
Graduate Theses, Dissertations, and Problem Reports

2013

On the Design, Analysis, and Implementation of Algorithms for On the Design, Analysis, and Implementation of Algorithms for

Selected Problems in Graphs and Networks Selected Problems in Graphs and Networks

Matthew D. Williamson
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Williamson, Matthew D., "On the Design, Analysis, and Implementation of Algorithms for Selected
Problems in Graphs and Networks" (2013). Graduate Theses, Dissertations, and Problem Reports. 312.
https://researchrepository.wvu.edu/etd/312

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/312?utm_source=researchrepository.wvu.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

On the Design, Analysis, and Implementation of

Algorithms for Selected Problems in Graphs and

Networks

by

Matthew D. Williamson

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Elaine Eschen, Ph.D.
Hong-Jian Lai, Ph.D.
James Mooney, Ph.D.

Arun Ross, Ph.D.
K. Subramani, Ph.D., Chair

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2013

Keywords: Graph Theory, Algorithms, Minimum Spanning Tree Verification, Negative Cost
Cycle Detection, Undirected Graphs, Girth

Copyright 2013 Matthew D. Williamson

Abstract

On the Design, Analysis, and Implementation of Algorithms for Selected Problems in
Graphs and Networks

by

Matthew D. Williamson
Doctor of Philosophy in Computer Science

West Virginia University

This thesis studies three problems in network optimization, viz., the minimum spanning tree
verification (MSTV) problem, the undirected negative cost cycle detection (UNCCD) problem, and
the negative cost girth (NCG) problem. These problems find applications in several domains in-
cluding program verification, proof theory, real-time scheduling, social networking, and operations
research.

The MSTV problem is defined as follows: Given an undirected graph G = (V,E) and a
spanning tree T , is T a minimum spanning tree of G? We focus on the case where the number of
distinct edge weights is bounded. Using a bucketed data structure to organize the edge weights, we
present an efficient algorithm for the MSTV problem, which runs in O(|E|+ |V | ·K) time, where
K is the number of distinct edge weights. When K is a fixed constant, this algorithm runs in linear
time. We also profile our MSTV algorithm with the current fastest known MSTV implementation.
Our results demonstrate the superiority of our algorithm when K ≤ 24.

The UNCCD problem is defined as follows: Given an undirected graph G = (V,E) with
arbitrarily weighted edges, does G contain a negative cost cycle? We discuss two polynomial time
algorithms for solving the UNCCD problem: the b-matching approach and the T -join approach.
We obtain new results for the case where the edge costs are integers in the range {−K · ·K},
where K is a positive constant. We also provide the first extensive empirical study that profiles the
discussed UNCCD algorithms for various graph types, sizes, and experiments.

The NCG problem is defined as follows: Given a directed graph G = (V,E) with arbitrarily
weighted edges, find the length, or number of edges, of the negative cost cycle having the least
number of edges. We discuss three strongly polynomial NCG algorithms. The first NCG algorithm
is known as the matrix multiplication approach in the literature. We present two new NCG
algorithms that are asymptotically and empirically superior to the matrix multiplication approach
for sparse graphs. We also provide a parallel implementation of the matrix multiplication approach
that runs in polylogarithmic parallel time using a polynomial number of processors. We include an
implementation profile to demonstrate the efficiency of the parallel implementation as we increase
the graph size and number of processors. We also present an NCG algorithm for planar graphs
that is asymptotically faster than the fastest topology-oblivious algorithm when restricted to planar
graphs.

iii

Acknowledgements

First and foremost, I thank my advisor, Professor K. Subramani, for introducing me to all

the problems stated in this thesis and providing insight and feedback as I worked on these

problems. Without his encouragement and support, I would not be where I am today. I appreciate

the assistance from Dr. Pavlos Eirinakis for his involvement with implementing the UNCCD

algorithms. I also thank Dr. Kamesh Madduri for his assistance with troubleshooting the NCG

implementations, especially the parallel implementation. I am also indebted to Torben Hagerup

and Valerie King for their discussions and feedback concerning our MSTV algorithm. Finally, I

extend my gratitude towards my parents, Daniel and Pamela Williamson, and my brother, Aaron

Williamson, for their love, support, and encouragement.

I also want to thank several agencies for supporting my research. First, I thank the West

Virginia NASA Space Grant Consortium for its financial support through a NASA Grant and

Cooperative Agreement Number NNX10AK62H. I also thank the National Science Foundation

for its assistance with supplying the hardware required for our empirical study for the parallel

NCG implementation through TeraGrid resources provided by NCSA under grant number TG-

CCR100036. I also extend my gratitude towards the Lane Department of Computer Science and

Electrical Engineering for financially supporting me through graduate teaching assistantships.

Finally, I thank the National Science Foundation and Air Force of Scientific Research for its

financial support through awards Awards CNS-0849735, CCF-0827397, and FA9550-12-1-0199.

iv

Contents

Acknowledgements iii

List of Figures viii

List of Tables xii

List of Algorithms xiii

1 Statement of Contributions 1
1.1 The MSTV Problem . 1
1.2 The UNCCD Problem . 2
1.3 The NCG Problem . 3
1.4 Overview . 4

I The Minimum Spanning Tree Verification Problem 6

2 Introduction 7
2.1 Preliminaries and Notation . 8

3 The MST Construction Algorithm 10
3.1 Related Work . 10
3.2 The Edge-Bucket Algorithm . 11

3.2.1 Resource Analysis . 12
3.2.2 Correctness . 13

3.3 Example of the Algorithm . 15

4 The MSTV Algorithm 19
4.1 Related Work . 20
4.2 The DFS-Verify Algorithm . 22

4.2.1 Borůvka’s Algorithm . 22
4.2.2 The Verification Algorithm . 24
4.2.3 Resource Analysis . 26
4.2.4 Correctness . 26

4.3 Example of the Algorithm . 29

CONTENTS v

4.4 Empirical Study . 31
4.4.1 Experimental Setup . 32

4.5 Results and Analysis . 33
4.5.1 Graph Size . 34
4.5.2 Distinct Edge Weights . 37
4.5.3 “No” Instances for Small K . 38
4.5.4 “No” Instances for Large K . 46

II The Undirected Negative Cost Cycle Detection Problem 50

5 Introduction 51
5.1 Preliminaries and Notation . 53

6 UNCCD Algorithms 56
6.1 The b-matching Approach . 56

6.1.1 Preliminaries . 56
6.1.2 UNCCD Algorithm based on b-matching 58

6.2 The T -join Approach . 67
6.2.1 Preliminaries . 67
6.2.2 UNCCD Algorithm based on T -join . 68

6.3 Improved UNCCD Algorithms for Integer Edge Costs 73
6.3.1 The Improved b-matching Approach . 74
6.3.2 The Improved T -join Approach . 75

7 Implementation Profile for the UNCCD Problem 77
7.1 Implemented Algorithms . 77
7.2 Graph Families . 79
7.3 Experimental Setup . 80
7.4 Results and Analysis . 81

7.4.1 Number of Vertices . 81
7.4.2 Number of Edges . 84
7.4.3 Size of K . 88
7.4.4 Negative Cost Cycles . 92

III The Negative Cost Girth Problem 98

8 Introduction 99
8.1 Preliminaries and Notation . 101

9 Improved NCG Algorithms for General Networks 103
9.1 The Edge-Progress Algorithm . 103

9.1.1 Resource Analysis . 106
9.1.2 Correctness . 106
9.1.3 Example of the Edge-Progress Algorithm 107

CONTENTS vi

9.2 The Edge-Relax Algorithm . 109
9.2.1 Resource Analysis . 111
9.2.2 Correctness . 112
9.2.3 Example of the Edge-Relax Algorithm 116

9.3 Empirical Study . 117
9.3.1 Experimental Setup . 119
9.3.2 Results and Analysis . 120

10 A Parallel Implementation for the NCG Problem 130
10.1 Preliminaries . 130

10.1.1 Model of Computation . 131
10.1.2 Definitions . 131

10.2 Related Work . 132
10.3 The Parallel Implementation . 133

10.3.1 Resource Analysis . 135
10.3.2 Correctness . 137

10.4 Empirical Study . 138
10.4.1 MPI Implementation . 138
10.4.2 Experimental Setup . 139

10.5 Results and Analysis . 141
10.5.1 Performance Results . 141

11 The NCG Algorithm for Planar Networks 150
11.1 Related Work . 150

11.1.1 Shortest Paths in Planar Networks . 151
11.2 Single Vertex Negative Cost Girth . 153

11.2.1 Resource Analysis . 155
11.2.2 Correctness . 156

11.3 Negative Cost Girth in Planar Networks . 156
11.3.1 Planar Network Decomposition . 157
11.3.2 Negative Cost Girth Algorithm . 159

12 Conclusions and Future Work 166
12.1 The MSTV Problem . 166
12.2 The UNCCD Problem . 167
12.3 The NCG Problem . 167
12.4 Future Work . 169

A A Linear Time Version of Dijkstra’s Algorithm 171
A.1 Formal Problem Statement . 171
A.2 Dijkstra’s Algorithm in Linear Time . 172

A.2.1 Resource Analysis . 173
A.2.2 Correctness . 175

CONTENTS vii

B The Matrix Multiplication Approach 176
B.1 Formal Problem Statement . 176
B.2 NCG Algorithm Based on Matrix Multiplication 176

B.2.1 Resource Analysis . 177
B.2.2 Correctness . 179

References 180

viii

List of Figures

2.1 An MST of a connected graph. 7
2.2 Example of a graph with two distinct edge weights. (a) is the graph G, and (b) is

the MST of G. 9

3.1 Example of the Edge-Bucket algorithm. Initial graph G and spanning tree T . . . 15
3.2 Example of the Edge-Bucket algorithm. E1(S) = {esb, eba} with

CurrentEdge(1) = eba, and E2(S) = {esa, ebc} with CurrentEdge(2) = esa. . 16
3.3 Example of the Edge-Bucket algorithm. E1(S) = {esb, eba, eac} with

CurrentEdge(1) = eac, and E2(S) = {esa, ebc} with CurrentEdge(2) = ebc. . 17
3.4 Example of the Edge-Bucket algorithm. E1(S) = {esb, eba, eac} with

CurrentEdge(1) = eac, and E2(S) = {esa, ebc} with CurrentEdge(2) = ebc. . 18

4.1 Example of Borůvka’s algorithm. Graph G and tree T with only the vertices. . . 23
4.2 Example of Borůvka’s algorithm. Graph G and tree T after the first Borůvka phase. 23
4.3 Example of Borůvka’s algorithm. Graph G and tree T after the second Borůvka

phase. 23
4.4 Example of the DFS-Verify algorithm. (a) is the graph G. (b) is the spanning tree T . 29
4.5 Example of the DFS-Verify algorithm. After the first contraction, (a) is the

contracted tree T , and (b) is graph G∗. 30
4.6 Example of the DFS-Verify algorithm. After the second contraction, (a) is the

contracted tree T , and (b) is graph G∗. 31
4.7 MSTV performance for sparse graphs as the number of vertices is varied and K = 4. 34
4.8 MSTV performance for dense graphs as the number of vertices is varied and K = 4. 35
4.9 MSTV performance for long mesh graphs as the number of vertices is varied and

K = 4. 35
4.10 MSTV performance for square mesh graphs as the number of vertices is varied

and K = 4. 37
4.11 MSTV performance for sparse graphs with 1 million vertices as the value of K is

varied. 38
4.12 MSTV performance for dense graphs with 50000 vertices as the value of K is

varied. 39
4.13 MSTV performance for long mesh graphs with 1 million vertices as the value of

K is varied. 39

LIST OF FIGURES ix

4.14 MSTV performance for square mesh graphs with 1 million vertices as the value
of K is varied. 42

4.15 MSTV performance for sparse graphs with 1 million vertices as the number of
incorrect edges is varied and K = 4d. 43

4.16 MSTV performance for dense graphs with 50000 vertices as the number of incor-
rect edges is varied and K = 4. 43

4.17 MSTV performance for long mesh graphs with 1 million vertices as the number
of incorrect edges is varied and K = 4. 44

4.18 MSTV performance for square mesh graphs with 1 million vertices as the number
of incorrect edges is varied and K = 4. 44

4.19 MSTV performance for sparse graphs with 1 million vertices as the number of
incorrect edges is varied and K = 20d. 46

4.20 MSTV performance for dense graphs with 50000 vertices as the number of incor-
rect edges is varied and K = 20. 47

4.21 MSTV performance for long mesh graphs with 1 million vertices as the number
of incorrect edges is varied and K = 20. 47

4.22 MSTV performance for square mesh graphs with 1 million vertices as the number
of incorrect edges is varied and K = 20. 49

5.1 An example of a negative cost cycle. (a) is the graph, and (b) is a negative cost
cycle of the graph. 51

5.2 The problem with transforming an undirected edge into two directed edges. (a) is
the undirected edge, and (b) is the transformed directed edge. 52

5.3 An example of subgraphs. (a) is the graph G. (b) is a subgraph H . (c) is an
induced subgraph H ′ = G[VH′]. 54

5.4 An example of the metric closure. (a) is the graph G, and (b) is a the metric
closure G′. 55

6.1 Examples of b-matchings and perfect matchings. (a) is an undirected graph G. (b)
is a perfect b-matching in G, where ba = 1, bb = 2, bc = 2, and bd = 3. (c) is a
perfect 2-matching in G. (d) and (e) are perfect matchings in G. 58

6.2 An example of the b-matching approach. (a) is the initial graph G. (b) is the
resulting graph G1 after the first transformation. 59

6.3 An example of the b-matching approach. The resulting graph G2 after the second
transformation. 60

6.4 An example of the b-matching approach. The resulting graph G′ after the third
transformation. 61

6.5 An example of the b-matching approach. The minimum weight perfect matching M . 62
6.6 Examples of a T -join. (a) is the undirected graph G. (b) is a T1-join, where

T1 = {c, d} and J1 = {ecd}. (c) is also a T1-join, where T1 = {c, d} and
J2 = {ebd, ebc}. 68

6.7 An example of the T -join approach. (a) is the initial graph G. (b) is the modified
graph Gd. 70

6.8 An example of the T -join approach. (a) is the metric closure Ḡd. (b) is the induced
subgraph Ḡd[T

−]. 70

LIST OF FIGURES x

7.1 Performance of UNCCD algorithms for random graphs as the number of vertices
is varied. 82

7.2 Performance of UNCCD algorithms for layered torus graphs as the number of
vertices is varied. 83

7.3 Performance of UNCCD algorithms for square torus graphs as the number of
vertices is varied. 83

7.4 Performance of UNCCD algorithms for random graphs as the number of edges is
varied. 86

7.5 Performance of UNCCD algorithms for layered torus graphs as the number of
edges is varied. 87

7.6 Performance of UNCCD algorithms for square torus graphs as the number of
edges is varied. 88

7.7 Performance of UNCCD algorithms for random graphs as the size of K is varied. 90
7.8 Performance of UNCCD algorithms for layered torus graphs as the size of K is

varied. 91
7.9 Performance of UNCCD algorithms for square torus graphs as the size of K is

varied. 91
7.10 Performance of UNCCD algorithms for random graphs as minimum edge cost is

varied. 94
7.11 Performance of UNCCD algorithms for layered torus graphs as the number and

size of negative cost cycles are varied. 95
7.12 Performance of UNCCD algorithms for square torus graphs as the number and

size of negative cost cycles are varied. 96

8.1 Girth examples. The network in (a) has girth 4, while the network in (b) has girth 3.101
8.2 Negative cost girth examples. Both networks have a negative cost girth 4. 102

9.1 Example of the Adjacency List using Incoming Edges 104
9.2 Example of the Edge-Progress algorithm. Initial network G. 108
9.3 Example of the Edge-Progress algorithm. NCG is 3. 108
9.4 Proof of Theorem 9.2.1. Cycle C, where d = a. 113
9.5 Proof of Theorem 9.2.1. Cycle C, where d = b. 114
9.6 Proof of Theorem 9.2.1. Cycle C, where d comes after a but before b. 115
9.7 Proof of Theorem 9.2.1. Cycle C, where d comes after b. 115
9.8 Proof of Theorem 9.2.1. Cycle C, where d comes before a. 116
9.9 Example of the Edge-Relax algorithm. Initial network G. 117
9.10 Example of the Edge-Relax algorithm. NCG is 3. 118
9.11 NCG performance for a sparse random graph as the size of the graph is varied and

k = 100. 120
9.12 NCG performance for a sparse random graph (100 vertices, 400 edges) as the

value of k is varied. 121
9.13 NCG performance for a sparse random graph (250 vertices, 1000 edges) as the

value of k is varied. 122
9.14 NCG performance for a sparse random graph (500 vertices, 2000 edges) as the

value of k is varied. 122

LIST OF FIGURES xi

9.15 NCG performance for a sparse random graph (750 vertices, 3000 edges) as the
value of k is varied. 123

9.16 NCG performance for a dense random graphs as the size of the graph is varied
and k = 100. 125

9.17 NCG performance for a dense random graph (100 vertices, 9000 edges) as the
value of k is varied. 126

9.18 NCG performance for a dense random graph (250 vertices, 56250 edges) as the
value of k is varied. 127

9.19 NCG performance for a dense random graph (500 vertices, 225000 edges) as the
value of k is varied. 127

9.20 NCG performance for a dense random graph (750 vertices, 506250 edges) as the
value of k is varied. 128

10.1 NCG performance for sparse random graphs as the size of the graph is varied,
k = 0.50 · n. 142

10.2 NCG performance for sparse random graphs (128 vertices, 512 edges) as the value
of k and the number of processors are varied. 143

10.3 NCG performance for sparse random graphs (256 vertices, 1024 edges) as the
value of k and the number of processors are varied. 143

10.4 NCG performance for sparse random graphs (512 vertices, 2048 edges) as the
value of k and the number of processors are varied. 144

10.5 NCG performance for sparse random graphs (1024 vertices, 4096 edges) as the
value of k and the number of processors are varied. 145

10.6 Speedup performance for sparse random graphs (128 vertices, 512 edges) as the
value of k and the number of processors are varied. 147

10.7 Speedup performance for sparse random graphs (256 vertices, 1024 edges) as the
value of k and the number of processors are varied. 147

10.8 Speedup performance for sparse random graphs (512 vertices, 2048 edges) as the
value of k and the number of processors are varied. 148

10.9 Speedup performance for sparse random graphs (1024 vertices, 4096 edges) as
the value of k and the number of processors are varied. 149

11.1 Planar NCG Algorithm: At least two vertices in Si must be in the NCG. 160

A.1 Example of a graph with 2 distinct edge costs. 172

xii

List of Tables

4.1 Example of the DFS-Verify algorithm. DFS Array A after the first DFS. 30
4.2 Example of the DFS-Verify algorithm. DFS Array A after the second DFS. . . . 30
4.3 Experiment Results for Graph Size and K = 4 (in Milliseconds) 36
4.4 Experiment Results for Distinct Edge Weights in Random Graphs (in Milliseconds) 40
4.5 Experiment Results for Distinct Edge Weights in Mesh Graphs (in Milliseconds) 41
4.6 Experiment Results for Incorrect Edges and K = 4 (in Milliseconds) 45
4.7 Experiment Results for Incorrect Edges and K = 20 (in Milliseconds) 48

7.1 Negative Cost Cycle Categories . 80
7.2 Experiment Results for Number of Vertices (in Seconds) 85
7.3 Experiment Results for Number of Edges (in Seconds) 89
7.4 Experiment Results for Size K (in Seconds) . 93
7.5 Experiment Results for Negative Cost Cycles in Random Graphs (in Seconds) . . 97
7.6 Experiment Results for Negative Cost Cycles in Torus Graphs (in Seconds) . . . 97

9.1 Example of the Edge-Progress algorithm. Initialize F1. 107
9.2 Example of the Edge-Progress algorithm. Matrix F2. 108
9.3 Example of the Edge-Progress algorithm. Matrix F3. 109
9.4 Example of the Edge-Relax algorithm. Matrix A. 117
9.5 Example of the Edge-Relax algorithm. Matrix D(1)−. 118
9.6 Example of the Edge-Relax algorithm. Matrix D(2)−. 118
9.7 Example of the Edge-Relax algorithm. Matrix D(3)−. 118
9.8 Experiment Results for Sparse Networks (in Seconds) 124
9.9 Experiment Results for Dense Networks (in Seconds) 129

10.1 Experiment Results for Parallel NCG Implementation (in Seconds) 145
10.2 Percentage of execution time communicating with processors 146

xiii

List of Algorithms

3.1 MST Algorithm: Initialization . 13
3.2 MST Algorithm: EDGE-BUCKET . 14
3.3 MST Algorithm: Update . 14

4.1 MSTV Algorithm: Initialization . 25
4.2 MSTV Algorithm: DFS-VERIFY . 25
4.3 MSTV Algorithm: DFS . 26

6.1 UNCCD Algorithm: b-MATCHING . 63
6.2 UNCCD Algorithm: T -JOIN . 71

9.1 NCG Edge-Progress Algorithm: Initialization 105
9.2 NCG Edge-Progress Algorithm: EDGE-PROGRESS 105
9.3 NCG Edge-Relax Algorithm: Initialization . 110
9.4 NCG Edge-Relax Algorithm: EDGE-RELAX 111

10.1 Parallel NCG Algorithm: Initialization . 134
10.2 Parallel NCG Algorithm: NCG-PARALLEL . 134
10.3 Parallel NCG Algorithm: MATRIX-MULTIPLICATION 135
10.4 Parallel NCG Algorithm: MERGE-MIN . 136
10.5 Parallel NCG Algorithm: BINARY-SEARCH . 136

11.1 Single Vertex NCG Algorithm: Initialization . 154
11.2 Single Vertex NCG Algorithm: NCG-SINGLE 154
11.3 Planar Network Decomposition Algorithm . 158
11.4 Planar NCG Algorithm: NCG-PLANAR . 161
11.5 Planar NCG Algorithm: Updated Single Vertex NCG Initialize 161
11.6 Planar NCG Algorithm: Updated Single Vertex NCG 162

A.1 Dijkstra’s Linear Time Algorithm: Initialization 174
A.2 Dijkstra’s Linear Time Algorithm: NEW-DIJKSTRA 174
A.3 Dijkstra’s Linear Time Algorithm: Update . 175

B.1 NCG Matrix Multiplication Algorithm . 178

1

Chapter 1

Statement of Contributions

In this thesis, we design and analyze algorithms for solving three different problems in network

optimization. Specifically, we are interested in the minimum spanning tree verification (MSTV)

problem, the undirected negative cost cycle detection (UNCCD) problem, and the negative cost

girth (NCG) problem. These problems find applications in various domains including program

verification, proof theory, real-time scheduling, social networking, certification, and operations

research. We detail our contributions below.

1.1 The MSTV Problem

A minimum spanning tree (MST) is a spanning tree T of an undirected graph G = (V,E),

whose total weight is the minimum among all spanning trees of G. The problem of determining

such an MST is known as the MST construction problem. Algorithms for constructing the MST

can be found in [1, 2, 3, 4, 5]. A history of the MST construction problem is available in [6].

A related problem is the MSTV problem, which is defined as follows:

Given an undirected graph G = (V,E), and a spanning tree T , determine whether T
is a minimum spanning tree (MST) of G.

One approach for solving the MSTV problem is as follows:

1. Use an efficient MST construction algorithm to construct an MST T .

2. Compare the total weight of T with the input spanning tree.

CHAPTER 1. STATEMENT OF CONTRIBUTIONS 2

The running time of this approach depends on the running time of the MST construction

algorithm. While this approach correctly verifies a tree, there exist MSTV algorithms that are both

simple and independent of any MST construction algorithm. The current fastest algorithms for

solving the MSTV problem are described in [7] and [8]. We focus on the case when the number of

distinct edge weights is bounded by a fixed constant.

Suppose we are given a graph with n vertices, m edges, and K distinct edge weights. We are

also given a spanning tree T . If T is not a spanning tree, then it is clear that T cannot be an MST.

So, without loss of generality, we assume that T is spanning. Our MSTV algorithm, which we call

DFS-Verify, verifies whether the spanning tree is an MST in O(m+ n ·K) time. Note that when

K is constant, our algorithm runs in linear time.

We also profile the DFS-Verify algorithm against one of the fastest known MSTV algorithms

in the literature [8]. Our experiments indicate the superiority of our algorithm when the number of

distinct edge weights is at most 24.

1.2 The UNCCD Problem

The UNCCD problem is defined as follows:

Given an undirected graph G = (V,E) with arbitrarily weighted edges, determine
whether a negative cost cycle exists in G.

For directed graphs, the problem of detecting a negative cost cycle (NCCD) has been widely

studied [9, 10, 11, 12, 13, 14, 15, 16]. However, unlike directed graphs, detecting a negative cost

cycle for undirected graphs is significantly more difficult. This is because we cannot transform an

undirected graph into a directed graph by replacing each undirected edge with two directed edges

going in opposite directions. In this case, if an undirected edge has a negative cost, then the two

directed edges also have negative costs. This results in a negative cost cycle in the directed graph

that did not exist in the undirected graph.

As per the literature, there are two known approaches for the UNCCD problem. The b-

matching approach transforms G into a new graph G′ and detects the presence of a negative cost

cycle in G by finding a minimum weight perfect matching (MWPM) in G′ [17, 18]. Given a graph

with n vertices and m edges, the b-matching approach runs in O((m + n)3) time. The T -join

CHAPTER 1. STATEMENT OF CONTRIBUTIONS 3

approach uses efficient all pairs shortest paths (APSP) and MWPM algorithms as subroutines to

detect a negative cost cycle by utilizing T -joins [19, 20]. This approach runs in O(n3) time. We

provide a detailed, formal presentation of the b-matching and T -join approaches, and we show

that the b-matching approach runs in O((m+ n)2 · log(m+ n)) time in the general case.

We improve the UNCCD algorithms when the edge costs are integers in the range {−K · ·K},

where K is a positive integer constant. When K = O(1), we show that the b-matching approach

solves the UNCCD problem in O((n+m)1.5 · (log(n+m))1.5 ·
√
α(n+m,n+m)) time, while

the T -join approach solves the UNCCD problem in O(n2.5 · (log n)1.5 ·
√
α(n2, n)) time, where

α(x, y) represents the inverse Ackermann function [21, 22]. Both algorithms improve upon the

previously known time bounds for the case of fixed integer edge costs [23].

We also perform the first extensive empirical study of the algorithms for the UNCCD problem.

In this study, we examine implementations for both the b-matching and T -join approaches for

various graph families and sizes.

1.3 The NCG Problem

The girth of an unweighted graph G = (V,E) is defined as the length (i.e., number of edges)

of the shortest cycle. The negative cost girth is the length (i.e., number of edges) of the negative

cost cycle with the fewest number of edges. In the NCG problem, we are interested in the negative

cost girth. We define the NCG problem as follows:

Given a network (or directed graph) G = (V,E) with arbitrarily weighted edges, find
the negative cost girth of the network.

In networks with arbitrary edge costs, the first polynomial time algorithm for this problem,

known as the matrix multiplication (MM) approach, was proposed in [15]. Given a network with

n vertices, m edges, and NCG k, this algorithm runs in O(n3 · log k) time. We present two new

strongly polynomial NCG algorithms [24]. The first algorithm, which we call Edge-Progress (EP),

runs in O(n2 · k +m · n · k) time. The second algorithm, which we call Edge-Relax (ER), runs in

O(m · n · k) time. We profile the above NCG algorithms for various network types and sizes. Our

results reinforce the asymptotic analysis and show that the new NCG algorithms are superior to

the MM approach for sparse networks.

CHAPTER 1. STATEMENT OF CONTRIBUTIONS 4

We extend the results of [15] and present a work-efficient parallel implementation of the MM

approach that runs in O(log k · log n) parallel time using O(n3) processors. We include a detailed

implementation profile that studies the efficiency of the parallel implementation as we increase the

network size and the number of processors.

Finally, we present a new NCG algorithm for planar networks. The current algorithms for

solving the NCG problem are topology-oblivious, which means the algorithms do not consider

the topology of the graph. Our NCG algorithm in planar networks exploits the properties of

planarity and runs in O(n1.5 · k) time. This is a substantial improvement over all previously

known topology-oblivious NCG algorithms when restricted to planar networks. We also extend

our algorithm to general networks that have a separator. In this case, the NCG algorithm runs in

O(na+b · k + nd · log n) time, where na is the size of the separator, nb is the number of edges, and

we can find the separator in O(nd) time.

1.4 Overview

The thesis is organized as follows:

Part I discusses the MSTV problem. Chapter 2 formally introduces the MSTV problem.

Chapter 3 describes an algorithm for constructing the MST, which we call the Edge-Bucket

algorithm. This is done by modifying the algorithm in [25]. We present the MSTV algorithm,

which we call the DFS-Verify algorithm, in Chapter 4 and show that it runs in linear time when the

number of distinct edge weights is a fixed constant. This chapter also provides an empirical study

that profiles the DFS-Verify algorithm against one of the fastest known MSTV algorithms [8].

Part II discusses the UNCCD problem. We formally introduce the UNCCD problem in Chap-

ter 5. Chapter 6 reviews the b-matching and T -join approaches, and we improve the asymptotic

analysis for the b-matching approach. We also present improved UNCCD algorithms for both

approaches when we restrict the edge costs to be integers in the range {−K · ·K}, where K is a

fixed positive constant. We provide a detailed implementation profile in Chapter 7 that studies

both UNCCD algorithms for various graph types, sizes, and experiments.

Part III discusses the NCG problem. Chapter 8 introduces the NCG problem. Chapter 9

presents the EP and ER approaches for the NCG problem. We also provide an empirical study

CHAPTER 1. STATEMENT OF CONTRIBUTIONS 5

that demonstrates the superiority of both algorithms when compared to the MM approach, for

sparse networks. We describe a parallel implementation of the matrix multiplication approach

in Chapter 10 and include an implementation profile that analyzes the efficiency of the parallel

implementation as we increase the size of the network and the number of processors. Chapter 11

presents a new, efficient NCG algorithm in planar networks that is superior to the fastest topology-

oblivious NCG algorithm, when restricted to planar networks.

Chapter 12 summarizes our conclusions and discusses avenues for future work.

6

Part I

The Minimum Spanning Tree Verification

Problem

7

Chapter 2

Introduction

A spanning tree of a graph is defined as an acyclic subset such that all vertices are connected.

A spanning tree is a minimum spanning tree (MST) if the total weight of the spanning is the

minimum among all possible spanning trees of the graph. The problem of determining the MST is

called the MST construction problem. Some of the more well-known approaches for constructing

an MST are found in [2, 26]. Figure 2.1 provides an example of an MST.

a

b

c

d

1

4

2

3

5

Graph

a

b

c

d

1

2

3

MST

Figure 2.1: An MST of a connected graph.

A related problem is the minimum spanning tree verification problem (MSTV), which is

concerned with determining whether a given spanning tree is an MST of the graph. This problem

CHAPTER 2. INTRODUCTION 8

finds applications in several domains including program verification and certification. The MSTV

problem was introduced in [27], wherein the first near linear time algorithm was proposed. [3, 28]

describe several approaches for the MSTV problem. The current fastest algorithms for solving the

MSTV problem are described in [7, 8]. We focus on the case where the number of distinct edge

weights, denoted as K, is bounded by a fixed constant.

The next two chapters present algorithms related to the MST. We first present an MST

construction algorithm, known as the Edge-Bucket algorithm, that partitions the edges into distinct

linked lists. This approach was used in [25] for solving the single source shortest path (SSSP)

problem, and we discuss the SSSP algorithm in Appendix A. We then describe the MSTV

algorithm, which we call the DFS-Verify algorithm. Both algorithms run in O(m+ n ·K) time,

where n is the number of vertices, m is the number of edges, and K is the number of distinct edge

weights. The key conclusion is that when K is a fixed constant, both algorithms run in linear time.

2.1 Preliminaries and Notation

We are given an undirected graph G = (V,E, c), where V is the set of n vertices, E is the set

of m edges, and c : E → Z
+ is a cost function. For each edge eij ∈ E, we let cij be the weight

of that edge. We assume cij ≥ 0 is a real number. We represent G as an adjacency list Adj, where

for each vertex v ∈ V , Adj(v) is the set of outgoing edges from v in G.

We are also given a spanning tree T = (VT , ET), where VT is the set of n vertices in T , ET is

the set of n− 1 ≤ m edges in T . We also represent T as an adjacency list. Note that VT = V and

ET ⊆ E.

Finally, we let K be the number of distinct edge weights of the graph, where 1 ≤ K ≤ m.

L = {l1, . . . , lK} is the set of distinct edge weights, where |L| = K. We assume L is sorted in

increasing order. Otherwise, we can sort L in O(K logK) time, which is O(1) time if K is a

constant. We provide an example of a graph with two distinct edge weights in Figure 2.2, where

L = {3, 5}.

CHAPTER 2. INTRODUCTION 9

a

b

c

d

3

5

3

3

5

(a)

a

b

c

d

3

3

3

(b)

Figure 2.2: Example of a graph with two distinct edge weights. (a) is the graph G, and (b) is the
MST of G.

10

Chapter 3

The MST Construction Algorithm

In this chapter, we present an algorithm for the MST construction problem in an undirected

graph, where the number of distinct edge weights is bounded by a fixed constant. Recall that an

MST is a spanning tree of a graph G, whose total weight is the minimum among all spanning trees

of G. Suppose we are given a graph with n vertices, m edges, and K distinct edge weights. Our

MST construction algorithm, which we call the Edge-Bucket algorithm, runs in O(m + n ·K)

time. Note that when K is a fixed constant, this algorithm runs in linear time.

3.1 Related Work

The problem of constructing an MST was first studied in [1]. Borůvka’s algorithm contracted

the lightest edges (i.e., edges with the smallest weight) from each vertex, and the contracted edges

form the MST. This algorithm ran in O(m · log n) time. Jarnĩk [29] described the first greedy

approach for the MST problem by selecting the lightest edges connecting to a “source” vertex.

This algorithm is also known as Prim’s algorithm [26], and the running time is dependent on the

data structure used. Currently, the fastest known running time is O(m+ n · log n) time by using

the Fibonacci heap data structure [30]. Kruskal [2] provided another greedy algorithm for the

MST problem. This algorithm selected the edges with the smallest weight without creating any

cycles and ran in O(m · log n) time.

[31] and [32] independently developed the next significant MST construction algorithm that

ran in O(m · log log n) time. With the assistance of Fibonacci heaps [30], Fredman and Tarjan

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 11

provided an algorithm that ran in O(m · β(m,n)) time, where β(m,n) = min{i : logi n ≤ m
n
}.

Gabow et al. [33] improved the previous result with an algorithm that ran in O(m · log β(m,n))

time.

Recent MST algorithms involve non-greedy approaches by including the inverse Ackerman

function α(m,n) [21]. The first of these algorithms was developed by Chazelle [34], whose

algorithm ran in O(m · α(m,n) · logα(m,n)) time. This was later improved by both Pettie [35]

and Chazelle [5] independently. The idea with these algorithms was to compute suboptimal

disjoint sets in a non-greedy fashion and improve these sets until an optimal solution is obtained.

Both algorithms ran in O(m · α(m,n)) time.

Several advancements have been made towards the MST problem for special cases. [4] has

a randomized MST construction algorithm that runs in linear expected time. This algorithm

combines concepts from [1], random sampling, and a ”black box“ minimum spanning tree

verification algorithm [7] to construct the MST. Fredman and Willard [36] describe an O(m+ n)

time MST algorithm if the edge weights are b-bit integers, and we use a more powerful model of

computation that involves manipulating the bits of the stored edge weights. For a pointer machine,

Pettie and Ramachandran [37] provide an MST construction algorithm that runs in O(T ∗(m,n))

time, where T ∗(m,n) is the number of edge weight comparisons needed to determine the MST.

In most cases, the algorithm runs in linear time because it uses precomputed MST decision trees.

A detailed history of the above MST construction algorithms and additional advancements for

the MST problem are available in in [6].

3.2 The Edge-Bucket Algorithm

We now discuss the MST construction algorithm that runs in O(m + n ·K) time. This is a

variation of Prim’s O(m+ n · log n) time algorithm [26]. It is known that Prim’s algorithm and

Dijkstra’s algorithm [38] are closely related [22]. Thus, we can modify the single source shortest

path (SSSP) algorithm to compute the MST. Appendix A provides an O(m+ n ·K) time SSSP

algorithm, where K is the number of distinct edge weights.

We let S be the set of permanently labeled vertices and Temp = V −S be the set of temporary

labeled vertices. Let L = {l1, . . . , lK} be the set of distinct edge weights. For each distinct edge

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 12

weight lt ∈ L = {l1, . . . , lK}, we have a linked list Et(S) = {eij ∈ E : i ∈ S, cij = lt}. This

means the edges are partitioned into exactly one of these “buckets.” Each edge eij in a bucket is

sorted in the order j is added to S.

We let the pointer CurrentEdge(t) be the first edge eij of Et(S), where j ∈ Temp.

If Et(S) has such an edge, then we let f(t) = lt. If Et(S) does not have such an edge,

then CurrentEdge(t) = ∅. We can find the vertex with the current lightest edge by finding

argmin{f(t) : 1 ≤ t ≤ K}, which runs in O(K) time.

We use a subroutine UPDATE(t) to change CurrentEdge(t) such that it either points to the

first edge in Et(S), where the endpoint is in T , or sets CurrentEdge(t) to ∅. If CurrentEdge(t)

points to an edge eij , then we set f(t) = lt. Otherwise, we set f(t) = ∞. We denote

CurrentEdge(t).next as the operation that moves the pointer CurrentEdge(t) to point to

the next edge in Et(S).

The algorithm runs as follows: We start with the source vertex s ∈ V . Add all vertices in V

into VT . We then find r = argmin{f(t) : 1 ≤ t ≤ K} and let edge eij be CurrentEdge(r). We

add eij to ET and move j from Temp to S. For each outgoing edge ejk, we add ejk to the end of

Et(S), where lt = cjk. We then change CurrentEdge(t) if it was initially null. For each distinct

edge weight k, we run UPDATE(k), which updates the CurrentEdge pointer for each link list if

needed.

The procedure is shown in Algorithms 3.1, 3.2, and 3.3.

3.2.1 Resource Analysis

The algorithm runs the same procedure as [25] with a few modifications. The initialization

process takes O(n) time since we add all the vertices adjacent to s into their respective linked lists.

