integral clock periods. The reason for using gate

propagation delay as opposed to delay line is chiefly

that it is cheaper to employ the former method.

The processor data transfer acknowledge DTACK

should not be asserted directly by the select output.

This is to allow for the access time of the RAM. In the

read operation, the data output will be valid 120ns

after chip select is pulled low. For a successful read

operation for the processor, data must be valid at the

latest 90ns after DTACK is asserted. Therefore it is

necessary to delay DTACK. The delay required is 30ns.

This can certainly be obtained by adding two redundant

gate levels. However to allow for a wide safety margin,

the delay is provided by a shift register. Delaying

DTACK has no useful effect in the write operations. The

necessary set up(tDSW) and data hold times(tDHW) have

already been met.

3.8 Buffers

The memory card is designed to slot in one of the

processors’ card cage. The other processor is linked to

the memory by a ribbon cable. The address, data and

control bus are buffered on the processor card, but the

buffering is designed to cope with the mothercard

loading only. The bus must be buffered first before

driving the cable. The passive cards do not carry the

70

memory but a set of driver and buffer chips. On the

memory card, the port linked to the remote processor

must also be able to drive the cable. On the memory

card the buffers serve two functions. The first is to

isolate the two ports and the second is to drive the

heavy load caused by the cable. The maximum length of

the cable used is about 30 inches. At this length the

capacative effect between adjacent wires can be

considerable (18). Cross talk will be a major problem.

The step that can be taken to reduce this problem is to

use ribbon cable with alternate ground wires.

3.9 Interrupt processing

It has been mentioned previously that two types of

interrupt are required. They are ’ready to transmit

interrupt’ and ’acknowledgement interrupt*. The

acknowledgement interrupt is at a higher level of

priority. Since communication is bidirectional a

communication path requires both types of interrupt at

each end. At each interrupt level there are three

sources, one from each communication link. The MC68000

provides the capability to process seven interrupt

levels; ample since only two are required. The task of

recognising the source of interrupt at a particular

level is left to a combination of additional hardware

and software.

The interrupt controller can either supply the

interrupt vector or use the autovector mode. At each

71

level there can be three sources where the interrupt

can originate. Possibly there will be three separate

routines to service the interrupt, one routine for

every interrupt line. The interrupt controller can

generate three different vectors corresponding to the

three interrupt sources. The processing of the

interrupt can then commence immediately. In the

autovector mode, any request on the three interrupt

lines will cause the processor to jump to the same

vector. The task of identifying the interrupt must be

done by software will take longer than if provided by

hardware. In the design of the interrupt controller

both possibilities were explored. The following

sections describe the designs.

3 .9.1 Interrupt controller with vector

generation

Treated as a black box the interrupt controller has

three interrupt lines:input, vector data output and

associated processor control lines(fig. 3 .10). The

controller cannot be pure combinatorA logic because it

has to arbitrate between the request lines and to

generate signals to the processor in the correct

sequence. Therefore the interrupt controller requires a

state machine to perform the intelligent function. In a

way the state machine is similar to the one employed in

the two ported memory. Figure 3.11 shows the section

that does the arbitration except that it has three

72

VECTOR I NT 1

DATA D0-D7
INT 2

IREQ
lACK
LDS
DTACK

INT 3

FIGURE 3.10 INTERRUPT CONTROLLER

NIRQ 1

NIRQ2

MIRQ3

FIGURE 3.11 INTERRUPT REQUEST ARBITRATION

73

inputs. This is the same technique used to arbitrate in

the two ported memory. The outputs from the state

machine are the signals that generate the interrupt

request to the processor, DTACK and the vectors. The

inputs are the interrupt request lines and lower data

strobe (LDS) interrupt acknowledge (lACK). The

interrupt request signal coming from the neighbouring

node is a single pulse. This pulse must be captured and

this is done by a latch. The latch that corresponds to

the interrupt line that is being serve must be cleared.

Three clear lines must be provided. For the vector

data, eight lines are required. In all there will be

fifteen outputs in addition to the number of bits

required for the state. A minimum of three eight bit

wide proms must be used. For practical purposes it is

not justifiable to use three proms because large proms

tend to be expensive. The number of outputs from the

state machine can be reduced by using discrete logic to

generate the vectors. The clear lines and vectors can

be generated by extra logic controlled by just two

outputs from the state machine. The two output lines

from the state machine generate the following

codes : 00,01,10,11- These lines are decoded by a two to

four decoder. A *00* output indicates no activity thus

the corresponding output from the decoder is unused.

The remaining three decoder outputs are used to enable

a set of three tristate buffers. The Input to the

tristate buffer is hardwi red to indicate a vector

7A

NI RÛ l

NI RQ2

NIRQ 3

NPIACK
DUPLICATE THE

SECTION IN THE

DOTTED BOX

NLDS

LDTACK

HCO LC1

LPIRQ

FIG. 3.12 STATE DIAGRAM FOR INTERRUPT CONTROLLER

73

LPIRQ

NPIACK

LDTACK

NLDS

INT 1

DATA BUS D0-;D7

ce

BUFFER BUFFER BUFFER

MACHINE

STATE

FIG. 3.13 INTERRUPT CONTROLLER WITH VECTOR
GENERATION

76

number. The same decoder outputs are also use to clear

the latches. Figure 3.12 shows the state diagram for

the controller.

The operation of the interrupt controller in

relations to the processor is as follows:

Upon recognising an interrupt request the controller

asserts an interrupt to the processor. The controller

waits for an interrupt acknowledge signal from the

processor. The controller then outputs DTACK and

generates the interrupt select code. The controller

holds the output valid until the processor negates LDS.

To maintain symmetry an interrupt request line must

not maintain an exclusive priority over the other

lines. To do this requires a relatively large state

machine. Each set of processing sequence in the state

machine has to be replicated three times for the order

of the request lines rotate. Clearly this is

unsatisfactory because a large prom is required.

A second design was arrived at which can reduce the

number of states. The design employs a simpler

arbitration scheme that decides randomly. The state

machine cyclically goes through the state 00,01,10. At

each state it outputs a two bit c o d e (00,01,10). A two

to four decoder is used to decode this outputs. Each of

the outputs is ored with an interrupt request latch.

The outputs of the or gates are brought to a three

input ’and* gate. The output of the ’and* gate is

brought to the state machine. This single input signals

77

NINT EXPANDED IN

FIGURE 3.14b

NINT 1 EXPANDED IN

: FIGURE 3.14b

--- 1

EXPANDED INNINT

FIGURE 3.14b

LCO LC1

LC1

LCO

FIGURE 3.14a STATE DIAGRAM FOR MODIFIED INTERRUPT

CONTROLLER WITH VECTOR GENERATION

78

NIACK

NLDS

LDTACK

»C0 *C1

LIREQ

»C0 *C1

*C 0 AND C1 SET ACCORDING

TO PREVIOUS STATE

FIG .3.14b

79

INT 1

INT 2

INT 3

lACK

ao
w

D)

DTACK
NLDS

NIACK

NINT I/O
IREQ

occ

FIG. 3.15 INTERRUPT CONTROLLER WITH VECTOR

GENERATION

80

to the state machine that an interrupt has occured.

From this single input it is not possible to identify

the source of the interrupt, but the state machine can

identify the source of the interrupt by its present

state. On recognising the request, the controller then

goes into the sequence of issuing the relevant signal

to the processor. The relationship between the

controller and the processor with regard to issuing an

interrupt request, recognising an acknowledgement and

generating the vector is similar to the design

previously discussed.

Figure 3*1Ü shows the state diagram for the

modified interrupt controller.

3 .9.2 Interrupt controller with autovector

The interrupt controller with autovector is simpler
iCil

and can be built entirely using combinator/ logic. An

incoming interrupt will be captured by the latches. The

outputs of the latches are ’anded* together by a three

input 'and* gate. If any of the latches is low, a low

logic signal is generated at the output of the ’and*

gate and this is used to signal an interrupt request to

the processor. The processor responds by issuing

interrupt aknowledge lACK and the interrupt priority

level on A1,A2 and A3. The controller circuitry

generates valid peripheral VPA signal by the decoding

the required priority level when JACK is asserted. The

processor has the capability to read the status of the

8 1

READY TO TRANSMIT

FFE007

D

FFE005 D

iR a 5

ACKNOWLEDGE

F IG .3.16 AUTOVECTOR INTERRUPT CONTROLLER

8 2

latches. At the same time the processor can clear the

interrupt request on the latches. In the event of

multiple interrupt requests, the software will decide

the interrupt line to service. Only the latch that

corresponds to the interrupted line is cleared.

Each interrupt is required to serve three request

lines, a total of six request lines for both levels of

interrupt. A data input port or data output port can be

realised by a single eight bit wide tristate buffer.

This means that a single input port can read the

latches of both interrupts. Similarly a single output

port can clear the latches of both interrupts. This can

offer a considerable saving in the components required.

The controller was designed to generate interrupts at

level three and four.

The vectored interrupt controller of the second

design was built and tested. The design was later

abandoned because it is not possible to build two

controllers on the same board that contains the two

ported memories. The simpler autovector design was

favoured because of the fewer components that it used.

3.10 Input and Output control ports

The processing nodes must be given a unique

identifier. This enables identical software to be used

on all the processors. The software can differentiate

the identity of the host processor by reading an input

port which is hardwired with a unique code. Three bits

83

FFE001

PROCESS OR
IDENTIFICATION

DO

8 K IK

mr

FIG. 3.17 INPUT PORT

R/W

FFE003

I TRANSMIT 3
I ACK- 3
I TRANSMIT 2

I ACK 2
I .TRANSMIT 1

LACK 1

FIG. 3.18 OUTPUT PORT

&U

are needed to give a number of one through six. The

remaining bits car be used for other purposes. The

circuit consist of a single 7&LS2Ü5 tristate buffer(fig

3. 17).

The function of the interrupt controller is to

process the interrupt request. Some means of signalling

an interrupt to the neighbouring processor is

necessary. The simplest way is to use an output port.

The port is required to generate a negative going pulse

of ample duration. A single output port is sufficient

to generate the six interrupt request signals. These

signals are routed to the destination processing nodes

through the appropriate cable ports. A 7&LS2&5 tristate

buffer is used (fig. 3.18).

The address decoder has to generate the

address select signals:

1. memory 1 $FFE800-$FFFFFF

2. memory 2 $FFF0 00-$FFF7FF

3. memory 3 $FFE800-$FFEFFF

U. interrupt controller level5 $FFE005

5. interrupt controller level/l $FFE007

6. interrupt signal port $FFE002/3

7. input/output port $FFE000/1

Figure 3.19 shows the circuit of the decoder.

