

UNIVERSITÉ DE MONTRÉAL

ARC ROUTING PROBLEMS FOR ROAD NETWORK MAINTENANCE

INGRID MARCELA MONROY LICHT

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INDUSTRIEL)

AOÛT 2015

© Ingrid Marcela Monroy Licht, 2015.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213619687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

ARC ROUTING PROBLEMS FOR ROAD NETWORK MAINTENANCE

présentée par : MONROY LICHT Ingrid Marcela

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. GENDREAU Michel, Ph. D., président

M. LANGEVIN André, Ph. D., membre et directeur de recherche

M. AMAYA GUIO, Ciro Alberto, Ph. D., membre et codirecteur de recherche

M. ROUSSEAU Louis-Martin, Ph. D., membre et codirecteur de recherche

M. GAMACHE Michel, Ph. D., membre

M. EGLESE Richard, Ph. D., membre externe

iii

DEDICATION

To my Parents Astrid and Fernando,

To my Grandmother Cecilia

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Dr. André Langevin for his

valuable guidance and support. He was always available and patient for my questions. I owe him

my gratitude for supporting me in difficult moments.

I would also like to thank my supervisor Dr. Ciro Alberto Amaya for sharing expertise,

valuable guidance and encouragement extended to me.

I am also extremely grateful to my supervisor Dr. Louis-Martin Rousseau for his help,

valuable guidelines and suggestions.

I wish to thank the jury members of my dissertation for taking the time to read this work.

I owe my thanks to the staff at Department of Mathematics and Industrial Engineering and at

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT).

Finally, I would like to thank my family for their support and for being there for me through

ups and downs.

v

RÉSUMÉ

Cette thèse présente deux problèmes rencontrés dans l’entretien des réseaux routiers, soit la

surveillance des réseaux routiers pour la détection de verglas sur la chaussée et la

reprogrammation des itinéraires pour les activités de déneigement et d’épandage de sel. Nous

représentons ces problèmes par des modèles de tournées sur les arcs. La dépendance aux

moments et la nature dynamique sont des caractéristiques propres de ces problèmes, par

conséquence le cas de surveillance des réseaux routiers est modélisé comme un problème de

postier rural avec fenêtres-horaires (RPPTW), tandis que le cas de la reprogrammation utilise des

modèles obtenus à partir des formulations de problèmes de tournées sur les arcs avec capacité.

Dans le cas du problème de surveillance, une patrouille vérifie l’état des chemins et des

autoroutes, elle doit principalement détecter le verglas sur la chaussée dans le but d’assurer de

bonnes conditions aux chauffeurs et aux piétons. Étant donné un réseau routier et des prévisions

météo, le problème consiste à créer une tournée qui permette de détecter opportunément le

verglas sur les rues et les routes. L’objectif poursuivi consiste à minimiser le coût de cette

opération.

En premier, on présente trois formulations basées sur la programmation linéaire en nombres

entiers pour le problème de surveillance des réseaux qui dépend du moment et deux méthodes de

résolution: un algorithme de coupes et un algorithme heuristique appelé adaptive large

neighborhood search (ALNS). La méthode exacte inclut des inéquations valides tirées du

problème du voyageur de commerce avec fenêtres-horaires et aussi du problème de voyageur du

commerce avec contraintes de précédence. La méthode heuristique considère deux phases: en

premier, on trouve une solution initiale et après dans la deuxième phase, l’algorithme essaie

d’améliorer la solution initiale en utilisant sept heuristiques de destruction et deux heuristiques de

réparation choisies au hasard. La performance des heuristiques est évaluée pendant les itérations.

Une meilleure performance correspond à une plus grande probabilité de choisir une heuristique.

Plusieurs tests ont été faits sur deux ensembles d’exemplaires de problèmes. Les résultats

obtenus montrent que l’algorithme de coupes est capable de résoudre des réseaux avec 104 arêtes

requises et des fenêtres-horaires structurées par tranches horaires ; l’algorithme peut aussi

vi

résoudre des réseaux avec 45 arêtes requises et des fenêtres-horaires structurées pour chaque

arête requise. Pour l’algorithme ALNS, différentes versions de l’algorithme sont comparées. Les

résultats montrent que cette méthode est efficace parce qu’elle est capable de résoudre à

l’optimalité 224 des 232 exemplaires et de réduire le temps de calcul significativement pour les

exemplaires les plus difficiles.

La dernière partie de la thèse introduit le problème de la reprogrammation de tournées sur les

arcs avec capacité (RCARP), lequel permet de modéliser la reprogrammation des itinéraires après

une panne d’un véhicule lors de la phase d’exécution d’un plan initial des activités de

déneigement ou d’épandage de sel. Le planificateur doit alors modifier le plan initial rapidement

et reprogrammer les véhicules qui restent pour finir les activités. Dans ce cas, l’objectif poursuivi

consiste à minimiser le coût d’opération et le coût de perturbation. La distance couverte par les

véhicules correspond au coût d’opération, cependant une nouvelle métrique est développée pour

mesurer le coût de perturbation. Les coûts considérés sont des objectifs en conflit. On analyse

quatre politiques à la phase de re-routage en utilisant des formulations de programmation linéaire

en nombres entiers.

On propose une solution heuristique comme méthode pour résoudre le RCARP quand les

coûts d’opération et de perturbation sont minimisés en même temps et quand une réponse rapide

est nécessaire. La méthode consiste à fixer une partie de l’itinéraire initial et après à modifier

seulement les itinéraires des véhicules les plus proches de la zone de l’interruption de la tournée

du véhicule défaillant. La méthode a été testée sur des exemplaires obtenus d’un réseau réel. Nos

tests indiquent que la méthode peut résoudre rapidement des exemplaires avec 88 arêtes requises

et 10 véhicules actifs après la panne d’un véhicule.

En conclusion, la principale contribution de cette thèse est de présenter des modèles de

tournées sur les arcs et de proposer des méthodes de résolution d’optimisation qui incluent la

dépendance aux temps et l’aspect dynamique. On propose des modèles et des méthodes pour

résoudre le RPPTW, et on présente des résultats pour ce problème. On introduit pour la première

fois le RCARP.

Trois articles correspondant aux trois principaux chapitres ont été acceptés ou soumis à des

revues avec comité de lecture: “The rural postman problem with time windows” accepté dans

Networks, “ALNS for the rural postman problem with time windows” soumis à Networks, and

vii

“The rescheduling capacitated arc routing problem” soumis à International Transactions in

Operational Research.

viii

ABSTRACT

This dissertation addresses two problems related to road network maintenance: the road

network monitoring of black-ice and the rescheduling of itineraries for snow plowing and salt

spreading operations. These problems can naturally be represented using arc routing models.

Timing-sensitive and dynamic nature are inherent characteristics of these problems, therefore the

road network monitoring is modeled as a rural postman problem with time windows (RPPTW)

and in the rescheduling case, models based on capacitated arc routing formulations are suggested

for the rerouting phase.

The detection of black-ice on the roads is carried out by a patrol to ensure safety conditions for

drivers and pedestrians. Specific meteorological conditions cause black-ice on the roads;

therefore the patrol must design a route covering part of the network in order to timely detect the

black-ice according to weather forecasts. We look for minimum-cost solutions that satisfy the

timing constraints.

At first, three formulations based on mixed integer linear programming are presented for the

timing-sensitive road network monitoring and two solution approaches are proposed: a cutting

plane algorithm and an adaptive large neighborhood search (ALNS) algorithm. The exact

method includes valid inequalities from the traveling salesman problem (TSP) with time windows

and from the precedence constrained TSP. The heuristic method consists of two phases: an initial

solution is obtained, and then in the second phase the ALNS method tries to improve the initial

solution using seven removal and two insertion heuristics. The performance of the heuristics is

evaluated during the iterations, and therefore the heuristics are selected depending on their

performance (with higher probability for the better ones).

Several tests are done on two sets of instances. The computational experiments performed

show that the cutting plane algorithm is able to solve instances with up to 104 required edges and

with time windows structured by time slots, and problems with up to 45 required edges and time

windows structured by each required edge. For the ALNS algorithm, several versions of the

algorithm are compared. The results show that this approach is efficient, solving to optimality

224 of 232 instances and significantly reducing the computational time on the hardest instances.

ix

The last part of the dissertation introduces the rescheduling capacitated arc routing problem

(RCARP), which models the rescheduling of itineraries after a vehicle failure happens in the

execution of an initial plan of snow plowing or salt spreading operations. A dispatcher must

quickly adjust the remaining vehicles and modify the initial plan in order to complete the

operations. In this case we look for solutions that minimize operational and disruption costs. The

traveled distance represents the operational cost, and a new metric is discussed as disruption cost.

The concerned objectives are in conflict. Four policies are analyzed in the rerouting phase using

mixed integer linear programming formulations.

A heuristic solution is developed to solve the RCARP when operational and disruption costs

are minimized simultaneously and a quick response is needed. The idea is to fix part of the initial

itinerary and only modify the itinerary of vehicles closer to the failure zone. The method is tested

on a set of instances generated from a real network. Our tests indicate that the method can solve

instances with up to 88 required edges and 10 active vehicles after the vehicle breakdown.

In short the main contribution of this dissertation is to present arc routing models and

optimization solution techniques that consider timing-sensitive and dynamic aspects.

Formulations and solution methods with computational results are given for the RPPTW, and the

RCARP is studied for the first time here.

Three articles corresponding to the main three chapters have been accepted or submitted to

peer review journals: “The rural postman problem with time windows” accepted in Networks,

“ALNS for the rural postman problem with time windows” submitted to Networks, and “The

rescheduling capacitated arc routing problem” submitted to International Transactions in

Operational Research.

x

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT ... VIII

TABLE OF CONTENTS ... X

LIST OF TABLES ... XIV

LIST OF FIGURES ... XV

LIST OF SYMBOLS AND ABBREVIATIONS... XVI

CHAPTER 1 INTRODUCTION ... 1

1.1 Thesis Outline .. 3

CHAPTER 2 LITERATURE REVIEW .. 5

2.1 Arc routing problems with time windows .. 9

2.1.1 The Chinese postman problem ... 10

2.1.2 The rural postman problem .. 16

2.1.3 Capacitated arc routing problem .. 18

2.2 Dynamic arc routing problems ... 24

2.2.1 Dynamic rural postman problem .. 24

2.2.2 Dynamic CARP .. 25

CHAPTER 3 ARTICLE 1 : THE RURAL POSTMAN PROBLEM WITH TIME WINDOWS

……………………………………………………………………………………………………28

Abstract .. 28

3.1 Introduction .. 28

xi

3.2 Undirected RPPTW .. 31

3.2.1 Model on the edges .. 31

3.2.2 Model on the required edges .. 34

3.2.3 Model on the nodes .. 36

3.3 Valid inequalities .. 39

3.4 Solution algorithm .. 41

3.4.1 Data preprocessing ... 41

3.4.2 Cutting plane algorithm .. 42

3.4.3 Solution of the MIP program ... 44

3.5 Computational results ... 44

3.5.1 Generated instances .. 44

3.5.2 Instances based on the Estrie network .. 44

3.5.3 Preprocessing ... 45

3.5.4 Tests ... 46

3.6 Directed case .. 48

3.6.1 Model on the arcs ... 48

3.6.2 Model on the required arcs ... 49

3.6.3 Tests ... 51

3.7 Conclusions .. 52

References .. 53

CHAPTER 4 ARTICLE 2 : ALNS FOR THE RURAL POSTMAN PROBLEM WITH TIME

WINDOWS………………………………………………………………………………………56

Abstract .. 56

4.1 Introduction .. 56

4.2 Literature review .. 57

xii

4.3 Adaptive large neighborhood search .. 59

4.3.1 Initial solution .. 59

4.3.2 Improvement phase .. 61

4.4 Results .. 65

4.4.1 Instances ... 66

4.4.2 Tuning set parameters .. 67

4.4.3 Performance of removal and insertion heuristics ... 68

4.4.4 Results for set2 ... 72

4.4.5 Summary of computational results ... 76

4.5 Conclusions .. 76

References .. 77

CHAPTER 5 ARTICLE 3 : THE RESCHEDULING CAPACITATED ARC ROUTING

PROBLEM……………………………………………………………………………………….79

Abstract .. 79

5.1 Introduction .. 79

5.2 Problem definition .. 81

5.3 Measures of disruption cost.. 83

5.3.1 Edit distance ... 83

5.3.2 Exact match .. 84

5.3.3 R-type distance ... 84

5.3.4 Longest sequence ... 85

5.4 Formulations ... 85

5.4.1 Objective 1 (O1): Minimizing the total distance traveled .. 85

5.4.2 Objective 2 (O2): Minimizing the total distance traveled and considering capacity . 86

5.4.3 Objective 3 (O3): Minimizing disruption cost ... 87

xiii

5.4.4 Objective 4 (O4): Minimizing operational and disruption cost 88

5.5 Results .. 88

5.5.1 Test set and baseline solution ... 89

5.5.2 Comparison of policies ... 89

5.5.3 Larger networks .. 93

5.5.4 Solution strategy ... 93

5.6 Evaluation of metrics ... 100

5.7 Conclusions .. 101

References .. 102

Annex 1. Solution strategy ... 105

CHAPTER 6 GENERAL DISCUSSION .. 109

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS.. 112

REFERENCES .. 115

xiv

LIST OF TABLES

Table 2.1: Synthesis of works in road network maintenance considering time-sensitive and

dynamic context ... 8

Table 3.1: Costs of the transformed graph – Model on the required edges 35

Table 3.2: Costs of the transformed graph – Model on the nodes ... 38

Table 3.3: Reduction in number of variables ... 46

Table 3.4: Models comparison and cutting plane algorithm .. 47

Table 3.5: Cutting plane on real instances ... 47

Table 3.6: Model on the arcs – set of instances “setD” .. 52

Table 4.1: Optimal solutions for benchmark instances .. 67

Table 4.2: Performance of single versions of the ALNS on set1 ... 69

Table 4.3: Gaps for single versions of the ALNS on set1 .. 70

Table 4.4: Performance of versions VR124I2 and VR124I12 on set1 ... 71

Table 4.5: Gaps for VR124I2 and VR124I12 on set1 .. 71

Table 4.6: Comparison of VR124I12 and cutting plane algorithm .. 72

Table 4.7: Average gap: Study of the effect of q and time limit .. 73

Table 4.8. Best solutions: set2 .. 75

Table 5.1: Characteristic of problems .. 90

Table 5.2: Comparison of objectives .. 91

Table 5.3: Comparison of results for larger networks .. 95

Table 5.4: Computational times (Problem 12_2, 𝐵𝐵 = 0.5𝑡𝑡) .. 98

Table 5.5: Strategy solution in larger instances ... 105

xv

LIST OF FIGURES

Figure 2.1: Types of time windows .. 10

Figure 2.2: Example of time windows in an undirected graph .. 20

Figure 3.1: Transformed graph for the model on the required edges ... 34

Figure 3.2: Transformed graph for the model on the nodes ... 37

Figure 3.3: Estrie network – Weather forecast for one time slot ... 45

Figure 3.4: Transformed graph for the model on the required arcs ... 50

Figure 5.1: Comparison of travel and disruption costs .. 92

Figure 5.2: Travel and disruption costs (Problem 12_2, 𝐵𝐵 = 0.5𝑡𝑡) .. 98

Figure 5.3: Example of different policies for problem 12_2, 𝐵𝐵 =0.5𝑡𝑡 99

Figure 5.4: Disruption metrics ... 101

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

ALNS Adaptive Large Neighborhood Search

ATSP-TW Asymmetric Traveling Salesman Problem with Time Windows

CARP Capacitated Arc Routing Problem

CARPTW Capacitated Arc Routing Problem with Time Windows

CPP Chinese Postman Problem

CPPTW Chinese Postman Problem with Time Windows

GRASP Greedy Randomized Adaptive Search Procedure

LP Linear Program

MIP Mixed integer Program

PC-ATSP Precedence Constrained Asymmetric Traveling Salesman Problem

RCARP Rescheduling Capacitated Arc Routing Problem

RWIS Road Weather Information System

RPP Rural Postman Problem

RPPTW Rural Postman Problem with Time Windows

TSP Traveling Salesman Problem

VND Variable Neighborhood Descend

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

1

CHAPTER 1 INTRODUCTION

Road network maintenance, especially in winter is a significant challenge to most

governments and transportation agencies in North America. An indication of the magnitude of

this operation is related to the high costs that it implies. In Ontario, the total expenditures in

highway winter maintenance reached $171 million in the 2013 fiscal year (Office of the Auditor

General of Ontario, 2015). Michigan Department of Transportation spent $103 million for fiscal

year 2013 (Slone, 2014). The New Jersey Department of Transportation reported that it spent a

record $138 million to keep state roadways clear of snow and ice for 2013 (Slone, 2014). The

Pennsylvania Department of Transportation, which had $189.2 million budgeted for the 2013-14

winter, spent $284 million (Slone, 2014). Edmonton, the city which spends more on snow

removal than any other city in western Canada, estimated a budget of $50.4 for all the winter road

maintenance operations for 2013 (Rodrigues, 2013). Bob Dunford, Director of Roadway

Maintenance in Edmonton, listed the expenses of winter maintenance in the city (interview given

to Rodrigues (2013)): “The plowing we do is about $19 million and sanding is about $11 million,

removal is about $6.1 million and then you’ve got a snow storage site at about $2 million. Also,

we have 1100 km of sidewalks that we are responsible for, and that’s $7 million a year we spend

on that.”

Winter road maintenance includes all the operations that aim at the removal or reduction of

snow and ice on roadways providing safe winter driving conditions and safe sidewalks for

pedestrians. The roads and highways must be kept cleared of snow and ice on a reasonably time

basis. Providing an efficient winter road service is a responsibility of municipalities, but in many

cases they outsource the winter maintenance operations to private-sector contractors.

Winter maintenance authorities are constantly seeking for technology-based solutions such as

advanced road weather information systems for monitoring localized weather and road surface

conditions, automated vehicle location and Global Positioning System for tracking fleet

operations and performance (Fu et al. 2009). However to obtain a great benefit from these

technologies, the integration with algorithms that support the decisions and plans in operational,

strategic and tactical level of road winter maintenance is necessary. Decision-making at the

supervisory level of winter maintenance operations are often complex and constrained by time

2

and resources. For example for salt spreading, Eglese (1994) stated that “if a road is treated too

early, then the salt may be washed away if rain is falling or blown away by the wind before the

temperature drops to freezing conditions. If the road is treated too late, then ice may have already

started to form and the road will be dangerous for traffic traveling on the road before it has been

treated”.

Arc routing is an operational research area that has contributed with models and algorithms to

assist road network maintenance managers and operators to make more structured decisions. The

use of operational research in this field could results in substantial saving, improved mobility,

and reduced environmental and social impacts (Liu et al. 2014). However, for many years the

focus of arc routing in winter maintenance has been in static problems where all data are assumed

known before the routes are constructed and do not change afterward. But the reality of winter

road maintenance is really complex and has a dynamic nature.

The new information technologies mentioned above, and other technological advances in

communication systems allow the exploration of real time information for dynamic routing and

scheduling. This favors getting more realistic representation of the operations and enhancing the

performance of decision systems in the area of routing.

Few works have attempted to address the time-sensitive and dynamic nature of winter

maintenance operations. This Dissertation focuses on these two complex issues of road network

maintenance. The objective is to develop decision support arc routing models and optimization

solution methods for two cases: road network monitoring and rescheduling of salt spreading and

snow plowing operations. The first case considers the time sensitivity due to weather forecasts in

the schedule of the monitoring of black-ice on roads, and the second case considers a dynamic

component, where given an initial schedule for spreading or plowing operations, it must be

modified when a vehicle breakdown occurs.

Road network monitoring: In the region of “Estrie” in the Province of Quebec, from mid-

October to mid-December a patrol daily checks the state of roads and must detect black ice on

roads in a timely fashion in order to avoid pedestrian falls or automobile accidents. Once the

patrol has noticed a possible risk for safe mobility, it reports the incident to service centers in

charge of road signs and special works. The planner of the route has access to short-term weather

forecasts and a characterization of roads with likelihood of black-ice formation. The planner must

3

match the temperature conditions in different zones with the probability of the presence of black-

ice and plan a circuit for the patrol.

Rescheduling of salt spreading - snow plowing operations: Snow removal and salt

spreading, the most common activities in winter maintenance, are often performed for each storm

event on a repetitive basis over the same routes until safe mobility conditions are achieved

(Campbell, Langevin, and Perrier, 2014). In practice master schedules are usually constructed by

solving deterministic capacitated arc routing instances based on average demands predicted by

the weather conditions. The master schedules should be executed as they were established if no

unexpected events occur. However, disruptions may occur, especially in winter, which may

interrupt the master plans. When a disruption occurs, routes should be quickly revised to

minimise the negative impact it may cause and to ensure the quality of service. The case of

adjusting an initial itinerary after one or more vehicle breakdowns during the execution stage is

considered in this research.