For Algorithm 3.2, adding each of the vertices into VT takes O(n) time. Finding r takes O(K)

time, which is one of the major bottlenecks of the algorithm. Since we have O(n) iterations, the

total running time is O(n ·K). The UPDATE(t) procedure remains unchanged except for a single

notation change. Therefore, the running time of the procedure is O(m+ n ·K), which is the total

running time of the algorithm. Note that when K is a small, fixed constant, this is a linear time

algorithm.

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 13

Function INITIALIZE()
1: S := {s}; Temp := V − {s}
2: pred(s) := ∅
3: for (each vertex v ∈ Temp) do
4: pred(v) = ∅
5: end for
6: T := ∅
7: for (t = 1 to K) do
8: Et(S) := ∅
9: CurrentEdge(t) := NIL

10: end for
11: for (each edge esj) do
12: Add esj to the end of the list Et(S), where lt = csj
13: if (CurrentEdge(t) = NIL) then
14: CurrentEdge(t) := esj
15: end if
16: end for
17: for (t = 1 to K) do
18: UPDATE(t)
19: end for

Algorithm 3.1: MST Algorithm: Initialization

For the space requirement, we store G and T as adjacency lists of size O(m + n). For Et,

where 1 ≤ t ≤ K, recall that each edge is stored into one of the K linked lists. This means the

total number of edges stored among all K lists is O(m). Therefore, the total space required is

O(m+ n) +O(m) = O(m+ n).

3.2.2 Correctness

We now prove that the algorithm correctly forms a minimum spanning tree. Note that our

algorithm is similar to Prim’s algorithm. The difference is how the data is structured. At each

iteration, instead of scanning all adjacent edges, we scan at most K adjacent edges to find the

lightest edge. Also, each adjacent edge is placed in one of the K linked lists. This means scanning

each list allows the algorithm to find the edge with the lightest weight.

After finding this edge eij , we add it to T , scan the edges ejk adjacent to j, and place each

edge ejk in the appropriate linked list. This method is similar to noting all the adjacent edges

outgoing from j from Prim’s algorithm. The UPDATE(t) procedure simply changes the pointers of

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 14

Function EDGE-BUCKET()
1: INITIALIZE()
2: for (each vertex v ∈ V) do
3: VT := VT ∪ {v}
4: end for
5: while (Temp 6= ∅) do
6: let r = argmin {f(t) : 1 ≤ t ≤ K}
7: let eij = CurrentEdge(r)
8: ET := ET ∪ {eij}
9: pred(j) := i

10: S = S ∪ {j};Temp := Temp− {j}
11: for (each edge ejk ∈ Adj(j)) do
12: Add the edge to the end of the list Et(S), where lt = cjk
13: if (CurrentEdge(t) = NIL) then
14: CurrentEdge(t) := ejk
15: end if
16: end for
17: for (t = 1 to K) do
18: UPDATE(t)
19: end for
20: end while
21: return T = (VT , ET)

Algorithm 3.2: MST Algorithm: EDGE-BUCKET

Function UPDATE(t)
1: Let eij = CurrentEdge(t)
2: if (j ∈ Temp) then
3: f(t) = cij
4: return
5: end if
6: while ((j 6∈ Temp) and (CurrentEdge(t).next 6= NIL)) do
7: Let eij = CurrentEdge(t).next
8: CurrentEdge(t) = eij
9: end while

10: if (j ∈ Temp) then
11: f(t) = cij
12: else
13: Set CurrentEdge(t) to ∅
14: f(t) =∞
15: end if

Algorithm 3.3: MST Algorithm: Update

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 15

each linked list.

Even with these modifications, we still select the edge with the lightest weight among the

edges adjacent to the vertices in the set S and then scan the edges adjacent to the selected edge.

Therefore, our algorithm operates identical to Prim’s algorithm. Since Prim’s algorithm is correct,

Algorithm 3.2 correctly computes the MST.

3.3 Example of the Algorithm

We now provide an example of the Edge-Bucket algorithm on a graph with n = 4 vertices,

K = 2, and L = {1, 3}. Figure 3.1 is the initial graph G. In line 1 of Algorithm 3.2, we

first initialize S = {s} and Temp = {v1, v2, v3}. After scanning all edges adjacent from

s, we have lists E1(S) = {esb} where CurrentEdge(1) = esb and E2(S) = {esa} where

CurrentEdge(2) = esa. We run the UPDATE(t) procedure for each list Et(S) and set f(1) = 1

and f(2) = 3. We then add all vertices into VT .

s

a

b

c

1

3

1

1

3

Graph G

s

a

b

c

Spanning Tree T

Figure 3.1: Example of the Edge-Bucket algorithm. Initial graph G and spanning tree T .

From line 6, we have r = 1, which means we set add eab to T and add b to S giving us

S = {s, b} and Temp = {a, c}. Lines 11 to 16 scan the edges adjacent to b and add them to E1(S)

and E2(S) accordingly. This gives the lists E1(S) = {esb, eba} where CurrentEdge(1) = esb

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 16

and E2(S) = {esa, ebc} where CurrentEdge(2) = esa. This is shown in Figure 3.2.

s

a

b

c

1

3

1

1

3

Graph G

s

a

b

c

1

Figure 3.2: Example of the Edge-Bucket algorithm. E1(S) = {esb, eba} with
CurrentEdge(1) = eba, and E2(S) = {esa, ebc} with CurrentEdge(2) = esa.

We now run the UPDATE(t) procedure for each list Et(S). For CurrentEdge(1), since

b ∈ S, we update CurrentEdge(1) to eba in lines 6 to 9 and let f(1) = 1 in lines 10 to 11. For

CurrentEdge(2), since a ∈ Temp, we set f(2) = 3, leave CurrentEdge(2) alone, and end the

procedure.

We run the next iteration since Temp 6= ∅. We find that r = 1, which means we add eba to

ET and add a to S giving us S = {s, a, b} and Temp = {c}. We scan the edges adjacent to a

and add them to our lists giving us E1(S) = {esb, eba, eac} where CurrentEdge(1) = eba and

E2(S) = {esa, ebc} where CurrentEdge(2) = esa. When we run the UPDATE(t) procedure, we

change CurrentEdge(1) to eac, set f(1) = 1, change CurrentEdge(2) to ebc, and set f(2) = 3.

We see this in Figure 3.3.

We run one more iteration since Temp = ∅. We have r = 1, which means we add eac to ET

and add c to S giving us S = {s, a, b, c} and Temp = ∅. We scan the edges adjacent to c and find

no other edges adjacent to c. This gives us E1(S) = {esb, eba, eac} where CurrentEdge(1) = eac

and E2(S) = {esa, ebc} where CurrentEdge(2) = ebc. When we run the UPDATE(t) procedure,

we change both CurrentEdge(1) and CurrentEdge(2) to ∅ and set both f(1) and f(2) to∞

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 17

s

a

b

c

1

3

1

1

3

Graph G

s

a

b

c

1

1

Figure 3.3: Example of the Edge-Bucket algorithm. E1(S) = {esb, eba, eac} with
CurrentEdge(1) = eac, and E2(S) = {esa, ebc} with CurrentEdge(2) = ebc.

since c /∈ Temp. The resulting graph and spanning tree are shown in Figure 3.4.

CHAPTER 3. THE MST CONSTRUCTION ALGORITHM 18

s

a

b

c

1

3

1

1

3

Graph G

s

a

b

c

1

1

1

Figure 3.4: Example of the Edge-Bucket algorithm. E1(S) = {esb, eba, eac} with
CurrentEdge(1) = eac, and E2(S) = {esa, ebc} with CurrentEdge(2) = ebc.

19

Chapter 4

The MSTV Algorithm

In this chapter, we present an algorithm for the MSTV problem in an undirected graph. We

also provide an empirical study that analyzes the performance of our algorithm. Recall that an

MST is a spanning tree of a graph G, whose total weight is the minimum among all spanning trees

of G.

The MSTV problem is defined as follows:

Given an undirected graph G = (V,E) and a spanning tree T , determine whether T
is an MST of G.

This problem finds applications in several domains including program verification and certifi-

cation. Although we can verify a spanning tree T by comparing the total weight of T with the

resulting MST of any MST construction algorithm, there exist MSTV algorithms that are both

simple and independent of any MST construction algorithm. The MSTV problem was introduced

in [27], wherein the first near linear time algorithm was proposed. [3] and [28] describe several

approaches for the MSTV problem. The current fastest algorithms for solving the MSTV problem

are described in [7] and [8]. In this paper, our focus is when the number of distinct edge weights

is a fixed constant.

Suppose we are given a graph with n vertices, m edges, and K distinct edge weights. We are

also given a spanning tree T . If T is not a spanning tree, then clearly T cannot be an MST. The

DFS-Verify algorithm verifies whether the spanning tree is an MST in O(m+ n ·K) time. Note

that when K is constant, our algorithm runs in linear time.

CHAPTER 4. THE MSTV ALGORITHM 20

4.1 Related Work

The problem of verifying an MST is first studied in [27]. Tarjan’s algorithm uses path

compression to verify an input spanning tree. The running time of Tarjan’s algorithm is almost

linear, specifically O(m · α(m,n)) time, where α(m,n) is the inverse Ackermann function [21].

A revised and improved version of Tarjan’s algorithm is provided in [39]. Komlós [3] shows

that we can verify a minimum spanning tree using O(m + n) binary comparisons. However,

determining which comparisons to use takes non-linear time. The first linear time implementation

of the MSTV problem is given in [28]. Dixon, Rauch, and Tarjan divides the spanning tree into

small microtrees of size O(log log n) and a single large subtree, computes the decision tree using

[3] for each possible microtree, applies the decision trees to process the microtrees, and runs the

algorithm in [39] for the remaining large subtree.

A simpler approach for implementing Komlós’ algorithm is provided in [7] and runs in

O(m + n) time. King’s algorithm first creates a full branching tree consisting of at most 2 · n

vertices and 2 · n edges using Borůvka’s algorithm [1]. The algorithm then determines the lowest

common ancestor (LCA) for each pair of leaf vertices in the branching tree using a data structure.

For each non-tree edge eij , the algorithm computes the heaviest edge in the path from i to z and j

to z in the branching tree using a lookup table, where z is the LCA of i and j. King shows that the

weight of the heaviest edge in the path between vertices x and y in the branching tree is weight

of the heaviest edge in the path between x and y in the spanning tree. The linear time bound is

achieved by performing several computations in a single computer word.

Hagerup [8] describes a simpler linear time MSTV algorithm by developing a linear time

algorithm for the special tree path maxima problem, which is defined as follows:

Given a full branching tree T and a list of pairs (u, v) of vertices in T such that u is a
proper ancestor of v, find for each pair (u, v) on the list a heaviest edge on the path
in T between u and v.

Hagerup’s algorithm starts with a full branching tree and a list of paired vertices, where for

each element (u, v) in the list, u is a proper ancestor of v. The algorithm then constructs a lookup

table that is used for finding a heaviest edge on the path of the branching tree between each pair of

vertices. A linear time tree path maxima algorithm implies a linear time MSTV algorithm. For

CHAPTER 4. THE MSTV ALGORITHM 21

each non-tree edge eij , we find the LCA using King’s approach from above. We then add the pairs

(i, z) and (j, z) in the list, where z is the LCA (and proper ancestor) of i and j. Once the list of

heaviest edges has been computed, we check the weight of eij with the weights of the heaviest

edges of pairs (i, z) and (j, z). Note that Hagerup’s algorithm is similar to King’s approach, in that

it is an implementation of Komlós’ algorithm for full branching trees. However, the bit operations

are more simplified and easier to implement.

All of the above algorithms take advantage of the following observation (also called the Red

Rule in MST literature):

A spanning tree T is a minimum spanning tree if and only if the weight of each edge
euv /∈ ET is at least as large as the weight of the heaviest edge in the path from u to v
containing only edges in T .

Several advancements have been made towards the MSTV problem for special cases. [40]

explores the distributed setting for the MSTV problem for weighted, undirected graphs. In this

environment, every vertex “knows” which of its adjacent edges belongs to the MST. The resulting

algorithm runs in O(log n · logW) time, where W is the largest edge weight. A parallel version of

King’s algorithm [7] is discussed in [41] that runs in O(log n) parallel time with O(m+ n) work.

[42] shows that for the online MSTV problem, which consists of a sequence of queries of the form,

“Is eij in the MST of T
⋃
{eij}?” for a fixed T , there are no linear time solutions. Pettie proves

that the lower bound for this solution is Ω(m · α(m,n)), where α(m,n) is the inverse Ackermann

function. [43] provides an O(m+ n) time algorithm for a pointer machine by computing all of

the path maxima. This was further improved in [44].

MSTV algorithms are used to solve other problems as well. [4] has a randomized MST

construction algorithm that runs in linear expected time. This algorithm combines concepts from

[1], random sampling, and a ”black box“ MSTV algorithm [7] to construct the MST. Approaches

for the MSTV problem can be applied to the sensitivity analysis problem, which is defined as

follows:

Suppose we are given an undirected, weighted graph G and a minimum spanning tree
T . For each edge euv ∈ E, we want to determine how much cuv can change without
affecting the minimality of T .

CHAPTER 4. THE MSTV ALGORITHM 22

Tarjan [45] extends his MSTV algorithm to solve the sensitivity analysis problem in O(m ·

α(m,n)) time, where α is the functional inverse of Ackermann’s function. For planar graphs, an

O(m) time algorithm for the sensitivity analysis of the MST is proposed in [46].

4.2 The DFS-Verify Algorithm

In this section, we determine whether a tree is an MST in O(m+ n ·K) time, where the graph

contains K distinct edge weights. Briefly, our algorithm uses a modified version of Borůvka’s

algorithm to contract the lightest edges from the spanning tree T . For each edge contracted, we

add it to a new graph G∗, where we determine the vertices that correspond to each contracted

vertex in T . Using this information, we can check the vertices of the lightest non-tree edges to see

if they correspond to the same contracted vertex. Finding an edge eij where i and j correspond to

different contracted vertices implies that T is not a minimum spanning tree. The details of the

algorithm are explained below.

4.2.1 Borůvka’s Algorithm

We first describe Borůvka’s algorithm [1], which runs in O(m · log n) time, for constructing

the MST. For each vertex u ∈ V , we mark an edge euv such that cuv ≤ cux for all vertices x that

are adjacent to u. For each marked edge euv, we contract the edge by collapsing u and v into a

single vertex, whose adjacent edges are the edges adjacent to both u and v except for euv. This

process is called a Borůvka phase.

We demonstrate this process in Figures 4.1-4.3. Figure 4.1 gives us the graph G and a spanning

tree T containing only the vertices. During the first Borůvka phase, a picks eac, b picks ebc, c picks

eac, d picks edf , e picks ede, and f picks edf . Vertices a and b are contracted into c, and both e

and f are contracted into d. The edges picked are added to T which is shown in Figure 4.2. For

the ease of exposition, we remove edges eab and eef from Figure 4.2 since they are self-loops

after contraction. During the second Borůvka phase, c picks ecd, and d picks ecd. These vertices

contract into a single vertex, which we denote as c without loss of generality, and ecd is added to

T . This is shown in Figure 4.3. Since there are no more edges to contract in G, the algorithm

terminates, and T is an MST.

CHAPTER 4. THE MSTV ALGORITHM 23

a

b

c d

e

f

1

2

5
2

1

3 3

Graph G

a

b

c d

e

f

Tree T

Figure 4.1: Example of Borůvka’s algorithm. Graph G and tree T with only the vertices.

c d
5

Graph G

a

b

c d

e

f

1

2

2

1

Tree T

Figure 4.2: Example of Borůvka’s algorithm. Graph G and tree T after the first Borůvka phase.

c

Graph G

a

b

c d

e

f

1

2

5
2

1

Tree T

Figure 4.3: Example of Borůvka’s algorithm. Graph G and tree T after the second Borůvka phase.

CHAPTER 4. THE MSTV ALGORITHM 24

From [1], each Borůvka phase runs in O(m+ n) time. After each phase, since the number of

edges contracted is at least n/2, and each contracted edge removes exactly one vertex from G, the

resulting graph contains as most n/2 vertices. This means we need O(log n) phases to merge all

the vertices. Therefore, Borůvka’s algorithm runs in O((m+ n) · log n) = O(m · log n) time.

4.2.2 The Verification Algorithm

Since T is connected, each pair of vertices i and j must have a unique path using edges in T .

This means we can verify the spanning tree by comparing each non-tree edge eij with the heaviest

edge in the corresponding path from i to j in T . This is the same approach used in [3], [7], and [8].

If the weight of the heaviest edge in this path is greater than the weight of eij , then the spanning

tree is not a minimum spanning tree.

We start by partitioning all the non-tree edges into linked lists. For each distinct edge weight

lr ∈ L = {l1, . . . , lK}, we have the linked list Er = {eij ∈ E\ET : cij = lr}. We also create a

new graph G∗ = (V ∗, E∗) that initially consists of the vertices in G. G∗ is used to help label the

vertices as we contract edges during each Borůvka phase.

We use a modified version of the Borůvka phase for each distinct edge weight. For each

phase r, where r = {1, . . . , K − 1}, we contract all edges in T whose weight is lr, rather than

contracting the lightest edge for each vertex. When we contract an edge eij ∈ ET , we add eij in

E∗ and let i be the vertex in VT that results from contracting edge eij .

After we contract all the edges of weight lr, we need to keep track of which vertices in G

correspond to each contracted vertex in VT . We create an array A of n elements. For each element

A[v], v is a vertex in G, and A[v] is the corresponding contracted vertex in T . For each vertex

v ∈ VT , we perform a depth-first search (DFS) [47, 22] in G∗ with v as the starting vertex. For

each vertex u that is visited, we set A[u] = v.

We now discuss the verification phase. For each edge eij ∈ Er, we compare A[i] with A[j]. If

A[i] = A[j], then the path from i to j using edges from T consists of edges whose weight is less

than or equal to lt. However, if A[i] 6= A[j], then there exists at least one edge, denoted as euv,

where cuv > lr and euv is in the path from i to j using edges from T . If we remove euv from T

and add eij into T , we get a new tree T ′ where the total weight of T ′ is less than the weight of T .

CHAPTER 4. THE MSTV ALGORITHM 25

This means T is not a minimum spanning tree, and we can terminate.

If A[i] = A[j], ∀eij ∈ Er, we proceed to phase r+ 1, contract all the edges in T whose weight

is lr+1, and repeat the DFS and verification processes. Note that in each phase r, we determine

whether for each edge eij ∈ Er, there is an edge euv in the path from i to j in T whose weight is

greater than lr. Since there are no edges whose weight is greater than lK , we need only K − 1

phases.

The procedure is shown in Algorithms 4.1, 4.2, and 4.3.

Function INITIALIZE()
1: for (each edge eij ∈ E − ET) do
2: Add eij to the end of the list Er, where cij = lr.
3: end for
4: Create graph G∗ = (V ∗, E∗) that contains only the vertices, V , of G.
5: for (each v ∈ V) do
6: A[v] := ∅.
7: end for

Algorithm 4.1: MSTV Algorithm: Initialization

Function DFS-VERIFY (G, T)
1: INITIALIZE()
2: for (r = 1 to K − 1) do
3: for (each edge eij ∈ ET , where cij = lr) do
4: Adj(i) := Adj(i) ∪ Adj(j).
5: VT := VT − {j}.
6: ET := ET − {eij}.
7: Add edge eij to E∗.
8: end for
9: for (each vertex v ∈ VT) do

10: MSTV-DFS(v, v).
11: end for
12: for (each edge eij ∈ Er) do
13: if (A[i] 6= A[j]) then
14: return T is not a Minimum Spanning Tree.
15: end if
16: end for
17: end for

Algorithm 4.2: MSTV Algorithm: DFS-VERIFY

CHAPTER 4. THE MSTV ALGORITHM 26

Function MSTV-DFS(u, v)
1: if (v is not visited) then
2: A[v] := u.
3: Mark v as visited.
4: for (each outgoing edge evw ∈ E∗) do
5: MSTV-DFS(u,w).
6: end for
7: end if

Algorithm 4.3: MSTV Algorithm: DFS

4.2.3 Resource Analysis

The initialization process takes O(m+ n) time since we add all the edges not in the spanning

tree into distinct linked lists, and we initialize all the vertices. Contracting all edges in T of weight

lt takes O(n) time since this is similar to a Borůvka phase, and we contract at most O(n) edges

because |ET | = n− 1. For Algorithm 4.3, each vertex is scanned exactly once for all iterations of

a phase. This is because each vertex v ∈ V corresponds to exactly one vertex in VT . Also, since

we have at most n− 1 edges in G∗, we scan at most O(n) edges for a single iteration of the DFS

procedure. Therefore, the total running time for all iterations of Algorithm 4.3 for a phase is O(n).

Since we have O(K) phases, the contraction and DFS phases take a total time of O(n ·K).

We now analyze the verification phase. Since each edge eij belongs to exactly one linked list,

when eij is checked, we never check that edge again. In other words, each edge is checked at most

once. This means the total running time for the verification phase for all O(K) phases is O(m).

Therefore, the total running time of the MSTV algorithm is O(m+ n ·K) time.

For the space requirement, we store G, T , and G∗ as adjacency lists of size O(m + n). We

also store A as an array of size O(n). Therefore, the total space required is O(m+ n) +O(n) =

O(m+ n).

4.2.4 Correctness

To prove the correctness of the algorithm, we show the following:

(1) Each iteration correctly contracts all the lightest edges from T .

(2) The DFS procedure correctly maps each vertex in G with a contracted vertex in T .

CHAPTER 4. THE MSTV ALGORITHM 27

(3) If there is an edge not in T that should be in the MST, the verification phase correctly finds

this edge, thus proving that T is not a minimum spanning tree.

Lemma 4.2.1 For an iteration 1 ≤ t ≤ K − 1, the algorithm contracts all edges whose weight is

lt.

Proof: At phase t, the smallest edge weight is lt. Since we use Borůvka’s algorithm to contract

edges with the smallest weight, the algorithm correctly contracts all edges of weight lt. 2

Lemma 4.2.2 For an iteration 1 ≤ t ≤ K − 1, the DFS procedure correctly maps each vertex in

G with a contracted vertex in T .

Proof: At phase t, VT contains only the contracted vertices in T . Suppose we select vertex

u ∈ VT . The DFS procedure starts at u ∈ V ∗, and we set A[u] = u. We scan the edges connected

to u in G∗ to find all the vertices that were contracted into u from the contraction procedure. Note

that the DFS procedure is the same procedure in [47] and [22]. This means any vertex v ∈ V ∗

visited during the DFS procedure must be connected to u, so we set A[v] = u. Therefore, the

mapping is correct.

We now need to ensure that there is not a vertex v ∈ V ∗ that corresponds to more than one

vertex in VT . Since we contracted all the edges whose weight is less than or equal to lt, these are

the only edges in E∗. Because t ≤ K − 1, there exists at least one edge of weight lt+1. Assume

this edge is in ET . Otherwise, all the vertices in T would be contracted into a single vertex. After

contracting all edges of weight lt from T , the only edges remain have a weight lt+1 or greater.

Since |ET | = n− 1, we contracted less than n− 1 edges. This means G∗ cannot be connected

after adding the contracted edges.

Suppose vertices u and x remain in VT after contraction, and assume we ran one iteration

of the DFS procedure starting from u. When the next DFS procedure runs from x, any vertex

in V ∗ visited must be connected to x. Suppose we visit a vertex v ∈ V ∗ that is connected to u.

This means any vertex connected to x is also connected to u through v which also means G∗ is

connected. However, since there is at least one edge of weight lt+1 that is not contracted, G∗

cannot be connected, meaning we have a contradiction. Therefore, each vertex in V ∗ corresponds

to exactly one contracted vertex. 2

CHAPTER 4. THE MSTV ALGORITHM 28

Lemma 4.2.3 For an iteration 1 ≤ t ≤ K − 1, if there exists an edge e not in ET that should be

in ET , the verification phase will find e.

Proof: Suppose the algorithm is at iteration t, and assume we ran the contraction and DFS

phases. This means all the edges eij ∈ E\ET of weight lt are in Et. Given an arbitrary edge

eij ∈ Et, there exists a unique path from i to j using the edges in the spanning tree. To compare

eij with these edges, we compare A[i] with A[j].

Suppose A[i] = A[j]. This means both i, j ∈ V ∗ are connected to some vertex u that is in

both V ∗ and VT after contracting all the edges of weight lt. Note that u could be i or j, but this

is not necessary. This means there exists a path from u to i in T and a path from u to j in T

prior to contracting any edge whose weight is less than or equal to lt. Consequently, there exists

a path from i to j in T , before contraction, using only edges whose weight is no greater than lt.

Replacing any of these edges with eij will not reduce the total weight of T , meaning eij is not in

the MST.

Suppose A[i] 6= A[j]. This means i ∈ V ∗ is connected to some vertex u that is in both V ∗ and

VT , and j ∈ V ∗ is connected to some vertex v 6= u that is in both V ∗ and VT . It is possible for

i = u or j = v, but neither is required. Since u 6= v, u and v belong in two separate components

in G∗. If u and v are not connected in G∗, then there exists an edge ewx in the path from u to v in

T whose weight is strictly greater than lt. Let T ′ be the new spanning tree that is identical to T

except it contains eij instead of ewx. Since cwx > cij , the total weight of T ′ is strictly less than the

total weight of T . Therefore, T cannot be a minimum spanning tree. 2

Theorem 4.2.1 The verification algorithm correctly determines whether or not an input spanning

tree is a minimum spanning tree.

Proof: By Lemma 4.2.1, lines 3 to 8 in Algorithm 4.2 are correct. From Lemma 4.2.2, lines

9 to 11 in Algorithm 4.2 and all of Algorithm 4.3 are correct. And, by Lemma 4.2.3, lines 12

to 16 in Algorithm 4.2 are correct. The for loop in lines 2 to 17 is correct since each iteration

1 ≤ t ≤ K − 1 only uses edges whose weight is lt. 2

CHAPTER 4. THE MSTV ALGORITHM 29

4.3 Example of the Algorithm

We now provide an example of the DFS-Verify algorithm. Suppose we are given a graph G

containing three distinct edge weights (i.e., K = 3). We want to determine if the spanning tree T

is a minimum spanning tree. Figure 4.4 provides us with graph G and spanning tree T .

a
b

c

d
e

f

g

h
i

1 1

5 3 5

3 1

3 1 3

5 5

(a)

a
b

c

d
e

f

g

h
i

1 1

3

3 1

3 1

5

(b)

Figure 4.4: Example of the DFS-Verify algorithm. (a) is the graph G. (b) is the spanning tree T .

The first step is to add each edge in E − ET into either E1, E2, or E3. E1 is the set of edges

with weight 1, E2 is the set containing the edges with weight 3, and E3 consists of the edges with

weight 5. In this example,

E1 = ∅
E2 = {efi}
E3 = {ead, ecf , egh}.

We now construct graph G∗ = (V ∗, E∗), where V ∗ = V and E∗ = ∅. We also initialize A[v]

to ∅ for all v ∈ V .

The next step is to contract all edges in T with the lightest weight. In this case, the weight is

1. For each edge contracted, we add the edge to G∗. After we contract these edges, we have the

contracted tree T and graph G∗ shown in Figure 4.5.

CHAPTER 4. THE MSTV ALGORITHM 30

b

d
e

g i

3

3

3
5

(a)

a
b

c

d
e

f

g

h
i

1 1

1

1

(b)

Figure 4.5: Example of the DFS-Verify algorithm. After the first contraction, (a) is the contracted
tree T , and (b) is graph G∗.

We now perform a DFS for each component in G∗. In this case, we have components {a, b, c},

{d}, {e, f, h}, {g}, and {i}. We update A accordingly, as shown in Table 4.1.

Table 4.1: Example of the DFS-Verify algorithm. DFS Array A after the first DFS.
v a b c d e f g h i

A[v] a a a d e e g e i

The next step is to check if any edges in E1 should be in the MST. Since E1 = ∅, we know

this is not the case. Therefore, we proceed with the algorithm and contract all edges in T with the

next lightest weight, which is 3. After we contract these edges and add them to G∗, we have the

new contracted T and graph G∗ given in Figure 4.6.

We perform another DFS for each component in G∗. In this case, we have components

{a, b, c, d, e, f, g, i}, and {i}. We update A accordingly, as shown in Table 4.2.

Table 4.2: Example of the DFS-Verify algorithm. DFS Array A after the second DFS.
v a b c d e f g h i

A[v] a a a a a a a a i

CHAPTER 4. THE MSTV ALGORITHM 31

e

i

5

(a)

a
b

c

d
e

f

g

h
i

1 1

3

3 1

3 1

(b)

Figure 4.6: Example of the DFS-Verify algorithm. After the second contraction, (a) is the
contracted tree T , and (b) is graph G∗.

The next step is to check if any edges in E2 should be in the MST. In this case, the only edge

in E2 is efi. This means we compare A[f] and A[i]. Since A[f] = a, A[i] = i, and A[f] 6= A[i],

we can replace efi with an edge in T to get a spanning tree T ′ whose total weight is less than T .

Therefore, T is not an MST.

4.4 Empirical Study

We profile two algorithms for our empirical study. The first algorithm is our O(m + n ·K)

time algorithm. For the ease of exposition, we refer to this algorithm as the DFS-Verify algorithm.

The second algorithm is Hagerup’s MSTV algorithm [8]. This algorithm consists of two main

components: constructing a full branching tree [3, 7] and finding the tree path maxima for a set

of paired vertices [8]. Along with the total time to run Hagerup’s MSTV algorithm, our results

include the times of both components, which we refer to as the Branching Tree algorithm and the

Tree Path Maxima algorithm, to observe how much time is spent running each subroutine.

CHAPTER 4. THE MSTV ALGORITHM 32

4.4.1 Experimental Setup

Our experiments study the performance of these algorithms on graphs with varying parameters.

We study four graph families that are produced by two generators. These families are chosen

because they are natural and have been used in previous empirical studies [11, 48, 49]. The graph

generators used are part of the 9th DIMACS Shortest Path Implementation Challenge benchmark

package [50].

The first generator (SPRAND [51]) creates random graphs with n vertices and m ≥ n edges.

The generator first constructs a Hamiltonian cycle to ensure the graph is connected. The remaining

m− n edges are added by randomly selecting a pair of distinct vertices. Note that the generator

can produce parallel edges and/or self-loops. Our experiments include both sparse and dense

random graphs of varying sizes. For sparse graphs, we set m = 4 · n, where 4 is an arbitrary

constant to represent sparse graphs since m = O(n). For dense graphs, we set m = n1.4 to ensure

m is large enough to represent dense graphs but small enough to satisfy the memory allocation

limitations of our testing platform.

The second generator (SPGRID [51]) creates mesh (grid) graphs. The vertices of these graphs

produce a two-dimensional x× y mesh. With the exception of boundary vertices, each vertex is

connected to four neighbors that are above, below, to the right, and to the left of the original vertex.

For boundary vertices, some of these neighbors are absent. Our experiments include two types of

mesh graphs: long and square. For long mesh graphs, y is fixed to a small constant, and x grows

with the number of vertices. In our experiments, we set x = n
50

and y = 50. Square mesh graphs

are fully connected. This means x = y =
√
n. Note that both mesh graphs are sparse, and the

generator sets m ≈ 4 · n.

Both algorithms are written in D [52], and they are compiled and run in identical experimental

settings. We use the adjacency list data structure for the graph and spanning tree. We construct

the spanning tree using the algorithm in Chapter 3. Since we study how the number of incorrect

edges impacts the execution times, we make a slight modification to our construction algorithm.

Suppose x is the number of incorrect edges we want in the input spanning tree. In Algorithm 3.2,

along with r = argmin{f(t) : 1 ≤ t ≤ K}, we find r′ = argmax{f(t) : 1 ≤ t ≤ K}. If x > 0

and f(r) < f(r′), we set eij = CurrentEdge(r′), giving us the heaviest available edge instead

CHAPTER 4. THE MSTV ALGORITHM 33

of the lightest, and decrease x by one. This ensures the incorrect spanning tree is connected and

contains several edges that are part of the MST. For the ease of exposition, we refer to the case

where the spanning tree has zero incorrect edges as a “Yes” instance, and we refer to the case

where the spanning tree contains at least one incorrect edge as a “No” instance. Although both

MSTV implementations can process graphs with real or integer weights, we use integer weights in

our experiments.

For random sparse, long mesh, and square mesh graphs, we allow the sizes to be 10000, 50000,

100000, 500000, and 1 million vertices. For dense graphs, we allow the sizes to be 10000, 20000,

30000, 40000, and 50000. This allows us to set m = n1.4 for dense graphs and not exceed the

memory allocation limitation of our testing platform. We also let the ratio of the largest to the

smallest edge weight in the graph be 10000. We let K, number of distinct edge weights, range

from 2 to 32.

Our testing platform is a 2.0 GHz 32-bit Intel Core 2 Duo machine with a 4 GB RAM and a 2

MB cache which runs Ubuntu (version 12.04). The implementations are compiled with the DMD

compiler [52] version 2.059. We report the average execution time of ten independent trials for

each test.

4.5 Results and Analysis

We compare the performance of the DFS-Verify algorithm to the performance of Hagerup’s

algorithm based on the following domains:

(i) Suite A: Size of the graph (Figures 4.7-4.10 and Table 4.3).

(ii) Suite B: Number of distinct edge weights (Figures 4.11-4.14 and Tables 4.4-4.5).

(iii) Suite C: Number of incorrect edges for small K (Figures. 4.15-4.18 and Table 4.6).

(iv) Suite D: Number of incorrect edges for large K (Figures 4.19-4.22 and Table 4.7).

For each experiment, we provide the complete data in its respective table. Each entry in the

table consists of the average execution time (the top number) and the standard deviation (the

bottom number).

CHAPTER 4. THE MSTV ALGORITHM 34

4.5.1 Graph Size

We first study the execution times as we increase the problem size for “Yes” instances. We let

K = 4. Because of the variation of the execution time, we use a logarithmic scale on the Y-axis in

the figures in Suite A.

We find that all four graph types produce similar results. When K = 4, the DFS-Verify

algorithm runs faster than Hagerup’s algorithm for all n. For sparse, long mesh, and square mesh

graphs, the improvement is approximately 82%. We can see that the bottleneck of Hagerup’s

algorithm is constructing the full branching tree since it takes about twice as long to construct the

branching tree compared to finding the tree path maxima.

The interesting observation is that for dense graphs, the improvement is approximately 87%.

In this case, the bottleneck of Hagerup’s algorithm is finding the tree path maxima instead of con-

structing the full branching tree. This is because the execution time of Hagerup’s implementation

depends on m tree path maxima queries. Since m = n1.4 in our experiments, the number of vertex

pairs is substantially more for dense graphs than the other three sparse graphs.

1

10

100

1000

10000

100000

10000 50000 100000 500000 1000000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Vertices, n

DFS Verify

Branching Tree

Tree Path Maxima

Hagerup MSTV

Figure 4.7: MSTV performance for sparse graphs as the number of vertices is varied and K = 4.

CHAPTER 4. THE MSTV ALGORITHM 35

10

100

1000

10000

10000 20000 30000 40000 50000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Vertices, n

DFS Verify

Branching Tree

Tree Path Maxima

Hagerup MSTV

Figure 4.8: MSTV performance for dense graphs as the number of vertices is varied and K = 4.

1

10

100

1000

10000

100000

10000 50000 100000 500000 1000000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Vertices, n

DFS Verify

Branching Tree

Tree Path Maxima

Hagerup MSTV

Figure 4.9: MSTV performance for long mesh graphs as the number of vertices is varied and
K = 4.

CHAPTER 4. THE MSTV ALGORITHM 36

Table 4.3: Experiment Results for Graph Size and K = 4 (in Milliseconds)

Graph Family n DFS-Verify Branching Tree Tree Path Maxima Hagerup MSTV

Random Sparse

10000 6.701 27.337 11.234 38.968
0.262 0.412 0.389 0.463

50000 53.279 215.279 128.852 351.278
0.665 2.466 2.550 5.243

100000 152.525 714.424 342.781 1074.611
0.893 7.081 3.024 8.296

500000 1090.315 3735.811 1687.155 5571.176
27.232 18.228 21.218 48.081

1000000 2414.629 8326.844 3849.656 12575.886
57.763 93.028 49.040 150.467

Random Dense

10000 32.414 53.248 192.135 256.618
0.293 0.112 0.667 0.708

20000 75.391 97.720 519.790 647.546
0.466 0.681 2.512 2.849

30000 158.968 220.633 1016.467 1290.216
0.131 5.489 23.250 23.526

40000 231.576 299.004 1528.781 1848.462
0.994 0.253 8.515 8.437

50000 276.532 423.265 2119.440 2651.944
0.395 0.935 19.098 19.536

Long Mesh

10000 6.980 31.416 11.373 44.114
0.300 0.594 0.866 1.234

50000 56.433 269.706 92.445 369.002
0.758 1.082 6.902 6.845

100000 142.115 730.523 202.244 948.201
1.271 22.244 6.123 28.038

500000 1007.064 4771.639 1160.698 6057.476
24.248 1.940 24.921 24.334

1000000 2301.335 10276.019 2488.311 13050.114
46.060 87.818 44.870 129.320

Square Mesh

10000 6.746 26.817 10.562 38.655
0.252 0.395 0.440 0.687

50000 57.590 257.092 88.652 352.482
1.475 2.837 2.076 3.528

100000 146.909 641.678 204.912 864.060
2.122 4.295 8.824 11.795

500000 1055.621 4544.824 1244.180 5922.473
2.838 19.478 22.418 40.997

1000000 2359.340 9294.312 2427.942 11994.295
3.049 52.226 42.635 82.618

Note: For each entry, the top number is the average execution time, and the bottom number is the standard
deviation.

CHAPTER 4. THE MSTV ALGORITHM 37

1

10

100

1000

10000

100000

10000 50000 100000 500000 1000000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Vertices, n

DFS Verify

Branching Tree

Tree Path Maxima

Hagerup MSTV

Figure 4.10: MSTV performance for square mesh graphs as the number of vertices is varied and
K = 4.

4.5.2 Distinct Edge Weights

We next study the execution times for all graph families as we increase K. In this study, we

let n = 1 million for sparse, long mesh, and square mesh graphs, and we let n = 50000 for dense

graphs. Note that all experiments in this study are “Yes” instances.

For all graph types, we observe that when K ≤ 24, the DFS-Verify algorithm is faster than

Hagerup’s algorithm for “Yes” instances. It is not surprising that the DFS-Verify algorithm runs

slower than Hagerup’s algorithm when K ≥ 28. Recall that Hagerup’s algorithm runs in O(m+n)

time, while our algorithm runs in O(m+ n ·K) time. This means there exists some threshold for

K where Hagerup’s algorithm is superior to our algorithm once that threshold is surpassed.

