35 research outputs found

    Co-operation in the Parallel Memetic Algorithm

    Get PDF

    A parallel memetic algorithm for the vehicle routing problem with time windows

    Get PDF
    Abstract-A parallel memetic algorithm for the NP-hard vehicle routing problem with time windows (VRPTW) is proposed. The algorithm consists of components which are executed as parallel processes. A process runs either a heuristic algorithm or a hybrid of a genetic algorithm and some local refinement procedures. In order to improve the results, processes co-operate periodically using a novel randomized scheme. During each phase of co-operation processes exploit their best solutions found so far. The purpose of the work is to devise the parallel memetic algorithm which determines the VRPTW solutions of the highest possible quality. The experiments on Gehring and Homberger's (GH) benchmarking tests show that the algorithm achieves very good results. By making use of it the best-known solutions to 171 out of 300 GH tests were improved

    Article a novel algorithm for capacitated vehicle routing problem for smart cities

    Full text link
    Smart logistics is an indispensable building block in smart cities development that requires solving the challenge of efficiently serving the demands of geographically distributed customers by a fleet of vehicles. It consists of a very well-known NP-hard complex optimization problem, which is known as the capacitated vehicle routing problem (CVRP). The CVRP has widespread real-life applications such as delivery in smart logistics, the pharmaceutical distribution of vacancies, disaster relief efforts, and others. In this work, a novel giant tour best cost crossover (GTBCX) operator is proposed which works stochastically to search for the optimal solutions of the CVRP. An NSGA-II-based routing algorithm employing GTBCX is also proposed to solve the CVRP to minimize the total distance traveled as well as to minimize the longest route length. The simulated study is performed on 88 benchmark CVRP instances to validate the success of our proposed GTBCX operator against the nearest neighbor crossover (NNX) and edge assembly crossover (EAX) operators. The rigorous simulation study shows that the GTBCX is a powerful operator and helps to find results that are superior in terms of the overall distance traveled, length of the longest route, quality, and number of Pareto solutions. This work employs a multi-objective optimization algorithm to solve the capacitated vehicle routing problem (CVRP), where the CVRP is represented in the form of a two-dimensional graph. To compute the values’ objective functions, the distance between two nodes in the graph is considered symmetric. This indicates that the genetic algorithm complex optimization algorithm is employed to solve CVRP, which is a symmetry distance-based graph

    The Vehicle Routing Problem with Release and Due Dates

    Get PDF

    The Pickup and Multiple Delivery Problem

    Get PDF
    This thesis presents my work on the pickup and multiple delivery problem, a real-world vehicle routing and scheduling problem with soft time windows, working time and last-in-first-out constraints, developed in collaboration with Transfaction Ltd., who conduct logistics analysis for several large retailers in the UK. A summary of relevant background literature is presented highlighting where my research fits into and contributes to the broader academic landscape. I present a detailed model of the problem and thoroughly analyse a case-study data set, obtaining distributions used for further research. A new variable neighbourhood descent with memory hyper-heuristic is presented and shown to be an effective technique for solving instances of the real-world problem. I analyse strategies for cooperation and competition amongst haulage companies and quantify their effectiveness. The value of time and timely information for planning pickup and delivery requests is investigated. The insights gained are of real industrial relevance, highlighting how a variety of business decisions can produce significant cost savings

    Multi-Robot Pickup and Delivery via Distributed Resource Allocation

    Get PDF
    In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile cooperating robots. Robots must self-coordinate and self-allocate a set of pickup/delivery tasks while minimizing a given cost figure. This results in a large, challenging mixed-integer linear problem that must be cooperatively solved without a central coordinator. We propose a distributed algorithm based on a primal decomposition approach that provides a feasible solution to the problem in finite time. An interesting feature of the proposed scheme is that each robot computes only its own block of solution, thereby preserving privacy of sensible information. The algorithm also exhibits attractive scalability properties that guarantee solvability of the problem even in large networks. To the best of our knowledge, this is the first attempt to provide a scalable distributed solution to the problem. The algorithm is first tested through Gazebo simulations on a ROS 2 platform, highlighting the effectiveness of the proposed solution. Finally, experiments on a real testbed with a team of ground and aerial robots are provided