This dissertation consists of four main chapters: Chapter 2 presents the literature review. In

Chapter 3 an exact approach is proposed to solve the rural postman problem with time windows

(RPPTW); the article of Chapter 3 has been accepted for publication in Networks. In Chapter 4 a

heuristic method is presented to solve larger instances of the same problem; the corresponding

article has been submitted to Networks. In Chapter 5 the rescheduling capacitated arc routing

problem is introduced considering operational and disruption costs; the article of Chapter 5 has

been submitted to International Transactions in Operational Research. A more detailed outline

of the thesis is given in the following section.

1.1 Thesis Outline

At first, the contributions in the literature on time-sensitive and dynamic problems in arc

routing problems, especially in road winter maintenance applications are reviewed. This review

concludes that more research is needed on time-sensitive and dynamic winter maintenance arc

routing problems.

Then, Chapters 3 and 4 present the case of road network monitoring. In the first article

(Chapter 3) the monitoring of roads for black-ice detection is modeled as a RPPTW. In the

literature it is known that the polyhedral theory is very successful in solving postman problems,

4

especially the NP-hard postman problems (Tan et al. 2013). This approach is explored after

presenting several mathematical formulations of the problem. A cutting plane algorithm is

proposed as a solution method and tested on sets of instances adapted from the literature and on

the real network of the “Estrie” region.

The second article (Chapter 4) presents a metaheuristic as a solution technique to the

monitoring of road network when large instances are considered. The technique is based on the

adaptive large neighborhood search metaheuristic, which is one of the most successful

metaheuristics for solving complex routing problems (Ropke and Pisinger, 2006a). Several

versions of the metaheuristic combining different removal operators are compared. The

performance of the metaheuristics is evaluated in comparison to the solution of the first approach.

Regarding to dynamic issues in road winter maintenance operations, the third article

(Chapter 5) deals with the vehicle failures during the execution phase of salt spreading or snow

plowing operations. In dynamic routing problems all or part of the information are revealed or

updated as the routes are executed. Hence, the planners must react to events that occur in real

time. This work considers a reschedule as response to the disruption in a capacitated arc routing

problem itinerary. The objective is to study different policies in the rerouting phase considering

operational and disruption costs. Formulations based on mixed integer programming are

presented and a solution strategy is discussed when operational and disruption costs are

minimized simultaneously.

5

CHAPTER 2 LITERATURE REVIEW

An important area for the applications of arc routing is concerned with road network

maintenance. In particular, there are various logistic operations that deal with maintenance of

roads in winter. Spreading chemicals and abrasives, plowing roadways and sidewalks, loading

snow into trucks, and ice control are some examples of operations which are key activities to

maintaining the safety and the mobility in cities and rural areas. The complex operations, the

infrastructure constraints, especially in urban areas, and the dynamic nature of the operating

conditions make the road network maintenance a challenge for many governments.

Arc routing problems in the context of road network maintenance differ from other arc routing

applications in a number of important ways due to climate, level of service, network complexity

and size, traffic conditions, turn restrictions, synchronization of operations, policy decisions and

others. Therefore, arc routing models and solutions that consider practical complexities of the

problem are of enormous worth.

Campbell and Langevin (2000) present a brief history of roadway snow and ice control in the

U.S. from 1862 to 1996 and a survey of early works addressing arc routing in the same frame

from 1970 to 1994. In addition, a general description of two successful software packages for

roadway snow and ice control is presented. The first one CASPER, developed in India

incorporates multiple objectives in designing routes via a penalty function. The objectives

included in the software consider: meeting specific service level (time limit for routes),

minimizing deadhead travel, and maintaining class continuity when priorities are given. The

second software package is GeoRoute Municipal, which has been developed in Canada; its

module “route manager” is its optimization system. It works dividing the region of study into

sectors, and then for each to optimize the routes for a number of scenarios. The survey provides

evidence of the wide gap between theory and practice, therefore authors encourage contributions

in the area of route optimization for winter road maintenance.

Perrier et al. (2006a, 2006b, 2007a, 2007b) present a comprehensive review of models and

algorithms developed for the variety of winter road maintenance operations. This work is divided

into 4 surveys. The first one focuses on optimization models and solution algorithms for the

6

design for spreading and plowing. The second one discusses system design problems for snow

disposal operations. The last two address vehicle routing, depot location, and fleet sizing models

for winter road maintenance.

Perrier et al. (2012) provide a survey of recent optimization models and solution

methodologies for the routing of spreading operations. They present a detailed classification

scheme for spreader routing models developed over the past 40 years. They emphasize that the

new models demonstrate impressive capacities to include more issues of the real complexity, the

use of more sophisticated hybrid solutions strategies and consideration of more comprehensive

models that integrate vehicle routing with other strategic winter maintenance problems. However,

they note that there is still a large gap between state-of-the-art models and actual

implementations.

Campbell et al. (2014) present the most recent survey on operational research methods on

snow plow routing and a case study on implementation of route optimization for snow plowing.

They report the works not covered in the survey of Perrier et al. (2007b). This review

documented the trend from a heuristic approach to mathematical programming-based approaches,

as well as efforts to include more issues of the real complexity in snow plowing routing. They

conclude that even when in the last decade there has been some impressive progress in snow

plow routing research, similar progress has not occurred in implementing route optimization for

winter road maintenance because it seems that models are generally still not comprehensive

enough to consider all that needs to be included, and the mathematical programming-based

models do not have the ease of use required by operating personnel.

Eglese et al. (2014) provide detailed background on arc routing for the salt spreading. The

survey shows that while early work has used simple constructive heuristics, more recently

various metaheuristics algorithms have been developed for salt spreading applications. The

authors note that there are few works of exact solution methods being used in real cases because a

reasonable amount of computing time is required. Hence solution methods tend to rely on

heuristic approaches. Two works are highlighted: Letchford and Eglese (1998) and Tagmouti et

al. (2007), which are particularly relevant to the types of model and constraints found in

spreading applications.

7

Road network monitoring and road marking are other activities of road network maintenance;

however in arc routing problems they have not received as much attention as snow plowing or

spreading chemicals for winter.

The road network monitoring aims at maintaining the safety and the visibility of the roads and

highways by a timely detection of the various incidents occurring on it. This problem was firstly

modeled by Marzolf et al. (2006) as a periodic capacitated arc routing problem for the case

where vehicles must inspect all the categorized road segments of a network over a two-week

horizon. During a shift, a vehicle may have to leave the planned route to answer an emergency

call and it may not be able to complete its planned itinerary. The authors rebuilt the routes using a

mathematical linear formulation which selects pre-determined routes in order to maximize the

number of passages on class 1 arcs. Later, Monroy et al. (2013) studied the same problem, but

this time the objective is to build the initial plan minimizing the traveled cost and fulfilling

frequencies of services on the roads classified into three categories. They present a mixed-integer

program formulation and for larger instances they propose a heuristic solution method that works

in two phases; first an assignation of arcs to shift is done, and then a rural postman problem is

solved for each shift.

In the Province of Quebec, road markings have to be painted or repainted every year. The

Ministry of Transport uses a fleet of special vehicles to mark the roads and also tank trucks to

meet the marking vehicles and replenish them. Amaya et al. (2007) introduce the capacitated arc

routing problem with refill point, the problem consists in simultaneously determining the routes

of marking vehicles and refilling vehicles that minimize the total cost. An integer linear

programming model is presented and a cutting plane method to solve it. Later, Amaya et al.

(2010) present a route-first cluster-second heuristic procedure for an extension of the problem

considering multiple loads; in this version the refilling vehicle does not have to return to the

depot each time it meets the marking vehicles.

The time-sensitivity of the operations and the dynamic nature of the context are two important

features on road winter maintenance noted in previous surveys. Eglese et al. (2014) and Perrier et

al. (2012) affirm that the timing of operations is crucial to achieve the desired level of service in

road winter maintenance. On the other hand, a real-time routing in road network maintenance is

necessary to respond dynamically not just to atmospheric conditions and forecasts, but also to

8

equipment breakdowns, traffic congestion and accidents, all of which are more common in winter

driving (Perrier et al., 2012). The survey from “synthesis report on winter highways operations”

(Transportation Research Board, 2005) that included 22 prominent winter road maintenance

agencies in North America highlights the use of dynamic routes in practice as 72% of the

agencies indicated that they dynamically change routes.

Table 2.1 summarizes the works on time-sensitive arc routing problems and dynamic arc

routing problems in road network maintenance presented in the surveys.

Table 2.1: Synthesis of works in road network maintenance considering time-sensitive and
dynamic context

Problem Authors Real
application

Problem
characteristics

Solution
method

CARPTW* Eglese (1994) Spreading
operations

Multi-depots

Wide time windows

Two-phase
heuristic

RPP** with
deadline classes

Letchford and
Eglese (1998)

Spreading
operations

Deadline classes Cutting-plane
approach

CARPTW* Golbaharan
(2001)

Plowing
routing

Multi-depots

Time windows

Column
generation

CARPTW* Razmara
(2004)

Plowing
routing

Time windows Column
generation

Rescheduling for
Periodic CARP*

Marzolf et al.
(2006)

Road network
monitoring

Frequencies of
service

Reschedule of
routes

Mathematical
formulations
solved using
CPLEX 8.0

CARP*** with
dynamic
information

Handa et al.
(2005)

Spreading
operations

Requirements and
demands change
during the operation

Memetic
algorithm

CARP*** with
time dependent
service cost

Tagmouti et al.
(2007)

Spreading
operations

Time-dependent
service cost

Column
generation

CARP*** with
time dependent
service cost

Tagmouti et al.
(2010)

Spreading
operations

Time-dependent
service cost

Variable
neighborhood
descent

Dynamic
CARP*** with
time dependent
service cost

Tagmouti et
al.(2011)

Spreading
operations

Dynamic version

Time-dependent
service cost

Variable
neighborhood
descent

 CARPTW*: Capacitated arc routing problem with time windows
 RPP**: Rural postman problem
 CARP***: Capacitated arc routing problem

9

From Table 2.1, it can be seen that most works that consider timing-sensitive arc routing

problems have focused on the capacitated case and column generation is the approach most used

as the solution method. There are only three works that deal with dynamic aspects, in these cases

heuristics and metaheuristics are proposed to solve the problem.

Next sections correspond to contribution on time-sensitive (time windows) and dynamic arc

routing problems where details of most of the works in Table 2.1 are presented.

2.1 Arc routing problems with time windows

Arc routing problems focus on solving routing when the demands for services are located on

edges or arcs of a network. Arc routing is the counterpart of vehicle routing, and addresses cases

like waste collection where demands correspond to quantities to be collected in the streets, or salt

spreading for ice clearance in winter where deliveries must be done over roads.

When each customer 𝑒 specifies a period of time, called a “time window” in which the service

must occur, the conventional arc routing problems become arc routing problems with time

windows. A time interval [𝑡𝑒 ,𝑏𝑒] is specified for each customer, where 𝑡𝑒 ≥ 0 indicates the

earliest arrival time and 𝑏𝑒 > 0 indicates the latest arrival time. Most of the arc routing problems

with time windows consider the case when the service must start between the earliest and latest

arrival time of the time windows. However there are other types of time windows: i) the service

must finish no later than the latest time; in this case every time window begins at time zero and

only deadlines are given to customers. ii) The service must be carried out during the interval of

the time window. This is typical in cases such as trash collection where the collection must

respect some schedules in large cities, or such as street sweeping where the activity must be done

during some specific time because of parking restrictions. The Figure 2.1 presents the different

types of windows.

Other classification of routing with time windows considers soft and hard time windows. In

the soft case, the vehicles are allowed to violate time windows but a penalty cost is incurred. On

the other hand, in hard time windows a feasible solution must satisfy the time windows

constraints for all the services and vehicles may wait at a node for service.

10

a. The service must finish before
the latest time.

b. The service must be executed
during the time interval

c. The service must start between
the earliest and the latest time

Figure 2.1: Types of time windows

Time dependent arc routing problems can be seem as arc routing problems with soft time

windows when the service cost is minimal within a given time interval and then increases linearly

on both sides of the interval.

The following sections present a brief description of the arc routing problems and a summary

of the research that has been done considering timing-sensitive features.

2.1.1 The Chinese postman problem

This problem was first suggested by the Chinese mathematician Kwan (1962). Formally, given

a connected graph 𝐺 = (𝑉,𝐸) where 𝑉 is a set of vertices and 𝐸 is a set of undirected edges,

with distances on the edges, the problem is to find a tour, which passes through every edge in 𝐸

at least once, starting and finishing at the same vertex, and in the shortest possible way. When the

underlying graph is completely directed or completely undirected, the Chinese postman problem

(CPP) can be solved in polynomial time (Christofides, 1973; Edmonds and Johnson, 1973).

However when the underlying graph is mixed, the problem becomes NP-hard (Papadimitriou,

1976).

2.1.1.1 The Chinese postman problem with time windows

This problem is an extension of the CPP, where one vertex of the graph 𝐺 is designed as the

depot vertex, and the tour must start and finish at that vertex. In addition, time intervals are

𝑡𝑒 𝑏𝑒

𝑡𝑒 𝑏𝑒

𝑡𝑒 𝑏𝑒

11

introduced so that earliest and latest time constraints are specified for the start of service of each

edge. The inclusion of time windows constraints makes the problem NP-hard in all the cases

(Dror, 2000).

The CPP with time windows (CPPTW) is studied at first by Wang and Wen (2002). They

consider a mixed linear programming model of a directed CPP and incorporate the time-

constraints into the model. The formulation traces how to travel the network structure explicitly.

The problem is defined on a directed graph 𝐺 = (𝑉,𝐴) where 𝑉 = {𝑣𝑖| 𝑖 = 1, … ,𝑛} is a vertex

set and 𝐴 = ��𝑣𝑖 , 𝑣𝑗�� �𝑣𝑖 , 𝑣𝑗� ≠ �𝑣𝑗 , 𝑣𝑖�,∀ 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 � is an arc set. Let 𝐵𝑖𝑘 be the time that the

postman visits vertex 𝑣𝑖 at 𝑘𝑡ℎ iteration, assuming that the postman starts and finishes the tour at

vertex 1, then 𝐵11 means the postman’s starting time at vertex 1, and 𝐵1𝐾+1,𝐾 ≥ 1 is the

completion time of the tour when 𝐾 is large enough. 𝐷𝑖𝑗 is the distance (time) from vertex 𝑣𝑖 to

vertex 𝑣𝑗 and it is assumed that the triangle inequality holds for the distance measure. Let 𝑥𝑖𝑗𝑘 be a

binary variable equal to 1 if at 𝑘𝑡ℎ iteration the postman traverses from vertex 𝑣𝑖 to vertex 𝑣𝑗 , and

equal to 0 otherwise. The value of 𝐾 must be given under the condition of 𝐾 ≥ max(𝑖,𝑗)�∑ 𝑥𝑖𝑗𝑘𝑘 �.

Assuming that when a postman must traverse an arc more than once, the postman will deliver the

mail when he traverses the arc at the first time, the model can be formulated as follows:

minimize 𝐵1𝑘+1 − 𝐵11 (2.1)

s.t.:

𝐵𝑖𝑘 − 𝐵1𝑘 ≥ 𝐷1𝑖𝑥1𝑖𝑘 ∀ (1,𝑣𝑖) ∈ 𝐴,𝑘 = 1, … ,𝐾 (2.2)

𝐵1𝑘+1 − 𝐵𝑖𝑘 ≥ 𝐷𝑖1𝑥𝑖1𝑘 ∀ (𝑣𝑖, 1) ∈ 𝐴,𝑘 = 1, … ,𝐾 (2.3)

𝐵𝑗𝑘 − 𝐵𝑖𝑘 ≥ 𝐷𝑖𝑗𝑥𝑖𝑗𝑘 ∀ �𝑣𝑖, 𝑣𝑗� ∈ 𝐴, 𝑖, 𝑗 ≠ 1, 𝑘 = 1, … ,𝐾 (2.4)

∑ 𝑥𝑖𝑗𝑘(𝑣𝑖,𝑣𝑗)∈𝐴 = ∑ 𝑥𝑗𝑖𝑘 (𝑣𝑗,𝑣𝑖)∈𝐴 ∀ 𝑖 = 1, . . ,𝑛, 𝑘 = 1, … ,𝐾 (2.5)

∑ 𝑥𝑖𝑗𝑘𝑘 ≥ 1 ∀ �𝑣𝑖 , 𝑣𝑗� ∈ 𝐴,𝑘 = 1, … ,𝐾 (2.6)

𝑡𝑖 ≤ 𝐵𝑖1 ≤ 𝑏𝑖 ∀ 𝑖 = 2, . . ,𝑛 (2.7)

𝑥𝑖𝑗𝑘 ∈ {0,1} ∀ �𝑣𝑖, 𝑣𝑗� ∈ 𝐴,𝑘 = 1, … ,𝐾 (2.8)

12

The objective function looks for minimizing the total time for the postman to finish the tour.

Constraints (2.2), (2.3), and (2.4) ensure the continuity of time. In (2.5) the condition that vertices

must be symmetric is ensured. Constraints in (2.6) ensure that each arc must be passed at least

once. Constraints (2.7) impose that postman has to arrive vertex 𝑖 between time interval [𝑡𝑖, 𝑏𝑖] to

deliver the mails. The variables are restricted to be 0-1 integer in (2.8).

Note that this model does not consider waiting time once the postman starts the mail

delivering. However, the authors modified the model a little to ensure the existence of the

solution in the cases where waiting time is necessary and they employ the concept of fuzzy set

theory when time constraints are not certain.

This model includes a strong assumption: the “iteration” variable is a simple circuit. The

problem is formulated as a circuit sequence such that each vertex in an iteration associates with

only one starting time and in every circuit the depot vertex is included. Although the authors

found an optimal value of 𝐾 based on the even-degree properties of a directed CPP, this result is

only valid for the case where the time windows can be fixed. They determined the bounds of the

time intervals to get feasible solutions. However, if an arbitrary time interval is given, there can

be no solution to this model.

Aminu and Eglese (2006) studied the undirected case and modelled the problem using

constraint programming. Two different formulations are proposed. The first formulation

approaches the problem directly and the second transforms the problem to an equivalent vehicle

routing problem with time windows (VRPTW). In these formulations it has been assumed that the

time to travel over an edge is equal to the cost of travelling over the edge.

First formulation (F1):

Initially an arbitrary edge is added to represent the depot node, therefore the total number of

edges in the graph is 𝑁 + 1, if 𝑁 is the number of the original edges in the graph. Three sets of

decision variables are defined: i) 𝐸𝐸𝐸𝑒 = {𝐸1, … ,𝐸𝑁 ,𝐸0 } is the set of variables where 𝐸𝑖

indicates where 𝑒𝑖 ∈ 𝐸 comes in the ordering for service and 𝐸0 represents the order for servicing

the edge depot (the domain of the 𝐸𝐸𝐸𝑒 variables is {1, … ,𝑁 + 1}). ii) a set of binary variables to

indicate in which direction the edge is served; for each edge 𝑒𝑖 ∈ 𝐸, 𝑧𝑖 determines the direction

that the edge is serviced (for 𝑒𝑖 = �𝑣𝑝, 𝑣𝑞�, 𝑧𝑖 = 0 if the edge is serviced in the direction 𝑣𝑝 → 𝑣𝑞

13

and 𝑧𝑖 = 1 if the edge is serviced in the direction 𝑣𝑞 → 𝑣𝑝). iii) a set of variables 𝑐𝑐𝑐𝑡𝑖 for

𝑒𝑖 ∈ 𝐸 represent the cost (or time) to finish serving 𝑒𝑖. Let 𝑐𝑐𝑐𝑡𝑖𝑗 be the cost of the shortest path

from the node where 𝑒𝑖 ∈ 𝐸 was served last to the node where service starts for 𝑒𝑗 ∈ 𝐸. Let

𝑡𝑐𝑐𝑐𝑡𝑗 be the actual given cost to service the length of 𝑒𝑗 ∈ 𝐸, and let 𝑐𝑐𝑐𝑡𝑗 be the cost to finish

serving 𝑒𝑗 ∈ 𝐸. Then, for edge 𝑒𝑗succeeding 𝑒𝑖in the solution, the relationship 𝑐𝑐𝑐𝑡𝑖 + 𝑐𝑐𝑐𝑡𝑖𝑗 +

𝑡𝑐𝑐𝑐𝑡𝑗 ≤ 𝑐𝑐𝑐𝑡𝑗 holds. In addition, let 𝑡𝑖 and 𝑏𝑖 be the earliest and latest time to serve edge 𝑒𝑖,

and let 𝑢_𝑐𝑐𝑐𝑡 be the upper bound for the cost of the complete tour. F1 for the CPPTW is stated

as follows:

minimize 𝑐𝑐𝑐𝑡𝑁+1 (2.9)

s.t.:

𝑐𝑐𝑐𝑡𝑖 + 𝑐𝑐𝑐𝑡𝑖𝑗 + 𝑡𝑐𝑐𝑐𝑡𝑗 ≤ 𝑐𝑐𝑐𝑡𝑗 ∀ 𝑖 ≠ 𝑗, 𝑒𝑖, 𝑒𝑗 ∈ 𝐸, when 𝑒𝑗 follows 𝑒𝑖 (2.10)

𝑡𝑖 ≤ 𝑐𝑐𝑐𝑡𝑖 ≤ 𝑏𝑖 𝑓𝑐𝑓 𝑖 = 1, … ,𝑁 (2.11)

0 ≤ 𝑐𝑐𝑐𝑡𝑁 ≤ 𝑢_𝑐𝑐𝑐𝑡 (2.12)

𝐸𝐸𝐸𝑒 ∷ [1, … ,𝑁 + 1] (2.13)

𝑡𝑎𝑎𝐸𝑖𝑓𝑓𝑒𝑓𝑒𝑛𝑡 (𝐸𝐸𝐸𝑒) (2.14)

𝐸0 = 𝑁 + 1 (2.15)

The objective function minimizes the time to complete service on all the edges of the graph

starting and finishing at 𝑣0. The cost of the current partial path is computed in (2.9), time

windows constraints are defined in (2.10) - (2.12). The domain of the 𝐸𝐸𝐸𝑒 variables is given in

(2.13) and (2.14) imposes that these variables must be all different. In (2.15), the variable

representing the depot node is constrained to be served the last.