A surprising observation is the superiority of our algorithm for dense graphs. When K ≤ 32,

our algorithm runs faster than Hagerup’s algorithm. Further, it appears the DFS-Verify algorithm

is superior for larger values of K. However, the exact value of K is currently unknown.

We also observe that as K increases, the rate of the execution time of our algorithm is slower

for dense graphs than for sparse graphs. This is because n ·K > m = 4 · n for sparse graphs, but

CHAPTER 4. THE MSTV ALGORITHM 38

n ·K < m = n1.4 for dense graphs in this study. This means increasing K does not significantly

affect the execution time of the algorithm for dense graphs.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 4 8 12 16 20 24 28 32

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Distinct Edge Weights, K

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.11: MSTV performance for sparse graphs with 1 million vertices as the value of K is
varied.

4.5.3 “No” Instances for Small K

We now study the execution times for all graph families as we increase the number of incorrect

edges when K = 4. Similar to the previous experiment, we let n = 1 million for sparse, long

mesh, and square mesh graphs, and we let n = 50000 for dense graphs. In this study, we let the

number of incorrect edges be 0, 1, 10, and 0.1 · n to simulate various situations. 0 incorrect edges

represents the “Yes” instance, where the spanning tree is the MST. 1 incorrect edge corresponds to

the spanning tree being the MST except for a single edge. 10 incorrect edges refers to having a

small number of incorrect edges. Finally, 0.1 · n incorrect edges exemplifies having a spanning

tree with many incorrect edges.

We find that when K = 4, the DFS-Verify algorithm runs substantially faster than Hagerup’s

algorithm for all “No” instances. For sparse, long mesh, and square mesh graphs, the improvement

CHAPTER 4. THE MSTV ALGORITHM 39

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 8 12 16 20 24 28 32

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Distinct Edge Weights, K

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.12: MSTV performance for dense graphs with 50000 vertices as the value of K is varied.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 4 8 12 16 20 24 28 32

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Distinct Edge Weights, K

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.13: MSTV performance for long mesh graphs with 1 million vertices as the value of K is
varied.

CHAPTER 4. THE MSTV ALGORITHM 40

Table 4.4: Experiment Results for Distinct Edge Weights in Random Graphs (in Milliseconds)

Graph Family K DFS-Verify Branching Tree Tree Path Maxima Hagerup MSTV

Random Sparse

2 1142.348 8465.118 3804.071 12657.006
31.025 176.459 72.305 188.900

4 2414.629 8326.844 3849.656 12575.886
57.763 93.028 49.040 150.467

8 4327.094 8258.244 3655.250 12356.898
8.306 85.478 60.830 136.222

12 6397.879 8364.862 3527.734 12321.195
60.317 27.554 48.883 48.725

16 8385.526 8484.542 3558.086 12481.266
113.760 54.441 11.185 54.404

20 10968.399 8896.910 3877.873 13258.267
50.501 255.658 64.202 301.461

24 12787.028 8892.347 3852.831 13235.453
24.764 241.426 71.169 276.979

28 14051.977 8216.809 3790.210 12495.742
249.210 616.999 228.995 558.279

32 16184.538 8643.672 3676.436 12802.212
46.899 36.750 85.083 55.944

Random Dense

2 168.402 309.455 2051.235 2470.983
0.107 0.644 37.973 37.788

4 276.532 423.265 2119.440 2651.944
0.395 0.935 19.098 19.536

8 433.410 524.450 1991.477 2624.907
2.243 1.100 9.829 10.122

12 601.732 533.904 2122.211 2766.571
10.938 1.254 0.554 1.410

16 713.115 525.416 1992.992 2627.533
1.351 0.852 44.660 44.381

20 934.368 534.246 1991.182 2636.777
40.689 8.442 36.423 41.045

24 1060.188 534.631 1979.592 2623.351
8.132 1.347 1.827 2.266

28 1245.588 644.512 1993.573 2748.882
2.488 5.664 18.624 20.479

32 1357.959 648.607 2038.494 2798.289
35.882 8.933 43.157 46.406

Note: For each entry, the top number is the average execution time, and the bottom number is the standard
deviation.

CHAPTER 4. THE MSTV ALGORITHM 41

Table 4.5: Experiment Results for Distinct Edge Weights in Mesh Graphs (in Milliseconds)

Graph Family K DFS-Verify Branching Tree Tree Path Maxima Hagerup MSTV

Long Mesh

2 1047.992 8995.560 2264.408 11518.697
5.416 105.227 52.414 144.082

4 2301.335 10276.019 2488.311 13050.114
46.060 87.818 44.870 129.320

8 4669.892 11174.352 2721.650 14224.751
65.796 139.514 46.938 41.405

12 6447.356 10437.315 2528.620 13276.687
45.258 170.123 18.170 176.216

16 8806.310 11205.928 2697.621 14246.187
31.193 166.344 10.999 171.621

20 10097.292 10843.650 2559.952 13724.930
47.295 199.745 32.615 212.268

24 13054.662 10756.701 2730.702 13831.937
34.012 69.132 15.638 63.746

28 14641.079 10368.599 2632.384 13336.820
54.409 317.676 7.168 316.325

32 17793.836 10611.177 2721.808 13681.168
47.057 109.254 17.097 97.983

Square Mesh

2 1140.780 9613.015 2472.790 12360.878
2.821 48.688 52.188 73.088

4 2359.340 9294.312 2427.942 11994.295
3.049 52.226 42.635 82.618

8 4713.669 11014.091 2687.769 14026.244
5.235 109.853 22.472 3.745

12 6612.330 10757.437 2628.753 13712.444
48.909 119.197 51.587 127.380

16 8677.986 10975.507 2638.542 13948.217
49.749 130.991 37.411 90.652

20 10849.766 11387.892 2725.273 14457.771
43.940 73.607 7.838 76.467

24 12112.351 10877.700 2580.852 13785.732
47.525 189.404 10.978 197.692

28 14089.816 10998.235 2566.161 13905.850
71.830 266.257 3.512 270.946

32 16212.266 11289.858 2603.514 14223.861
439.507 92.373 26.859 76.086

Note: For each entry, the top number is the average execution time, and the bottom number is the
standard deviation.

CHAPTER 4. THE MSTV ALGORITHM 42

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 4 8 12 16 20 24 28 32

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Distinct Edge Weights, K

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.14: MSTV performance for square mesh graphs with 1 million vertices as the value of K
is varied.

is approximately 92% and 98% for dense graphs. This is because our algorithm checks the non-tree

edges in increasing weight as we process the spanning tree. If the spanning tree is incorrect,

our algorithm halts as soon as the edge is detected which means fewer iterations are required.

Hagerup’s algorithm processes the entire spanning tree before checking non-tree edges. Also,

Hagerup’s algorithm cannot assume the edges are sorted by increasing weight, as sorting the edges

requires O(m · logm) space, which is non-linear.

We also analyze the impact of increasing the number of incorrect edges. For the DFS-Verify

algorithm, there is a slight improvement when there are more incorrect edges. With more incorrect

edges, it is more likely a non-tree edge should be in the MST with a lighter weight. This means

we can detect an incorrect edge with fewer iterations. For Hagerup’s algorithm, there does not

appear to be a clear correlation between the number of incorrect edges and the execution time.

CHAPTER 4. THE MSTV ALGORITHM 43

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 10 100000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.15: MSTV performance for sparse graphs with 1 million vertices as the number of
incorrect edges is varied and K = 4d.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 10 5000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.16: MSTV performance for dense graphs with 50000 vertices as the number of incorrect
edges is varied and K = 4.

CHAPTER 4. THE MSTV ALGORITHM 44

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 10 100000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.17: MSTV performance for long mesh graphs with 1 million vertices as the number of
incorrect edges is varied and K = 4.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 10 100000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.18: MSTV performance for square mesh graphs with 1 million vertices as the number of
incorrect edges is varied and K = 4.

CHAPTER 4. THE MSTV ALGORITHM 45

Table 4.6: Experiment Results for Incorrect Edges and K = 4 (in Milliseconds)

Graph Family Incorrect Edges DFS-Verify Branching Tree Tree Path Maxima Hagerup MSTV

Random Sparse

0 2414.629 8326.844 3849.656 12575.886
57.763 93.028 49.040 150.467

1 882.413 8636.568 4019.027 12655.691
11.395 87.975 56.430 129.133

10 861.342 9321.191 3854.498 13175.712
28.962 106.724 49.311 151.915

100000 791.853 9084.229 3688.891 12773.143
11.574 55.537 57.644 99.417

Random Dense

0 276.532 423.265 2119.440 2651.944
0.395 0.935 19.098 19.536

1 30.161 423.382 2160.481 2583.992
0.783 0.904 45.769 46.020

10 30.269 431.040 2131.901 2563.011
0.961 13.070 30.447 35.330

5000 29.393 425.970 2129.417 2555.412
0.393 2.951 4.512 5.006

Long Mesh

0 2301.335 10276.019 2488.311 13050.114
46.060 87.818 44.870 129.320

1 1419.031 10671.563 2623.980 13297.716
4.099 47.709 61.538 77.299

10 645.297 11010.902 2702.582 13713.505
2.609 44.895 43.321 52.265

100000 569.368 10598.034 2555.240 13153.296
7.409 104.460 48.606 47.278

Square Mesh

0 2359.340 9294.312 2427.942 11994.295
3.049 52.226 42.635 82.618

1 889.060 10658.754 2508.582 13167.379
1.366 64.203 46.742 88.540

10 857.780 10301.865 2433.871 12735.758
0.858 50.421 44.501 80.483

100000 757.959 9024.737 2370.048 11395.014
1.217 88.256 51.561 123.408

Note: For each entry, the top number is the average execution time, and the bottom number is the standard deviation.

CHAPTER 4. THE MSTV ALGORITHM 46

4.5.4 “No” Instances for Large K

For our last study, we explore what happens when we increase the number of incorrect edges

for a larger K. We use the same parameters as the study in Chapter 4.5.3 except K = 20.

The results are very similar to the study in Chapter 4.5.3. The DFS-Verify algorithm runs

faster than Hagerup’s algorithm regardless of the number of incorrect edges. The key difference is

we can clearly see the improvement in the DFS-Verify algorithm as we increase the number of

incorrect edges. As with the previous study, this is because we can detect an incorrect edge faster

if there are more incorrect edges in the spanning tree.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 10 100000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.19: MSTV performance for sparse graphs with 1 million vertices as the number of
incorrect edges is varied and K = 20d.

CHAPTER 4. THE MSTV ALGORITHM 47

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 10 5000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.20: MSTV performance for dense graphs with 50000 vertices as the number of incorrect
edges is varied and K = 20.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 10 100000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.21: MSTV performance for long mesh graphs with 1 million vertices as the number of
incorrect edges is varied and K = 20.

CHAPTER 4. THE MSTV ALGORITHM 48

Table 4.7: Experiment Results for Incorrect Edges and K = 20 (in Milliseconds)

Graph Family Incorrect Edges DFS-Verify Branching Tree Tree Path Maxima Hagerup MSTV

Random Sparse

0 10968.399 8896.910 3877.873 13258.267
50.501 255.658 64.202 301.461

1 1610.180 7846.480 3867.246 11788.940
2.050 221.254 52.418 271.337

10 1053.705 8369.830 3791.907 12162.570
0.950 82.268 90.324 54.644

100000 256.466 10283.704 4079.794 14363.520
0.237 421.813 153.148 472.273

Random Dense

0 934.368 534.246 1991.182 2636.777
40.689 8.442 36.423 41.045

1 35.004 640.342 2054.102 2694.466
0.147 8.037 34.148 33.752

10 39.096 661.960 2109.573 2771.555
4.270 23.876 86.315 103.993

5000 36.943 685.664 2257.655 2943.343
1.463 19.572 80.657 86.135

Long Mesh

0 10097.292 10843.650 2559.952 13724.930
47.295 199.745 32.615 212.268

1 3158.220 11284.356 2638.174 14207.015
11.638 198.566 33.118 218.639

10 987.014 11415.967 2733.496 14149.484
36.093 47.940 28.187 73.574

100000 273.376 12583.817 2996.000 15579.840
24.432 495.061 179.286 610.487

Square Mesh

0 10849.766 11387.892 2725.273 14457.771
43.940 73.607 7.838 76.467

1 952.253 11008.541 2599.065 13607.629
32.920 816.491 53.340 297.534

10 292.243 11953.929 2869.879 14823.832
17.578 469.635 102.028 484.550

100000 255.868 12556.474 2746.781 15303.298
0.819 198.108 13.063 197.260

Note: For each entry, the top number is the average execution time, and the bottom number is the standard
deviation.

CHAPTER 4. THE MSTV ALGORITHM 49

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 10 100000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Incorrect Edges

DFS Verify
Branching Tree
Tree Path Maxima
Hagerup MSTV

Figure 4.22: MSTV performance for square mesh graphs with 1 million vertices as the number of
incorrect edges is varied and K = 20.

50

Part II

The Undirected Negative Cost Cycle

Detection Problem

51

Chapter 5

Introduction

A negative cost cycle is defined as a path from a vertex to itself, whose total cost (or weight)

is negative. The problem of finding a negative cost cycle in a graph is called the negative cost

cycle detection problem (NCCD). For directed graphs, the problem has been widely studied

[9, 10, 11, 12, 13, 14, 15, 16]. Figure 5.1 provides an example of a negative cost cycle. In this

example, the path b → d → c → b is a negative cost cycle since the total cost of the path is

−3 +−5 +−2 = −10.

a

b

c

d

1

4

−2

−3

−5

(a)

b

c

d−2

−3

−5

(b)

Figure 5.1: An example of a negative cost cycle. (a) is the graph, and (b) is a negative cost cycle
of the graph.

CHAPTER 5. INTRODUCTION 52

In Part II of this thesis, we focus on undirected graphs. Hence, the problem we are interested

in is the undirected negative cost cycle detection problem (UNCCD). Unlike directed graphs,

detecting a negative cost cycle for undirected graphs is significantly difficult. One idea is to

transform an undirected graph into a directed graph by replacing each undirected edge with two

directed edges going in opposite directions. However, if an undirected edge has a negative cost,

then the two directed edges also have negative costs. This results in a negative cost cycle in the

directed graph that did not exist in the undirected graph.

b

a

−2

(a)

b

a

−2 −2

(b)

Figure 5.2: The problem with transforming an undirected edge into two directed edges. (a) is the
undirected edge, and (b) is the transformed directed edge.

We illustrate this issue in Figure 5.2. Consider edge eab in Figure 5.2(a). If we transform it

into two directed edges that are oriented in opposite directions, we get Figure 5.2(b). Since the

cost of the undirected edge is −2, both directed edges must also be −2. However, we now have

the path a → b → a, whose total cost is −4. This results in a negative cost cycle that was not

present prior to the transformation.

The next two chapters present our results related to the UNCCD problem. We first discuss

two known approaches for the UNCCD problem. The b-matching approach transforms a graph G

into a new graph G′ and finds the minimum weight perfect matching (MWPM) in G′ [17, 18] to

detect the presence of a negative cost cycle. On a graph with n vertices and m edges, we show

CHAPTER 5. INTRODUCTION 53

that the algorithm runs in O((m+ n)2 · log(m+ n)) time. The T -join approach is an O(n3) time

algorithm [23] that utilizes properties of T -joins [19, 20] and contains algorithms for the all pairs

shortest paths (APSP) and MWPM problems as subroutines.

We next describe how to improve both UNCCD algorithms when the edge costs are integers

in the range {−K · ·K}, where K is a positive constant. By using efficient MWPM and APSP

algorithms in graphs with integral positive edge costs, we show that the b-matching approach runs

in O((m + n)1.5 · (log(m + n))1.5 ·
√
α(m+ n,m+ n)) time, and the T -join approach runs in

O(n2.5 · (log n)1.5 ·
√
α(n2, n)) time, where α(x, y) represents the inverse Ackermann function

[21, 22]. Both running times are the best known bounds.

We then present the first extensive empirical study for the UNCCD problem. Although there

exists a previous empirical study for the UNCCD problem [23], there are several limitations

with the study. First, the study examines only the T -join approach and mentions the b-matching

approach only in passing. The implementation used in the study is only a proof of concept to

illustrate the algorithmic techniques used. Only families of sparse graphs are included in the study.

In the empirical study in this thesis, we examine comprehensive implementations for both the

b-matching and T -join approaches for various graph families and sizes. We note there already

exist several empirical studies that analyze negative cost cycle detection algorithms for directed

graphs [11, 13, 53, 16]. However, we provide the first empirical study that analyzes negative cost

cycle detection algorithms for undirected graphs.

5.1 Preliminaries and Notation

We are given a weighted, undirected graph G = (V,E, c), where V is the set of n vertices, E

is the set of m edges, and c : E → R is a cost function. For each edge eij ∈ E, we let cij be the

cost of that edge. Similarly, for any set of edges E ′ ⊆ E, we let c(E ′) denote the total cost of E ′.

Since G is undirected, eij = eji, ∀eij ∈ E. We represent G as an adjacency list Adj, where for

each vertex v ∈ V , Adj(v) is the set of outgoing edges from v in G. Although |Adj| = 2 ·m for

undirected graphs, this does not negatively affect our UNCCD algorithms.

A subgraph of G = (V,E) is a graph H = (VH , EH), where VH ⊆ V and EH ⊆ E. A graph

H = (VH , EH) is an induced subgraph of G if H is a subgraph of G, and EH = {eij : eij ∈ E

CHAPTER 5. INTRODUCTION 54

and vi, vj ∈ VH}. In other words, H is an induced subgraph is G if H has exactly the edges that

appear in G over the same vertex set. For ease of exposition, we say that H is the subgraph of G

induced by VH , and we denote this as H = G[VH].

Figure 5.3 provides an example of both a subgraph and induced subgraph. Figure 5.3(a) is

the graph G. H (Figure 5.3(b)) is a subgraph of G. However, it is not an induced subgraph since

b, d ∈ VH , but ebd /∈ EH . H ′ (Figure 5.3(c)) is an induced subgraph of G since a, b, d ∈ VH′ and

all edges in G that connect these vertices are in EH′ .

a

b

c

d
(a)

a

b

c

d
(b)

a

b

d
(c)

Figure 5.3: An example of subgraphs. (a) is the graph G. (b) is a subgraph H . (c) is an induced
subgraph H ′ = G[VH′].

A path P is a sequence of vertices such that there exists a unique edge eij connecting one

vertex to the next vertex in the sequence. A cycle C is similar to a path except the first and last

vertices in the sequence are the same. Note that C is a subgraph, where VC is the sequence of

vertices, and EC is the set of edges connecting the vertices in the sequence. Hence, a negative cost

cycle is a cycle C = (VC , EC , c), where c(EC) < 0.

Finally, the metric closure of an undirected, weighted graph is defined as follows [20]:

Definition 5.1.1 Given an undirected, weighted graph G = (V,E, c) with no negative cost cycles,

the metric closure of G is a graph Ḡ = (VḠ, EḠ, c̄) such that VḠ = V , and ∀i, j ∈ VḠ, eij is an

edge in EḠ with weight c̄(e), where c̄(e) is the cost of the shortest path from i to j in G.

In other words, if we have a graph that does not have any negative cost cycles, we can find the

metric closure by solving the APSP problem.

CHAPTER 5. INTRODUCTION 55

Figure 5.4 gives an example of the metric closure. We let G (Figure 5.4(a)) be the initial graph.

We let G′ (Figure 5.4(b)) be the metric closure of G, where for each edge eij in G′, c(eij) is the

cost of the shortest path from i to j in G.

a

b

c

d

3

1

4

2

−1

(a)

a

b

c

d

2

1

1

2

2

−1

(b)

Figure 5.4: An example of the metric closure. (a) is the graph G, and (b) is a the metric closure G′.

56

Chapter 6

UNCCD Algorithms

In this chapter, we discuss the currently known approaches for the UNCCD problem and how

to improve them when the edge costs are restricted to integers. The b-matching approach has

been widely studied [54, 55, 18, 20, 56] and involves transforming the graph into a new graph

and finding the minimum weight perfect matching (MWPM) in the new graph. On a graph with

n vertices and m edges, the b-matching approach runs in O((m + n)2 · log(m + n)) time. The

T -join approach has also been extensively studied [57, 58, 20] and involves algorithms for solving

the APSP and MWPM problems as subroutines. This algorithm runs in O(n3) time.

6.1 The b-matching Approach

In this section, we describe the algorithm that solves the UNCCD problem by utilizing b-

matchings. Briefly, the algorithm is a modification of Edmonds’ algorithm [17] that solves the

shortest path problem in undirected graphs by transforming it into the non-bipartite weighted

matching problem. Since the UNCCD problem can be reduced to an instance of the shortest path

problem [18], we can use shortest path algorithms to detect negative cost cycles in undirected

graphs. The details of the algorithm are explained below.

6.1.1 Preliminaries

We are given a graph G = (V,E, c). For ease of exposition, we let G be uncapacitated (i.e.,

each edge eij ∈ E has capacity equal to 1). The number of edges adjacent to a vertex v ∈ V is

CHAPTER 6. UNCCD ALGORITHMS 57

called the degree of v. Matching problems involve choosing a subset of edges in G, subject to

specific degree constraints on the vertices. Hence, a 1-matching, or simply matching, in G is a set

of edges M ⊆ E such that in the subgraph GM = (V,M) of G, each vertex v ∈ V is adjacent to

at most one edge. In other words, a matching M in G is a subset of E such that no two edges in

M are adjacent ot the same vertex.

The definition of a matching can be extended to b-matchings [55].

Definition 6.1.1 H is a b-matching in G if each vertex v ∈ V is adjacent to no more than bv edges

in the subgraph GH = (V,H), where bv is a positive integer.

Note that H ⊆ E, while bv represents an upper bound for the degree of each vertex v ∈ V .

A b-matching is called perfect if the degree constraint imposed on each vertex is satisfied as

an equality. In other words, H is a perfect b-matching in G if each vertex v ∈ V has exactly bv

adjacent edges in GH . Let adjG(v) denote the set of edges adjacent to vertex v in a graph G. Then

H is a perfect b-matching in G if |adjGH
(v)| = bv for each v ∈ V . Note that if bv = 2 for all

v ∈ V , and H is a perfect b-matching of G, we call H a perfect 2-matching. Accordingly, M is a

perfect matching in G if |adjGM
(v)| = 1 for each vertex v ∈ V .

In this thesis, we focus on perfect matchings and perfect b-matchings. Figure 6.1 provides such

an example. We are given an undirected, uncapacitated graph G in Figure 6.1(a). Figure 6.1(b)

contains the edges of a perfect b-matching in G, where ba = 1, bb = 2, bc = 2, and bd = 3. A

perfect 2-matching in G is given in Figure 6.1(c) since the degree of all vertices in this subgraph is

2. Note that a perfect 2-matching in G implies a Hamilton cycle in G or a set of vertex-disjoin

cycles that cover all the vertices in V . If bv = 1, for all v ∈ V , then M is a perfect matching of G.

Figures 6.1(d) and 6.1(e) represent perfect matchings in G.

Given a matching M in a weighted graph G, c(M) denotes the total weight (or cost) of M .

In other words, c(M) =
∑

eij∈M c(eij). One key problem in this domain is finding the MWPM.

The first known algorithm for the MWPM problem is provided by Edmonds [54, 59]. Since

then, several advancements have been made that improve the running time [60, 61, 62, 63, 64].

The current fastest algorithm for solving the MWPM problem is provided by Gabow and runs in

O(n · (m+ n · log n)) time [65].

Along with designing efficient algorithms for the MWPM problem, there has been an increasing

CHAPTER 6. UNCCD ALGORITHMS 58

a b

cd
(a)

a b

cd
(b)

a b

cd
(c)

a b

cd
(d)

a b

cd
(e)

Figure 6.1: Examples of b-matchings and perfect matchings. (a) is an undirected graph G. (b) is a
perfect b-matching in G, where ba = 1, bb = 2, bc = 2, and bd = 3. (c) is a perfect 2-matching in
G. (d) and (e) are perfect matchings in G.

interest in developing robust implementations of Edmonds’ algorithm [66, 67, 68, 69, 70, 71, 72,

73, 74, 75]. The most recent implementation is known as the Blossom V algorithm [56]. This

implementation has outperformed previous implementations [74, 75].

6.1.2 UNCCD Algorithm based on b-matching

The b-matching approach performs three consecutive transformations on G to obtain a new

graph G′ = (V ′, E ′). We also modify bv, for each vertex v ∈ V , to obtain the correct perfect

matching. The algorithm starts by initializing G′ to G. The first transformation adds self-loops

to each vertex in G, and we denote the resulting graph as G1 = (V1, E1). We also set bv to 2, for

CHAPTER 6. UNCCD ALGORITHMS 59

each vertex v ∈ V ′. We illustrate this transformation in Figure 6.2. In this example, Figure 6.2(a)

is our intitial graph G, and Figure 6.2(b) is the transformed graph G1.

a

b

c

d

−1

4

−2

−3

−5

(a)

a

b

c

d

−1

4

−2

−3

−5

0

0

0

0

(b)

Figure 6.2: An example of the b-matching approach. (a) is the initial graph G. (b) is the resulting
graph G1 after the first transformation.

We then transform G′ by adding two vertices, denoted as k and l, for each edge eij ∈ E ′,

where i 6= j. The resulting graph is denoted as G2 = (V2, E2). We also set each bk and bj to 1.

We demonstrate this transformation in Figure 6.3, which is the result of transforming G1 from

Figure 6.2(b). As an example, when we split edge eab, we create edges eak1 , ek1l1 , and el1b. We

also set cak1 = −0.5, ck1l1 = 0, and cl1b = −0.5.

The final transformation splits each vertex v ∈ V ′ that has a self-loop into two vertices i′

and i′′, and the self-loop eii becomes edge ei′i′′ . For each vertex i′ and i′′ that are created by this

transformation, we set bi′ and bi′′ to 1. An illustration of this transformation is given in Figure 6.4.

Using a as an example, we create vertices a′ and a′′. We replace edge eak1 with edges ea′k1 and

ea′′k1 , where the costs of these edges are the same as the cost of edge eak1 . We do the same thing

to replace edge eak5 . For the self-loop, we replace it with edge ea′a′′ and set the cost to zero.

Once the transformation is complete, we find the MWPM in G′. We let M be this matching.

We then get the total cost of the matching which is denoted as c(M). If c(M) is negative, then a

negative cost cycle exists in G. If c(M) ≥ 0, then G does not contain a negative cost cycle. We

CHAPTER 6. UNCCD ALGORITHMS 60

a

b

c

d

0

0

0

0

k1

l1 k2

l2

k3

l3

k4

l4
k5

l5

2

0

2 −1.5

0

−1.5

−2.5

0

−2.5

−1

0

−1

−0.5

0

−0.5

Figure 6.3: An example of the b-matching approach. The resulting graph G2 after the second
transformation.

provide an example of this step in Figure 6.5 using Gabow’s algorithm [65]. Note that in this

example, total cost of the matching is −10. Therefore, there must be a negative cost cycle in G.

The procedure is shown in Algorithm 6.1.

Resource Analysis

The first transformation (lines 2-6) adds an edge for each vertex in V . This means there are

|V | = n iterations, and each iteration takes constant time. Therefore, the first transformation takes

O(n) time.

The second transformation (lines 7-13) adds two vertices and one edge for each edge in E1

that is not a self-loop. This means there are |{eij ∈ E1 : i 6= j}| = m iterations, and each iteration

takes constant time. Hence, the second transformation takes O(m) time.

In the third transformation (lines 14-24), for each vertex i ∈ V2, where bi = 2, we modify each

edge outgoing of i except the self-loop eii. Since the only vertices that have bi = 2 are the vertices

in V , the number of outgoing edges from i in G2 is equal to the number of outgoing edges from i

in G. Recall that each undirected edge is connected to two vertices in V . This means there are

CHAPTER 6. UNCCD ALGORITHMS 61

a′

a′′

b′ b′′

c′

c′′

d′ d′′

0

0

0

0

k1

l1 k2

l2

k3

l3

k4

l4k5

l5

2

2

0

2 2 −1.5−1.5

0

−1.5

−1.5

−2.5−2.5

0

−2.5

−2.5

−1 −1

0

−1 −1

−0.5 −0.5

0

−0.5

−0.5

Figure 6.4: An example of the b-matching approach. The resulting graph G′ after the third
transformation.

CHAPTER 6. UNCCD ALGORITHMS 62

a′

a′′

b′ b′′

c′

c′′

d′ d′′

0

k1

l1 k2

l2

k3

l3

k4

l4k5

l5

0

−1.5

−1.5

−2.5

−2.5

−1

−1
0

Figure 6.5: An example of the b-matching approach. The minimum weight perfect matching M .

CHAPTER 6. UNCCD ALGORITHMS 63

Function b-MATCHING(G = (V,E, c))

1: Create graph G′ = (V ′, E ′), where V ′ = V and E ′ = E.
2: for (each v ∈ V ′) do
3: Add edge evv to E ′.
4: c(evv) := 0.
5: bv := 2.
6: end for
7: for (each eij ∈ E ′ and i 6= j) do
8: Add vertices k and l to V ′.
9: Add edges eik, ekl, and elj to E ′.

10: c(eik) = c(eij)/2, c(elj) = c(eij)/2, and c(ekl) = 0.
11: Remove eij from E ′.
12: bk := 1; bl := 1.
13: end for
14: for (each i ∈ V ′ and bi = 2) do
15: Add vertices i′ and i′′ to V ′.
16: bi′ := 1; bi′′ := 1.
17: for (each eik ∈ adjG′(i) and i 6= k) do
18: Remove edge eik, and add edges ei′k and ei′′k to E ′.
19: c(ei′k) := c(eik), and c(ei′′k) := c(eik).
20: end for
21: Remove edge eii, and add edge ei′i′′ to E ′.
22: c(ei′i′′) := 0.
23: Remove vertex i from V ′.
24: end for
25: Let M be an MWPM in G′.
26: if (c(M) < 0) then
27: return “G contains a negative cost cycle.”
28: else
29: return “G does not contain a negative cost cycle.”
30: end if

Algorithm 6.1: UNCCD Algorithm: b-MATCHING

CHAPTER 6. UNCCD ALGORITHMS 64

2 ·m iterations, and each iteration takes constant time. Therefore, the third transformation takes

O(m) time.

The bottleneck of the algorithm is finding an MWPM in G′ (line 25). From [65], we know

that the MWPM takes O(|V ′| · (|E ′| + |V ′| · log |V ′|)) time. This means we need to determine

exactly what are |V ′| and |E ′|.

Let us first determine |V ′|. The first transformation does not add any new vertices since we

add only self-loops. This means |V1| = n. In the second transformation, we add two vertices for

each edge that is not a self-loop. Since |E| = m, we add 2 ·m vertices to V2, and |V2| is now

2 ·m+ n. In the third transformation, we split each vertex i ∈ V2 with bi = 2. Since these vertices

are the original vertices in G, the number of vertices affected is n. Hence, we are adding n more

vertices to V ′ during the split. Therefore, |V ′| = 2 ·m+ n+ n = 2 · (m+ n).

We now determine |E ′|. The first transformation adds an edge for each vertex in V . This

means we add |V | = n edges, and |E1| = m + n. In the second transformation, we replace

each edge eij ∈ E1, where i 6= j, with three new edges. This means we add 2 ·m edges to E2,

and |E2| = 3 · m + n. In the third transformation, we replace every edge eik ∈ E2, such that

bi = 2, with two new edges. Since there are two such edges in E2 for each edge eij ∈ E, the third

transformation adds 2 ·m edges to E ′. This means |E ′| = 5 ·m+ n.

From the analysis above, |V ′| = |E ′| = O(m + n). Since the MWPM can be found in

O(|V ′| · (|E ′| + |V ′| · log |V ′|)) time, the total running time of the b-matching approach is

O((m+ n) · ((m+ n) + (m+ n) · log(m+ n))) = O((m+ n)2 · log(m+ n)). Note that when

m = O(n2), the b-matching algorithms runs in O(n4 · log n) time. This improves the O(n6) time

analysis described by Gu et al. [23].

Correctness

To prove the correctness of the algorithm, we show the following:

1. After the first transformation, there exists a minimum weight perfect 2-matching H in G1

with c(H) < 0 if and only if there exists a negative cost cycle in G.

2. After the second transformation, there exists a minimum weight perfect 2-matching H ′ in

G2 with c(H ′) < 0 if and only if there exists a minimum weight perfect 2-matching H in

CHAPTER 6. UNCCD ALGORITHMS 65

G1, where c(H) < 0 and c(H ′) = c(H).

3. After the third transformation, there exists a perfect matching M in G′ with c(M) < 0 if

and only if there exists a minimum weight perfect b-matching H ′ in G2, where c(H ′) < 0

and c(H ′) = c(M).

Lemma 6.1.1 After the first transformation, there exists a minimum weight perfect 2-matching H

in G1 with c(H) < 0 if and only if there exists a negative cost cycle in G.

Proof: Let us assume there exists a negative cost cycle in G, denoted as C = (VC , EC , c).

Since bi = 2 for each vertex i in V1, and there is a loop eii with zero cost for each vertex i,

there exists a perfect 2-matching with zero cost. Recall that a perfect 2-matching in G1 implies a

Hamilton cycle in G1 or a set of vertex-disjoint cycles that covers all the vertices in V1. If there

are no negative cost cycles in G, then the 2-matching of zero cost in G1 is minimum. Even if G

contained edges with negative cost, they cannot be included in the 2-matching. Otherwise, the

matching would not be perfect.

If there is a negative cost cycle C in G, then there must be a perfect 2-matching H in G1

with negative cost. This is because the edges in C, denoted as EC , with negative cost must be

included in the matching. Let us assume this is not the case. In order for H to be a minimum

perfect matching, the cost of each edge picked from G1 must be either zero or negative. Suppose

there exists an edge eij ∈ EC such that cij < 0 and eij /∈ H . This means we can replace

an edge in H with zero cost with edge eij to obtain a perfect matching with a smaller total

cost. Therefore, H must contain the edges in the C that have a negative cost. As a result,

c(H) = c(EC) +
∑

i/∈VC
c(eii) = c(EC) + 0 = c(Ec). Hence, there exists a minimum weight

perfect 2-matching H in G1 with a negative cost (i.e., c(H) < 0) if and only if G contains at least

one negative cost cycle C. 2

Lemma 6.1.2 After the second transformation, there exists a minimum weight perfect 2-matching

H ′ in G2 with c(H ′) < 0 if and only if there exists a minimum weight perfect 2-matching H in G1,

where c(H) < 0 and c(H ′) = c(H).

Proof: We show that the correspondence between H and H ′ arises from the following:

CHAPTER 6. UNCCD ALGORITHMS 66

(i) Edge eij is in a b-matching H in G1 if and only if eik and elj are in the b-matching H ′ in G2,

while c(eij) = c(eik) + c(elj).

(ii) Edge eij /∈ H if and only if ekl ∈ H ′, while c(ekl) = 0.

The critical observation is that since bi = 2, for any i ∈ V1, vertex i either participates in two

different edges in H , or it participates through loop eii ∈ H . Thus, for point (i), since bi = bj = 2

in G1, eij ∈ H implies that both i and j satisfy their degree constraints through edge eij and some

other edge, say eib for vertex i and ejd for vertex j, where b, d ∈ V1. By matching i with k in H ′

instead of j in H (and with some node a in H ′ instead of b in H), the degree constraint for i is still

satisfied. The same holds for j. Moreover, since c(eik) = c(elj) = c(eij)/2, replacing eij in G1

with eik and elj in G2 sustains the total cost of the b-matching. The reverse can be shown similarly.

For point (ii), since bk = bl = 1 in G2, ekl ∈ H ′ if only if eik /∈ H ′ and elj /∈ H ′. This means

eij /∈ H (see point (i)), which proves our claim. Further, since c(ekl) = 0, adding edge ekl to G2

sustains the total cost of the b-matching.

The above reasoning holds for any such transformation of a perfect b-matching in G1 to a

perfect b-matching in G2. This is because the transformation sustains the cost of the perfect

b-matchings. Note that points (i) and (ii) imply a one to one correspondence between the perfect

b-matchings in G1 and those in G2. Hence, if H is minimum for G1, H ′ is minimum for G2 (and

vice-versa), while c(H) = c(H ′). 2

Lemma 6.1.3 After the third transformation, there exists a perfect matchingM inG′ with c(M) <

0 if and only if there exists a minimum weight perfect b-matching H ′ in G2, where c(H ′) < 0 and

c(H ′) = c(M).

Proof: Recall that the algorithm splits each vertex i ∈ V2 with bi = 2 into two vertices i′ and i′′

with bi′ = bi′′ = 1. Hence, every v ∈ V ′ has bv = 1. Also, in G2, each edge leaving vertex i ∈ V2

with bi = 2 is either (i) towards some vertex k with bk = 1 (from the second transformation), or

(ii) towards itself (from the first transformation).

We first examine case (i). Let vertex i ∈ V2 be matched with vertices k, a in H ′ (i.e.,

eik, eia ∈ H ′). The correspondence of H ′ and M is sustained by matching i′ to k and i′′ to a in M ,

or vice versa, by having ei′k, ei′′a ∈ M (or ei′′k, ei′a ∈ M). Note that the degree constraints are

CHAPTER 6. UNCCD ALGORITHMS 67

satisfied since bi′ = bi′′ = bk = ba = 1. Moreover, since c(ei′k) = c(eik) and c(ei′′a) = c(eia), the

transformation sustains the total cost of the matching.

For case (ii), let vertex i ∈ V2 be matched with itself in H ′ (i.e., eii ∈ H ′). The correspondence

of H ′ and M is sustained by matching i′ to i′′ by ei′i′′ ∈M . The degree constraints are satisfied

since bi′ = bi′′ = 1, while the transformation sustains the total cost of the corresponding matching,

since c(ei′i′′) = c(eii) = 0. The reverse can be proved in the same manner. 2

By Lemmas 6.1.1-6.1.3, if there exists a negative cycle C in G, then there exists an MWPM

M in G′ such that c(M) < 0. Hence, the algorithm correctly identifies the existence of a negative

cost cycle in G if c(M) < 0.

6.2 The T -join Approach

In this section, we describe the algorithm that solves the UNCCD problem for an undirected

graph G by utilizing T -joins. Briefly, the algorithm utilizes the reduction [20] from the minimum

weight T -join problem with non-negative weights [19] to the UNCCD problem. We perform the

reduction by first obtaining a special graph of G, where the cost of each edge is non-negative.

