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SUMMARY

It is thought that fast low cost computers can be 

built by employing large numbers of cheap 

microprocessors working together in a system. However 

increasing the number of microprocessors in a parallel 

computer system may not produce a linear increase in 

performance for general purpose programming. The 

problems seem to lie in the communication between 

processors and the method of exploiting parallelism.

A multiprocessor system was constructed using six 

m c 68000 microprocessors. The problems of communication 

and exploiting parallelism were tackled in the design

of the multiprocessor system.

The component processors in a multiprocessor system 

communicate with each other through a communication

channel. It is essential that the communication

hardware has a high bandwidth. A fast communication

hardware was implemented based on a two port shared

memory.

One method of extracting parallelism in a computing

problem is by using divide and conquer. A software

system was developed that enables the multiprocessor to 

exploit parallelism derived by the divide and conquer 

method. A software kernel is employed to manage the 

scheduling of parallel tasks to processors and the 

communication between processors. The mode of 

computation is based on the demand driven model.
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CHAPTER 1 INTRODUCTION



1.1 Introduction

Computers are used as tools in some applications

and as components of systems in other applications. In 

some critical applications high speed is of 

considerable importance. It is thought that employing 

more than one processor working in parallel to each 

other in a computer system will increase the processing 

speed.

The component processors in a parallel computer

system can be off the shelf microprocessors (8) or 

specially made. The simplest form of parallel computer 

system consists of a collection of microcomputers 

linked to each other by means of a communication path. 

The communication path could either be a shared memory

or parallel or serial data link. Shared memory 

architectures are classified as tightly coupled and

data link architectures as loosely coupled. In a 

multiprocessor system the individual processors are 

themselves complete computer systems, possibly having

an ample amount of memory and some input/output

capabilities. The notion of parallel processing is to

have several processors cooperating towards the 

solution of a common problem. The vehicle through which 

the processors are able to cooperate with one another 

is provided by the interprocessor communication. 

Typical of this type of parallel computer or

multiprocessor system is that there is no centralised 

control.



At the other end of the scale, a highly synchronous 

form of parallel computer replicates only the 

arithmetic unit but not the control unit.AHigh degree 

of parallelism is achieved when the same operation is 

to be performed on a multitude of data elements.

However if the number of processing units available is 

less than the number of the data elements part of the 

processing has to be done serially. The advantage of 

synchronous control is simpler communication as there 

is little overhead involved in setting up.

With the above examples of parallel computers, one 

thing that they share is the Von Neumann model with 

regard to their programmability. Some circles within 

the computing community believe that this restricts the 

efficiency of parallel computers. New computer 

architectures based on data flow, functional and

reduction models should be capable of exploiting 

parallel processing to the fullest.

Generally the approaches to research in parallel 

architectures are to concentrate on off the shelf

technology because of low cost or to use specialised 

hardware in order fully to characterise the computing 

models. The line of approach adopted in this thesis is 

to find new methods of exploiting parallelism in a 

multiprocessor system utilising an ensemble of 

microprocessors. The factors that are of interest are 

the method of interprocessor interface and the software 

organisation. Both factors will determine the



performance of the system. With interprocessor 

communication the topology of processor to processor 

communication based on a system of graphs needs 

investigation. With software organisation, a suitable 

computing model and also the method of exploiting 

parallelism needs choosing.

1.2 Approaches to parallelism

The sequential execution of one instruction at a
(Xtime and the updating ofAstate dependent data structure 

is the basis for the uniprocessor. The imperative 

programming languages such as Fortran, Pascal etc.

closely emulate this scheme. This will make these

languages unsuitable for programming multiprocessors. 

Functional languages such as pure Lisp, do not depend 

on state dependent variables and there is the 

possibility for expressing parallel evaluation 

implicitly. However the limitations of imperative 

languages do not exclude them from being the basis for 

some concurrent languages and the cleanness of

functional languages does not make them into a 

universal multiprocessor programming language. There 

are reasons for this being the case. The use of 

microprocessors as component processors in the 

multiprocessor system is the main reason. Another

reason is the nature of the applications for these



s ystems.

In real time applications, a suitable model can be 

built by mappping the processes into individual 

processors. It is sufficient to consider that all 

processors are running their own programs or task. To 

supervise an orderly interaction between tasks, new 

constructs are introduced. This is the basis for some 

concurrent languages such as Concurrent Pascal (45), 

Ada (54) and Occam (25). The advantage of this approach 

is that very little overhead is needed apart from that 

required for establishing communication. The use of 

functional languages will extend the capability of 

multiprocessors to general purpose applications. The 

disadvantage is the hardware based on off the shelf 

microprocessor is not capable of emulating the 

functional model directly. An extra level of software 

is required to interpret the functional model.

1.2.1 Multimicroprocessor system

Programming multiprocessors based on interacting 

sequential processes is the first approach mentioned in 

the last section. Originally this method was developed 

for operating system and real time system programming. 

Separating the various functions in an operating system 

into individual processes that coexist in time results 

in a more efficient and easily maintainable program. 

The virtual parallel processes are simulated by time 

multiplexing the physical processor.



The availability of cheap microprocessors tempts 

many system designers to swap the virtual processors 

for real processors. For existing applications this

transition provides an acceptable gain in speed

performance although with more hardware complexity.

1.2.2 Concurrent language concept

The main issues which a concurrent language

highlights are the concept of task and communication. 

The communication can occur through a common area

shared by the tasks or by the passing of messages

through a channel from one task to another. For

communication to be effective there are certain

conditions that have to be imposed.

At) early concurrent language such as Concurrent Pascal 

provides shared memory oriented communication. This is 

due to the multitasking type of applications on

uniprocessors. The techniques developed for this

application can be applied wholesale to a shared memory 

architecture.

With shared memory type of communications, the most 

important aspect that needs to be tackled is

guaranteeing a determinate access to the shared

structures. Two methods which have gained wide

acceptance are based on semaphore (44) and monitors

(4 5 ).



1.2.3 Semaphore

A semaphore S is an integer variable which is 

common to all the processes involved. Initially S is 

assigned some value. Associated with this semaphore is 

a queue which holds the names of the processes. Two 

operations only are allowed on the semaphore. They are 

Wait(S) and Signal(S), abbreviated to P(S) and V(S) 

respectively by Dijkstra. The value S, is decremented 

when a process executes a Wait(S). If the value of S is 

negative the process is blocked from execution. This is 

done by putting the process on the queue. If the value 

of S is non-negative, the process is allowed to 

continue without delay. A process executes Signal(S). 

when it wants to release control of the shared data 

structure. The operation Signal(S) increments S. If the 

value of S is negative, the process at the head of the 

queue is scheduled for execution. A simple case is a 

binary semaphore, which can only assume binary values 

and deal with two processes. A queue is not needed as

the delay operations can be performed by a simple busy

loop.

1.2.4 Monitor

The monitor provides a higher level of abstraction 

than the semaphore. This allows operations on a shared 

data to be more structured. The monitor defines a set

of shared data structures and a collection of

procedures that can perform operations on this data.



The procedures inside the monitor are accessible to all 

the processes. The processes are not allowed to operate 

on the shared variables directly but can only do so 

through the monitor procedures. The executions of 

monitor procedures are mutually exclusive. The process 

that is executing a monitor procedure has exclusive 

control. Other processes can only access the procedure 

after the first process has released control. A process 

can give up a monitor procedure in two ways. First, by 

terminating the execution of the procedure. The second 

method is by performing two complementary operations on 

a conditional variable, Cond. The operations are 

Delay(Cond) and Conti n u e (C o n d ). When a Delay(Cond) 

inside a monitor procedure is executed by another 

process, a process that is currently held on a queue is 

retrieved and its execution resumed.

1.2.5 Message based communication

In message based communication a channel is defined 

over which communication can takes place. A writer 

sends information through a channel. A reader receives 

information from a channel. Provided both the writer 

and reader specify the same channel, communication 

between the two is said to be established. Again 

synchronisation is necessary between the writer and 

reader. A concept called rendezvous is used in message 

based communication for this purpose. Transfer of 

information over the channel can only occur when both



the writer and the reader meet inside the channel. If 

either of them arrives earlier than the other, it must 

wait for the other to arrive. In extended rendezvous 

both the writer and reader maintain synchronisation for 

an extended period before departing. Communication 

Sequential Process(CSP) (24) describes a formalism for 

message based communication.

Incorporating the notion of message based 

communication in a high level language is easy. This 

can be done using two system procedures - 

S E N D (c h ,data) and R E C E I V E (c h ,data)

where ch is the channel number and data the value 

send or received.

Ada and Occam are two languages that are based on 

message passing.

Physically a hardware link between two processors 

can represent the channel. Therefore Ada and Occam are 

the ideal languages to program loosely coupled 

multiprocessors. However shared memory multiprocessors 

can also use message passing communication.

1.2.6 Designing parallel programs

The parallel programming constructs described in 

the previous sections do not determine the method of 

designing parallel programs. Structured programming 

techniques have been developed for sequential

languages. A similar technique should be applicable to 

concurrent programs. In structured programming the



program is decompose into smaller procedures. In a 

sequential program there is only a single thread of 

control. In concurrent programming the notion of 

decomposing the program into procedures or processes is 

still valid but the thread of control is capable of 

replicating (17)(19). The processes that reside on 

parallel threads are capable of being executed on 

parallel processors. The parallel processes may not be 

totally independent of each other. This is where 

interprocessor communication has to take place.

1.3 Array and vector processors

Array and vector processors are based on 

synchronous architectures. Using a typical sequential 

language like Fortran, there are certain aspects of 

parallelism that can be exploited. However this 

potential is limited to some areas of application such 

as numerical computing. In numerical computation, a lot 

of array and matrix manipulation is involved. If the 

elements of an array or matrix are independent of each 

other, simultaneous operations on all the data elements 

are possible. In normal sequential programming loops 

are used to work on the data elements. Parallel 

evaluation of the data elements has the effect of 

unfolding the loops.

Programs written in ordinary Fortran are

automatically translated by compilers to produce code
iJiefor A parallel machine. To make the translation task



easier, special Fortran style languages are used. 

Examples of such languages are CFT (48) for the Cray-1 

and Ivtran (43) for the Illiac IV. Special constructs 

are introduced, for example the parallel assignment of

data elements in Actus (42).

Array and vector architectures to date are the most 

successful parallel architectures. There are a number 

of commercial machines in this class, the so called 

supercomputers. Two examples of array and vector 

computers were mentioned in the previous paragraph, the

Cray-1 and the Illiac IV (46). Further examples are GDC

Star-100 (47) and ICL DAP (49).

1.4 Non Von Neumann architectures

It was found that parallelism cannot be exploited 

efficiently on conventional architecture (6). Various 

machine architectures and computing models have been 

proposed as alternatives to the conventional Von 

Neumann machine. The intrinsic characteristic of these 

architectures is that they should be capable of 

expressing parallelism naturally.

1.4.1 Data flow architectures

A data flow program is a system of graphs where the 

nodes represent evaluation and the edge or arcs 

represent the carriers for the arguments. A simple data

10



flow graph is shown in fig(l.l). The node or actor has 

two inputs and one output. An actor is said to be

fireable if both inputs are valid and the output is 

empty. The relationship between the inputs and the 

output is dependent on the function of the actor.

Actors that can only do binary operations are not 

sufficient to realise a complete computing model. Unary 

operations are supported by actors having one input and 

one output. To support conditionals, two type of actors 

are required, switch and merge. A switch actor has two 

inputs and two outputs. One of the inputs accepts 

predicate values. A data from the other input is

directed to either output depending on the condition of 

the predicate input. A merge actor has three inputs and 

one output. One of the inputs receives the same

predicate as the switch actor. The data token at either 

of the remaining inputs is directed to the output 

depending on the predicate input.

On the language side, there are special languages 

developed which would compile directly into a system of 

data flow graphs. Two such languages are VAL (38)(39) 

and SISAL (40). They are different from the normal 

imperative languages. Basically only single assignment 

is allowed.

The data flow has created a possibility of a 

computer without a program counter. The actors can be 

realised directly in hardware which could replace the 

basic logic building blocks. What will result is a

11
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piece of computer program totally realised by an 

Interconnection of hardware. Although this will 

restrict programming In the normal sense. It can offer

true high speed performance for some applications.
ed

Albeit this has not galnXwlde acceptability apart from 

a device manufactured by NEC Electronic Incorporation 

(50). The device designated uPD728l is a VLSI 

Implementation of the data flow logics.

The present research trend is to develop a data 

flow architecture as a general purpose machine. The 

approach is to emulate the data flow machine using a 

high speed bit slice microprocessor. The actors are 

represented in memory as activity templates. The 

activity templates are grouped together in the activity 

store. A unique address is required for referencing a 

template.

A basic execution mechanism for a data flow 

processor due to Dennis (16)(27) is shown in fig (1.2). 

The data flow program is held as a system of activity 

templates in the activity store. The instruction queue 

contains the addresses of fireable activity templates. 

The fetch function retrieves an instruction from the 

queue. The instruction will specify an address of an 

activity template. This activity template is fetched 

from the activity store and made into an operation 

packet. The operation unit will execute the instruction 

to produce a result packet. The update unit will pass 

the result to the destination templates. If this result

13



causes the destination to be fireable, the address of 

the destination template will be placed on the queue.

A data flow multiprocessor consists of a collection 

of data flow processing elements. The combination

of all the activity store will be asigned to a single 

address space. A communication network is used to

transmit results to non-local activity templates. This 

network also works as a router by routing the packets

to their appropriate destinations.

The Manchester Dataflow (20) follows the same 

principles of the dataflow machine of Dennis. However 

the Manchester dataflow introduces token labelling as a 

means of supporting reentrant code structures.

1.Ü.2 Reduction computers

Parallelism is available in a functional language 

at no extra cost. Consider a function which has several 

arguments and the arguments themselves are function 

calls. Before the values for the arguments can be used, 

the arguments have to be evaluated. If there are more 

than one argument, argument evaluations can be done in 

parallel. The process of reducing the arguments to 

useable values is called reduction. Reduction can 

either be string or graph reduction. In string 

reduction the process is done by redrawing a new 

instruction stream for each reduction. In graph 

reduction, the graph representing the computation is 

modified for each reduction.

lU



The SKIM reduction machine (13) at Cambridge, uses 

a combinary logic or combinators to represent programs. 

Turner (10) originally developed the scheme of using 

combinators in applicative programming. The idea of

combinators is to remove bound variables in applicative

programs. The internal representation of the program is 

by cells of two elements.

A combinator system can be built typically using 

five symbols S,K,I,B,C which represent functions with 

reduction rules satisfying - 

K xy = X

S fgx = fx ( gx )

I X = X

B fgx = f ( gx )

C fgx = fxg

Fig 1.3a shows a graph representing an expression 

(x+l)*(x-l) where x=7. The textual form of the same

graph is S(B times(C plus l))(C minus 1)7. Figures 1.3a 

to 1.3e show the steps in reducing the program graph 

for the above expression. It can be seen that after the 

S reduction there is a branching in the graph. There is 

a possibility of parallel reduction from this point 

onwards. What the graph represents here is that the two 

sub-expressions, (x+1) and (x-1) can be evaluated in 

parallel. There still is a problem in recognising when 

this can be done safely. For this reason many of these 

systems, including SKIM, ignore parallelism for the 

security of normal order reduction.

15
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The ALICE machine of Imperial College (1) also uses 

graph reduction. However it differs from the SKIM 

machine in that it does not use combinators. 

Furthermore the graph is represented by a system of 

packets. A packet consists of three primary and 

secondary fields. The primary fields are identifier, 

function and arguments list. The secondary fields are 

status, reference count and signal list. The execution 

node information is contained in the primary fields. 

The identifier signifies a unique address for the 

packet. The function field denotes the task of the 

node. The arguments list contains the references and 

values which form the input for the task. The secondary 

fields hold the necessary information for the control 

mechanism essential for execution. The status denotes 

the state of the task which can be active or suspended. 

The reference count is used in the garbage collection 

process. The signal list contains the information on 

the destination for the result of the task.

The ALICE machine exemplifies a typical demand 

driven computation. A need for a computation causes a 

demand packet to be created. This generates the node 

packet mentioned in the previous paragraph. The result 

is returned by the control packet.

In string reduction, programs are represented by a 

system of nested delimited strings (9)(23). The string 

is made up of characters from two alphabets. The first 

alphabet defines the character set for the delimiters.