    Arc Routing Problems for Road Network Maintenance

    Get PDF
    RÉSUMÉ : Cette thèse présente deux problèmes rencontrés dans l’entretien des réseaux routiers, soit la surveillance des réseaux routiers pour la détection de verglas sur la chaussée et la reprogrammation des itinéraires pour les activités de déneigement et d’épandage de sel. Nous représentons ces problèmes par des modèles de tournées sur les arcs. La dépendance aux moments et la nature dynamique sont des caractéristiques propres de ces problèmes, par conséquence le cas de surveillance des réseaux routiers est modélisé comme un problème de postier rural avec fenêtres-horaires (RPPTW), tandis que le cas de la reprogrammation utilise des modèles obtenus à partir des formulations de problèmes de tournées sur les arcs avec capacité. Dans le cas du problème de surveillance, une patrouille vérifie l’état des chemins et des autoroutes, elle doit principalement détecter le verglas sur la chaussée dans le but d’assurer de bonnes conditions aux chauffeurs et aux piétons. Étant donné un réseau routier et des prévisions météo, le problème consiste à créer une tournée qui permette de détecter opportunément le verglas sur les rues et les routes. L’objectif poursuivi consiste à minimiser le coût de cette opération. En premier, on présente trois formulations basées sur la programmation linéaire en nombres entiers pour le problème de surveillance des réseaux qui dépend du moment et deux méthodes de résolution: un algorithme de coupes et un algorithme heuristique appelé adaptive large neighborhood search (ALNS). La méthode exacte inclut des inéquations valides tirées du problème du voyageur de commerce avec fenêtres-horaires et aussi du problème de voyageur du commerce avec contraintes de précédence. La méthode heuristique considère deux phases: en premier, on trouve une solution initiale et après dans la deuxième phase, l’algorithme essaie d’améliorer la solution initiale en utilisant sept heuristiques de destruction et deux heuristiques de réparation choisies au hasard. La performance des heuristiques est évaluée pendant les itérations. Une meilleure performance correspond à une plus grande probabilité de choisir une heuristique. Plusieurs tests ont été faits sur deux ensembles d’exemplaires de problèmes. Les résultats obtenus montrent que l’algorithme de coupes est capable de résoudre des réseaux avec 104 arêtes requises et des fenêtres-horaires structurées par tranches horaires ; l’algorithme peut aussi résoudre des réseaux avec 45 arêtes requises et des fenêtres-horaires structurées pour chaque arête requise. Pour l’algorithme ALNS, différentes versions de l’algorithme sont comparées. Les résultats montrent que cette méthode est efficace parce qu’elle est capable de résoudre à l’optimalité 224 des 232 exemplaires et de réduire le temps de calcul significativement pour les exemplaires les plus difficiles. La dernière partie de la thèse introduit le problème de la reprogrammation de tournées sur les arcs avec capacité (RCARP), lequel permet de modéliser la reprogrammation des itinéraires après une panne d’un véhicule lors de la phase d’exécution d’un plan initial des activités de déneigement ou d’épandage de sel. Le planificateur doit alors modifier le plan initial rapidement et reprogrammer les véhicules qui restent pour finir les activités. Dans ce cas, l’objectif poursuivi consiste à minimiser le coût d’opération et le coût de perturbation. La distance couverte par les véhicules correspond au coût d’opération, cependant une nouvelle métrique est développée pour mesurer le coût de perturbation. Les coûts considérés sont des objectifs en conflit. On analyse quatre politiques à la phase de re-routage en utilisant des formulations de programmation linéaire en nombres entiers. On propose une solution heuristique comme méthode pour résoudre le RCARP quand les coûts d’opération et de perturbation sont minimisés en même temps et quand une réponse rapide est nécessaire. La méthode consiste à fixer une partie de l’itinéraire initial et après à modifier seulement les itinéraires des véhicules les plus proches de la zone de l’interruption de la tournée du véhicule défaillant. La méthode a été testée sur des exemplaires obtenus d’un réseau réel. Nos tests indiquent que la méthode peut résoudre rapidement des exemplaires avec 88 arêtes requises et 10 véhicules actifs après la panne d’un véhicule. En conclusion, la principale contribution de cette thèse est de présenter des modèles de tournées sur les arcs et de proposer des méthodes de résolution d’optimisation qui incluent la dépendance aux temps et l’aspect dynamique. On propose des modèles et des méthodes pour résoudre le RPPTW, et on présente des résultats pour ce problème. On introduit pour la première fois le RCARP. Trois articles correspondant aux trois principaux chapitres ont été acceptés ou soumis à des revues avec comité de Lecture: “The rural postman problem with time windows” accepté dans Networks, “ALNS for the rural postman problem with time windows” soumis à Networks, and “The rescheduling capacitated arc routing problem” soumis à International Transactions in Operational Research.