We next solve an APSP problem to get the metric closure of the new graph. We then find the

MWPM of a specific induced subgraph to get a minimum weight T -join. With this T -join, we

can determine if there exists a negative cost cycle in G. The details of the algorithm are explained

below.

6.2.1 Preliminaries

We are given a graph G = (V,E). For the ease of exposition, we let G be uncapacitated (i.e.,

each edge eij ∈ E has capacity equal to 1). Let adjG(v) denote the set of edges adjacent to vertex

v in a graph G. We define a T -join [20] as follows:

Definition 6.2.1 Given an undirected graph G = (V,E) and a set T ⊆ V of even cardinality, a

set J ⊆ E is a T -join if |J ∩ adjG(v)| is odd if and only if v ∈ T .

If T = ∅, then we refer the T -join as an ∅-join. Also, if T = ∅, then every vertex v ∈ V has to

be incident to an even number of edges (or no edges) in J [58]. Therefore, an ∅-join is either an

CHAPTER 6. UNCCD ALGORITHMS 68

edge set of one or more cycles in G or the empty set ∅.

Figure 6.6 provides several examples of a T -join. We are given an undirected graph G,

as shown in Figure 6.6(a). Let T1 = {c, d}. Recall that adjG(c) = {ebc, ecd} and adjG(d) =

{ead, ebd, ecd}. The set of edges J1 = {ecd} is ia T1-join in G since |T1| is even, and both

|J1 ∩ adjG(c)| and |J1 ∩ adjG(d)| are odd. Likewise, J2 = {ebd, ebc} is also a T1-join since

|J2 ∩ adjG(c)| and |J2 ∩ adjG(d)| are odd. Let T2 = ∅. Then, J3 = {eda, eab, ebc, ecd}, J4 =

{ebd, edc, edb}, and J5 = ∅ are three possible T2-joins or, equivalently, ∅-joins.

a b

cd
(a)

a b

cd
(b)

a b

cd
(c)

Figure 6.6: Examples of a T -join. (a) is the undirected graphG. (b) is a T1-join, where T1 = {c, d}
and J1 = {ecd}. (c) is also a T1-join, where T1 = {c, d} and J2 = {ebd, ebc}.

The problem of finding a minimum c-weight T -join in G, where c represents the cost function

of graph G, can be reduced to the MWPM problem when G has edges with only positive weights

[19], edges with both positive and negative weights but no negative cost cycles [58], and even

negative cost cycles [20]. The fastest known algorithm for finding the minimum c-weight T -join

runs in O(n3) time [20].

6.2.2 UNCCD Algorithm based on T -join

The crucial observation for the T -join approach is formalized by the following theorem:

Theorem 6.2.1 There is a negative cost cycle in G = (V,E, c) if and only if J is the minimum

c-weight ∅-join with c(J) < 0.

CHAPTER 6. UNCCD ALGORITHMS 69

Proof: Recall that an ∅-join is either an edge set of one or more edge-disjoint cycles in G or

the empty set ∅. Also, the weight of an ∅-join J∅ = ∅ is c(J∅) = 0. Hence, if there are no negative

cost cycles in G, J∅ will always be a minimum c-weight ∅-join. Otherwise, the existence of at least

one negative cost cycle in G implies that there also exists at least one ∅-join J ′ with c(J ′) < 0.

This means the minimum c-weight ∅-join J will have c(J) ≤ c(J ′) < 0.

The reverse follows from the fact that the minimum c-weight ∅-join J has c(J) < 0 and

corresponds to t ≥ 1 cycles in G. Among those cycles, there must exist at least one with negative

cost. Otherwise, c(J) ≥ 0, which is a contradiction to c(J) < 0. 2

Therefore, to determine if the graph has a negative cost cycle, we need to find a minimum

c-weight ∅-join J . Thus, a negative cost cycle exists in G if and only if c(J) < 0.

The algorithm starts by finding the set of edges with negative cost, which is denoted as

E− ⊆ E, and the set of vertices that are incident to an odd number of negative edges, which we

denote as T− ⊆ V . We construct graph Gd = (V,E, d), with cost function d : E → R+ such that

for any edge eij ∈ E, d(eij) = |c(eij)|. In other words,

d(eij) =

{
−c(eij) eij ∈ E−

c(eij) eij ∈ E \ E−.

We now provide an example of this step. We will use the same graph G in Figure 6.2(a),

which we show in Figure 6.7(a). We first need to determine sets E− and T−. In this case,

E− = {ebc, ecd, ebd}, and T− = {a, c}. The next step is to construct graph Gd by setting the cost

of each edge in Gd to the absolute value of the cost of the corresponding edge in G. The resulting

graph is provided in Figure 6.7(b).

The next step is to create the metric closure Ḡd = (V,EḠd
, d̄) of Gd (Definition 5.1.1) by

solving an APSP problem. We then construct the induced subgraph Ḡd[T
−] = (T−, EḠd[T−], d̄).

The algorithm then proceeds with finding an MWPM M in Ḡd[T
−]. Using the example from

Figure 6.7, the metric closure of Gd is given in Figure 6.8(a). Since a and c are the only vertices

in T−, we get the induced subgraph given in Figure 6.8(b). The next step is to find a minimum

weight perfect matching M in Ḡd[T
−]. Since Ḡd[T

−] contains only a single edge, in this case,

M = EḠd[T−] = {ead}.

CHAPTER 6. UNCCD ALGORITHMS 70

a

b

c

d

−1

4

−2

−3

−5

(a)

a

b

c

d

1

4

2

3

5

(b)

Figure 6.7: An example of the T -join approach. (a) is the initial graph G. (b) is the modified
graph Gd.

a

b

c

d

1

3
2

3

5

6

(a)

a

d

1

(b)

Figure 6.8: An example of the T -join approach. (a) is the metric closure Ḡd. (b) is the induced
subgraph Ḡd[T

−].

CHAPTER 6. UNCCD ALGORITHMS 71

To detect the presence of a negative cost cycle (lines 7-13), let J be the minimum c-weight

∅-join of G, and let Jd be the minimum d-weight T−-join of Gd. Also, let P̄ij = (VP̄ij
, EP̄ij

)

denote the shortest path between i and j in Gd. The algorithm first identifies Jd, which is the

symmetric difference of the sets of edges of each shortest path from i to j, where eij ∈M (denoted

as 4eij∈MEP̄ij
). It then calculates the total cost of J as c(J) = d(Jd) + c(E−), where d(Jd) is

the cost of T−-join Jd, and c(E−) is the cost of all edges in E−. If c(J) < 0, then G contains a

negative cost cycle. If c(J) ≥ 0, then G does not contain any negative cost cycles.

From our example in Figure 6.8, we need to find the symmetric difference of the edges in M

and the edges involved in the shortest paths between all pairs of vertices with edges in M . In this

example, ead is the only edge in M , and the shortest path from a to d in Gd contains a single edge,

ead. By definition, this means Jd = ∅ since ead is in both sets. We then need to compute c(J),

which gives us c(Jd) + c(E−) = 0 + (−2 +−3 +−5) = −10. Since c(J) < 0, G must contain a

negative cost cycle.

The procedure is shown in Algorithm 6.2.

Function T -JOIN(G = (V,E, c))

1: E− = {eij ∈ E : c(eij) < 0}.
2: T− = {v ∈ V : |adjG(v) ∩ E−| is odd }.
3: Create graph Gd = (V,E, d).
4: for (each eij ∈ E) do
5: d(eij) := |c(eij)|.
6: end for
7: Ḡd = APSP in Gd.
8: Create induced subgraph Ḡd[T

−] = (T−, EḠd[T−], d̄).
9: M = MWPM in Ḡd[T

−].
10: Jd = 4eij∈MEP̄ij

.
11: c(J) = d(Jd) + c(E−).
12: if c(J) < 0 then
13: return “G contains a negative cost cycle”.
14: else
15: return “G does not contain a negative cost cycle”.
16: end if

Algorithm 6.2: UNCCD Algorithm: T -JOIN

CHAPTER 6. UNCCD ALGORITHMS 72

Resource Analysis

Determining E− takes O(m) time since we need to check all |E| = m edges. To find T−,

we need to scan all |V | = n vertices and their adjacent edges, which means m edges total, to

determine which vertices have an odd number of adjacent edges with negative cost. This means

we need O(m + n) time. Constructing graph Gd also takes O(m + n) time since each vertex

v ∈ V and edge eij ∈ E, where d(eij) = |c(eij|, is added to Gd. Note that all edges in Gd

are non-negative. This means we can solve the APSP problem in Gd using O(n) iterations of

Dijkstra’s algorithm [38], which takes O(m+ n · log n) time per iteration. Therefore, the APSP

component takes O(n · (m+ n · log n)) time [76, 30].

As a result of the APSP computation, the metric closure of Gd, Ḡd, has |VḠd
| = n vertices but

|EḠd
| = m′ ≥ m edges. This is because each edge in Ḡd is a path from one vertex to another

in Gd. Since each pair of vertices in Gd may have at most one path between them, m′ = O(n2).

Therefore, constructing Ḡd[T
−] takes O(m′ + n) = O(n2 + n) = O(n2) time since we need

to scan each vertex and edge in Gd. Using Gabow’s algorithm [65], finding a minimum weight

perfect matching in Ḡd[T
−] takes O(n · (m′ + n · log n)) = O(n · (n2 + n · log n)) = O(n3) time.

To find the symmetric difference Jd, we need to examine n/2 paths. This is because Gd is

undirected, which means the path from i to j is the same path from j to i, so we do not need to

examine the latter path for each i and j. Since each path has at most n edges, we need O(n2) time.

Computing c(J) takes O(n2) time since computing d(Jd) takes O(n2) time, and computing c(E−)

takes O(m) time.

Therefore, the total running time of the algorithm is O(m+n+n ·(m+n · log n)+n2 +n3) =

O(n3).

Correctness

To prove correctness of Algorithm 6.2, we first need to use a key theorem from [20]. Note that

for any two sets of edges E1 and E2, E14 E2 denotes their symmetric difference.

Theorem 6.2.2 Consider an undirected, weighted graph G with cost function c : E → R, and

T ⊆ V with |T | even. Moreover, consider sets E− and T− (as defined above) and a cost function

c+ : E → R+ such that c+(eij) = |c(eij)|, for each eij ∈ E.

CHAPTER 6. UNCCD ALGORITHMS 73

(i) For any subset J of E, c(J) = c+(J 4 E−) + c(E−).

(ii) J is a minimum c-weight T -join if and only if J4E− is a minimum c+-weight (T4T−)-join.

By Theorem 6.2.2(ii), J is a minimum c-weight T -join if and only if J 4 E− is a minimum

c+-weight (T 4 T−)-join. In order to find a minimum c-weight ∅-join of G, we need to find a

minimum d-weight (∅ 4 T−)-join or, equivalently, a minimum d-weight T−-join of Gd.

The algorithm starts by constructing sets E− and T−. We then construct the graph Gd =

(V,E, d) with cost function d such that d(eij) = |c(eij)|, for each eij ∈ E. Since Gd is an

undirected graph with only non-negative weights, we can use Edmonds’ algorithm [19] to correctly

identify a minimum d-weight T−-join of Gd.

The algorithm then creates the metric closure Ḡd of Gd. Since Gd is undirected, creating the

metric closure Ḡd = (V,EḠd
, d̄) is equivalent to replacing each edge eij ∈ EGd

with a pair of

oppositely directed edges and then solving the APSP problem on the new graph [20]. Since the

APSP algorithm is correct, we know constructing the metric closure is also correct.

The algorithm then constructs Ḡd[T
−] by including all vertices in T− and all edges of Ḡd

that connect any two vertices i, j ∈ T−. We then find the MWPM M in Ḡd[T
−] using Gabow’s

algorithm [65], which we know correctly finds an MWPM. Finally, it identifies a minimum

d-weight T−-join of Gd, which we denote as Jd, by obtaining the symmetric difference of the

edge sets of all shortest paths between i and j such that eij ∈M .

Since Jd is a minimum d-weight T−-join of Gd, by Theorem 6.2.2(ii), Jd = J 4E−, where J

is a minimum c-weight ∅-join of G. Hence, by Theorem 6.2.2(i), the weight of J can be calculated

as c(J) = d(Jd) + c(E−). By Theorem 6.2.1, the algorithm correctly reports that there exists a

negative cost cycle if and only if c(J) < 0.

6.3 Improved UNCCD Algorithms for Integer Edge Costs

In this section, we are concerned with the UNCCD problem, where the edge costs are integers

in the range {−K ··K}, andK is a fixed constant. Algorithms 6.1 and 6.2 utilize known procedures

for solving the MWPM and the minimum weight T -join problems. As a result, the b-matching

approach runs in O((m + n)2 · log(m + n)) time, and the T -join approach runs in O(n3) time.

CHAPTER 6. UNCCD ALGORITHMS 74

However, there exist other algorithms that are more efficient for graphs with integer edge costs.

By using these algorithms, we can design new UNNCD algorithms with improved running times.

We discuss the improvements for both approaches below.

6.3.1 The Improved b-matching Approach

From Chapter 6.1.2, we know that the b-matching approach detects a negative cost cycle,

assuming one exists, in a graph G with n vertices and m edges in O((m+ n)2 · log(m+ n)) time.

This is achieved by using Gabow’s algorithm [65] to solve the corresponding MWPM problem.

Recall that Gabow’s algorithm runs in O(n · (m + n · log n)) time. For integer edge costs, we

can use Gabow and Tarjan’s [77] MWPM algorithm instead of Gabow’s original algorithm. This

algorithm runs in O(m · log(N · n) ·
√
n · α(m,n) · log n) time, where N is the largest absolute

value of the edge costs, and α(m,n) is the inverse Ackermann function [21, 22].

To use a more efficient algorithm for a graphGwith integer edge costs, we first need to perform

a simple preprocessing step for the b-matching approach. Recall that during the transformation

from G1 to G2, for any edge eij ∈ V , we create edges eik and elj with cost c(eik) = c(elj) =

c(eij)/2. Although c(eij) is integral, c(eik) and c(elj) may not. This means G′ may contain edges

that do not have integer edge costs, and thus, we cannot use Gabow and Tarjan’s algorithm. To

resolve the issue, we can transform G by multiplying the cost of each edge by 2. With this

change, the edge costs of the new graph, say G∗ = (V ∗, E∗), will be even integers in the range

{−2 · K · ·2 · K}. Modifying the edges takes O(m) time since we examine each edge in G.

Although we double the edge costs, all negative cost cycles are preserved. Moreover, the edge

costs of G′ are now integers in the range {−K · ·K}, since the cost of each edge eij ∈ E∗ is

divided by 2.

After the preprocessing step, we transformG intoG′, as stated in the algorithm, with 2·(m+n)

vertices and 5 · m + n edges. Recall that |V ′| and |E ′| are both O(m + n). We then find an

MWPM M in G′. Since the running time of the b-matching algorithm is dominated by the MWPM

procedure, we can improve the overall running time of the algorithm by using a more efficient

MWPM algorithm. Using Gabow and Tarjan’s [77] algorithm, the new running time of the

b-matching algorithm is O((m + n)1.5 · log(K · (m + n)) ·
√
α(m+ n,m+ n) · log(m+ n)),

CHAPTER 6. UNCCD ALGORITHMS 75

where K = N , and α(m + n,m + n) is the inverse Ackermann function. Since K is a fixed

constant (i.e., K = O(1)), the b-matching approach for a graph with integer edge costs runs in

O((m+ n)1.5 · (log(m+ n))1.5 ·
√
α(m+ n,m+ n)) time.

Note that when m = O(n2), the b-matching algorithm solves the UNCCD problem with

fixed integer edge costs in O(n3 · (log n)1.5 ·
√
α(n2, n2)) time. When the graph is sparse (i.e.,

m = O(n)), the running time is O(n1.5 · (log n)1.5 ·
√
α(n, n)). Thus, we improve the previous

fastest running time in [23], which was O(n2.75 · log n) time using the T -join approach.

6.3.2 The Improved T -join Approach

From Chapter 6.2.2, we know that the T -join approach detects a negative cost cycle, assuming

one exists, in a graph G with n vertices and m edges in O(n3) time. This is accomplished by

using an APSP procedure that takes O(n · (m+n · log n)) time [38, 76, 30] and Gabow’s MWPM

algorithm that takes O(n · (m′ + n · log n)) = O(n · (n2 + n · log n)) = O(n3) time, where

m′ = O(n2) is the number of edges in Ḡd[T
−].

To improve the running time of computing the APSP for a graph with integer edge costs, we

can use Shoshan and Zwick’s algorithm [78] instead of running O(n) Dijkstra computations. This

algorithm runs in Õ(N · nω) = O(n · nω · (log n)t) time, where N is the largest absolute value of

the edge costs, ω < 2.376 is the exponent for the fastest known matrix multiplication algorithm

[79], and t is some constant. For computing the MWPM, we can also use Gabow and Tarjan’s

algorithm [77] from Chapter 6.3.1 that runs in O(m · log(N · n) ·
√
n · α(m,n) · log n) time,

where N is the largest absolute value of the edge costs, and α(m,n) is the inverse Ackermann

function.

When we apply Shoshan and Zwick’s algorithm, recall that we are finding the metric closure of

Gd which is denoted as Ḡd. Since |VGd
| = n, the APSP computation takes O(K · n2.376 · (log n)t)

time, where K = N , and t is some constant. When we apply Gabow and Tarjan’s algorithm,

recall that we are finding an MWPM in Ḡd[T
−]. Since |VḠd[T−]| = n, |EḠd[T−]| = O(n2),

and the maximum edge cost is n · K, the MWPM procedure runs in O(n2 · log(n · K · n) ·√
n · α(n2, n) · log n) = O(n2.5 · log(K · n2) ·

√
α(n2, n) · log n) time.

Both algorithms dominate the running time of the T -join approach. Therefore, the new

CHAPTER 6. UNCCD ALGORITHMS 76

running time is O(K · n2.376 · (log n)t + n2.5 · log(K · n2) ·
√
α(n2, n) · log n). Since K is a

fixed constant (i.e., K = O(1)), the T -join approach for a graph with integer edge costs runs

in O(n2.5 · (log n)1.5 ·
√
α(n2, n)) time. Thus, we improve the previously known bound for the

UNCCD problem for graphs with fixed integer edge costs which was O(n2.75 · log n) time [23]

using the T -join approach.

77

Chapter 7

Implementation Profile for the UNCCD

Problem

In this chapter, we profile the b-matching and T -join approaches for the UNCCD problem. In

this study, we focus on graphs where the edge costs are integers in the range {−K · ·K}, and K is

a fixed constant. Recall from Chapter 6.3 that the b-matching approach runs in O((m + n)1.5 ·

log(K · (m + n)) ·
√
α(m+ n,m+ n) · log(m+ n)) time, while the T -join approach runs in

O(K · n2.376 · (log n)t + n2.5 · log(K · n2) ·
√
α(n2, n) · log n) time, where α(x, y) is the inverse

Ackermann function [21, 22], and t is some constant.

7.1 Implemented Algorithms

We describe the implementation details of our study by first discussing the algorithms that

were implemented. Both UNCCD algorithms require the use of an MWPM algorithm. In fact,

both approaches in this study reduce the UNCCD problem to the MWPM problem by making

modifications to the graph. Specifically, the b-matching approach does this by increasing the

number of vertices and edges, while the T -join approach accomplishes this by solving the APSP

problem in order to obtain the metric closure of graph Gd. To solve the MWPM problem, we

utilize an implementation of the Blossom V algorithm [56] (the source code is available online

at [80]). We chose this implementation because it is currently one of the most efficient MWPM

implementations available.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 78

All Pairs Shortest Paths for the T -join Approach

Recall that the T -join approach first solves the APSP problem as part of the graph modification

required for the reduction. For this problem, we utilize an efficient single source shortest path

implementation of Goldberg’s algorithm [81] and run it n times, one for each source. This

algorithm runs in linear time in the average case when the edge costs are uniformly distributed. In

the worst case, the algorithm runs in O(m+n · logN), where N is the largest edge cost. Although

there exist other shortest path algorithms that are asymptotically faster, such as [82] which runs

in O(m + n ·
√

logN) time, Goldberg’s implementation is one of the currently known fastest

implementations available and has been used as the reference solver for the 9th DIMACS Shortest

Path Implementation Challenge [50].

Even though Shoshan and Zwick’s algorithm [78] has the best known time bound for solving

the APSP problem for a graph with integer edge costs, we chose to omit the algorithm from our

empirical study. This is because several issues arise when implementing the algorithm that impact

its efficiency. Recall that the running time of the algorithm depends on the matrix multiplication

algorithm used. Specifically, it is assumed that the algorithm of [79] is used (hence, the O(n2.376)

time bound). However, although theoretically efficient, this matrix multiplication algorithm is

not practical to implement; it provides an advantage only for matrices that are too large for

modern hardware to handle [83]. Note that since then, [84] designed a faster matrix multiplication

algorithm that runs in O(n2.3727). However, we encounter the same problem, where the algorithm

is efficient for matrices that are too large for modern hardware.

We then explored Strassen’s matrix multiplication algorithm [85], which runs in O(n2.8074)

time. Although this is faster than the O(n3) matrix multiplication algorithm, we cannot directly

use it in Shoshan and Zwick’s algorithm. This is because the algorithm actually uses matrix

multiplication over the closed semi-ring {min,+}, which is known as “funny matrix multiplication”

or the “distance product” in the literature. Note that the sum operation is equivalent to the min

operation in “funny matrix multiplication.” However, unlike regular matrix multiplication, there is

no inverse for the min operation, which is required to make Strassen’s algorithm work.

[86] provides an approach for encoding a distance matrix such that regular matrix multiplication

works. This involves using the values in the distance matrix as exponents to the values in the new

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 79

matrix. The problem with this conversion is that even if the exponents are small, the values are too

large to store in modern hardware, as we have discovered when implementing the algorithm. This

means the O(n3) matrix multiplication algorithm is currently the only practical algorithm to use

for implementing Shoshan and Zwick’s algorithm. Since this results in the algorithm running in

O(n3) time, compared to O(m · n+ n2 · logN) time when running Goldberg’s algorithm n times,

including it in our study would not provide sufficient results.

7.2 Graph Families

Our experiments study the performance of these algorithms on graphs with varying parameters.

We study three graph families that are produced by two generators. These families are chosen

because they are natural and have been used in previous empirical studies [11, 48]. The graph

generators used are part of the 9th DIMACS Shortest Path Implementation Challenge benchmark

package [50].

The first generator (SPRAND [51]) creates random graphs with n vertices and m ≥ n edges.

The generator first constructs a Hamiltonian cycle to ensure the graph is connected. The remaining

m− n edges are added by randomly selecting a pair of distinct vertices. Note that the generator

can produce parallel edges and/or self-loops. The costs of all edges are selected uniformly and at

random among a predetermined interval.

The second generator is called TOR, which originates from the SPGRID generator [51]. These

graphs are similar to grid (mesh) graphs, in that they produce two dimensional x× y grids. The

difference is that torus graphs are embedded on a plane, so they “wrap” around. With this generator,

we create two types of families: layered torus graphs and square torus graphs. For both families,

the costs of all edges are selected uniformly and at random from a predetermined interval.

Layered torus graphs consist of x layers, where each layer contains y vertices. The vertices of

a single layer form a simple cycle and additional edges are included by randomly selecting pairs

of vertices within the layer. Neighboring layers are connected by edges such that one vertex is in

the first layer, and the second vertex is in the other layer. Note that the last layer and the first layer

are also connected by edges whose endpoints come from these two layers. This is how we get the

graph to “wrap” around. In our experiments, we set x = n
25

and y = 25. Square torus graphs are

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 80

Table 7.1: Negative Cost Cycle Categories
Category Number of Cycles Size

No Negative Cost Cycles 0 0
One Small Negative Cost Cycle 1 3

Many Small Negative Cost Cycles x 3
Few Medium Negative Cost Cycles 10 x

One Hamiltonian Negative Cost Cycle 1 n

very similar to layered torus graphs, except x = y =
√
n. Note that square torus graphs are also

known as grid torus graphs in the literature [11].

The TOR generator is also capable of controlling the number and size of negative cost cycles by

including additional parameters. The SPRAND generator is not capable of this feature, but it can

still produce negative cost cycles based on the predetermined edge cost interval used. When adding

a negative cost cycle to a torus graph, all edges except for one have cost zero. The remaining

edge has cost −1. In our study, we use the five categories that were used in Goldberg’s study [11].

These categories are provided in Table 7.1.

7.3 Experimental Setup

All implemented UNCCD algorithms are written in C/C++, and they are compiled and run in

identical experimental settings. We use the adjacency matrix to represent the graph and to compute

the MWPM. This is because we compute the all pairs shortest paths for the T -join approach, and

both the costs and the shortest paths are required for computing the symmetric difference. We use

the array data structure to store the resulting MWPM. For random graphs, the range of the edge

costs is between −K and K, where K is the largest edge cost. Although simple heuristics can be

used for detecting negative cost cycles with this range, our empirical study assumes only the value

of K and does not assume the distribution of the edge costs. For torus graphs, the range of the

edge costs is between 1 and K, except for the negative cost cycles added. Our testing platform

is a 3.00 GHz 64-bit AMD Phenom II X4 940 quad core machine with 8 GB RAM and a 64

MB cache which runs Ubuntu (version 12.04). The implementations are compiled with the Intel

C++ compiler (icpc) version 12.0, and the optimization flag is set to -O3. We report the average

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 81

execution time of ten independent trials for each test.

7.4 Results and Analysis

We compare the performance of both the b-matching and T -join algorithms based on the

following domains:

(i) Suite A: Number of vertices (Figures 7.1-7.3 and Table 7.2).

(ii) Suite B: Number of edges (Figures 7.4-7.6 and Table 7.3).

(iii) Suite C: Size of K (Figures 7.7-7.9 and Table 7.4).

(iv) Suite D: Negative cost cycles (Figures 7.10-7.12 and Tables 7.5 and 7.6).

Each figure mentioned above plots the execution time for each algorithm and graph. Each

algorithm displays three sets of data. For the T -join approach, we provide the time to compute

the all pairs shortest paths (T-APSP), the time to compute the minimum weight perfect matching

(T-MWPM), and the total time of the algorithm (T-Total). For the b-matching approach, we

provide the time to transform the graph (B-Trans), the time to compute the minimum weight

perfect matching (B-MWPM), and the total time of the algorithm (B-Total). For all figures, the

execution time on the Y-axis is depicted in the logarithmic scale due to the variation of the data

collected.

For each experiment, we provide the complete data in its respective table. Each entry in the

table consists of the average execution time (the top number) and the standard deviation (the

bottom number). Note that an entry with the value 0.000 means the value is less than 0.001.

7.4.1 Number of Vertices

We first compare the performance of the b-matching and T -join algorithms as we vary the

number of vertices. In this study, we set the number of vertices to 1000, 4000, 8000, 12000, 16000,

and 20000. We set the number of edges to 3 · n. This means the number of edges in the graphs

studied are 3000, 12000, 24000, 36000, 48000, and 60000. For random graphs, the range of edge

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 82

costs is between −512 and 512. For torus graphs, the range of edge costs is between 1 and 512,

except for the negative cost cycles. Finally, for torus graphs, we have 10 negative cost cycles, each

containing x edges, where x is defined in Chapter 7.2.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1000 4000 8000 12000 16000 20000

Ti
m

e
 in

 S
e

co
n

d
s

Number of Vertices, n

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.1: Performance of UNCCD algorithms for random graphs as the number of vertices is
varied.

For random graphs, we find that the b-matching approach is substantially faster than the T -join

approach. As the number of vertices increase, both the APSP and MWPM algorithms for the

T -join approach have almost identical execution times. For the b-matching approach, the MWPM

computation serves as the bottleneck of the algorithm. What is interesting is how quickly the

b-matching approach runs. However, since the input graph is sparse, even when the graph is

transformed as specified in the b-matching algorithm, this is expected.

For both torus graphs, we find that the b-matching approach is superior to the T -join approach

for all n. We also observe that the MWPM computation dominates the execution time of the

b-matching algorithm. However, what is initially surprising is that computing the MWPM is

substantially faster than computing the APSP for the T -join algorithm. As a result, the data

representing T-APSP and T-Total overlaps in Figures 7.2 and 7.3. This is because of the structure

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 83

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1000 4000 8000 12000 16000 20000

Ti
m

e
 in

 S
e

co
n

d
s

Number of Vertices, n

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.2: Performance of UNCCD algorithms for layered torus graphs as the number of vertices
is varied.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1000 4000 8000 12000 16000 20000

Ti
m

e
 in

 S
e

co
n

d
s

Number of Vertices, n

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.3: Performance of UNCCD algorithms for square torus graphs as the number of vertices
is varied.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 84

of the negative cost cycles in our study.

Recall that the T -join approach finds the MWPM of Ḡd[T
−], where Gd is G except the cost

of all edges are non-negative, Ḡd is the graph representing the all pairs shortest paths in Gd,

and Ḡd[T
−] is the subgraph of Ḡd induced by the set of vertices in G that have an odd number

of adjacent negative edges. Since we use similar testing parameters as previous negative cycle

detection studies, where the input graph contains a small number of negative cost cycles and each

cycle has a single negative edge, |Ḡd[T
−]| is small. Therefore, it makes sense that computing the

MWPM takes very little time.

Finally, we observe that both approaches run approximately twice as fast when using either

torus graph compared to random graphs. Further, the b-matching approach runs faster for square

torus graphs than layered torus graphs. We attribute these results to the structure of the torus graphs

themselves. For the T -join approach, this goes along with the fact that the MWPM computation is

extremely fast for the torus graphs studied. According to the data in Table 7.2, we can see that the

execution time of the APSP computation was not significantly affected by the graph type.

Based on these results, we conclude that the b-matching approach is superior to the T -join

approach for all graph types as we increase the number of vertices.

7.4.2 Number of Edges

We next compare the performance of the b-matching and T -join algorithms as we vary the

number of edges. In this study, we set the number of vertices to 2500. We set the number of

edges to 3 · n, 10 · n, 20 · n, n1.5, 2 · n1.5, and 4 · n1.5. Since n = 2500, this means we set the

number of edges to 7500, 25000, 50000, 125000, 250000, and 500000. We note that sparse graphs

are represented by c · n edges, and dense graphs are represented by c · n1.5 edges, where c is some

constant. For random graphs, the range of edge costs is between −512 and 512. For torus graphs,

the range of edge costs is between 1 and 512, except for the negative cost cycles. Finally, for

torus graphs, we have 10 negative cost cycles, each containing x edges, where x is defined in

Chapter 7.2.

For random graphs, we find that the T -join approach is substantially superior than the b-

matching approach as we increase the number of edges. Recall from Chapter 6.1.2 that the b-

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 85

Table 7.2: Experiment Results for Number of Vertices (in Seconds)

T -join b-Matching
Graph Family n APSP MWPM Total Transformation MWPM Total

Random

1000 0.164 0.084 0.250 0.001 0.010 0.012
0.008 0.002 0.007 0.001 0.000 0.001

4000 2.786 2.402 5.195 0.003 0.061 0.066
0.023 0.167 0.178 0.000 0.001 0.001

8000 12.568 12.886 25.470 0.007 0.134 0.145
0.085 1.016 1.039 0.000 0.004 0.004

12000 31.649 31.698 63.368 0.012 0.221 0.239
0.437 2.640 2.794 0.000 0.005 0.005

16000 61.200 61.038 122.195 0.017 0.298 0.322
0.102 4.855 4.838 0.000 0.006 0.007

20000 100.472 97.667 198.274 0.053 0.384 0.447
0.161 5.635 5.739 0.000 0.009 0.008

Layered Torus

1000 0.160 0.000 0.160 0.002 0.003 0.005
0.023 0.000 0.023 0.001 0.000 0.001

4000 2.854 0.000 2.854 0.008 0.024 0.033
0.014 0.000 0.014 0.000 0.000 0.001

8000 11.969 0.000 11.970 0.016 0.064 0.083
0.099 0.000 0.099 0.000 0.002 0.002

12000 30.432 0.000 30.433 0.024 0.108 0.137
0.091 0.000 0.091 0.000 0.003 0.002

16000 57.161 0.000 57.162 0.013 0.163 0.181
0.446 0.000 0.446 0.000 0.001 0.002

20000 93.941 0.000 93.943 0.016 0.181 0.205
0.574 0.000 0.574 0.000 0.006 0.007

Square Torus

1000 0.169 0.000 0.169 0.004 0.003 0.007
0.013 0.000 0.013 0.001 0.000 0.001

4000 2.874 0.000 2.874 0.003 0.017 0.021
0.027 0.000 0.027 0.000 0.001 0.001

8000 12.199 0.000 12.200 0.014 0.036 0.052
0.084 0.000 0.085 0.000 0.001 0.001

12000 29.211 0.000 29.212 0.008 0.055 0.065
0.086 0.000 0.086 0.000 0.001 0.001

16000 56.662 0.000 56.663 0.011 0.076 0.091
0.132 0.000 0.132 0.000 0.000 0.001

20000 92.524 0.000 92.525 0.025 0.091 0.120
0.079 0.000 0.079 0.000 0.001 0.001

Note: For each entry, the top number is the average execution time, and the bottom number is the standard
deviation. Any entry with 0.000 means it is less than 0.001.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 86

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

7500 25000 50000 125000 250000 500000

Ti
m

e
 in

 S
e

co
n

d
s

Number of Edges, m

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.4: Performance of UNCCD algorithms for random graphs as the number of edges is
varied.

matching algorithm transformsG intoG′, such that |V (G′)| = 2 ·(n+m) and |E(G′)| = n+5 ·m.

Since m = O(n1.5) in our study, |V (G′)| = O(n1.5) and |E(G′)| = O(n1.5). Therefore, the b-

matching algorithm technically runs in O(n3 · log n) time.

For the T -join approach, recall that we first find the metric closure of G before computing the

MWPM. This means m′ = O(n2) regardless of m which explains why the MWPM computation

for the T -join approach was unaffected as we increase the number of edges. However, we observe

an increase in the execution time of the APSP computation. This is because the APSP algorithm

runs in O(m · n+ n2 · logN) time. Since m = O(n1.5) in our study, the APSP algorithm runs in

O(n2.5 + n2 · logN) time, and the MWPM algorithm runs in O(n ·m′ + n2 · log n)) time, where

|E(Ḡd)| = m′. Although m′ can be as large as n1.5 in this study, the actual value of m′ depends

on the input graph. Therefore, it makes sense that the T -join approach is much faster than the

b-matching approach as we increase the number of edges.

Another interesting observation is that the MWPM algorithm runs significantly faster than

the APSP algorithm in the T -join approach. In fact, the data for T-APSP and T-Total are almost

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 87

identical in Table 7.3. This is because the test graphs contain a small number of vertices with an

odd number of adjacent negative edges. This results in m′ being much smaller than n1.5, so the

running time of the APSP computation is actually greater than the running time of the MWPM

computation.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

7500 25000 50000 125000 250000 500000

Ti
m

e
 in

 S
e

co
n

d
s

Number of Edges, m

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.5: Performance of UNCCD algorithms for layered torus graphs as the number of edges is
varied.

For both torus graphs, we observe that the b-matching approach is superior to the T -join

approach for all m. This is quite surprising considering that the opposite is true for random

graphs. Based on the data in Table 7.3, there is an increase in the execution time of the b-matching

approach as we increase the number of edges. However, the reason the MWPM computation runs

extremely quick is unknown. Our conjecture is that the structure of the negative cost cycle is a

contribution for the fast execution time. This is worth investigating in future work.

Similar to the results in Chapter 7.4.1, the APSP algorithm serves as the bottleneck of the

T -join approach, while the MWPM algorithm runs extremely fast. We attribute this to the structure

of the negative cost cycle, where each negative cost cycle consists of a single negative edge. This

results in the input graph for the MWPM algorithm having a small number of vertices for the

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 88

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

7500 25000 50000 125000 250000 500000

Ti
m

e
 in

 S
e

co
n

d
s

Number of Edges, m

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.6: Performance of UNCCD algorithms for square torus graphs as the number of edges is
varied.

reasons explained in the previous subsection.

Finally, we find that there is no substantial difference between the running time of the T -join

approach among all three graph families. The data shows that the difference in the execution times

is less than three seconds. Although part of the difference is attributed to the fact that the MWPM

algorithm is very fast for both layered and square torus graphs, this shows that the execution time

of the APSP algorithm is not affected by the graphs in our study.

We conclude from the results that the T -join approach is superior to the b-matching approach

for random graphs as we increase the number of edges. Within the context of the torus graphs in

this study, we conclude that the b-matching approach is superior to the T -join approach.

7.4.3 Size of K

We now study the performance of the b-matching and T -join algorithms as we vary K, the

magnitude of the largest edge cost. In this study, we set the number of vertices to 20000. We

set the number of edges to 3 · n = 60000. For random graphs, the intervals of edge costs

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 89

Table 7.3: Experiment Results for Number of Edges (in Seconds)

T -join b-Matching
Graph Family m APSP MWPM Total Transformation MWPM Total

Random

7500 1.052 1.011 2.066 0.002 0.032 0.035
0.019 0.065 0.071 0.000 0.000 0.000

25000 2.057 1.129 3.191 0.008 3.703 3.715
0.066 0.058 0.106 0.003 0.005 0.003

50000 3.101 0.981 4.088 0.029 30.982 31.014
0.074 0.060 0.077 0.000 2.383 2.383

125000 6.307 1.163 7.480 0.042 207.876 207.929
0.029 0.047 0.065 0.000 19.894 11.944

250000 11.334 0.965 12.311 0.077 992.972 993.071
0.043 0.001 0.044 0.001 3.053 3.054

500000 21.249 1.064 22.331 0.150 3998.119 3998.312
0.066 0.053 0.067 0.002 143.189 143.188

Layered Torus

7500 1.048 0.000 1.049 0.002 0.011 0.014
0.010 0.000 0.010 0.000 0.000 0.000

25000 1.997 0.000 2.000 0.011 0.047 0.060
0.037 0.000 0.037 0.003 0.001 0.003

50000 2.852 0.000 2.853 0.023 0.073 0.099
0.043 0.000 0.043 0.000 0.001 0.001

125000 5.896 0.000 5.899 0.029 0.109 0.142
0.115 0.000 0.115 0.000 0.002 0.002

250000 10.851 0.000 10.853 0.013 0.128 0.144
0.044 0.000 0.044 0.000 0.004 0.004

500000 19.854 0.000 19.860 0.017 0.189 0.208
0.046 0.000 0.046 0.000 0.003 0.004

Square Torus

7500 1.058 0.000 1.058 0.002 0.012 0.015
0.013 0.000 0.013 0.001 0.000 0.001

25000 2.087 0.000 2.087 0.006 0.054 0.062
0.052 0.000 0.052 0.000 0.001 0.001

50000 2.959 0.000 2.959 0.030 0.094 0.128
0.056 0.000 0.056 0.000 0.002 0.002

125000 5.926 0.000 5.927 0.019 0.150 0.174
0.057 0.000 0.058 0.000 0.003 0.004

250000 10.906 0.000 10.909 0.024 0.282 0.313
0.090 0.000 0.089 0.000 0.005 0.005

500000 19.964 0.000 19.973 0.042 0.463 0.510
0.045 0.000 0.045 0.000 0.008 0.009

Note: For each entry, the top number is the average execution time, and the bottom number is the standard
deviation. Any entry with 0.000 means it is less than 0.001.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 90

are set to [−32, 32], [−64, 64], [−128, 128], [−256, 256], and [−512, 512]. For both torus graphs,

the intervals of edge costs are set to [1, 32], [1, 64], [1, 128], [1, 256], and [1, 512], except for the

negative cost cycles. Finally, for both torus graphs, we have 10 negative cost cycles, each

containing x edges, where x is defined in Chapter 6.1.2.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

32 64 128 256 512

Ti
m

e
 in

 S
e

co
n

d
s

Edge Cost in Range {-K,...,K}

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.7: Performance of UNCCD algorithms for random graphs as the size of K is varied.