18



The second alphabet defines the character set for the 

data.

A simple program fragment is - 

( + al a2 ) ...(si)

The * * determines the operations and, al and a2 can be

nested substrings. The program fragment will then be -

( opl ( op2 bl b2 ) ( op3 cl c2 )) (s2)

The idea of string reduction is to take a string of
it

the form (s2) and replace^with a string of the form

(si) but with al and a2 having simple values. Every

time a reduction process is performed, a string is 

produced based on the original string. This is unlike

graph reduction where the graph is redrawn by modifying 

the original structure.

A string reduction machine mode of operation is as

follows. A string of the form (s2) is received at a

processor. The string is scanned from left to right.

Since there are nested strings present, the operation 

on the original string is delayed. Instead two more 

strings are produced which correspond to the nested 

substrings of the original. The evaluation of the 

smaller strings produces results that replace the 

nested substring with real values. The original string 

can then be evaluated and a final result produced.

1.6 Generating parallelism

In the multi microprocessor system of section 

1.2.1, there is no debate whether the algorithm used

19



generates enough parallelism or not. In the context of 

real time application, the network of multiprocessors 

attempts to model the problem. In the vector and array 

processors, the unlooping of iteration generates the

parallelism. In the non Von Neumann machine, although 

the expression of parallelism is natural the problem to 

be solved may not offer any parallelism. Unless the 

architecture is modelled directly by hardware, the

availability of parallelism by multiple evaluation of 

argument does not justify the cost of communication and 

setting up the parallel processes. What is required is 

a system that can generate an exponential growth of 

parallelism. The situation is that parallelism can only

be extracted and exploited from a problem that has the

parallelism potential. This statement in a way reduces 

the applicability of using parallelism to a restricted 

set of problems only. Apart from numerical 

applications, the other area where speed is needed is 

in artificial intelligence systems. Array and vector 

processors are not suitable in this application because 

the nature of the problem does not involve numerical 

computation to a great e x tent. It is more suitable to 

use the reduction architecture for this type of 

application.

The divide and conquer method (14) solves a problem 

by continually subdividing it until the subproblem is 

small enough for direct evaluation. The subdivision 

produces a process tree. The results produced from the

20



leaf nodes are combined to form a partial result (if 

the parent node is an intermediate node) or the final 

result (if the parent node is a root node). A root node 

or intermediate node that is waiting for results from 

its subnodes is said to be in a suspended state.

Normally the type of the subproblem is the same as 

the original problem. The divide and conquer algorithm 

can be expressed more naturally as a recursive function 

or procedure. A control expression for the divide and 

conquer can be defined.

Program Divide-and-Conquer

Const n — Lnicycr .

Var A : array[l..n] of integer ; *

S : integer ;

Function DandC (v,w : integer) : integer ;

Var m,p,q ;

Begin

If Small(p.q) then DandC := G(p,q)

Else Begin

m := Divide(p,q) ;

DandC := Combine(D a n d C (p ,m ) ,DandC(m+1,q )) 

End

End ;

Begin

S := D a n d C (1,n ) ;

End

21



Small is a boolean function which returns true if the 

problem cannot be subdivided further and returns false 

otherwise. Divide is a function which divides the

problem. The Combine function combines the results

produced by the subproblems.

The divide and conquer can be applied to a number 

of problems. The popular problem is sorting. NP 

complete problems (37) potentially can produce an 

enormous process tree. This makes NP complete problems 

solvable using divide and conquer. The Fast Fourier 

Transform algorithm (35) is an example of this class.

1.6 Interprocessor connection

Interprocessor communication is a very important 

aspect of multiprocessor implementation. In a system 

that employs hundreds or even thousands of

microprocessors, the potential increase in speed can 

easily be upset by inefficient communication. With 

shared memory or shared bus architectures the

performance begins to deterioriate with more than a few 

processors. This is due to the limited bandwidth of

memory and bus that can be offered with present

technology.

The present approach to interprocessor

communication is to employ high speed data links 

between processors (53). There is a dedicated hardware

interface for each link. The data link can be serial or

parallel. The choice between the two is governed by the
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ond
physical constraints^whether the reduced transfer rate 

of a serial link is acceptable. Direct memory access 

control can be used for a very high speed communication 

but with added hardware complexity.

In principal a processor can communicate to any 

other processor in the system irrespective of whether 

the communication must be done via an intermediate 

processor, but this kind of communication must be 

restricted. The use of intermediate processors will tie 

up valuable processing resourses and will be very 

costly.

Having a fully interconnected path between all the 

processors is feasible for a system with relatively few 

number of processors. In a large system an 

interconnection strategy must be found that would be 

economical on the use of processors. One aspect that 

needs to be avoided is to resort to the use of 

intermediate processors for most communication.

Generally the nature of the problem determines the 

way parallelism can be exploited. To make the most 

efficient use of the parallelism, the hardware must be 

able readily to exploit it. For example the array and 

vector computers efficiently utilise the parallelism by 

being capable of modelling the execution. There are 

various topologies proposed, each having its own merits 

and suitability to the nature of problems that they can 

solve.

A binary tree of processors is capable of modelling

23



F IG . 1,4 PETERSEN'S GRAPH

/

\ \
V

F IG .  1.5 PETERSEN'S GRAPH AS A TREE

24



the process trees of divide and conquer evaluation 

(55). The disadvantage is that a vast amount of 

processors are required once the depth of the tree 

exceeds a certain level. Processors will be idle during 

the suspended state of a node. This will amount to a 

very high wastage of valuable processing capabilities. 

Redeploying the system to another problem where

subdivision is n ways is difficult as it entails

hardware modifications.

An interprocessor interconnection scheme is

proposed by Bowyer et al (7) based on a system of 

graphs. The graph chosen for the purpose is the 

P etersen’s graph (fig. 1.4) which has a valency of 3 

and girth 5* The symmetry of the Petersen’s graph can 

be shown clearly in the redrawn diagram (fig. 1.5). The 

central node, chosen arbitrarily, can be seen to be the 

root node of three binary trees. The interesting 

properties of the Petersen graph is it has the maximum 

depth achievable for a graph having ten nodes. Assuming 

that a node in the graph represents a processor, a 

divide and conquer division will be done the most 

number of times before reaching the original root 

processor. The root processor would be idle and with 

the help of some software the root processor can be 

redeployed.

A trivalent graph of maximal girth can be employed 

for systems of different number of nodes. The criterion 

of maximum depth should still be upheld. For practical
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reasons graphs with very high valency may not be easily 

implemented as a processor interconnection. A graph of 

valency three might be an acceptable number. To achieve 

a graph of certain girth a minimum number of nodes must 

be employed (30). For a graph of valency three the 

relationship between girth and number of nodes m is 

m = 2(l+2+2-2+..2"(r-l)) (1)

where r = g/2 (2)

For example a girth 6 graph requires 14 nodes and a

girth 8 graph requires 30 nodes. An Increase of 2 for 

the girth doubles the number of nodes required. It may

not be economical to built larger girth machine because

of the number of nodes required. It is important for a

particular girth the smallest graph should be employed.

The task, of finding a minimal sized graph for a

particular girth is hard, for example a trivalent graph 

of girth 9 with 58 nodes (36).
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1.7 Objectives

The Interconnection strategy of Bowyer et. a l . 

forms the starting point for this research. There are

several ways in which a network of multiprocessors 

based on the proposed interconnection strategy can be 

driven. The reduction machine model was chosen 

because it offers the possibility of making the 

multiprocessor general purpose.

There are three main areas of research activities 

involved in this thesis. Below are the descriptions of 

each activity.

(1), The simulation studies of the behaviour of the

reduction machine on the interprocessor network. A 

simulator model was developed. The basic structure of 

the simulator describes the interconnection network.

The reduction machine model is built on top of the

basic simulator. The techniques experimentally 

simulated are data flow execution, sparse and regular 

tree evaluations.

(ii). The next activity was the construction of the 

multiprocessor. The component processors employed were 

MC68000 based microcomputers each with 256K memory. 

These were acquired from an external source. However 

the interprocessor interface hardware was designed and 

built by the author. An important requirement for the 

interface is that it should have a high data transfer 

rate. The interface chosen was a shared memory which 

resides between two adjacent processors on the network.
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The shared memory is 2K bytes wide and allows 

bidirectional communication. In order to aid 

handshaking, interrupt hardware is provided. A complete 

set of shared memory interfaces was built enabling the

construction of a six node trivalent graph network.

(iii). The final activity is the implementation of a run 

time kernel and demand-pull schedulling for an abstract 

reduction machine. The run time kernel is responsible 

for task management and the organisation of

communication between processors. A system of data 

structures records the information of every task 

created. The information is kept valid until the task 

is terminated. A task creates parallel subtasks by 

issuing intructions that are placed on the instruction 

queue. The instruction can be consumed locally by the

host processor or it could migrate onto one of the 

neighbouring processors. A processor that requires 

tasks does so by issuing a demand to one of its 

neigbours. This is done by setting a flag in the shared 

memory. In this way the migrating of tasks across the 

network is done by the process of pulling as opposed to 

the tasks being pushed to the idle processors.
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CHAPTER 2 SIMULATION



2.1 Need for simulation

The behaviour of the interprocessor network can be 

studied using a simulator (7) (11). The information that 

can be obtained from the exercise are -

1. The speed at which all the processors can be 

utilised;

2. The average processor utilisation during the 

computation.

The exercise was done on several parallel evaluation 

strategies. They are the following -

1. Data flow;

2. Demand driven for sparse tree;

3. Demand driven for regular tree.

From the simulation important design decisions can then 

be made. The objective of the simulation is to study 

the load distribution characteristic of the network.

2.2 Model

The simulator can be programmed using a sequential 

or a concurrent language. The following sections 

describe the model required for both sequential and 

concurrent programs.

2.2.1 Parallel Model

Ideally a concurrent language like concurrent 

Pascal or Ada should be used for programming the 

simulator. The process or task construct of these 

languages readily describes the n o d e ’s activity.
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Logical characteristics of the interprocessor 

communication can be represented by the communication 

construct. However this is a very simplistic 

communication model, because the physical behaviour of 

the interface hardware cannot be modelled accurately. 

The behaviour of the interface can be modelled more 

accurately by an intermediate process linking the two 

processes representing the nodes.

The basic structure of the simulator consists of a 

system of processes representing the nodes and a system 

of processes representing the communication Interface. 

In a six nodes system there will be six processes 

representing the nodes and nine processes representing 

the interface. In the implementation of the run time 

system for a concurrent language the effect of parallel 

process is produced by interleaving the execution. The

scheduling of the process is controlled by a clock. If

the rate of this clock is sufficiently fast a true 

parallelism effect can be produced.

The simulation is based on costs that represent the 

time for computation and the time for communication. 

Both the computation cost and communication cost are 

dependent on the size of the problem to be executed. 

However on top of these costs iS the cost incurred by 

the intrinsic characteristic of the network. It is most 

likely that this cost is constant. For the purpose of

the simulation exercise the costs are represented by

numbers whose initial values can be varied. Experiments
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were done by assigning various values to the cost and

observing the load balancing, distribution and

processor utilisation effect on the network.

The cost is simulated by a delay function executed 

by the processes. The delay function argument is a

number. The value of this argument determines the

length of the delay.

The computation cost is wholly dependent on the 

size of the problem. However the cost for communication 

is not wholly dependent on the size of the imformation 

going through it. In the real network the communication 

is asynchronous. With asynchronous communication the 

response can be affected by a purely random chance. To 

illustrate this effect let us observe how rendezvous 

takes place. A sender for the sake of argument, sends 

out a request for a transfer. The sender will wait an 

indeterminate length of time for a response from the 

receiver. The time necessary for both nodes to 

rendezvous depends on the states the nodes are in. The 

time taken for a node to get out of its present state 

in order to rendezvous is not constant. One method of 

simulating this random event is to incorporate a random 

number generator in the delay function. The overall 

delay effect of the delay function will be dependent on 

the input argument and the random number produced 

internally.
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2.2.2 Sequential Model

It is possible to describe the simulator using

sequential language. However the accuracy of the model 

will be less than that of a model described by a

concurrent language. In the concurrent run time system

the interleaving is done cxX, Q fioe g TaiD level

of the host processor. Using a sequential language the 

lowest level of interleaving possible is at statement 

level. However this can be messy to implememt. A 

possible description of n processes running in parallel 

but without communication is as below -

Repeat

processl

process2

processn 

Until ..

The delaying effect can be realised as follows. The

argument to the process is initially set to some value. 

On entering the process this number is decremented. If 

this number is non zero no further action is done. The 

parallelism effect is preserved because the rate the

processes are interleaved is equivalent to interleaving 

at instruction level. The processes from 1 to n are

identical to each other. When there is more than one
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class of identical processes it may not be clear where 

to put the other set of processes. For example the 

processes can be interleaved as -

processla

processlb

process2a

process2b

The alternative is to group the processes

processla

process2a

processlb

process2b

The ’b ’ sets of processes may be dependent on the ’ a ’ 

sets of processes. For example if process ’b ’ is the 

communication process, it will only be invoked when 

process ’a* wishes to use the communication facilities.

The logical interconnection can be set up in a 

table. The nodes can be referred to by numbers, for a 

six nodes system from one to six. Next a table of six
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rows and six column is defined. In the entry for a 

corresponding row and column is a value of 0,1,2 and 3. 

A value zero signifies that there is no connection 

between the corresponding row and column node. The 

values 1,2 and 3 signify the port used to established 

the connection.

2.2.3 Form adopted

At the time the simulation exercise was carried out 

there wols no concurrent programming system available 

locally. The objective of the exercise is not so much 

at getting a precise result as obtaining a general feel 

for how the network would behave for different parallel 

evaluation strategies. Results obtained from an 

approximate description by a sequential language should 

be adequate and hence this form was chosen. The 

following sections describe the various experiments 

using the simulator. For the different parallel 

evaluator appropriate systems are built on top of the 

basic simulator.

2.3 Data Flow machine

A data flow machine of section 1.4.1 can be built on 

top of the basic simulator of the previous section. 

Recapitulating, the data flow machine mechanisms are 

the fetch unit, arithmetic unit and update unit. In 

addition there are the data structures corresponding to 

the instruction queue and activity store. According to
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the discussion in the previous section, the mechanism 

must be treated as processes that represent all the 

activities on a node. A fetching process involves 

fetching instructions from the local instruction queue 

or from one of the neighbouring n o d e s ’ queues. Fetching 

instructions from neighbours is a communication 

process. The activity store is treated as a unified 

global memory space. There is no hardware global 

memory. Each node is allocated a certain range in the 

virtual memory space. If a memory reference falls on 

non local allocated space, it assumes that the system 

automatically issues the request through the 

communication interface. For the purpose of simulation, 

the activity store is a global array. The distinction 

between a local access and non local access is that it 

will take longer to serve a non local access. This can 

be simulated easily in the update process.

The activity store is an array of activity 

templates or records. The fields of this record as 

already described in the last chapter are the 

instruction, data receptors a and b, and destination. 

The instruction queues contain pointers to active 

templates.

The simulator should be able to simulate networks 

of various nodes without extensive modification of the 

program. Since the activities of the various processes 

in the simulator are identical for all the nodes, the 

program can be table driven. Variables are stored in an
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array. When processing a particular node, the node 

identifier is used as the index to refer to the 

appropriate variable. The only data that needs to be 

changed when simulating different sized networks is the 

node size and the interconnection table.

In the simulator there is a subsidiary part of the 

program which generates a binary tree of activity 

templates. The tree generator accepts an argument which 

specifies the depth of the tree. The le a v e s ’ activity 

templates by definition are active and fireable. The 

addresses of these templates are places on the 

instruction queue of a node chosen as the central site. 

An alternative to initial loading a central node is to 

evenly load all the nodes.

The operation of the simulator is as follows. The 

fetch function attempts to get instructions from the 

local queue. If there are no instructions available 

locally, the fetch process will try to steal an 

instruction from the neighbours. If an instruction is 

available from one of the neighbours, no further 

attempt will be made to obtain instructions from the 

other two neighbours. After the fetch processes for all 

the nodes have been executed, the next step is the 

computation process. The result from the computation is 

use to update the destination template. If the 

destination template is fireable, the address of the 

template is placed in its host node. The destination 

node is identified from the address of the template.
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The time dependent characteristics of the various 

mechanisms of a data flow machine were ignored. The

combined operations of fetch, computation and update 

are performed in every simulation cycle. Effectively 

the simulator developed is a synchronous parallel data 

flow machine.