The second formulation (F2)

The second formulation is based on a graph transformation inspired by Pearn et al. (1987)

where each edge of the graph is replaced with three nodes called the side and middle nodes.

Using this approach the problem is transformed into a vehicle routing problem (VRP). The use of

the middle node ensures that the three nodes representing an edge are serviced consecutively.

However, the authors dispense the middle nodes and use just the side nodes to represent each

14

edge, and adding additional constraints. Demands of each edge side node are half of the demand

on the edge they represent. The transformed problem may now be formulated as a special case of

a clustered travelling salesman problem with time windows where each member of the cluster

must be visited within its time windows before visiting a node in a different cluster. The clusters

are formed by the side node pairs and additional constraints are added to ensure that the side

nodes are consecutive node in any route.

F1 found optimal solutions for problems with up to 15 edges and tight time windows. F2 was

tested on a set of problems with up to 69 edges. Optimal solutions were found quickly when the

time windows are tight. The results also show that as the time windows are made wider and the

number or feasible solutions increases, some problems are not solved to optimality within a

reasonable computing time.

2.1.1.2 The Chinese postman problem with time-dependent travel time

In this problem the travel time on an arc depends on the starting time to travel it. Sun et al.

(2013) studied the test sequence optimization in hybrid automaton (Springintveld et al. 2001),

where the delay time of transition from state 𝑐𝑖 to 𝑐𝑗 is a function 𝐷𝑖𝑗(𝑡𝑖) of the arrival time 𝑡𝑖 at

𝑐𝑖. The authors model the problem on a directed network 𝐺 = (𝑉,𝐴) with 𝐷𝑖𝑗(𝑡𝑖) as the time

dependent travel time of arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴. As each state 𝑐𝑖 corresponds to the vertex 𝑣𝑖 in 𝑉, and

each transition from 𝑐𝑖 to 𝑐𝑗 corresponds to the arc (𝑣𝑖 , 𝑣𝑗) in 𝐴, the optimal test sequence

checking all transitions on the hybrid system is equivalent to a minimum time dependent CPP-

tour that traverses all the arcs in time dependent network 𝐺. The problem is formulated as an

integer programming model which uses the iteration variable introduced by Wang and Wen

(2002) to trace the tour. To solve the problem the authors propose a cutting plane heuristic

algorithm. They present cutting planes that can be separated polynomially using a maximum flow

algorithm. In addition two upper bound heuristics are also designed to terminate the cutting plane

procedure whenever the current LP solution is fractional and violates no inequality. The

algorithm is tested on a set of generated instances with up to 25 vertices and 50 arcs. The

computational results show that the lower bound obtained by adding cutting planes improves the

LP relaxation bound of the original formulation for all instances. The gap between the lower

bound and the best upper bound for all the tests ranges between 0.90% and 31.75%.

15

Later, Sun et al. (2015), propose an integer programming approach, an extension of the

previous formulation. The new formulation does not assume that every cycle in the graph must

visit the depot. They use two sets of constraints: the first part has a strong combinatorial

structure, which is linear and refers to the routing; the second part is related to time-dependent

travel time and is not linear. In the case when all the travel times are piecewise functions of the

starting time, a linearization is provided. The formulation is solved with a cutting plane

algorithm. The algorithm was tested on a real-world and several randomly generated instances.

For the real instance with 27 vertices and 27 arcs the algorithm finds a gap between the lower and

upper bounds is less than 11.80% in 425 s. For the set of generated instances with between 10 to

25 vertices and 20 to 60 arcs, and piece functions with 2 to 4 times intervals, and fluctuation

interval [−𝑅,𝑅] from [−10,10] to [−30,30]. The results indicate that the face defining and valid

inequalities proposed play an important role when the number of time intervals and the scale of

fluctuation become larger.

2.1.1.3 Time dependent Chinese postman problem with time windows

Sun et al. (2011) consider a variant of the CPPTW, where the travel time and service time on

arcs depend on the starting time. The travel and service times are piecewise linear functions of

time.

The problem is defined on a directed graph 𝐺 = (𝑉,𝐴), where 𝑉 is the vertex set, and 𝐴 is the

arc set. Each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴 has an associated time window �𝑡𝑖𝑗, 𝑏𝑖𝑗�, with 𝑡𝑖𝑗 , 𝑏𝑖𝑗 ∈ ℤ+ ∪ {0}.

The travel time 𝐷𝑖𝑗(𝑡𝑖) ∈ ℤ+ of an arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴 depends on the starting time 𝑡𝑖. Similarly, let

𝑆𝑖𝑗(𝑡𝑖) ∈ ℤ+ be the time dependent service time of arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴 with starting time 𝑡𝑖. The

problem looks for finding the minimum total travel time tour starting at the given depot vertex

𝑣0 ∈ 𝑉 and starting time 𝑡0 and passing through each (𝑣𝑖, 𝑣𝑗) ∈ 𝐴 at least once, such that the

completion time of servicing each arc in 𝐴 is in its associated time window.

The authors present a graph transformation method through which the time dependent CPPTW

can be reformulated as a 0/1 integer linear programming without any timing constraint. The

problem is transformed into a generalized rural postman problem. The algorithm is tested on five

sets of randomly generated instances, where |𝑉| ranges from 30 to 50, and |𝐴| ranges from 50 to

130. They were able to solve to optimality instances with up to 100 arcs within 15 minutes plus

16

the time of transforming the graph. In addition, they tested four sets of instances to find how the

width of time windows can affect the computational time.

2.1.2 The rural postman problem

This problem was introduced by Orloff (1976). Formally, the rural postman problem (RPP) is

defined on an undirected connected graph 𝐺 = (𝑉,𝐸), where 𝑉 is the vertex set and 𝐸 is the edge

set. A subset 𝑅 of the edges are required. Each edge 𝑒 has a cost 𝑐𝑒 ≥ 0. The RPP consists of

finding a minimum cost tour in 𝐺 traversing every edge in 𝑅 at least once. The RPP historically

arose in rural mail delivery; however applications of the RPP take place in contexts where some

edges of a graph must be serviced by an uncapacitated vehicle.

By reducing the NP-hard Hamiltonian cycle problem to the RPP, Lenstra and Kan (1976)

showed RPP to be NP-hard, except when 𝑅 = 𝐸, in which case the RPP becomes the CPP.

2.1.2.1 The RPP with deadline classes

The RPP with deadline classes is presented by Letchford and Eglese (1998). In this problem

the set of arcs are partitioned into small number of classes according to priority, with each class

having its own deadline on service. Formally the set 𝑅 of required edges is partitioned into

{𝑅1, … ,𝑅𝑝} and services for each class 𝑘 of edges (𝑘 = 1, … ,𝑝) must be completed by time 𝐵𝑘.

The problem is formulated on an undirected graph as an integer linear programming model. The

authors have proposed several classes of valid inequalities which exploit the structure of the

problem. They used the dual cutting-plane method (Nemhauser and Wolsey, 1988) to solve the

problem: an initial LP relaxation is solved and then each time that a violated inequality is

identified, it is added to the LP, and the LP is solved using the dual simplex method. When no

more violated inequalities can be found, branch-and-bound is invoked to obtain integrality. The

algorithm was tested on a set of 10 instances: 5 problems from Corberán and Sanchis (1994) were

adapted and the value of 𝑝 was set to 1 and 2 for each of the problems. The problems have

between 22 and 67 required edges and between 3 and 6 connected components. The cutting plane

algorithm showed a good performance as all the instances were solved to optimality.

17

2.1.2.2 The time-dependent rural postman problem

Applications involving scheduling with time-dependent processing time (Alidaee and Womer,

1999; Sundararaghavan and Kunnathur, 1994) motive this problem. The travel (or service) time

of each arc depends on time, that is, the travel time of an arc depend on the time interval during

which the arc is traversed, and the postman is not required to cover every arc in the network, only

a subset of arcs. A formal definition is presented by Tan et al. (2013). Let 𝐺 = (𝑉,𝐴) be a

directed graph, where 𝑉 is the vertex set and 𝐴 is the arc set, which includes a subset of required

arcs 𝐴𝑅 that must be serviced. Each required arc in 𝐴𝑅 is associated with a travel time and a

service time, while the arcs not in 𝐴𝑅 have travel time only. Both the travel time and the service

time are time-dependent piecewise functions. Let 𝑡𝑡𝑖𝑗(𝑡𝑖) and 𝑐𝑡𝑖𝑗(𝑡𝑖) denote the time-dependent

travel time function and the service time function, where 𝑡𝑖 is the time at the beginning of travel

along an arc or the service time on an arc (𝑣𝑖 , 𝑣𝑗). A postman is required to service the arcs in 𝐴𝑅

and is located at the depot vertex from which to start and end the service tour. The postman is

allowed to wait along the tour and must start after a given time 𝑡0. The time-dependent RPP

consists of finding a tour servicing all of the required arcs with a minimum cost with respect to

the time-dependent travel time and the service time.

Tan and Sun (2011) and Tan et al. (2013) present the version that considers only time-

dependent travel times and propose an arc-path formulation and strong valid inequalities. The

authors note that the constant travel time assumption in other timing sensitive arc routing

problems never holds on the time dependent network. Thus the transformation methods which

use the shortest path algorithm have as sub-problem the time dependent shortest path problem,

which has been proved to be NP-hard (Orda and Rom, 1990). They propose an integer linear

programming: an arc-path formulation for the problem with a constraint set divided into two

parts. The first part defines the polytope of the arc-path alternation sequence and the second part

is closely related to time-dependent travel time. The service time functions are considered as

piecewise functions, and are linearized. Based on the polyhedral results, a cutting plane algorithm

was proposed as solution method. The algorithm was tested on two sets of randomly generated

instances with up to 50 vertices and with up to 50 arcs; the travel time is treated as the step

function with 3 and 4 intervals, and the percentage of required arcs ranges from 10% to 30%. The

computational results show that for all 42 test instances the method solved instances up to 25

18

vertices and 50 arcs. The relative gap between the best feasible solution and the lower bound is

3.16%for all the instances on average.

2.1.3 Capacitated arc routing problem

This problem was introduced for the directed case by Golden and Wong (1981), and later

(Belenguer and Benavent, 1991) formulated the problem for an undirected graph. It generalizes

the Chinese postman and rural postman. Given an undirected graph 𝐺 = (𝑉,𝐸) with 𝑉 as the set

of vertices and 𝐸 as the set of edges. A subset 𝑅 of edges are required. In addition, let 𝑐𝑒 ≥ 0 be

the edge cost, 𝐸𝑒 ≥ 0 be the edge demand for every 𝑒 ∈ 𝐸, and 𝑄 be the vehicle capacity. The

capacitated arc routing problem (CARP) consists of determining a minimum cost traversal of all

edges in 𝑅, so that each vehicle starts and finishes at the depot vertex 𝑣0 ∈ 𝑉, and the total

demand of all edges serviced by any particular vehicle does not exceed its capacity 𝑄. The CARP

defined on two specific graphs is not NP-hard, but on the other cases is NP-hard (Busch, 1991).

2.1.3.1 The CARP with time windows

The CARP with time windows (CARPTW) is defined as the classical CARP with the extra

requirement that the service of each demand edge must begin within some pre-specific time

window.

Given an undirected connected graph 𝐺 = (𝑉,𝐸), where 𝑐𝑒 ≥ 0 is the cost of traversing the

edge 𝑒 = (𝑖, 𝑗), and 𝐸𝑒 ≥ 0 is the demand of the edge. A number of vehicles, each of capacity 𝑄

are placed at the node depot 𝑣0. Let 𝑡𝑒 denote the time needed to traverse edge 𝑒, and let each

demand edge have a time windows [𝑡𝑒 , 𝑏𝑒], in which service of the edge must start. The problem

consists of finding tours such that i) All edges with 𝐸𝑒 > 0 are serviced, ii) Vehicle capacities are

respected, iii) Service of each demand edge start within the time windows of that edge, and iv)

Total cost is minimized.

Eglese (1994) firstly presents an application in routing for winter gritting: local authorities

treat the roads by spreading a de-icing agent on them, multiple depot locations and limited

vehicle capacities are considered, and roads with different priorities implies that some roads must

be treated within two hours and other within four hours of the start of gritting. This problem can

be considered as CARPTW, where the time windows are rather wide. A two-phase heuristic

method is proposed as solution method: first the optimal solution of an unconstrained CPP for

19

the network considering just category 1 roads is found, depot locations are specified and routes

are defined, second a simulated annealing algorithm attempts to improve the current solution.

Mullaseril (1997) studies the problem of managing a fleet of trucks for distributing feed in a

large livestock ranch in Arizona. The ranch produces cattle. The cattle are kept over a large area

in approximately 500 pens with rectangular shape. The pens are arranged in rows by a network of

paved and dirt roads. The feed type, volume and feeding time for each pen may vary from day to

day because there is a constant movement of cattle in and out of the yard. A route may be

stipulated to deliver the exact demand to several pens, but weighing inaccuracies may force it to

only partially supply the last pen and that pen would need to have feed delivery from more than

one route. Thus, the feed-yard allows split-delivery. In the problem case there is a further

consideration. A vehicle may traverse the arcs at two different speeds-discharging speed and dead

heading speed.

The author models the feed delivery problem for the cattle ranch as a collection of capacitated

rural postman problem with time windows and split delivery. The livestock ranch is represented

as a connected mixed graph, where the set of requirements are arcs (because the design of the

delivery trucks). The author presents heuristic algorithms for obtaining fast solutions for this

class of problems. Also he presents solution strategies for obtaining tight lower bounds to the

optimal solution and optimal solutions to some of the real life split delivery problems with time

windows.

In addition, the author presents a transformation of this arc routing setting into an equivalent

node routing problem where the number of nodes is the same as the number of required arcs in

the original arc routing problem. The problem in the equivalent graph of nodes is decomposed

and solved with a column generation approach. The master problem is formulated as a set

covering problem based on the work of Desrosiers et al. (1995). The sub-problem is modeled as a

shortest path problem with resource constraints and solved using dynamic programming

algorithm as an extension of the work of Desrochers (1988). This approach shows to be

successful on instances up to 55 nodes.

Gueguen (1999) describes an integer linear programming model for the undirected CARPTW

and another transformation into a VRPTW, but without numerical results. The author presents the

only “direct model” for an undirected CARPTW, which is presented as follows:

20

It is known that an optimal solution to the undirected CARP always traverses each edge at

most once per direction in each route. The example of Figure 2.2 shows that this property is not

true when time windows are considered. In the example, all costs and traverse times are equal to

one, there is not service time considered, and the capacity is not restricted for a vehicle that must

start and finish at the depot (black node) and visit all the edges in their time intervals. From the

example, the only solution to the problem with a single vehicle is: starts at the depot, serves in

this order the edges 5, 1, 4, 2, 3 and finishes at the depot. The vehicle traverses edge 3 six times.

Figure 2.2: Example of time windows in an undirected graph
 (Source: Gueguen (1999))

Based on the previous analysis, Gueguen (1999) proposed a model making (𝑚 + 1) copies of

each edge, if the number of edges of the graph is equal to 𝑚. This number is an upper bound

considering that in the worst case an edge 𝑒 will be traversed:

– Once for serving each of the other (𝑚− 1) edges

– Once for serving the edge 𝑒

– Once for coming back to the depot.

Having a maximum of (𝑚 + 1) times.

Three types of decision variables are defined: traverse, service, and time variables

𝑥𝑖𝑖𝑗𝑖
𝑘 =1 if vehicle 𝑘 traverse the copy 𝛽 of edge 𝑗 immediately after copy 𝛼 of edge 𝑖, and 0

otherwise. These variables are only created when the final node from edge 𝑖 is the same as the

initial node from edge 𝑗.

𝑐𝑖𝑘 =1 if vehicle 𝑘 services the edge 𝑖, and 0 otherwise.

𝑡𝑖𝑖𝑘 is the time to start traversing copy 𝛼 of edge 𝑖 by vehicle 𝑘.

[11,12]

[13,14]

[8,9]

[5,6]
[2,3]

1

2

3 5

4

21

The CARPTW formulation is as follows:

minimize ∑ ∑ ∑ ∑ ∑ 𝑐𝑝𝑖
𝑘 𝑥𝑖𝑖𝑗𝑖

𝑘𝑚+1
𝑖=1

𝑚
𝑗=1

𝑚+1
∝=1

𝑚
𝑖=1

𝐾
𝑘=1 + ∑ ∑ 𝑐𝑠𝑖𝑐𝑖

𝑘𝑚
𝑖=1

𝐾
𝑘=1 (2.16)

s.t.:

∑ ∑ 𝑥𝑗𝑖𝑖𝑖
𝑘𝑚+1

𝑖=1
𝑚
𝑗=1 = ∑ ∑ 𝑥𝑖𝑖𝑗𝑖

𝑘𝑚+1
𝑖=1

𝑚
𝑗=1 ∀ 𝑖 = 1, … ,𝑚 𝛽 = 1, … ,𝑚 + 1 𝑘 = 1, … ,𝐾 (2.17)

∑ 𝑐𝑖𝑘𝐾
𝑘=1 = 1 ∀ 𝑖 = 1, … ,𝑚 (2.18)

∑ 𝑞𝑖𝑐𝑖𝑘𝑚
𝑖=1 ≤ 𝑄 ∀ 𝑘 = 1, … ,𝐾 (2.19)

𝑐𝑖𝑘 ≤ ∑ ∑ 𝑥𝑖1𝑗𝑖𝑘𝑚+1
𝑖=1 𝑚

𝑗=1 ∀ 𝑖 = 1, … ,𝑚 𝑘 = 1, … ,𝐾 (2.20)

𝐵𝑖𝑖𝑘 + 𝑡𝑝𝑖 − 𝐶�1 − 𝑥𝑖𝑖𝑗𝑖
𝑘 � ≤ 𝐵𝑗𝑖

𝑘 ∀ 𝑖 = 1, … ,𝑚 𝑗 = 1, … ,𝑚 𝛽 = 1, … ,𝑚 + 1

 𝛼 = 2, … ,𝑚 + 1, 𝑘 = 1, … ,𝐾 (2.21)

𝐵𝑖1𝑘 + 𝑡𝑝𝑖 + 𝑡𝑠𝑖 − 𝐶�1 − 𝑥𝑖1𝑗𝑖
𝑘 � ≤ 𝐵𝑗𝑖

𝑘 ∀ 𝑖 = 1, … ,𝑚 𝑗 = 1, … ,𝑚 𝛽 = 1, … ,𝑚 + 1

 𝑘 = 1, … ,𝐾 (2.22)

𝐵𝑖1𝑘 ≥ 𝑡𝑖 ∀ 𝑖 = 1, … ,𝑚 𝑘 = 1, … ,𝐾 (2.23)

𝐵𝑖1𝑘 ≤ 𝑏𝑖 ∀ 𝑖 = 1, … ,𝑚 𝑘 = 1, … ,𝐾 (2.24)

 𝑥𝑖𝑖𝑗𝑖
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 = 1, … ,𝑚 𝛼,𝛽 = 1, … ,𝑚 + 1 𝑘 = 1, …𝐾 (2.25)

𝑐𝑖𝑘 ∈ {0,1} ∀ 𝑖 = 1, … ,𝑚 𝑘 = 1, … ,𝐾 (2.26)

𝑡𝑖𝑘 ∈ ℝ+ ∀ 𝑖 ∈ 𝐴 , 𝑘 = 1, …𝑚 (2.27)

The objective is to minimize the traverse and service cost. It is assumed that if a service is

done in an edge, it is done in the copy 1 of that edge. The constraints (2.17) are conservation

flow, the constraints (2.18) and (2.19) make sure that the each edge is serviced, and the vehicle

capacity is not exceeded. Constraints (2.20) make a vehicle traverses the copy 1 of an edge if the

vehicle serve that edge. Constraints (2.21)-(2.24) set the accumulated times for all copies of the

edges and satisfy the time windows when edges are serviced. 𝐶 is a large constant with value

greater than the longest time route. The three sets of variables are defined in (2.25)-(2.27).