For random graphs, since the graph is sparse, it is expected that the b-matching approach is

superior to the T -join approach based on the discussion in Chapter 7.4.1. For the b-matching

approach, the execution time of the MWPM algorithm slightly increases as |K| increases. However,

it does not appear to be significant enough of an increase to clearly state that the algorithm runs

faster when |K| is small.

For the T -join approach, the execution time of the APSP algorithm slowly increases as |K|

increases as well. However, there does not appear to be any correlation for the MWPM algorithm

since the results are sporadic.

For both torus graphs, we observe similar results to random graphs. For the T -join approach,

the execution time of the APSP algorithm slightly increases as we increase |K|. Since the MWPM

algorithm runs extremely fast, this implies that the execution time of the T -join approach slowly

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 91

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

32 64 128 256 512

Ti
m

e
 in

 S
e

co
n

d
s

Edge Cost in Range {-K,...,K}

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.8: Performance of UNCCD algorithms for layered torus graphs as the size of K is varied.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

32 64 128 256 512

Ti
m

e
 in

 S
e

co
n

d
s

Edge Cost in Range {-K,...,K}

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.9: Performance of UNCCD algorithms for square torus graphs as the size of K is varied.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 92

increases as well. For the b-matching approach, we find that MWPM computation does not have

any correlation. This results in the total execution time being all over the place, even though the

times are small.

One reason this occurs for all three graph families is because the running time of the Blossom

V implementation does not depend on K. Although there exists a MWPM algorithm where

K is a parameter [77], we use the Blossom V implementation because it is efficient regardless

of K. Another reason is because we use Goldberg’s O(m + n · logN) time APSP algorithm,

where N = K, rather than Shoshan and Zwick’s algorithm. The data shows that there is a small

increase in the execution time of the APSP algorithm as |K| increases. However, if a practical

implementation for Shoshan and Zwick’s algorithm existed, then we would obtain more significant

results. However, as explained in Chapter 7.1, this is not possible with the current hardware.

Based on our observations within the context of our study, we cannot conclude that there is a

correlation between the size of K and the execution time of either UNCCD algorithms.

7.4.4 Negative Cost Cycles

Our final study observes the performance of the b-matching and T -join algorithms as we

modify the negative cost cycles. In this study, we set the number of vertices to 20000. We set

the number of edges to 3 · n = 60000. For random graphs, recall that the generator cannot

directly control the number or size of negative cost cycles. Therefore, we use a similar approach

used in [11], where the largest edge cost is fixed at 256, and the smallest edge cost is set to

0,−32,−64,−128,−256, and −512. For both torus graphs, we use the categories defined in

Table 7.1. Note that x = 800 for layered torus graphs, and x = 142 for square torus graphs in this

study.

We should also note that for all figures in this subsection, there is no entry for the MWPM

computation in the T -join approach when the graph has zero negative cost cycles. Recall that the

T -join algorithm computes the MWPM for the subgraph containing all vertices that have an odd

number of adjacent negative edges. Since the graphs in this specific case have no negative edges,

meaning no negative cost cycles, the MWPM algorithm does not run.

For random graphs, we observe that the b-matching approach is superior to the T -join approach

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 93

Table 7.4: Experiment Results for Size K (in Seconds)

T -join b-Matching
Graph Family |K| APSP MWPM Total Transformation MWPM Total

Random

32 97.257 93.116 190.513 0.053 0.361 0.425
0.239 7.101 7.250 0.000 0.013 0.013

64 97.991 115.055 213.193 0.053 0.374 0.438
0.329 3.416 3.212 0.000 0.008 0.007

128 99.239 96.616 196.032 0.053 0.379 0.443
0.053 6.715 6.797 0.000 0.008 0.009

256 99.663 102.728 202.684 0.053 0.381 0.445
0.144 5.773 5.800 0.000 0.006 0.006

512 100.472 97.667 198.274 0.053 0.384 0.447
0.161 5.635 5.739 0.000 0.009 0.008

Layered Torus

32 88.351 0.000 88.352 0.017 0.261 0.284
0.094 0.000 0.094 0.000 0.008 0.009

64 89.829 0.000 89.831 0.017 0.314 0.337
0.100 0.000 0.100 0.000 0.007 0.007

128 91.062 0.000 91.064 0.017 0.177 0.200
0.099 0.000 0.099 0.000 0.006 0.001

256 91.766 0.000 91.767 0.053 0.190 0.249
0.046 0.000 0.046 0.000 0.008 0.008

512 93.941 0.000 93.943 0.016 0.181 0.205
0.574 0.000 0.574 0.000 0.006 0.007

Square Torus

32 88.439 0.000 88.435 0.015 0.095 0.114
0.095 0.000 0.095 0.000 0.000 0.002

64 90.264 0.000 90.265 0.014 0.093 0.113
0.269 0.000 0.269 0.000 0.000 0.002

128 91.176 0.000 91.178 0.014 0.092 0.112
0.224 0.000 0.224 0.000 0.000 0.002

256 91.675 0.000 91.676 0.045 0.093 0.143
0.065 0.000 0.065 0.000 0.000 0.002

512 92.524 0.000 92.525 0.025 0.091 0.120
0.079 0.000 0.079 0.000 0.001 0.001

Note: For each entry, the top number is the average execution time, and the bottom number is the
standard deviation. Any entry with 0.000 means it is less than 0.001.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 94

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0 -32 -64 -128 -256 -512

Ti
m

e
 in

 S
e

co
n

d
s

Minimum Edge Cost

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.10: Performance of UNCCD algorithms for random graphs as minimum edge cost is
varied.

since all input graphs in this experiment are sparse. Also, for both UNCCD algorithms, we find

that the total execution times increase as we decrease the minimum edge cost. For the b-matching

approach, we see that the rate of increase grows more as we decrease the minimum edge cost. For

the T -join approach, even though the execution time increases as we decrease the minimum edge

cost, we observe mixed results when the minimum edge cost goes from −256 to −512. In this

case, we find that the execution time of the APSP algorithm increases, while the execution time of

the MWPM algorithm decreases.

In previous studies, such as [11], it was observed that decreasing the minimum edge cost

results in a substantially faster execution time for random graphs. This was because more negative

cost cycles implied a higher chance of detecting one. Since previous negative cost cycle detection

algorithms terminate as soon as a negative cost cycle is detected, these algorithms result in running

much faster when more negative cost cycles are present. However, in our study, this is not the

case. This is because the UNCCD algorithms studied in this paper do not detect the presence of a

negative cost cycle until the end of the algorithm. In other words, these algorithms must complete

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 95

all computations (i.e., APSP and MWPM for the T -join approach and MWPM for the b-matching

approach) before determining whether or not a negative cost cycle is present.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

(0,0) (1,3) (800,3) (10,800) (1,20000)

Ti
m

e
 in

 S
e

co
n

d
s

Number and Size of Negative Cycles, (Number, Size)

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.11: Performance of UNCCD algorithms for layered torus graphs as the number and size
of negative cost cycles are varied.

For both torus graphs, the results are rather interesting. First, both UNCCD algorithms run

faster when the graph did not contain any negative cost cycles. Second, both UNCCD algorithms

ran the slowest when the graph consists of a single Hamiltonian negative cost cycle. Next, the

algorithms ran faster when the graph contains a single negative cost cycle with size 3 than when

the graph contains many negative cost cycles with size 3. This is surprising since it would be

expected that having more negative cost cycles would mean the algorithms detect a negative cost

cycle faster. Finally, both algorithms were slower when the graph has a few number of medium

sized negative cost cycles than when the graph has many negative cost cycles.

When comparing layered torus graphs to square torus graphs, we find that both UNCCD

algorithms run faster for layered torus graphs when the graph contains no negative cost cycles,

one small negative cost cycle, or one Hamiltonian negative cost cycle. Both UNCCD algorithms

run faster for square torus graphs when the graph consists of many small negative cost cycles or

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 96

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

(0,0) (1,3) (142,3) (10,142) (1,20000)

Ti
m

e
 in

 S
e

co
n

d
s

Number and Size of Negative Cycles, (Number, Size)

T-APSP T-MWPM T-Total

B-Trans B-MWPM B-Total

Figure 7.12: Performance of UNCCD algorithms for square torus graphs as the number and size
of negative cost cycles are varied.

few medium sized negative cost cycles.

We attribute these results to the nature of APSP and MWPM algorithms. Recall that the TOR

generator is designed such that it creates the graph using the input parameters first and then creates

negative cost cycles as specified. This means additional edges are included on top of the current

number of edges. For instance, when we include a Hamiltonian negative cost cycle, the number

of edges increases from 3 · n to 4 · n since we add n new edges to create the negative cost cycle.

This means m increases with each category from Table 7.1. Since the running times of both the

APSP and MWPM algorithms depend on m, increasing m naturally increases the execution times

of both algorithms.

Based on the above results, we conclude that both UNCCD algorithms perform the best when

the graphs do not contain any negative cost cycles. However, if negative cost cycles are present,

both algorithms perform better when there are fewer and smaller negative cost cycles.

CHAPTER 7. IMPLEMENTATION PROFILE FOR THE UNCCD PROBLEM 97

Table 7.5: Experiment Results for Negative Cost Cycles in Random Graphs (in Seconds)

T -join b-Matching
Graph Family Min. Cost APSP MWPM Total Transformation MWPM Total

Random

0 100.253 0.000 100.253 0.053 0.136 0.200
0.611 0.000 0.611 0.000 0.003 0.004

−32 101.340 41.720 143.104 0.053 0.157 0.221
0.608 0.026 0.609 0.000 0.003 0.003

−64 101.502 83.033 184.602 0.053 0.190 0.254
0.242 1.333 1.441 0.000 0.006 0.005

−128 100.280 90.449 190.916 0.053 0.256 0.321
0.139 5.530 5.471 0.000 0.008 0.007

−256 99.753 95.881 195.969 0.053 0.381 0.445
0.164 8.089 7.964 0.000 0.006 0.006

−512 101.006 94.852 196.087 0.053 0.583 0.647
0.435 3.388 3.693 0.000 0.019 0.020

Note: For each entry, the top number is the average execution time, and the bottom number is the standard
deviation. Any entry with 0.000 means it is less than 0.001.

Table 7.6: Experiment Results for Negative Cost Cycles in Torus Graphs (in Seconds)

T -join b-Matching
Graph Family Number of Cycles Size APSP MWPM Total Transformation MWPM Total

Layered Torus

0 0 67.796 0.000 67.796 0.013 0.080 0.097
0.074 0.000 0.074 0.000 0.001 0.002

1 3 68.091 0.000 68.916 0.013 0.079 0.097
0.087 0.000 0.087 0.000 0.001 0.002

800 3 90.988 0.159 91.165 0.015 0.087 0.106
0.399 0.003 0.223 0.000 0.001 0.002

10 800 93.941 0.000 93.943 0.016 0.181 0.205
0.574 0.000 0.574 0.000 0.006 0.007

1 20000 103.128 0.000 103.129 0.022 0.408 0.437
0.091 0.000 0.091 0.000 0.017 0.017

Square Torus

0 0 72.893 0.000 72.893 0.014 0.080 0.099
0.058 0.000 0.058 0.000 0.001 0.002

1 3 73.367 0.000 73.368 0.015 0.080 0.098
0.093 0.000 0.093 0.000 0.000 0.001

142 3 85.373 0.002 85.380 0.015 0.081 0.100
0.111 0.000 0.110 0.000 0.001 0.002

10 142 92.524 0.000 92.525 0.025 0.091 0.120
0.079 0.000 0.079 0.000 0.001 0.001

1 20000 105.105 0.000 105.106 0.021 0.591 0.620
0.122 0.000 0.122 0.000 0.034 0.033

Note: For each entry, the top number is the average execution time, and the bottom number is the standard deviation. Any entry
with 0.000 means it is less than 0.001.

98

Part III

The Negative Cost Girth Problem

99

Chapter 8

Introduction

Consider a network (or directed graph) G = (V,E), where V is the vertex set |V | = n, and E

is the edge set with |E| = m. We now introduce new problem related to negative cycle detection

called the negative cost girth (NCG) problem. The girth of an unweighted network is defined as

the length (i.e., number of edges) of the shortest cycle. If the network is acyclic, then the girth is

infinity. In this paper, we extend the notion of girth to weighted networks and introduce the notion

of negative cost girth in a weighted network. Briefly, the negative cost girth of a weighted network

is the negative cost cycle with the fewest number of edges. The NCG problem finds applications

in several domains, such as constraint-solving, program verification and real-time scheduling.

The NCG problem was introduced in [15], wherein the first polynomial time algorithm was

proposed. The algorithm, known as the matrix multiplication (MM), is a dynamic programming

approach that finds paths of increasing cost from each vertex to itself. The first path of negative

cost from a vertex to itself is the NCG. The MM approach runs in O(n3 · log k) time, where k is

the size of the NCG. In [15], the NCG problem was referred to as the Optimal Length Resolution

Refutation (OLRR) problem. We discuss the MM approach in Appendix B.

The next three chapters present several algorithms related to finding the NCG. We first discuss

two strongly polynomial NCG algorithms [24], namely Edge-Progress (EP) and Edge-Relax (ER).

As in [15], both algorithms find paths of increasing cost from each vertex to itself to determine if

any cycle has a negative cost. However, both algorithms apply different techniques for extending

paths. In the EP algorithm, for each pair of vertices u and x, we scan all vertices y that are

incoming to x to find the shortest paths from u to y and y to x. For the ER algorithm, we relax

CHAPTER 8. INTRODUCTION 100

each edge to find the shortest path of non-positive cost between each pair of vertices. The EP

algorithm runs in O(n2 · k+m ·n · k) time, and the ER algorithm runs in O(m ·n · k) time, where

k is the size of the NCG.

We also provide an empirical study comparing the performance of the above NCG algorithms,

including the MM algorithm. The experiments indicate that the EP and ER algorithms are superior

to the MM algorithm in sparse networks. For dense networks, the MM algorithm proves to be

superior to both the EP and ER algorithms. Finally, the empirical study concludes that the ER

algorithm is superior to the EP algorithm in all cases.

We note that the aforementioned NCG algorithms terminate when the first negative cost cycle

is detected. These algorithms use various shortest path methods to determine the NCG. As with all

shortest path algorithms, once a negative cost cycle is detected, we cannot make correct inferences

about the costs of any simple paths for each iteration. This is because the correctness of the

costs of paths is contingent on the existence of simple paths. Once a negative cost cycle has been

detected, any shortest path computed after the detection may consist of a combination of negative

cost cycles and paths which, by definition, is not a simple path.

We next describe a work-efficient parallel implementation of the MM approach that runs in

O(log k · log n) parallel time using O(n3) processors. We also conduct an empirical analysis for

both the parallel implementation, using MPI, and the corresponding sequential NCG implementa-

tion. Our experiments indicate that as the number of processors doubles, the total execution time

reduces by approximately half for sparse networks.

We then present a new NCG algorithm for planar, directed networks. We can apply the above

NCG algorithms for general networks to find the NCG in planar networks. However, the extant

algorithms are topology-oblivious. In other words, the algorithms do not consider the topology of

the network. The planar NCG algorithm is based on the well-known Lipton-Tarjan planar separator

theorem [87]. This results in an algorithm that runs in O(n1.5 · k) time, which is superior to all

previously known NCG algorithms when restricted to planar networks. Our algorithm also works

correctly for classes of general networks that have separators. On a network having separator

size na, number of edges nb, and in which the separator can be found in O(nd) time, our NCG

algorithm runs in O(na+b · k + nd · log n) time.

CHAPTER 8. INTRODUCTION 101

8.1 Preliminaries and Notation

We are given a weighted network G = (V,E, c), where V is the set of n vertices, E is the set

of m edges, and we have a cost function c : E → R. For each edge eij ∈ E, we let cij be the

cost of that edge.

The girth of an unweighted, undirected graph is defined as the length, or number of edges, of

the shortest simple cycle contained in the graph. If the graph is acyclic, then the girth is infinity.

We provide examples of the girth of a graph in Figure 8.1. In Figure 8.1(a), the graph has a single

cycle C = (VC , EC , c), where EC = {eab, ebc, ecd, eda}. Since |EC | = 4, the girth of the graph

is 4. In Figure 8.1(b), there are two simple cycles, which we will denote as C1 and C2. In this

example, EC1 = {eab, ebc, ecd, eda}, while EC2 = {ebc, ecd, edb}. Since |EC2| = 3, |EC1| = 4, and

|EC2| < |EC1|, the girth of the graph is 3.

(a)

a b

cd
(b)

a b

cd

Figure 8.1: Girth examples. The network in (a) has girth 4, while the network in (b) has girth 3.

In this thesis, we apply the notion of girth to networks (or directed graphs in the literature),

where the edges are weighted. We define the negative cost girth (NCG) as the length, or number

of edges, of the negative cost cycle with the fewest number of edges. Recall from Chapter 5 that a

negative cost cycle is a path from a vertex to itself, whose total cost is negative. Similar to the

girth in unweighted, undirected graphs, if the network is acyclic, then the NCG is infinity.

We provide examples of the girth of a graph in Figure 8.2. In Figure 8.2(a), the graph has

a single negative cost cycle C = (VC , EC , c), where EC = {eab, ebc, ecd, eda}. Since |EC | = 4,

the NCG of the graph is 4. In Figure 8.2(b), the girth of the graph is 3 since there is a cycle

EC1 = {ebc, ecd, edb} with 3 edges. However, the total cost of C1 is not negative. The only negative

CHAPTER 8. INTRODUCTION 102

cost cycle in the graph is C2, where EC2 = {eab, ebc, ecd, eda} and has 4 edges. Therefore, the

NCG of the graph is 4.

(a)

−1

−1

−1

−1

a b

cd

(b)

−1

−1

−1

−1

5

a b

cd

Figure 8.2: Negative cost girth examples. Both networks have a negative cost girth 4.

Using the terminology above, we define the negative cost girth problem as follows:

Given a network G = (V,E) with arbitrarily weighted edges, find the negative cost
girth of the network.

103

Chapter 9

Improved NCG Algorithms for General

Networks

In this chapter, we present two strongly polynomial algorithms for the NCG problem in general

networks. The Edge-Progress (EP) approach involves finding the shortest paths for all pairs of

vertices by examining the vertices that are incoming to each vertex. On a network with n vertices,

m edges, and k is the NCG, the EP algorithm runs in O(n2 · k +m · n · k) time. The Edge-Relax

(ER) approach includes relaxing each edge to find the shortest paths of non-positive cost between

all pairs of vertices. This algorithm runs in O(m · n · k) time. These algorithms are also discussed

in [24].

9.1 The Edge-Progress Algorithm

In this section, we describe the EP approach for solving the NCG problem. The notation

used in the algorithm is described in Chapter 8.1. We also represent G as an adjacency list Adj.

However, Adj works differently from the adjacency list structure described in [22]. Previously,

for each vertex v ∈ V , Adj(v) is the set of outgoing edges from v in G. In the EP algorithm,

u ∈ Adj(v) implies there exists an edge euv that is incoming to vertex v in G. An example of Adj

is provided in Figure 9.1.

We let Fk be an n× n matrix that stores the shortest paths between each pair of vertices using

at most k edges, where 1 ≤ k ≤ n. We initialize the values of F1 as follows. For every pair of

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 104

a

b

c

d

1

4

2

3

5 a

b
c

d

b 4 c 1
c 2
d 5
b 3

Figure 9.1: Example of the Adjacency List using Incoming Edges

vertices u and x, if u = x, then F1(u, x) = F1(u, u) = 0. If there exists an edge eux ∈ E, then

F1(u, x) = cux. Otherwise, F1(u, x) =∞.

We use a dynamic programming approach for the EP algorithm. Observe that a negative cost

cycle in a network must have at least two edges. For each pair of vertices u and x, we scan all

the vertices y ∈ Adj(x). As defined above, Fk(u, x) is the length of the shortest path from u to x,

using at most k edges. Assume that the values Fk−1(u, y), where y ∈ Adj(x), have been computed.

Now, Fk(u, x) can easily be computed as: Fk(u, x) = miny | y∈Adj(x)(Fk−1(u, y) + cyx).

After computing all the shortest paths starting from u, we determine if there are any negative

cost cycles by checking if Fk(u, u) < 0. If this is true, then we have found the NCG, which is

k. Otherwise, we repeat this process for the next vertex v ∈ V , where v 6= u. The algorithm

repeats the above steps for increasing values of k until either a negative cost cycle is found or it is

determined that none exists.

These observations are summarized in Algorithm 9.1 and Algorithm 9.2. Note that Algo-

rithm 9.2 returns the NCG, if a negative cost cycle exists. The actual cycle can be obtained by

using a predecessor subgraph.

For the purpose of simplifying the expositions in Chapters 9.1.1 and 9.1.2, we define the

following:

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 105

Function INITIALIZE()
1: for (u = 1 to n) do
2: for (x = 1 to n) do
3: if (u = x) then
4: F1(u, u) := 0.
5: else
6: if (eux ∈ E) then
7: F1(u, x) := cux.
8: else
9: F1(u, x) :=∞.

10: end if
11: end if
12: end for
13: end for
14: return

Algorithm 9.1: NCG Edge-Progress Algorithm: Initialization

Function EDGE-PROGRESS(G)
1: for (k = 2 to n) do
2: for (each vertex u ∈ V) do
3: for (each vertex x ∈ V) do
4: if (u = x) then
5: Fk(u, x) := 0.
6: else
7: Fk(u, x) :=∞.
8: end if
9: for (all y ∈ Adj(x)) do

10: if (Fk−1(u, y) + cyx < Fk(u, x)) then
11: Fk(u, x) := Fk−1(u, y) + cyx.
12: end if
13: end for
14: end for
15: if (Fk(u, u) < 0) then
16: return (“The negative cost girth is k.”)
17: end if
18: end for
19: end for
20: return (“G does not contain any negative cost cycles.”)

Algorithm 9.2: NCG Edge-Progress Algorithm: EDGE-PROGRESS

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 106

1. Let f1 be the for loop from lines 1 to 19 in Algorithm 9.2.

2. Let f2 be the for loop from lines 2 to 18 in Algorithm 9.2.

3. Let f3 be the for loop from lines 3 to 14 in Algorithm 9.2.

9.1.1 Resource Analysis

The function INITIALIZE (Algorithm 9.1) takes O(n2) time since we initialize F1(u, x) for

each pair of vertices u and x.

For each iteration of f3, we scan all the vertices y that are adjacent to x by using Adj(x). Since

Adj is structured as an adjacency list, the scanning process ensures that each edge that is adjacent

to x is scanned exactly once. With Fk set up as an n× n matrix, any modifications made for a

given pair of vertices u and x would be constant time operations. Because there are n vertices, f3

runs in O(m+ n) time.

It is clear that f2 runs O(n) times; once for each of the n vertices. This means a single iteration

of f2 runs in O(n · (m+ n)) time. However, lines 15 and 16 force the algorithm to stop when we

find the negative cost girth, which is k. This means that f1 executes O(k) times. It follows that

Algorithm 9.2 runs in O(k · n · (m+ n)) = O(n2 · k +m · n · k) time.

As far as space is concerned, we store Adj as an adjacency list of size O(m + n). It would

appear that we need O(n3) space since each matrix Fk is size n × n, and we have n matrices.

However, note that at iteration l of the algorithm, where l ≤ n, we need only the data from Fl−1

and Adj. In other words, matrices F1 to Fl−2 are no longer needed. Since the remaining matrices

are no longer used, we can safely remove them from storage. As a result, at any given iteration l,

we use exactly two matrices: Fl−1 and Fl. This means we only need O(n2) space for storing the

matrices. Therefore, the algorithm requires O((m+ n) + n2) = O(n2) space.

9.1.2 Correctness

We have already established that the EP algorithm terminates, in that it runs inO(n2·k+m·n·k)

time, where k is the NCG. In the event that the network does not have a negative cost cycle, the

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 107

algorithm runs in O(n3 +m · n2) time. If we assume that m = Ω(n), then the running time of the

algorithm is O(m · n2), in the absence of negative cost cycles.

In order to establish the correctness of Algorithm 9.2, we observe that the algorithm implements

the following dynamic program:

Fk(u, x) =

{
cux k = 1

miny : (y,x)∈E{Fk−1(u, y) + cyx} k > 1.

The correctness of the above dynamic program follows through an inductive application of the

Principle of Optimality [88], which states the following:

An optimal policy has the property that whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy with regard to the state resulting from the

first decision.

9.1.3 Example of the Edge-Progress Algorithm

We now provide an example of the EP algorithm. Suppose we are given the network in

Figure 9.2. We start the algorithm by initializing all the values for F1(u, x), ∀u, x ∈ V . This

is shown in Table 9.1. Let k = 2. For each pair of vertices u and x, we scan all the vertices

adjacent to x to find the shortest paths using at most two edges. These values are given in

Table 9.2. We now let k = 3. Note that when we determine the path from a to a, we find that

F2(a, b) + cba = 5 +−6 = −1 < F2(a, a) = 0. Since F3(a, a) < 0, the algorithm immediately

stops and declares that the NCG is 3. The resulting negative cost cycle is shown in Figure 9.3 and

Table 9.3.

Table 9.1: Example of the Edge-Progress algorithm. Initialize F1.
F1 a b c d
a 0 ∞ 3 ∞
b −6 0 ∞ ∞
c ∞ 2 0 4
d ∞ −5 ∞ 0

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 108

a

b

c

d

3

−6

2

−5

4

Figure 9.2: Example of the Edge-Progress algorithm. Initial network G.

Table 9.2: Example of the Edge-Progress algorithm. Matrix F2.
F2 a b c d
a 0 5 3 7
b −6 0 −3 ∞
c −4 −1 0 4
d −11 −5 ∞ 0

a

b

c

d

3

−6

2

−5

4

Figure 9.3: Example of the Edge-Progress algorithm. NCG is 3.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 109

Table 9.3: Example of the Edge-Progress algorithm. Matrix F3.
F3 a b c d
a −1 2 3 4
b −6 −1 −3 1
c −7 −1 −1 4
d −11 −5 −8 0

9.2 The Edge-Relax Algorithm

In this section, we discuss the ER approach for solving the NCG problem. The notation used

in the algorithm is described in Chapter 8.1. We also store the edges in an additional set of arrays

StartV and EndV . StartV [i] contains the tail of edge ei, and EndV [i] contains the head of edge

ei, where 1 ≤ i ≤ m. For instance, consider the edges to be sorted in some order {e1, e2, . . . , em}.

Let eij = e1. Accordingly, StartV [1] = i, and EndV [1] = j.

We let D(k)− be an n× n matrix that monitors the shortest path of non-positive cost between

each pair of vertices using at most k edges, where 1 ≤ k ≤ n. For each pair of vertices i and

j, d(k)−
ij is the cost of the shortest path of non-positive cost from i to j using at most k edges.

We initialize the values in D(1)− as follows. For every pair of vertices i and j, if i = j, then

d
(1)−
ij = d

(1)−
ii = 0. If there exists an edge eij ∈ E, where cij < 0, then d(1)−

ij = cij . Otherwise,

d
(1)−
ij =∞.

Our approach involves focusing only on the shortest paths with a non-positive cost. We let k

be the number of edges in a given path, where 2 ≤ k ≤ n. For each k, we relax all the edges in E.

Given an edge eij ∈ E and i = Start[t] and j = EndV [t], where 1 ≤ t ≤ m, for the relaxation

step, we scan each vertex r ∈ V . Assume that d(k−1)−
ri , where r ∈ V , has been computed. We

determine if both d(k−1)−
ri and d(k−1)−

ri + cij are negative. Because we are only concerned with

paths with non-positive costs, we need to check the following:

1. The shortest path from r to i using at most k − 1 edges is negative, and

2. Adding edge eij to the path from r to i makes the cost of the path from r to i to j, using at

most k edges, negative.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 110

Thus, we compute d(k)−
rj as,

d
(k)−
rj = min{d(k−1)−

ri + cij, d
(k−1)−
rj }.

After computing d(k)−
rj , we determine if we have a negative cost cycle by checking if r = j. If

this is true, then d(k)−
rj = d

(k)−
rr < 0. This means we have found the negative cost girth, which is

k. Otherwise, we repeat this process for the next vertex r ∈ V . The algorithm repeats the above

steps for increasing values of k until either a negative cost cycle is found, or we conclude that

the network does not contain a negative cost cycle. The above observations are summarized in

Algorithm 9.3 and Algorithm 9.4. Observe that Algorithm 9.4 gives us only the NCG. The actual

negative cost cycle can be obtained by using a predecessor subgraph.

Function INITIALIZE()
1: for (i = 1 to n) do
2: for (j = 1 to n) do
3: if (i = j) then
4: d

(1)−
ij := 0.

5: else
6: if (cij < 0) then
7: d

(1)−
ij := cij .

8: else
9: d

(1)−
ij :=∞.

10: end if
11: end if
12: end for
13: end for
14: return

Algorithm 9.3: NCG Edge-Relax Algorithm: Initialization

For the purpose of simplifying the composition of Chapters 9.2.1 and 9.2.2, we define the

following:

1. Let f1 be the for loop from lines 1 to 18 in Algorithm 9.4.

2. Let f2 be the for loop from lines 7 to 17 in Algorithm 9.4.

3. Let f3 be the for loop from lines 9 to 16 in Algorithm 9.4.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 111

Function EDGE-RELAX(G,StartV, EndV)
1: for (k = 2 to n) do
2: for (u = 1 to n) do
3: for (v = 1 to n) do
4: d

(k)−
uv :=∞.

5: end for
6: end for
7: for (t = 1 to m) do
8: i := StartV [t]; j := EndV [t].
9: for (r = 1 to n) do

10: if (d(k−1)−
ri < 0 and d(k−1)−

ri + cij < 0) then
11: d

(k)−
rj := min{d(k−1)−

ri + cij, d
(k−1)−
rj , d

(k)−
rj }.

12: if (r = j) then
13: return (“The negative cost girth is k.”)
14: end if
15: end if
16: end for
17: end for
18: end for
19: return (“G does not contain any negative cost cycles.”)

Algorithm 9.4: NCG Edge-Relax Algorithm: EDGE-RELAX

9.2.1 Resource Analysis

In the function INITIALIZE (Algorithm 9.3), we initialize all the values in matrix D(1)−. Since

this is an n× n matrix, this process takes O(n2) time.

For each iteration, we relax all the edges and check the costs from each vertex to the relaxed

edge. Since we use the edges stored in the lists StartV and EndV , recall that the sizes of these

lists are both m. This means f2 runs O(m) times. For each edge eij , we scan all the edges

incoming to vertex i to determine if d(k−1)−
ri < 0 and d

(k−1)−
ri + cij < 0. Consequently, the

operations in lines 10 and 11 take constant time, and f3 runs O(n) times. Thus, the total running

time of f2 is O(m · n) time.

We now need to address f1. For each iteration, we first initialize the values in D(k)−. Since

D(k)− is an n× n matrix, initializing D(k)− takes O(n2) time. Then, we find all the shortest paths

using at most k edges, where 2 ≤ k ≤ n. It would appear that f1 runs O(n) times. However,

note that in lines 12 and 13, we halt the algorithm when we find the first negative cycle and return

k. This means the algorithm can end before we reach the nth iteration. In fact, since we have

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 112

previously defined k as the length of the shortest refutation, we can say that f1 runs O(k) times.

Therefore, the total time of the algorithm is O(k · (n2 +m · n)) = O(n2 · k +m · n · k).

We should note that the running time can be improved to O(m · n · k) by modifying how we

initialize D(k)−. Instead of using the initialization process in lines 2 to 6 in Algorithm 9.4, we

makes two modifications. First, in the INITIALIZE procedure, we add the statement d(2)−
ij =∞

after line 12. The first iteration of Algorithm 9.4 requires that D(2)− is initialized. Otherwise, d(2)−
rj

could be incorrect in line 11. Second, we add the statement if (k + 1 ≤ n), then d(k+1)−
rj = ∞

after line 9 in Algorithm 9.4. This allows us to initialize all the values in D(k+1)− if k + 1 ≤ n.

Both of these modifications are constant time operations which means the running time is now

O(m · n · k) since we removed the for loop in lines 2 to 6.

For the space analysis, note that A is stored as an adjacency matrix of size O(n2), and both

StartV and EndV as arrays of size O(m). It would appear that we need O(n3) space since

each matrix D(k)− is size n× n and we have n matrices. However, note that at iteration l in the

algorithm, where l ≤ n, we only need the values from D(l−1)−. In other words, matrices D(1)− to

D(l−2)− are no longer needed. This means we can safely remove them from storage. As a result, at

any given iteration l, we use exactly two matrices: D(k−1)− and D(k)−. Therefore, the total space

required is O(n2 +m) = O(n2).

9.2.2 Correctness

We first need to show that we can focus only on shortest paths with non-positive costs.

The basis of our approach revolves around the following theorem:

Theorem 9.2.1 Suppose we are given a directed cycle C of negative cost in network G. There

exists a vertex u ∈ C such that the cost from u to v is negative, ∀v ∈ C, using the unique path

from u to v in C.

Proof: Assume this is not the case. In other words, for all vertices u ∈ C, there exists some

vertex v ∈ C, where the cost from u to v is non-negative. In fact, for each vertex u ∈ C, let v

be the first vertex in the path starting from u such that the cost from u to v is non-negative. For

expositional convenience, we say that u connects to v, if v meets the non-negative property stated

above and is the first such vertex to do so.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 113

d = a

b

Figure 9.4: Proof of Theorem 9.2.1. Cycle C, where d = a.

Suppose we start with some vertex a ∈ C, and let a connect to b ∈ C. Likewise, let b connect

to d ∈ C. There are three possible cases for d: d precedes a in the path in C, d = a, or d succeeds

a in the path in C.

1. Suppose d = a, as indicated in Figure 9.4. This means we can add the costs of the paths

from a to b and b to d = a. Since both of these paths are non-negative, the total cost from a

to itself must be non-negative. This contradicts the fact that C is a negative cost cycle.

2. Suppose d succeeds a in the path from b, using the edges in C. Three possibilities arise, as

discussed below.

(a) If d = b, then b connects to itself, as we can see in Figure 9.5. This implies that the cost

of the path from b to itself is non-negative, thereby contradicting the fact that C is a

negative cost cycle.

(b) Assume that d succeeds a but precedes b (see Figure 9.6). In this case, observe that the

cost of the edge incoming to d must be large enough to make the cost of the path from b

to d non-negative. Otherwise, b could not connect to d. Further, note that the cost of the

path from b to a is negative, since b does not connect to a. Finally, note that the cost

of the path from a to d must be negative, since a does not connect to d. It follows that

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 114

a

d = b

Figure 9.5: Proof of Theorem 9.2.1. Cycle C, where d = b.

the cost of the path from b to d, which is the sum of the costs of the paths from b to a

and from a to d, must also be negative, which contradicts the choice of d, as the vertex

which connects to b, along C.

(c) Suppose that d succeeds b, as shown in Figure 9.7. Note that this is not possible because

C is a negative cost cycle, and the cost of the path directly from b to d must be larger

than the cost of the path from b to d going once through C.

3. Suppose d precedes a in the path from b, using the edges in C, as shown in Figure 9.8. This

means that the cost of the path from a to d is non-negative. We proceed along C from d

to identify the first vertex e, such that the vertex that e connects to is either a or a vertex

between a and b. Both of these cases have already been covered previously. Note that the

existence of e is guaranteed. Otherwise, the cost of the cycle C is non-negative.

2

From Theorem 9.2.1, we only need to find the paths with non-positive costs. This is because

if a negative cost cycle exists in the network, we will find one edge of the negative cost cycle in

the first iteration of Algorithm 9.4. For each iteration after, we keep finding adjacent edges of the

negative cost cycle until the cycle is found in the kth iteration. Therefore, Theorem 9.2.1 holds for

the negative cost girth.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 115

a

b

d

Figure 9.6: Proof of Theorem 9.2.1. Cycle C, where d comes after a but before b.

a

b

d

Figure 9.7: Proof of Theorem 9.2.1. Cycle C, where d comes after b.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 116

a

b

d

Figure 9.8: Proof of Theorem 9.2.1. Cycle C, where d comes before a.

We have already shown that the ER algorithm terminates since it runs in O(m · n · k) time,

where k is the NCG. If the network does not contain a negative cost cycle, the algorithm runs in

O(m · n2) time.

In order to establish the correctness of Algorithm 9.4, we apply Theorem 9.2.1 and observe

that the algorithm implements the following dynamic program:

d
(k)−
rj =

 crj, k = 1

min
i∈V, d

(k−1)−
ri <0, d

(k−1)−
ri +cij<0

(d
(k−1)−
ri + cij, d

(k−1)−
rj), k > 1

The correctness of the above dynamic program follows through an inductive application of the

principle of optimality [88], which is stated in Chapter 9.1.2.