2.3.1 Results and discussion

Some measurements were performed on a 14 node 

network. A binary tree of activity templates of

specific size is built in the activity store. The

addresses of activity templates at leaf level were 

distributed evenly onto the queues of all nodes. The

processor utilisation against time is shown in fig 2.1 

and fig 2.2. Looking at the first graph, all the nodes 

are active for the first three cycles. The number of 

active nodes began to drop gradually to two active 

nodes. The computation progressed for a further four 

cycles before decreasing to one and terminating. The

general shape of the second graph is similar to the

first, but the initial maximum utilisation of nodes

remains longer. This indicates there are large number 

of active activity templates available locally. As the 

computation progress towards the root, the number of 

activity templates is halved with every level. 

Theoretically, towards the end of computation the 

number of active nodes should reduced by half for every 

machine cycle. From the second graph, the tail off is
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at a rate of one node for every machine cycle. The 

reason for this is that the instructions for the 

remaining active activity templates are not evenly 

distributed. If the instruction templates are localised 

on a few nodes, the rate at which the idle nodes can 

grab the instructions are low. This is because the busy 

nodes can service the request for instructions at 

predefine point of the simulator cycle.

Below are results of average processor utilisation 

against activity templates size. Average utilisation is 

defined as the number of activity templates divided by 

the number of machine cycles.

object size 127 512

average utilisation 7.06 11.38

A simple conclusion that can be drawn from this 

experiment is:

When the object size is significantly larger than 

the number of nodes the average utilisation is 

high.

2.4 Demand driven machine

In a way the structure of a demand driven machine 

shares some of the mechanism of data driven machine. 

However the generation of the flow graph is done at run 

time. An initial instruction is placed on the 

instruction queue of a central node which is chosen
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arbitrarily. The instruction is fetched by the host 

node. Depending on the size of the problem which the 

instruction represents, the node will attempt to

subdivide this problem. To sustain parallel execution, 

at least two instructions must be produced. The 

instructions generated are placed on the local

instruction queue. The local node has first priority to 

the instruction. After the first instruction on the 

queue has been retrieved, the remaining instruction 

will be available to the neighbouring nodes. In a 

normal divide and conquer evaluation, the problem is 

recursively evaluated until the leaf computations are

reached. When this instant is reached a system of flow 

graph similar to the data flow program tree has been 

built. The computation can be stopped at the point

where the leaf computations are reached. This is when

the results demanded in the computation are the leaf

computations. The computation can be made to proceed 

further by the leaves passing results to their parents. 

The unwinding process continues until results from 

subproblems reach the initial parent problem.

2.4.1 Sparse tree evaluation

Quicksort (31)(33) is a fast array sorting

algorithm and can represent a suitable indicator for 

testing the performance of an architecture. A brief

description of the quicksort algorithm is as follows: 

An item x in the array is picked up at random. The
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array is scanned from the left until an item ai>x is 

found. The array is now scanned from the right until an 

item aj<x is found. The two items are then swapped. The 

scan and swap process is continued until the two scans 

meet. The array is now partitioned with the left part 

having items less than x and the right part having 

items greater than x. The partitioning process is 

repeated on both parts of the array and so on 

recursively. Figure 2.3 is a quicksort program which 

describes the algorithm using recursion and is written 

in Pascal. The program is due to Wirth (32). The two 

statements -

if 1<j then sort(l.j); 

if i<r then sort(i.r) 

determine whether further partitioning is necessary.

program quicksort;

procedure sort (l,r: index);

var i ,j : index; x,w: item;

begin i :=1; j := r ;

X := a[(l+r) div 2]; 

repeat

while a[i].key < x.key do i := i+1; 

while x.key < a [j ].key do j := j-1; 

if i <= j then

begin w := a[i]; a[i] := a [j ]; a[j] := w;

i : ̂  i + 1; j ; j-1

end
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until i > j ;

if 1 < j then sort(l.j);

if i < r then sort(i,r)

end ; 

begin s o r t (1,n ) 

end

figure 2.3

For example if 1<j is false the left part is not 

partioned. However i<r can still be true. Therefore 

only the right part is partitioned. The result is the 

evaluation tree is not regular.

The time taken by each partioning step is

dependent on the size of the array and also a random

probability. The simulation can be described as 

follows :

Starting Q(n) 

after time

[where OC is a random variable a n d ^  Ç (1,n )] 

Splits into

Q(P )
Q ( n —^ -1 ) 

where ̂ g'Cl.n-l) and Q ( l ) = ^ ^

2.4.2 Results and discussion

Experiments were done on quicksort. The results 

presented here are for a 14 nodes machine. Two 

different array size were fed into the simulator.
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Figures 2.4 and 2.5 are the processor utilisation 

graphs for the experiment. Average utilisation is

defined as the total number of executions divided by

the total machine cycles. It can be seen that the

processor utilisation is very low - 2.6. With the

larger problem, the utilisation is only slightly better 

3 .3 . An improvement with a larger size problem is

expected simply because a larger size problem should 

offer a higher degree of parallelism. The results do 

not show that quicksort will work well on the 

architecture. It seems that the generation of tasks is 

not fast enough to sustain parallelism. When two tasks

are created as a result of a partition, the lives of

the two tasks may not be equal. Out of two tasks it is 

expected that four more tasks are created. If this 

occurs at the same time, four nodes can work at the 

same time. However, if the four tasks are created one 

after another, it suffices to have only one node for 

doing the job.

2.5 Regular tree evaluation

A Fibonacci function is defined as

f(n) = f(n-l) + f(n-2) for n > 2 

f ( 0 ) = 1

f C l )  = 1.

This function is capable of creating two invocations of 

itself whenever it is called. The potential concurrency 

is high as the structure generated by the function is a
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regular binary tree.

One structure built into the simulator skeleton is 

a queue that is used to hold the instruction which is 

responsible for creating the function. The argument to 

the function is a number N. The function recursively 

generates two further functions with arguments N-1 and

N-2. The function is suspended while waiting for the

results of the children functions to come back. In

order to be able to reactivateJ-suspended function, a 

descriptor record is set up for every function invoked. 

In the simulation, the parameters that were varied are;

1. N - the function's argument

2. Cn - number of cycles required for

computation.

2.5.1 Results and discussion

Figures 2.6 to 2.8 are the processor utilisation 

during computation against machine cycles for the

Fibonacci's number experiment. The three graphs were 

obtained for different computation times Cn. The graphs 

exhibit a general shape that indicate heavy computation 

occurs during the second quarter of the total machine 

c y c l e s .

The efficiency is defined as- 

e= (total splitting time) + (total computing time)*100 

total machine cycles * number of nodes 

The efficiency tends to increase with higher N.

N=10 Cn=l - e=35%
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N=15 Cn=l - e=55%

N=15 Cn=2 - e=Ü7.3%

For N=15 there is a drop in efficiency with Cn=2. The 

result obtained from the simulation shows that an

efficiency of up to 55% is possible. This is

considerably better than that was obtained for

quicksort. A conclusion that can be derived from the

two simulations is the evaluation tree for the

computation must be regular and the availability of

large numbers of parallel tasks if the architecture is to 

realise its potential parallelism.

2.6 Conclusion

The simulations were done on three methods of 

driving parallel computers. The methods are data flow, 

demand driven evaluation on sparse tree (quicksort) and 

demand driven evaluation on regular tree (Fibonnaci's 

number). The best result was obtained for the data flow 

followed by the F i b o nacci’s number and lastly the 

quicksort. A possible reason why data flow is faster 

compared to demand driven is the evaluation tree is

already set up in the data flow machine prior to the

machine starting up.

For any computer network it is impossible tp 

achieve the idealised efficiency of 100%. The factors 

that reduced efficiency are

1. overhead associated with communication;

2. distribution of tasks onto processors.

46



The distribution of tasks can be affected by the nature 

of the problem and the characteristic of the network 

configuration.

In the experiments the efficiency increases with 

larger problem size. For the problems simulated it can 

be concluded that the tasks distribution is problem 

bound rather than network bound. Since the tasks 

distribution is problem bound, the use of Amore 

complicated interprocessor network would not improve 

the result. The trivalent graph of maximal girth 

network minimised the number of nodes required for a 

given girth, therefore it should be an economical 

system for implementing multiprocessors.
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CHAPTER 3 HARDWARE



3.1 Introduction

Having decided on the abstract architecture, it was 

next desirable to identify a suitable node processor. 

It was considered essential to choose one of the newer 

microprocessors, to allow testing of substantial 

problems. This had to be one which could provide with a. 

basic software environment.

3.2 Choice of processor

The choice of MC68000 microprocessors as node 

processors was made for the following reasons. The 

m c 68000 supports high level languages efficiently due 

to its consistent architecture, large number of 

registers, large addressing range and special high 

level oriented type of instructions. The MC68000 has a 

total of seventeen 32 bits registers in addition to the 

32 bits program counter and 16 bits status register. 

The address bus is 24 bits wide and the data bus is l6 

bits wide. Implementing an operating system is made 

easy by the availability of priviledged instructions, 

memory management and a multi level interrupt and trap 

structure. The MC68000 was designed to support

multiprocessing. Both hardware and software interlocks

are provided for multiprocessor systems. Bus

arbitration logic is provided to handle access 

contention in shared bus or shared memory environments. 

The software interlock is provided by the special 

instruction (TAS - test and set operands).
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It would have been beyond the scope of the project 

if the node microprocessor system had been built from 

scratch. The best choice is to obtain board level 

computers of the type normally supplied to the OEM 

(original equipment manufacturer) market. A system that 

suited this requirement was obtained from the School of 

Electrical Engineering. The system comprises of a four 

card set mounted in a cage. The cards making the set 

are the MC68000 processor, rom card, 256K ram card and 

the input output and front panel display card. The card 

size is double eurocard. Six such systems were employed 

for the multiprocessor system. The cages carrying the 

individual microcomputer system are mounted in an 

instrument rack. To realise the multiprocessor system a 

set of communication hardware was designed and built by 

the author. Subsequent text in this chapter describes 

the design, implementation and testing of the interface 

between processors.

3.3 Choice of communication interface

The communication interface can have a considerable 

effect on the performance of the multiprocessor system. 

A global shared memory, although capable of modelling 

any logical interconnection scheme, is not suitable due 

to the contention problem. A true high speed interface 

can be provided by direct memory access hardware 

controlling parallel data lines. However the pure 

efficiency of a hardware scheme is not the only

49



criterion that has to be considered. The cost 

constraint is a major factor that affects any design

decision. Another factor is the physical constraint. 

Indirectly or directly the physical constraint is
related to the cost. The cost can be kept down if all 

the interface hardware required for each processor can 

be built on one card comprising of three seperate 

interfaces. Each interface links one processor to

another processor.

3.3.1 Programmed control or DMA

The cheapest type of interface can be provided by

serial lines, but serial communication under program

control is too slow. Parallel communication under 

program control is considerably faster and may satisfy 

the speed requirement. Both methods of data transfer

can be made very fast by having direct memory access

control. However the circuitry of a direct memory

access controller is somewhat complex. To implement a 

direct memory access controller using standard TTL 

devices requires an enormous chip count. The circuitry 

can be implemented using a VLSI direct memory access 

controller for MC68000. However this device was not 

available at the time the interface hardware was 

designed. The decision not to pursue a DMA controlled 

interface is partly due to this logistic situation. In 

controlling the interface hardware tliere will be 

intervention by software to some extent: even in DMA
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communication where most of the difficult tasks have 

been tackled by the hardware, the setting up of the 

device is done by the program. It can be assumed that 

under most circumstances the receiving processor is 

always busy at the instant the transmitting processor

initiates a data transfer. In order to set up the DMA

hardware ready for reception the receiving processor 

has to be interrupted from its current processing 

state. If this request cannot be granted instantly the 

transmitting node will be held up momentarily. This

situation does not occur if there is a buffer in

between the transmitting and the receiving node. The 

buffer forms a pipeline. In a way this provides some 

degree of parallelism.

3 .3.2 Buffer memory

Global shared memory was rejected initially 

because of problems with memory contention, but if a 

shared memory is only shared between two processors 

there should not be any not'ceoWe degradation in

effeciency. The worst case memory access time is twice 

the time for a normal access and this occurs when both 

processors are reading or writing to the memory 

simultaneously. The transfer rate possible by this kind 

of shared memory is better than that possible by direct 

parallel communication under program control. In such 

program controlled parallel communication, handshaking 

is required for every word transfered. Handshaking can
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be expensive in processing time as it involves polling 

and setting of a protocol flag. Considerable saving in 

handshake processing can be achieved if handshaking is 

only done for every block of data transferred.

3.3.3 Polling or interrupt

However some form of signalling is needed for 

handshaking at the block level. The MC68000 Test and 

Set instruction can be used to implement semaphore 

logic. This is one solution but it relies on polling. 

The disadvantage of polling is that the polling 

processor is continually accessing the shared memory. 

It will be more efficient if access to the shared 

memory is only for actual data transfer. Interrupts 

seems to be a better solution but at the expense of 

additional interrupt hardware. The MC68000 provides 

seven levels of interrupt: this is enough to implement

the handshake interrupt hierarchy. It is foreseeable 

that the maximum number of interrupts required is two 

levels. One level is required for signalling a request 

and the other level for acknowledgement. The interrupt 

vector can be supplied by the hardware or generated 

automatically in the autovector mode.

3.4 The solution adopted

The dual ported shared memory based on the

discussion and arguments presented above was chosen for 

the interface. At this stage the practicality of
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putting three dual ported memories and the interrupt 

circuitry on one card was still unknown. An attempt was 

made to design the circuit with minimum chip count and, 

by careful layout, all the circuits fitted on one 

double size eurocard wirewrapping board. The normal 

method to reduce chip count in a hardware design is to 

use VLSI chips. Because of the specialised nature of 

the circuitry this is not possible within the 

constraint of the project. The circuit must be built 

entirely using standard TTL device with the exception 

of the memory device.

3.5 Board space and connectors

For a six node system there are nine 

interconnection paths. Logically the shared memory is 

midpoint between two nodes(fig. 3.1). Translating this 

physically, the shared memory resides on a stand alone 

card connected to the two processors by two sets of 

cables. Cables from the processors cannot simply 

emanate from the bus: the signals going to the cables

must be buffered. A card for buffers and cable 

connectors is required in every cage. In all there will 

be fifteen cards needed. The number of cards can be 

reduced to six if the memory card is hosted by one 

processor. The other processor only holds the buffer 

card. In terms of cost, there will be considerable 

savings because the other set of buffers is no longer 

req u i r e d .
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However this creates organisation problems. On

which processors to place the memory cards and on which 

processors to place the buffer cards?. The cards can be 

organised as follows. The memory cards and buffer cards 

are placed on alternate processors. Figure 3-2 shows a 

six node system. This diagram shows that the scheme is 

feasible. To handle any future expansion the card 

arrangement v/lU work for larger node sizes. By means 

of graphical exercises it was discovered that the 

arrangement fits graphs with even girth and with an

even number of nodes. The reason for this is as

follows. To establish an interconnection both types of 

cards are required. It is not difficult to see that if 

the girth length is not divisible by two the remainder 

represents an extra buffer or memory. The arrangement 

will not work for the four node girth 3 graph and 

Petersen's graph of ten nodes with girth 5* This 

limitation should not be a major problem.

3.6 Design considerations

The limit decided earlier was to build a complete 

set of communication interfaces on six boards. Three of

the boards must accommodate three shared memories and

the interrupt controller. The other three boards

accommodate three buffers and the interrupt

controllers. In addition both types of board require 

further associated circuitries which are an address 

decoder and an input port for control purpose. To build
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the first type of board can pose a problem. It may not 

be possible to build all the circuits on one board.

A size of two Kbyte should be ample for the shared

memory. Consequently eleven address lines and sixteen 

data lines are required. Connection between Interface 

boards is by forty way ribbon cable. Each board contain 

three forty way connectors. The connectors occupy some 

board space. This has to be taken into consideration 

when designing the circuits.

In order to produce the design for the two ported

memory and the interrupt hardware it is imperative that

the functions of the MC68000 signals are fully

understood. The information on the MC68000 is obtained 

from two Motorola publications, the MC68000 user's 

manual (58) and the MC68000 data sheet (59). The

description of the MC68000 signals and bus operations

are given in appendix A.