22

As the author noted, the model is not practical, then he proposed a transformation to node

routing problem based on the transformation presented by Mullaseril and Dror (1996).

Golbaharan (2001) studies a multi-depot CARPTW in the context of snow removal. Every

snow plow starts from a depot and returns to the same depot. The problem is formulated as a

linear integer programming model; indeed as a constrained set covering problem. The objective

function in this case minimizes the total cost of the routes and the penalty for using extra snow

plows. A column generation method is implemented to solve the problem. The master problem

includes the constraints on the number of snow plows available at each depot and the constraints

which guarantee that a required road segment is serviced. The sub-problem contains the time

window constraints and network flow constraints. The master problem is solved by the dual

simplex method, and the sub-problem for every depot is formulated as a shortest path problem

with time windows associated with the edges in the network, and it is solved with a label-setting

algorithm. Computational experiments were conducted on real-life instances involving 7 depots,

21 snow plows, 362 nodes, and 707 required edges.

Razmara (2004) presents a real problem of the Swedish National Road Agency on snow

removal routing for homogeneous snowplows; in this case every segment in the network must be

plowed in its associated time windows and the routes must start from an end at the same depot.

The case is formulated as a linear integer programming problem and solved using a Dantzig-

Wolfe decomposition scheme. The master problem is formulated as a constrained set covering

problem. The sub-problems are resource constrained shortest path problems, where time is the

resource. The sub-problems are solved by a label-setting algorithm. An integer solution to the

master problem is found by a greedy algorithm or a variable reduction procedure.

Later, Wøhlk (2005) provides two mathematical models for the undirected CARPTW, one

based on constructing a node duplicated network on which an integer linear programming is built

and one based on a transformation into an equivalent node routing problem, the VRPTW. Several

heuristics and a dynamic programming algorithm combined with simulated annealing, called

DYPSA, are proposed. The average DYPSA performance is about 8% above lower bounds. The

author also presents a column generation method to get tight lower bounds.

Reghioui et al. (2007) suggest a greedy randomized adaptive search procedure (GRASP) with

path relinking for the undirected CARPTW. Two constructive heuristics are used in the GRASP

23

algorithm: randomized path-scanning heuristic and randomized route first – cluster second

heuristic. Local search (OR-OPT, SWAP, and 2-OPT) is used to improve each solution. Path

relinking is used as an intensification strategy working on a small pool of elite solutions collected

during the GRASP. Computational results showed that the algorithm found 17 optimal solutions

(including 4 new ones) on the set of 24 instances proposed by Wøhlk (2005) and the gap to lower

bounds is less than 1%.

Johnson and Wøhlk (2009) propose two column generation method and a heuristic approach.

The master problem is a large set partitioning problem, and the sub-problem finds feasible routes

with respect to both capacity and time windows. Two methods are presented to solve the set

partitioning problem: a two-phase method and an iterative method. The heuristic approach

generates only tours that are good in some pre-specified sense and subsequently use the presented

methods for solving a set partitioning problem based on these columns. The method is tested on a

set of 20 instances adapted from the so-called Eglese instances for the classical CARP. The

instances contain from 51 to 190 required edges. The iterative method is superior to the two-

phase method both regarding computation time and ability to solve hard instances.

The case where the time windows are soft and violating these implies some extra cost is

studied by Afsar (2010). A Dantzing-Wolfe decomposition and column generation approach to

solve the problem optimally is presented. The sub-problem is a non-elementary capacitated

shortest path problem. Computational results are reported on a set of modified instances of

Johnson and Wøhlk (2009). The problems have up to 40 nodes and 69 required edges and linear

and symmetric penalty costs were considered.

2.1.3.2 Capacitated arc routing problem with time-dependent service cost

Tagmouti et al. (2007) study the directed capacitated arc routing problem with time-

dependent service cost inspired on winter gritting operations, where the timing of an intervention

is crucial; if the intervention is too early or too late, the cost in material and time increases. In this

case the cost of service depends on the time of beginning of service, indeed, the cost is a

piecewise linear function of time. The problem consists of finding a set of routes that serve all

required arcs in the graph at least cost (sum of travel cost and service cost) with the constraint

that vehicles are not allowed to wait along their route and must be back at the depot by a given

deadline. A column generation algorithm is proposed to solve the problem where the master

24

problem is a set covering problem and the sub-problems are time-dependent shortest path

problems with resource constraints. The method is tested on a set of instances derived from

Solomon’s problems of the VRPTW (Solomon, 1987). Instance with up to 40 required arcs were

solved to optimality.

Later, Tagmouti et al. (2010) propose a variable neighborhood descent (VND) heuristic for

solving the problem. Two initial solutions are constructed with an insertion heuristic and an

adaption of the savings heuristic (Clarke and Wright, 1964). The VND is then applied to each

solution to improve them. The structure of the neighborhoods manipulates an arc or sequence of

arcs. They tested the performance of this algorithm on a set of instances adapted from the CARP

instances of Golden et al. (1983), Li (1992), and Li and Eglese (1996). The algorithm behaved

appropriately and showed to be fast and competitive when compared with the adaptive multi-star

local search algorithm of Ibaraki et al. (2005) which is designed for the VRP with soft time

windows.

2.2 Dynamic arc routing problems

Several real-life routing problems have been studied in a static context, where it is assumed

that all data about the problem are known in advance. However a number of technological

advances have made possible that the information available to the planner be updated during the

execution of the routes. In this case, part or all of the input is unknown and revealed dynamically

during the execution of the plan.

Although there is a fair number of papers on dynamic node routing problems as it is presented

in the survey of Pillac et al. (2013), dynamic arc routing problems have not received enough

attention of the research community. This section summarises the works that deal with dynamic

issues in arc routing problems.

2.2.1 Dynamic rural postman problem

Moreira (2007) introduce a dynamic RPP motivated by an industrial application on a high

precision tools factory where pieces of different shapes have to be cut out of a surface by means

of an electrified string. In a first phase, the pieces are nested in the given surface. In a second

phase, an optimal cutting path is desirable for cutting out of pieces. The cutting surface is

25

suspended, which involves the falling of the surface portions cut out in succession. Any

movement of the cutting tool generates an effective cut, unless of course it is performed over a

region already cut out. Therefore the graph in which the cutting path is determined changes in a

dynamic fashion along the cutting process itself. There are two considerations: every piece that is

not completely cut out must not be traversed in its interior and there may not remain uncut pieces

in areas that have been cut out. The problem is modeled as a rural postman problem where the

cutting cost is minimized. Two heuristics are proposed to solve the problem. The first, called

“higher up vertex” chooses the higher up vertex among the candidates reachable by uncut edges.

The second, called “minimum empty path” chooses the nearest candidate as next vertex among

the visible candidates. The two heuristics were tested on 10 real industrial instances containing

between 19 and 52 pieces, and between 183 and 639 vertices. The proposed heuristics showed

improvements of about 3% with respect to actual solutions.

2.2.2 Dynamic CARP

Dynamic issues in the CARP have been addressed in a few works. Handa et al. (2005) present

an application in salt spreading on a road network in south Gloucestershire, England. The routing

requirements on a particular day are linked to road weather information system (RWIS), which

predicts road surfaces temperature and conditions across the road network within 20 minutes

intervals. The information of road requiring treatment and the amount of salt needed for each

road may change for each shift and even during a working shift. The problem is modeled as a

classical CARP. A prototype system is proposed and consists of the RWIS and an evolutionary

salting route optimization module. The optimization module has a memetic algorithm as

optimization method. The algorithm uses the crossover EAX operator (Nagata, 1997) due to its

search ability and a repair operator for offspring individuals is incorporated because the search

space may include solutions that exceed the vehicle capacities. The prototype was examined on

two typical shifts (one with 385 required edges and 11 vehicles and other with 97 required edges

and 3 vehicles). A CARP is solved at the beginning of each shift with the predicted data. The

results showed the effectiveness of the proposed method.

Yazici et al. (2014) present an interesting application for the multi-robot sensor-based

coverage problem. A path planning must be designed such as every point in a given workspace is

covered at least once by one of the robot’s sensor. Initially, the robots are assumed to be at the

26

same starting point with equal energy capacities, but due to partially unknown nature of the

workspace, the robots may face blockage on routes, and a fast re-planning is necessary

considering remaining capacities and current positions of the robots. The problem is modeled as a

CARP and the new plan is obtained by a modified Ulusoy’s partitioning algorithm (1985). The

algorithm was tested on two different real environments: on an indoor laboratory with 20 vertices

and 2 robots, and on a larger laboratory with 90 vertices and up to 10 robots. The authors

determined the maximum number of robots to be assigned to a given coverage task with efficient

coverage cost.

Tagmouti et al. (2011) study the dynamic CARP with time-dependent service cost. This work

is an extension of their previous works (Tagmouti et al., 2007, 2010) where the same problem is

considered but on the static case. In the dynamic case the time interval where the service cost is

minimal changes due to weather report updates, and therefore real-time modifications are

required to the current routes. An adaptation of the VND of their previous work is presented as

solution method. A starting solution is first computed with VND using service time cost

functions based on an initial forecast. A simulated storm goes through the network and move

along the 𝑥-axis. At different times, weather reports are received and update the storm speed. The

VND is applied on a new static problem each time a weather report is received. In each static

problem the graph is updated taking into account the already visited arcs. The algorithm was

tested on a set of 60 generated instances with weather reports received every 5 minutes. The

VND showed to be fast and allows the system to quickly use the new solution.

Weise et al. (2012) present a developmental solution method to the CARP that is suitable for

dynamic scenarios. The method is based on genetic programming; it works with a solution space

defined by all possible tours represented as a permutation of a subset of the required edges but a

search space different to the solution space. The approach iteratively adds edges to a solution

based on an environment’s state. The main objective is to minimize the total traverse cost without

consider limit on the number of vehicles. The solution method was tested on a large set of CARP

benchmark instances for the static case. Some scenarios were derived for the dynamic case from

2 instances with 25 and 66 required edges by removing a certain number of edges and solving the

problem with the new set of requirements.

27

Recently Liu et al. (2014) presented a memetic algorithm for the dynamic CARP. The

algorithm is capable to solve CARP with variations in vehicle availability, road accessibility, new

added task, canceled task, variation of traffic conditions, and variation of demands. The memetic

algorithm incorporates a new split scheme with a path repair operator in order to handle the

attributes of the problem. It combines features from global and local search, and has four key

steps: split method, parent selection, crossover, and local search. 4 dynamic problems taken from

Min et al. (2014) were used to test the algorithm including a case of 10 nodes, and 3 cases of 100

nodes with up to 33 tasks initially. The working of the proposed algorithm is illustrated using the

10-node example. The algorithm showed great potential for solving realistic dynamic CARP

problems.

28

CHAPTER 3 ARTICLE 1 : THE RURAL POSTMAN PROBLEM WITH

TIME WINDOWS

Marcela. Monroy-Licht1,2 , Ciro Alberto Amaya3, André Langevin1,2

1 Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal, Canada

2Centre de recherche sur les réseaux d’entreprises, la logistique et le transport (CIRRELT), Montréal,
Canada

3Departamento de Ingeniería Industrial, Universidad de Los Andes, Bogotá, Colombia

Abstract

The rural postman problem with time windows for the undirected case is introduced. The

problem occurs in the monitoring of roads for black-ice detection. Different formulations are

proposed and tested on sets of instances adapted from the literature. A cutting plane algorithm

based on valid inequalities for the traveling salesman problem (TSP) with time windows and the

precedence constrained TSP is presented as a solution method and tested on a set of real-life

networks. Computational results show that this approach is able to solve to optimality instances

with up to 104 required edges. At the end of the article the formulations for the undirected case

are extended to the directed case.

Keywords: Rural postman problem, time windows, cutting plane algorithms, monitoring of

roads

3.1 Introduction

The rural postman problem with time windows (RPPTW) involves finding a minimum- cost

tour that goes through a set of required edges in a network. A vehicle leaves the depot, visits the

required edges, and returns to the depot. A release time and a due time are given for each

required edge. The tour is feasible if the visits are carried out during the defined time windows.

Waiting times are allowed, i.e., the vehicle may arrive at any required edge earlier than its release

time, but the service cannot start until the time window “opens”. Costs of service are associated

29

with required edges and traversal costs with non-required edges. The vehicle may go through a

required edge more than once, and the cost is normally lower when it does not service the edge.

The real-world application underlying this study is the monitoring of roads for black-ice

detection (black-ice is a thin coating of clear or transparent ice on the pavement which is difficult

for the drivers to see). This activity is carried out by the Ministry of Transport in the province of

Quebec from mid-October to mid-December. The goal is to check the state of roads and take

measures to prevent accidents. During this period, black ice on roads is almost invisible to the

users; timely detection avoids pedestrian falls or automobile accidents.

Currently, a patrol must cover a network and generate reports about the state of the roads. The

available information refers to a short-term weather forecast and a characterization of roads with

high likelihood of black-ice formation; for example it is known that bridges and roads located

near rivers are particularly susceptible to ice formation under certain meteorological conditions.

The road segments to be checked are located in areas where the weather forecast indicates low

temperatures and rain. The weather forecast induces the time windows for monitoring some of

the road segments over a large region. Normally the patrol has enough time to visit all the roads

defined previously in the schedule.

The RPPTW reduces to the rural postman problem (RPP) when the time-window constraints

are not taken into account, so it is NP-hard. Little attention has been paid to the RPPTW. To the

best of our knowledge the works of Nobert and Picard (1994) and Kang and Han (1998) are the

only two related to the non-capacitated case and the one of Mullaseril et al. (1997) presents the

capacitated version.

Nobert and Picard (1994) introduce a heuristic algorithm for the RPPTW. In their problem the

required arcs are of two types: arcs that must be visited during the morning and arcs that may be

visited all day long. They propose a heuristic method based on the solution of two rural path

problems and on the computation of appropriate penalties. Numerical results are not published.

Kang and Han (1998) consider the problem as a multiobjective optimization problem because

they allow arrival at the required arcs after the due times, which incurs a cost penalty. The

objective is to reduce the total traveling cost and total penalty. The authors present a genetic

algorithm and compare three crossover operators.

30

Mullaseril et al. (1997) describe a feed distribution problem encountered on a cattle ranch in

Arizona. The problem is cast as a collection of capacitated rural postman problems with split-

deliveries and time windows. They present some heuristics and compare them with the working

practices on the cattle ranch.

Another related problem, the RPP with deadline classes, has been studied by Letchford and

Eglese (1998). They consider a single-vehicle arc routing problem in which the required edges

are partitioned into a number of classes according to priorities, each class having its own

deadline. An optimization algorithm is presented based on the use of valid inequalities as cutting

planes. They tested the algorithm on a set of instances for the RPP from Corberán and Sanchis

(1994) and found optimal solutions for all cases up to 67 required edges.

Our work addresses the undirected version of the problem. We assume that the costs of service

are equal to the traversal costs, but our approaches could be easily modified if this is not the case.

Our main contribution is to present the problem for a real-life application and several ways to

model it. Three formulations are presented: one where the decision variables explicitly express

the number of times an edge is traversed and two based on graphs equivalent to the original one.

We then explore the third formulation, obtained when we transform the original problem to a

traveling salesman problem with time windows and side constraints.

For the traveling salesman problem (TSP), polyhedral approaches have been extremely

successful (Fischetti and Toth, 1997; Jünger, et al., 1995; Padberg and Rinaldi, 1991). Ascheuer

et al. (2001) solve the asymmetric TSP with time windows (ATSP-TW) by a branch-and-cut

method; they solve in a satisfactory way real-world instances of the control of a stacker crane in a

warehouse. We have chosen to use the polyhedral approach. The RPPTW is formulated as an

integer linear program that is solved by a cutting plane algorithm.

The paper is organized as follows. Section 3.2 presents three different models for the

undirected case. In Section 3.3 we summarize the valid inequalities that we use as cutting planes

in our algorithm. We briefly describe the solution algorithm in Section 3.4. Section 3.5 outlines

the computational experiments. In Section 3.6 an extension of the formulations is given for the

directed version of the problem, and Section 3.7 provides concluding remarks.

31

3.2 Undirected RPPTW

Let 𝐺(𝑉,𝐸) be an undirected graph, where 𝑉 is the set of vertices and 𝐸 is the set of edges.

Given a subset 𝐸𝑅 ⊂ 𝐸 of required edges to service, the problem of finding a minimum cost tour

traversing at least once all the required edges is known as the RPP.

In the RPP each edge 𝑒 ⊂ 𝐸𝑅 is serviced exactly once, but can be traversed an additional

number of times in a deadheading mode. Christofides et al. (1981) and Corberán and Sanchis

(1991) present two formulations that use decision variables 𝑥𝑒 = number of times edge 𝑒 is

replicated in the optimal RPP solution if 𝑒 ∈ 𝐸𝑅, and 𝑥𝑒 = number of times edge 𝑒 is traversed if

𝑒 ∈ 𝐸 ∖ 𝐸𝑅. Although 𝑥e can be bounded above by 1 if 𝑒 ∈ 𝐸𝑅, and by 2 if 𝑒 ∈ 𝐸 ∖ 𝐸𝑅 (Eiselt,

Gendreau, and Laporte, 1995), when time windows are considered this results is not valid. Indeed

an edge could be traversed |𝐸𝑅| + 1 times in the worst case (Gueguen, 1999).

An extension of these RPP formulations to RPPTW is difficult because it is not possible to

associate a unique starting and completion time for an edge 𝑒 ⊂ 𝐸𝑅. Arc routing problems with

time windows are very hard to model directly without an extensive graph modification (Dror et

al., 1997; Mullaseril, 1997; Mullaseril and Dror, 1996).

We turn on alternative modeling approaches. Some arc routing problems formulations use

binary decision variables connecting edges (𝑥𝑖𝑗= 1 if edge 𝑗 is traversed after edge 𝑖) or nodes

(𝑥𝑖𝑗= 1 if node 𝑗 is traversed after node 𝑖). We propose three formulations for the problem. The

first considers a formulation based on edge linking variables. The other two formulations are

based on transformed graphs and the decision variables linking nodes. The first transformation

considers the required edges as nodes and joins them by means of arcs that represent the shortest

paths among them in the original graph. The second transformation considers the nodes incident

to the required edges and connects them with an arc that again corresponds to their shortest paths

in the original graph.

3.2.1 Model on the edges

This formulation is based on the work presented by Gueguen (1999). He proposes a mixed

integer program (MIP) formulation for the capacitated arc routing problem with time windows

(CARPTW). Apparently this is the only formulation on edges for the CARPTW; however, the

32

author does not present numerical results. We modify Gueguen’s formulation by adding a

duplicate of each required edge to keep track of the direction in which a vehicle must travel along

these edges. This is necessary to guarantee conservation of flow on the nodes of the network.

Consider the graph 𝐺 and the subset 𝐸𝑅 ⊂ 𝐸 previously defined. Let 𝐴 be the set of edges that

includes 𝐸, a duplicate 𝑖° of each required edge 𝑖 ∈ 𝐸𝑅, and an artificial edge "𝑒0" that represents

the depot. The duplicate edges have the same cost and time windows as the originals. Let 𝑃 be

the set of pairs of edges {𝑖, 𝑖°} such that 𝑖, 𝑖° correspond to the same required edge (the order 𝑖, 𝑖°

is determined arbitrarily), and 𝑅 the set that contains all 𝑖 ∈ 𝐸𝑅 and their duplicates. Additionally,

�̇�𝑖 is the traversal cost of edge 𝑖, �̇�𝑖 is the traversal time of edge 𝑖, [�̇�𝑖 �̇�𝑖] is the time window for

edge 𝑖; and for the edge "𝑒0" we set �̇�𝑒0 = 0, �̇�𝑒0 = 0, and �̇�𝑒0 = 0. 𝑀 is a large integer number,

which could be bound by 𝑀 = max𝑖 ∈𝐸 �̇�𝑖 |𝐸||𝐸𝑅| + 1, and 𝛿𝑖 is the set of vertices incident to

edge 𝑖. 𝑚 = |𝐸𝑅| + 1 is the maximum number of times an edge can be traversed. The decision

variables defined hereafter allow us to keep track of the number of times (each time corresponds

to a “copy” of an edge) that the vehicle traverses each edge.