9.2.3 Example of the Edge-Relax Algorithm

We now give an example of how the ER algorithm works. Suppose we are given the network

G and matrix A in Figure 9.9 and Table 9.4, respectively. We start the algorithm by initializing

all the values in D(1)−. As we can see in Table 9.5, this turns out to be only the edges from A

that have a non-positive cost. Let k = 2. We find all the paths with a non-positive cost using at

most two edges. For each edge eij , we determine if there is a path with non-positive cost from

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 117

a vertex r to i and if the path from r to i to j is also non-positive. These values are shown in

Table 9.6. We now let k = 3. Note that when we observe edge ecb, we find that d(2)−
bc = −3 and

d
(2)−
bc + ccb = −3 + 2 = −1 < 0. Since d(3)−

bb < 0, the algorithm immediately stops and declares

that the NCG is 3. The resulting negative cost cycle is shown in Figure 9.10 and Table 9.7.

a

b

c

d

3

−6

2

−5

4

Figure 9.9: Example of the Edge-Relax algorithm. Initial network G.

Table 9.4: Example of the Edge-Relax algorithm. Matrix A.
A a b c d
a 0 ∞ 3 ∞
b −6 0 ∞ ∞
c ∞ 2 0 4
d ∞ −5 ∞ 0

9.3 Empirical Study

In this section, we profile the NCG algorithms discussed in this paper. For the ease of

exposition, we refer to the EP and ER algorithms collectively as the new algorithms. We will

continue to refer to the algorithm in [15] and Appendix B as the matrix multiplication algorithm.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 118

Table 9.5: Example of the Edge-Relax algorithm. Matrix D(1)−.
D(1)− a b c d
a 0 ∞ ∞ ∞
b −6 0 ∞ ∞
c ∞ ∞ 0 ∞
d ∞ −5 ∞ 0

Table 9.6: Example of the Edge-Relax algorithm. Matrix D(2)−.
D(2)− a b c d
a 0 ∞ ∞ ∞
b −6 0 −3 ∞
c ∞ ∞ 0 ∞
d −11 −5 ∞ 0

a

b

c

d

3

−6

2

−5

4

Figure 9.10: Example of the Edge-Relax algorithm. NCG is 3.

Table 9.7: Example of the Edge-Relax algorithm. Matrix D(3)−.
D(3)− a b c d
a 0 ∞ ∞ ∞
b −6 −1 −3 ∞
c ∞ ∞ 0 ∞
d −11 −5 −8 0

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 119

9.3.1 Experimental Setup

Our experiments study the performance of these algorithms on graphs with varying parameters.

We study two graph families that are produced by two generators. The graph generators used are

part of the 9th DIMACS Shortest Path Implementation Challenge benchmark package [50].

The generator (SPRAND [51]) creates random graphs with n vertices and m ≥ n edges. The

generator first constructs a Hamiltonian cycle to ensure the graph is connected. The remaining

m− n edges are added by randomly selecting a pair of distinct vertices. Note that the generator

can produce parallel edges and/or self-loops. Our experiments include both sparse and dense

random graphs of varying sizes. For sparse graphs, we set m = 4 · n, where 4 is an arbitrary

constant to represent sparse graphs since m = O(n). For dense graphs, we set m = 0.9 · n2.

Since our algorithms are designed for finding negative cost cycles, we choose the edge costs

from a fixed set of random integers such that each graph contains at least one negative cycle. We

also allow the sizes of the graphs to be 100, 250, 500, and 750 vertices, and we let k vary from 0

to the number of vertices for each graph, where k is the NCG.

All three algorithms are written in C/C++, and they are compiled and run in identical experi-

mental settings. For the matrix multiplication algorithm, we store 2 · log n adjacency matrices,

where n is the number of vertices in the graph, since the algorithm requires the results from the

previous iterations for the binary search. For the edge progression algorithm, we also include the

adjacency list data structure for storing Adj(x), which contains the edges that are incoming to

each vertex x. For the edge relaxation algorithm, we use array data structures for storing StartV

and EndV , which hold the starting and ending vertices respectively for all edges. Since the OLRR

problem is only concerned with the integral domain, we use integer edge costs in our experiments.

Our testing platform is a 2.0 GHz 32-bit Intel Core 2 Duo machine with a 4 GB RAM and

a 2 MB cache which runs Ubuntu (version 9.10). The implementations are compiled with the

Intel C compiler (icc) version 11.0, and the optimization flag is set to -O3. We report the average

execution time of ten independent trials for each test which is common is previously known

experiments [51, 11, 48].

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 120

9.3.2 Results and Analysis

We compare the performance of the matrix multiplication (MM), Edge-Progress (EP), and

Edge-Relax (ER) algorithms based on the type of graph, the size of the graph, and the negative

cost girth k. For all figures, the execution time on the Y-axis is depicted in the logarithmic scale

due to the variation of the data collected. We note that k = 0 implies that the graph does not

contain any negative cost cycles. Finally, the data corresponding to our study can be found in

Tables 9.8 and 9.9.

Sparse Random Graphs

We first evaluate the performance of all three algorithms on sparse graphs for increasing values

of n. We vary the sizes of the graph from 100 to 750 vertices and let k = 100. Figure 9.11 plots

the execution times for each algorithm and graph. We can see that as the number of vertices

increases, both the EP and ER algorithms run faster than the MM algorithm. Also, we see that as

n increases, the ER algorithm outperforms the EP algorithm.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

100 250 500 750

Ti
m

e
 in

 S
e

co
n

d
s

Number of Vertices, n

MM EP ER

Figure 9.11: NCG performance for a sparse random graph as the size of the graph is varied and
k = 100.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 121

We next study the performance of all three algorithms for sparse graphs with increasing values

of k. Figure 9.12 provides the execution times for a graph with 100 vertices and 400 edges.

Although the size of the graph is relatively small, we can see that when k > 0, the new algorithms

are superior to the MM algorithm, especially for smaller values of k. Further, the ER algorithm

runs faster than the EP algorithm in all cases. Finally, we observe that the new algorithms scale at

a faster rate as the value of k increases, while the MM algorithm appears to scale at a linear rate.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 10 25 50 100 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.12: NCG performance for a sparse random graph (100 vertices, 400 edges) as the value
of k is varied.

Figure 9.13 plots the execution times for a graph with 250 vertices and 1000 edges. Our

findings are similar to those indicated in Figure 9.12, in that the new algorithms are faster than the

MM algorithm for all values of k > 0, and the ER algorithm outperforms the EP algorithm. We

encounter the same results for graphs with 500 vertices and 2000 edges (Figure 9.14) and graphs

with 750 and 3000 edges (Figure 9.15).

Although the new algorithms perform better when k > 0, we note that the EP algorithm is

slower than the MM algorithm when k = 0. This is because the MM algorithm doubles the value

of k and then multiplies the corresponding matrices to find a negative cost cycle. Once a negative

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 122

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

2 10 25 50 100 250 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.13: NCG performance for a sparse random graph (250 vertices, 1000 edges) as the value
of k is varied.

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

2 10 25 50 100 250 500 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.14: NCG performance for a sparse random graph (500 vertices, 2000 edges) as the value
of k is varied.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 123

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

2 10 25 50 100 250 500 750 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.15: NCG performance for a sparse random graph (750 vertices, 3000 edges) as the value
of k is varied.

cost cycle has been found, we use a binary search to determine the exact value of k. If the graph

does not contain a negative cost cycle, we skip the binary search phase. This means the matrix

multiplication algorithm does not have to complete all the steps to conclude that a negative cost

cycle is not present. However, the EP algorithm has to run to completion for all values of k, before

determining that there are no negative cost cycles.

Based on our observations for sparse graphs, we can conclude that both the EP and ER algo-

rithms have smaller execution times than the MM algorithm. Also, the ER algorithm outperforms

the EP algorithm in terms of the execution time for all graph sizes and for all k ≥ 0.

Dense Random Graphs

We now evaluate the performance of all three algorithms on dense graphs for increasing values

of n. We vary the sizes of the graph from 100 to 750 vertices and let k = 100. Figure 9.16 plots the

execution times for each algorithm and graph. Unlike the cases involving sparse graphs, we can

see that as the value of k increases, the new algorithms run slower than the matrix multiplication

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 124

Table 9.8: Experiment Results for Sparse Networks (in Seconds)
n m k Matrix Multiplication Edge-Progress Edge-Relax

100 400

2 0.004 0.000 0.000
10 0.040 0.005 0.001
25 0.050 0.012 0.003
50 0.061 0.023 0.008
100 0.075 0.044 0.025
0 0.038 0.058 0.019

250 1000

2 0.055 0.000 0.000
10 0.618 0.033 0.006
25 0.776 0.097 0.016
50 0.940 0.192 0.035
100 1.123 0.366 0.090
250 1.312 0.872 0.431
0 0.0639 1.117 0.164

500 2000

2 0.432 0.001 0.000
10 5.200 0.141 0.029
25 6.676 0.233 0.086
50 8.120 0.880 0.179
100 9.608 1.759 0.383
250 11.349 4.253 1.387
500 13.059 8.235 4.717
0 6.161 9.774 1.816

750 3000

2 1.525 0.002 0.000
10 21.202 0.358 0.086
25 27.349 1.163 0.251
50 33.491 2.497 0.521
100 39.708 5.206 1.101
250 45.498 13.390 3.404
500 50.580 26.821 10.370
750 54.361 40.597 22.654
0 28.998 40.511 8.073

Note: Any entry with 0.000 means it is less than 0.001.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 125

algorithm. Further, the EP algorithm scales at a significantly faster rate (i.e., degrades quicker)

compared to the ER algorithm. Both observations are expected since we are dealing with dense

graphs, where the number of edges is O(n2). This means the EP algorithm and ER algorithm take

O(n2 ·k+n3 ·k) time and O(n3 ·k) time respectively, while the MM algorithm takes O(n3 · log k)

time.

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

100 250 500 750

Ti
m

e
 in

 S
e

co
n

d
s

Number of Vertices, n

MM EP ER

Figure 9.16: NCG performance for a dense random graphs as the size of the graph is varied and
k = 100.

We next study the performance of all three algorithms for dense graphs with increasing values

of k. Figure 9.17 provides the execution times for a graph with 100 vertices and 9000 edges.

For the case where k = 2, the new algorithms outperform the MM algorithm. However, as k

increases, the EP algorithm becomes substantially slower compared to the other two algorithms.

Furthermore, the EP algorithm eventually becomes slower than the MM algorithm once the value

of k reaches a certain threshold. However, the ER algorithm is still faster than the EP algorithm in

all cases.

Figure 9.18 shows the execution times for a graph with 250 vertices and 56250 edges. We

observe similar findings to Figure 9.17 in that the Edge-Progress algorithm degrades rapidly as

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 126

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 10 25 50 100 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.17: NCG performance for a dense random graph (100 vertices, 9000 edges) as the value
of k is varied.

the value of k increases, and the ER algorithm becomes worse than the MM algorithm once k

surpasses a specific threshold. We encounter the same results for graphs with 500 vertices and

225000 edges (Figure 9.19) and graphs with 750 and 50650 edges (Figure 9.20). Finally, we

observe that the new algorithms scale significantly faster (i.e., degrade quicker) than the MM

algorithm, which appears to scale at a linear rate with the number of vertices.

For the case where k = 0 for all dense graphs, the new algorithms run much slower compared

to the MM algorithm. As mentioned in the case for sparse graphs, the matrix multiplication

algorithm terminates sooner because it does not have to perform any binary searches due to the

absence of negative cost cycles. Further, in the case of dense graphs, both new algorithms must

scan through all the edges several times before coming to the conclusion that there are no negative

cost cycles. Since we are working with dense graphs, it is no surprise that the new algorithms have

very large execution times.

From our experiments in the case of dense graphs, we can conclude that the MM algorithm

has a faster execution time than both the ER and the EP algorithms. However, even for dense

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 127

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

2 10 25 50 100 250 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.18: NCG performance for a dense random graph (250 vertices, 56250 edges) as the value
of k is varied.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

2 10 25 50 100 250 500 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.19: NCG performance for a dense random graph (500 vertices, 225000 edges) as the
value of k is varied.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 128

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2 10 25 50 100 250 500 750 0

Ti
m

e
 in

 S
e

co
n

d
s

Negative Cost Girth, k

MM EP ER

Figure 9.20: NCG performance for a dense random graph (750 vertices, 506250 edges) as the
value of k is varied.

graphs, the ER algorithm runs faster than the EP algorithm for all graph sizes and for all k ≥ 0.

CHAPTER 9. IMPROVED NCG ALGORITHMS FOR GENERAL NETWORKS 129

Table 9.9: Experiment Results for Dense Networks (in Seconds)
n m k Matrix Multiplication Edge-Progress Edge-Relax

100 9000

2 0.010 0.000 0.000
10 0.037 0.050 0.009
25 0.044 0.136 0.027
50 0.051 0.285 0.065
100 0.058 0.578 0.162
0 0.032 0.586 0.107

250 56250

2 0.168 0.005 0.001
10 0.581 0.722 0.121
25 0.689 1.980 0.356
50 0.814 4.089 0.765
100 0.905 8.344 1.670
250 1.014 20.989 5.080
0 0.564 21.080 3.719

500 225000

2 1.436 0.028 0.005
10 5.547 7.149 1.834
25 6.569 19.627 5.339
50 7.587 40.556 10.967
100 8.672 83.907 22.495
250 9.867 212.630 58.422
500 10.868 423.447 122.713
0 5.776 427.997 113.124

750 506250

2 6.191 0.104 0.041
10 25.920 31.819 13.789
25 31.443 88.965 39.969
50 37.430 188.598 83.468
100 42.581 376.321 169.568
250 48.577 965.446 434.232
500 54.164 1950.350 881.341
750 59.412 2879.649 1333.006
0 30.920 2834.284 1289.332

Note: Any entry with 0.000 means it is less than 0.001.

130

Chapter 10

A Parallel Implementation for the NCG

Problem

In this chapter, we discuss the implementation of a parallel algorithm for the NCG problem.

Currently, there is an increasing trend in favor of parallel programming. This is because we have

a greater need for developing faster solutions and solving problems that are significantly larger

in size [89]. There are three potential factors that have contributed to the rise in popularity for

parallel processing. First, the cost for hardware has decreased which means it is possible to build

systems that contain multiple processors for a reasonable cost. Second, very large scale integration

(VLSI) circuit technology [90] has advanced such that we can design complex systems where a

single chip can contain millions of transistors. Finally, we are approaching the physical limitations

of the von Neumann processor, with respect to the cycle time. We are also finding that there

exists a substantially higher resource cost as we attempt increase the performance of a sequential

processor.

10.1 Preliminaries

In this section, we discuss several preliminaries prior to presenting the parallel implementation.

We first describe the model of computation that is used for the algorithm. We then provide

additional definitions and notations pertaining to parallel algorithms and implementations.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 131

10.1.1 Model of Computation

We use the PRAM (Parallel Random Access Machine) model for our parallel implementation.

In this model, we have a set of identical processors, although we assume the number of processors

is unlimited. The memory is globally shared among all processors, and accessing the shared

memory takes constant time. Each processor also has its own local memory (of unlimited size in

theory) and can request data from other processors via synchronized communication. Finally, in

each unit of time, each processor is allowed to run an instruction or remain idle. In other words,

instructions are executed synchronously under the control of a common clock.

To handle shared memory conflicts, we use the CREW (Concurrent Read Exclusive Write)

strategy. With this approach, all processors are allowed to read the shared data simultaneously, but

only one processor is allowed to write at any given time. For instance, if we consider a parallel

approach for matrix multiplication, all processors can retrieve data regarding different elements of

the matrices at the same time. However, only one processor can write back to a specific element in

a matrix at a time.

However, there are concerns with the PRAM model. The model does not consider the

time complexity for synchronizing instructions or communicating between processors. Also,

implementing algorithms using the PRAM model are nearly impossible because modern hardware

is not capable of some PRAM concepts, such as globally sharing memory. These algorithms are

examples of fine-grained parallelism, which occurs when each processor handles a small amount of

data to compute, but there exists a large number of processors and a high amount of communication

between all processors. The problem is that the number of processors is usually unrealistic. When

implementing these algorithms, a more practical approach is to use coarse-grained parallelism,

where each processor handles a much larger amount of the data for computation, but the number

of processors and the frequency of communication among the processors are more realistic.

10.1.2 Definitions

Suppose we are given problem Q of size n. Let us assume there exists a parallel algorithm A

that solves the input problem using P (n) processors. The running time of A, denoted as T (n), is

the maximum time spent among all P (n) processors. The total work done for A is the product of

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 132

the running time of A and the number of processors, denoted as W (n) = T (n) · P (n).

Let T ∗(n) be the running time of the fastest known sequential algorithm for solving Q. A is

work-efficient if T (n) = O(logk n) and P (n) = O(nc), where k and c are both fixed constants.

In other words, a parallel algorithm is work-efficient if it runs in polylogarithmic time using a

polynomial number of processors. A is work-optimal if W (n) = T (n) · P (n) = T ∗(n). In other

words, a parallel algorithm is work-optimal if the total running time among all P (n) processors is

the same as the running time of the fastest known sequential algorithm.

For instance, if we use the parallel matrix multiplication algorithm from [91] and [22], we

can solve the all pairs shortest paths problem in O(log2 n) parallel time using O(n3) processors.

While this algorithm is work-efficient, it is not work-optimal since the Floyd-Warshall algorithm

[10] runs in O(n3) time.

10.2 Related Work

The extant NCG algorithms involve finding shortest paths from all vertices, and this chapter

presents a parallel implementation for solving the NCG problem. Therefore, it is appropriate to

discuss parallel algorithms for solving the all pairs shortest path (APSP) problem.

There exist several sequential algorithms for the APSP problem, such as [38], [76], and [10].

However, these algorithms require at least n− 1 recursive steps, in the worst case, which means

the parallel running time is at least some order of n, regardless of the number of processors. For

instance, a straightforward parallel implementation of [10] runs in O(n) parallel time using O(n2)

processors.

For parallel algorithms, there has been much research done to solve the APSP problem and

related problems [92, 93, 94, 95]. Kucera [96] provides a parallel algorithm that runs in O(log2 n)

parallel time using the PRAM model and O(log n) parallel time using the CRCW (Concurrent

Read Concurrent Write) PRAM model [97]. G.H. Chen et al. [93] describes a parallel algorithm

for the APSP problem based on the Processor Arrays with Reconfigurable Bus System (PARBS)

model. This algorithm runs in O(log n) parallel time using n2 × n × n processors. Pan and

Preparata [98, 99] develop a parallel algorithm that runs in O(log2.5 n) parallel time and O(n3)

operations.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 133

Pan, Han, and Reif [100] improve the previous time bound to O(f(n)/p+I(n) · log n) parallel

time using O(n3) operations and p processors. In this algorithm, f(n) = o(n3), and I(n) is

the running time to compute the minimum of n elements using n processors. Therefore, I(n)

is O(log n) in the EREW (Exclusive Read Exclusive Write) PRAM model, O(log log n) in the

CRCW PRAM model, and O(1) in the randomized CRCW PRAM model [101].

10.3 The Parallel Implementation

In this section, we describe the parallel implementation for solving the NCG problem.

The implementation uses the following notation: We are given the network G = (V,E, c),

where V is the vertex set with n vertices, E is the edge set with m edges, and c : E → R is the

cost function that assigns a real number to each edge in E. We let cij represent the cost of the edge

from vertex i to vertex j. We represent G as an adjacency matrix A = (aij) such that aij = cij if

there exists an edge eij with cost cij , and aij =∞ otherwise.

We let D(k) be an n× n matrix that monitors the shortest path between each pair of vertices

using at most k edges, where 1 ≤ k ≤ n. For each pair of vertices i and j, d(k)
ij is the cost of

the shortest path from i to j using at most k edges. We initialize the values in D(1), as shown in

Algorithm 10.1, as follows. For every pair of vertices i and j, if i = j, then d(1)
ij = d

(1)
ii = 0. If

there exists an edge eij ∈ E, then d(1)
ij = cij . Otherwise, d(1)

ij =∞.

Our implementation mimics matrix multiplication in parallel. From [91, 22], we can multiply

two n× n matrices in O(log n) parallel time using O(n3) processors by calculating each of the n3

products in its own processor, and each processor takes O(log n) time to sum the products.

Algorithm 10.2 provides the main algorithm. We use repeated squaring to compute D(k) by

calling the PRODUCT procedure, which is shown in Algorithm 10.3. This continues until we have

a matrix D(k) such that there exists a negative value on the diagonal of D(k). If this occurs, we

have a negative cost cycle and call the BINARY-SEARCH procedure, provided in Algorithm 10.5,

to find the smallest value of k, where k is the NCG. If we do not find a negative cost cycle, the

algorithm reports that no negative cost cycles were found.

Algorithm 10.3 mirrors the parallel algorithm for matrix multiplication [91, 22]. To compute

the shortest path, we use O(n3) processors to calculate each cost from i to j using at most l3 edges,

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 134

Function INITIALIZE ()

1: n = |V |
2: for (i = 1 to n) do in parallel
3: for (j = 1 to n) do in parallel
4: if (i = j) then
5: d

(1)
ij = 0.

6: else
7: if (eij ∈ E) then
8: d

(1)
ij = cij .

9: else
10: d

(1)
ij =∞.

11: end if
12: end if
13: end for
14: end for
15: return

Algorithm 10.1: Parallel NCG Algorithm: Initialization

Function NCG-PARALLEL ()

1: k = 1
2: found = false.
3: while (found = false and k ≤ n) do
4: k = 2 · k.
5: D(k) = MATRIX-MULTIPLICATION(D(k/2),D(k/2)).
6: for (i = 1 to n) do in parallel
7: if (d

(k)
ii < 0) then

8: found = true.
9: end if

10: end for
11: end while
12: if (found = true) then
13: BINARY-SEARCH(k).
14: return
15: end if
16: return (“There are no negative cost cycles.”)

Algorithm 10.2: Parallel NCG Algorithm: NCG-PARALLEL

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 135

where l3 is the sum of l1 and l2. All calculations are merged into a single matrix D(l3) by finding

the minimum cost for each pair of vertices i and j.

Function MATRIX-MULTIPLICATION (D(l1),D(l2))

1: Create D(l3).
2: A copy of D(l3) exists in each processor.
3: for (i = 1 to n) do in parallel
4: for (j = 1 to n) do in parallel
5: for (r = 1 to n) do in parallel
6: d

(l3)
ij = d

(l1)
ir + d

(l2)
rj .

7: end for
8: end for
9: end for

10: for (i = 1 to n) do in parallel
11: for (j = 1 to n) do in parallel
12: Let Sij contain the n different values for d(l3)

ij .
13: d

(l3)
ij = MERGE-MIN(Sij, 1, n).

14: end for
15: end for
16: return (D(l3))

Algorithm 10.3: Parallel NCG Algorithm: MATRIX-MULTIPLICATION

Algorithm 10.4 gives the MERGE-MIN procedure that finds the minimum d
(l3)
ij for each pair

of vertices i and j among all processors. We use an approach similar to MERGE-SORT [22]

to divide the values into groups of two and find the minimum of each set of two values. We

repeat this procedure until we find the minimum among all the values. This procedure is a simple

parallel reduction. However we include it in the algorithm because it is a key component in the

implementation and part of the reason we get an efficient parallel running time.

Algorithm 10.5 explains how we use binary search to find the correct value of k. Once we

find a negative cost cycle with l edges, where l is a power of 2, we know the NCG is of size at

most l and at least l/2. This means we can use binary search in the interval [l/2 + 1, l] to find the

smallest value of k such that D(k) has a negative value on its diagonal.

10.3.1 Resource Analysis

In the function INITIALIZE (Algorithm 10.1), we initialize all the values in D(1). Since this is

an n× n matrix, we use O(n2) processors, where each processor computes one of the values in

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 136

Function MERGE-MIN (S, p, r)

1: if (p < r) then
2: q = b(p+ r)/2c.
3: s1 = MERGE-MIN(S, p, q).
4: s2 = MERGE-MIN(S, q + 1, r).
5: return (min(s1, s2))
6: else
7: return (S[p])
8: end if

Algorithm 10.4: Parallel NCG Algorithm: MERGE-MIN

Function BINARY-SEARCH (k)

1: found = false; kfound = false.
2: high = k; low = k/2.
3: mid = (high+ low)/2.
4: r = 4.
5: while (kfound = false) do
6: D(mid) = MATRIX-MULTIPLICATION(D(low),D(k/r)).
7: for (i = 1 to n) do in parallel
8: if (d

(mid)
ii < 0) then

9: found = true.
10: end if
11: end for
12: if (found = true) then
13: if (mid is even) then
14: high = mid; r = 2 · r.
15: mid = (high+ low)/2.
16: found = false.
17: else
18: k = mid.
19: kfound = true.
20: end if
21: else
22: if (mid is even) then
23: low = mid; r = 2 · r.
24: mid = (high+ low)/2.
25: else
26: k = mid+ 1.
27: kfound = true.
28: end if
29: end if
30: end while
31: return (“The NCG is of size k.”)

Algorithm 10.5: Parallel NCG Algorithm: BINARY-SEARCH

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 137

D(1). This takes O(1) parallel time using O(n2) processors.

We divide our analysis into two parts: finding the first negative cost cycle, and finding the

smallest k. For finding the first negative cost cycle, we keep doubling the value of k in Algorithm

10.2. This means the while loop in lines 3 to 11 has O(log k) iterations since we stop at the first

k where a negative cost cycle is detected. For each iteration, we call Algorithm 10.3, which is

similar to matrix multiplication. This is because we compute each value in a separate processor,

meaning we get O(1) parallel time with O(n3) processors. As for merging all calculations, we

call Algorithm 10.4, which takes O(log n) time per processor since it reflects the MERGE-SORT

algorithm. This means the total time of a single iteration is O(log n) parallel time using O(n3)

processors.

Once all calculations are complete, we use O(n) processors to check the diagonal. Since there

are O(n) values in the diagonal, we use one processor for each value. This takes O(1) parallel

time using O(n) processors to detect the negative cost cycle. Since we have O(log k) iterations,

finding the first negative cycle takes O(log k · log n) parallel time with O(n3) processors.

We now examine the time it takes to find the smallest k. For the while loop in lines 5 to 30 in

Algorithm 10.5, we are given the interval [l/2 + 1, l], and we compute D((l/2+l)/2). Computing

the matrix takes O(log n) parallel time with O(n3) processors since we are calling Algorithms

10.3 and 10.4. Similar to Algorithm 10.2, finding a negative value within the diagonal takes O(1)

parallel time with O(n) processors. However, for each iteration of the while loop, we find the

middle value of the interval [l/2 + 1, l], where l/2 + 1 ≤ k ≤ l. This means we have O(log k)

iterations. Therefore, the total time to find the smallest k is O(log k · log n) parallel time using

O(n3) processors.

Consequently, the parallel NCG algorithm takes O(log k · log n) parallel time using O(n3)

processors. From our definition in Chapter 10.1.2, our parallel algorithm is work-efficient since

O(log k · log n) ≤ O(log2 n).

10.3.2 Correctness

Our parallel algorithm is identical to the sequential NCG algorithm in [15] and Appendix B,

which is known as the matrix multiplication algorithm in Chapter 9, with two exceptions:

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 138

1. We provide a more detailed pseudocode for the O(n3 · log k) algorithm.

2. For all i, j, and k, d(k)
ij is computed in parallel.

Since [15] verifies that the sequential algorithm is correct, it must therefore follow that the

parallel algorithm is also correct.

10.4 Empirical Study

In this section, we profile the two implementations discussed in this paper. For ease of

exposition, we refer to the matrix multiplication algorithm as the sequential implementation, and

the parallel algorithm discussed in this chapter as the parallel implementation.

10.4.1 MPI Implementation

Before explaining the empirical study, we first need to discuss the implementation details of

the parallel algorithm. We implement our algorithm in C/C++ using MPI.

We recognize that using O(n3) processors can be unrealistic if n is large enough. To reduce

the number of processors needed for computing D(l3) = D(l1) ·D(l2), we use the row-wise block

striped decomposition [102]. We partition D(l1) into n/p rows, where p is the number of processors.

We let n be a multiple of p to ensure that D(l1) is evenly partitioned. Each processor contains one

of the n/p partitions of D(l1), all of D(l2), and the n/p entries in D(l3) that result from multiplying

D(l1) and D(l2). After each processor computes its respective partition of D(l3) = D(l1) ·D(l2),

we use the command MPI ALLGATHER to collect and combine the results so that at least one

processor has all of D(l3). The main drawback of this approach is that the running time of each

processor to multiply the matrices is O(n3/p). However, this does not negatively impact our

results.

For checking the diagonal of D(l3) to detect a negative cost cycle, we divide the n entries into

p partitions, and let each processor check n/p entries. Recall that we let n be a multiple of p, so

each processor checks the same number of entries. If any of the processors detect a negative value,

then there exists a negative cost cycle.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 139

A single processor is used as the “host” processor. All sequential processes, such as increment-

ing k or performing the binary search, are performed using the host processor. Whenever we need

to run the matrix multiplication procedure, we notify all p processors about the operation, and each

processor handles the partitioning and computing as mentioned above. After all computations are

made, the results are given to the host processor, and the sequential process continues as intended.

This implies that all parallel computations are completed and sent to the host processor before

continuing with the implementation.

10.4.2 Experimental Setup

We study the performance of both the sequential and parallel implementations on graphs with

varying parameters, such as the number of vertices and the size of the NCG. The graph generator

used is part of the 9th DIMACS Shortest Path Implementation Challenge benchmark package

[50].

Our experiments only use random graphs. The generator (SPRAND [51]) creates random

graphs with n vertices and m ≥ n edges. The generator first constructs a Hamiltonian cycle to

ensure the graph is connected. The remaining m − n edges are added by randomly selecting a

pair of distinct vertices. Note that the generator can produce parallel edges and/or self-loops. Our

experiments specifically use sparse graphs of varying sizes. We note that we performed the same

experiments for dense graphs, but the results were identical to sparse graphs. Therefore, the results

for dense graphs are omitted.

We are aware that there exist other types of graphs that can be used in the experiment. However,

testing our implementations for specific values of k, the size of the NCG, requires us to modify

the generator such that it produces a negative cost cycle with no fewer than k edges. This means

we need to force the graph generator to produce the required negative cost cycle first and then

create the remainder of the graph. Accomplishing this for random graphs is quite simple, whereas

achieving this for other types, such as long mesh or square mesh graphs, proves to be complex.

Since our algorithms are designed for finding negative cost cycles, we select the edge costs

from a fixed set of integers such that each graph contains at least one negative cycle.

Both algorithms are written in C/C++ using MPI, as we detailed in Chapter 10.4.1, are

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 140

compiled and run in identical experimental settings, and store 2 · log n adjacency matrices, where

n is the number of vertices in the graph, since these algorithms require the results from previous

iterations for the binary search.

Since we use sparse graphs, we let the number of edges, m, be 4 · n, where n is the number

of vertices. Since m = O(n) for sparse graphs, we chose 4 as an arbitrary constant to represent

sparse graphs. We allow n to be 128, 256, 512, and 1024, and we let k, the size of the NCG, be

0 · n, 0.25 · n, 0.50 · n, 0.75 · n, and 1 · n. We note that 0 · n implies that the graph does not contain

any negative cost cycles.

For the parallel implementation, we let p be the number of processors. We vary p starting from

1 and keep doubling p up to 1024. This is because the parallel implementation requires n to be

divisible by p such that n/p vertices are calculated for each processor.

We also observe the time spent communicating between processors. This is because one of the

issues with MPI is the large amount of time spent communicating between processors. Therefore,

we also monitor how much of the total execution time is spent communicating between all p

processors.

Finally, we examine the speedup of the parallel algorithm as we increase the number of

processors. As defined in [89], we let n be the input size, T ∗(n) be the sequential complexity of

the problem, and Tp(n) be the running time of the parallel implementation using p processors.

The speedup is calculated using the equation,

Sp(n) =
T ∗(n)

Tp(n)
.

If Sp(n) = p, then we achieve linear (ideal) speedup.

Our testing platform is the Frost IBM Blue Gene/L supercomputer. This system consists of

8192 processors, where each processor is a PowerPC-440 CPU with 0.7 GHz and 256 MB RAM,

and runs SuSE Linux Enterprise Server 9. The implementations are compiled with the MPI C

compiler (mpicc), and the optimization flag is set to -O3. We report the average execution time of

ten independent trials for each test.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 141

10.5 Results and Analysis

We compare the performance of the parallel implementation to the performance of the sequen-

tial implementation based on the type of graph, the size of the graph, the size of the NCG (k), and

the number of processors used (p). We note that k = 0 · n implies that the graph does not contain

any negative cost cycles.

10.5.1 Performance Results

We first evaluate the performance of both implementations for increasing values of n. We

vary the sizes from 128 to 1024 vertices and let k = 0.5 · n. Figure 10.1 provides the execution

times for each implementation and graph. A logarithmic scale is used because of the quadratic

growth of the execution time. We note that p = 1 represents the sequential implementation, while

p > 1 represents the parallel implementation. The data corresponding to our study can be found in

Table 10.1.

As the number of processors increases, the parallel implementation runs faster than the

sequential implementation. Since the purpose of parallel algorithms is to run multiple concurrent

processors to achieve a faster execution time, this result is expected. What is interesting is

the growth rate as the number of vertices increases. For our parallel implementation, as the

number of vertices doubles, the execution time increases by about a factor of 9. However,

for the sequential implementation, as the number of vertices increase from 512 to 1024, the

execution time increases by a factor greater than 10. Following this trend, it appears the sequential

implementation will continue to grow, with respect to the execution time, at a faster rate than the

parallel implementation.

We next study the performance of both implementations with increasing values of p and k.

Figure 10.2 gives the execution times for a graph with 128 vertices and 512 edges. As p doubles,

where p > 2, the execution times of the parallel implementation decrease by approximately half

for all k. This indicates an exponential decay in the execution time as we increase the number of

processors.

We also observe that the execution times for k = 0.75 · n and k = 1 · n are almost identical.

Recall that in both algorithms, we use repeated squaring to detect a negative cost cycle, which is

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 142

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

128 256 512 1024

Ti
m

e
 in

 S
e

co
n

d
s

Number of Vertices, n

128 Processors 64 Processors 32 Processors

16 Processors 8 Processors 4 Processors

2 Processors 1 Processor

Figure 10.1: NCG performance for sparse random graphs as the size of the graph is varied,
k = 0.50 · n.

not necessarily the NCG. We then use binary search to determine the exact value of k. Let l be

the length, or number of edges, of the negative cost cycle detected using repeated squaring (i.e.

before running the binary search). Since we use a doubling technique, l will be the same value

when k = 0.75 · n and k = 1 · n. We find that the number of binary steps are also identical. The

key difference is the number of times a negative cost cycle is detected in the matrix computations.

Since our algorithm halts as soon as a negative cycle is detected, in terms of the actual execution

time, the case where k = 0.75 · n will run slightly faster than when k = 1 · n. Therefore, if

2r < t < 2r+1, where t and r are integers and 2r+1 ≤ n, then the execution time when k = t will

be almost identical to the execution time when k = 2r+1.

Finally, we find that the execution time is faster when k = 0. In both the sequential and parallel

algorithms, we use repeated squaring to detect a negative cost cycle, which is not necessarily the

NCG, and then use binary search to determine the exact value of k. If the graph does not have a

negative cost cycle, we skip the binary search phase completely. This means neither algorithm has

to complete all the steps to conclude that a negative cost cycle is absent.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 143

0.E+00

1.E-01

2.E-01

3.E-01

4.E-01

5.E-01

6.E-01

7.E-01

8.E-01

9.E-01

1.E+00

1 2 4 8 16 32 64 128

Ti
m

e
 in

 S
e

co
n

d
s

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (32 Vertices)

k=0.50∙n (64 Vertices) k=0.75∙n (96 Vertices)

k=1∙n (128 Vertices)

Figure 10.2: NCG performance for sparse random graphs (128 vertices, 512 edges) as the value of
k and the number of processors are varied.

0.E+00

1.E+00

2.E+00

3.E+00

4.E+00

5.E+00

6.E+00

7.E+00

8.E+00

9.E+00

1 2 4 8 16 32 64 128 256

Ti
m

e
 in

 S
e

co
n

d
s

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (64 Vertices)

k=0.50∙n (128 Vertices) k=0.75∙n (192 Vertices)

k=1∙n (256 Vertices)

Figure 10.3: NCG performance for sparse random graphs (256 vertices, 1024 edges) as the value
of k and the number of processors are varied.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 144

Figure 10.3 plots the execution times for a graph with 256 vertices and 1024 edges. Our

findings are similar to those observed in Figure 10.2, in that the execution times of the parallel

implementation decrease by about half as p doubles. We observe the same results for graphs with

512 vertices and 2048 edges (Figure 10.4) and graphs with 1024 vertices and 4096 edges (Figure

10.5).

0.E+00

1.E+01

2.E+01

3.E+01

4.E+01

5.E+01

6.E+01

7.E+01

8.E+01

9.E+01

1 2 4 8 16 32 64 128 256 512

Ti
m

e
 in

 S
e

co
n

d
s

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (128 Vertices)

k=0.50∙n (256 Vertices) k=0.75∙n (384 Vertices)

k=1∙n (512 Vertices)

Figure 10.4: NCG performance for sparse random graphs (512 vertices, 2048 edges) as the value
of k and the number of processors are varied.

Communication Results

We now examine the communication between the processors in the parallel implementation.

This is because a portion of the total execution time is spent sending information among all p

processors. Table 10.2 provides the percentage of the time spent communicating between the

processors for all values of k. For each k, we examine the number of vertices per processor

(i.e., n/p). We observe that the percentage substantially increases as n/p approaches 1, which

occurs when the number of vertices equals the number of processors. This means as we reduce

the number of vertices per processor (i.e. increase the number of processors), more time is spent

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 145

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

1.4E+03

1.6E+03

1.8E+03

1 2 4 8 16 32 64 128 256 512 1024

Ti
m

e
 in

 S
e

co
n

d
s

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (256 Vertices)

k=0.50∙n (512 Vertices) k=0.75∙n (768 Vertices)

k=1∙n (1024 Vertices)

Figure 10.5: NCG performance for sparse random graphs (1024 vertices, 4096 edges) as the value
of k and the number of processors are varied.