3.7 Two ported shared memory

Viewed from either port the shared memory looks no 

different from ordinary memory. The existence of

another processor hooked on the opposite port should 

not interfere with the operations of the first

processor. The actual RAM device in the memory is a

shared resource. The addresses and data from both

processors cannot be applied simultaneosly on the RAM. 

In this situation one of the processors must be blocked 

from accessing the RAM until the first processor has
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terminated its access cycle. The blocking should be 

done transparently. The MC68000 asynchronous transfer 

mode helps in the design of the shared memory. During a 

blocked access the processor will treat the memory as a 

slow device. The shared memory consists of o. RAM memory 

device and a controller circuitry. The memory 

controller coordinates the requests from the 

processors. The memory controller serves as the

interface between the RAM and the MC68000 signals. It 

is therefore essential for the memory controller to 

interpret the MC68000 bus operations correctly.

Figure 3-3 shows the various components of the 

memory. Control signals from the processors are fed to 

the memory controller. The controller outputs signals

that control the RAM buffers and issues DTACK. The 

controller has to perform arbitration when there is a 

simultaneous request. The operations of the arbiter can 

be quite complex. One condition that must be avoided at 

all cost is the race hazard due to the processors being 

totally asynchronous to each other. When the term

"simultaneous request” is used it is supposed to 

encompass the following:

1. the difference between the time of arrival of 

the first p r o c essor’s request and of the second 

p rocessor’s request is zero;

2. the difference is finite but less than the

length of an access cycle.
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An arbiter hardware takes a finite time to make a 

decision. There will not be any problems with the first 

case. However with the second case, the late arrival of 

the second request can upset the working of the 

arbiter. The problem of race hazard can be partially 

eliminated by adopting synchronous hardware design. In 

synchronous design both requests will be sampled by a 

clock and thus eliminate the second case effect above. 

All the functions of the memory controller can be 

realised using a state machine.

3 .7.1 State machine arbiter

The state machine can be designed using discrete 

logic, ROM or programmable logic array(PLA). However it 

is not feasible with discrete logic as this approach 

uses a large amount of chips. The choice is between PLA 

and ROM based machines. PLA devices are generally more 

expensive than ROM, thus a ROM based machine was 

selected.

The shared memory is selected by decoding its 

address and qualifying it with address strobe(AS). The 

state machine recognises this as a request. Figure 3 .Ü 

shows the state diagram for processing the request. The 

machine cycles through state 0 awaiting a request. When 

a simultaneous request occurs it is logical to assume 

that request 1 has higher priority than request 2. The

state machine has to generate DTACK and varj.ous buffer 

and RAM control signals in response to the request.
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NREQl NREQ2 A B C  NA NB NO ILSELl ILSEL2

LI 0 X 0 0 0  0 0 1  1 1

L2 1 0 0 0 0  0 1 0  1 1

L3 1 1 0 0 0  0 0 0  1 1

LA 0 X 0 0 1  0 0 1  0 1

L5 1 X 0 0 1  O i l  1 1

L6 X 0 0 1 0  0 1 0  1 0

L7 X 1 0 1 0  O i l  1 1

L8 X 0 O i l  1 0 0  1 1

L9 X 0 1 0 0  1 0 0  1 0

LIO X 1 1 0 0  0 0 0  1 1

Lll 0 1 O i l  1 0 1  1 1

L12 1 1 O i l  O i l  1 1

L13 0 X 1 0 1  1 0 1  O 1

LIA 1 X 1 0 1  0 0 0  1 1

Fig. 3.7 State table for arbiter
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DTACK. must be issued before the end of state SA of the 

processor if a wait state is to be avoided. This can be 

achieved by deriving DTACK from the conditional output 

(LSELl or LSEL2). DTACK is held low for as long as 

address request (NREQl or N R E Q 2 ) is asserted. Figure

3.5 shows a wait loop for generating DTACK while 

address request is held asserted. The same signal is 

used for enabling the RAM. To give the second processor 

the same chance as the first processor at getting 

control of the memory, the priority of NREQl and NREQ2 

should be rotated. Figure 3-6 shows the complete state 

diagram and figure 3.7 shows the state assignment table 

for the machine. The state table can be accommodated in 

a 32 by 5 ROM.

The state machine is constructed using a fast 

bipolar rom (TBPI8 0 3 0 ) and a 7ALS175 latch. The PROM 

has a finite lookup time of the order of AOns. The 

state clock is derived from one of the processors clocks 

running at 8 Mhz. The combine propagation delay of the 

state latch and the ROM access time must therefore be 

less than 125 n s . The state machine is synchronised to 

one of the processors bus operation. The bus operation 

of the other processor is totally asynchronous. There 

is a chance of the ROM giving false output when mput '

The result is glitches produced at the ROM 

ou tpu t s . Since the LSELl and LSEL2 are conditional 

outputs they cannot be buffered by the state
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transition. It is therefore neccessary to buffer the 

request inputs. But this inadvertently upset the timing 

in relation to the MC68000. The request will be delayed

by one clock period. This means DTACK cannot be issued 

before the end of state S Ü . The addition of one wait 

state is not disastrous. The more damaging effect is

that DTACK cannot be negated before state SO of the 

next cycle. However this problem can be solved by 

gating the output by the non delayed memory request 

input. ’OringV the request input with the output will 

bring the signal high as soon as the input is brought 

high (fig. 3.8).

3 .7.2 Byte addressing considerations

In order to allow byte access, the memory has to 

use two RAM devices, one RAM for the low byte and 

another RAM for the high byte. The upper and lower data

strobes gated with the controller signal are used to

select the appropriate RAM. For the RAM, two M K Ü I I 8-Ü 

static rams from Hitachi are used. For proper 

operation, the ram set up and hold time must be

observed. Although the MC68000 timing would have 

tackled the characteristic of static RAM, the additions 

of address and data buffers can upset hold and set up 

time of the ram. Therefore the gating of the control 

signals to the RAM is critical.

The MKÜll8-il is a 1 K by 8 device. There are ten 

address inputs and eight data lines. There are four
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control lines, write enable (WE), chip select (CS ) , 

output enable (OE) and latch input signal (L). The 

function of the latch input signal (L) is to determine 

whether the mode of operation is asynchronous or 

synchronous. In asynchronous mode where L is high, the 

MKÜ118-Ü provides a fast address ripple through access 

of data. In synchronous mode a transition of L from 

high to low will latch the address and the CS inputs. 

In the design the asynchronous mode of operation is 

a dopted.

The select output from the state machine controls 

the enabling of the address and data buffer, chip 

select and gating of the write enable of the RAM. The 

read write signal is routed through a tri-state 

buffer(fig. 3.9). The buffered read write signals from 

both processors are wired-ored together. This signal is 

gated by the upper data strobe UDS for the upper RAM 

and gated by the lower data strobe LDS for the lower 

RAM.

In a read operation data will be valid after a 

period of 250ns at the maximum for the MKÜ118-Ü. This 

parameter is the address access time tAA. The data will 

be valid for a maximum period of 125ns. This parameter 

is the chip select data off time tCSZ.

In a write operation, the write cycle is initiated 

by the WE pulled low. The CS must also be low. The CS 

is always low by the time WE enable is applied because 

of the propagation delay through the OR gate. Data is
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written into the RAM on the positive transition of . the 

WE signal. The data must be valid for a certain

duration prior to the transition and also the data must 

be stable for a certain duration after the transition. 

These parameters are known as data to write set up

time(tDSW) and data from write hold time(tDHW). The set 

up time(tDSW) and data hold time(tDHW) for the MK4118-4 

are both 50ns. To guarantee the hold time, the WE

signal must go up before the data buffer is disabled. 

The chip select CS and WE signals to the RAM are

brought high when the data strobe signal(LDS or UDS) is 

negated. There are three gate levels through which the 

data strobe passes before reaching the WE pin of the 

RAM. The approximate propagation delay is 50ns. The 

buffer select signal from the state machine is *ored* 

with the memory request signal. The memory request

signal is qualified by address strobe(AS). In decoding 

the address the address strobe(AS) is introduced early 

in the decoding chain(sec 3.11. fig. 3.19). There is a 

long propagation delay from the transition of address

strobe(AS). The approximate propagation time through

five gate levels is SOns. The data must be held stable

at least 50ns after WE is negated. The data buffer must

take approximately 20ns for it to be disabled in order 

to satisfy this requirement. It is recognised that

introducing delay by relying on propagation delay of 

chips is not a good design practice. Two proper methods 

of introducing delay are employing delay line and using
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a clocked D type latch. It is not feasible to use a 

clocked latch because delay can only be achieved for 

integral clock periods. The reason for using gate 

propagation delay as opposed to delay line is chiefly 

that it is cheaper to employ the former method.

The processor data transfer acknowledge DTACK 

should not be asserted directly by the select output. 

This is to allow for the access time of the RAM. In the 

read operation, the data output will be valid 120ns 

after chip select is pulled low. For a successful read 

operation for the processor, data must be valid at the

latest 90ns after DTACK is asserted. Therefore it is

necessary to delay DTACK. The delay required is 30ns. 

This can certainly be obtained by adding two redundant 

gate levels. However to allow for a wide safety margin, 

the delay is provided by a shift register. Delaying 

DTACK has no useful effect in the write operations. The 

necessary set up(tDSW) and data hold times(tDHW) have 

already been met.

3.8 Buffers

The memory card is designed to slot in one of the 

processors’ card cage. The other processor is linked to 

the memory by a ribbon cable. The address, data and

control bus are buffered on the processor card, but the

buffering is designed to cope with the mothercard 

loading only. The bus must be buffered first before

driving the cable. The passive cards do not carry the
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memory but a set of driver and buffer chips. On the 

memory card, the port linked to the remote processor 

must also be able to drive the cable. On the memory 

card the buffers serve two functions. The first is to

isolate the two ports and the second is to drive the 

heavy load caused by the cable. The maximum length of 

the cable used is about 30 inches. At this length the

capacative effect between adjacent wires can be

considerable (18). Cross talk will be a major problem. 

The step that can be taken to reduce this problem is to 

use ribbon cable with alternate ground wires.

3.9 Interrupt processing

It has been mentioned previously that two types of 

interrupt are required. They are ’ready to transmit 

interrupt’ and ’acknowledgement interrupt*. The

acknowledgement interrupt is at a higher level of 

priority. Since communication is bidirectional a 

communication path requires both types of interrupt at 

each end. At each interrupt level there are three 

sources, one from each communication link. The MC68000 

provides the capability to process seven interrupt 

levels; ample since only two are required. The task of 

recognising the source of interrupt at a particular

level is left to a combination of additional hardware 

and software.

The interrupt controller can either supply the 

interrupt vector or use the autovector mode. At each
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level there can be three sources where the interrupt 

can originate. Possibly there will be three separate 

routines to service the interrupt, one routine for 

every interrupt line. The interrupt controller can 

generate three different vectors corresponding to the 

three interrupt sources. The processing of the 

interrupt can then commence immediately. In the 

autovector mode, any request on the three interrupt 

lines will cause the processor to jump to the same 

vector. The task of identifying the interrupt must be 

done by software will take longer than if provided by 

hardware. In the design of the interrupt controller 

both possibilities were explored. The following 

sections describe the designs.

3 .9.1 Interrupt controller with vector 

generation

Treated as a black box the interrupt controller has 

three interrupt lines:input, vector data output and 

associated processor control lines(fig. 3 .10). The 

controller cannot be pure combinatorA logic because it 

has to arbitrate between the request lines and to

generate signals to the processor in the correct

sequence. Therefore the interrupt controller requires a 

state machine to perform the intelligent function. In a 

way the state machine is similar to the one employed in 

the two ported memory. Figure 3.11 shows the section

that does the arbitration except that it has three
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inputs. This is the same technique used to arbitrate in 

the two ported memory. The outputs from the state 

machine are the signals that generate the interrupt

request to the processor, DTACK and the vectors. The 

inputs are the interrupt request lines and lower data

strobe (LDS) interrupt acknowledge (lACK). The

interrupt request signal coming from the neighbouring 

node is a single pulse. This pulse must be captured and

this is done by a latch. The latch that corresponds to

the interrupt line that is being serve must be cleared. 

Three clear lines must be provided. For the vector 

data, eight lines are required. In all there will be 

fifteen outputs in addition to the number of bits

required for the state. A minimum of three eight bit 

wide proms must be used. For practical purposes it is 

not justifiable to use three proms because large proms 

tend to be expensive. The number of outputs from the 

state machine can be reduced by using discrete logic to 

generate the vectors. The clear lines and vectors can 

be generated by extra logic controlled by just two 

outputs from the state machine. The two output lines 

from the state machine generate the following 

codes : 00,01,10,11- These lines are decoded by a two to 

four decoder. A *00* output indicates no activity thus 

the corresponding output from the decoder is unused. 

The remaining three decoder outputs are used to enable 

a set of three tristate buffers. The Input to the 

tristate buffer is hardwi red to indicate a vector
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number. The same decoder outputs are also use to clear

the latches. Figure 3.12 shows the state diagram for 

the controller.

The operation of the interrupt controller in

relations to the processor is as follows:

Upon recognising an interrupt request the controller 

asserts an interrupt to the processor. The controller

waits for an interrupt acknowledge signal from the

processor. The controller then outputs DTACK and 

generates the interrupt select code. The controller

holds the output valid until the processor negates LDS.

To maintain symmetry an interrupt request line must 

not maintain an exclusive priority over the other 

lines. To do this requires a relatively large state

machine. Each set of processing sequence in the state

machine has to be replicated three times for the order 

of the request lines rotate. Clearly this is 

unsatisfactory because a large prom is required.

A second design was arrived at which can reduce the 

number of states. The design employs a simpler 

arbitration scheme that decides randomly. The state 

machine cyclically goes through the state 00,01,10. At 

each state it outputs a two bit c o d e (00,01,10). A two 

to four decoder is used to decode this outputs. Each of 

the outputs is ored with an interrupt request latch. 

The outputs of the or gates are brought to a three 

input ’and* gate. The output of the ’and* gate is 

brought to the state machine. This single input signals
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to the state machine that an interrupt has occured. 

From this single input it is not possible to identify

the source of the interrupt, but the state machine can

identify the source of the interrupt by its present 

state. On recognising the request, the controller then 

goes into the sequence of issuing the relevant signal 

to the processor. The relationship between the

controller and the processor with regard to issuing an

interrupt request, recognising an acknowledgement and 

generating the vector is similar to the design

previously discussed.

Figure 3*1Ü shows the state diagram for the

modified interrupt controller.

3 .9.2 Interrupt controller with autovector

The interrupt controller with autovector is simpler
iCil

and can be built entirely using combinator/ logic. An 

incoming interrupt will be captured by the latches. The 

outputs of the latches are ’anded* together by a three 

input 'and* gate. If any of the latches is low, a low 

logic signal is generated at the output of the ’and* 

gate and this is used to signal an interrupt request to 

the processor. The processor responds by issuing

interrupt aknowledge lACK and the interrupt priority 

level on A1,A2 and A3. The controller circuitry

generates valid peripheral VPA signal by the decoding

the required priority level when JACK is asserted. The 

processor has the capability to read the status of the
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latches. At the same time the processor can clear the

interrupt request on the latches. In the event of

multiple interrupt requests, the software will decide

the interrupt line to service. Only the latch that 

corresponds to the interrupted line is cleared.

Each interrupt is required to serve three request 

lines, a total of six request lines for both levels of 

interrupt. A data input port or data output port can be 

realised by a single eight bit wide tristate buffer.

This means that a single input port can read the 

latches of both interrupts. Similarly a single output 

port can clear the latches of both interrupts. This can 

offer a considerable saving in the components required. 

The controller was designed to generate interrupts at 

level three and four.

The vectored interrupt controller of the second 

design was built and tested. The design was later 

abandoned because it is not possible to build two 

controllers on the same board that contains the two 

ported memories. The simpler autovector design was 

favoured because of the fewer components that it used.

3.10 Input and Output control ports

The processing nodes must be given a unique 

identifier. This enables identical software to be used 

on all the processors. The software can differentiate 

the identity of the host processor by reading an input 

port which is hardwired with a unique code. Three bits
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are needed to give a number of one through six. The

remaining bits car be used for other purposes. The

circuit consist of a single 7&LS2Ü5 tristate buffer(fig

3. 17).

The function of the interrupt controller is to 

process the interrupt request. Some means of signalling 

an interrupt to the neighbouring processor is 

necessary. The simplest way is to use an output port.