Let the decision variables 𝑥𝑖𝑗𝑘𝑖 =1 if copy 𝑎 of edge 𝑗 is traversed immediately after copy 𝑘 of

edge 𝑖, and 0 otherwise; and let 𝑡𝑖𝑘 be the time to start traversing copy 𝑘 of edge 𝑖. The

formulation on the edges is as follows:

minimize � � ���̇�𝑖 𝑥𝑖𝑗𝑘𝑖

𝑚

𝑖=1

𝑚

𝑘=1𝑗∈𝐴|
𝛿𝑗∩𝛿𝑖≠∅ ,𝑗≠𝑖

𝑖∈𝐴

 (3.1)

s.t.:

� � 𝑥𝑖𝑗1𝑖

𝑚

𝑖=1𝑗∈𝐴|
𝛿𝑗∩𝛿𝑖≠∅ ,𝑗≠𝑖

+ � � 𝑥𝑖°𝑗1𝑖

𝑚

𝑖=1𝑗∈𝐴|
𝛿𝑗∩𝛿𝑖°≠∅ ,𝑗≠𝑖°

 = 1 ∀ {𝑖, 𝑖°} ∈ 𝑃 (3.2)

� �𝑥𝑒0𝑗1𝑖

𝑚

𝑖=1

𝑗∈𝐴|
𝛿𝑗∩𝛿𝑒0≠∅ ,𝑗≠𝑒0

≥ 1 (3.3)

33

� � 𝑥𝑖𝑗𝑘𝑖

𝑚

𝑘=1𝑖∈𝐴|
𝛿𝑖∩𝛿𝑗≠∅ ,𝑖≠𝑗

= � � 𝑥𝑗𝑖𝑖𝑘

𝑚

𝑘=1𝑖∈𝐴|
𝛿𝑖∩𝛿𝑗≠∅ ,𝑖≠𝑗

 ∀ 𝑗 ∈ 𝐴 , 𝑎 = 1, … ,𝑚 (3.4)

� ��𝑥𝑖𝑗𝑘𝑖

𝑚

𝑖=1

 +
𝑚

𝑘=1𝑗∈𝐴|
𝛿𝑗∩𝛿𝑖≠∅ ,𝑖≠𝑗,𝑗≠𝑖°

 � ��𝑥𝑖°𝑗𝑘𝑖

𝑚

𝑖=1

𝑚

𝑘=1𝑗∈𝐴|
𝛿𝑗∩𝛿𝑖°≠∅ 𝑗≠,𝑖°,𝑗≠𝑖

≥ 1 ∀ {𝑖, 𝑖°} ∈ 𝑃 (3.5)

𝑡𝑖𝑘 + �̇�𝑖 ≤ 𝑡𝑗𝑖 + 𝑀 �1 − 𝑥𝑖𝑗𝑘𝑖� ∀ 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴| 𝛿𝑖 ∩ 𝛿𝑗 ≠ ∅ , 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑒0

 𝑘, 𝑎 = 1, … ,𝑚 (3.6)

𝑡𝑖1 ≥ �̇�𝑖 ∀ 𝑖 ∈ 𝑅 ∪ {𝑒0} (3.7)

𝑡𝑖1 ≤ �̇�𝑖 ∀ 𝑖 ∈ 𝑅 (3.8)

� 𝑥𝑖𝑗𝑘𝑖

𝑚

𝑖=1

≤ 1 ∀ 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴|𝛿𝑖
(−) = 𝛿𝑗

(+) , 𝑖 ≠ 𝑗, 𝑘 = 1, …𝑚 (3.9)

𝑥𝑖𝑗𝑘𝑖 ∈ {0,1} ∀ 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐴|𝛿𝑖 ∩ 𝛿𝑗 ≠ ∅ , 𝑖 ≠ 𝑗, 𝑘, 𝑎 = 1, … ,𝑚 (3.10)

𝑡𝑖𝑘 ∈ ℝ+ ∀ 𝑖 ∈ 𝐴 , 𝑘 = 1, …𝑚 (3.11)

The objective is to minimize the total traversal cost. Services are ensured by constraints (3.2).

Constraint (3.3) forces the tour to start at the depot. Flow conservation is ensured by constraints

(3.4). Constraints (3.5) avoid solutions with subcycles between any pair of edges in 𝑃 that

represents the same edge in 𝐴. Inequalities (3.6), (3.7), and (3.8) are the time-window constraints.

Constraints (3.9), not in Gueguen (1999), allow us to reduce the number of equivalent solutions.

Finally, constraints (3.10) and (3.11) define the decision variables.

In this model, the original graph is extended firstly by making a duplicate of all required

edges, secondly by making |𝐸𝑅| + 1 copies of all edges. If the number of required edges is large,

the formulation is intractable. The model also uses a large real value 𝑀 that generates weak

relaxations and numerical difficulties in the solution methods.

34

3.2.2 Model on the required edges

Since the model on the edges (Section 3.2.1) is not practical, we propose an equivalent

formulation. On the graph 𝐺 = (𝑉,𝐸) two required edges can be connected successively on a

route in four ways, depending on the traversal direction of the two edges. This leads us to define

the problem on a new graph 𝐺0 = (𝑁,𝐴0).

For each required edge 𝑖 in 𝐺 we define two nodes 𝑖, 𝑖° in 𝐺0, where 𝑖, 𝑖° ∈ 𝑁 represent the

two possible directions in which edge 𝑖 in 𝐺 can be traversed. Each arc of 𝐴0 connects a node

𝑖 ∈ 𝑁 with a node 𝑗 ∈ 𝑁 if they do not correspond to the same edge in 𝐺. The cost of the arc that

connects node 𝑖 to node 𝑗 in 𝐺0 is equal to the cost of the edge represented by 𝑖 plus the length of

the shortest path in 𝐺 from the final node of the edge represented by 𝑖 to the initial node of the

edge represented by 𝑗, according to the traversal directions.

Figure 3.1 shows an example of the transformation. The original graph is presented in a). The

depot is located at the black node; the edge indices are shown near each edge; and the traversal

costs are in parentheses. There are three required edges (2, 4, and 5). The transformed graph is

illustrated in b). Its nodes are labeled with the same number as their corresponding required

edges. Arrows over and under the nodes indicate the traversal direction that each node represents.

Note that pairs of nodes corresponding to the same required edge are not connected.

 Required edges

 a) Original graph b) Transformed graph

Figure 3.1: Transformed graph for the model on the required edges

1 2

3

4 5

6 7

(10) (2)

(3)

(2) (1)

(1) (4)

2
2°

5
4°

4

5°

35

Finally we add an artificial node labeled "0" to represent the depot. We join "0" to all nodes in

𝑁 by means of two arcs with a cost equal to the length of the shortest path in 𝐺 from the depot to

the edges, and from the edges to the depot respectively, again according to the traversal direction.

Table 3.1 indicates the cost of the arcs of the transformed graph. The time window for each node

is the same as for the corresponding edge.

Table 3.1: Costs of the transformed graph – Model on the required edges

From

To

0 2 2° 4 4° 5 5°

0 0 6 7 2 4 1 2

2 9 0 0 7 5 8 7

2° 8 0 0 6 7 7 6

4 6 7 5 0 0 5 4

4° 4 6 7 0 0 3 2

5 3 5 6 1 3 0 0

In the transformed graph 𝐺0 we look for a minimum-cost tour that visits one of the two nodes

that represent the same required edge. The tour starts and ends at the depot, and the visits must

satisfy the time windows.

Let us consider the set 𝐶 that includes the pairs of nodes {𝑖, 𝑖°} , where 𝑖, 𝑖°∈ 𝑁, such that 𝑖, 𝑖°

represent the same required edge. We consider the following parameters: 𝑐𝑖𝑗 is the traversal cost

from node 𝑖 to node 𝑗, 𝐵𝑖𝑗 is the traversal time from node 𝑖 to node 𝑗, [𝑡𝑖 𝑏𝑖] is the time window

for node 𝑖, and 𝑀𝑖𝑗 = max � 𝑏𝑖 + 𝐵𝑖𝑗 − 𝑡𝑗 ,0�. We set 𝑡0 = 0 for the depot node.

We define the decision variables 𝑥𝑖𝑗 to be equal to 1 if node 𝑗 is serviced immediately after

node 𝑖, and 0 otherwise, and 𝑡𝑖 to be the arrival time at node 𝑖. The formulation on the required

edges is as follows:

minimize � � 𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑁∪{0}|𝑗≠𝑖,

 {𝑖,𝑗}∉𝐶
𝑖∈𝑁∪{0}

 (3.12)

36

s.t.:

� (𝑥𝑖𝑗 + 𝑥𝑖°𝑗) = 1 ∀ {𝑖, 𝑖°} ∈ 𝐶
𝑗 ∈𝑁∪{0}|
𝑗 ≠𝑖,𝑖°

 (3.13)

� (𝑥𝑖𝑗 + 𝑥𝑖𝑗°) = 1 ∀ {𝑗, 𝑗°} ∈ 𝐶
𝑖 ∈𝑁∪{0}|
𝑖 ≠𝑗,𝑗°

 (3.14)

�𝑥0𝑗 = 1
𝑗 ∈𝑁

 (3.15)

�𝑥𝑗0 = 1 (3.16)
𝑗 ∈𝑁

𝑡𝑖 + 𝐵𝑖𝑗 ≤ 𝑡𝑗+𝑀𝑖𝑗�1 − 𝑥𝑖𝑗� ∀ 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ∪ {0}| 𝑖 ≠ 𝑗, {𝑖, 𝑗} ∉ 𝐶 (3.17)

𝑡𝑖 ≤ 𝑡𝑖 ∀ 𝑖 ∈ 𝑁 ∪ {0} (3.18)

𝑡𝑖 ≤ 𝑏𝑖 ∀ 𝑖 ∈ 𝑁 (3.19)

𝑥𝑖𝑗 ≤ � 𝑥𝑗𝑘
𝑘 ∈𝑁∪{0}|

𝑘 ≠𝑗

 ∀ 𝑖 ∈ 𝑁 ∪ {0}, 𝑗 ∈ 𝑁 ∪ {0}| 𝑖 ≠ 𝑗, {𝑖, 𝑗} ∉ 𝐶 (3.20)

𝑥𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝑁 ∪ {0}, 𝑗 ∈ 𝑁 ∪ {0}|𝑖 ≠ 𝑗, {𝑖, 𝑗} ∉ 𝐶 (3.21)

𝑡𝑖 ∈ ℝ+ ∀ 𝑖 ∈ 𝑁 ∪ {0} (3.22)

The objective is to minimize the total traversal cost. Constraints (3.13) and (3.14) ensure that

only one node is included in the tour for each pair of nodes that represent the same required edge.

Constraints (3.15) and (3.16) force the tour to start and end at the depot. The time-window

constraints are (3.17), (3.18), and (3.19). Constraints (3.20) guarantee flow conservation. Finally,

the decision variables are defined in (3.21) and (3.22).

3.2.3 Model on the nodes

We now propose a transformation from the original problem to an equivalent problem on

nodes. We define a new graph 𝐺1 = (𝑁1,𝐴1), where all the vertices incident to the required edges

37

in the original graph 𝐺 = (𝑉,𝐸) are included in the set of nodes 𝑁1. It should be pointed out that

if a vertex of 𝑉 is incident to more than one required edge in 𝐺, then this vertex will have as

many copies in 𝑁1 as the number of incident required edges in 𝐺. 𝐴1 is the set of arcs that

connects the nodes of 𝑁1. The cost of an arc that joins node 𝑖 to node 𝑗 is equal to the cost of the

edge that starts at node 𝑖 plus the length of the shortest path in 𝐺 from the final vertex of that

edge to the initial vertex 𝑗 of the other edge. We set the cost to zero when nodes 𝑖 and 𝑗 represent

vertices incident to the same edge in 𝐺 or when 𝑖 = 𝑗. We obtain a complete directed graph. We

illustrate on an example the original graph in Figure 3.1a and the transformed graph in Figure 3.2

Note that there are two nodes labeled "4" and "4°" because they represent vertex "4" of Figure

3.1a, which is incident to two required edges.

Figure 3.2: Transformed graph for the model on the nodes

We add an artificial node "0" to represent the depot. We join "0" to all nodes in 𝑁1 by means

of two arcs with costs equal to the length of the shortest path in 𝐺 from the depot to the vertices,

and from the vertices to the depot respectively. The time windows of each required edge in 𝐺 are

assigned to its incident nodes.

In the transformed graph, we look for a minimum-cost tour that starts and ends at the depot

and satisfies the time windows for all nodes. Additionally, two nodes incident to the same

required edge must be placed one after the other in the tour sequence. Table 3.2 shows the cost

matrix for the transformed graph.

1
2

4°

4

3

 5

38

Table 3.2: Costs of the transformed graph – Model on the nodes

From

To

0 1 2 4 3 5 4°

0 0 6 7 2 4 1 2

1 9 0 0 7 5 8 7

2 8 0 0 6 7 7 6

4 6 7 5 0 0 5 4

3 4 6 7 0 0 3 2

5 3 5 6 1 3 0 0

Let us define 𝐶0 as the set of pairs of nodes that are incident to the same required edge, and 𝑈

as the set of nodes that includes one of the two nodes incident to the same required edge.

Furthermore, let the parameters 𝑐𝑖𝑗, 𝐵𝑖𝑗, [𝑡𝑖 𝑏𝑖], 𝑡0, and 𝑀𝑖𝑗 and the decision variables 𝑥𝑖𝑗 and 𝑡𝑖

be as defined in Section 2.2. The formulation on the nodes is as follows:

minimize � � 𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑁1∪{0}|𝑗≠𝑖𝑖∈𝑁1∪{0}

 (3.23)

s.t.:

𝑥𝑖𝑖° + 𝑥𝑖°𝑖 = 1 ∀ {𝑖, 𝑖°} ∈ 𝐶0 (3.24)

� 𝑥𝑖𝑗 = 1 ∀ 𝑖 ∈ 𝑁1 ∪ {0} (3.25)
𝑗 ∈𝑁1∪{0}|

𝑗 ≠𝑖

� 𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝑁1 ∪ {0}
𝑖∈𝑁1∪{0}|

𝑖≠𝑗

 (3.26)

𝑡𝑖 + 𝐵𝑖𝑗 ≤ 𝑡𝑗+𝑀𝑖𝑗�1 − 𝑥𝑖𝑗� ∀ 𝑖 ∈ 𝑁1 , 𝑗 ∈ 𝑁1 ∪ {0}| 𝑖 ≠ 𝑗 (3.27)

𝑡𝑖 ≤ 𝑡𝑖 ∀ 𝑖 ∈ 𝑈 ∪ {0} (3.28)

𝑡𝑖 ≤ 𝑏𝑖 ∀ 𝑖 ∈ 𝑈 (3.29)

𝑡𝑖 = 𝑡𝑖° ∀ {𝑖, 𝑖°} ∈ 𝐶0 (3.30)

39

𝑥𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝑁1 ∪ {0}, 𝑗 ∈ 𝑁1 ∪ {0}| 𝑖 ≠ 𝑗 (3.31)

𝑡𝑖 ∈ ℝ+ ∀ 𝑖 ∈ 𝑁1 ∪ {0} (3.32)

The objective is to minimize the total traversal cost. Constraints (3.24) are related to the

required services. Constraints (3.25) and (3.26) ensure that each node is visited. The time-

window constraints are (3.27), (3.28), (3.29), and (3.30). The decision variables are defined in

(3.31) and (3.32).

For the model on the edges we cannot associate a unique starting and completion time with

each edge; we need the indices k and l to identify the number of times each edge would be

traversed in a deadheading mode for the minimum distance objective. Therefore we must

augment the initial graph 𝑘 × 𝑎 times. The graph for models based on transformations includes

only the incident nodes to required edges or the required edges. The other edges (not required)

are considered only for getting the shortest path among required edges. Consequently, the

variables do not need an extra index to identify the number of times edges are traversed in a

deadheading mode (required edges are visited no more than once in the modified graph).

The models based on the transformations have fewer variables and constraints than the model

on the edges. They also use large integer values 𝑀𝑖𝑗, but these can be bounded to minimum

values that allow us to find feasible solutions, therefore these formulations are better bounded.

3.3 Valid inequalities

We focus on the model on the nodes (Section 3.2.3), taking advantage of its structure. This

model has elements of the precedence constrained asymmetric TSP (PC-ATSP). Polyhedral

approaches to solve problem instances to optimality are known to work well for the PC-ATSP

(Ascheuer et al. 2000), as already mentioned, for the TSP. We study some of the known valid

inequalities with respect to the two problems that are also valid for the formulation (3.23)–(3.32).

In the following, we summarize the classes of inequalities that we use in our solution method.

40

Notation

Given the set of arcs 𝐴𝑓, for any arc set 𝑊 ⊆ 𝐴𝑓 we define 𝑥(𝑊) ≔ ∑�𝑥𝑖𝑗 �{𝑖, 𝑗} ∈ 𝑊).

Given the set of nodes 𝑉𝑓 that includes the depot "0", for any two node sets 𝑆,𝐵 ⊆ 𝑉𝑓 we define

(𝑆:𝐵) ≔ �{𝑖, 𝑗} ∈ 𝐴𝑓 | 𝑖 ∈ 𝑆, 𝑗 ∈ 𝐵� and write 𝑥(𝑆:𝐵) for 𝑥�(𝑆:𝐵)�.

Lifted t-bounds. Desrochers and Laporte (1991) observed that the bounds of the 𝑡-variables

(see inequalities 3.28 and 3.29) can be strengthened. Indeed, let 𝑡𝑗𝑖 = max�0,𝑡𝑗 − 𝑡𝑖 + 𝐵𝑗𝑖� and

𝑏𝑖𝑗 = max�0, 𝑏𝑖 − 𝑏𝑗 + 𝐵𝑖𝑗�. Then the inequalities

 𝑡𝑖 + ∑ 𝑡𝑗𝑖𝑥𝑗𝑖𝑛
𝑗=1
|𝑗≠𝑖

≤ 𝑡𝑖 ∀ 𝑖 ∈ 𝑉𝑓 ∖ {0} (3.33)

 𝑏𝑖 −� 𝑏𝑖𝑗𝑥𝑖𝑗
𝑛

𝑗=1
|𝑗≠𝑖

≥ 𝑡𝑖 ∀ 𝑖 ∈ 𝑉𝑓 ∖ {0} (3.34)

are valid for the formulation (3.23)–(3.32).

Strengthened MTZ-inequalities. Desrochers and Laporte (1991) propose a lifted version of

the MTZ subtour-elimination constraints (3.27). Let 𝑡�𝑗𝑖 = max�𝐵𝑗𝑖 , 𝑡𝑖 − 𝑏𝑗� and 𝑀𝑖𝑗 ≥ 𝑏𝑖 +

𝐵𝑖𝑗 − 𝑡𝑗 . Then for all 𝑖, 𝑗 = 1, … ,𝑛, 𝑖 ≠ 𝑗 the inequality

 𝑡𝑖 + 𝐵𝑖𝑗 – �1 − 𝑥𝑖𝑗�𝑀𝑖𝑗 + �𝑀𝑖𝑗 − 𝐵𝑖𝑗 –𝑡�𝑗𝑖� 𝑥𝑗𝑖 ≤ 𝑡𝑗 (3.35)

is valid for the formulation (3.23)–(3.32).

According to Desrochers and Laporte (1991), when precedence relations exist, the MTZ-

inequalities can be further strengthened. Assume 𝑖 ≺ 𝑗. Since 𝑖 must be scheduled before 𝑗, we

have 𝑡𝑖 ≤ 𝑡𝑗, and the inequality

 𝑡𝑖 + 𝐵𝑖𝑗𝑥𝑖𝑗 ≤ 𝑡𝑗 (3.36)

is also valid. If 𝑏𝑖 + 𝐵𝑖𝑗 ≤ 𝑡𝑗 holds, inequality (3.36) can be strengthened to

 𝑡𝑖 + 𝐵𝑖𝑗𝑥𝑖𝑗 ≤ 𝑡𝑗 (3.37)

Subtour elimination constraints. We include the subtour elimination constraints, since they

are the best known inequalities for the Asymmetric Traveling Salesman polytope (Balas et al.