35

lACK
AS
A 23
A 22
A 21
A 20
A19
A 18
A 17

A16
A 15
A 14

FFF800-
FFFCOG -

FFE800 -

A12

All

FFE006/7
FFE004/5
FFE 00 2/3
FFE 00 0/1

LS139

1/2
LSI 39

FIG. 3.18 ADDRESS DECODER

8 6

Csl

ADDRESS

DECODER

in t e r r u p t

CONTROLLER

MEMORY 1

MEMORY 2

MEMORY 3

X

>-

INI

FIG. 3 .20 MEMORY BOARD

ADDRESS

DECODER
BUFFER 1

INTERRUPT

CONTROLLER

BUFFER 2 >-

BUFFER 3 MZ

FIG. 3. 21 BUFFER BOARD

87

3.12 Summary

The implementation of a set of communication

interface has been achieved, thus satisfying the

hardware requirements of the multiprocessor system. The

aim of building an efficient communication system at a

low cost has also being met. Below is the summary of

the design.

The communication interface is made up of six

circuit boards of two types, three atf each type of

boards. The first type contain the shared memory

circuit and the other contain the buffers that

interface the remote shared memory to the local

processor bus. There are additional functions common to

both type of boards. The functions are-

1. Two interrupt controllers;

2. parallel input/output ports for control

purpose.

Figures 3.20 and 3.21 show the functional layout of the

b o ards.

8 8

CHAPTER 4 SOFTWARE

h.l Introduction

A software kernel is required to drive the

multiprocessor. The functions of the kernel are to

coordinate the interprocessor communication and to

allocate processes to processors. The kernel must be

able to support the generation of parallelism by the

application program. Suitable interfaces provide the

link between the application program and the kernel.

Chapter one describes the various ways of exploiting

parallelism. Of these, only a few are suitable for the

multiprocessor network that is being investigated.

The method that seems to be most suitable for the

multiprocessor network is demand driven computation.

The parallelism is generated using the divide and

conquer method. The divide and conquer method has the

capability to generate an enormous number of processes

which could easily exceed the number of available

processors. The kernel must be able to allocate

dynamically processes to processors. The scope of a

process is from the moment it is activated to the

moment it is temporarily suspended and from the moment

it is reactivated until the moment it is terminated.

During its active state, the process can be run

uninterrupted. Even though there can be more processes

than processors it is not necessary to run all the

processes in parallel by multitasking. At the expense

of losing some parallelism, the processes that are

capable of being actived can be made to wait in a

89

queue. A scheduler then schedules the execution of the

process whenever a processor becomes available.

The kernel structure is very dependent on the

method of exploiting the parallelism. It is therefore

appropriate to start the description of the design and

implementation of the kernel from the high level end.

This requires defining a hypothetical high level

language that is capable of describing the parallelism

generating process. The next step is to define a

virtual machine that support the language. Finally the

actual structure of the kernel can be defined and

coded. The codes for the communication routines must be

able to exploit fully the available hardware.

Zl.2 Language

This hypothetical language provides facilities for

automatically extracting parallellism inherent in an

application program. There are languages that exploit

the architecture of the machine and parallel evaluation

strategy of the problem to be solved. For example Val

(27) for the data flow architecture and Flow graph Lisp

(2) for applicative architecture. The main source of

parallelism that is going to be investigated on the

network is recursive subdivision. The hypothetical

language can be based on the syntax of Lisp. Darlington

and Reeve (1) described parallel reduction using a

first order recursion language loosely based on NPL

(28). The same approach can be taken here. However the

90

hypothetical language to be described will be based on

Pascal. The reason for this is that investigation of

the network will be more inclined to numerical

computation than to symbolic computation.

Consider a PASCAL program of figure Ü..1. The

function T represents a processing task. By not

allowing global references or assignments to be made

from within the function body, several instances of the

function can be created. If there is more than one

function invoked simultaneously, the functions can be

executed in parallel. Inside the body of T, a

PARBEGIN...PAREND construct allows simultaneous

recursive calls on T. This is the only facility

provided for invoking parallel execution.

Function T behaves no differently from a normal

function. It expects an argument when called and

returns a result on completion. Since the function T

represents a processing task, the passing of argument

and result actually represent intertask, communication.

Intertask communication can only occur between a parent

task and its children tasks. A child task can reside on

the same physical processor as, or on a neighbouring

processor to^ the parent task. At the language level

there is no distinction between the two.

91

PROGRAM Tree

VAR x : ;

FUNCTION T (.... ;

VAR ;

FUNCTION

PROCEDURE

BEGIN

PARBEGIN

a ;= T();

b := T();

PAREND

END;

BEGIN

X : = T (. .) ;

END .

Figure U .1

The argument or result could either be simple data

or complex structures such as arrays. With reference to

the divide and conquer algorithm, the size of the

92

argument or result will decrease with each call. A

dynamic array facility will optimise the use of

storage.

A parallel function can return a whole array or a

section of an array. To simplify the assignment of

arrays the following statements are provided.

A[i:n] := function T()

A[i:n] := B[j:n]

Ml[i:n,j:m] := M2[p:n,q:m]

where i, j , p and q are the first elements in the array

and,

n and m are the number of elements to be

transferred.

Declaration of local functions and procedures is

allowed in the function T. These functions and

procedures serve as utility routines.

k .3 Kernel

In order to support the hypothetical language

described, a suitable kernel must be built on top of
sthe hardware. The basic re^onsibilities of the kernel

are

1. management of dynamic tasks,

2. interprocessor communication.

A task is created in response to a demand for a

computation. The task is suspended when it spawns

subtasks. The original task will remain in this state

93

until it has received results from its subtasks. The

task proceeds until it reaches the end of the

computation. Some basic mechanisms are required for

supporting the computation. First is a system of task

descriptors that hold information about tasks. This

would be equivalent to a data stack for Pascal (32). In

a way invoking the task is similar to calling a

procedure or function. However it is not as straight

forward as executing a call instruction in a processor.

A task invokes subtasks by creating instruction

packets. At the termination of a task, a result packet

is issued to the parent task. If the packet source and

packet destination are different processors, the kernel

will route the transfer through the appropriate

communication path.

U.3.1 Components of the kernel

The kernel can be broken into three major

components. They are the scheduler, sender and receiver

processes. Logically they are parallel processes in

relation to each other. However it does not mean that

three processors are required to realise a processing

node, nor is a multitasking executive required to

emulate the three processes. The scheduler resides in

the normal processor state, the sender and receiver are

interrupt processes.

Data structures are required to maintain the task

descriptors and communication packets. The data

9à

DATA STRUCTURE

SCHEDULER

RECEIVE
TRANSMIT

INTERFACE

FIG. 4.2 KERNEL PROCESSES

structures are accessible by all the three processes.

Figure 4.2 shows the relationship of the three

processes with the data structures and the

communication Interface. The scheduler has a direct

path to the sender through which the scheduler pass the

Information for transmission. There Is no direct path

between the receiver and the scheduler. The Information

received by the sender directly updates the data

structure. The scheduler has a direct link to the

communication Interface denoted by the dotted line In

the figure 4.2. This link enables the scheduler to read

and write directly Into the shared memory for control

purposes.

4.4 Data structures

4.4.1 Task descriptor

The first of the data structures Is the task

descriptor. The purpose of the task descriptor Is to

maintain housekeeping Information as well as the

variables used by a task. This Information must be held

valid from the moment the task Is Invoked until the

task Is killed. The problem associated with this Is In

organising the store that will contain the task

descriptors. In sequential evaluation, the

chronological order In which the functions are Invoked

enables the data frame for the functions to be held on

a stack. But here the order In which the tasks are

Invoked Is less well defined. The prospect of a subtask

96

migrating to another processor made the problem more

difficult. A lavish solution Is to allocate a task

descriptor for every task that would be created and not

reuse the space left by an Inactive task. Clearly this

Is not a feasible solution. Garbage collection can be

used If there Is not enough space. However If the task

descriptor for every task Is constant In size, the

space left by an Inactive task can be reused. The task

store consists of a linked list of free task

descriptors. A task descriptor Is taken off this list

whenever required. The task descriptor Is returned by

rechalnlng the descriptor onto the list. This occurs

whenever the life of a task related to the descriptor

has ended. This method of storage management will

always take a constant time to recover a used

descriptor cell. The guaranteed response time of this

storage management method Is favourable to garbage

collection because uneven response time can effect the

way the task are distributed. In the high level

language abstraction described previously, a task

function Is allowed to contain local procedures and

functions. Since the size of the data space allocated

Is fixed, local recursion Is not possible. Handling of

dynamic array structure will be treated later.

A task descriptor Is definable by a unique address.

The address specifies the host processor and an Index

relative to the base of the task descriptor store. This

unique address Is used by the communication packet to

97

specify the source and destination.

The fields Inside a task descriptor are as follows-

1. Next pointer - forms the chain to the next

descriptor cell.

2. Task descriptor Index - Indicates the

descriptor Index of the cell. If the descriptor Is

specified by Its absolute address, this field

provide a quick way of determining the descriptor

Index.

3. Parent node, parent Index and task number -

these fields form the complete address of the

parent task. Parent node and parent Index Is the

address of the parent task descriptor. The task

number specifies which of the subtask from the

parent Is the current task.

4. Subtask count - Indicates the number of

subtasks that are created by the current task.

5. Entry pointer - this fields holds the absolute

address of the code of the task to be executed. On

first being created this pointer contains the

address of the beginning of the task. On

reactivation. It contains the address of the

reactivation point.

6. Variables - this holds all the variables for

the computation. These Includes the arguments,

receptacles for results from subtasks and local

data.

98

Special treatment is necessary in organising the local

variables. Since the size of the decrlptor cell Is

fixed, the space for dynamic data structures must be

allocated elsewhere In a heapspace. Reference to the

dynamic data structure Is by a pointer. Some means must

be provided to differentiate between an absolute value

and a reference. This differentiation Is not necessary

for an application program. Assuming a compiler Is

available for the hypothetical language, this

differentiation would have been done at compile time.

However the communication routine requires further

Information In order for It to transfer the data

correctly. Every data Item must therefore carry

additional Information specifying whether the data Is

an absolute value or an array. For the array. It also

specifies the size and dimension. The data field

contains the pointer to the heapspace.