Table 10.1: Experiment Results for Parallel NCG Implementation (in Seconds)

Number of Processors, p
n m k 1 2 4 8 16 32 64 128 256 512 1028

128 512

32 0.610 0.455 0.233 0.118 0.061 0.032 0.017 0.010 N/A N/A N/A
64 0.759 0.587 0.297 0.151 0.078 0.041 0.022 0.013 N/A N/A N/A
96 0.912 0.715 0.361 0.183 0.094 0.049 0.027 0.015 N/A N/A N/A
128 0.913 0.716 0.362 0.183 0.094 0.049 0.027 0.016 N/A N/A N/A
0 0.456 0.328 0.168 0.085 0.044 0.023 0.013 0.007 N/A N/A N/A

256 1024

64 5.997 4.907 2.462 1.241 0.629 0.323 0.168 0.091 0.052 N/A N/A
128 7.184 6.003 3.011 1.516 0.768 0.393 0.205 0.110 0.063 N/A N/A
192 8.399 7.091 3.557 1.790 0.907 0.463 0.241 0.129 0.073 N/A N/A
256 8.413 7.120 3.570 1.797 0.911 0.464 0.241 0.130 0.074 N/A N/A
0 4.167 3.264 1.640 0.828 0.420 0.216 0.112 0.061 0.034 N/A N/A

512 2048

128 56.867 47.028 23.573 11.892 5.985 3.031 1.557 0.817 0.445 0.257 N/A
256 66.415 55.573 27.849 14.064 7.072 3.579 1.835 0.961 0.521 0.301 N/A
384 76.098 64.084 32.284 16.207 8.155 4.125 2.113 1.103 0.597 0.343 N/A
512 76.317 64.805 32.464 16.294 8.196 4.145 2.123 1.110 0.600 0.346 N/A
0 37.474 29.601 14.835 7.483 3.770 1.907 0.982 0.516 0.279 0.160 N/A

1024 4096

256 1150.882 438.233 219.403 110.577 55.830 28.173 14.263 7.309 3.827 2.088 1.213
512 1338.114 507.593 255.618 129.086 64.744 32.626 16.524 8.461 4.428 2.412 1.399
768 1529.574 579.476 292.205 146.672 73.551 37.063 18.741 9.589 5.001 2.714 1.565
1024 1579.393 585.636 293.207 146.854 73.714 37.140 18.778 9.615 5.025 2.726 1.570

0 698.112 265.201 133.441 67.257 33.919 17.134 8.662 4.443 2.317 1.257 0.716

Note: Any entry with N/A means it was not recorded. This is because n cannot be greater than p.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 146

towards communicating with all the processors. Also, we find that the percentage monotonically

decreases as k increases. The reasoning for this phenomenon remains unknown.

k
n/p 0 · n 0.25 · n 0.5 · n 0.75 · n 1 · n

1 21.96% 20.38% 19.96% 19.61% 19.47%
2 12.53% 11.44% 11.16% 10.97% 10.96%
4 6.77% 6.13% 5.94% 5.85% 5.84%
8 3.54% 3.18% 3.09% 3.03% 3.02%

16 1.81% 1.63% 1.58% 1.55% 1.54%
32 0.92% 0.83% 0.80% 0.78% 0.78%
64 0.47% 0.42% 0.40% 0.40% 0.39%

128 0.23% 0.20% 0.20% 0.19% 0.19%
256 0.12% 0.10% 0.10% 0.10% 0.10%
512 0.06% 0.05% 0.05% 0.05% 0.05%

Table 10.2: Percentage of execution time communicating with processors

Speedup Results

We now discuss the speedup results of the parallel implementation. Figure 10.6 shows the

speedup for a graph with 128 vertices and 512 edges. We observe that as we double the number of

processors p, our speedup increases by slightly less than 2. However, the rate of increase actually

decreases. This means with larger graph sizes and more processors, we have diminishing returns

with more processors. According to Amdahl’s Law [103], this is expected.

We also find that for each p, the speedup is slightly less than half of p. While this appears

to be a linear scale, since there exists a diminishing return, this is a logarithmic scale if we use

more processors. Finally, we do not see any significant change in the speedup as we change the

value of k for any graph. This means the size of the NCG does not impact the speedup. This is not

surprising since our asymptotic running time contains log k, which means changing k does not

substantially affect the execution time. We find similar results for graphs with 256 vertices and

1024 edges (Figure 10.7) and graphs with 512 vertices and 2048 edges (Figure 10.8).

Figure 10.9 plots the speedup for a graph with 1024 vertices and 4096 edges. Similar to

previous cases, the speedup nearly doubles as we double the processors, we have diminishing

returns as the number of processors increases, and the size of the NCG (k) does not have affect

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 147

0.E+00

1.E+01

2.E+01

3.E+01

4.E+01

5.E+01

6.E+01

7.E+01

2 4 8 16 32 64 128

Sp
e

e
d

u
p

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (32 Vertices)
k=0.50∙n (64 Vertices) k=0.75∙n (96 Vertices)
k=1∙n (128 Vertices)

Figure 10.6: Speedup performance for sparse random graphs (128 vertices, 512 edges) as the value
of k and the number of processors are varied.

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

1.4E+02

2 4 8 16 32 64 128 256

Sp
e

e
d

u
p

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (64 Vertices)

k=0.50∙n (128 Vertices) k=0.75∙n (192 Vertices)

k=1∙n (256 Vertices)

Figure 10.7: Speedup performance for sparse random graphs (256 vertices, 1024 edges) as the
value of k and the number of processors are varied.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 148

0.0E+00

5.0E+01

1.0E+02

1.5E+02

2.0E+02

2.5E+02

2 4 8 16 32 64 128 256 512

Sp
e

e
d

u
p

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (128 Vertices)
k=0.50∙n (256 Vertices) k=0.75∙n (384 Vertices)
k=1∙n (512 Vertices)

Figure 10.8: Speedup performance for sparse random graphs (512 vertices, 2048 edges) as the
value of k and the number of processors are varied.

the speedup. A surprising observation is that the speedup is almost identical to the number of

processors. This means we have linear speedup for the case where n = 1024. The reasoning

behind the improved speedup is unknown.

CHAPTER 10. A PARALLEL IMPLEMENTATION FOR THE NCG PROBLEM 149

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

2 4 8 16 32 64 128 256 512 1024

Sp
e

e
d

u
p

Number of Processors, p

k=0∙n (0 Vertices) k=0.25∙n (256 Vertices)

k=0.50∙n (512 Vertices) k=0.75∙n (768 Vertices)

k=1∙n (1024 Vertices)

Figure 10.9: Speedup performance for sparse random graphs (1024 vertices, 4096 edges) as the
value of k and the number of processors are varied.

150

Chapter 11

The NCG Algorithm for Planar Networks

In this chapter, we present a new, efficient algorithm for the negative cost girth (NCG) problem

in planar, directed networks. We can apply the extant NCG algorithms for general networks to

find the NCG in planar networks. However, the extant algorithms are topology-oblivious. The

algorithm presented in this chapter exploits the properties of planarity and results in a running time

that is superior to any previously known NCG algorithm, even when restricted to planar networks.

Suppose we are given a network G with n vertices, m edges, and negative cost girth k. The

current fastest topology-oblivious NCG algorithm is the Edge-Relax algorithm from Chapter 9

that runs in O(m ·n · k) time [24]. In a planar network, we must have m = O(n). Thus, for planar

networks, the Edge-Relax algorithm takes O(n2 · k) time. Our NCG algorithm for planar networks

runs in O(n1.5 · k) time. Further, we can extend our algorithm to general networks that have a

separator. In this case, the NCG algorithm runs in O(na+b · k + nd · log n) time, where na is the

size of the separator, nb is the number of edges, and we can find the separator in O(nd) time.

11.1 Related Work

The extant NCG algorithms involve finding shortest paths, and this paper presents an NCG

algorithm for planar networks. Therefore, it would be appropriate to first discuss advancements

made for solving the shortest paths problem in planar networks.

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 151

11.1.1 Shortest Paths in Planar Networks

The first significant contribution for planar networks was made by Lipton and Tarjan with

the planar separator theorem in [87]. As an application to the theorem, the first single source

shortest path algorithm was proposed by Lipton, Rose, and Tarjan in [104] and ran in O(n3/2)

time. This algorithm first partitions the network into pieces. Each piece consists of border vertices

and internal vertices, where a vertex v is a border vertex of a piece S if v ∈ S and there exists an

edge evx where x /∈ S, and a vertex v is an internal vertex of a piece S if v ∈ S and for all edges

evx, x ∈ S. The algorithm then recursively computes the distances from all border vertices for

each piece using multiple iterations of Dijkstra’s algorithm [38] to build a dense network. The

algorithm then uses the Bellman-Ford algorithm [9] on the resulting dense network to create the

solution. This algorithm works for not only planar networks but also any
√
n-separable networks,

which are networks that have O(
√
n) size separators.

Frederickson [105] developed the notion of an r-division graph, where the graph is divided

into O(n
r
) regions. Each region consists of r vertices, where O(

√
r) of the r vertices are border

vertices. Finding an r-division can be done in O(n log n) time by using a recursive application of

the planar separator theorem [87]. Frederickson then showed how to use a recursive approach for

creating r-divisions to compute the shortest paths between all boundary vertices for each region.

By combining this approach as preprocessing with a searching method for topology-based heaps,

Frederickson has an algorithm for solving the single source shortest path problem that runs in

O(n ·
√

log n) time.

Henzinger, Klein, Rao, and Subramanian [106] utilized Frederickson’s algorithm [105] to

create an algorithm that runs in O(n4/3 · log2/3D) time [106], where D is the sum of the absolute

values of the costs. This is accomplished by dividing the network into divisions as specified in

[105] and computing the shortest paths from a source s to the border vertices of each region by

using Goldberg’s O(
√
n ·m · logN) time algorithm [107], where N is the largest edge cost. The

algorithm then computes the shortest paths among all internal vertices for each region.

Fakcharoenphol and Rao [108] presented an algorithm for finding the shortest paths in a

planar network with real edge costs in O(n · log3 n) time and O(n · log n) space. The algorithm

first recursively decomposes the network by combining the planar separator theorem [104] and

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 152

Frederickson’s algorithm in [105] to create dense distance networks. The distance matrices

corresponding to these networks obey a non-crossing property called the Monge property. The

algorithm then combines Dijkstra’s algorithm [38] and the Bellman-Ford algorithm [9] with

techniques for searching Monge matrices in sublinear time to find the shortest paths among the

border vertices of each dense distance network. Using the computed shortest paths, the algorithm

finds the shortest paths from a source vertex s to all border vertices.

Klein, Mozes, and Weimann [109] improved the algorithm in [108] to run in O(n · log2 n)

time and linear space. This algorithm first finds a Jordan curve [110] that passes through O(
√
n)

border vertices such that between n
3

and 2·n
3

vertices are part of the curve. This divides the network

into two parts G0 and G1. Computing the shortest paths consist of five stages:

1. Recursively compute the distances from an arbitrary border vertex r within each part Gi,

for i = 0, 1.

2. For each Gi, compute all distances between all boundary vertices in Gi.

3. Use a variant of the Bellman-Ford algorithm and the Monge property to compute distances

in G from r to all boundary vertices.

4. Use the distances from the previous stages to transform the distances in Gi into non-negative

distances and use Dijkstra’s algorithm to compute all distances in G from r to all vertices.

5. Using the distances in G from r, transform G such that the distances are non-negative

and use Dijkstra’s algorithm to compute the distance from the source vertex s to all other

vertices.

Although several of the aforementioned shortest path algorithms in planar networks are

efficient, they cannot be applied directly to the NCG problem. This is because these algorithms

include Dijkstra’s algorithm as a subroutine for computing the shortest path distances. To use

Dijkstra’s algorithm, either the planar network contains edges with strictly non-negative cost, or

the network can be transformed such that the edges have non-negative cost. While the shortest

path algorithms can be used to detect the presence of a negative cost cycle even when altering the

edge costs, the NCG problem requires the edges to remain negative in order to correctly find the

NCG.

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 153

11.2 Single Vertex Negative Cost Girth

Before describing the NCG algorithm in planar networks, we first need to explain how we

can find the NCG for general networks if we are given at least one vertex in the NCG. This is

because the algorithm provided in this section serves as a subroutine in the NCG algorithm in

planar networks. We assume that if a negative cost cycle exists, then we are also given a vertex s

that is in the NCG. If vertex s is not in any negative cost cycles, then our algorithm will not find

the NCG. A network may exist such that s is not in the NCG. However, for this algorithm, we are

concerned with only the case where s is in the NCG.

Our algorithm uses dynamic programming [22] to find paths of increasing cost from a source

vertex s to itself. We let dk be an array that monitors the shortest path from s, where s is a vertex

in the NCG, to all other vertices in V using at most k edges, where 1 ≤ k ≤ n. For each vertex

v, dk(v) is the cost of the shortest path from the source vertex to v using at most k edges. We

initialize the values in d1 as follows. Let s be the source vertex that is contained in the NCG. For

each vertex v ∈ V , if there exists an edge esv ∈ E with cost csv, then d1(v) = csv. Otherwise,

d1(v) =∞.

Let k be the number of edges in a path, where 2 ≤ k ≤ n. Assume that dk−1 has been computed.

For each k, we relax all edges in E. For each edge eij relaxed, we check if dk(j) < dk−1(j) + cij .

Therefore, we compute dk(j) as,

dk(j) = min{dk−1(j), dk−1(i) + cij}.

Suppose vertex s is known to be in the NCG. After computing dk, we determine if we have

a negative cycle by checking if dk(s) < 0. If this is true, then we have found the negative cost

girth, which is k. Otherwise, we repeat the above steps for increasing values of k until a negative

cost cycle is found or we conclude that the network does not contain any negative cost cycles

containing s.

The above observations are summarized in Algorithm 11.1 and Algorithm 11.2. Observe that

Algorithm 11.2 gives us only the NCG. The actual cycle can be obtained by using a predecessor

network.

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 154

Function INITIALIZE()
1: n = |V |.
2: d1(s) = 0.
3: for (v = 2 to n) do
4: if (esv ∈ E) then
5: d1(v) = csv.
6: else
7: d1(v) =∞.
8: end if
9: end for

10: return
Algorithm 11.1: Single Vertex NCG Algorithm: Initialization

Function NCG-SINGLE(G, s)
1: INITIALIZE ()
2: for (k = 2 to n) do
3: for (v = 1 to n) do
4: dk(v) =∞.
5: end for
6: for (each edge eij ∈ E) do
7: if (dk(j) < dk−1(i) + cij) then
8: dk(j) = dk−1(i) + cij .
9: end if

10: end for
11: if (dk(s) < 0) then
12: return (“The negative cost girth is k.”)
13: end if
14: end for
15: return (“G does not contain any negative cost cycles.”)

Algorithm 11.2: Single Vertex NCG Algorithm: NCG-SINGLE

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 155

11.2.1 Resource Analysis

For the purpose of simplifying the composition of the resource analysis, we define the follow-

ing:

(a) Let f1 be the for loop from lines 2 to 14 in Algorithm 11.2.

(b) Let f2 be the for loop from lines 3 to 5 in Algorithm 11.2.

(c) Let f3 be the for loop from lines 6 to 10 in Algorithm 11.2.

In the function INITIALIZE (Algorithm 11.1) we initialize all the values in the array d1. Since

this array has n items, this process takes O(n) time.

In f2, we initialize the values in dk. Since dk is an array of size n, initializing dk takes

O(n) time. In f3, we relax all edges and check the costs from each vertex to the relaxed edge.

Since we have m edges, relaxing all edges requires O(m) steps. For each edge eij , we check if

dk(j) < dk−1(i) + cij . If this is true, we change the value of dk(j). This means the operations

in lines 7 to 9 take constant time. Since we have O(m) iterations, f3 takes O(m) time. The

operations in lines 11 to 13 are constant time since we are checking if dk(s) < 0. Thus, the total

running time of lines 3 to 13 is O(m+ n).

We now need to address f1. From the discussion above, we know that a single iteration takes

O(m+n) time. It would appear that f1 runs O(n) times. However, note that the algorithm halts at

line 12 when we find the first negative cost cycle and return k. This means the algorithm can halt

before we reach the nth iteration. Since we previously defined k as the negative cost girth, we can

say that f1 runs O(k) times. Therefore, the total running time of the algorithm is O(n · k +m · k).

We note that the running time can be improved to O(m · k) by modifying how we initialize dk.

Instead of using the initialization process in f2, we make two modifications.

(1) In the INITIALIZE procedure, we add the statement d2(v) =∞ after line 8. The first iteration

of Algorithm 11.2 requires that d2 is initialized. Otherwise, d2(j) could be incorrect in line 8.

(2) We add the statement if (k + 1 ≤ n), then dk+1(i) = ∞ and dk+1(j) = ∞ after line 6 in

Algorithm 11.2. This allows us to initialize all the values in dk+1 if k + 1 ≤ n.

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 156

Both of these modifications are constant time operations which means the running time is now

O(m · k) since we removed the for loop in lines 3 to 5.

For the space analysis, note that G is stored as an adjacency list of size O(m+ n) and d is an

array of size O(m). It would appear we need O(m · k) space since each list has size O(m) and

we have O(k) lists. However, note that in the algorithm at each iteration l, where l ≤ k, we need

only the values from dl−1, and lists d1 to dl−2 are not needed. This means we can safely remove

them from storage. At any iteration l, we use exactly two lists: dl−1 and dl. Therefore, the total

space required is O(m+ n).

11.2.2 Correctness

We have already shown that the algorithm terminates since it runs in O(m · k) time. If the

network does not contain a negative cost cycle, then the algorithm runs in O(m · n) time.

In order to establish the correctness of Algorithm 11.2, we observe that the algorithm imple-

ments the following dynamic program:

dk(j) =

{
csj, k = 1

mini∈V {dk−1(i) + cij, dk−1(j)}, k > 1

The correctness of the above dynamic program follows through an inductive application of the

Principle of Optimality [88], which states the following:

An optimal policy has the property that whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy with regard to the state resulting from the

first decision.

11.3 Negative Cost Girth in Planar Networks

In this section, we describe the NCG algorithm in planar networks. Our algorithm consists of

two key subroutines. First, we recursively decompose the network into pieces using an approach

similar to [108]. We then apply the single vertex NCG algorithm in Chapter 11.2 to all border

vertices for each piece. The first negative cost cycle found among all pieces must be the negative

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 157

cost girth of the planar network. If k is the number of edges in the first negative cost cycle found,

then the size of the NCG is k. The details of our algorithm are explained below.

11.3.1 Planar Network Decomposition

We now explain how to recursively decompose the network. The idea is to divide the network

into two non-disjoint pieces, where each piece is stored as a new network. Each piece is then

divided into two new non-disjoint pieces, and we continue recursively dividing each piece created

until a piece contains a single edge.

Let G = (V,E, c) be the initial network. From the planar separator theorem [87], we can

partition V into three sets A,B, and S satisfying the following criteria:

(1) There does not exist any edge eij ∈ E such that i ∈ A and j ∈ B, or i ∈ B and j ∈ A.

(2) |A| ≤ 2
3
· n and |B| ≤ 2

3
· n.

(3) |S| ≤ 2 ·
√

2 ·
√
n.

We use this partition to create two new networks. Let G1 = (V1, E1, c) such that V1 = {v :

v ∈ A ∪ S} and E1 = {eij : i, j ∈ V1}, and let G2 = (V2, E2, c) such that V2 = {v : v ∈ B ∪ S}

and E2 = {eij : i, j ∈ V2}. We repeat the recursive decomposition algorithm for both G1 and G2

until there exists a network Gi such that |Ei| = 1.

Since the decomposition algorithm creates new networks, we need to determine exactly how

many networks we have after the algorithm terminates. This is because our NCG algorithm

requires us to examine each network created to correctly compute the NCG. Let p be the number of

new networks created using the planar decomposition algorithm. At the beginning of the algorithm,

p = 0 since we have only the initial network G.

We let G′ be an arbitrary network created using the planar decomposition algorithm. We let

p0 be the total number of networks created after creating G′. If G′ consists of exactly one edge,

the algorithm returns p0. Otherwise, we divide the network into two pieces using the approach

described above. We first create Gp1 , where p1 = p0 + 1, and run the algorithm recursively

with parameters Gp1 and p1. The algorithm returns p′1 as the current number of new networks

created after completely decomposing Gp1 . We then create Gp2 , where p1 = p′1 + 1, and run the

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 158

algorithm recursively with parameters Gp2 and p2. The algorithm returns p′2 as the current number

of new networks created after completely decomposing Gp2 . Since we do not create any additional

networks, the algorithm returns p = p′2 as the total number of networks created.

The above observations are summarized in Algorithm 11.3.

Function PLANAR-DECOMPOSITION (G′, p0)
1: if (|E| > 1) then
2: Use the planar separator theorem to partition V into sets A,B, and S.
3: p1 = p0 + 1.
4: Create new network Gp1 = (Vp1 = {v : v ∈ A ∪ S}, Ep1 = {eij : i, j ∈ Vp1}).
5: p′1 = PLANAR-DECOMPOSITION (Gp1 , p1).
6: p2 = p′1 + 1.
7: Create new network Gp2 = (Vp2 = {v : v ∈ B ∪ S}, Ep2 = {eij : i, j ∈ Vp2}).
8: p′2 = PLANAR-DECOMPOSITION (Gp2 , p2).
9: p = p′2.

10: return (p).
11: else
12: return (p0).
13: end if

Algorithm 11.3: Planar Network Decomposition Algorithm

Resource Analysis

Line 2 of Algorithm 11.3 is the Lipton-Tarjan planar separator theorem [87] and takes O(n)

time to separate the network into sets A,B, and S. The rest of the algorithm is similar to the

algorithm in [108] except we store each graph created, and we count the number of networks

created. Storing the new networks and calculating the number of created networks, denoted as p,

are both constant time operations. Therefore, the algorithm runs in O(n · log n) time.

Correctness

Since the algorithm consists of the algorithms in [87] and [108], we know that the algorithm

correctly decomposes the initial network. The remaining concern is whether or not we correctly

compute the total number of new networks created, denoted as p. However, note that we increment

the total number of new networks by one each time we create a network. Therefore, the algorithm

correctly computes p.

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 159

11.3.2 Negative Cost Girth Algorithm

We now describe how to find the NCG in planar networks. Suppose we have a network Gi,

where 1 ≤ i ≤ p, that was created from the planar decomposition algorithm in Chapter 11.3.1,

and we want to determine if the NCG exists in Gi. If |Ei| = 1, then the NCG clearly cannot be in

Gi. Let Ai, Bi, and Si be the sets formed as a result of the planar separator theorem. For ease of

exposition, let G1 and G2 denote the new networks created such that V1 = {v : v ∈ Ai ∪ Si} and

V2 = {v : v ∈ Bi ∪ Si}. If the NCG exists in Gi, we have three cases:

(1) The NCG consists of vertices in Ai ∪ Si.

(2) The NCG consists of vertices in Bi ∪ Si.

(3) The NCG consists of vertices in Ai ∪Bi ∪ Si.

If the NCG consists of vertices in Ai ∪ Si, then we will find the NCG when we search G1 in

a later iteration. If the NCG consists of vertices in Bi ∪ Si, then NCG will be found when we

search G2 in a later iteration. This means the only case we need to address is if the NCG consists

of vertices in Ai ∪Bi ∪ Si.

If the NCG consists of vertices in all three sets, then the NCG must start with some vertex in

Ai (or Bi), pass through a vertex in Si, reach some vertex in Bi (or Ai), pass through a different

vertex in Si, and return to the original vertex in Ai (or Bi). The key observation is there exist at

least two vertices in Si that must be in the NCG. Otherwise, the NCG can be found in either G1

or G2. Therefore, we can use the single vertex NCG algorithm in Chapter 11.2 for all vertices in

Si. Running this algorithm with a vertex in Si that is in the NCG will return the size of the NCG.

Figure 11.1 provides an illustration of the above discussion.

We now need to show how we can search for the NCG in all networks created by the planar

decomposition algorithm. If we use a sequential approach and search for the NCG in one network

at a time, it is possible that the first negative cost cycle detected is not the one with the fewest

number of edges. Instead, for a specific iteration 2 ≤ k ≤ n, we will search each network Gi for

the shortest paths for all vertices in Si using at most k edges. For example, we start by finding the

shortest paths for all vertices in Si for all networks Gi using at most two edges. Then, we find the

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 160

Ai Si Bi

G1 G2

Figure 11.1: Planar NCG Algorithm: At least two vertices in Si must be in the NCG.

shortest paths for all vertices in Si for all networks Gi using at most three edges. We continue this

process until we find the first network where the single vertex NCG algorithm detects a negative

cycle with k edges. Since all previous iterations produced shortest paths using at most k edges,

and no negative cost cycles were found, the size of the NCG must be k.

Observe that the NCG algorithm in planar networks calls the single vertex NCG algorithm

for each network Gi, each vertex in Si, and each iteration k. Therefore, we need to modify the

algorithm in Chapter 11.2. First, we change how we initialize dk for each network by applying

the modifications mentioned in Chapter 11.2.1. Since we check each network for each k, the for

loop where k goes from 2 to n is now outside of the single vertex NCG algorithm. This means

the single vertex NCG algorithm must include k as a parameter. Finally, when we run the single

vertex NCG algorithm for network Gi with k as a parameter, we have to make sure k ≤ |Vi| before

running the algorithm. This is because there may exist networks where the number of vertices

is smaller than k. Running the single vertex NCG algorithm for these networks would mean we

are finding the shortest paths using more edges than a cycle can have in the network. Since this

computation does not change the shortest paths, running the algorithm in this case is unnecessary.

The above observations are summarized in Algorithm 11.4, Algorithm 11.5, and Algo-

rithm 11.6. Note that the algorithm gives us only the NCG. We can obtain the cycle representing

the NCG by using a predecessor network.

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 161

Function NCG-PLANAR (G)
1: p = PLANAR-DECOMPOSITION (G, 0).
2: for (i = 1 to p) do
3: for (each vertex v ∈ Si) do
4: INITIALIZE (Gi, v).
5: end for
6: end for
7: for (k = 2 to n) do
8: for (i = 1 to p) do
9: for (each vertex v ∈ Si) do

10: NCG-SINGLE (Gi, v, k).
11: if (NCG-SINGLE returned True) then
12: return (“The negative cost girth is k.”)
13: end if
14: end for
15: end for
16: end for
17: return (“G does not contain any negative cost cycles.”)

Algorithm 11.4: Planar NCG Algorithm: NCG-PLANAR

Function INITIALIZE (G, s)
1: n = |V |.
2: d1(s) = 0.
3: for (v = 2 to n) do
4: if (esv ∈ E) then
5: d1(v) = csv.
6: else
7: d1(v) =∞.
8: end if
9: d2(v) =∞.

10: end for
11: return

Algorithm 11.5: Planar NCG Algorithm: Updated Single Vertex NCG Initialize

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 162

Function NCG-SINGLE (G, s, k)
1: n = |V |.
2: if (k ≤ n) then
3: for (each edge eij ∈ E) do
4: if (k + 1 ≤ n) then
5: dk+1(i) =∞.
6: dk+1(j) =∞.
7: end if
8: if (dk(j) < dk−1(i) + cij) then
9: dk(j) = dk−1(i) + cij .

10: end if
11: end for
12: if (dk(s) < 0) then
13: return (True)
14: end if
15: end if
16: return (False)

Algorithm 11.6: Planar NCG Algorithm: Updated Single Vertex NCG

Resource Analysis

Line 1 of Algorithm 11.4 takesO(n · log n) time since this is the planar network decomposition

algorithm, which is Algorithm 11.3.

We next analyze the running time of lines 9 to 14 in Algorithm 11.4. Observe that the NCG-

SINGLE procedure (Algorithm 11.6) is similar to Algorithm 11.2 except we run the O(k) iterations

outside of the function. Also, since the network is planar, m = O(n). This means Algorithm 11.6

runs in O(n) time rather than O(m · k) time. For the for loop in lines 9 to 14 in Algorithm 11.4,

observe that |Si| = O(
√
n) by the planar separator theorem. Since we have O(

√
n) iterations, and

each iteration takes O(n) time, the running time of lines 9 to 14 is O(n1.5).

We now need to consider the for loop in lines 8 to 15 in Algorithm 11.4. Observe we have

p iterations, where p is the number of pieces created from the planar network decomposition

algorithm from Chapter 11.3.1. However, it is important to note that not all p pieces have the same

size (i.e., number of vertices). Let T (n) be the total time to compute the shortest paths for all

pieces of a network with n vertices for a single iteration of k. We get the following recurrence

relation:

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 163

T (n) = max
nA,nB

{T (nA · n) + T (nB · n)}+ c · n1.5,

where c is some constant, and

nA, nB ≤ 2/3

nA, nB ≥ 1/3

nA + nB ≤ 1.

We now show that T (n) = O(n1.5) by guessing T (n) ≤ d ·n1.5, where d > 0 is some constant.

Using our guess, we get

T (n) ≤ max
nA,nB

{d · (nA · n)1.5 + d · (nB · n)1.5}+ c · n1.5

= max
nA,nB

{d · n1.5
A · n1.5 + d · n1.5

B · n1.5}+ c · n1.5

= max
nA,nB

{d · n1.5 · (n1.5
A + n1.5

B)}+ c · n1.5

= d · n1.5 · max
nA,nB

{n1.5
A + n1.5

B }+ c · n1.5

.

Recall that nA, nB ≤ 2
3
, meaning n1.5

A < nA and n1.5
B < nB . Since nA+nB ≤ 1, n1.5

A +n1.5
B < 1.

Therefore,

d · n1.5 · max
nA,nB

{n1.5
A + n1.5

B }+ c · n1.5 ≤ d · n1.5

c · n1.5 ≤ d · n1.5 · (1− max
nA,nB

{n1.5
A + n1.5

B })

c ≤ d · (1− max
nA,nB

{n1.5
A + n1.5

B })

c/(1− max
nA,nB

{n1.5
A + n1.5

B }) ≤ d

.

This means T (n) ≤ d ·n1.5 when d ≥ c/(1− max
nA,nB

{n1.5
A +n1.5

B }). Therefore, T (n) = O(n1.5).

Since Algorithm 11.5 takes O(n) time, the analysis above can be used to show that lines 2 to 6

take O(n1.5) time.

The last part of the analysis is analyzing the running time of lines 7 to 16 of Algorithm 11.4.

Note that we have O(k) iterations, and we showed each iteration takes O(n1.5) time. This means

lines 7 to 16 take O(n1.5 · k) time.

When we combine all components of the analysis above, we find that the running time of

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 164

the NCG algorithm in planar networks is O(n · log n) +O(n1.5) +O(n1.5 · k). Since O(n1.5 · k)

dominates all other terms, the total running time is O(n1.5 · k).

For the space analysis, note that G is stored as an adjacency list of size O(n) since G is

planar. For the ease of exposition, let ni be the number of vertices of piece Gi, where 1 ≤ i ≤ p.

Algorithm 11.6 stores the shortest paths in an array of size O(ni). We also need O(
√
ni) arrays

because we compute the shortest paths from O(
√
ni) vertices. This means the total space we need

for Gi is O(n1.5
i). Using the same recurrence relation above for calculating the running time, the

total space needed for all pieces of the planar network decomposition is O(n1.5).

It would appear we need O(n1.5 · k) space since we have O(k) lists and O(n1.5) pieces.

However, note that in the algorithm at each iteration l, where l ≤ k, we need only the values from

the lists in iteration l − 1, and the lists from iterations 1 to l − 2 are not needed. This means we

can safely remove them from storage. At any iteration l, we use the lists from iterations l − 1 and

l. Therefore, the total space needed is O(n1.5).

We can extend our algorithm for general networks that have a separator. Let na = |S|, nb = m,

and the time to find the separator beO(nd). Line 1 of Algorithm 11.4 takesO(nd · log n) time since

this is the network decomposition algorithm, where it takes O(nd) time to find the separator rather

than O(n) time. Algorithm 11.6 takes O(nb) time, since we scan all the edges in the network. For

lines 9 to 14, we have O(na) iterations since na = |Si|. This means the total time of lines 9 to 14

is O(na+b). For lines 8 to 15 (and lines 2 to 6), we have the following recurrence relation:

T (n) = max
nA,nB

{T (nA · n) + T (nB · n)}+ c · na+b,

where c is some constant, 1/3 ≤ nA, nB ≤ 2/3, and nA+nB = 1. Using the same approach to

solve the first recurrence relation, solving the above equation gives us T (n) = O(na+b). Since we

have O(k) iterations in lines 9 to 18, the total time is O(na+b ·k). Thus, combining all components

of the analysis gives us a total time of O(na+b · k + nd · log n). We can use the same argument to

show that the total space needed is O(na+b).

CHAPTER 11. THE NCG ALGORITHM FOR PLANAR NETWORKS 165

Correctness

From Chapter 11.3.1, we know line 1 of Algorithm 11.4 correctly decomposes the network.

From Chapter 11.2.2, we also know Algorithm 11.6 correctly computes the shortest paths from a

given source vertex for each iteration k. Therefore, we only need to prove that the NCG exists in a

piece Gi, where 1 ≤ i ≤ p, such that at least one vertex of the NCG is in Si.

Suppose there does not exist a set Si, where 1 ≤ i ≤ p, such that a vertex in the NCG is in Si.

This means for each piece Gi, the NCG is in either Ai or Bi. Without loss of generality, assume

all vertices of the NCG are in Ai.

Observe there exists a piece Gi′ containing the NCG such that |Vi′| ≥ k and |Ai′| < k, where

k is the size of the NCG. Otherwise, the planar network decomposition algorithm does not create

pieces consisting of a single edge (i.e., two vertices). Since |Ai′| < k, there exists at least one

vertex in the NCG, denoted as v, that is not in Ai′ . This means v is in either Si′ or Bi′ .

Suppose v ∈ Si′ . This contradicts the assumption that there does not exist a set Si, where

1 ≤ i ≤ p, such that a vertex in the NCG is in Si.

Suppose v ∈ Bi′ . Since the NCG is a cycle, there must exist a vertex u ∈ Ai′ that connects to

v ∈ Bi′ . However, from the planar separator theorem, this cannot occur unless there is some vertex

t ∈ Si′ connected to both u and v such that t is also in the NCG. This contradicts the assumption

that there is no set Si such that a vertex in the NCG is in Si.

We have proven that the algorithm correctly decomposes the planar network into p pieces such

that one piece Gi, where 1 ≤ i ≤ p, has the set Si containing at least one vertex in the NCG. Since

the NCG-SINGLE procedure correctly detects the NCG if the source vertex is in the NCG, we can

conclude that the algorithm correctly computes the NCG.

166

Chapter 12

Conclusions and Future Work

In this thesis, we presented several algorithms for solving three different problems in network

optimization. These problems are known as the minimum spanning tree verification (MSTV)

problem, the undirected negative cost cycle detection (UNCCD) problem, and the negative cost

girth (NCG) problem. We summarize our conclusions for each problem below.

12.1 The MSTV Problem

We first described how to compute an MST when the graph contains few distinct edge weights.

We also discussed a new algorithm for the MSTV problem for the same graph. Both algorithms

run in O(m+ n ·K) time, where K is the number of distinct edge weights. When K is a fixed

constant, both algorithms run in linear time.

We also extensively profiled our MSTV algorithm with Hagerup’s algorithm. The empirical

study indicated that our algorithm is superior to Hagerup’s algorithm when K is small, specifically

when K ≤ 24, for random sparse, long mesh, and square mesh graphs. For random dense graphs,

our algorithm is superior when K ≤ 32, but it appears our algorithm remains superior for larger

values of K. An interesting observation is that our algorithm is superior to Hagerup’s algorithm

for all “No” instances regardless of the number of incorrect edges.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 167

12.2 The UNCCD Problem

We next presented the b-matching and the T -join approaches for solving the UNCCD problem.

By improving the resource analysis, we have a tighter time bound for the b-matching approach,

which runs in O((n + m)2 · log(n + m)) time. Moreover, when the edge costs are integers in

the range {−K · ·K}, we presented efficient algorithms for both approaches along with their

parameterized running times in terms of edge costs. When K = O(1), we showed that the

b-matching algorithm runs in O((m + n)1.5 · (log(m + n))1.5 ·
√
α(m+ n,m+ n)) time, and

the T -join algorithm runs in O(n2.5 · (log n)1.5 ·
√
α(n2, n)) time, where α(x, y) represents the

inverse Ackermann function [21, 22]. Thus, we improved the current time bound for solving the

UNCCD problem for both sparse graphs (by using the b-matching approach) and general graphs

(by using the T -join approach).

Further, we presented the first extensive empirical study for analyzing negative cycle detection

algorithms in undirected graphs. Our results indicated that the b-matching approach is superior

to the T -join approach for all sparse graphs. However, for dense graphs, while the b-matching

approach is faster than the T -join approach for the torus graphs in our study, the T -join approach

is actually superior to the b-matching approach for random graphs. As for the size of K, our

study could not conclude a correlation between the size of K and the execution times of either

UNCCD algorithm. Finally, our study finds that both UNCCD algorithms run faster when the

graph contains either no negative cost cycles or fewer and smaller (i.e., the number of edges)

negative cost cycles. The overall results of our empirical study reinforce the asymptotic analysis

of both the b-matching and T -join approaches.

12.3 The NCG Problem

We then introduced the NCG problem and presented several algorithms for solving the problem

for both general and planar networks. We first proposed and analyzed two strongly polynomial

algorithms for the NCG problem. The first of these algorithms, viz., the Edge-Progress algorithm,

runs in O(n2 · k+m ·n · k) time, while the second algorithm, viz., the Edge-Relax algorithm, runs

in O(m ·n · k) time, where k is the NCG. In the case of sparse graphs, both of these algorithms are

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 168

asymptotically superior to the matrix multiplication algorithm, which runs in O(n3 · log k) time.

Additionally, we extensively profiled the above NCG algorithms, with a view towards deter-

mining whether superior asymptotic complexity corresponded to superior empirical performance.

Our empirical analysis indicated that the Edge-Progress and Edge-Relax algorithms are superior

to the matrix multiplication algorithm in the case of sparse graphs, while the reverse is true in the

case of dense graphs. Thus the empirical analysis confirmed the asymptotic analysis. What is

surprising though is the superiority of the Edge-Relax algorithm over the Edge-Progress approach,

in every single instance.

We then presented a parallel implementation for the NCG problem. This implementation

exploits the fact that the algorithm in [15] utilizes a matrix multiplication approach, which can

be parallelized. As a result, our implementation runs in O(log k · log n) parallel time with O(n3)

processors, where the size of the NCG is k.

We also profiled both the sequential and parallel implementations discussed. Our empirical

analysis indicates that the execution time cuts in half as we double the number of processors.

We also found that the speedup increases logarithmically as number of processors increases. A

surprising observation was the increasing communication time between the processors as we

increase the size of the NCG.