1995). These inequalities 𝑥(𝑆 ∶ 𝑆) ≤ |𝑆| − 1 can be written in the equivalent cut form

41

 𝑥(𝑆 ∶ 𝑆̅) ≥ 1 ∀ 𝑆 ≠ ∅ , 𝑆 ⊂ 𝑉𝑓 (3.38)

where 𝑆̅ ≔ 𝑉𝑓 ∖ 𝑆, and (3.6) is valid for the formulation (3.23)–(3.32).

The Predecessor/Successor inequalities. The PC-ATSP is a relaxation of the ATSP-TW. We

use some valid inequalities for the PC-ATSP that allow us to strengthen the subtour elimination

inequalities (3.38). Balas et al.(1995) introduced these classes of inequalities.

For 𝑆 ⊆ 𝑉𝑓 ∖ {0}, 𝑆̅ ≔ 𝑉𝑓 ∖ 𝑆, the predecessor inequality (𝜋-inequality)

 𝑥�𝑆 ∖ 𝜋(𝑆) ∶ 𝑆̅ ∖ 𝜋(𝑆)� ≥ 1 (3.39)

and the successor inequality (𝜎-inequality)

 𝑥�𝑆̅ ∖ 𝜎(𝑆) ∶ 𝑆 ∖ 𝜎(𝑆)� ≥ 1 (3.40)

are valid for the formulation (3.23)–(3.32).

For any given 𝑖,𝑘 ∈ 𝑉𝑓 ∖ {0} such that 𝜋(𝑖) ≠ ∅, 𝜎(𝑘) ≠ ∅, and any 𝑆 ⊂ 𝑉𝑓 such that

𝑖,𝑘 ∈ 𝑆, the inequalities

 𝑥�𝑆 ∖ 𝜋(𝑖) ∶ 𝑆̅ ∖ 𝜋(𝑖)� ≥ 1 (3.41)

 𝑥�𝑆̅ ∖ 𝜎(𝑘) ∶ 𝑆 ∖ 𝜎(𝑘)� ≥ 1 (3.42)

are called weak 𝜋- and weak 𝜎-inequalities respectively.

3.4 Solution algorithm

We implement the following algorithm to solve the Undirected RPPTW.

3.4.1 Data preprocessing

Data preprocessing is important for efficient implementations. It allows the construction of

tighter equivalent formulations of the problems, such that no optimal solution of the original

problem is lost and each solution of the tighter problem corresponds to a solution of the original

problem.

The structures of the formulations on the required edges (Section 3.2.2) and on the nodes

(Section 3.2.3) permit such a preprocessing procedure. It is based on the work of Ascheuer et al.

(1999). We tighten the time windows iteratively until no more changes are made. We then

42

identify precedence relations, fix variables permanently, and detect infeasible paths of size two

and three to reduce the set of variables.

We now present the separation procedures for the classes of valid inequalities (3.38)–(3.42).

3.4.2 Cutting plane algorithm

Initial linear program. We solve the relaxation of the model on nodes (3.23)–(3.32), i.e.,

when the decision variables 𝑥𝑖𝑗 are restricted to be nonnegative and less than or equal to one.

Constraints (3.33) and (3.34) are included in the initial model instead of constraints (3.28) and

(3.29) because the former are stronger. We also include the strengthened MTZ-inequalities

(3.35), (3.36), and (3.37) instead of the MTZ-inequalities (3.38) when possible.

Separation routines. Let (𝑥∗, 𝑡∗) be a solution where 𝑥∗ is fractional. We want to identify a

member of a family 𝐹 of valid inequalities listed in Section 3.3 for the formulation on the nodes

that is violated by 𝑥∗ or else show that 𝑥∗ satisfies all members of F. The implemented separation

procedures are an adaptation of routines described in the literature.

• Subtour elimination constraints: For the cutset inequalities (3.38) we can solve the separation

problem by computing the connected component 𝐵 that includes the depot in the graph 𝐺∗

induced by 𝑥𝑖𝑗∗ > 0. If this component does not include all the nodes in 𝑉𝑓, the subtour

elimination constraint is violated by 𝑥∗, and we obtain the set 𝑆 that includes all nodes in 𝐵.

This procedure detects inequalities (3.38) which are violated only in the case where there is

no path in 𝐺∗ from the depot to any 𝑗 ∈ 𝑉𝑓 ∖ {0}.

• Predecessor inequalities: We implement the exact separation algorithm presented by Balas et

al.(1995) for the separation problem of predecessor inequalities. Although this algorithm

detects only a violated weak 𝜋-inequality, if one exists, rather than a stronger 𝜋-inequality of

the class (3.39), the detected violated inequality (3.41) can be replaced with a strictly stronger

violated inequality of the class (3.39) when we include 𝜋(𝑆) instead of 𝜋(𝑗). If we apply the

algorithm for 𝑗 ∈ 𝑉𝑓 ∖ {0} such that 𝜋(𝑗) = ∅, we detect the known cutset inequality, and

43

obtain an algorithm that simultaneously solves the separation problem for both the subtour

elimination inequalities and the 𝜋-inequalities.

• The successor inequalities: With a similar procedure to Balas et al.(1995) we can detect if 𝑥∗

violates a weak 𝜎-inequality. For any fixed 𝑗 with 𝜎(𝑗) ≠ ∅, delete 𝜎(𝑗) from 𝑉𝑓 and in the

resulting network with arc capacities 𝑥𝑖𝑗∗ try to send one unit of flow from node 0 to node 𝑗.

If this is possible, all inequalities (3.42) associated with the given 𝑗 are satisfied by 𝑥∗;

otherwise the minimum capacity identified by the failed attempt to send a unit of flow

specifies the 𝜎-inequality most violated by 𝑥∗. We reverse the sets 𝑆 and 𝑆̅, i.e., 𝑆 is replaced

by 𝑆̅ and vice versa. As in the previous case, if a violated inequality (3.42) is found, it is

replaced with a strictly stronger violated inequality of the class (3.40), when we include 𝜎(𝑆)

instead of 𝜎(𝑗).

Steps for the separation routine

• Subtour elimination constraint routine.

• “Shrinking”: The separation algorithm for the predecessor/successor inequalities implies the

computation of the maximum flow for each pair 𝑖, 𝑗 ∈ 𝑉𝑓 . We use “shrinking” procedures

(Padberg and Rinaldi, 1990) to reduce the problem size and to avoid as many maximum-flow

calculations as possible. “Shrinking” checks whether or not certain nodes lie on the same side

of a minimum-capacity cut. If the results are positive, the subset is contracted or “shrunk” to a

single node. We contract nodes 𝑖 and 𝑗 if they are incident to the same required edge. Also,

we contract nodes 𝑖 and 𝑗 if 𝑥𝑖𝑗∗ = 1 in the fractional solution 𝑥∗.

• Predecessor inequalities: We use the separation problem for the predecessor inequalities, and

we simultaneously check the subtour elimination constraints when there is one connected

component in the fractional solution 𝑥∗.

• Successor inequalities: We use the separation problem for the successor inequalities, and we

simultaneously check the subtour elimination constraints when there is one connected

component in the fractional solution 𝑥∗.

We generate at most one cutting plane for each separation routine per iteration. The linear

problems are solved using standard parameters of CPLEX 12.4.0.

44

3.4.3 Solution of the MIP program

We stop the cutting plane algorithm whenever the last 10 linear problems produce no

improvement in the lower bound, or in case the improvement is less than 0.1%, or when the

running time reaches three hours. In those scenarios the decision variables 𝑥𝑖𝑗 are restricted to be

binary, we add the valid cuts, if any and we solve the problem using the callable library of

CPLEX 12.4.0.0. with its default parameters except that the number of threads is set to 1.

3.5 Computational results

In this section we describe the results of the comparison of the models on a set of randomly

generated instances and the performance of our cutting plane algorithm which was tested also on

a set of instances based on the real network of the Estrie region in Quebec. Our implementation is

coded in Python 2.6 and runs on a 2.38 GHz AMD 250.

3.5.1 Generated instances

There are no published benchmark instances for the undirected RPPTW. We modified the

CARP-TW instances of Wøhlk (2005). The author combines five values for the number of nodes

({10,13,20,40,60}) and the number of edges ({15,23,31,69,90}) and generates different graphs

for each combination.

We selected some required edges randomly and found a path through all of them using the

nearest-neighbor heuristic. Then, we established the time-window intervals by reducing and

extending by 10, 30, and 50% the values of the arrival time given by the heuristic. In this way we

label the width of the time windows with {10,30,50}. When we combined the percentage of

required edges {10,30,50} and the width of the time windows {10,30,50} we generated 225

instances. All the instances can be downloaded from

http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/instances.htm.

3.5.2 Instances based on the Estrie network

We tested the cutting plane algorithm on a real undirected network that represents a part of the

Estrie administrative region in the province of Quebec, Canada. The network has 140 nodes and

45

187 edges. We simulated nine weather forecasts for one day with 4 or 5 time slots, each time slot

defining the time windows. If any edge is located in a time slot with rain forecasted, the edge will

be required to be visited in its respective time slot. Figure 3.3 shows an example of simulated

weather forecasting for Estrie region for one time slot. The colors represent a different probability

of rain. We define the cost of traversal as the length of the road multiplied by a fractional number

in order to get a scalar representation, and the time of traversal proportional to this value.

Figure 3.3: Estrie network – Weather forecast for one time slot

3.5.3 Preprocessing

As noted earlier, the structures of the formulations on the required edges (Section 3.2.2) and

on the nodes (Section 3.2.3) allow data preprocessing. Table 3.3 shows the effect of data

preprocessing, giving the average percentage of removed variables. In general, there was a

considerable reduction in the problem size. When the time windows are tighter more variables

can be fixed.

46

Table 3.3: Reduction in number of variables

T.W. Width Model on the required edges (%) Model on the nodes (%)

10 47.44 40.15

30 36.96 30.43

50 26.09 21.88

3.5.4 Tests

In this section we present a summary of the presented models performance as well the cutting

plane algorithm performance. Detailed results for each instance are available at

http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/anex1-results.htm. We solved the models using

CPLEX 12.4.0 with the callable library, setting a running time of up to three hours excluding the

data-preprocessing time.

We compare only the models based on the transformations because the model on the edges

(Section 3.2.1) is too large even when the number of copies of required edges is small. Table 3.4

summarizes the results for subsets of instances grouped by size. Column TW lists the different

time-window widths, n is the number of nodes, e is the number of edges, |R| is the average

number of required edges, N is the total number of instances in the set, sol is the number of

instances solved to optimality, and t is the average running time in seconds.

The model on the nodes (Section 3.2.2) is superior to the model on the required edges (Section

3.2.3) because it finds the optimal solution for more instances, the optimal solution for harder

instances, and the computational times are smaller.

The results for the cutting plane algorithm are summarized in the next columns. Column gap

shows the average gap for the set of instances between the lower bound given by the added cuts

and the optimal solution value. Columns mic and mac show the minimum and maximum number

of added cuts. Finally, ave t and t max present the average and maximum running times.

Our algorithm was able to solve 222 of 225 instances. 78 problems were solved to optimality

at the root node of the search tree, using only cutting planes. We solved to optimality 10 of the

47

largest instances (60 nodes, 90 edges and 45 required edges); the average computational time for

solving these 10 instances is 814.9 seconds.

Table 3.4: Models comparison and cutting plane algorithm

TW n e |R| N

Model on the

required edges

Model on

the nodes

Cutting plane algorithm

(model on the nodes)

sol t sol t sol gap % mic mac ave t t max

10 9 9 0.003 9 0.004 9 0 0 2 0.057 0.19

30 10 15 5

9 9 0.016 9 0.010 9 0 0 5 0.08 0.13

50 9 9 0.018 9 0.018 9 1.2 0 22 0.21 0.82

10 27 27 0.016 27 0.011 27 0.2 0 10 0.21 0.81

30 13 23 7.4 27 27 0.267 27 0.069 27 1.6 0 17 0.61 2.85

50 27 27 0.286 27 0.098 27 2.6 0 22 0.50 1.99

10 9 9 0.050 9 0.028 9 0.1 0 6 0.66 2.31

30 20 31 10 9 9 4.901 9 1.641 9 2.7 0 19 1.30 7.27

50 9 9 8.491 9 0.590 9 4.6 0 17 1.82 6.53

10 18 18 51.84 18 2.43 18 1.1 4 25 11.18 25.19

30 40 69 21 18 15 1085.69 17 824.08 18 3.5 2 25 17.11 83.02

50 18 14 285.88 17 510.49 17 5.2 0 24 764.52 6675.22

10 12 11 405.02 12 104.31 12 2.1 5 27 17.83 60.23

30 60 90 27 12 7 361.78 10 1398.49 11 1.2 0 25 168.83 1659.91

50 12 5 6028.02 8 2354.40 11 4.0 3 24 1101.85 6030.17

Table 3.5: Cutting plane on real instances

Instance T.W |R| O.F. suc pc cc gap t

Inst-00 Tight 74 -- -- -- -- -- --

Inst-01 Intermediate 74 259.7 2 10 11 7.6 165.46

Inst-02 Wide 74 -- -- -- -- -- --

Inst-03 Tight 104 289.2 2 11 11 2.3 202.29

Inst-04 Intermediate 104 -- -- -- -- -- --

Inst-05 Wide 104 -- -- -- -- -- --

Inst-06 Tight 93 299.7 2 11 10 7 193.41

Inst-07 Intermediate 93 299.7 2 11 9 7 208.75

Inst-08 Wide 93 299.7 1 11 11 7 137.76

48

The results of the cutting plane algorithm on the set of real instances are summarized in Table

3.5. Colum O.F. presents the value of the objective function, suc the number of cuts added for

subtour elimination, pc the cuts for precedence relations and sc the cuts for successor relations.

We were able to solve 5 of the 9 instances in less than 3.5 minutes. Instances that do not show

values were not solved by the algorithm within 3 hours.

3.6 Directed case

In this section we present two formulations for the directed case, which are extensions of the

formulations for the undirected problem. The first is a formulation on the arcs, i.e., the decision

variables express the number of times an arc is traversed. The second is based on a transformed

graph, where the required arcs are connected by an arc that represents the shortest path among

them. We carry out tests to evaluate the performance of the models.

3.6.1 Model on the arcs

As in the undirected case, this formulation is based on the work presented by Gueguen (1999).

Consider a directed graph 𝐺𝑑(𝑉𝑑,𝐷), where 𝑉𝑑 is the set of vertices, 0 ∈ 𝑉𝑑 represents the

depot , and 𝐷 is the set of arcs. Let �̂� be the set that includes 𝐷 and two artificial arcs "𝑡𝑖" and

"𝑡𝑒" leaving and entering the depot respectively. 𝑅� is the set of required arcs plus "𝑡𝑖" and "𝑡𝑒".

Furthermore, we define the following parameters: 𝑚� = �𝑅�� + 1 is the maximum number of times

an arc can be traversed in a feasible solution, �̂�𝑖 is the traversal cost of arc 𝑖, 𝐵�𝑖 is the traversal

time of arc 𝑖, �𝑡�𝑖 𝑏�𝑖� is the time window for arc 𝑖, 𝑀 is a large real value which could be bounded

by 𝑀 = max𝑖 ∈𝐸 �̇�𝑖 |𝐷|�𝑅� � + 1, 𝛿𝑖
(+) is the end vertex of arc 𝑖, and 𝛿𝑖

(−) is the initial vertex of

arc 𝑖.

The decision variables for this formulation are defined as 𝑥𝑖𝑗𝑘𝑖 =1 if copy 𝑎 of arc 𝑗 is

traversed immediately after copy 𝑘 of arc 𝑖, and 0 otherwise, and 𝑡𝑖𝑘 indicates the arrival time at

copy 𝑘 of arc 𝑖. The model is given below:

minimize � � ���̂�𝑖 𝑥𝑖𝑗𝑘𝑖

𝑚�

𝑖=1

𝑚�

𝑘=1𝑗∈𝐴�|
𝛿𝑗

(−)=𝛿𝑖
(+)

𝑖∈𝐴�

 (3.43)

49

s.t.:

� � 𝑥𝑖𝑗1𝑖

𝑚�

𝑖=1𝑗∈𝐴�|
𝛿𝑗

(−)=𝛿𝑖
(+)

 ≥ 1 ∀ 𝑖 ∈ 𝑅� (3.44)

� � 𝑥𝑖𝑗𝑘𝑖

𝑚�

𝑘=1𝑖∈𝐴�|
𝛿𝑖

(+)=𝛿𝑗
(−)

= � � 𝑥𝑗𝑖𝑖𝑘

𝑚�

𝑘=1𝑖∈𝐴�|
𝛿𝑖

(−)=𝛿𝑗
(+)

 ∀ 𝑗 ∈ �̂� , 𝑎 = 1, … ,𝑚� (3.45)

𝑡𝑖𝑘 + 𝐵�𝑖 ≤ 𝑡𝑗𝑖 + 𝑀 �1 − 𝑥𝑖𝑗𝑘𝑖� ∀ 𝑖 ∈ �̂�, 𝑗 ∈ �̂�|𝛿𝑖
(−) = 𝛿𝑗

(+), 𝛿𝑖
(+) ≠ {𝑡𝑒} ,

 𝑘, 𝑎 = 1, … ,𝑚� (3.46)

𝑡𝑖1 ≥ 𝑡�𝑖 ∀ 𝑖 ∈ 𝑅� (3.47)

𝑡𝑖1 ≤ 𝑏�𝑖 ∀ 𝑖 ∈ 𝑅� |𝑖 ∉ 𝑡𝑒 (3.48)

� 𝑥𝑖𝑗𝑘𝑖

𝑚�

𝑖=1

≤ 1 ∀ 𝑖 ∈ �̂�, 𝑗 ∈ �̂�|𝛿𝑖
(−) = 𝛿𝑗

(+) , 𝑘 = 1, …𝑚� (3.49)

𝑥𝑖𝑗𝑘𝑖 ∈ {0,1} ∀ 𝑖 ∈ �̂�, 𝑗 ∈ �̂�|𝛿𝑖
(−) = 𝛿𝑗

(+) , 𝑘, 𝑎 = 1, … ,𝑚� (3.50)

𝑡𝑖𝑘 ∈ ℝ+ ∀ 𝑖 ∈ �̂� , 𝑘 = 1, …𝑚� (3.51)

The objective function minimizes the total traversal cost. Services are ensured by constraints

(3.44). Constraints (3.45) define the flow conservation. Inequalities (3.46), (3.47), and (3.48) are

the time-window constraints. As in the undirected case, the set of constraints (3.49) is added to

obtain a strengthened formulation; they reduce the set of equivalent feasible solutions. Finally,

the decision variables are defined in (3.50) and (3.51).

3.6.2 Model on the required arcs

This formulation is equivalent to the previous one; it reduces the size of the problem by

considering only the network information related to the required arcs. Let the original problem be

defined on the directed graph 𝐺𝑑 = (𝑉𝑑,𝐷) described in Section 3.6.1. If 𝑅� ⊂ 𝐷 is the set of

50

required arcs without the artificial arcs "𝑡𝑖" and "𝑡𝑒", the formulation on the required arcs is

defined on the graph 𝐺�̇� = �𝑁�̇�,𝐴𝑑� with �𝑅�� nodes in 𝑁�̇�. Each node in 𝑁�̇� corresponds to a

required arc in 𝑅�, and each arc in 𝐴𝑑 represents the length of the shortest path in 𝐺𝑑 between a

pair of required arcs. 𝐺�̇� results in a complete graph.

Figure 3.4 shows an example of the transformation. In the original graph presented in a) the

depot is located at the black node. The numbers in parentheses represent traversal costs, and the

other numbers are the arc indices. There are three required arcs (2, 4, and 5). The graph in b) with

three nodes is complete. The nodes are labeled with the same number as their respective required

arcs, and the distances are indicated in parentheses.

 Required arcs

a) Original graph b) Transformed graph

Figure 3.4: Transformed graph for the model on the required arcs

An artificial node "0" is added to represent the depot. We connect this node with each node in

𝐺�̇� by means of two arcs, one entering and one leaving the depot. Finally, each node in 𝐺�̇� adopts

the time window corresponding to that of the arc that it represents.