4.4.2 Instruction and result packet

The Instruction acts as the mechanism for Invoking

a task. A task that wishes to generate subtasks does so

by creating Instruction packets. The Instruction Is a

record with the following flelds-

1. parent node, parent Index and task number

2. argument (number of data, datai, data2,

..d a t a N)

The first set of fields specifies the source of the

99

instruction. This is used by the child task to Identify

the destination of the result. The arguments consist of

more than one data Item. The data can be simple

variable or complex ones. It Is also necessary to make

the size of an Instruction packet cell constant. A

sufficient upper limit of the amount of data can be

arbitrarily fixed, but the variable size of the dynamic

data cannot be accomodated. Therefore the data are

passed In the Instruction packet In a similar form to

that In the descriptor. The Instructions can either be

held on a queue or a stack. Instruction^ held on a queue

results In a breadth first evaluation. Holding

Instructions on the stack produces the following

effect. If the Instructions are executed on a local

processor, the evaluation will be depth first, but If

the Instruction Is executed on a remote processor the

evaluation will be breadth first In relation to the

other Instruction created slmultaneosly.

The result packet consists of the destination and a

single data Item. As the result already specifics the

destination, the result Is sent Immediately It Is

produced.

U.5 Scheduler process

The primary role of the scheduler Is to retrieve

Instructions from the stack and run the task created by

the Instructions. Before the task can be executed, the

task descriptor has to be set up. Instructions can be

100

obtained locally or from one of the three neighbouring

nodes. A scheduler from one processor cannot directly

access the Instruction stack of another processor. In

order to access an instruction from another processor,

the scheduler of the requesting processor makes a

request to the processor concerned through the

communication link. The job of servicing a non local

request Is also handled by the scheduler. Only an

Instruction which has not been made Into a runnable

task can be transported, because a runnable task Is

allocated a task descriptor locally. In order to

differentiate between the Instructions that can be

transported and the instructions that cannot be

transported a separate list Is required. An Instruction

that has been made runnable Is placed on a queue. A

runnable task can also be created by a task that Is

reactivated after suspension. The scheduler Inspects

the runnable task queue after first looking at the

Instruction stack. The actions of the scheduler

will now be described. The first phase of the scheduler

Is to retrieve Instructions. Initially the local

Instruction stack Is Inspected. If an Instruction Is

available a task descriptor Is allocated, and the

Information carried by the Instruction Is copied Into

the task descriptor. The source of the Instruction Is

local. In the case of the argument specifying a

dynamic array, there Is no necessity for generating new

space for the data. The pointer carried Inside the

101

instruction packet Is valid. The Index of the task

descriptor Is placed on the runnable task queue. If

there are no Instructions available, requests are made

to the neighbours. The request Is made by Issuing a

communication packet carrying the appropriate

Information. A normal communication transaction can

take a significant processing time in both processors.

Since the two processors are linked by shared memory, a

flag can be reserved Inside the memory to Indicate an

Instruction request. A requesting processor will set

this flag to signal that It Is requesting an

Instruction. However the response to this request Is

not Instantaneous because the scheduler of the

receiving processor must have arrived at the

appropriate phase before this request can be serviced.

The empty processor can go through several Iterations

of the scheduler loop before It Is granted an

Instruction. In order to restrict access to the shared

memory, the scheduler can only set the flag once before

the request Is granted. This Is done by maintaining a

separate set of flags In the main memory. A processor

receives an Instruction from a neighbour not through

the scheduler but through the receiving process.

After the scheduler has obtained an Instruction

from Its local stack and generated a runnable task It

now attempts to distribute the remaining Instructions on

the stack to Its neighbours. This Is the complementary

action In response to the request made by the

102

neighbour. The scheduler inspects the request flags in

all the shared memories in turn. Upon recognising a

request and identifying the neighbour which made the

request, the scheduler fetches an Instruction from the

stack. From the Instruction, a transmission packet Is

made. The packet Is passed to the sender process for

transmission to the neighbour processor concerned. This

action Is carried out for every neighbour. However If

after transferring one or two Instructions the stack

becomes empty the action Is stopped and moves on to the

next phase. The response of the receiving neighbouring

processor to the transmission of an Instruction Is to

go Into the receiving process. The receiving process

first Identifies the nature of the packet. In receiving

the Instruction, the scheduler of the receiving

processor Is not Involved. The receiving process

allocates and sets up a task descriptor for the

Instruction. In addition storage space Is allocated for

dynamic array structures that can be contained In the

Instruction. After the set up, the Index of the task

descriptor Is mounted on the runnable task list.

The last phase of an iteration of the scheduler

loop Is to retrieve a runnable task. The runnable task

list contains the Index to active task descriptors. The

task Is entered by jumping to an address specified In

the task descriptor. During the execution of a task,

the action of the scheduler Is thereby s u s p e n d e d . , The

scheduler is reentered when the task Is suspended or

103

terminated. However the sender and receiver processes

can coexist with the task because they are Interrupt

processes. If the runnable task list Is empty the whole

phase of the scheduler Is reexecuted from the

beginning. The scheduler process Is described In Pascal

notation below(flg. 4.3)

WHILE true DO

BEGIN

IF active task queue Is empty THEN

BEGIN

IF Instruction queue Is not empty THEN

BEGIN

get Instruction from local queue

IF Intructlon queue still not empty

THEN

try transfer Instruction to neighbour

END

ELSE

request Instruction from neighbour

BEGIN

get runnable task and execute

END

END

Figure 4.3

4.6 Task processing

When the task Is activated all the data structures

104

associated with it have already been set up. The size

of the problem determines whether splitting the problem

is possible. From within the task, a facility for

spawning subtasks Is provided by a system procedure. It

is important that the normal processing state is

protected during the spawning process. For example a

task can spawn eight tasks In parallel. There Is a

counter In the task descriptor which Is Inltlalllsed to

the number of subtasks generated. Every time a result

from a subtask Is obtained the counter Is decremented.

When the count reaches zero the parent task Is

reactivated. If the spawning process Is not protected,

there will be a possibility that the parent task Is

reactivated prematurely. For example the first task

spawned Is grabbed by a neighbour. If the outcome of

subtask 1 Is returned before further subtasks can be

created, the parent task Is Immediately reactivated

Inadvertently.

A task that cannot be split or a task that Is

reactivated will eventually reach a point that requires

them to return result to the parent task. The parent

can be local or on a neighbouring processor. In the

case of a local parent, the outcome of the result can

be notified by directly accessing the parent task

descriptor. The result Is passed to a neighbouring

processor using the communication processes.

There are several more areas where the normal

processing state should be protected to safeguard the

105

integrity of the data shared by the normal processing

state and the communication processes state. The task

descriptor can be both allocated by the scheduler and

the receiving process. Therefore the allocation of task

descriptors by the scheduler must be protected.

4.7 Communication

The memory window provides a two way communication

path between two processors. The Incoming and outgoing

paths are logically separated. There will always be the

possibility that both processors attempt to send at the

same time. Since there are separate paths provided,

there will not be problems In gaining access to the

channel. A successful communication would require the

co-operation of both the talker and listener. If both

parties talk to each other slmultaneosly, even though

not on the same channel, the communication would still

fall. The analogy to this argument Is that of a

telephone conversation.

A scheme of organising communication In the shared

memory Is sought. It Is helpful If It can be proven

that the scheme will work. Proving correctness of

parallel program Is still at an early stage of

development (26) (29). For this reason although a

formal proof Is not given, an attempt Is made to deduce

that the scheme will work. This Is done by basing on an

analogy of a more primitive mode of communication.

Let us view the communication to be between two

106

parties using pneumatic tube normally found In

department stores. The Information that Is being

communicated are messages written on pieces of paper

and the communication Is bidirectional. Two pipes are

provided, one for each direction of transfer. Both

parties can send messages simultaneously without any

problem. One restriction Is Imposed on the use of the

pipes. No further message can be sent down the pipe

unless the receipt of the previous message has been

acknowledged. Some means of signalling the conditions

of the pipe Is therefore necessary. The conditions are -

1. message acknowledge.

2. message available.

'Message acknowledged* would mean that the outgoing

pipe Is free for further sending of messages. The

signal for 'message acknowleged' Is transmitted at the

Instant the receiver takes out the message. It Is not

necessary that the sender Is forever wanting to send

messages contlnuosly. It may retrieve the message at a

later time but not necessarily Immediately. Therefore

It Is sufficient for the 'message acknowledged' signal

to set a flag at the sender's end.

The arrival of a message at the receiver generates

a message available signal. In order not to block the

pipes, the message must be removed Immediately. The

operator at the receiver's end should preferably be

Interrupted rather than performing an Inspection
1wh enever he or she Is free. The latjfer Is equivalent to

107

polling.

Let us go back to the original problem of

simultaneous transmission of messages. The operators at

both ends pop the drums that contain the messages Into

the pipes and release a burst of compressed air. At

this Instant neither realises that they would be

expecting messages from each other. Thus, they return

to their normal duties. However, a moment later they

are Interrupted by a ring on the bell signalling the

arrival of a message In their Incoming pipes.

Retrelvlng the message Is given a high priority,

knowing that It could block further Incoming messages.

From the discussion above. It Is clear that both

parties are still able to send to each simultaneously.

The scheme will also work If there are several messages

to be sent one after the other. If the messages are

■queued. Multiple transmission will now be Illustrated.

Continuing from the point where the messages were

retrieved, the operators observed that their respective

message acknowledge flag Is set. This signals that

further transmission can be performed. The next

messages on the queue Is fetched and the sending

procedure Is repeated.

The scheme can be applied to the shared memory

communication. The two logical channels In the shared

memory were as Illustrated by the pneumatic pipes

above. In the discussion presented. It can be deduced

that the scheme Is secure and free from deadlock. The

108

signalling can be realised using Interrupts. Two levels

of Interrupt are required, one level for 'message

acknowledge' and another level for 'message available'.

Sending has higher priority than receiving, so the

'message acknowledge* Interrupt Is placed at the higher

l e v e l .

One aspect which has not been Illustrated Is the

necessity for the sending process to be
I Iunlnterruptable during operation. Message received

Interrupts from the other channels cause no problem

because they are blocked by the hardware. The 'message

acknowledge' Interrupt has a higher priority level so

as not to allow 'message available' Interrupt to cut In

during a sending operation in order to safeguard

critical data region.

A method of describing communication at a higher

level Is the rendezvous concept. Rendezvous stipulates

that both the sender and receiver must express their

will to communicate. The task processing operation In

addition to the communication Involved can be described

using rendezvous. For the sake of discussion, let us

start with one processor which has just created

subtasks and Its neighbours are trying to grab these

tasks. Prior to this Instant the Idle neighbours had

already expressed that they require Instructions.

Assume this Is expressed by a high level statement -

RECEIVE(Instruction). No further activities can be

carried out unless there Is a corresponding

109

S E N D (instruction) executed on the sending end of the

channel. After spawning its subtasks, the task is

suspended by executing a R E C E I V E (r e s u l t). The

processors which execute the susbtasks return the

results by - S E N D (r e s u l t).