The port is required to generate a negative going pulse 

of ample duration. A single output port is sufficient 

to generate the six interrupt request signals. These 

signals are routed to the destination processing nodes 

through the appropriate cable ports. A 7&LS2&5 tristate 

buffer is used (fig. 3.18).

The address decoder has to generate the

address select signals:

1. memory 1 $FFE800-$FFFFFF

2. memory 2 $FFF0 00-$FFF7FF

3. memory 3 $FFE800-$FFEFFF

U. interrupt controller level5 $FFE005

5. interrupt controller level/l $FFE007

6. interrupt signal port $FFE002/3

7. input/output port $FFE000/1

Figure 3.19 shows the circuit of the decoder.
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3.12 Summary

The implementation of a set of communication 

interface has been achieved, thus satisfying the 

hardware requirements of the multiprocessor system. The 

aim of building an efficient communication system at a 

low cost has also being met. Below is the summary of 

the design.

The communication interface is made up of six 

circuit boards of two types, three atf each type of 

boards. The first type contain the shared memory 

circuit and the other contain the buffers that 

interface the remote shared memory to the local 

processor bus. There are additional functions common to 

both type of boards. The functions are-

1. Two interrupt controllers;

2. parallel input/output ports for control 

purpose.

Figures 3.20 and 3.21 show the functional layout of the 

b o ards.
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CHAPTER 4 SOFTWARE



h.l Introduction

A software kernel is required to drive the 

multiprocessor. The functions of the kernel are to

coordinate the interprocessor communication and to

allocate processes to processors. The kernel must be

able to support the generation of parallelism by the

application program. Suitable interfaces provide the 

link between the application program and the kernel. 

Chapter one describes the various ways of exploiting 

parallelism. Of these, only a few are suitable for the 

multiprocessor network that is being investigated.

The method that seems to be most suitable for the 

multiprocessor network is demand driven computation. 

The parallelism is generated using the divide and 

conquer method. The divide and conquer method has the 

capability to generate an enormous number of processes 

which could easily exceed the number of available 

processors. The kernel must be able to allocate 

dynamically processes to processors. The scope of a 

process is from the moment it is activated to the 

moment it is temporarily suspended and from the moment 

it is reactivated until the moment it is terminated. 

During its active state, the process can be run 

uninterrupted. Even though there can be more processes 

than processors it is not necessary to run all the 

processes in parallel by multitasking. At the expense 

of losing some parallelism, the processes that are 

capable of being actived can be made to wait in a
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queue. A scheduler then schedules the execution of the 

process whenever a processor becomes available.

The kernel structure is very dependent on the

method of exploiting the parallelism. It is therefore 

appropriate to start the description of the design and 

implementation of the kernel from the high level end. 

This requires defining a hypothetical high level 

language that is capable of describing the parallelism 

generating process. The next step is to define a 

virtual machine that support the language. Finally the

actual structure of the kernel can be defined and

coded. The codes for the communication routines must be 

able to exploit fully the available hardware.

Zl.2 Language

This hypothetical language provides facilities for 

automatically extracting parallellism inherent in an 

application program. There are languages that exploit 

the architecture of the machine and parallel evaluation 

strategy of the problem to be solved. For example Val

(27) for the data flow architecture and Flow graph Lisp

(2) for applicative architecture. The main source of 

parallelism that is going to be investigated on the

network is recursive subdivision. The hypothetical 

language can be based on the syntax of Lisp. Darlington 

and Reeve (1) described parallel reduction using a 

first order recursion language loosely based on NPL

(28). The same approach can be taken here. However the
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hypothetical language to be described will be based on 

Pascal. The reason for this is that investigation of 

the network will be more inclined to numerical 

computation than to symbolic computation.

Consider a PASCAL program of figure Ü..1. The 

function T represents a processing task. By not 

allowing global references or assignments to be made 

from within the function body, several instances of the 

function can be created. If there is more than one 

function invoked simultaneously, the functions can be 

executed in parallel. Inside the body of T, a 

PARBEGIN...PAREND construct allows simultaneous 

recursive calls on T. This is the only facility 

provided for invoking parallel execution.

Function T behaves no differently from a normal 

function. It expects an argument when called and 

returns a result on completion. Since the function T 

represents a processing task, the passing of argument 

and result actually represent intertask, communication. 

Intertask communication can only occur between a parent 

task and its children tasks. A child task can reside on 

the same physical processor as, or on a neighbouring 

processor to^ the parent task. At the language level 

there is no distinction between the two.
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PROGRAM Tree 

VAR x : .... ;

FUNCTION T ( .... ;

VAR .... ;

FUNCTION

PROCEDURE

BEGIN

PARBEGIN 

a ;= T( );

b := T( );

PAREND

END;

BEGIN

X : = T ( . . ) ;

END .

Figure U .1

The argument or result could either be simple data 

or complex structures such as arrays. With reference to 

the divide and conquer algorithm, the size of the
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argument or result will decrease with each call. A 

dynamic array facility will optimise the use of

storage.

A parallel function can return a whole array or a 

section of an array. To simplify the assignment of

arrays the following statements are provided.

A[i:n] := function T( )

A[i:n] := B[j:n]

Ml[i:n,j:m] := M2[p:n,q:m] 

where i, j , p and q are the first elements in the array 

and,

n and m are the number of elements to be

transferred.

Declaration of local functions and procedures is 

allowed in the function T. These functions and

procedures serve as utility routines.

k .3 Kernel

In order to support the hypothetical language

described, a suitable kernel must be built on top of
sthe hardware. The basic re^onsibilities of the kernel 

are

1. management of dynamic tasks,

2. interprocessor communication.

A task is created in response to a demand for a 

computation. The task is suspended when it spawns 

subtasks. The original task will remain in this state
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until it has received results from its subtasks. The 

task proceeds until it reaches the end of the 

computation. Some basic mechanisms are required for 

supporting the computation. First is a system of task 

descriptors that hold information about tasks. This 

would be equivalent to a data stack for Pascal (32). In 

a way invoking the task is similar to calling a 

procedure or function. However it is not as straight 

forward as executing a call instruction in a processor. 

A task invokes subtasks by creating instruction 

packets. At the termination of a task, a result packet 

is issued to the parent task. If the packet source and 

packet destination are different processors, the kernel 

will route the transfer through the appropriate 

communication path.

U.3.1 Components of the kernel

The kernel can be broken into three major 

components. They are the scheduler, sender and receiver 

processes. Logically they are parallel processes in 

relation to each other. However it does not mean that 

three processors are required to realise a processing 

node, nor is a multitasking executive required to 

emulate the three processes. The scheduler resides in 

the normal processor state, the sender and receiver are 

interrupt processes.

Data structures are required to maintain the task 

descriptors and communication packets. The data
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structures are accessible by all the three processes. 

Figure 4.2 shows the relationship of the three 

processes with the data structures and the 

communication Interface. The scheduler has a direct 

path to the sender through which the scheduler pass the 

Information for transmission. There Is no direct path 

between the receiver and the scheduler. The Information 

received by the sender directly updates the data 

structure. The scheduler has a direct link to the 

communication Interface denoted by the dotted line In 

the figure 4.2. This link enables the scheduler to read 

and write directly Into the shared memory for control 

purposes.

4.4 Data structures

4.4.1 Task descriptor

The first of the data structures Is the task 

descriptor. The purpose of the task descriptor Is to 

maintain housekeeping Information as well as the 

variables used by a task. This Information must be held 

valid from the moment the task Is Invoked until the 

task Is killed. The problem associated with this Is In 

organising the store that will contain the task 

descriptors. In sequential evaluation, the

chronological order In which the functions are Invoked 

enables the data frame for the functions to be held on 

a stack. But here the order In which the tasks are 

Invoked Is less well defined. The prospect of a subtask

96



migrating to another processor made the problem more

difficult. A lavish solution Is to allocate a task

descriptor for every task that would be created and not 

reuse the space left by an Inactive task. Clearly this 

Is not a feasible solution. Garbage collection can be 

used If there Is not enough space. However If the task 

descriptor for every task Is constant In size, the

space left by an Inactive task can be reused. The task 

store consists of a linked list of free task

descriptors. A task descriptor Is taken off this list

whenever required. The task descriptor Is returned by 

rechalnlng the descriptor onto the list. This occurs

whenever the life of a task related to the descriptor 

has ended. This method of storage management will

always take a constant time to recover a used

descriptor cell. The guaranteed response time of this

storage management method Is favourable to garbage 

collection because uneven response time can effect the 

way the task are distributed. In the high level 

language abstraction described previously, a task

function Is allowed to contain local procedures and 

functions. Since the size of the data space allocated 

Is fixed, local recursion Is not possible. Handling of 

dynamic array structure will be treated later.

A task descriptor Is definable by a unique address. 

The address specifies the host processor and an Index 

relative to the base of the task descriptor store. This 

unique address Is used by the communication packet to
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specify the source and destination.

The fields Inside a task descriptor are as follows-

1. Next pointer - forms the chain to the next 

descriptor cell.

2. Task descriptor Index - Indicates the

descriptor Index of the cell. If the descriptor Is

specified by Its absolute address, this field 

provide a quick way of determining the descriptor 

Index.

3. Parent node, parent Index and task number -

these fields form the complete address of the 

parent task. Parent node and parent Index Is the 

address of the parent task descriptor. The task

number specifies which of the subtask from the 

parent Is the current task.

4. Subtask count - Indicates the number of

subtasks that are created by the current task.

5. Entry pointer - this fields holds the absolute 

address of the code of the task to be executed. On 

first being created this pointer contains the 

address of the beginning of the task. On

reactivation. It contains the address of the 

reactivation point.

6. Variables - this holds all the variables for

the computation. These Includes the arguments, 

receptacles for results from subtasks and local

data.
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Special treatment is necessary in organising the local 

variables. Since the size of the decrlptor cell Is 

fixed, the space for dynamic data structures must be 

allocated elsewhere In a heapspace. Reference to the 

dynamic data structure Is by a pointer. Some means must 

be provided to differentiate between an absolute value 

and a reference. This differentiation Is not necessary 

for an application program. Assuming a compiler Is 

available for the hypothetical language, this 

differentiation would have been done at compile time. 

However the communication routine requires further 

Information In order for It to transfer the data 

correctly. Every data Item must therefore carry 

additional Information specifying whether the data Is 

an absolute value or an array. For the array. It also 

specifies the size and dimension. The data field 

contains the pointer to the heapspace.

4.4.2 Instruction and result packet

The Instruction acts as the mechanism for Invoking 

a task. A task that wishes to generate subtasks does so 

by creating Instruction packets. The Instruction Is a 

record with the following flelds-

1. parent node, parent Index and task number

2. argument (number of data, datai, data2,

..d a t a N )

The first set of fields specifies the source of the
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instruction. This is used by the child task to Identify 

the destination of the result. The arguments consist of 

more than one data Item. The data can be simple 

variable or complex ones. It Is also necessary to make 

the size of an Instruction packet cell constant. A 

sufficient upper limit of the amount of data can be 

arbitrarily fixed, but the variable size of the dynamic 

data cannot be accomodated. Therefore the data are 

passed In the Instruction packet In a similar form to 

that In the descriptor. The Instructions can either be 

held on a queue or a stack. Instruction^ held on a queue 

results In a breadth first evaluation. Holding 

Instructions on the stack produces the following 

effect. If the Instructions are executed on a local 

processor, the evaluation will be depth first, but If 

the Instruction Is executed on a remote processor the 

evaluation will be breadth first In relation to the 

other Instruction created slmultaneosly.

The result packet consists of the destination and a 

single data Item. As the result already specifics the 

destination, the result Is sent Immediately It Is 

produced.

U.5 Scheduler process

The primary role of the scheduler Is to retrieve 

Instructions from the stack and run the task created by 

the Instructions. Before the task can be executed, the 

task descriptor has to be set up. Instructions can be
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obtained locally or from one of the three neighbouring 

nodes. A scheduler from one processor cannot directly 

access the Instruction stack of another processor. In 

order to access an instruction from another processor, 

the scheduler of the requesting processor makes a 

request to the processor concerned through the 

communication link. The job of servicing a non local 

request Is also handled by the scheduler. Only an 

Instruction which has not been made Into a runnable 

task can be transported, because a runnable task Is

allocated a task descriptor locally. In order to 

differentiate between the Instructions that can be 

transported and the instructions that cannot be 

transported a separate list Is required. An Instruction 

that has been made runnable Is placed on a queue. A

runnable task can also be created by a task that Is

reactivated after suspension. The scheduler Inspects 

the runnable task queue after first looking at the

Instruction stack. The actions of the scheduler

will now be described. The first phase of the scheduler 

Is to retrieve Instructions. Initially the local 

Instruction stack Is Inspected. If an Instruction Is 

available a task descriptor Is allocated, and the 

Information carried by the Instruction Is copied Into 

the task descriptor. The source of the Instruction Is 

local. In the case of the argument specifying a 

dynamic array, there Is no necessity for generating new 

space for the data. The pointer carried Inside the
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instruction packet Is valid. The Index of the task

descriptor Is placed on the runnable task queue. If 

there are no Instructions available, requests are made 

to the neighbours. The request Is made by Issuing a 

communication packet carrying the appropriate

Information. A normal communication transaction can

take a significant processing time in both processors. 

Since the two processors are linked by shared memory, a 

flag can be reserved Inside the memory to Indicate an 

Instruction request. A requesting processor will set 

this flag to signal that It Is requesting an

Instruction. However the response to this request Is 

not Instantaneous because the scheduler of the 

receiving processor must have arrived at the 

appropriate phase before this request can be serviced. 

The empty processor can go through several Iterations 

of the scheduler loop before It Is granted an 

Instruction. In order to restrict access to the shared 

memory, the scheduler can only set the flag once before 

the request Is granted. This Is done by maintaining a 

separate set of flags In the main memory. A processor 

receives an Instruction from a neighbour not through 

the scheduler but through the receiving process.

After the scheduler has obtained an Instruction 

from Its local stack and generated a runnable task It 

now attempts to distribute the remaining Instructions on 

the stack to Its neighbours. This Is the complementary 

action In response to the request made by the
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neighbour. The scheduler inspects the request flags in 

all the shared memories in turn. Upon recognising a 

request and identifying the neighbour which made the 

request, the scheduler fetches an Instruction from the

stack. From the Instruction, a transmission packet Is 

made. The packet Is passed to the sender process for

transmission to the neighbour processor concerned. This

action Is carried out for every neighbour. However If 

after transferring one or two Instructions the stack 

becomes empty the action Is stopped and moves on to the 

next phase. The response of the receiving neighbouring 

processor to the transmission of an Instruction Is to 

go Into the receiving process. The receiving process 

first Identifies the nature of the packet. In receiving 

the Instruction, the scheduler of the receiving 

processor Is not Involved. The receiving process 

allocates and sets up a task descriptor for the 

Instruction. In addition storage space Is allocated for 

dynamic array structures that can be contained In the

Instruction. After the set up, the Index of the task 

descriptor Is mounted on the runnable task list.

The last phase of an iteration of the scheduler 

loop Is to retrieve a runnable task. The runnable task 

list contains the Index to active task descriptors. The 

task Is entered by jumping to an address specified In 

the task descriptor. During the execution of a task, 

the action of the scheduler Is thereby s u s p e n d e d . , The 

scheduler is reentered when the task Is suspended or

103



terminated. However the sender and receiver processes 

can coexist with the task because they are Interrupt 

processes. If the runnable task list Is empty the whole 

phase of the scheduler Is reexecuted from the 

beginning. The scheduler process Is described In Pascal 

notation below(flg. 4.3)

WHILE true DO 

BEGIN

IF active task queue Is empty THEN 

BEGIN

IF Instruction queue Is not empty THEN 

BEGIN

get Instruction from local queue 

IF Intructlon queue still not empty 

THEN

try transfer Instruction to neighbour 

END 

ELSE

request Instruction from neighbour 

BEGIN

get runnable task and execute 

END 

END

Figure 4.3

4.6 Task processing

When the task Is activated all the data structures
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associated with it have already been set up. The size 

of the problem determines whether splitting the problem 

is possible. From within the task, a facility for 

spawning subtasks Is provided by a system procedure. It 

is important that the normal processing state is 

protected during the spawning process. For example a 

task can spawn eight tasks In parallel. There Is a 

counter In the task descriptor which Is Inltlalllsed to 

the number of subtasks generated. Every time a result 

from a subtask Is obtained the counter Is decremented. 