In the transformed graph we look for a minimum-cost tour that starts and ends at the depot and

satisfies the time-window constraints for each node. Given the parameters 𝑐𝑖𝑗, 𝐵𝑖𝑗, [𝑡𝑖 𝑏𝑖], and

𝑀𝑖𝑗, and the decision variables 𝑥𝑖𝑗 and 𝑡𝑖 defined in Section 2.2, the formulation is as follows:

minimize � � 𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑁�̇�∪{0}|𝑗≠𝑖

𝑖∈𝑁�̇�∪{0}

(3.52)

1 2

3

4 5

6 7

(10) (2)

(3)

(2) (1)

(1) (4)

2

4

5

(14)
(5)

(7)

(17)
(2)

(12)

51

s.t.:

� 𝑥𝑖𝑗 = 1 ∀ 𝑖 ∈ 𝑁�̇� ∪ {0}
𝑗 ∈𝑁�̇�∪{0}|

𝑗 ≠𝑖

(3.53)

� 𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝑁�̇�
𝑖∈𝑁�̇�∪{0}|

𝑖≠𝑗

∪ {0} (3.54)

𝑡𝑖 + 𝐵𝑖𝑗 ≤ 𝑡𝑗+𝑀𝑖𝑗�1 − 𝑥𝑖𝑗� ∀ 𝑖 ∈ 𝑁�̇� , 𝑗 ∈ 𝑁�̇� ∪ {0} /𝑖 ≠ 𝑗 (3.55)

𝑡𝑖 ≤ 𝑡𝑖 ∀ 𝑖 ∈ 𝑁�̇� ∪ {0} (3.56)

𝑡𝑖 ≤ 𝑏𝑖 ∀ 𝑖 ∈ 𝑁�̇� (3.57)

𝑥𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝑁�̇� ∪ {0}|𝑖 ≠ 𝑗 (3.58)

𝑡𝑖 ∈ ℝ+ ∀ 𝑖 ∈ 𝑁�̇� ∪ {0} (3.59)

The formulation corresponds to the ATSP-TW. The objective is to minimize the total traversal

cost. Inequalities (3.53) and (3.54) are the assignment constraints. The time-window constraints

are (3.55), (3.56), and (3.57). Finally, the decision variables are defined by (3.58) and (3.59).

To solve this model we refer to Ascheuer et al. (2001), who solved the ATSP-TW using a

branch-and-cut method with satisfactory results.

3.6.3 Tests

To evaluate the performance of the formulation on the arcs, we tested the model on a set of

144 random generated planar graphs labeled “setD”.The set of instances has between 4 and 100

nodes, 4 and 180 arcs, and 2 and 90 required arcs. We generate three kind of width of times

windows {10,30,50}, as we did before.

The three largest instances (with the highest number of required arcs) solved to optimality (in

less than three hours) have the following characteristics: {80, 142, 71, 10},{100, 180, 18,30}, and

{42, 71, 36, 50} for respectively the number of nodes, the number of arcs, the number of required

arcs, and the width of the time window. Table 3.6 shows the summary of results for this set of

instances. %|R| represents the percentage of required arcs with respect to the total of arcs. a is the

average number of arcs and the other notation of the Table 3.6 is the same as the Table 3.4.

52

Table 3.6: Model on the arcs – set of instances “setD”

TW %|R| n a |R| N Sol T

10

10 41.57 70.64 7.57 14 9 75.85

30 35.29 59.64 18.35 17 8 67.28

50 35.29 59.41 29.94 17 7 2.23

30

10 41.57 70.64 7.57 14 11 32.88

30 35.29 59.64 18.35 17 8 20.20

50 35.29 59.41 29.94 17 6 86.64

50

10 41.57 70.64 7.57 14 9 30.65

30 35.29 59.64 18.35 17 9 16.95

50 35.29 59.41 29.94 17 9 64.93

We could solve a similar number of problems in each subset of instances grouped by width of

the time window (10, 30, and 50). Our results indicate that the width of the time windows does

not have an impact on the difficulty of the problems. Also the computational time seems not to be

dependent on the width of the time windows. Detailed results for each instance are available at

http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/anex1-results.htm.

As it was mentioned before, our main interest is in the undirected case; the transformed model

on the required arcs (Section 3.6.2) corresponds to a TSP with time windows and solving this

formulation is the most efficient way to deal with the problem because again we obtain a

formulation with less variables and a better bound. Our aim in this case is to evaluate the size of

the problem that can be solved with the model on the arcs.

3.7 Conclusions

We have introduced several formulations for the undirected and directed RPPTW, and we

have tested them on instances adapted from the literature and on a real network.

The results show that the models on the arcs and edges are not practical because they are too

large and use the “big M.” For the directed case the model on the arcs could solve instances with

up to 36 required arcs and wide time windows, and 71 required arcs with tight time windows.

Neither number of optimal solutions or average of computational time seems to depend on the

width of the time windows.

53

We propose two transformations for the undirected case. Results show that the model on the

nodes is superior to the model on the required edges, i.e., it allows to solve to optimality twelve

more instances and the running times are smaller.

In the undirected version of the problem, we exploited the formulation called “Model on the

nodes”. The resulting problem is an ATSP-TW and side constraints. This model is solved using a

cutting plane algorithm. We were able to solve to optimality 222 of 225 generated instances in

less than two hours. We solved to optimality 10 of the 12 largest instances (60 nodes, 90 edges,

and 45 required edges) in less than 15 minutes on average. Also we solved 5 of 9 instances of a

real network with up to 104 required edges in less than 3.5 minutes.

For the directed case the problem is transformed into an equivalent ATSP-TW. Existing

methods for large instances, such as cutting plane algorithms, can be used.

Future research could develop a branch-and-cut algorithm to solve the problem. It could be

interesting to study efficient strategies to decide on which variables to branch and include other

types of cuts. We also believe that metaheuristics should be explored to get good solutions in a

short time when the dynamic case of the black-ice detection problem is considered, i.e., when the

time windows or the road segments to visit vary over time.

References

Ascheuer, N., Fischetti, M., & Grötschel, M. (1999). Solving the Asymmetric Traveling

Salesman Problem with Time Windows by branch-and-cut. Belin, Germany: Konrad-

Zuse-Zentrun für informationstechnik Berlin.

Ascheuer, N., Fischetti, M., & Grötschel, M. (2001). Solving the Asymmetric Travelling

Salesman Problem with time windows by branch-and-cut. Mathematical Programming,

90(3), 475-506. doi: 10.1007/PL00011432

Ascheuer, N., Jünger, M., & Reinelt, G. (2000). A Branch & Cut Algorithm for the Asymmetric

Traveling Salesman Problem with Precedence Constraints. Computational Optimization

and Applications, 17(1), 61-84. doi: 10.1023/A:1008779125567

Balas, E., Fischetti, M., & Pulleyblank, W. (1995). The precedence-constrained asymmetric

traveling salesman polytope. Mathematical Programming, 68(1-3), 241-265. doi:

10.1007/BF01585767

54

Christofides, N., Campos, V., Corberán, Á., & Mota, E. (1981). An algorithm for the Rural

Postman Problem. London: Imperial College.

Corberán, A., & Sanchis, J. M. (1994). A polyhedral approach to the rural postman problem.

European Journal of Operational Research, 79(1), 95-114. doi:

http://dx.doi.org/10.1016/0377-2217(94)90398-0

Corberán, Á., & Sanchis, J. M. (1991). A polyhedral approach to the Rural Postman Problem (D.

d. E. e. I. operative, Trans.). Spain: Universidad de Valencia.

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-

Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27-36. doi:

http://dx.doi.org/10.1016/0167-6377(91)90083-2

Dror, M., Leung, J. Y., & Mullaseril, P. (2000). Livestock Feed Distribution and Arc Traversal

Problems. In M. Dror (Ed.), Arc Routing (pp. 443-464): Springer US.

Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc Routing Problems, Part II: The Rural

Postman Problem. Operations research, 43(3), 399-414. doi: doi:10.1287/opre.43.3.399

Fischetti, M., & Toth, P. (1997). A Polyhedral Approach to the Asymmetric Traveling Salesman

Problem. Management Science, 43(11), 1520-1536. doi: 10.2307/2634585

Gueguen, C. (1999). Méthodes de résolution exacte pour les problèmes de tournées de véhicules.

École Central Paris.

Jünger, M., Reinelt, G., & Rinaldi, G. (1995). Chapter 4 The traveling salesman problem. In T. L.

M. C. L. M. M.O. Ball & G. L. Nemhauser (Eds.), Handbooks in operations research and

management science (Vol. Volume 7, pp. 225-330): Elsevier.

Kang, M.-J., & Han, C.-G. (1998). Comparison of Crossover Operators for Rural Postman

Problem with Time Windows. In P. K. Chawdhry, R. Roy, & R. K. Pant (Eds.), Soft

Computing in Engineering Design and Manufacturing (pp. 259-267): Springer London.

Letchford, A. N., & Eglese, R. W. (1998). The rural postman problem with deadline classes.

European Journal of Operational Research, 105(3), 390-400. doi:

http://dx.doi.org/10.1016/S0377-2217(97)00090-8

Mullaseril, P. A. (1997). Capacitated rural postman problem with time windows and split

delivery. (PhD.), University of Arizona, Arizona.

http://dx.doi.org/10.1016/0377-2217(94)90398-0
http://dx.doi.org/10.1016/0167-6377(91)90083-2
http://dx.doi.org/10.1016/S0377-2217(97)00090-8

55

Mullaseril, P. A., & Dror, M. (1996). A set covering approach for directed node and arc routing

problems with split deliveries and time windows: MIS Department, University of

Arizona.

Mullaseril, P. A., Dror, M., & Leung, J. (1997). Split-Delivery Routeing Heuristics in Livestock

Feed Distribution. The Journal of the Operational Research Society, 48(2), 107-116. doi:

10.2307/3010350

Nobert, Y., & Picard, J. C. (1994). A heuristic algorithm for the Rural Postman Problem with

Time Windows. Paper presented at the ORSA/TIMS, Detroit.

Padberg, M., & Rinaldi, G. (1990). An efficient algorithm for the minimum capacity cut problem.

Mathematical Programming, 47(1-3), 19-36. doi: 10.1007/BF01580850

Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems. SIAM Rev., 33(1), 60-100. doi: 10.1137/1033004

Wøhlk, S. (2005). Contributions to arc routing. University of Southern Denmark.

This article was published in:

Monroy-Licht, M., Amaya, C. A., & Langevin, A. (2014). The Rural Postman Problem

with time windows. Networks, 64(3), 169-180. doi: 10.1002/net.21569

Preliminary results were presented at:

Monroy-Licht, M., Amaya, C.A., & Langevin, A. (2012) Modeling the rural postman

problem with time windows. 25th European Conference on Operational Research. 8-11

July, Vilnius, Lithuania

56

CHAPTER 4 ARTICLE 2 : ALNS FOR THE RURAL POSTMAN

PROBLEM WITH TIME WINDOWS

Marcela Monroy-Licht1,2, Ciro Alberto Amaya3,4, André Langevin1,2

1 Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal, Canada

2Centre de recherche sur les réseaux d’entreprises, la logistique et le transport (CIRRELT), Montréal,
Canada

3Departamento de Ingeniería Industrial, Universidad de Los Andes, Bogotá, Colombia

4Grupo de investigación en producción y logística (PYLO), Bogotá, Colombia

Abstract

The rural postman problem with time windows (RPPTW) is the problem of serving some

required edges with one vehicle; the vehicle must visit these edges during established time

windows. This paper presents a competitive adaptive large neighborhood search algorithm

(ALNS) to solve the problem. Computational experiments are performed on a large set of

instances with up to 104 required edges. The results show that this approach is efficient,

significantly reducing the computational time on large instances and achieving good solutions:

the algorithm is able to solve to optimality 224 of 232 instances.

Keywords: Rural postman problem, Time windows, Adaptive large neighborhood search,

Metaheuristics.

4.1 Introduction

Checking the status on main roads during winter is a daily responsibility that helps to prevent

accidents. In the “Estrie,” an administrative region of Quebec, this monitoring is conducted by

the Ministry of Transportation from mid-October to mid-December. It is necessary to detect

black ice in a timely fashion to carry out preventative measures. Black ice may appear at low

temperatures close to 0°C or if the air warms suddenly after a prolonged cold spell. In the Estrie

region, several weather stations report the meteorological conditions. Each morning, the patrol in

charge of the monitoring plans the route to follow that day. The patrol uses the weather reports

57

from each zone and decides which roads are critical, i.e., have a high likelihood of black ice

appearing.

To decide which route to follow, the patrol must solve a rural postman problem (RPP) with

time constraints. Given a road network, it must visit some of the roads within a suitable time.

This problem is known as the RPPTW, where the time windows are defined by the

meteorological conditions reported.

More formally, given a graph 𝐺 = (𝑉,𝐸), where V is a set of vertices and E is a set of edges,

if 𝐸𝑅 ⊆ 𝐸 is a subset of required edges, the RPP involves finding a minimum-cost tour that visits

all the edges in 𝐸𝑅 at least once, starting and finishing at the same origin vertex. If the visits must

be carried out during a defined time interval, the problem becomes the RPPTW; here, earliest and

latest times are specified for the completion of the service of the required edges.

Other applications of the RPPTW may be found in areas related to arc routing problems such

as postal deliveries and the treatment of roads with salt and grit to prevent them from freezing.

The RPPTW is NP-hard, even when 𝐸𝑅 = 𝐸, since it reduces to the Chinese postman problem

with time windows, which is NP-hard (Dror, 2000). If 𝐸𝑅 ⊂ 𝐸 and all the time windows are

defined by the interval [0,∞], it reduces to the RPP. The RPP has been shown to be NP-hard

(Lenstra and Kan, 1976) .

The aim of this work is to present an algorithm that finds good, but not necessarily optimal,

solutions. The method must solve large instances quickly, so we have developed a metaheuristic

approach.

The remainder of this article is organized as follows. Section 4.1 summarizes related work.

Section 4.2 gives a formal description of the problem and the solution method. Experimental

results are presented in Section 4.3, and Section 4.4 provides concluding remarks.

4.2 Literature review

Arc routing problems with time windows have received less attention than the equivalent node

routing problems. Corberán and Prins (2010) present the most recent survey of arc routing

problems and their variants. The capacitated arc routing problem with time windows is the focus

of several papers (Gueguen, 1999; Mullaseril, 1997; Reghioui et al., 2007; Wøhlk, 2005)

58

Another time-sensitive capacitated arc routing problem is the arc routing problem with time

dependent service costs (Tagmouti et al., 2007).

Few researchers have explored the time-sensitive RPP. Letchford and Eglese (1998) present

the RPP with deadline classes. They look for a minimum-cost route traversing a subset 𝐸𝑅 of the

edges of a graph, where 𝐸𝑅 is divided into a number of deadline classes 𝑅1,𝑅2, … ,𝑅𝐿. The edges

in 𝑅1 must be serviced by time 𝐵1, those in 𝑅2 must be serviced by time 𝐵2, and so on. The

authors propose a formulation, valid inequalities, and a cutting plane algorithm to solve problems

with up to 50 vertices, 110 edges, and 7 R-connected components. They found optimal solutions

for instances with up to 67 required edges.

The RPP with time-dependent travel time is presented by Tan and Sun (2011). The problem is

defined on a directed time-dependent network 𝐷 = (𝑉,𝐴), where 𝑉 is the vertex set, 𝐴 is the arc

set, and 𝐴𝑅 ⊆ 𝐴 is the set of required arcs. The travel time 𝐷𝑖𝑗 for each arc 𝑡𝑖𝑗 ∈ 𝐴 is a function

depending on the starting time 𝑡𝑖, i.e., 𝐷𝑖𝑗(𝑡𝑖). The aim is to find a minimum-travel-time tour

starting at the origin vertex 𝑣0 and at starting time 𝑡0, and traversing each required arc 𝑡𝑖𝑗 ∈ 𝐴 at

least once. An integer linear programming formulation is proposed, and valid inequalities are

given.

The first approach to the RPPTW is that of Nobert and Picard (1994). The authors define two

types of required edges, 𝐸1 and 𝐸2. The edges in 𝐸1 must be serviced during the morning and the

edges in 𝐸2 may be serviced at any time. A heuristic algorithm based on the solution of two rural

path problems and on the computation of suitable penalties is presented, but no numerical results

are given. Kang and Han (1998) solve a relaxed version of the problem: late arrivals are

penalized. The authors present a genetic algorithm to solve a bi-objective problem that minimizes

the total travel cost and the total penalty, and they compare three crossover operators.

Recently, Monroy-Licht et al. (2014) have presented several mathematical formulations for

the RPPTW for the directed and undirected cases, as well as valid inequalities. The authors

developed a cutting plane algorithm, which they tested on two sets of instances. For the first set,

they solved 222 of 225 instances to optimality. The instances in the second set were larger, and

they were able to solve 5 of 9 instances with up to 104 required edges.

59

The computational time becomes excessive when exact algorithms are used on large instances.

We opted for an ALNS because it has performed well on time-window routing problems (Ropke

and Pisinger, 2006a) and has achieved good results on complex arc routing problems (Riquelme-

Rodríguez et al., 2014; Salazar-Aguilar, et al., 2012, 2013). The proposed ALNS addresses the

undirected version of the RPPTW, but it could easily be extended to other versions of the

problem.

4.3 Adaptive large neighborhood search

This section defines the RPPTW mathematically and describes the ALNS, which is

implemented within a simulating annealing metaheuristic.

Let 𝐺 = (𝑉,𝐸), where 𝑉 is the set of vertices, 𝐸 the set of edges, and 𝐸𝑅 ⊆ 𝐸 the set of

required edges called requirements. Each edge 𝑖 has an associated traversal cost 𝑐𝑖 and a traversal

time 𝐵𝑖. A time window [𝑡𝑖, 𝑏𝑖] is assigned to each required edge 𝑖 ∈ 𝐸𝑅, where 𝑡𝑖 is the earliest

time and 𝑏𝑖 the latest time to start the service at edge 𝑖. The RPPTW is the problem of finding a

minimum-cost tour starting and finishing at the depot node and servicing each required edge on

time. Several formulations of the problem are presented in Monroy-Licht et al. (2014).

ALNS was introduced by Pisinger and Ropke (2007) and Ropke and Pisinger (2006b).

Basically, the algorithm constructs an initial solution and then attempts to improve it using

competing removal and insertion heuristics. ALNS is based on two principles. First, it explores a

large neighborhood of the solutions (since the algorithm has many possibilities for moving to

other solutions, the neighborhood becomes very large). Second, it uses the best removal and

insertion heuristics of the past iterations (at every iteration of the algorithm, the heuristics are

selected based on their past performance).

4.3.1 Initial solution

A required edge is represented by the pair of nodes (𝑖, 𝑗) corresponding to its end nodes. This

notation indicates the direction in which the edge is traversed. We represent a solution 𝑥 as the

ordered sequence (𝑖, 𝑖)0, (𝑢, 𝑣)1, … , (𝑤, 𝑡)𝑛 , (𝑖, 𝑖)𝑛+1 of the 𝑛 required edges together with the

edges placed at positions 0 and 𝑛 + 1, which represent the depot edge. The cost of the solution 𝑥

60

is the sum of the traversal cost across the sequence, i.e., the sum of the shortest paths between the

final node of one required edge and the initial node of the next.

We run three simple heuristics based on sorting schemes to get an initial solution:

- Increasing release date (IRD): this heuristic sorts the required edges according to increasing

release dates (lower bounds of time windows) and checks whether the sequence is feasible.

Algorithm 1 gives the constructive procedure.

- Increasing due dates (IDD): This heuristic sorts the required edges according to increasing

due dates (upper bounds of time windows) and checks whether this sequence is feasible. The

constructive procedure is similar to Algorithm 1.

- Increasing center dates (ICD): This heuristic sorts the required edges according to increasing

centers of the time windows, 𝑡𝑖 + 𝑏𝑖−𝑎𝑖
2

, and checks whether this sequence is feasible. The

constructive procedure is similar to Algorithm 1.

Algorithm 1: IRD
Input: Set of 𝑛 required edges 𝐸𝑅
Output: 𝑥, an ordered sequence of required edges
1 𝑘 = 0
2 𝑥0 ← (𝑖, 𝑖)𝑘
3 While |𝐸𝑅| ≠ 0 & 𝑥0 is feasible do
4 𝑘 = 𝑘 + 1
5 Choose (𝑢, 𝑣) ∈ 𝐸𝑅 with the minimum release date
6 If 𝑐𝑐𝑐𝑡�(𝑤, 𝑡)𝑘−1,(𝑢, 𝑣)� ≤ 𝑐𝑐𝑐𝑡�(𝑤, 𝑡)𝑘−1,(𝑣, 𝑢)� then
7 𝑥0 ← 𝑥0 ∪ (𝑢, 𝑣)𝑘 , 𝐸𝑅 = 𝐸𝑅 ∖ (𝑢, 𝑣)
8 Else
9 𝑥0 ← 𝑥0 ∪ (𝑣,𝑢)𝑘 ,𝐸𝑅 = 𝐸𝑅 ∖ (𝑣,𝑢)
10 End if
11 End while
12 If |𝑥0| = 𝑛 + 1 then
13 𝑥 ← 𝑥0
14 Else
15 𝑥 ← ∅
16 End if

The best solution delivered by the three construction heuristics is chosen. If no feasible

solution is found by any of the heuristics, we allow infeasible solutions by modifying line 3 of

Algorithm 1 to While |𝐸𝑅| ≠ 0 𝐸𝑐. We keep the resulting solution as the initial solution for the

improvement phase.