The idea of the whole exercise is to keep the

physical processor as busy as possible. Logically the

state of the task may indicate a wait, but to make

effective use of the available processor power, the

physical processor must be redeployed for other tasks

and yet able to resume the logical wait.

4.8 Dynamic storage management

% f e task descriptor primary function is the storage

of housekeeping information and local variables

associated with a task. The housekeeping data and

simple local variables occupy a fixed storage size.

However the storage required for the dynamic array

structure cannot be determined at program start up

time. There Is a strong argument for keeping the task

descriptor size constant. Although the task descriptor

has a similar function as a stack frame In a P-machlne,

the behaviour of the task descriptor with time may not

be easily predicted. The order In which task

descriptors are deleted may not have a simple

relationship with the sequence In which they are

110

created. This is unlike the stack frame in a P-machine

where the movement of the stack is well defined

chronologically. The idea of making the task

descriptors of equal size cells makes it easier to

manage. Initially the task descriptors are linked as a

large continous chain. A request for a task descriptor

retrieve the front most cell from the chain. Returning

the task descriptor Is performed by simply putting the

cell back into the chain. Since the task descriptor Is

of constant size the space for the dynamic array must

be placed elsewhere. A heap space Is allocated which Is

common to all the tasks for the dynamic array.

Associated with the heap space Is a memory allocation

list. Initially this list contains one entry which

describes one large heap. The entry consists of the

pointer to the first position of the heap and Its size.

When a request Is made the portion of the heap of the

size required Is extracted. The entry In the list now

Indicates the balance. Assume that after a few request

Is made the first allocation Is to be returned. The

policy employed Is to chain back the memory. There now

exist a gap between the end of the returned memory and

the remaining heap. The pointer and size of the

returned memory Is to be put on the list. The list Is

arranged such that the entry for the lower memory

proceeds the entry for higher memory. With the next

allocation returned the appropprlate position In the

list Is first determined. Then a test Is made to see

111

whether* the preceeding entry is continous with the

memory to be returned. Similarly the entry for the next

higher location Is tested. If the test succeeds, no new

entry Is entered but the existing entry Is amended to

Indicate a newly formed block. The next allocation of

storage will attempt to find the first returned block

that fix the size requested or a larger block with the

least difference.

The danger that can occur with dynamic storage

management Is storage fragmentation. There Is no danger

of fragmentation If the size allocated Is constant or

In multiple of some fixed size. The size of memory

allocation list must be large enough to cope with any

demand. The possibility of overflow Is reduced If the

way the memory Is returned always attempt to rejoin

returned blocks.

4.9 Program development

To test out the Ideas developed so far two problems

were chosen, quicksort and matrix multiplication. To

carry out the test, the kernel was first defined. Each

of the problems was then built on top of the kernel.

All programming was done using MC68000 assembler.

Program development was carried out under Tripos

operating system running on one of the processors. Disc

facility for the processor running Tripos was provided

by an Ithaca SlOO system. The SlOO system runs a file

server which can serve more than one processor

112

simultaneously. The file server was written In

colaboratlon with Dr. Jed Marti (34). Two MC68000

processors are linked to the Ithaca by parallel ports.

The parallel ports were designed and built In

colaboratlon with Dr. D. Milford (22). The other

MC68000 processors can be linked to the Ithaca by RS232

lines. Dedicated disc system was also provided on one

of the MC68000 processors. The disc system consist of

two eight Inches drive.

There are two reasons for Implementing the test

programs In assembly language. The first Is the need to

have maximum control on the hardware. Secondly the

program must be stand alone and do not require the

assistance of the operating system. The program need

not be totally In assembly language for It to have

maximum control on the hardware. The program could have

been written In BCPL and the hardware sensitive routine

coded In assembly language. But this requires that all

the processors must be running some limited form of the

operating system. In principle all the six processors

can be linked to the file server but with that kind of

load the response of the file server Is excruciatingly

slow.

The program Is Initially developed with two

processors running Tripos. Both machines are required

to run Tripos because of the need to use the

Interactive debugger. This was done with the assumption

that If the program works on two machines. It should

113

work on N machines. The set up for bringing up more

than one machine consists of one processor running

Tripos which allow the loading of object code from

files. The other processors contain a loader in rom

which loads the object code through the communication

interface.

A facility is provided to synchronise all the

processors at start up time. Recalling from the

hardware section every processor is provided with an

input port. A spare bit of the input port is used for

this purpose. The main processor has an extra bit

output and this is wired to the 'sync* input of the

other processors.

The implementation of the kernel and the test

programs was not a one pass process. From the initial

coding of the program to having a minimal two processor

system running took several cycles of debugging and re

coding. In principle, a working two processor system

would have exercised a high percentage of the program

codes. A debugged two processor system should run for

system with more processors. In reality this was not

the case. The sections of program that handle task

distribution and communication were not totally tested.

Finding the problem codes when more than two processors

are involved are extremely difficult with the available

debugging facilities. The initial objective of the

experiment was to test quicksort and parallel matrix

multiplication program on a six processors system.

IIU

Unfortunately this was not achieved due to the untimely

failure of the hard-disc system. Although the file

server system was partially restored to floppy disc,

the speed and limited file size allowed on the floppy

disc restricted the productivity of program development

tremendously. In the experimental section to be

described forth are the results obtained with fewer

than six processor configurations.

H.IO Experiments

4.10.1 Quicksort

Below is the description of the quicksort using the

hypothetical language of section 4.2.

Program Quicksort;

const n= ;

type index=l..n ;

item =record of

key,value;integer

end ;

var azdarray [l..n] of item ;

function sort(1,r:index;a:darray [l..n] of item) ;

var i,j:index; x,w:item;

begin

i:=1; j:=r;

x:=a[(l+r) div 2];

115

repeat

while a [i].key<x.key do i:=i+l;

while X .k e y < a [j 3.key do j:=j-l;

if i<=j then

begin w:=a[i]; a[i]:=a[j]; a[j]:=w; i:=i+l;

d:=j-l;

end

until i>j ;

if 1<j then a[l:j-l]:=8ort(l,j);

if i<r then a [i ;r - i]:= s o r t (i ,r);

end ;

begin

a[lin];=sort(l,n)

end.

Figure 4.4

The quicksort program was run on one and on two

processors for various sizes of unsorted arrays. The

unsorted arrays were generated randomly.

The followings are various time taken to sort the

arrays on one and two processor configurations.

1. One processor

Problem size 50 100 150 200

Time*20 msec 4 7 11 15

Task executed 45 89 132 174

116

2. Two processors

Problem size

Time*20 msec

Task executed

Task xferred

50 100 150 200

3(3) 5(5) 7(6) 9(9)

24(21) 40(49) 63(69) 92(82)

3(4) 11(2) 2(3) 1(11)

Speed up 1.33 1. 4 1.6 1.7

note: figures in brackets are values for second

machine.

The result on quicksort shows that the efficiency

increases with larger problem size. A simple

explanation of this Is that the larger problems can

sustain longer parallel computation. The initial

splitting may not generate tasks of equal size. The

distribution of tasks is very dependent on the

quicksort problem itself as opposed to the effect of

the network. The processor that has the smaller task

would sustain shorter parallel computation than the

processor that has the bigger task. In order to proceed

with further work, the now idle processor has to

request a task from the other processor. The chance of

getting a computationally small task is high. Therefore

there will be heavy communication between the two

processors in order to keep both processors busy. It is

expected that the communication would reduce the

overall efficiency. However this was not evidenced from

the result obtained. With problem size of 100 and 200,

117

the results show that one processor received a fairly

large number of tasks from the other processor. There

is little task movement with problem size of 50 and

1 5 0 . However the efficiency at problem size of 100 is

higher than the efficiency at problem size 50.

Similarly the efficiency at problem size of 200 is

higher than the efficiency at problem size 1 5 0 . A

possible explanation to this is that the overhead

associated with communication is minimal when compared

to the computation of the problem.

4.10.2 Parallel matrix computation

The divide and conquer method can be applied to

matrix multiplication. Consider the multiplication of 2

by 2 matrices. The multiplication is definedas follows-

®21 ®22
where

=11 =12 *11 Ai 2

^21 =22 *21
X

=11 = 4 1 =11 + Ai 2

=12 = *11 =12 + Ai2 B22

=21 = *21 =11 + A22 ^2̂

=22 = *21 =12 + A22 B22

Recursive subdivision can be applied on larger size

matrices if the size N satisfies N=2^ where

m=(l,2.3..•). The multiplier and multiplicand matrices

are each divided into four quadrant where the

quadrants represent A-j<̂ * ••• • At each level of

recursion there will be eight subtasks generated. The

118

recursion will terminate when the size of the matrix is

2 by 2.

Function p m u l t (n : integer;A,B;mat): mat ;

Var C:mat;

Begin

If n=2 Then

Begin

C[1,1]=A[1,1]*B[1,1]+A[2,1]*B[2,1];

C[1,2]=A[1,1]*B[1,2]+A[1,2]*B[2,2];

C[2,1]=A[2,1]*B[1,1]+A[2,2]*B[2,1];

C[2,2]=A[2,1]*B[1,2]+A[2,2]*B[2,2];

p m u l t ; = C [1:2,1:2]

End

Else

Begin

m: =n/2

C[l:m, l:m] : =pmult (m, A[l;m,l:m] , B[l:m,l:m])

+pmult(m,A[m+i:m , 1:m] ,B [m + 1 :m , 1:m]);

C[l:m,m+l:m]:=pmu l t (m , A [1:m , l : m] ,B[l:m,m+l:m])

+ p m ult(m,A[1:m , m + 1 :m] ;B [m + 1 :m , 1:m]);

C[m+l:m,l:m]:=pmult(m,A[m+1:m , l : m] ,B[l:m,l:m])

+pmult(m,A[m+1:m , m + 1 :m] ,B [m + 1 :m , 1:m]);

C[m+l:m,m+l:m]:=pmult(m,A[m+1:m , 1:m] ,

B[l:m,m+l:m])+pmult(m,A[m+1:m] ,

B [m + 1 :m]);

pm ult:= C [1,n : 1,n]

End

End ;

Fi gu re 4. 5

119

<on

The parallel matrix multiplication problem defjnod In

the hypothetical language in section 4.2 is shown in

figure 4 .5 .

The following are results obtained for a 16 by 16

matrix multiplication.

configuration time*20 msec speed up

1 Q 76 1
2 O -------O 50 1.56
3-------O-O O 44 1.73

37 2.05
36 2.11

The general trend of the result is that the speed of

the machine increases with more processors. However a

different configuration for the same number of

processors produces a different speed up. For the three

processors system, the straight line configuration

produces poorer speed up than the binary tree

configuration. This shows that the straight line

configuration cannot distribute tasks efficiently

compared to the binary tree configuration. The initial

splitting of a problem generates the highest potential

for work. In the straight line configuration the

rightmost processor will never have the chance to grab

the task that was generated with the initial splitting.