When the count reaches zero the parent task Is 

reactivated. If the spawning process Is not protected, 

there will be a possibility that the parent task Is 

reactivated prematurely. For example the first task 

spawned Is grabbed by a neighbour. If the outcome of 

subtask 1 Is returned before further subtasks can be 

created, the parent task Is Immediately reactivated 

Inadvertently.

A task that cannot be split or a task that Is 

reactivated will eventually reach a point that requires 

them to return result to the parent task. The parent 

can be local or on a neighbouring processor. In the 

case of a local parent, the outcome of the result can 

be notified by directly accessing the parent task 

descriptor. The result Is passed to a neighbouring 

processor using the communication processes.

There are several more areas where the normal 

processing state should be protected to safeguard the
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integrity of the data shared by the normal processing 

state and the communication processes state. The task 

descriptor can be both allocated by the scheduler and 

the receiving process. Therefore the allocation of task 

descriptors by the scheduler must be protected.

4.7 Communication

The memory window provides a two way communication 

path between two processors. The Incoming and outgoing 

paths are logically separated. There will always be the 

possibility that both processors attempt to send at the 

same time. Since there are separate paths provided, 

there will not be problems In gaining access to the 

channel. A successful communication would require the 

co-operation of both the talker and listener. If both 

parties talk to each other slmultaneosly, even though 

not on the same channel, the communication would still 

fall. The analogy to this argument Is that of a 

telephone conversation.

A scheme of organising communication In the shared 

memory Is sought. It Is helpful If It can be proven 

that the scheme will work. Proving correctness of 

parallel program Is still at an early stage of 

development (26) (29). For this reason although a

formal proof Is not given, an attempt Is made to deduce 

that the scheme will work. This Is done by basing on an 

analogy of a more primitive mode of communication.

Let us view the communication to be between two
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parties using pneumatic tube normally found In 

department stores. The Information that Is being

communicated are messages written on pieces of paper

and the communication Is bidirectional. Two pipes are

provided, one for each direction of transfer. Both 

parties can send messages simultaneously without any 

problem. One restriction Is Imposed on the use of the 

pipes. No further message can be sent down the pipe

unless the receipt of the previous message has been

acknowledged. Some means of signalling the conditions 

of the pipe Is therefore necessary. The conditions are -

1. message acknowledge.

2. message available.

'Message acknowledged* would mean that the outgoing 

pipe Is free for further sending of messages. The 

signal for 'message acknowleged' Is transmitted at the 

Instant the receiver takes out the message. It Is not 

necessary that the sender Is forever wanting to send 

messages contlnuosly. It may retrieve the message at a 

later time but not necessarily Immediately. Therefore 

It Is sufficient for the 'message acknowledged' signal 

to set a flag at the sender's end.

The arrival of a message at the receiver generates

a message available signal. In order not to block the

pipes, the message must be removed Immediately. The

operator at the receiver's end should preferably be

Interrupted rather than performing an Inspection
1wh enever he or she Is free. The latjfer Is equivalent to
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polling.

Let us go back to the original problem of 

simultaneous transmission of messages. The operators at 

both ends pop the drums that contain the messages Into 

the pipes and release a burst of compressed air. At 

this Instant neither realises that they would be 

expecting messages from each other. Thus, they return 

to their normal duties. However, a moment later they 

are Interrupted by a ring on the bell signalling the 

arrival of a message In their Incoming pipes. 

Retrelvlng the message Is given a high priority, 

knowing that It could block further Incoming messages.

From the discussion above. It Is clear that both 

parties are still able to send to each simultaneously. 

The scheme will also work If there are several messages 

to be sent one after the other. If the messages are 

■queued. Multiple transmission will now be Illustrated. 

Continuing from the point where the messages were 

retrieved, the operators observed that their respective 

message acknowledge flag Is set. This signals that 

further transmission can be performed. The next 

messages on the queue Is fetched and the sending 

procedure Is repeated.

The scheme can be applied to the shared memory 

communication. The two logical channels In the shared 

memory were as Illustrated by the pneumatic pipes 

above. In the discussion presented. It can be deduced 

that the scheme Is secure and free from deadlock. The
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signalling can be realised using Interrupts. Two levels 

of Interrupt are required, one level for 'message 

acknowledge' and another level for 'message available'. 

Sending has higher priority than receiving, so the 

'message acknowledge* Interrupt Is placed at the higher 

l e v e l .

One aspect which has not been Illustrated Is the 

necessity for the sending process to be
I Iunlnterruptable during operation. Message received 

Interrupts from the other channels cause no problem 

because they are blocked by the hardware. The 'message 

acknowledge' Interrupt has a higher priority level so 

as not to allow 'message available' Interrupt to cut In 

during a sending operation in order to safeguard 

critical data region.

A method of describing communication at a higher 

level Is the rendezvous concept. Rendezvous stipulates 

that both the sender and receiver must express their 

will to communicate. The task processing operation In 

addition to the communication Involved can be described 

using rendezvous. For the sake of discussion, let us 

start with one processor which has just created 

subtasks and Its neighbours are trying to grab these 

tasks. Prior to this Instant the Idle neighbours had 

already expressed that they require Instructions. 

Assume this Is expressed by a high level statement - 

RECEIVE(Instruction). No further activities can be 

carried out unless there Is a corresponding
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S E N D (instruction) executed on the sending end of the

channel. After spawning its subtasks, the task is 

suspended by executing a R E C E I V E (r e s u l t ). The

processors which execute the susbtasks return the

results by - S E N D (r e s u l t ).

The idea of the whole exercise is to keep the 

physical processor as busy as possible. Logically the

state of the task may indicate a wait, but to make 

effective use of the available processor power, the 

physical processor must be redeployed for other tasks 

and yet able to resume the logical wait.

4.8 Dynamic storage management

% f e  task descriptor primary function is the storage 

of housekeeping information and local variables 

associated with a task. The housekeeping data and

simple local variables occupy a fixed storage size. 

However the storage required for the dynamic array 

structure cannot be determined at program start up 

time. There Is a strong argument for keeping the task 

descriptor size constant. Although the task descriptor 

has a similar function as a stack frame In a P-machlne, 

the behaviour of the task descriptor with time may not 

be easily predicted. The order In which task 

descriptors are deleted may not have a simple 

relationship with the sequence In which they are
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created. This is unlike the stack frame in a P-machine 

where the movement of the stack is well defined 

chronologically. The idea of making the task 

descriptors of equal size cells makes it easier to 

manage. Initially the task descriptors are linked as a 

large continous chain. A request for a task descriptor 

retrieve the front most cell from the chain. Returning 

the task descriptor Is performed by simply putting the 

cell back into the chain. Since the task descriptor Is 

of constant size the space for the dynamic array must 

be placed elsewhere. A heap space Is allocated which Is 

common to all the tasks for the dynamic array. 

Associated with the heap space Is a memory allocation 

list. Initially this list contains one entry which 

describes one large heap. The entry consists of the 

pointer to the first position of the heap and Its size. 

When a request Is made the portion of the heap of the 

size required Is extracted. The entry In the list now 

Indicates the balance. Assume that after a few request 

Is made the first allocation Is to be returned. The

policy employed Is to chain back the memory. There now

exist a gap between the end of the returned memory and 

the remaining heap. The pointer and size of the

returned memory Is to be put on the list. The list Is 

arranged such that the entry for the lower memory

proceeds the entry for higher memory. With the next 

allocation returned the appropprlate position In the 

list Is first determined. Then a test Is made to see
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whether* the preceeding entry is continous with the 

memory to be returned. Similarly the entry for the next 

higher location Is tested. If the test succeeds, no new 

entry Is entered but the existing entry Is amended to 

Indicate a newly formed block. The next allocation of 

storage will attempt to find the first returned block 

that fix the size requested or a larger block with the 

least difference.

The danger that can occur with dynamic storage 

management Is storage fragmentation. There Is no danger 

of fragmentation If the size allocated Is constant or 

In multiple of some fixed size. The size of memory 

allocation list must be large enough to cope with any 

demand. The possibility of overflow Is reduced If the 

way the memory Is returned always attempt to rejoin 

returned blocks.

4.9 Program development

To test out the Ideas developed so far two problems 

were chosen, quicksort and matrix multiplication. To 

carry out the test, the kernel was first defined. Each 

of the problems was then built on top of the kernel. 

All programming was done using MC68000 assembler. 

Program development was carried out under Tripos 

operating system running on one of the processors. Disc 

facility for the processor running Tripos was provided 

by an Ithaca SlOO system. The SlOO system runs a file 

server which can serve more than one processor
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simultaneously. The file server was written In 

colaboratlon with Dr. Jed Marti (34). Two MC68000 

processors are linked to the Ithaca by parallel ports. 

The parallel ports were designed and built In 

colaboratlon with Dr. D. Milford (22). The other 

MC68000 processors can be linked to the Ithaca by RS232 

lines. Dedicated disc system was also provided on one 

of the MC68000 processors. The disc system consist of 

two eight Inches drive.

There are two reasons for Implementing the test 

programs In assembly language. The first Is the need to 

have maximum control on the hardware. Secondly the

program must be stand alone and do not require the

assistance of the operating system. The program need 

not be totally In assembly language for It to have 

maximum control on the hardware. The program could have 

been written In BCPL and the hardware sensitive routine 

coded In assembly language. But this requires that all 

the processors must be running some limited form of the 

operating system. In principle all the six processors 

can be linked to the file server but with that kind of 

load the response of the file server Is excruciatingly 

slow.

The program Is Initially developed with two

processors running Tripos. Both machines are required 

to run Tripos because of the need to use the

Interactive debugger. This was done with the assumption 

that If the program works on two machines. It should
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work on N machines. The set up for bringing up more 

than one machine consists of one processor running 

Tripos which allow the loading of object code from 

files. The other processors contain a loader in rom

which loads the object code through the communication 

interface.

A facility is provided to synchronise all the 

processors at start up time. Recalling from the 

hardware section every processor is provided with an 

input port. A spare bit of the input port is used for 

this purpose. The main processor has an extra bit 

output and this is wired to the 'sync* input of the

other processors.

The implementation of the kernel and the test

programs was not a one pass process. From the initial 

coding of the program to having a minimal two processor 

system running took several cycles of debugging and re

coding. In principle, a working two processor system 

would have exercised a high percentage of the program 

codes. A debugged two processor system should run for

system with more processors. In reality this was not

the case. The sections of program that handle task 

distribution and communication were not totally tested. 

Finding the problem codes when more than two processors 

are involved are extremely difficult with the available 

debugging facilities. The initial objective of the

experiment was to test quicksort and parallel matrix 

multiplication program on a six processors system.
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Unfortunately this was not achieved due to the untimely 

failure of the hard-disc system. Although the file 

server system was partially restored to floppy disc, 

the speed and limited file size allowed on the floppy 

disc restricted the productivity of program development 

tremendously. In the experimental section to be 

described forth are the results obtained with fewer 

than six processor configurations.

H.IO Experiments

4.10.1 Quicksort

Below is the description of the quicksort using the 

hypothetical language of section 4.2.

Program Quicksort; 

const n= ; 

type index=l..n ;

item =record of

key,value;integer 

end ;

var azdarray [l..n] of item ;

function sort(1,r:index;a:darray [l..n] of item) ; 

var i,j:index; x,w:item;

begin

i:=1; j:=r;

x:=a[(l+r) div 2];
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repeat

while a [i ].key<x.key do i:=i+l; 

while X .k e y < a [j 3.key do j:=j-l; 

if i<=j then

begin w:=a[i]; a[i]:=a[j]; a[j]:=w; i:=i+l;

d:=j-l;

end 

until i>j ;

if 1<j then a[l:j-l]:=8ort(l,j );

if i<r then a [i ;r - i ]:= s o r t (i ,r );

end ; 

begin

a[lin];=sort(l,n) 

end.

Figure 4.4

The quicksort program was run on one and on two

processors for various sizes of unsorted arrays. The

unsorted arrays were generated randomly.

The followings are various time taken to sort the 

arrays on one and two processor configurations.

1. One processor

Problem size 50 100 150 200

Time*20 msec 4 7 11 15

Task executed 45 89 132 174
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2. Two processors 

Problem size 

Time*20 msec 

Task executed 

Task xferred

50 100 150 200

3(3) 5(5) 7(6) 9(9)

24(21) 40(49) 63(69) 92(82)

3(4) 11(2) 2(3) 1(11)

Speed up 1.33 1. 4 1.6 1.7

note: figures in brackets are values for second

machine.

The result on quicksort shows that the efficiency 

increases with larger problem size. A simple 

explanation of this Is that the larger problems can 

sustain longer parallel computation. The initial 

splitting may not generate tasks of equal size. The

distribution of tasks is very dependent on the 

quicksort problem itself as opposed to the effect of 

the network. The processor that has the smaller task 

would sustain shorter parallel computation than the

processor that has the bigger task. In order to proceed 

with further work, the now idle processor has to 

request a task from the other processor. The chance of 

getting a computationally small task is high. Therefore 

there will be heavy communication between the two 

processors in order to keep both processors busy. It is 

expected that the communication would reduce the

overall efficiency. However this was not evidenced from 

the result obtained. With problem size of 100 and 200,
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the results show that one processor received a fairly 

large number of tasks from the other processor. There 

is little task movement with problem size of 50 and 

1 5 0 . However the efficiency at problem size of 100 is 

higher than the efficiency at problem size 50. 

Similarly the efficiency at problem size of 200 is 

higher than the efficiency at problem size 1 5 0 . A 

possible explanation to this is that the overhead 

associated with communication is minimal when compared 

to the computation of the problem.

4.10.2 Parallel matrix computation

The divide and conquer method can be applied to 

matrix multiplication. Consider the multiplication of 2 

by 2 matrices. The multiplication is definedas follows-

®21 ®22
where

=11 =12 *11 Ai 2

^21 =22 *21
X

=11 = 4 1 =11 + Ai 2

=12 = *11 =12 + Ai2 B22

=21 = *21 =11 + A22 ^2̂

=22 = *21 =12 + A22 B22

Recursive subdivision can be applied on larger size 

matrices if the size N satisfies N=2^ where

m=(l,2.3..•). The multiplier and multiplicand matrices 

are each divided into four quadrant where the 

quadrants represent A-j<̂ * ••• • At each level of

recursion there will be eight subtasks generated. The
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recursion will terminate when the size of the matrix is 

2 by 2.

Function p m u l t (n : integer;A,B;mat): mat ;

Var C:mat;

Begin

If n=2 Then 

Begin

C[1,1]=A[1,1]*B[1,1]+A[2,1]*B[2,1]; 

C[1,2]=A[1,1]*B[1,2]+A[1,2]*B[2,2]; 

C[2,1]=A[2,1]*B[1,1]+A[2,2]*B[2,1]; 

C[2,2]=A[2,1]*B[1,2]+A[2,2]*B[2,2]; 

p m u l t ; = C [1:2,1:2]

End 

Else 

Begin 

m: =n/2

C[l:m, l:m] : =pmult (m, A[l;m,l:m] , B[l:m,l:m] )

+pmult(m,A[m+i:m , 1:m ] ,B [ m + 1 :m , 1:m ] ); 

C[l:m,m+l:m]:=pmu l t ( m , A [1:m , l : m ] ,B[l:m,m+l:m]) 

+ p m ult(m,A[1:m , m + 1 :m ] ;B [ m + 1 :m , 1:m ] ); 

C[m+l:m,l:m]:=pmult(m,A[m+1:m , l : m ] ,B[l:m,l:m]) 

+pmult(m,A[m+1:m , m + 1 :m ] ,B [ m + 1 :m , 1:m ] ); 

C[m+l:m,m+l:m]:=pmult(m,A[m+1:m , 1:m ] ,

B[l:m,m+l:m])+pmult(m,A[m+1:m ] ,

B [ m + 1 :m ] ); 

pm ult:= C [1,n : 1,n]

End 

End ;

Fi gu re 4. 5
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<on

The parallel matrix multiplication problem defjnod In 

the hypothetical language in section 4.2 is shown in 

figure 4 .5 .

The following are results obtained for a 16 by 16 

matrix multiplication.

configuration time*20 msec speed up

1 Q 76 1
2 O -------O 50 1.56
3-------O-O O 44 1.73

37 2.05
36 2.11

The general trend of the result is that the speed of 

the machine increases with more processors. However a 

different configuration for the same number of 

processors produces a different speed up. For the three 

processors system, the straight line configuration 

produces poorer speed up than the binary tree 

configuration. This shows that the straight line 

configuration cannot distribute tasks efficiently 

compared to the binary tree configuration. The initial 

splitting of a problem generates the highest potential 

for work. In the straight line configuration the 

rightmost processor will never have the chance to grab 

the task that was generated with the initial splitting. 