----------ABSTRACT : This dissertation addresses two problems related to road network maintenance: the road network monitoring of black-ice and the rescheduling of itineraries for snow plowing and salt spreading operations. These problems can naturally be represented using arc routing models. Timing-sensitive and dynamic nature are inherent characteristics of these problems, therefore the road network monitoring is modeled as a rural postman problem with time windows (RPPTW) and in the rescheduling case, models based on capacitated arc routing formulations are suggested for the rerouting phase. The detection of black-ice on the roads is carried out by a patrol to ensure safety conditions for drivers and pedestrians. Specific meteorological conditions cause black-ice on the roads; therefore the patrol must design a route covering part of the network in order to timely detect the black-ice according to weather forecasts. We look for minimum-cost solutions that satisfy the timing constraints. At first, three formulations based on mixed integer linear programming are presented for the timing-sensitive road network monitoring and two solution approaches are proposed: a cutting plane algorithm and an adaptive large neighborhood search (ALNS) algorithm. The exact method includes valid inequalities from the traveling salesman problem (TSP) with time windows and from the precedence constrained TSP. The heuristic method consists of two phases: an initial solution is obtained, and then in the second phase the ALNS method tries to improve the initial solution using seven removal and two insertion heuristics. The performance of the heuristics is evaluated during the iterations, and therefore the heuristics are selected depending on their performance (with higher probability for the better ones). Several tests are done on two sets of instances. The computational experiments performed show that the cutting plane algorithm is able to solve instances with up to 104 required edges and with time windows structured by time slots, and problems with up to 45 required edges and time windows structured by each required edge. For the ALNS algorithm, several versions of the algorithm are compared. The results show that this approach is efficient, solving to optimality 224 of 232 instances and significantly reducing the computational time on the hardest instances. The last part of the dissertation introduces the rescheduling capacitated arc routing problem (RCARP), which models the rescheduling of itineraries after a vehicle failure happens in the execution of an initial plan of snow plowing or salt spreading operations. A dispatcher must quickly adjust the remaining vehicles and modify the initial plan in order to complete the operations. In this case we look for solutions that minimize operational and disruption costs. The traveled distance represents the operational cost, and a new metric is discussed as disruption cost. The concerned objectives are in conflict. Four policies are analyzed in the rerouting phase using mixed integer linear programming formulations. A heuristic solution is developed to solve the RCARP when operational and disruption costs are minimized simultaneously and a quick response is needed. The idea is to fix part of the initial itinerary and only modify the itinerary of vehicles closer to the failure zone. The method is tested on a set of instances generated from a real network. Our tests indicate that the method can solve instances with up to 88 required edges and 10 active vehicles after the vehicle breakdown. In short the main contribution of this dissertation is to present arc routing models and optimization solution techniques that consider timing-sensitive and dynamic aspects. Formulations and solution methods with computational results are given for the RPPTW, and the RCARP is studied for the first time here. Three articles corresponding to the main three chapters have been accepted or submitted to peer review journals: “The rural postman problem with time windows” accepted in Networks, “ALNS for the rural postman problem with time windows” submitted to Networks, and “The rescheduling capacitated arc routing problem” submitted to International Transactions in Operational Research