The tasks that reached the rightmost processor are

computationally small. In order to sustain further

computation there will Ije heavy communication involved

120

with the middle processor. The frequent communication

reduces the efficiency of the machine. For a similar

reason, the four processor system in a square

configuration does not show great improvement over the

three processor binary tree configuration. The

processor diagonal to the processor where the task is

injected, obtained tasks that resulted from at least

three subdivisions.

4.11 Conclusion

Consider the case of the two processor

configuration for both quicksort and matrix

multiplication experiments. It would be expected that

the machine performance for quicksort is less than that

for the multiplication problem due to the sparse

evaluation tree for the quicksort. But on average the

performance for both problems is similar. In a two

processor system, there should be enough parallelism in

both problems to saturate the processors. In a larger

system it can be safely assumed that the matrix

multiplication problem would produce better performance

because the regular expression tree could sustain

enough parallelism on all the processors.

121

CHAPTER 5 DISCUSSION

5.1 Introduction

A survey (5) (12) (15) (21) (56) of the work done on

the development of multiprocessor and parallel

computers can be loosely categorised into two branches.

The first is developing machines for a specific

applications. Examples of these are dedicated networks

of multi-microprocessors modelling a specific problem

and the vector and array processors for number

crunching applications. The other branch is developing

machine for general purpose applications based on new

computing models. In both branches of development, the

hardware configuration derived has a direct

relationship with the problem to be solved or the

computing model. The starting point for the research

carried out in this thesis is a multiprocessor

configuration proposed by Bowyer et al for some

applications in graphics. The realisation of the

processor configuration did not require a major

conceptual development exercise. The nature of the

problem encountered was more of practical difficulties.

The next step in the exercise was the design of the

software for driving the multiprocessor. The concept in

the design of thé software was not confined to graphics

applications only but to a much wider scope of general

purpose application. The development of the software

system was more involved with concepts and the

theoretical aspects of computing model. On the

implementation side of the software system, practical

122

problems were encountered in program development and

debugging the multiprocessor. This research would

belong to the first category mentioned above since the

hardware derived was for a specific application.

However, the requirement for suitable software for

driving the multiprocessor necessitated venturing into

the second category of development mentioned.

To date what has been achieved in this research is

the construction of a multiprocessor hardware within a

small budget and the development of the software

required to run the system. The state of the software

developed is ample to test the multiprocessor and run

experiments for the purpose of evaluating the

performance of the system. Subsequent text in this

chapter presents a discussions of the degree of success

of the Bath system as a multiprocessor and the further

development possible on the machine.

5.2 Performance

The experiments done on quicksort and matrix

multiplication show that the machine does gain in
processing speed over a single processor(section 4.10).

The only form of test is to measure the time the

multiprocessor to complete a problem. Since the system

can be set up with a single machine, time measured for

various processor configurations can be compared with

the time for a single machine. By no means is the

result of the experiment conclusive. A more

123

comprehensive set of results can be obtained if the

traces of activities of all the processors were

recorded. This form of test will be able indicate any

bottlenecks in the system. To perform this test require

a more elaborate hardware set up. Section 5*3 described

a proposal for such a hardware configuration.

5.2.1 Effect of interface hardware on performance

The primary measure of the efficiency of a

multiprocessor must be based on how much gain in speed

is obtained over a single processor machine. The

efficiency of the system is decided by the ratio of

actual gain in speed over the ideal maximum possible.

Ideally an N processor machine should be N times faster

than a single processor machine.

There are several factors that decide the

performance of a multiprocessor. The three main factors

are-

1. The interprocessor link hardware must be

highly efficient for communication costs to be

kept low;

2. An ample amount of parallelism must be

inherent in the problem to be solved in order to

sustain parallel execution;

3. The software that is responsible for the

management of tasks and communication must be

efficient.

124

Our interprocessor link is provided by reasonably fast

interface hardware based on shared memory. The

interface is fast compared to serial or parallel

input/output under program control. A normal memory

read or write instruction takes four clock cycles.

Since the interface introduce two wait states, one

extra clock cycle is required to be added to the memory

access timing. A MC68000 move memory to memory

instruction for long data takes twenty clock cycles

plus one extra clock cycle introduced by the interface.

Below is an assembly language routine that is used to

move a block of data from main memory to the interface.

loop MOVE.L (A0)+,(A1)+ 21 clock cycles

DBRA DO,loop 12 clock cycles

The transfer rate for long word data that can be

achieved by the routine above is calculated below-

Total clock cycles 33

Total time (BMhz clock) 4.125 uS

The transfer rate is l/4.125uS or 242.4 Kwords per

second. The data transfer rate can be improved

marginally by removing the wait state. A much faster

data transfer rate can be achieved under direct memory

access control. Assuming the memory cycle time is

200ns, a single word move takes 400ns (total read and

write times). The transfer rate is thus l/400ns or

125

2.5Mwords per second. This transfer rate is highly

desirable. Even though the transfer rate under program

control is one tenth of that under dma control, the

speed is reasonably fast when compared to serial or

parallel input/output lines. It can be concluded that

the choice for the communication hardware does conform

to the factor 1 described above, especially considering

the low cost of the interface.

5.2.2 Effect of software on performance

It was mentioned in the introduction chapter that

there are various ways in which parallelism can occur

in a problem and the way the parallelism can be

exploited. Divide and conquer is one method. The

reasons for directing the investigation towards divide

and conquer are-

1. The interprocessor configuration was conceived

on the idea of divide and conquer computation;

2. The possibility of realising a general purpose

parallel machine. It has been reported by several

researchers (2) (4) (57) that a divide and conquer

algorithm is capable of producing an exponential

growth of parallelism in applicative program.

The software system developed is a kernel for a divide

and conquer virtual machine. The kernel system seems

capable of performing its logical function. Unavoidably

there are overheads introduced by the system. The

sources of overhead are the setting up of the task and

126

the communication between the processors. Incorporating

a task scheduler in the kernel enables virtual task

redeployment of physical processors but introduces

further load on the machine. At the virtual level, the

spawning of subtasks is similar to invoking a function

in a sequential processor. However, in the

multiprocessor an elaborate kernel is essential to

manage the physical processor. Therefore a

multiprocessor such as the Bath system will not reach

the level of efficiency of a single processor. Better

efficiency can be achieved in a multiprocessor where

the mapping of tasks to processors is on a one to one

basis. Such architectures are the binary tree

processors (55) and systolic processors (52). In binary

tree processors there is less overhead involved because

there is no necessity for a scheduler. The parent

processor start the children processors by implicitly

sending the instruction and data to the children

processors. The parent processor physically goes into a

suspended state awaiting to be restarted by the

children processors. Data structures such as the task

descriptor is not required for maintaining the list of

active and suspended task because the processor memory

is exclusive to one task only.

It is highly desirable that all the component

processors are evenly loaded and this is dependent on

the task distribution mechanism. The distribution of

tasks is handled dynamically by the system as follows.

127

The idle processors request tasks from the busy

processors, rather than the busy ones pushing the

tasks. The local processor always has the highest

priority over locally generated tasks, but if there is

more than one task available on the stack it is

guaranteed that the scheduler will honour any request

from the neighbours. If there are enough parallel tasks

available, the scheme will ensure that all the

processors are busy. The task distribution is

accomplished by the processors mutually cooperating

among themselves without the need of a control

processor. This is obviously important for an

asynchronous system.

The instructions are maintained on a stack. During

a subdivision a number of instructions are generated

and placed on the stack. All the instructions that are

generated by a single subdivision process can be said

to be contained within a subdivision freune. Parallel

evaluation is guaranteed if some or all of the

instructions within a frame are consumed before the

next frame is created. The evaluation is breadth first.

When there is no more demand from neighbouring

processors the local processor can only consume one

instruction each time from a frame before the next

frame is created. This is in effect a depth first

evaluation.

The cost of communication is dependent on the

distance between the processors involved. The kernel

128

takes care of this by ensuring that the communication

can only occur between adjacent processors.

5 .2.3 Effect of interconnection topology on

performance

From the experiments described in section 4.10,

different processor configuration can affect the

performance of the multiprocessor. It is not possible

from the minimal result obtained in the experiments to

extrapolate the result directly to the trivalent graph

of maximal girth network. However an attempt will be

made to analyse the network based from the experience

gained from the simulation and the experiment on the

actual hardware.

The idea of using the complex processor

interconnection is to achieve even distribution of

tasks among the processor. The maximum distribution of

tasks will happen if there are enough outlets for the

tasks to be dispersed. This condition is achieved if

the number of ways the subdivision occur is less than

the valency of the graph. In a girth g graph, all the

processors will be loaded after g/2 levels of

subdivision. Since all of the subtasks initially

created are able to be dispersed, there will be none of

the original subtasks remaining at the root processor.

If the number of ways of subdivision is greater than

the valency of the graph, the distribution of tasks

will be less than ideal. Although the processors will

129

still be saturated after g/2 levels of subdivision for

a girth g graph, there will be fairly large tasks

remaining at the root processor. Maximum dispersion

should ideally occur after the initial subdivision

because the subtasks created are potentially capable of

sustaining localised parallelism longest. The worst

situation can occur if the depth of subdivision is less

than g/2. The processors at a distant of greater than

the depth of subdivision will never obtain a task

because communication can only occur between processors

of unit distance away. As an example, this situation

can occur with a 16 by 16 matrix multiplication on a

girth 10 network. There are only three levels of

subdivision in the multiplication.

From the discussion presented above it can be seen

that the trivalent graph network with maximal girth is

not suitable for problems with the number of ways of

subdivision greater than the valency of the graph. The

analysis was based on a specific problem of matrix

multiplication. In the case where the expression tree

is less well defined as in the expression tree resulted

from the execution of a reduction language (23) the

task distribution is less predictable because the

number of tasks created for every level of subdivision

is not constant.

If the tasks are allowed to migrate more than once

from the source processor, the dispersal of the tasks

will not depend on the valency of the graph. However,

130

this method of task distribution has the disadvantage

of requiring the use of intermediate processors for

communication. It is important that the initial

subtasks created are fully consumed. It is probable

that the use of complex interprocessor topology may not

offer very much benefit (4l).

The discussion is by no means conclusive unless it

is based on actual data obtained from experiments. The

following section describes the necessary enhancement

of the multiprocessor system in order to make further

experiments possible.

5.3 System improvement

The Bath multiprocessor is essentially a test bed

for exploring ideas on multiprocessors. However there

are a few facilities both in hardware and software

system that are lacking for it to be a suitable

development system. The following subsections described

the facilities that are desirable.