The tasks that reached the rightmost processor are 

computationally small. In order to sustain further 

computation there will Ije heavy communication involved
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with the middle processor. The frequent communication 

reduces the efficiency of the machine. For a similar 

reason, the four processor system in a square 

configuration does not show great improvement over the 

three processor binary tree configuration. The

processor diagonal to the processor where the task is 

injected, obtained tasks that resulted from at least 

three subdivisions.

4.11 Conclusion

Consider the case of the two processor 

configuration for both quicksort and matrix 

multiplication experiments. It would be expected that 

the machine performance for quicksort is less than that 

for the multiplication problem due to the sparse

evaluation tree for the quicksort. But on average the 

performance for both problems is similar. In a two 

processor system, there should be enough parallelism in 

both problems to saturate the processors. In a larger 

system it can be safely assumed that the matrix 

multiplication problem would produce better performance 

because the regular expression tree could sustain

enough parallelism on all the processors.
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CHAPTER 5 DISCUSSION



5.1 Introduction

A survey (5) (12) (15) (21) (56) of the work done on

the development of multiprocessor and parallel 

computers can be loosely categorised into two branches. 

The first is developing machines for a specific 

applications. Examples of these are dedicated networks 

of multi-microprocessors modelling a specific problem 

and the vector and array processors for number 

crunching applications. The other branch is developing 

machine for general purpose applications based on new

computing models. In both branches of development, the

hardware configuration derived has a direct 

relationship with the problem to be solved or the

computing model. The starting point for the research 

carried out in this thesis is a multiprocessor 

configuration proposed by Bowyer et al for some 

applications in graphics. The realisation of the

processor configuration did not require a major 

conceptual development exercise. The nature of the

problem encountered was more of practical difficulties. 

The next step in the exercise was the design of the

software for driving the multiprocessor. The concept in 

the design of thé software was not confined to graphics 

applications only but to a much wider scope of general 

purpose application. The development of the software 

system was more involved with concepts and the

theoretical aspects of computing model. On the

implementation side of the software system, practical
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problems were encountered in program development and 

debugging the multiprocessor. This research would 

belong to the first category mentioned above since the 

hardware derived was for a specific application. 

However, the requirement for suitable software for 

driving the multiprocessor necessitated venturing into 

the second category of development mentioned.

To date what has been achieved in this research is 

the construction of a multiprocessor hardware within a 

small budget and the development of the software 

required to run the system. The state of the software 

developed is ample to test the multiprocessor and run 

experiments for the purpose of evaluating the 

performance of the system. Subsequent text in this

chapter presents a discussions of the degree of success 

of the Bath system as a multiprocessor and the further 

development possible on the machine.

5.2 Performance

The experiments done on quicksort and matrix 

multiplication show that the machine does gain in
processing speed over a single processor(section 4.10). 

The only form of test is to measure the time the

multiprocessor to complete a problem. Since the system 

can be set up with a single machine, time measured for 

various processor configurations can be compared with 

the time for a single machine. By no means is the

result of the experiment conclusive. A more
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comprehensive set of results can be obtained if the 

traces of activities of all the processors were 

recorded. This form of test will be able indicate any 

bottlenecks in the system. To perform this test require 

a more elaborate hardware set up. Section 5*3 described 

a proposal for such a hardware configuration.

5.2.1 Effect of interface hardware on performance

The primary measure of the efficiency of a 

multiprocessor must be based on how much gain in speed 

is obtained over a single processor machine. The 

efficiency of the system is decided by the ratio of 

actual gain in speed over the ideal maximum possible. 

Ideally an N processor machine should be N times faster 

than a single processor machine.

There are several factors that decide the 

performance of a multiprocessor. The three main factors

are-

1. The interprocessor link hardware must be

highly efficient for communication costs to be 

kept low;

2. An ample amount of parallelism must be

inherent in the problem to be solved in order to 

sustain parallel execution;

3. The software that is responsible for the

management of tasks and communication must be 

efficient.
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Our interprocessor link is provided by reasonably fast 

interface hardware based on shared memory. The 

interface is fast compared to serial or parallel 

input/output under program control. A normal memory 

read or write instruction takes four clock cycles. 

Since the interface introduce two wait states, one 

extra clock cycle is required to be added to the memory 

access timing. A MC68000 move memory to memory 

instruction for long data takes twenty clock cycles 

plus one extra clock cycle introduced by the interface. 

Below is an assembly language routine that is used to 

move a block of data from main memory to the interface.

loop MOVE.L (A0)+,(A1)+ 21 clock cycles

DBRA DO,loop 12 clock cycles

The transfer rate for long word data that can be 

achieved by the routine above is calculated below- 

Total clock cycles 33 

Total time (BMhz clock) 4.125 uS 

The transfer rate is l/4.125uS or 242.4 Kwords per 

second. The data transfer rate can be improved 

marginally by removing the wait state. A much faster 

data transfer rate can be achieved under direct memory 

access control. Assuming the memory cycle time is 

200ns, a single word move takes 400ns (total read and 

write times). The transfer rate is thus l/400ns or
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2.5Mwords per second. This transfer rate is highly 

desirable. Even though the transfer rate under program 

control is one tenth of that under dma control, the

speed is reasonably fast when compared to serial or 

parallel input/output lines. It can be concluded that 

the choice for the communication hardware does conform 

to the factor 1 described above, especially considering 

the low cost of the interface.

5.2.2 Effect of software on performance

It was mentioned in the introduction chapter that 

there are various ways in which parallelism can occur 

in a problem and the way the parallelism can be 

exploited. Divide and conquer is one method. The

reasons for directing the investigation towards divide 

and conquer are-

1. The interprocessor configuration was conceived 

on the idea of divide and conquer computation;

2. The possibility of realising a general purpose 

parallel machine. It has been reported by several 

researchers (2) (4) (57) that a divide and conquer

algorithm is capable of producing an exponential 

growth of parallelism in applicative program.

The software system developed is a kernel for a divide 

and conquer virtual machine. The kernel system seems 

capable of performing its logical function. Unavoidably 

there are overheads introduced by the system. The

sources of overhead are the setting up of the task and
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the communication between the processors. Incorporating 

a task scheduler in the kernel enables virtual task

redeployment of physical processors but introduces 

further load on the machine. At the virtual level, the 

spawning of subtasks is similar to invoking a function 

in a sequential processor. However, in the 

multiprocessor an elaborate kernel is essential to

manage the physical processor. Therefore a

multiprocessor such as the Bath system will not reach 

the level of efficiency of a single processor. Better 

efficiency can be achieved in a multiprocessor where 

the mapping of tasks to processors is on a one to one

basis. Such architectures are the binary tree

processors (55) and systolic processors (52). In binary 

tree processors there is less overhead involved because 

there is no necessity for a scheduler. The parent 

processor start the children processors by implicitly 

sending the instruction and data to the children

processors. The parent processor physically goes into a 

suspended state awaiting to be restarted by the 

children processors. Data structures such as the task 

descriptor is not required for maintaining the list of 

active and suspended task because the processor memory 

is exclusive to one task only.

It is highly desirable that all the component 

processors are evenly loaded and this is dependent on 

the task distribution mechanism. The distribution of 

tasks is handled dynamically by the system as follows.
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The idle processors request tasks from the busy 

processors, rather than the busy ones pushing the 

tasks. The local processor always has the highest 

priority over locally generated tasks, but if there is 

more than one task available on the stack it is 

guaranteed that the scheduler will honour any request 

from the neighbours. If there are enough parallel tasks 

available, the scheme will ensure that all the

processors are busy. The task distribution is

accomplished by the processors mutually cooperating 

among themselves without the need of a control 

processor. This is obviously important for an

asynchronous system.

The instructions are maintained on a stack. During 

a subdivision a number of instructions are generated 

and placed on the stack. All the instructions that are 

generated by a single subdivision process can be said 

to be contained within a subdivision freune. Parallel 

evaluation is guaranteed if some or all of the

instructions within a frame are consumed before the 

next frame is created. The evaluation is breadth first. 

When there is no more demand from neighbouring 

processors the local processor can only consume one

instruction each time from a frame before the next 

frame is created. This is in effect a depth first 

evaluation.

The cost of communication is dependent on the 

distance between the processors involved. The kernel
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takes care of this by ensuring that the communication 

can only occur between adjacent processors.

5 .2.3 Effect of interconnection topology on 

performance

From the experiments described in section 4.10, 

different processor configuration can affect the 

performance of the multiprocessor. It is not possible 

from the minimal result obtained in the experiments to 

extrapolate the result directly to the trivalent graph 

of maximal girth network. However an attempt will be 

made to analyse the network based from the experience 

gained from the simulation and the experiment on the 

actual hardware.

The idea of using the complex processor 

interconnection is to achieve even distribution of 

tasks among the processor. The maximum distribution of 

tasks will happen if there are enough outlets for the 

tasks to be dispersed. This condition is achieved if 

the number of ways the subdivision occur is less than 

the valency of the graph. In a girth g graph, all the 

processors will be loaded after g/2 levels of 

subdivision. Since all of the subtasks initially 

created are able to be dispersed, there will be none of 

the original subtasks remaining at the root processor. 

If the number of ways of subdivision is greater than 

the valency of the graph, the distribution of tasks 

will be less than ideal. Although the processors will
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still be saturated after g/2 levels of subdivision for 

a girth g graph, there will be fairly large tasks 

remaining at the root processor. Maximum dispersion 

should ideally occur after the initial subdivision 

because the subtasks created are potentially capable of 

sustaining localised parallelism longest. The worst 

situation can occur if the depth of subdivision is less 

than g/2. The processors at a distant of greater than 

the depth of subdivision will never obtain a task 

because communication can only occur between processors 

of unit distance away. As an example, this situation 

can occur with a 16 by 16 matrix multiplication on a 

girth 10 network. There are only three levels of

subdivision in the multiplication.

From the discussion presented above it can be seen 

that the trivalent graph network with maximal girth is 

not suitable for problems with the number of ways of 

subdivision greater than the valency of the graph. The 

analysis was based on a specific problem of matrix 

multiplication. In the case where the expression tree 

is less well defined as in the expression tree resulted 

from the execution of a reduction language (23) the

task distribution is less predictable because the 

number of tasks created for every level of subdivision 

is not constant.

If the tasks are allowed to migrate more than once 

from the source processor, the dispersal of the tasks

will not depend on the valency of the graph. However,
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this method of task distribution has the disadvantage 

of requiring the use of intermediate processors for 

communication. It is important that the initial 

subtasks created are fully consumed. It is probable 

that the use of complex interprocessor topology may not 

offer very much benefit (4l).

The discussion is by no means conclusive unless it 

is based on actual data obtained from experiments. The 

following section describes the necessary enhancement 

of the multiprocessor system in order to make further 

experiments possible.

5.3 System improvement

The Bath multiprocessor is essentially a test bed 

for exploring ideas on multiprocessors. However there 

are a few facilities both in hardware and software 

system that are lacking for it to be a suitable 

development system. The following subsections described 

the facilities that are desirable.

5.3.1 Hardware system enhancement

Further investigation needs to be carried out 

before a solid conclusion can be made regarding the 

efficiency of the interprocessor configuration and the 

multiprocessing kernel. As was previously mentioned, a 

trace of all the processors is useful. The way the 

tasks are distributed can be observed. In the 

experimental stage it is only feasible to build a
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multiprocessor with a small number of processors. The 

only way the behaviour of a large scale multiprocessor 

can be observed is by simulation. However if a 

comprehensive set of data is obtained from small scale 

multiprocessor, the behaviour of a large scale system 

can be extrapolated. To be able to do more experiments 

and gather more data requires a better system set up. 

Figure 5.1 shows a possible hardware configuration. A 

control processor is linked to all the node processors. 

The control processor can interrupt all the node 

processors simultaneously and also perform a two way 

conversation with the processors. A simple serial link 

is ample to establish communication between the control 

and a node processor. The control processor regularly 

sends out an interrupt which suspends the processing 

on all the node processors. This interrupt should be on 

the highest level of interrupt used. The control 

processor can interrogate the node processors in turn. 

The states of the processors are recorded by the 

control processor.

5 .3.2 Software development system

The software development system needs to be 

improved. Below is a proposal for improving the 

facilities on the multiprocessor system. Developing 

assembly language program is time consuming and 

laborious. Using high level languages(C, BCPL etc) 

which are normally used for writing operating system
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and other system software should reduce the effort 

tremendously. The negative point of using such 

languages is that they require some form of operating 

system running on the processor. A suitable development 

system could be provided by a high level language cross 

development system which only requires minimum run time 

environment. This is more advantageous than a resident 

system. The cross development system can be hosted by 

the control processor of section 5.3.1. The choice of 

language is not critical nor is it necessary to modify 

the language to incorporate parallel constructs. 

However the high level language should have facilities 

for programming interrupt. The run time environment 

should be kept to a minimum to ensure low overhead but 

should incorporate some form of error reporting 

facilities. Using the proposed hardware set up 

mentioned, the occurence of error on any of the node 

processors should be reported to the control processor 

immediately. The control processor action would then be 

to stop all node processors and notify the console. 

From the traces of the node processors previously 

recorded, the programmer can ascertain the cause of the 

problem and suitable action can be taken.

5.4 General purpose programming

The high level abstraction described in chapter 

four is ample for the purpose of defining simple test 

programs. A more complete programming language for the
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multiprocessor is necessary in order to investigate the 

behaviour of general purpose computing on the

multiprocessor. The computational model incorporated in 

the kernel should be able to support an applicative 

style or reduction language. The kernel however may 

require some modifications.

Applicative programs exhibit some degree of natural 

concurrency. This concurrency is derived from multiple 

evaluation of function arguments and the behaviour of 

an applicative program on a multiprocessor is safe

because there are no side effects. This form of

concurrency can be observed in an expression f( a,b ). 

When a and b are subexpressions, they can be evaluated 

in parallel. This form of concurrency of itself does

not generate an enormous amount of parallelism. Divide 

and conquer is one method of deriving the desired 

amount of parallelism and has been decribed elsewhere 

in this thesis. Another method is through the 

appropriate use of data structuring (3). A function can 

have a sequence of arguments. An apply-to-all operator 

maps the function to all of the arguments in the

sequence.

f » (  )( )( )
If the sequence is made up of a list of length n then

there should be n tasks generated. Further parallelism

can be generated if there are unevaluated

subexpressions in the sequence.

The existing kernel of the Bath multiprocessor
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incorporates a machine model that can support 

applicative style programming in a limited form. The 

present model supports divide and conquer evaluation on 

a single function. However it does not evaluate the 

arguments: the arguments are assume to be simple.

Task management relies on two mechanisms, the 

instruction and the task descriptor. The task 

descriptor represents a computational node. Execution 

of a program generates a tree of task descriptors. A 

task invokes subtasks by issuing instructions. An 

instruction contains the identity of the task that 

issues it and the data for the arguments. Since there 

is only one definition of function involved there is no 

necessity to have a separate field for the name of the 

function. The number of arguments is fixed. However the 

data part of the arguments is variable in size. In 

order to simplify the management of the instruction 

stack the data part is separated from the rest of the 

instruction. The data part is maintained in a separate 

heap space. The task descriptor contains the task 

housekeeping information and also the local data for 

computation. For a similar reason, the data part of the 

dynamic variables in the task descriptor is maintained 

in the heap space

To allow for general purpose applicative language 

like Lisp the only requirement of the execution model 

is the capability to support both primitive functions 

and user defined functions. A more dynamic structure is
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then necessary. The size of the instruction and the 

task descriptor are dependent on the function

definition. The need to reduce the arguments requires

an expression evaluator. The expression evaluator is 

called when a task is first started. The task can be 

suspended in the evaluator whenever there are 

subexpressions to be evaluated. The number of subtasks 

that can be invoked is dependent on the instruction. 

When all the subexpressions are evaluated the task is 

reactivated and the function applied.

5.5 Parallel Lisp system

The best way of defining a parallel Lisp system is 

to take a definition of a Lisp interpreter and identify 

where the parallelism can be derived. The main 

components of a Lisp interpreter are the evaluator and 

apply function. Below is a program in Lisp of a simple

Lisp evaluator derived from Winston (51).