Finally, we presented a new algorithm for the NCG problem in planar networks. We first

described how to compute the NCG in general networks in O(m · k) time, where k is the size of

the NCG, if we are given a single vertex that is in the NCG. We then showed how to compute the

NCG in planar graphs in O(n1.5 · k) time. This is done by decomposing the planar network into

pieces using the planar separator theorem and running the single vertex NCG algorithm for each

piece created in the decomposition. Our planar NCG algorithm also works for classes of general

networks that have a separator. In this case, the algorithm runs in O(na+b · k + nd · log n) time,

where the separator size is na, the number of edges is nb, and the separator can be found in O(nd)

time.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 169

12.4 Future Work

There are several avenues open for future research. We list and detail each open problem

below:

1. Analyzing the MSTV algorithm based on randomization - Suppose we are given a graph

withK distinct edge weights, where each edge has a weight chosen uniformly and at random

among the K distinct edge weights. To show that an input spanning tree is not the MST, for

each non-tree edge eij , we need to find an edge in the path from i to j in the spanning tree

whose weight is greater than cij . Based on how the graph is constructed, each edge in this

path has some probability of being greater than cij . We are interested in seeing if we can

utilize this property to show that detecting “No” instances takes expected constant time.

2. Certifying algorithm for the UNCCD problem - Recent work in algorithm design has

increasingly emphasized the role the of certifying algorithms [111, 112]. The idea is that

the algorithm provides a witness to its output, which is easily certifiable. In the case of the

UNCCD problem, a negative cost cycle can serve as a certificate for a “yes” instance. It is

not clear what an easily verifiable certificate would be for “no” instances.

3. Scaling algorithm for the NCG problem - For the negative cost cycle detection (NCCD)

problem in networks with integer costs, Goldberg [107] designed a scaling algorithm that

runs in time O(
√
n ·m · logC), where n is the number of vertices, m is the number of edges,

and C is the largest edge cost (in magnitude). When C < 2
√
n, this algorithm is superior

to the Bellman-Ford variants that run in Ω(m · n) time. We are interested in designing a

scaling algorithm for the NCG problem which is superior to the algorithms discussed in this

thesis, when the edge costs are small integers.

4. Randomized algorithms for the NCG problem - In Chapter 11, we discussed an NCG

algorithm in general networks when we are given a single vertex that is in the NCG.

However, it is unrealistic to know in advance even one vertex that is in the NCG without

assistance. We would be interested in designing a randomized algorithm. These algorithms

have grown in popularity because they are simple to implement, and they are extremely

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 170

efficient in the expected case. One area worth exploring is how to select a vertex uniformly

and at random that is in the NCG with high probability.

5. Empirical study for the NCG problem in planar networks - In previous studies, there have

been situations where algorithms and/or data structures were asymptotically more efficient

than other algorithms and/or data structures. However, in practice, these algorithms and/or

data structures were actually shown to be less efficient. For instance, Fibonacci heaps are

theoretically more efficient than binary heaps. However, it is known that Fibonacci heaps

are less efficient than binary heaps in practice due to the constant factors and programming

complexity of Fibonacci heaps [22]. Since our NCG algorithm in planar networks is

theoretically more efficient than the extant NCG algorithms, we would be interested in

implementing our algorithm. This allows us to perform an empirical analysis to compare

the performance of our algorithm with other NCG algorithms in planar networks.

171

Appendix A

A Linear Time Version of Dijkstra’s

Algorithm

In this appendix, we review the algorithm in [25] for solving the single source shortest path

(SSSP) problem when the number of distinct edge costs is bounded by a fixed constant. On a graph

G = (V,E) with n vertices, m edges, and K distinct edge costs, the algorithm is a variation of

Dijkstra’s algorithm that runs in O(m+n ·K) time. Note that when n ·K = O(m), the algorithm

runs in O(m) time.

A.1 Formal Problem Statement

We are given a graph G = (V,E, c), where V is the vertex set with n vertices, E is the edge

set with m edges, and c : E → R is the cost function that maps an edge to a real number. For

each edge eij ∈ E, cij is the cost from vertex i to vertex j. We assume that cij > 0 is a real

number.

We represent G as an adjacency list Adj. For each vertex v ∈ V , we let Adj(v) be the set of

outgoing edges from v in G. We also let L = {l1, . . . , lK} be the set of distinct edge costs, where

l1 ≤ l2 ≤ · · · ≤ lK . We assume that Adj(v) is sorted. Otherwise, we can sort L in O(K logK)

time, which is O(1) time if K is a constant. We provide an example of a graph with two distinct

edge costs in Figure A.1, where L = {3, 5}.

We let s ∈ V be the source vertex of the graph. We also let δ(v) be the distance of the shortest

APPENDIX A. A LINEAR TIME VERSION OF DIJKSTRA’S ALGORITHM 172

a

b

c

d

3

5

3

3

5

Figure A.1: Example of a graph with 2 distinct edge costs.

path from s to v in the graph. If a path from s to v does not exist, then δ(v) = ∞. The single

source shortest path problem is defined as follows:

Given a graph G = (V,E) with non-negative edge costs and a source vertex s ∈ V ,
find the shortest path from s to all other reachable vertices in the graph.

A.2 Dijkstra’s Algorithm in Linear Time

We now describe the single source shortest path algorithm, which is a variation of Dijkstra’s

algorithm that runs in O(m+ n ·K) time. This algorithm incorporates additional data structures

to achieve the linear running time when K is small. We let S be the set of permanently labeled

vertices and T = V − S be the set of temporary labeled vertices. We let d(j) be a distance label

for vertex j, where if j ∈ S, then d(j) = δ(j), which is the cost of the shortest path from a source

vertex s to j.

In this algorithm, we let L = {l1, ·, lK} be the set of distinct edge costs. For each distinct edge

cost lt ∈ L = {l1, . . . , lK}, we have a linked list Et(S) = {eij ∈ E : i ∈ S, cij = lt}. Each

edge eij is sorted in the order j is added to S. This means if eij comes before ei′j′ in Et(S), then

d(i) ≤ d(i′).

APPENDIX A. A LINEAR TIME VERSION OF DIJKSTRA’S ALGORITHM 173

We let the pointer CurrentEdge(t) be the first edge eij of Et(S), where j ∈ T . If Et(S) has

such an edge, then we denote f(t) = d(i) + lt as the sum of the cost of the shortest path from s to

i and the cost of edge eij . If Et(S) does not have such an edge, then CurrentEdge(t) = ∅. We

can find the vertex with the smallest distance label in T by finding argmin{f(t) : 1 ≤ t ≤ K},

which runs in O(K) time.

We use a subroutine UPDATE(t) to change CurrentEdge(t) such that it either points to the

first edge in Et(S), where the endpoint is in T , or sets CurrentEdge(t) to ∅. If CurrentEdge(t)

points to an edge eij , then we set f(t) = d(i) + lt. Otherwise, we set f(t) = ∞. We denote

CurrentEdge(t).next as the operation that moves the pointer CurrentEdge(t) to point to the

next edge in Et(S).

The algorithm runs as follows: We start with the source vertex s ∈ V . We then find r =

argmin{f(t) : 1 ≤ t ≤ K} and let edge eij be CurrentEdge(r). We set d(j) = d(i) + lr and

move j from T to S. For each outgoing edge ejk, we add ejk to the end of Et(S), where lt = cjk.

We then change CurrentEdge(t) if it was initially null. For each distinct edge cost k, we run

UPDATE(k), which updates the CurrentEdge pointer for each link list if needed.

The procedure is shown in Algorithms A.1, A.2, and A.3.

A.2.1 Resource Analysis

The initialization process takes O(n) time since it places all adjacent vertices from s into the

possible linked lists. Finding the smallest distance label takes O(K) time per iteration. Since we

have O(n) iterations, the total time is O(n ·K).

As for updating the CurrentEdge pointer, we have two cases: either the pointer changes or it

does not change. If the pointer changes, note that the edge at the beginning of the iteration is not

scanned again. This is because each edge in Et(S) is scanned sequentially, meaning each edge

is scanned at most once. Therefore, this case runs in O(m) time. If the pointer does not change,

nothing changes, and the iteration takes constant time. However, we have O(n ·K) iterations.

This means the total time is O(m+ n ·K), which is also the total running time of Algorithm A.2.

APPENDIX A. A LINEAR TIME VERSION OF DIJKSTRA’S ALGORITHM 174

Function INITIALIZE()
1: S := {s}; T := V − {s}.
2: d(s) := 0; pred(s) := ∅.
3: for (each vertex v ∈ T) do
4: d(v) =∞; pred(v) = ∅.
5: end for
6: for (t = 1 to K) do
7: Et(S) := ∅.
8: CurrentEdge(t) := NIL.
9: end for

10: for each edge esj do
11: Add esj to the end of the list Et(S), where lt = csj .
12: if (CurrentEdge(t) = NIL) then
13: CurrentEdge(t) := esj
14: end if
15: end for
16: for (t = 1 to K) do
17: UPDATE(t)
18: end for

Algorithm A.1: Dijkstra’s Linear Time Algorithm: Initialization

Function NEW-DIJKSTRA()
1: INITIALIZE()
2: while (T 6= ∅) do
3: let r = argmin {f(t) : 1 ≤ t ≤ K}.
4: let eij = CurrentEdge(r).
5: d(j) := d(i) + lr; pred(j) := i.
6: S = S

⋃
{j};T := T − {j}.

7: for (each edge ejk ∈ Adj(j)) do
8: Add the edge to the end of the list Et(S), where lt = cjk.
9: if (CurrentEdge(t) = NIL) then

10: CurrentEdge(t) := ejk
11: end if
12: end for
13: for (t = 1 to K) do
14: UPDATE(t).
15: end for
16: end while

Algorithm A.2: Dijkstra’s Linear Time Algorithm: NEW-DIJKSTRA

APPENDIX A. A LINEAR TIME VERSION OF DIJKSTRA’S ALGORITHM 175

Function UPDATE(t)
1: Let eij = CurrentEdge(t).
2: if (j ∈ T) then
3: f(t) = d(i) + cij .
4: return
5: end if
6: while ((j 6∈ T) and (CurrentEdge(t).next 6= NIL)) do
7: Let eij = CurrentEdge(t).next.
8: CurrentEdge(t) = eij .
9: end while

10: if (j ∈ T) then
11: f(t) = d(i) + cij .
12: else
13: Set CurrentEdge(t) to ∅.
14: f(t) =∞.
15: end if

Algorithm A.3: Dijkstra’s Linear Time Algorithm: Update

A.2.2 Correctness

Theorem A.2.1 Algorithm A.2 determines the shortest path from vertex s to all other vertices in

O(m+ n ·K) time.

Proof: The algorithm is the same as Dijkstra’s algorithm. The only difference is that the

algorithm uses additional data structures while implementing the FINDMIN() operation. Therefore,

Algorithm A.2 correctly finds the shortest paths from vertex s to all other vertices in the graph G.

2

176

Appendix B

The Matrix Multiplication Approach

In this appendix, we review the matrix multiplication algorithm from [15] that is discussed in

Chapters 9 and 10. The algorithm is a dynamic programming approach for finding the negative

cost girth of a weighted network.

B.1 Formal Problem Statement

We are given a graph G = (V,E, c), where V is the vertex set with n vertices, E is the edge

set with m edges, and c : E → R is the cost function that maps an edge to a real number. For

each edge eij ∈ E, cij is the cost from vertex i to vertex j.

We represent G as an adjacency matrix D. If there is an edge from vertex i to vertex j, then

dij is set to cij . Otherwise, dij is set to∞. The edge costs are stored in a matrix W, where wij

stores the cost of edge eij (i.e., cij). We use the convention wii = 0, ∀i = 1, 2, . . . , n.

B.2 NCG Algorithm Based on Matrix Multiplication

Let d(k)
ij be the cost of the shortest path from vertex i to vertex j using at most k edges.

We compute d(k)
ij recursively using the already computed value of d(k−1)

ij . Note that one of the

following must be true for d(k)
ij :

1. The cost of the shortest path from i to j using at most k edges is the same as the cost of the

APPENDIX B. THE MATRIX MULTIPLICATION APPROACH 177

shortest path from i to j using at most k − 1 edges. In this case,

d
(k)
ij = d

(k−1)
ij

2. The cost of the shortest path from i to j using at most k edges is less than the cost of the

shortest path from i to j using at most k − 1 edges. This means we can divide the path into

two sub-paths: the shortest path from i to r using at most k− 1 edges, where r is a neighbor

of j, and the edge from r to j. This gives us

d
(k)
ij = min

1≤r≤n,r 6=j
(d

(k−1)
ir + wrj).

Since the cost of a self-loop is 0, we can combine these two equations which results in the

equation,

d
(k)
ij = min

1≤r≤n
(d

(k−1)
ir + wrj)

Note that d(1)
ij = wij , for i 6= j, and d

(1)
ii = 0. We are interested in the d(k)

ii entries, for

k = 1, 2, . . . , n. This is because if d(k)
ii < 0 for some k, then we know a negative cost cycle exists

in G. The smallest k such that d(k)
ii < 0 is the NCG of G. The above observations are summarized

in Algorithm B.1.

B.2.1 Resource Analysis

Computing one d(k)
ij takes O(n) time. Let D(k) be the n× n matrix that monitors the shortest

path between each pair of vertices using at most k edges. Since D(k) contains O(n2) entries,

calculating all dij for an arbitrary k takes O(n3) time. Since 2 ≤ k ≤ n, we need to calculate

all O(n) matrices, where each matrix takes O(n3) time. Therefore, the total running time of the

original algorithm is O(n4).

For the space analysis, note that G is stored as an adjacency matrix of size O(n2). It would

appear that we need O(n3) space since each matrix D(k) is size n× n, and we have n matrices.

However, note that in order to compute D(k), we only need D(k−1) and the initial cost matrix W.

APPENDIX B. THE MATRIX MULTIPLICATION APPROACH 178

Function NCG-MATRIX-MULTIPLICATION (D,W)
1: D(1) := W.
2: for (k = 2 to n) do
3: for (i = 1 to n) do
4: for (j = 1 to n) do
5: d

(k)
ij =∞.

6: for (r = 1 to n) do
7: d

(k)
ij = min{d(k)

ij , d
(k−1)
ir + wrj}.

8: end for
9: end for

10: end for
11: for (i = 1 to n) do
12: if (d

(k)
ii < 0) then

13: return (“The negative cost girth is k.”)
14: end if
15: end for
16: end for
17: return (“G does not contain any negative cost cycles.”)

Algorithm B.1: NCG Matrix Multiplication Algorithm

Therefore, the total space required is O(n2).

Improving the Running Time

The running time can be reduced to O(n3 · log n) by using repeated squaring to compute D(2),

D(4), and so on instead of computing each matrix sequentially (i.e., k = 2, 3, . . . , n). If we detect

a negative cost cycle in matrix D(l), then the NCG is at most l and greater than l/2. We use binary

search in the interval [l/2 + 1, l] to find the smallest r such that D(r) has a negative cost cycle.

Finding D(l) requires O(log n) matrix multiplications, and the binary search requires O(log n)

additional matrix multiplications. Therefore, the running time is O(n3 · log n).

While the algorithm runs in O(n3 · log n) time, the repeated squaring halts when we first find

a negative cycle. Since this requires O(k) iterations in the binary search, the matrix multiplication

algorithm runs in O(n3 · log k) time, where the NCG has k edges. Since we have to retain all the

product matrices D(2),D(4), . . . ,D(2dlog ke , the space required is now O(n2 · log k).

References 179

B.2.2 Correctness

We first observe that there exists a negative cost cycle in G, if and only if d(k)
ii < 0, for some

i = 1, . . . , n and k = 2, . . . , n. To observe this, note that if one of the diagonal entries, say d(k)
rr ,

is negative, then by definition, the shortest path from vertex r to itself has negative cost. Hence,

there must be a negative cost cycle around r having at most k edges. Likewise, if there exists a

negative cost cycle around vertex r with at most k edges, then the shortest path from r to itself

having at most k edges is negative (i.e., d(k)
rr < 0).

Since Algorithm B.1 examines the network for negative cost cycles in order of increasing size,

it follows that the NCG is identified in lines 11 to 14.

180

References

[1] O. Borůvka, “O jistém problému minimálnı́m,” Práce Moravské Pr̆trodovĕdecké
Spolec̆nosti v Brnĕ, vol. 3, pp. 37–58, 1926.

[2] Joseph. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematical Society, vol. 7, pp. 48–50, 1956.

[3] J. Komlos, “Linear verification for spanning trees,” in SFCS ’84: Proceedings of the 25th
Annual Symposium onFoundations of Computer Science, 1984, Washington, DC, USA,
1984, pp. 201–206, IEEE Computer Society.

[4] David R. Karger, Phillip N. Klein, and Robert Endre Tarjan, “A randomized linear-time
algorithm to find minimum spanning trees,” Journal of the ACM, vol. 42, no. 2, pp. 321–328,
1995.

[5] Bernard Chazelle, “A minimum spanning tree algorithm with inverse-ackermann type
complexity,” J. ACM, vol. 47, pp. 1028–1047, November 2000.

[6] R. L. Graham and Pavol Hell, “On the history of the minimum spanning tree problem,”
IEEE Ann. Hist. Comput., vol. 7, no. 1, pp. 43–57, 1985.

[7] Valerie King, “A simpler minimum spanning tree verification algorithm,” Algorithmica,
vol. 18, no. 2, pp. 263–270, 1997.

[8] Torben Hagerup, “An even simpler linear-time algorithm for verifying minimum spanning
trees,” in WG, 2009, pp. 178–189.

[9] R. E. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, pp.
87–90, 1958.

[10] Robert W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, pp. 345,
1962.

[11] Boris V. Cherkassky and Andrew V. Goldberg, “Negative-cycle detection algorithms,” in
Algorithms—ESA ’96, Fourth Annual European Symposium, Josep Dı́az and Maria Serna,
Eds., Barcelona, Spain, 1996, vol. 1136 of Lecture Notes in Computer Science, pp. 349–363,
Springer.

REFERENCES 181

[12] K. Subramani, “Stressing is better than relaxing for negative cost cycle detection in
networks,” in Proceedings of the 4th International Conference on Ad-Hoc, Mobile and
Wireless Networks (ADHOC-NOW), V. R. Syrotiuk and E. Chávez, Eds. October 2005, vol.
3738 of Lecture Notes in Computer Science, pp. 320–333, Springer-Verlag.

[13] K. Subramani and D. Desovski, “On the empirical efficiency of the vertex contraction
algorithm for detecting negative cost cycles in networks,” in Proceedings of the 5th

International Conference on Computational Science (ICCS), et. al. Peter Sloot, Ed. May
2005, vol. 3514 of Lecture Notes in Computer Science, pp. 236–247, Springer-Verlag.

[14] K. Subramani, “A Zero-Space algorithm for negative cost cycle detection in networks,”
Journal of Discrete Algorithms, vol. 5, no. 3, pp. 408–421, 2007.

[15] K. Subramani, “Optimal length resolution refutations of difference constraint systems,”
Journal of Automated Reasoning (JAR), vol. 43, no. 2, pp. 121–137, 2009.

[16] K. Subramani, C. Tauras, and K. Madduri, “Space-time tradeoffs in negative cycle detection
- an empirical analysis of the stressing algorithm,” Applied Mathematics and Computation,
vol. 215, no. 10, pp. 3563–3575, 2010.

[17] Jack Edmonds, “An introduction to matching,” in Mimeographed notes, Engineering
Summer Conference, The University of Michigan, Ann Arbor, MI, 1967.

[18] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice-Hall, 1993.

[19] J. Edmonds and E.L. Johnson, “Matching, euler tours and the chinese postman problem,”
Mathematical Programming, vol. 5, pp. 88–124, 1973.

[20] B. Korte and J. Vygen, Combinatorial Optimization, Number 21 in Algorithms and
Combinatorics. Springer-Verlag, New York, 4th edition, 2010.

[21] Robert Endre Tarjan, “Efficiency of a good but not linear set union algorithm,” J. ACM, vol.
22, pp. 215–225, April 1975.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, The
MIT Press, Cambridge, MA, 3rd edition, 2009.

[23] Xiaofeng Gu, Kamesh Madduri, K. Subramani, and Hong-Jian Lai, “Improved algorithms
for detecting negative cost cycles in undirected graphs,” in Proceedings of the 3rd Annual
International Frontiers of Algorithmics Workshop, Xiaotie Deng, John E. Hopcroft, and
Jinyn Xe, Eds. June 2009, vol. 5598 of Lecture Notes in Computer Science, pp. 40–50,
Springer-Verlag.

[24] K. Subramani, Matthew Williamson, and Xiaofeng Gu, “Improved algorithms for optimal
length resolution refutation in difference constraint systems,” Formal Aspects of Computing,
vol. 25, no. 2, pp. 319–341, 2013.

REFERENCES 182

[25] James B. Orlin, Kamesh Madduri, K. Subramani, and M. Williamson, “A faster algorthm
for the single source shortest path problems with few distinct postive lengths,” Journal of
Discrete Algorithms, vol. 8, no. 2, pp. 189–198, 2010.

[26] R.C. Prim, “Shortest connection networks and some generalizations,” Bell Sys. Tech.
Journal, vol. 36, pp. 1389–1401, 1957.

[27] Robert E Tarjan, “Applications of path compression on balanced trees.,” Tech. Rep.,
Stanford, CA, USA, 1975.

[28] Brandon Dixon, Monika Rauch, and Robert E. Tarjan, “Verification and sensitivity analysis
of minimum spanning trees in linear time,” SIAM J. Comput., vol. 21, no. 6, pp. 1184–1192,
1992.

[29] V. Jarnı́k, “O jistém problému minimálnı́m,” Práce Moravské Pr̆trodovĕdecké Spolec̆nosti
v Brnĕ, vol. 6, pp. 57–63, 1930.

[30] Michael L. Fredman and Robert Endre Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms,” J. ACM, vol. 34, no. 3, pp. 596–615, 1987.

[31] Andrew Chi-Chih Yao, “An O(|E| log log |V |) algorithm for finding minimum spanning
trees,” Inf. Process. Lett., vol. 4, no. 1, pp. 21–23, 1975.

[32] David R. Cheriton and Robert Endre Tarjan, “Finding minimum spanning trees,” SIAM J.
Comput., vol. 5, no. 4, pp. 724–742, 1976.

[33] H N Gabow, Z Galil, T Spencer, and R E Tarjan, “Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs,” Combinatorica, vol. 6, no. 2, pp. 109–122,
jan 1986.

[34] Bernard Chazelle, “A faster deterministic algorithm for minimum spanning trees,” in FOCS,
1997, pp. 22–31.

[35] Seth Pettie, “Finding minimum spanning trees in O(mα(m,n)) time,” Tech. Rep., Austin,
TX, USA, 1999.

[36] Michael L. Fredman and Dan E. Willard, “Trans-dichotomous algorithms for minimum
spanning trees and shortest paths,” J. Comput. Syst. Sci., vol. 48, no. 3, pp. 533–551, 1994.

[37] Seth Pettie and Vijaya Ramachandran, “An optimal minimum spanning tree algorithm,” J.
ACM, vol. 49, no. 1, pp. 16–34, 2002.

[38] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-
matik, vol. 1, pp. 269–271, 1959.

[39] Robert Endre Tarjan, “Applications of path compression on balanced trees,” J. ACM, vol.
26, no. 4, pp. 690–715, 1979.

REFERENCES 183

[40] Amos Korman and Shay Kutten, “Distributed verification of minimum spanning trees,”
in Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, New York, NY, USA, 2006, PODC ’06, pp. 26–34, ACM.

[41] Valerie King, Chung Keung Poon, Vijaya Ramachandran, and Santanu Sinha, “An optimal
EREW PRAM algorithm for minimum spanning tree verification,” Inf. Process. Lett., vol.
62, pp. 153–159, May 1997.

[42] Seth Pettie, “An inverse-Ackermann type lower bound for online minimum spanning tree
verification,” Combinatorica, vol. 26, no. 2, pp. 207–230, 2006.

[43] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook, “Linear-time
pointer-machine algorithms for least common ancestors, mst verification, and dominators,”
in Proceedings of the thirtieth annual ACM symposium on Theory of computing, New York,
NY, USA, 1998, STOC ’98, pp. 279–288, ACM.

[44] Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers, Robert E. Tarjan,
and Jeffery R. Westbrook, “Linear-time algorithms for dominators and other path-evaluation
problems,” SIAM J. Comput., vol. 38, pp. 1533–1573, November 2008.

[45] Robert Endre Tarjan, “Sensitivity analysis of minimum spanning trees and shortest path
trees,” Information Processing Letters, vol. 14, no. 1, pp. 30–33, 1982.

[46] Heather Booth and Jeffery Westbrook, “A linear algorithm for analysis of minimum
spanning and shortest path trees of planar graphs,” Algorithmica, vol. 11, pp. 341–352,
1992.

[47] John Hopcroft and Robert Tarjan, “Algorithm 447: efficient algorithms for graph manipula-
tion,” Commun. ACM, vol. 16, pp. 372–378, June 1973.

[48] Andrew V. Goldberg, “An efficient implementation of a scaling minimum-cost flow
algorithm,” Journal of Algorithms, vol. 22, pp. 1–29, 1992.

[49] Cüneyt F. Bazlamaçci and Khalil S. Hindi, “Minimum-weight spanning tree algorithms a
survey and empirical study,” Comput. Oper. Res., vol. 28, no. 8, pp. 767–785, 2001.

[50] C. Demetrescu, A.V. Goldberg, and D. Johnson, “9th DIMACS implementation challenge –
Shortest Paths,” 2005, http://www.dis.uniroma1.it/˜challenge9/.

[51] B.V. Cherkassky, A.V. Goldberg, and T. Radzik, “Shortest paths algorithms: theory and
experimental evaluation,” Mathematical Programming, vol. 73, pp. 129–174, 1996.

[52] Walter Bright, “D Programming Language,” 2001, http://www.dlang.org.

[53] Boris V. Cherkassky, Loukas Georgiadis, Andrew V. Goldberg, Robert Endre Tarjan,
and Renato Fonseca F. Werneck, “Shortest path feasibility algorithms: An experimental
evaluation,” in ALENEX, 2008, pp. 118–132.

[54] Jack Edmonds, “Paths, trees and flowers,” Canadian Journal of Mathematics, vol. 17, pp.
449–467, 1965.

http://www.dis.uniroma1.it/~challenge9/
http://www.dlang.org

REFERENCES 184

[55] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, New York, 1999.

[56] Vladimir Kolmogorov, “Blossom V: a new implementation of a minimum cost perfect
matching algorithm,” Mathematical Programming Computation, vol. 1, pp. 43–67, 2009,
10.1007/s12532-009-0002-8.

[57] L. Lovász and M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

[58] A. Frank, “A survey on t-joins, t-cuts, and conservative weightings,” in Combinatorics,
Paul Erdös is Eighty, (D. Miklós, V.T. Sós, and eds.) T. Szönyi, Eds., vol. 2, pp. 213–252.
Bolyai Society, Budapest, 1996.

[59] Jack Edmonds, “Maximum matching and a polyhedron with 0, 1 vertices,” J. of Res. the
Nat. Bureau of Standards, vol. 69 B, pp. 125–130, 1965.

[60] H. Gabow, Implementation of algorithms for maximum matching on non-bipartite graphs,
Ph.D. thesis, Stanford University, 1974.

[61] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and
Winston, New York, 1976.

[62] H. N. Gabow, “A scaling algorithm for weighted matching on general graphs,” in Proceed-
ings 26th Annual Symposium of the Foundations of Computer Science. 1985, pp. 90–100,
IEEE Computer Society.

[63] Z. Galil, S. Micali, and H.N. Gabow, “An O(EV log V) algorithm for finding a maximal
weighted matching in general graphs,” SIAM Journal of Computing, vol. 15, pp. 120–130,
1986.

[64] H.N. Gabow, Z. Galil, and T.H. Micali, “Efficient implementation of graph algorithms
using contraction,” Journal of the ACM, vol. 36, pp. 540–572, 1989.

[65] H. N. Gabow, “Data structures for weighted matching and nearest common ancestors with
linking,” in Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms.
1990, pp. 434–443, Association for Computing Machinery.

[66] J. Edmonds, E.L. Johnson, and S.C. Lockhart, “Blossom I: A computer code for the
matching prolem,” Unpublished report, 1969.

[67] W.R. Pulleyblank, Faces of matching polyhedra, Ph.D. thesis, University of Waterloo,
Waterloo, Ontario, 1973.

[68] W.H. Cunningham and A.B. Marsh, “A primal algorithm for optimum matching,” Mathe-
matical Programming Study, vol. 8, pp. 50–72, 1978.

[69] T.F. Havel, The combinatorial distance geometry approach to the calculation of molecular
conformation, Ph.D. thesis, University of California, Berkeley, 1982.

REFERENCES 185

[70] M. Grötschel and O. Holland, “Solving matching problems with linear programming,”
Mathematical Programming, vol. 33, pp. 243–259, 1985.

[71] M. Trick, Networks with additional structured constraints, Ph.D. thesis, School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1987.

[72] U. Derigs and A. Metz, “Solving (large scale) matching problems combinatorially,” Mathe-
matical Programming, vol. 50, pp. 113–122, 1991.

[73] D.L. Miller and J.F. Pekny, “A staged primal-dual algorithm for perfect b-matching with
edge capacities,” ORSA Journal on Computing, vol. 7, pp. 298–320, 1995.

[74] W. Cook and A. Rohe, “Computing minimum-weight perfect matchings,” INFORMS
Journal on Computing, vol. 11, pp. 138–148, 1999.

[75] K. Mehlhorn and G. Schäfer, “Implementation of o(nm log n) weighted matchings in
general graphs: the powers of data structures,” Journal of Experimental Algorithms, vol. 7,
no. 4, 2002.

[76] D.B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” J. ACM, vol. 24,
no. 1, pp. 1–13, 1977.

[77] H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for general graph matching
problems,” Journal of the ACM, vol. 38, pp. 815–853, 1991.

[78] Avi Shoshan and Uri Zwick, “All pairs shortest paths in undirected graphs with integer
weights,” in FOCS, 1999, pp. 605–615.

[79] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” in
Proceedings of the nineteenth annual ACM symposium on Theory of computing, New York,
NY, USA, 1987, STOC ’87, pp. 1–6, ACM.

[80] Vladimir Kolmogorov, “Implementation of the blossom V algorithm,” http://pub.
ist.ac.at/˜vnk/software.html, 2009.

[81] A.V. Goldberg, “A simple shortest path algorithm with linear average time,” in 9th Ann.
European Symp. on Algorithms (ESA 2001), Aachen, Germany, 2001, vol. 2161 of Lecture
Notes in Computer Science, pp. 230–241, Springer.

[82] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan, “Faster algorithms
for the shortest path problem,” Journal of the ACM, vol. 37, no. 2, pp. 213–223, Apr. 1990.

[83] S. Robinson, “Toward an optimal algorithm for matrix multiplication,” SIAM News, vol.
38, no. 9, 2005.

[84] Virginia Vassilevska Williams, “Multiplying matrices faster than Coppersmith-Winograd,”
in STOC, 2012, pp. 887–898.

[85] V. Strassen, “Gaussian elimination is not optimal.,” Numerische Mathematik, vol. 14, no. 3,
pp. 354–356, 1969.

http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html

REFERENCES 186

[86] Noga Alon, Zvi Galil, and Oded Margalit, “On the exponent of the all pairs shortest path
problem,” J. Comput. Syst. Sci., vol. 54, no. 2, pp. 255–262, 1997.

[87] R. J. Lipton and R. E. Tarjan, “A separator theorem for planar graphs,” SIAM Journal App.
Math., vol. 36, pp. 177–189, 1979.

[88] R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

[89] Joseph JaJa, Introduction to Parallel Algorithms, Addison Wesley, 1st edition, 1992.

[90] Wai-Kai Chen, The VLSI Handbook, Second Edition, CRC Press, Inc., Boca Raton, FL,
USA, 2006.

[91] Justin R. Smith, The design and analysis of parallel algorithms, Oxford University Press,
Inc., New York, NY, USA, 1993.

[92] B. F. Wang and G. H. Chen, “Constant time algorithms for the transitive closure and some
related graph problems on processor arrays with reconfigurable bus systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 1, no. 4, pp. 500–507, oct 1990.

[93] G. H. Chen, B. F. Wang, and C. J. Lu, “On the parallel computation of the algebraic path
problem,” IEEE Trans. Parallel Distrib. Syst., vol. 3, no. 2, pp. 251–256, mar 1992.

[94] G. H. Chen, Olariu S., Schwing J. L., Wang B. F., and Zhang J., “Constant-time tree
algorithms on reconfigurable meshes of size n× n,” Journal of Parallel and Distributed
Computing, vol. 26, no. 2, pp. 187–150, 1995.

[95] Eliezer Dekel, David Nassimi, and Sartaj Sahni, “Parallel matrix and graph algorithms,”
SIAM J. Comput., vol. 10, no. 4, pp. 657–675, 1981.

[96] Ludek Kucera, “Parallel computation and conflicts in memory access,” Inf. Process. Lett.,
vol. 14, no. 2, pp. 93–96, 1982.

[97] L.G. Valiant, “Parallelism in comparison models,” SIAM J. Comput., vol. 4, no. 3, pp.
348–355, 1975.

[98] Victor Y. Pan and Franco P. Preparata, “Supereffective slow-down of parallel computa-
tions,” in Proceedings of the fourth annual ACM symposium on Parallel algorithms and
architectures, New York, NY, USA, 1992, SPAA ’92, pp. 402–409, ACM.

[99] Victor Y. Pan and Franco P. Preparata, “Work-preserving speed-up of parallel matrix
computations,” SIAM J. Comput., vol. 24, no. 3, pp. 811–821, jun 1995.

[100] Yijie Han, Victor Y. Pan, and John H. Reif, “Efficient parallel algorithms for computing all
pair shortest paths in directed graphs,” Algorithmica, vol. 17, no. 4, pp. 399–415, 1997.

[101] Rüdiger Reischuk, “Probabilistic parallel algorithms for sorting and selection,” SIAM J.
Comput., vol. 14, no. 2, pp. 396–409, 1985.

REFERENCES 187

[102] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill
Education Group, 2003.

[103] Gene M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer
conference, New York, NY, USA, 1967, AFIPS ’67 (Spring), pp. 483–485, ACM.

[104] Richard J. Lipton, Donald J. Rose, and Robert E. Tarjan, “Generalized nested dissection,”
SIAM J. Numer. Anal., vol. 16, no. 2, pp. 346–358, 1979.

[105] Greg N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with applica-
tions,” SIAM J. Comput., vol. 16, no. 6, pp. 1004–1022, 1987.

[106] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian, “Faster shortest-
path algorithms for planar graphs,” J. Comput. Syst. Sci., vol. 55, pp. 3–23, August 1997.

[107] Andrew V. Goldberg, “Scaling algorithms for the shortest paths problem,” SIAM Journal
on Computing, vol. 24, no. 3, pp. 494–504, June 1995.

[108] Jittat Fakcharoenphol and Satish Rao, “Planar graphs, negative weight edges, shortest paths,
and near linear time,” J. Comput. Syst. Sci., vol. 72, pp. 868–889, August 2006.

[109] Philip N. Klein, Shay Mozes, and Oren Weimann, “Shortest paths in directed planar graphs
with negative lengths: A linear-space O(n log2 n)-time algorithm,” ACM Transactions on
Algorithms, vol. 6, no. 2, pp. 1–18, 2010.

[110] Gary L. Miller, “Finding small simple cycle separators for 2-connected planar graphs,” in
Proceedings of the sixteenth annual ACM symposium on Theory of computing, New York,
NY, USA, 1984, STOC ’84, pp. 376–382, ACM.

[111] Lan Guo, Supratik Mukhopadhyay, and Bojan Cukic, “Does your result checker really
check?,” in Dependable Systems and Networks, 2004, pp. 399–404.

[112] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy Spinrad, “Certifying
algorithms for recognizing interval graphs and permutation graphs SIAM J,” Comput, vol.
36, no. 2, pp. 326–353, 2006.

	On the Design, Analysis, and Implementation of Algorithms for Selected Problems in Graphs and Networks
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Statement of Contributions
	The MSTV Problem
	The UNCCD Problem
	The NCG Problem
	Overview

	I The Minimum Spanning Tree Verification Problem
	Introduction
	Preliminaries and Notation

	The MST Construction Algorithm
	Related Work
	The Edge-Bucket Algorithm
	Resource Analysis
	Correctness

	Example of the Algorithm

	The MSTV Algorithm
	Related Work
	The DFS-Verify Algorithm
	Boruvka's Algorithm
	The Verification Algorithm
	Resource Analysis
	Correctness

	Example of the Algorithm
	Empirical Study
	Experimental Setup

	Results and Analysis
	Graph Size
	Distinct Edge Weights
	``No'' Instances for Small K
	``No'' Instances for Large K

	II The Undirected Negative Cost Cycle Detection Problem
	Introduction
	Preliminaries and Notation

	UNCCD Algorithms
	The b-matching Approach
	Preliminaries
	UNCCD Algorithm based on b-matching

	The T-join Approach
	Preliminaries
	UNCCD Algorithm based on T-join

	Improved UNCCD Algorithms for Integer Edge Costs
	The Improved b-matching Approach
	The Improved T-join Approach

	Implementation Profile for the UNCCD Problem
	Implemented Algorithms
	Graph Families
	Experimental Setup
	Results and Analysis
	Number of Vertices
	Number of Edges
	Size of K
	Negative Cost Cycles

	III The Negative Cost Girth Problem
	Introduction
	Preliminaries and Notation

	Improved NCG Algorithms for General Networks
	The Edge-Progress Algorithm
	Resource Analysis
	Correctness
	Example of the Edge-Progress Algorithm

	The Edge-Relax Algorithm
	Resource Analysis
	Correctness
	Example of the Edge-Relax Algorithm

	Empirical Study
	Experimental Setup
	Results and Analysis

	A Parallel Implementation for the NCG Problem
	Preliminaries
	Model of Computation
	Definitions

	Related Work
	The Parallel Implementation
	Resource Analysis
	Correctness

	Empirical Study
	MPI Implementation
	Experimental Setup

	Results and Analysis
	Performance Results

	The NCG Algorithm for Planar Networks
	Related Work
	Shortest Paths in Planar Networks

	Single Vertex Negative Cost Girth
	Resource Analysis
	Correctness

	Negative Cost Girth in Planar Networks
	Planar Network Decomposition
	Negative Cost Girth Algorithm

	Conclusions and Future Work
	The MSTV Problem
	The UNCCD Problem
	The NCG Problem
	Future Work

	A Linear Time Version of Dijkstra's Algorithm
	Formal Problem Statement
	Dijkstra's Algorithm in Linear Time
	Resource Analysis
	Correctness

	The Matrix Multiplication Approach
	Formal Problem Statement
	NCG Algorithm Based on Matrix Multiplication
	Resource Analysis
	Correctness

	References