5.3.1 Hardware system enhancement

Further investigation needs to be carried out

before a solid conclusion can be made regarding the

efficiency of the interprocessor configuration and the

multiprocessing kernel. As was previously mentioned, a

trace of all the processors is useful. The way the

tasks are distributed can be observed. In the

experimental stage it is only feasible to build a

131

multiprocessor with a small number of processors. The

only way the behaviour of a large scale multiprocessor

can be observed is by simulation. However if a

comprehensive set of data is obtained from small scale

multiprocessor, the behaviour of a large scale system

can be extrapolated. To be able to do more experiments

and gather more data requires a better system set up.

Figure 5.1 shows a possible hardware configuration. A

control processor is linked to all the node processors.

The control processor can interrupt all the node

processors simultaneously and also perform a two way

conversation with the processors. A simple serial link

is ample to establish communication between the control

and a node processor. The control processor regularly

sends out an interrupt which suspends the processing

on all the node processors. This interrupt should be on

the highest level of interrupt used. The control

processor can interrogate the node processors in turn.

The states of the processors are recorded by the

control processor.

5 .3.2 Software development system

The software development system needs to be

improved. Below is a proposal for improving the

facilities on the multiprocessor system. Developing

assembly language program is time consuming and

laborious. Using high level languages(C, BCPL etc)

which are normally used for writing operating system

132

and other system software should reduce the effort

tremendously. The negative point of using such

languages is that they require some form of operating

system running on the processor. A suitable development

system could be provided by a high level language cross

development system which only requires minimum run time

environment. This is more advantageous than a resident

system. The cross development system can be hosted by

the control processor of section 5.3.1. The choice of

language is not critical nor is it necessary to modify

the language to incorporate parallel constructs.

However the high level language should have facilities

for programming interrupt. The run time environment

should be kept to a minimum to ensure low overhead but

should incorporate some form of error reporting

facilities. Using the proposed hardware set up

mentioned, the occurence of error on any of the node

processors should be reported to the control processor

immediately. The control processor action would then be

to stop all node processors and notify the console.

From the traces of the node processors previously

recorded, the programmer can ascertain the cause of the

problem and suitable action can be taken.

5.4 General purpose programming

The high level abstraction described in chapter

four is ample for the purpose of defining simple test

programs. A more complete programming language for the

133

multiprocessor is necessary in order to investigate the

behaviour of general purpose computing on the

multiprocessor. The computational model incorporated in

the kernel should be able to support an applicative

style or reduction language. The kernel however may

require some modifications.

Applicative programs exhibit some degree of natural

concurrency. This concurrency is derived from multiple

evaluation of function arguments and the behaviour of

an applicative program on a multiprocessor is safe

because there are no side effects. This form of

concurrency can be observed in an expression f(a,b).

When a and b are subexpressions, they can be evaluated

in parallel. This form of concurrency of itself does

not generate an enormous amount of parallelism. Divide

and conquer is one method of deriving the desired

amount of parallelism and has been decribed elsewhere

in this thesis. Another method is through the

appropriate use of data structuring (3). A function can

have a sequence of arguments. An apply-to-all operator

maps the function to all of the arguments in the

sequence.

f » ()()()
If the sequence is made up of a list of length n then

there should be n tasks generated. Further parallelism

can be generated if there are unevaluated

subexpressions in the sequence.

The existing kernel of the Bath multiprocessor

134

incorporates a machine model that can support

applicative style programming in a limited form. The

present model supports divide and conquer evaluation on

a single function. However it does not evaluate the

arguments: the arguments are assume to be simple.

Task management relies on two mechanisms, the

instruction and the task descriptor. The task

descriptor represents a computational node. Execution

of a program generates a tree of task descriptors. A

task invokes subtasks by issuing instructions. An

instruction contains the identity of the task that

issues it and the data for the arguments. Since there

is only one definition of function involved there is no

necessity to have a separate field for the name of the

function. The number of arguments is fixed. However the

data part of the arguments is variable in size. In

order to simplify the management of the instruction

stack the data part is separated from the rest of the

instruction. The data part is maintained in a separate

heap space. The task descriptor contains the task

housekeeping information and also the local data for

computation. For a similar reason, the data part of the

dynamic variables in the task descriptor is maintained

in the heap space

To allow for general purpose applicative language

like Lisp the only requirement of the execution model

is the capability to support both primitive functions

and user defined functions. A more dynamic structure is

135

then necessary. The size of the instruction and the

task descriptor are dependent on the function

definition. The need to reduce the arguments requires

an expression evaluator. The expression evaluator is

called when a task is first started. The task can be

suspended in the evaluator whenever there are

subexpressions to be evaluated. The number of subtasks

that can be invoked is dependent on the instruction.

When all the subexpressions are evaluated the task is

reactivated and the function applied.

5.5 Parallel Lisp system

The best way of defining a parallel Lisp system is

to take a definition of a Lisp interpreter and identify

where the parallelism can be derived. The main

components of a Lisp interpreter are the evaluator and

apply function. Below is a program in Lisp of a simple

Lisp evaluator derived from Winston (51).

(Def Eval (S Environment)

(Cond ((Atom S)

(Cond ((Equal S T) T)

((Equal S Nil) Nil)

((Numberp S) S)

(T (Value S Environment))))

((Equal (CAR S) 'quote) (CADR s))

((Equal (CAR S) 'Cond)

(Evalcond (CDR S) Environment))

136

(T (Apply (Car* S)

(Mapcar ’(Lambda (X)

(Eval X

environment)) (Cdr S)) Environment))))

The EVAL function returns a value if the S expression

presented to it is an atom or the quoted value if the S

expression begins with a quote. EVALCOND is called if

the S expression begins with a Cond. If the S

expression does not belong to the above, EVAL evaluates

the elements in the expression after the first from

left to right. The expression with the arguments

replaced by the appropriate evaluated value is passed

to APPLY. The APPLY function uses the first element in

the list to get the function name that will be applied

to the evaluated arguments. The scanning of arguments

from left to right is done by iteration using MAPCAR.

In the MAPCAR expression EVAL recurses on itself. The

iteration can be unfolded and a simultaneous recursive

call on EVAL performed. There are two arguments to

EVAL, S and ENVIRONMENT. The structure of the EVAL

function is similar to the parallel matrix

multiplication function described in section (4.10.2).

However for EVAL, it can create an arbitrary number of

subtasks. The discussion presented above shows that a

Lisp machine can be incorporated into the kernel of the

Bath machine.

In Lisp both program and data are constructed using

a list of linked cells. Tho problem with linked cells

137

is that transferring a structure from one processor to

another is not efficient. The structure has to be

redrawn in a compact form within a linear block before

it can be transmitted. In a large structure the number

of indirections needed to redraw it can be large, thus

making the process inefficient. At the receiving

processor a read function is required to rebuild the

list which further reduces the efficiency. In a

multiprocessor where there is a global shared memory in

addition to the local communication path (2) this would

not matter very much. A structure is passed from one

processor to another just by passing the pointer to it.

A possible representation for the expression can be

constructed using a linear string. Moving a string is

more efficient in a multiprocessor without global

shared memory. However there is also a disadvantage

with string representation. An operation on a list

necessitates copying part or whole of the list. For

example a Cons operation on list A and B requires

reserving a separate memory space where the list A.B

will be written. The copying operation in itself is

time consuming and allocating an arbitrary size memory

space can be very demanding on memory management.

Memory space that is no longer required must be

reuseable in order to prevent memory exhaustion. In a

Lisp implementation on a uniprocessor garbage

collection is employed to recover used cells. If linked

cells were employed for program representation the same

138

garbage collection scheme for uniprocessor

implementation can be used. Let us look at how memory

management for string representation can be done. As

was already mentioned recovering an arbitrary size

memory space is difficult. Allocation of memory will be

easier if the memory space is allocated in fixed

blocks. If the space required occupies more that one

block, further blocks can be allocated and chained to

the previous block.

Memory management is also concerned with the

allocation of task descriptors. The data receptors for

the subtasks are held in the task descriptor. As

previously mentioned the number of subtasks created is

not fixed. The number of data receptors required is

unknown because it depends on the current subexpression

being evaluated. The task descriptor can be allocated a

fixed size large enough for any forseeable demand.

Alternatively the size of the task descriptor varies

dynamically with requirement. The choice between the

two methods very much depends on whether wastage of

memory is more favourable than a complex and

sophisticated memory management scheme which is

difficult to implement.

Concurrent evaluation of the arguments does not

differentiate between fine grain and large grain

parallelism. It is not justifiable to make a simple

subexpression into a parallel task. For example if the

subexpression Is (plus 2 3), the cost of setting up a

139

parallel task is large when compared to the evaluation

of the expression. Therefore in order to maintain a

high level of efficiency, only computationally large

subexpression should be made into parallel tasks. The

capability to differentiate between small and large

subexpression must be incorporated into the expression

evaluator. Whether the differentiation between

subexpression is automatic or under programmers*

control depends on several factors. For the scheduling

to be automatic, the evaluator must be given criteria

to decide whether a subexpression is small or large.

The amount of computations associated with a function

depends on the function definition and the size of its

arguments. However a long subexpression does not

necessarily represent a large computation as in the

case of finding the *car* of a fairly long list.

Programming this facility into the evaluator will

introduce an extra overhead to the system. It is

probable that this extra overhead is not warranted.

Parallel scheduling under programmers* control can be

done by annotating subexpressions. It is simple for the

evaluator to recognise an annotated subexpression and

this is more efficient. The annotation does not alter

the structure of the language significantly but it does

make the programmer aware that he or she is programming

a multiprocessor. One of the ideas behind using an

applicative language for multiprocessor is it makes the

presence of the multiple processing elements

lUO

transparent. Therefore a program written for a

sequential machine can be run on a multiprocessor

without modification and the same result expected.

These goodies must be weighted against efficiency and

the first impression is parallel scheduling should be

made under programmers* control. What was not apparent

before is that the speed of the program is very

dependent on how good the programmer is in selecting

the parallel functions. The same program can have very

different execution times with different annotations.

The discussion above described a parallel Lisp

interpreter that is based on applicative order

reduction. A compiler that compiles Lisp program into

parallel executable codes exploits parallelism by first

performing a data flow analysis on the program (3&).

The job of deciding whether a function should be made

into a parallel task or not can be programmed into the

compiler. Since the analysis is done at compile time

the run time task scheduler can be made more efficient.

5.6 Conclusion

From the discussions in the proceeding paragraphs,

it can be summarised that there are two main points

that have to be considered in order to implement an

applicative language efficiently on a multiprocessor.