(Def Eval (S Environment)

(Cond ((Atom S )

(Cond ( (Equal S T) T)

( (Equal S Nil) Nil)

((Numberp S ) S )

(T (Value S Environment))))

((Equal (CAR S) 'quote) (CADR s ))

((Equal (CAR S) 'Cond)

(Evalcond (CDR S) Environment))
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(T (Apply (Car* S)

(Mapcar ’(Lambda (X)

(Eval X

environment )) (Cdr S)) Environment))))

The EVAL function returns a value if the S expression 

presented to it is an atom or the quoted value if the S 

expression begins with a quote. EVALCOND is called if 

the S expression begins with a Cond. If the S 

expression does not belong to the above, EVAL evaluates 

the elements in the expression after the first from 

left to right. The expression with the arguments 

replaced by the appropriate evaluated value is passed 

to APPLY. The APPLY function uses the first element in 

the list to get the function name that will be applied 

to the evaluated arguments. The scanning of arguments 

from left to right is done by iteration using MAPCAR. 

In the MAPCAR expression EVAL recurses on itself. The 

iteration can be unfolded and a simultaneous recursive

call on EVAL performed. There are two arguments to

EVAL, S and ENVIRONMENT. The structure of the EVAL 

function is similar to the parallel matrix

multiplication function described in section (4.10.2). 

However for EVAL, it can create an arbitrary number of 

subtasks. The discussion presented above shows that a

Lisp machine can be incorporated into the kernel of the 

Bath machine.

In Lisp both program and data are constructed using 

a list of linked cells. Tho problem with linked cells
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is that transferring a structure from one processor to 

another is not efficient. The structure has to be 

redrawn in a compact form within a linear block before 

it can be transmitted. In a large structure the number 

of indirections needed to redraw it can be large, thus 

making the process inefficient. At the receiving 

processor a read function is required to rebuild the 

list which further reduces the efficiency. In a 

multiprocessor where there is a global shared memory in 

addition to the local communication path (2) this would 

not matter very much. A structure is passed from one 

processor to another just by passing the pointer to it. 

A possible representation for the expression can be 

constructed using a linear string. Moving a string is 

more efficient in a multiprocessor without global 

shared memory. However there is also a disadvantage 

with string representation. An operation on a list 

necessitates copying part or whole of the list. For 

example a Cons operation on list A and B requires 

reserving a separate memory space where the list A.B 

will be written. The copying operation in itself is 

time consuming and allocating an arbitrary size memory 

space can be very demanding on memory management.

Memory space that is no longer required must be 

reuseable in order to prevent memory exhaustion. In a 

Lisp implementation on a uniprocessor garbage 

collection is employed to recover used cells. If linked 

cells were employed for program representation the same
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garbage collection scheme for uniprocessor

implementation can be used. Let us look at how memory 

management for string representation can be done. As 

was already mentioned recovering an arbitrary size 

memory space is difficult. Allocation of memory will be 

easier if the memory space is allocated in fixed 

blocks. If the space required occupies more that one 

block, further blocks can be allocated and chained to 

the previous block.

Memory management is also concerned with the

allocation of task descriptors. The data receptors for

the subtasks are held in the task descriptor. As 

previously mentioned the number of subtasks created is 

not fixed. The number of data receptors required is 

unknown because it depends on the current subexpression 

being evaluated. The task descriptor can be allocated a 

fixed size large enough for any forseeable demand. 

Alternatively the size of the task descriptor varies 

dynamically with requirement. The choice between the

two methods very much depends on whether wastage of 

memory is more favourable than a complex and

sophisticated memory management scheme which is

difficult to implement.

Concurrent evaluation of the arguments does not

differentiate between fine grain and large grain 

parallelism. It is not justifiable to make a simple 

subexpression into a parallel task. For example if the 

subexpression Is (plus 2 3), the cost of setting up a
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parallel task is large when compared to the evaluation 

of the expression. Therefore in order to maintain a 

high level of efficiency, only computationally large 

subexpression should be made into parallel tasks. The 

capability to differentiate between small and large 

subexpression must be incorporated into the expression 

evaluator. Whether the differentiation between

subexpression is automatic or under programmers* 

control depends on several factors. For the scheduling 

to be automatic, the evaluator must be given criteria 

to decide whether a subexpression is small or large. 

The amount of computations associated with a function 

depends on the function definition and the size of its 

arguments. However a long subexpression does not 

necessarily represent a large computation as in the 

case of finding the *car* of a fairly long list. 

Programming this facility into the evaluator will 

introduce an extra overhead to the system. It is 

probable that this extra overhead is not warranted. 

Parallel scheduling under programmers* control can be 

done by annotating subexpressions. It is simple for the 

evaluator to recognise an annotated subexpression and 

this is more efficient. The annotation does not alter 

the structure of the language significantly but it does 

make the programmer aware that he or she is programming 

a multiprocessor. One of the ideas behind using an 

applicative language for multiprocessor is it makes the 

presence of the multiple processing elements
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transparent. Therefore a program written for a 

sequential machine can be run on a multiprocessor 

without modification and the same result expected. 

These goodies must be weighted against efficiency and 

the first impression is parallel scheduling should be 

made under programmers* control. What was not apparent 

before is that the speed of the program is very 

dependent on how good the programmer is in selecting

the parallel functions. The same program can have very 

different execution times with different annotations.

The discussion above described a parallel Lisp 

interpreter that is based on applicative order 

reduction. A compiler that compiles Lisp program into 

parallel executable codes exploits parallelism by first 

performing a data flow analysis on the program (3&). 

The job of deciding whether a function should be made 

into a parallel task or not can be programmed into the 

compiler. Since the analysis is done at compile time

the run time task scheduler can be made more efficient.

5.6 Conclusion

From the discussions in the proceeding paragraphs, 

it can be summarised that there are two main points 

that have to be considered in order to implement an

applicative language efficiently on a multiprocessor. 

The first is program representation. In the author*s

opinion, the absence of a global memory should favour 

string representation. With string representation, the
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speed of moving the string from one part of memory to 

another can be increased by using a dedicated direct 

memory access device that controls the memory to memory 

move operations. The same hardware is equally adaptable 

for controlling the communication through the shared 

memory interface.

The problem of concurrency control is more 

complicated. Although in the previous discussion two 

alternative methods were offered, it is not possible to 

form any opinion on which approach should be adopted. A 

more detailed investigation possibly by experimentation 

is required.

Implementing applicative languages on the Bath 

multiprocessor is not limited to Lisp only. The model 

incorporated into the multiprocessor kernel should be 

equally applicable to other applicative language like 

SASL, HOPE and Backus* functional programming system 

(FP). This make the potential of the Bath machine 

comparable to the ALICE machine. However there are 

fundamental differences. In the Bath machine the 

proposed applicative proramming model is emulated by a 

conventional von Neumann machine. Various points were 

discussed on the ways of making the machine efficient. 

However there is still room for improvement. Better 

performance could possibly be attained if the virtual 

machine can be supported directly by hardware emulated 

at microcode level. The obvious advantage of emulating 

the model by microcode is that the overhead is reduced
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thus making computation at fine grain level more 

attractive. This can be seen in the dataflow machine of 

Gurd et al (20) which is implemented using bit slice 

microprocessors.

This research has been an exercise in building a 

multiprocessor. Although the stage of a useable system 

was not reached, there are a few unknowns that can be 

answered as a result of this research. Towards the 

second half of this chapter a design of a general 

purpose machine was proposed. Also, the foreseeable 

problems associated with the implementation of such a 

system were discussed. Perhaps this is the clearest 

identifiable achievement of this research which can 

pave the way for further development.

Despite the low budget and minute research team, it 

has been shown that a parallel processing system can be 

constructed from standard board level processes with a 

single board efficient communication system. This 

hardware has been used to investigate one software 

methodology and the experience of this experiment has 

allowed a number of suggestions to be made for an 

incremental improvement of the system.
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Appendix A 

m c 68000 signals

The input and output signals are functionally 

organised into groups. Figure A . 1 shows the various 

signals and their respective group. Basically the 

signals of the MC68000 are the same as other 

microprocessors which comprise of the address bus, data 

bus and the control bus. The MC68000 provides more 

signals in the control group compared to an eight bit 

microprocessor.

Address bus

The address bus is 23 bits (A1 - A23). The bus is 

unidirectional and can be tri-stated. The address bus 

supplies the address in a memory reference operation. 

During interrupt the address line A1,A2 and A3 signify 

the current interrupt level being processed. Address 

lines A4 to A23 are set to logic high.

Data bus

The data bus is 16 bits wide. The bus is

bidirectional and can be tri-stated. The data bus can

read or write in either word or byte length. Data lines

DO - D7 are used to supply a vector number i n  the

interrupt acknowledge cycle.
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Control bus

The control bus can be further classified into 

various functional subgroups. The various subgroups 

that form the control functions are described below:

Asynchronous bus control

The m c 68000 allows asynchronous data transfers. The 

following signals control the asynchronous transfer: 

address strobe, read/write, upper and lower data 

strobes and data transfer acknowledge.

Address Strobe (AS)

This signal is use to indicate to the memory device 

that there is a valid address on the address bus. This 

is necessary to differentiate the interrupt cycle which 

uses the address line A1,A2 and A3 to indicate the 

interrupt level.

Read/Write (R/W)

The read/write signal indicates the direction of 

the transfer.

Upper and Lower Data strobes (UDS,LDS)

The mc68000 allows data transfer at word and byte 

levels. With a byte transfer it is necessary to specify 

whether the transfer is from the lower byte or the 

upper byte. The conditions of the UDS and LDS signals 

in relation to the transfer is as follows:
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UDS

1

LDS

1

R/W

X DO - D15 invalid

0 0 1 DO - D15 read

1 0 1 DO - D7 read

0 1 1 D8 - D15 read

0 0 0 DO - D15 written

1 0 0 DO - D7 written

0 1 0 D8 - D15 written

Data Transfer Acknowledge (DTACK)

The DTACK signal is an input. The assertion of

DTACK signals the processor that the data transfer is

completed. During a read cycle DTACK causes the data to

be read and the bus cycle to terminate. DTACK also 

causes the write cycle to terminate.

Bus Arbitration Control

There are three signals that make up this group. 

They are Bus Request(BR), Bus Grant(BG) and Bus Grant

Acknowledge(BGACK). The functions of these signals is 

to coordinate the release of bus control by the 

processor to device that can be the bus master.

Interrupt Control (IPL O ,IPLl,I P L 2 )

These are encoded inputs for identifying the 

priority levels of the interrupting device.
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System Control

There are three input lines that form the system

control. The Bus Error(BERR) input is use to signal an 

error condition to the processor. The error condition 

could be raised by the following condition;

1. nonresponding device

2. failure to acquire interrupt vector

3. illegal access request as determined by a 

memory management unit.

The reset(RESET) input is a bidirectional signal 

line. The application of the reset signal externally 

causes the processor to reset its internal state. The 

execution of a reset instruction internally generates 

the reset signal which can be used to reset external 

device.

The Halt(HALT) signal is also a bidirectional line. 

The assertion of this signal externally will cause the 

processor to stop at the completion of the current bus 

cycle. The halt signal is generated internally when the 

processor stopped due to a double bus fault. In the 

halted state, all the control signals are inactive and 

all tri-state lines in the high impedance state.

M6800 Peripheral Control

These control signals enables the MC68000 to be 

used with synchronous M6800 peripheral devices.

E nable(E )

The enable signal is common to all M6800 peripheral 

d evices.
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Valid Peripheral Address(VPA)

This input is used to Indicate to the processor 

that the current memory of device addressed should be 

treated as M6800 peripherals. This input is also used 

to generate automatic vectoring.

Valid Memory Address(VMA)

This is an output and is used to indicate to the 

M6800 peripheral that there is a valid address and the 

processor is synchronised to the enable signal.

Processor Status (FCO .FCl.FC2)

These are output lines and are used to indicate the

processor state The function code outputs are only

valid when address strobe is true. The various

processor states are as follows:

FC2 FCl FCO Cycle Type

0 0 0 -

0 0 1 User data

0 1 0 User program

0 1 1 -

1 0 0 -

1 0 1 Supervisor data

1 1 0 Supervisor program

1 1 1 Interrupt acknowledge

- indicates undefined or reserved. 

Clock(CLK)

The clock input is TTL compatible.
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m c 68000 bus operations

All bus operations are synchronised to the

processor clock states. The clock is divided internally 

to generate eight states SO to S7. The timings of the 

signals are linked to these states.

Read cycle

The processor receives data from memory or 

peripheral during a read cycle. A read instruction can 

specify the size of data to be byte, word or long word. 

The condition on the lower and upper data strobe 

signals indicate to the memory or peripheral the size

of the transfer. If the instruction specifies a byte

operation either data strobe but not both is asserted.

This determine whether the upper or lower byte is to be

read. If the instruction specifies a word or long word 

operation both data strobes are asserted thus reading

both bytes simultaneously. In long word transfer two 

successive memory read operations are done.

The sequence of actions involved in a memory read

operation is now described . The processor which acts 

as the bus master generates the following signals:

1. Set R/W to read;

2. Place function code on FC0-FC2;

3. Place address on A1-A3:

4. Assert address strobe;

5. Assert upper and lower data strobes

accordingly.
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The memory or peripheral actions are as follows:

1. Decode address;

2. Place data on data bus;

3. Assert data transfer acknowledge(D T A C K ) .

On recognising the assertion of DTACK the processor 

initiates to acquire the data. The data is latched and 

the data and address strobes negated. The negation of 

the data and address strobes signals the memory or 

peripheral to terminate the cycle. In state SO the 

address bus is in a high impedance state. Lines FC0-FC2 

generate the appropriate code according to the address 

space that is going to be accessed. The R/W line is set 

high indicating a read operation. In state SI the 

address bus outputs a valid address.

In state S2, the address strobe(AS) and the 

appropriate data strobes are asserted. The memory or 

peripheral device is selected in this state. The device 

places data on the data bus and at the same time assert

DTACK. If DTACK is not asserted before the set up time 

at the end of state S4, the wait state is subsituted 

for states S5 and S6.

The address and data strobes are negated at the end 

of state S7- The memory or peripheral device is 

deselected. The address bus, R/W and function code 

lines are held valid through state S7 to ensure proper 

operation.
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Write cycle

The sequence of actions for a write cycle is 

similar in some respect to that of the read cycle. 

However there are a few disimilarities as described 

below. The R/W line is set low to indicate a write 

operation. The R/W line is pulled low in state S2 and 

will remain in this state through to the end of state

S 7 . The data strobes are asserted in state S4. The data 

that is to be written to memory is placed on the data 

bus one state earlier in state S3.

Read Modify Write Cycle

In read modify write cycle, a byte read operation 

is followed by a write operation. The difference

between this cycle and a normal read and write cycle is 

that the bus is not released after the read operation. 

This is done by the processor holding the address 

strobe asserted.

Interrupt processing

The m c 68000 can be in either of the following 

states: normal, exception or halted. Interrupts, trap

instructions and other exceptional conditions can cause 

the m c 68000 to go into exception state. The MC68000

provides seven levels of interrupt priorities. An 

unlimited number of interrupt sources can be serviced 

within an interrupt priority level. The interrupt 

priority levels are numbered from one to seven. Level

seven is the highest priority. The status register
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contains a three bi t. mask which indicates the current 

priority level. Only interrupts of priority level 

higher than the current level are serviced. An

interrupt is made by encoding the required interrupt

priority level on the interrupt lines. On arrival of an

interrupt request, the interrupt is not serviced

immediately but made pending. The interrupt is detected 

in between instruction execution. The interrupt request 

is ignored if the requested interrupt has the same or 

lower priority than the present processor state. A

pending interrupt request which has a higher priority 

level will start an exception processing sequence. The 

processor responds by saving the status register on the 

stack, setting the processor state to supervisor, 

setting the trace mode to off and updating the

interrupt priority level to the interrupt level being 

serviced. The processor acknowledges the interrupt to 

the external device by sending out an interrupt

acknowledge code on the FC0-FC2 lines and the interrupt 

level being processed on A1,A2,A3 lines. The external

device must respond by asserting DTACK or VPA. If ÜTÂCK 

is asserted, the external device must also supply the 

interrupt vector on the data bus. If VPA is asserted, 

the vector is generated Internally by the processor. If 

the bus error line is asserted, 'the processor will 

assume that a spurious interrupt has occur. The

processor jumps to the location defined by the

spurious interrupt vector for error processing.
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