    Approches générales de résolution pour les problèmes multi-attributs de tournées de véhicules et confection d'horaires

    Full text link
    Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de TroyesLe problème de tournées de véhicules (VRP) implique de planifier les itinéraires d'une flotte de véhicules afin de desservir un ensemble de clients à moindre coût. Ce problème d'optimisation combinatoire NP-difficile apparait dans de nombreux domaines d'application, notamment en logistique, télécommunications, robotique ou gestion de crise dans des contextes militaires et humanitaires. Ces applications amènent différents contraintes, objectifs et décisions supplémentaires ; des "attributs" qui viennent compléter les formulations classiques du problème. Les nombreux VRP Multi-Attributs (MAVRP) qui s'ensuivent sont le support d'une littérature considérable, mais qui manque de méthodes généralistes capables de traiter efficacement un éventail significatif de variantes. Par ailleurs, la résolution de problèmes "riches", combinant de nombreux attributs, pose d'importantes difficultés méthodologiques. Cette thèse contribue à relever ces défis par le biais d'analyses structurelles des problèmes, de développements de stratégies métaheuristiques, et de méthodes unifiées. Nous présentons tout d'abord une étude transversale des concepts à succès de 64 méta-heuristiques pour 15 MAVRP afin d'en cerner les "stratégies gagnantes". Puis, nous analysons les problèmes et algorithmes d'ajustement d'horaires en présence d'une séquence de tâches fixée, appelés problèmes de "timing". Ces méthodes, développées indépendamment dans différents domaines de recherche liés au transport, ordonnancement, allocation de ressource et même régression isotonique, sont unifiés dans une revue multidisciplinaire. Un algorithme génétique hybride efficace est ensuite proposé, combinant l'exploration large des méthodes évolutionnaires, les capacités d'amélioration agressive des métaheuristiques à voisinage, et une évaluation bi-critère des solutions considérant coût et contribution à la diversité de la population. Les meilleures solutions connues de la littérature sont retrouvées ou améliorées pour le VRP classique ainsi que des variantes avec multiples dépôts et périodes. La méthode est étendue aux VRP avec contraintes de fenêtres de temps, durée de route, et horaires de conducteurs. Ces applications mettent en jeu de nouvelles méthodes d'évaluation efficaces de contraintes temporelles relaxées, des phases de décomposition, et des recherches arborescentes pour l'insertion des pauses des conducteurs. Un algorithme de gestion implicite du placement des dépôts au cours de recherches locales, par programmation dynamique, est aussi proposé. Des études expérimentales approfondies démontrent la contribution notable des nouvelles stratégies au sein de plusieurs cadres méta-heuristiques. Afin de traiter la variété des attributs, un cadre de résolution heuristique modulaire est présenté ainsi qu'un algorithme génétique hybride unifié (UHGS). Les attributs sont gérés par des composants élémentaires adaptatifs. Des expérimentations sur 26 variantes du VRP et 39 groupes d'instances démontrent la performance remarquable de UHGS qui, avec une unique implémentation et paramétrage, égalise ou surpasse les nombreux algorithmes dédiés, issus de plus de 180 articles, révélant ainsi que la généralité ne s'obtient pas forcément aux dépends de l'efficacité pour cette classe de problèmes. Enfin, pour traiter les problèmes riches, UHGS est étendu au sein d'un cadre de résolution parallèle coopératif à base de décomposition, d'intégration de solutions partielles, et de recherche guidée. L'ensemble de ces travaux permet de jeter un nouveau regard sur les MAVRP et les problèmes de timing, leur résolution par des méthodes méta-heuristiques, ainsi que les méthodes généralistes pour l'optimisation combinatoire.The Vehicle Routing Problem (VRP) involves designing least cost delivery routes to service a geographically-dispersed set of customers while taking into account vehicle-capacity constraints. This NP-hard combinatorial optimization problem is linked with multiple applications in logistics, telecommunications, robotics, crisis management in military and humanitarian frameworks, among others. Practical routing applications are usually quite distinct from the academic cases, encompassing additional sets of specific constraints, objectives and decisions which breed further new problem variants. The resulting "Multi-Attribute" Vehicle Routing Problems (MAVRP) are the support of a vast literature which, however, lacks unified methods capable of addressing multiple MAVRP. In addition, some "rich" VRPs, i.e. those that involve several attributes, may be difficult to address because of the wide array of combined and possibly antagonistic decisions they require. This thesis contributes to address these challenges by means of problem structure analysis, new metaheuristics and unified method developments. The "winning strategies" of 64 state-of-the-art algorithms for 15 different MAVRP are scrutinized in a unifying review. Another analysis is targeted on "timing" problems and algorithms for adjusting the execution dates of a given sequence of tasks. Such methods, independently studied in different research domains related to routing, scheduling, resource allocation, and even isotonic regression are here surveyed in a multidisciplinary review. A Hybrid Genetic Search with Advanced Diversity Control (HGSADC) is then introduced, which combines the exploration breadth of population-based evolutionary search, the aggressive-improvement capabilities of neighborhood-based metaheuristics, and a bi-criteria evaluation of solutions based on cost and diversity measures. Results of remarkable quality are achieved on classic benchmark instances of the capacitated VRP, the multi-depot VRP, and the periodic VRP. Further extensions of the method to VRP variants with constraints on time windows, limited route duration, and truck drivers' statutory pauses are also proposed. New route and neighborhood evaluation procedures are introduced to manage penalized infeasible solutions w.r.t. to time-window and duration constraints. Tree-search procedures are used for drivers' rest scheduling, as well as advanced search limitation strategies, memories and decomposition phases. A dynamic programming-based neighborhood search is introduced to optimally select the depot, vehicle type, and first customer visited in the route during local searches. The notable contribution of these new methodological elements is assessed within two different metaheuristic frameworks. To further advance general-purpose MAVRP methods, we introduce a new component-based heuristic resolution framework and a Unified Hybrid Genetic Search (UHGS), which relies on modular self-adaptive components for addressing problem specifics. Computational experiments demonstrate the groundbreaking performance of UHGS. With a single implementation, unique parameter setting and termination criterion, this algorithm matches or outperforms all current problem-tailored methods from more than 180 articles, on 26 vehicle routing variants and 39 benchmark sets. To address rich problems, UHGS was included in a new parallel cooperative solution framework called "Integrative Cooperative Search (ICS)", based on problem decompositions, partial solutions integration, and global search guidance. This compendium of results provides a novel view on a wide range of MAVRP and timing problems, on efficient heuristic searches, and on general-purpose solution methods for combinatorial optimization problems
    corecore