The first is program representation. In the author*s

opinion, the absence of a global memory should favour

string representation. With string representation, the

lai

speed of moving the string from one part of memory to

another can be increased by using a dedicated direct

memory access device that controls the memory to memory

move operations. The same hardware is equally adaptable

for controlling the communication through the shared

memory interface.

The problem of concurrency control is more

complicated. Although in the previous discussion two

alternative methods were offered, it is not possible to

form any opinion on which approach should be adopted. A

more detailed investigation possibly by experimentation

is required.

Implementing applicative languages on the Bath

multiprocessor is not limited to Lisp only. The model

incorporated into the multiprocessor kernel should be

equally applicable to other applicative language like

SASL, HOPE and Backus* functional programming system

(FP). This make the potential of the Bath machine

comparable to the ALICE machine. However there are

fundamental differences. In the Bath machine the

proposed applicative proramming model is emulated by a

conventional von Neumann machine. Various points were

discussed on the ways of making the machine efficient.

However there is still room for improvement. Better

performance could possibly be attained if the virtual

machine can be supported directly by hardware emulated

at microcode level. The obvious advantage of emulating

the model by microcode is that the overhead is reduced

1U2

thus making computation at fine grain level more

attractive. This can be seen in the dataflow machine of

Gurd et al (20) which is implemented using bit slice

microprocessors.

This research has been an exercise in building a

multiprocessor. Although the stage of a useable system

was not reached, there are a few unknowns that can be

answered as a result of this research. Towards the

second half of this chapter a design of a general

purpose machine was proposed. Also, the foreseeable

problems associated with the implementation of such a

system were discussed. Perhaps this is the clearest

identifiable achievement of this research which can

pave the way for further development.

Despite the low budget and minute research team, it

has been shown that a parallel processing system can be

constructed from standard board level processes with a

single board efficient communication system. This

hardware has been used to investigate one software

methodology and the experience of this experiment has

allowed a number of suggestions to be made for an

incremental improvement of the system.

1Ü3

REFERENCE
1. John Darlington and Mike Reeve, ’’ALICE A
multiprocessor reduction machine for the parallel
evaluation of applicative languages.,” Proc. ACM Conf.
on Functional Programming Languages and Computer
Architectures, New Hampshire (Oct. I98I).

2. Robert M. Keller, Gary Lindstrom and Suhas Patil,
”A loosely-coupled applicative multi-processing
system,” Proc. 1979 AFIPS NCC(1979).

3 . Robert M. Keller and Frank C. H. Lin, ’’Simulated
Performance of a Reduction Based Multiprocessor, ” IEEE
Computer July 198Ü.

k , F. Warren Burton and M. Ronan Sleep, ’’Executing
Functional Programs on a virtual tree of processors,”
Proc. ACM Conf. on Functional Programming Languages and
Computer Architectures, New Hampshire (Oct. 198I).

5 . Nicolas Mokhoff, ’’Parallelism makes strong bid for
next generation computers,” Computer design September
1984 .

6. J. Backus, ’’Can Programming be liberated from the
von Neumann Style? A functional style and its algebra
of programs,” ACM 21(8)(1978).

7 . Adrian Bowyer, Philip J. Willis and John R.
Woodwark, ”A multiprocessor architecture for solving
spatial problems,” The computer journal, Vol 24,No.
4,198 1 .

8. E. Dagless, ”A multiprocessor Cyba-M,” Information
processing 77, Ed. B. Gilchrist, IFIP, North Holland.

9 . P.C. Treleavan and R.P. Hopkins, ”A recursive
(VLSI) Computer Architecture,” Technical Report Series
No.1 6 1 ,March 198I, University of Newcastle upon Tyne.

10. D. A Turner, ”A new implementation technique for
applicative languages,” Software practice and
experience vol9,31-49(1979)

11. K. P. Gostelow and R. E. Thomas, ’’Performance of a
Simulated Dataflow Computer,” IEEE transaction on
computers vol c-29* no 10, October 198O

12. B. W. Wah and Y. W. E. Ma, ’’MANIP - A multicomputer
Architecture for solving combinatorial Extremum Search
Problems,” IEEE Trans, on Comp, vol c-33 no. 5 May 84

1 3 . T.J.W Clarke, P.J.S Gladstone, C.D. Maclean, A.C.
Norman, ”Skim-The S,K,I reduction machine,” Proc. LISP-
80 Conf. Stanford (aug. 198O).

144

14. E. Horowitz and S. Sahni, Fundamentals of computer
Algorithms, Computer Science Press, Maryland, 1 9 7 8 .

15* I . Filotti, "Parallel General Purpose
Architectures,” Advanced course on VLSI architecture.
University of Bristol 19-30 July I9 8 2 .

1 6 . J. B. Dennis, "Data Flow supercomputers,” IEEE
Computer vol. 13, no. 11 (Nov. 19 8 0) pp. 48-56

1 7 . R.D. Dowsing and E.L Dagless, "Design methods for
digital systems P t .1: concurrency constructs,” Computers
and Digital Techniques, June 1979.vol 2,no.3

1 8 . Texas Instrument Incorporated, Designing witl TTL
Integrated Circuits, McGraw-Hill, 1975.

1 9 . D. Aspinall, E.L. Dagless and R.D. Dowsing, "Design
methods for digital systems including parallelism,"
Electronic circuits and systems,Jan 1977,vol l,no2

20. I. Watson and J. Gurd, "A prototype data flow
computer with token labelling,” National computer
conferrence 1979

21. P. C. Trealevan, "Decentralised computer
architecture for VLSI,” Advanced course on VLSI
architecture. University of Bristol 19-30 July 198 2 .

22. P. J. Willis, D. Milford and J. Woodwark,
"Exploiting area coherence in raster scan displays,"
Proc. Elec. Displays 198I, 3, PP34-46, 198I

2 3 . K. Berkling, "Reduction Language for Reduction
Machines," Proc. 2nd Int. Symp. Computer Architecture,
Houston (Jan 1975).

24. C.A.R. Hoare, "Communicating Sequential Process,"
CACM 21(8) pp 666-677 Aug 7 8 .

25. D. May, "occam," Sigplan notices 18(4) pp 69-79
19 8 3 .

2 6 . Robin Milner, "Synthesis of Communicating
Behaviour," Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science 64, pp 71-83
Springer Verlag.

2 7 . J . B . Dennis, "First Version of a Dataflow
Procedure Language," Lecture Notes in Computer Science
5. P 187 1984.

2 8 . R. M. Burstall, "Design considerations for a
functional Programming Language,” Proc. of Infotech
State of the Art Conference, Copenhagen, 1979.

145

29-C.A.R. Hoare, "Communicating Sequential Processes,"
On the construction of Programs. Ed. R. M. McKeag and
A. M. MacNaghten Cambridge University Press, 198O, pp
229-254 .

3 0 . R . C . Singleton, "On minimal graphs with maximal
even girth," J. Combinatory Theory, Vol. 1, pp 306 332,
1966.

3 1 . C.A.R. Hoare, "Proof of a Recursive Program:
Quicksort," Comp. J., 14 No.4 (1971) PP 391-395.

3 2 . N. Wirth, Algorithms + Data Structures = Programs,
Prentice Hall 1976, p 79.

3 3 . C.A.R. Hoare, "Quicksort," Comp. J., 5 No.1 (I9 6 2),
PP 10-1 5 .

3 4 . J. Marti and J. Fitch, "The Bath Concurrent Lisp
Machine," EUROCAL ’8 3 , Lecture Notes in Computer
Science 162.

3 5 . J.W. Cooley and J. W. Tukey, "An algorithm for the
machine calculation of complex fourier series," Math
Comp, 1 9 . pp. 297-3 0 1 , 1 9 6 5 .

36 N.L. Biggs and M.J. Hoare, "A trivalent graph with
58 vertices and girth 9." Communication, Discrete
Mathematics 30(1980), pp 299-301, North-Holland
Publishing Company.

3 7 . W.H. Burge, Recursive Programming Techniques,
Addison-wesley (1975).

3 8 . W. B. Ackerman, "Dataflow Languages," AFIPS Conf.
Proc., Vol 48, NCC, New York, June 1979. PP 1087-1095.

3 9 . W.B. Ackerman, "Dataflow Languages," IEEE Computer
15(2), p .15 (Feb. 1 9 8 2).

40. J.R.W. Glauert, "High Level dataflow Programming
Distributed Computing," Apic studies in Data Processing
No. 20, Ed. F.B. Chambers, D.A. Duce and G.P. Jones, pp
43-5 3 , 198 3 .

41. J.R. Kennaway and M. R. Sleep, "Towards a Succeeosr
to von Neumann," Apic studies in Data Processing No.
20, Ed. F.B. Chambers, D.A. Duce and G.P. Jones, pp 125-
1 3 8 , 1 9 8 3 .

42. R.H. Perrot, "Languages for Parallel Computers," On
the construction of Programs. Ed. R. M. McKeag and A.
M. MacNaghten Cambridge University Press, 198O, pp 255-
281

146

43. R.E. Millstein, "Control Structures In ILLIAC IV
FORTRAN," CACM, l6,10, pp. 622-627, 1973.

44. E.W. Dijkstra, "Co-operating Sequential Processes
in Programming Languages," ed. F. Genuys, Academic
Press, New York, pp 43-112, 1968.

4 5 . P. Brinch Hansen, The Architecture of Concurrent
Program, Prentice Hall, Inc, Englewood Cliffs, New
Jersey.

46. G.H. Barnes, R.M. Kato, P.J. Kuck, D.L. Slotnick
and R.O. Stokes, "The ILLIAC IV Computer," IEEE Trans.
Computer, C-17, pp. 746-757, 1968.

47. S.A. Holland and C.J. Purcell, "The CDC Star-100: A
large scale network oriented computer system," Proc.
1971 IEEE Conferences, pp 55-65, 1971.

48. R.M. Russell, "The CRAY-1 computer system," CACM
2 1 , 1 pp 63-7 2 . 1 9 7 8 .

4 9 . S.F. Reddaway, "DAP- A Distributed Array
Processor," Proceedings of 1st. ACM Symposium on
Computer Architecture, Dec 1973.

5 0 . W. Meschach, "Dataflow IC makes short work of tough
processing chores," Electronic Design, May 17 1984,
Vol. 3 2 , No. 10.

5 1 . P. H. Winston and B. K. P. Horn, LISP, Addison-
Wesley, 198I.

5 2 . H. T. Kung, L. M. Ruane and D. W. L. Yen, "A Two-
Level Pipelined Systolic Array For Convolutions," VLSI
Systems and Computations, Ed. H. T. Kung, B. Sproull
and G. Steele, Coputer Science Press 198I. PP255-264.
5 3 . A. Gottlieb, R. Grishman, C. P. Kruskal, K. P.
McAuliffe, L. Rudolph and M. Snir, "The NYU
Ultracomputer- Designing an MIMD Shared Memory Parallel
Computer," IEEE Trans, on Computers. Feb 83 Vol. C-32
NO. 2

5 4 . Olivier Roubine and Jean-Claude Heliard, "Parallel
Processing in ADA," On the construction of Programs.
Ed. R. M. McKeag and A. M. MacNaghten Cambridge
University Press, 198O, pp 193-212.

5 5 . P. J . Peters, "Tree machines and divide and conquer
algorithms," Lecture Notes in Computer Science 11,
Conpar 8I, Springer-Verlag, pp 25-36.

147

56. E. H. Wold and A. M. Despain, "Pipeline and
Parallel Pipeline FFT Processors for VLSI
implementations," IEEE Trans. on Comp. vol c-33 no 5
M.-iy a a .

57- E . Horowitz and A. Zorat, "Divide and Conquer for
Parallel Processing," IEEE Trans. on Computers, June
83. C-32 No. 6 p p 582-58 5 .

5 8 , Motorola, MC68000 l6-bit microprocessor u s e r ’s
manual, Prentice Hall 1982

5 9 . Motorola Inc, MC68000 data sheets, 198I

laa

Appendix A

m c 68000 signals

The input and output signals are functionally

organised into groups. Figure A . 1 shows the various

signals and their respective group. Basically the

signals of the MC68000 are the same as other

microprocessors which comprise of the address bus, data

bus and the control bus. The MC68000 provides more

signals in the control group compared to an eight bit

microprocessor.

Address bus

The address bus is 23 bits (A1 - A23). The bus is

unidirectional and can be tri-stated. The address bus

supplies the address in a memory reference operation.

During interrupt the address line A1,A2 and A3 signify

the current interrupt level being processed. Address

lines A4 to A23 are set to logic high.

Data bus

The data bus is 16 bits wide. The bus is

bidirectional and can be tri-stated. The data bus can

read or write in either word or byte length. Data lines

DO - D7 are used to supply a vector number i n the

interrupt acknowledge cycle.

149

PROCESSOR

STATUS

M6800
PERIPHERAL

CONTROL

SYSTEM
CONTROL

Address

MC 68000

err AC K.

HALT

A1 - A23

DO -D15

ASYNCHRONOUS
BUS

CONTROL

BUS
ARBITRATION

CONTROL

INTERCEPT
CONTROL

FIG. A.1 MC 6800Q SIGNALS

150

Control bus

The control bus can be further classified into

various functional subgroups. The various subgroups

that form the control functions are described below:

Asynchronous bus control

The m c 68000 allows asynchronous data transfers. The

following signals control the asynchronous transfer:

address strobe, read/write, upper and lower data

strobes and data transfer acknowledge.

Address Strobe (AS)

This signal is use to indicate to the memory device

that there is a valid address on the address bus. This

is necessary to differentiate the interrupt cycle which

uses the address line A1,A2 and A3 to indicate the

interrupt level.

Read/Write (R/W)

The read/write signal indicates the direction of

the transfer.

Upper and Lower Data strobes (UDS,LDS)

The mc68000 allows data transfer at word and byte

levels. With a byte transfer it is necessary to specify

whether the transfer is from the lower byte or the

upper byte. The conditions of the UDS and LDS signals

in relation to the transfer is as follows:

151

UDS

1

LDS

1

R/W

X DO - D15 invalid

0 0 1 DO - D15 read

1 0 1 DO - D7 read

0 1 1 D8 - D15 read

0 0 0 DO - D15 written

1 0 0 DO - D7 written

0 1 0 D8 - D15 written

Data Transfer Acknowledge (DTACK)

The DTACK signal is an input. The assertion of

DTACK signals the processor that the data transfer is

completed. During a read cycle DTACK causes the data to

be read and the bus cycle to terminate. DTACK also

causes the write cycle to terminate.

Bus Arbitration Control

There are three signals that make up this group.

They are Bus Request(BR), Bus Grant(BG) and Bus Grant

Acknowledge(BGACK). The functions of these signals is

to coordinate the release of bus control by the

processor to device that can be the bus master.

Interrupt Control (IPL O ,IPLl,I P L 2)

These are encoded inputs for identifying the

priority levels of the interrupting device.

152

System Control

There are three input lines that form the system

control. The Bus Error(BERR) input is use to signal an

error condition to the processor. The error condition

could be raised by the following condition;

1. nonresponding device

2. failure to acquire interrupt vector

3. illegal access request as determined by a

memory management unit.

The reset(RESET) input is a bidirectional signal

line. The application of the reset signal externally

causes the processor to reset its internal state. The

execution of a reset instruction internally generates

the reset signal which can be used to reset external

device.

The Halt(HALT) signal is also a bidirectional line.

The assertion of this signal externally will cause the

processor to stop at the completion of the current bus

cycle. The halt signal is generated internally when the

processor stopped due to a double bus fault. In the

halted state, all the control signals are inactive and

all tri-state lines in the high impedance state.

M6800 Peripheral Control

These control signals enables the MC68000 to be

used with synchronous M6800 peripheral devices.

E nable(E)

The enable signal is common to all M6800 peripheral

d evices.

153

Valid Peripheral Address(VPA)

This input is used to Indicate to the processor

that the current memory of device addressed should be

treated as M6800 peripherals. This input is also used

to generate automatic vectoring.

Valid Memory Address(VMA)

This is an output and is used to indicate to the

M6800 peripheral that there is a valid address and the

processor is synchronised to the enable signal.

Processor Status (FCO .FCl.FC2)

These are output lines and are used to indicate the

processor state The function code outputs are only

valid when address strobe is true. The various

processor states are as follows:

FC2 FCl FCO Cycle Type

0 0 0 -

0 0 1 User data

0 1 0 User program

0 1 1 -

1 0 0 -

1 0 1 Supervisor data

1 1 0 Supervisor program

1 1 1 Interrupt acknowledge

- indicates undefined or reserved.

Clock(CLK)

The clock input is TTL compatible.

154

m c 68000 bus operations

All bus operations are synchronised to the

processor clock states. The clock is divided internally

to generate eight states SO to S7. The timings of the

signals are linked to these states.

Read cycle

The processor receives data from memory or

peripheral during a read cycle. A read instruction can

specify the size of data to be byte, word or long word.

The condition on the lower and upper data strobe

signals indicate to the memory or peripheral the size

of the transfer. If the instruction specifies a byte

operation either data strobe but not both is asserted.

This determine whether the upper or lower byte is to be

read. If the instruction specifies a word or long word

operation both data strobes are asserted thus reading

both bytes simultaneously. In long word transfer two

successive memory read operations are done.

The sequence of actions involved in a memory read

operation is now described . The processor which acts

as the bus master generates the following signals:

1. Set R/W to read;

2. Place function code on FC0-FC2;

3. Place address on A1-A3:

4. Assert address strobe;

5. Assert upper and lower data strobes

accordingly.

155

so SI S2 S3 SA S5 S6 S7 SO

CLK

\

F I G . A.2 PROCESSOR READ T I M I N G

156

A __
ADDRESS

AS

DS

R/W

FCO-FC2

DTACK

A/
DATA

The memory or peripheral actions are as follows:

1. Decode address;

2. Place data on data bus;

3. Assert data transfer acknowledge(D T A C K) .

On recognising the assertion of DTACK the processor

initiates to acquire the data. The data is latched and

the data and address strobes negated. The negation of

the data and address strobes signals the memory or

peripheral to terminate the cycle. In state SO the

address bus is in a high impedance state. Lines FC0-FC2

generate the appropriate code according to the address

space that is going to be accessed. The R/W line is set

high indicating a read operation. In state SI the

address bus outputs a valid address.

In state S2, the address strobe(AS) and the

appropriate data strobes are asserted. The memory or

peripheral device is selected in this state. The device

places data on the data bus and at the same time assert

DTACK. If DTACK is not asserted before the set up time

at the end of state S4, the wait state is subsituted

for states S5 and S6.

The address and data strobes are negated at the end

of state S7- The memory or peripheral device is

deselected. The address bus, R/W and function code

lines are held valid through state S7 to ensure proper

operation.

157

Write cycle

The sequence of actions for a write cycle is

similar in some respect to that of the read cycle.

However there are a few disimilarities as described

below. The R/W line is set low to indicate a write

operation. The R/W line is pulled low in state S2 and

will remain in this state through to the end of state

S 7 . The data strobes are asserted in state S4. The data

that is to be written to memory is placed on the data

bus one state earlier in state S3.

Read Modify Write Cycle

In read modify write cycle, a byte read operation

is followed by a write operation. The difference

between this cycle and a normal read and write cycle is

that the bus is not released after the read operation.

This is done by the processor holding the address

strobe asserted.

Interrupt processing

The m c 68000 can be in either of the following

states: normal, exception or halted. Interrupts, trap

instructions and other exceptional conditions can cause

the m c 68000 to go into exception state. The MC68000

provides seven levels of interrupt priorities. An

unlimited number of interrupt sources can be serviced

within an interrupt priority level. The interrupt

priority levels are numbered from one to seven. Level

seven is the highest priority. The status register

158

so SI S2 S3 S4 S5 S6 S7 SO

 / \ ___/' ~ A _ y ~ \ _ CLK

M " , >

\

\

X
\

ADDRESS

X AS

y \ _________/
X DS

R/W

) < > DATA

FCO - F C2

DTACK

FIG. A . 3 PROCESSOR WRITE TIMING

159

contains a three bi t. mask which indicates the current

priority level. Only interrupts of priority level

higher than the current level are serviced. An

interrupt is made by encoding the required interrupt

priority level on the interrupt lines. On arrival of an

interrupt request, the interrupt is not serviced

immediately but made pending. The interrupt is detected

in between instruction execution. The interrupt request

is ignored if the requested interrupt has the same or

lower priority than the present processor state. A

pending interrupt request which has a higher priority

level will start an exception processing sequence. The

processor responds by saving the status register on the

stack, setting the processor state to supervisor,

setting the trace mode to off and updating the

interrupt priority level to the interrupt level being

serviced. The processor acknowledges the interrupt to

the external device by sending out an interrupt

acknowledge code on the FC0-FC2 lines and the interrupt

level being processed on A1,A2,A3 lines. The external

device must respond by asserting DTACK or VPA. If ÜTÂCK

is asserted, the external device must also supply the

interrupt vector on the data bus. If VPA is asserted,

the vector is generated Internally by the processor. If

the bus error line is asserted, 'the processor will

assume that a spurious interrupt has occur. The

processor jumps to the location defined by the

spurious interrupt vector for error processing.

160