61

4.3.2 Improvement phase

Given an initial solution 𝑥, we apply the ALNS algorithm until a stopping criterion is reached.

The algorithm outputs the best solution 𝑥∗ encountered during the search.

At each iteration, the algorithm chooses a removal and an insertion heuristic based on their

weights. The selected removal heuristic deletes some required edges from the solution 𝑥 and

then, the insertion heuristic attempts to reinsert them in better positions. Seven removal and two

insertion heuristics were implemented.

The weights of the heuristics are based on their historic performance. At each iteration we

assign scores that depend on the performance (see Ropke and Pisinger (2006a)); a high score

indicates a successful heuristic. If the removal and insertion heuristics are able to find a new

overall best solution their scores are increased by σ1. If the heuristics improve the current

solution but not the overall best solution their scores are increased by σ2. If the solution is worse

than the previous solution but accepted with a given probability, the heuristic scores are increased

by σ3. The scores for both the removal and insertion heuristics are updated by the same amount,

σ1,σ2, or σ3.

The improvement phase is divided into 10 segments and 10 subsegments. At the beginning of

each segment the weights are set to one. After each subsegment of 250 iterations, the weights are

updated according to the scores obtained. Let 𝑤�ℎ,𝑖 be the weight of heuristic ℎ used in

subsegment 𝑎. The weight for the heuristic ℎ to be used in subsegment 𝑎 + 1 is calculated as

follows:

 𝑤�ℎ,𝑖+1 = 𝑓 πℎ
𝜃ℎ

+ (1 − 𝑓) ∑ 𝑤�ℎ,𝑑
𝑙−1
𝑑=1
𝑖−1

 (4.1)

πℎ is the score of heuristic ℎ obtained during the previous subsegment 𝑎; 𝜃ℎ is the number of

times that heuristic ℎ was used in subsegment 𝑎; 𝑓 is a factor, 0 ≤ 𝑓 ≤ 1, that controls the

emphasis placed on the score obtained in the last subsegment with reference to the historical

average weight.

Each removal/insertion heuristic ℎ is chosen at each iteration by two separate roulette-wheel

mechanisms. The probability of selecting heuristic h for subsegment 𝑎 is

62

𝑤�ℎ,𝑙
∑ 𝑤�ℎ,𝑙
𝑜
ℎ=1

 (4.2)

where 𝑐 is the total number of removal/insertion heuristics (i.e., 𝑐=7 or 2).

Let 𝐶(𝑥) represent the cost of the current solution 𝑥. The new solution given by the ALNS at

each iteration is represented by �̅�. A simulated annealing mechanism determines whether or not

the new solution �̅� should be accepted. A solution is accepted if 𝐶(�̅�) is less than 𝐶(𝑥), and it is

accepted with probability 𝑒
−𝐶(𝑥�)−𝐶(𝑥)

𝑇 if 𝐶(�̅�) is greater than or equal to 𝐶(𝑥), where 𝐵 > 0 is the

temperature. The temperature has an initial value 𝐵0 calculated from the initial solution so that a

solution that is 𝜔% worse than the current solution is accepted with 50% probability (Ropke &

Pisinger, 2006b). At each subsegment the temperature is decreased slightly: 𝐵𝑖+1 = 𝐵𝑖 − (𝑇0
100

),

where 𝐵𝑖+1 is the temperature of subsegment 𝑎 + 1.

Toward the end of the search we accept only good moves, and therefore it is harder for the

heuristics to get high scores. If no solutions improve the current best solution in an entire

subsegment, the algorithm perturbs the best known solution by reversing the traversal direction of

𝑓|𝐸𝑅| required edges. The 𝑓|𝐸𝑅| required edges are randomly chosen.

In our implementation we stopped the algorithm after 25,000 iterations. Our ALNS also

allows infeasible solutions (with regards to the time windows), which improves the overall

search; the infeasibility is penalized with a high cost in the objective function.

4.3.2.1 Removal heuristics

Our ALNS framework for the RPPTW uses seven different removal heuristics. These

heuristics take as input a given solution 𝑥 and output a random number 𝑞 = ⌈[𝑝1|𝐸𝑅|,𝑝2|𝐸𝑅|]⌉ of

required edges, called requests, which are removed from the tour.

R1. Random removal: This simple heuristic selects 𝑞 requests at random and removes them

from the solution 𝑥. The purpose of this heuristic is to diversify the search.

R2. Series removal: This heuristic selects a series of 𝑞 consecutive requests. It randomly

selects a position 𝑘 between 𝑘 = 1 and 𝑘 = 𝑛 − 𝑞 + 1, where 𝑛 represents the number

of required edges, and removes the next q requests starting at position 𝑘 and finishing at

position 𝑘 + 𝑞 − 1.

63

R3. Worst-removal: This heuristic chooses 𝑞 requests that are very expensive, i.e., with a long

distance to cover them. It seems reasonable to try to remove requests with a high cost

and insert them elsewhere to obtain a better solution.

Given a request (𝑖, 𝑗) placed at position 𝑘 in solution 𝑐, we define the cost of the request

as 𝑐𝑐𝑐𝑡((𝑖, 𝑗)) = 𝐸((𝑢, 𝑣)𝑘−1, (𝑖, 𝑗)𝑘) + 𝐸((𝑖, 𝑗)𝑘, (𝑤, 𝑡)𝑘+1), where 𝐸 represents the

distance function between two requests.

The worst-removal heuristic repeatedly chooses the request (𝑖, 𝑗) with the largest

𝑐𝑐𝑐𝑡((𝑖, 𝑗)) until ℎ (ℎ = 2𝑞) requests have been selected. To obtain variability in the

removal, the heuristic is randomized: q random requests are removed from the h selected

requests.

R4. Space-related removal: This heuristic removes a set of 𝑞 related requests that could be

closer and hence provide a better solution. For the RPPTW, we define the relatedness

𝑓{𝑖,𝑗}{𝑢,𝑣} of two requests by the distance (the shortest path) between them.

The heuristic initially selects a request (𝑖, 𝑗) at random and places it into the set 𝑄 of

selected requests. Then it repeatedly calculates 𝑓(𝑖,𝑗)(𝑢,𝑣) for all (𝑖, 𝑗) in 𝑄 and (𝑢, 𝑣) not

in 𝑄, and chooses the request (𝑢, 𝑣) that minimizes 𝑓(𝑖,𝑗)(𝑢,𝑣). The algorithm stops when

𝑞 requests have been chosen. Ties are broken randomly to diversify the output.

R5. Time-related removal: This heuristic is a variant of the space-related removal heuristic.

Here we try to remove requests that are close in space and have similar time windows.

The motivation is to try to remove requests that are easy to interchange.

We measure the time-window relatedness 𝑚(𝑖,𝑗)(𝑢,𝑣) as the difference of the centers of

the time windows. The center of request (𝑖, 𝑗) is defined by 𝑚(𝑖,𝑗) = 𝑡𝑖 + 𝑏(𝑖,𝑗)−𝑎(𝑖,𝑗)

2
. The

heuristic first selects ℎ requests (ℎ = 2𝑞) as in the space-related removal heuristic. Then,

it chooses the 𝑞 requests in 𝑄 with the minimum

𝑚(𝑖,𝑗)(𝑢,𝑣) = 𝑡𝑖,𝑗 + 𝑏(𝑖,𝑗)−𝑎(𝑖,𝑗)

2
 - 𝑡𝑢,𝑣 + 𝑏(𝑢,𝑣)−𝑎(𝑢,𝑣)

2
, i.e., it iteratively chooses the pair

(𝑖, 𝑗), (𝑢, 𝑣) that minimizes 𝑚(𝑖,𝑗)(𝑢,𝑣) and places this pair into the set of selected

requests.

64

R6. Far-time-close-position removal: This heuristic removes requests that seem to be placed

wrongly because they are close in the solution but they have a high time windows center

difference.

The heuristic starts by selecting a request (𝑖, 𝑗) at random. Then the algorithm identifies

the ℎ requests with the largest differences in their time-window centers with respect to

the time-window center of request (𝑖, 𝑗). These requests are placed into 𝐻. Then, the

heuristic iteratively chooses the 𝑞 − 1 requests in 𝐻 closest to (𝑖, 𝑗) in the solution 𝑥. The

set of requests to remove is completed by adding the request (𝑖, 𝑗).

R7. Series-far-time removal: This heuristic is an extension of the series removal heuristic. The

purpose of this heuristic is to choose requests that could be placed wrongly, i.e., they are

close in the solution but they have a large mean time-window difference.

The heuristic first selects a series of ℎ = 2𝑞 requests, as in the series removal heuristic,

and places them into 𝐻. Then, it chooses the 𝑞 requests with highest 𝑚(𝑖,𝑗)(𝑢,𝑣) for

(𝑖, 𝑗), (𝑢, 𝑣) in 𝐻.

4.3.2.2 Insertion heuristics

The insertion heuristics construct a solution �̅� by inserting requests into the partial solution

𝑥’ obtained when the 𝑞 requests from the removal heuristics are removed from 𝑥. The removed

requests are initially placed in a set 𝑈.

I1. Basic greedy insertion: This heuristic is a simple construction heuristic that repeatedly

inserts a request (𝑖, 𝑗) into the cheapest position considering both directions in which the

request can be inserted.

We define 𝑐(𝑖,𝑗),𝑘 = 𝐸�(𝑢, 𝑣)𝑘−1, (𝑖, 𝑗)� + 𝐸�(𝑖, 𝑗), (𝑤, 𝑡)𝑘� − 𝐸((𝑢, 𝑣)𝑘−1, (𝑤, 𝑡)𝑘) as

the insertion cost of request (𝑖, 𝑗) at position 𝑘 of solution 𝑥’. If (𝑖, 𝑗) cannot be inserted

at position 𝑘, then 𝑐(𝑖,𝑗),𝑘 = ∞. Let ∆𝑥’(𝑖,𝑗) denote the change in the objective value of

solution 𝑥’ incurred by inserting request (𝑖, 𝑗) into its best overall position, i.e.,

∆𝑥’(𝑖,𝑗) = 𝑚𝑖𝑛𝑘 𝑐(𝑖,𝑗),𝑘.

At each iteration the algorithm chooses the request (𝑖, 𝑗) ∈ 𝑈 with the minimum ∆𝑥’(𝑖,𝑗)

and inserts (𝑖, 𝑗) into its cheapest position. Then (𝑖, 𝑗) is removed from 𝑈. This process

65

continues until all the requests in 𝑈 have been inserted into solution 𝑥’, and we then set

�̅� = 𝑥’.

This heuristic has an obvious drawback: it often postpones the placement of “hard”

requests (requests with large ∆𝑥’(𝑖,𝑗)) until the last iterations, when there are few

feasible positions because of the time windows. The next heuristic tries to circumvent

this problem.

I2. Regret insertion: The regret heuristic tries to improve on the basic greedy insertion

heuristic by incorporating a kind of look-ahead information when selecting the request

to insert. We define the regret value 𝑓(𝑖,𝑗) as the difference of the two lowest values

 𝑐(𝑖,𝑗),𝑘 for each request (𝑖, 𝑗) ∈ 𝑈. In other words, the regret value is the difference

between the cost of inserting the request into its best position and that of its second-best

position.

At each iteration the regret heuristic chooses to insert the request (𝑖, 𝑗) ∈ 𝑈 with the

maximum 𝑓(𝑖,𝑗). The selected request is inserted into its cheapest position considering

both directions in which the request can be inserted. The process stops when all requests

in 𝑈 have been inserted into solution 𝑥’, and we then set �̅� = 𝑥’.

4.4 Results

In this section we describe our computational experiments. We test the performance of the

algorithm against the cutting plane algorithm proposed by Monroy-Licht et al. (2014). There are

four major objectives for this section:

1. We present the set of instances and the optimal value, not previously reported, for some

instances.

2. We discuss the parameter tuning based on statistical tests.

3. The performance and robustness of the overall algorithm depends on the choice of the

removal and insertion procedures (Ropke and Pisinger, 2006a). Therefore, the third

objective is to compare the performance of the heuristics.

4. We also explore the performance of the algorithm on larger instances.

66

The tests were coded in Python and run on a 1.9-GHz AMD PC with 1983 MB of internal

memory. We chose this test environment since it is the same as that used in (Monroy-Licht et al.,

2014).

4.4.1 Instances

We tested the algorithm on two sets of instances, both proposed by Monroy-Licht et al.

(2014). These are the only known benchmark instances for the RPPTW.

The first group (set1) is a set of 225 instances with between 2 and 45 required edges and 3

types of time windows: tight, labeled TW=10; intermediate, TW=30; and wide, TW=50. The

second set of instances (set2) is generated for a real network of major roads in the Estrie region.

This set of 8 instances has between 74 and 104 required edges and 3 widths of time windows (10,

30, and 50). Monroy-Licht et al. (2014) presented 9 instances in set2, but we did not use instance

Inst-00 because it seems to have an error in the data.

In set1, each required edge has a randomly generated time window. The instances in set2 have

a special feature: the time windows are generated as four or five time slots, and so several

required edges have the same time windows.

Monroy-Licht et al. (2014) solved 227 instances to optimality. We ran the cutting plane

algorithm proposed by the authors for the instances that could not be solved in less than 3 hours

in (Monroy-Licht et al., 2014). With a time limit of 10 hours and a parameter tolerance gap of 0

we solved to optimality 5 new instances. Table 4.1 presents the optimal solution values (O.F.)

and the time in seconds taken by the cutting plane algorithm. Column R indicates the number of

required edges, and column TW indicates the type of time windows.

The cutting plane algorithm spends significantly more time on TW-B60A115 and TW-

C40C152 than on the other instances. Since Inst-02, Inst-04, and Inst-05, which belong to set2,

are larger than TW-B60A115 and TW-C40C152, we can see that it is easier to solve the larger

instances because the structure of their time windows is different, as explained above.

67

Table 4.1: Optimal solutions for benchmark instances

Instance R TW O.F. Time

TW-B60A115 45 30 511.0 25779.5

TW-C40C152 35 50 289.0 23729.6

Inst-02 74 50 259.7 366.2

Inst-04 104 30 289.2 615.4

Inst-05 104 50 289.2 306.9

4.4.2 Tuning set parameters

This section determines the parameters that need to be tuned. The weights of the ALNS are

controlled by parameters σ1,σ2, σ3 (performance scores of removal and insertion heuristics) and

𝑓 (emphasis on the score obtained in recent iterations). To control the acceptance criteria we use

the parameter 𝜔. Finally, we must determine 𝑝1 and 𝑝2, the parameters that control how many

requests we remove and insert, and 𝑓, which controls the number of required edges that can be

reversed (change of the traversal direction).

Intuitively, 𝑝2 and 𝑓 should have a more significant effect on the quality of our algorithm. We

focused on the calibration of these two parameters. For the other parameters we decided to use

the values used in similar work in the literature. For all the experiments we used the parameter

values determined in (Pisinger and Ropke, 2007) and (Ropke and Pisinger, 2006b) for parameters

𝑓 and 𝜔. They were respectively set to 0.7 and 5. The parameters σ1,σ2, and σ3 were set to 15, 8,

and 2 respectively. The relative values of these parameters maintain the relationship determined

in (Pisinger and Ropke, 2007; Ropke and Pisinger, 2006b). 𝑝1 was set to 0.1 as in (Pisinger and

Ropke, 2007).

The maximum number of requests that can be removed in a single iteration, 𝑝2|𝐸𝑅|, and the

number of required edges that can be reversed (change of the traversal direction), 𝑓|𝐸𝑅|, are

controlled by 𝑝2 and 𝑓, which are expressed as a percentage of the number of required edges.

We produced a fair parameter setting through empirical tests. Two values were chosen for 𝑝2:

0.2 and 0.4. Parameter f was set to 0.02, 0.05, and 0.1. Then we applied a statistical F-test with

68

two factors (𝑝2 and f); 𝑝2 had 2 levels and f had 3 levels. The statistical test of factorial crossing

gives us information about the effect of the six statistical treatments. Each statistical treatment

was run 5 times.

For the tuning tests, we selected a random sample of 30 instances with different sizes and time

windows widths from set1 and set2; all of them with known optimal solutions. At the 95% level

the test rejected the hypothesis that there is a difference between the performance of the

parameter combinations, with p-values of 0.7093 and 0.6005 for the effect of f and 𝑝2, and 0.677

for the effect of the interaction between f and 𝑝2. Therefore, the ALNS results are sufficiently

robust with respect to variations of the parameters, and no significant improvement in the

solution can be expected by selecting a different parameter combination 𝑝2, f. For the subsequent

tests, the parameters 𝑝2 and f were set to 0.2 and 0.1 respectively, since the preliminary tests

indicated that these values provided the best performance.

4.4.3 Performance of removal and insertion heuristics

The objective of this section is to compare the individual performance of each removal and

insertion heuristic to that of all the heuristics. We then explore the best combination of heuristics.

As before, we denote the removal heuristics by R1, R2, R3, R4, R5, R6, and R7 and the

insertion heuristics by I1 and I2. We implemented different versions of the ALNS. Each was

applied five times to each instance (and all subsequent experiments were also performed five

times). Initially we applied VR1, VR2, VR3, VR4, VR5, VR6, VR7, VI1, and VI2. Versions

VR1 to VR7 involve using one removal heuristic and both insertion heuristics I1 and I2. Versions

VI1 and VI2 involve using all seven removal heuristics and one insertion heuristic. We refer to

these as single versions. We also applied the full version (FV) of the ALNS, i.e., with all removal

and insertion heuristics.

Table 4.2 summarizes the performance of the different versions on set1. Detailed results for

each instance and the full experimental results can be found at

http://wwwprof.uniandes.edu.co/~pylo/inst/ALNSRPPTW/instances.html.

Table 4.2 shows that the most efficient removal versions are VR2, VR1, and VR4: they found

the optimal solution for at least 92% of times. Version VR5 has the worst performance, finding

the optimal solution for just 57% of times. All the single removal versions except VR5

69

outperform FV. Version VR7 performs well for instances with fewer than 35 required edges. The

columns showing the single insertion versions indicate that version VI2 outperforms VI1 in most

of the cases: VI2 was effective for 82% of times and version VI1 for 62%. The performance of

FV was similar to that of VI2.

Table 4.2: Performance of single versions of the ALNS on set1

R TW n.e. VR1 VR2 VR3 VR4 VR5 VR6 VR7 VI1 VI2 FV

≤10
10 215 215 215 215 215 181 215 215 205 204 204
30 215 212 212 202 211 154 214 207 164 188 190
50 215 205 205 204 205 163 200 203 160 195 194

12
10 45 45 45 45 45 32 45 45 44 45 45
30 45 45 45 45 45 17 44 45 27 41 37
50 45 42 44 37 45 11 34 35 14 33 33

16
10 15 15 15 15 15 15 15 15 15 15 15
30 15 15 15 15 15 15 15 15 15 15 15
50 15 14 15 10 14 5 15 15 5 9 11

21
10 30 30 30 29 30 14 25 30 24 26 29

30 30 30 30 30 29 7 29 29 5 17 19
50 30 30 28 27 28 1 23 30 0 20 20

27
10 20 15 15 15 15 5 15 15 3 14 13
30 20 20 20 15 20 6 15 20 0 16 13
50 20 10 19 6 15 0 2 7 0 10 11

35
10 30 28 27 23 25 5 18 25 8 27 24
30 30 16 17 10 10 1 8 11 0 10 10
50 30 24 30 15 26 5 16 22 5 20 18

45
10 20 14 6 10 9 1 7 8 0 7 6
30 20 9 11 2 9 0 1 7 0 2 3
50 15 4 8 2 6 0 0 1 0 5 2

Total 1120 1038 1052 972 1032 638 956 1000 694 919 912
 The table compares the different single versions of ALNS and the full version. The first column shows
the number of required edges; the second gives the width of the time windows. Column n.e. indicates the
number of experiments performed for a data set of size R (number of required edges). The other columns
indicate how many times the optimal solution was reached by the corresponding version of the ALNS.
Bold entries indicate that the version solved a maximum number of problems to optimality (for single
removal and single insertion versions respectively). The last row shows the number of times the optimal
solution was found over all the experiments by each version.

70

The gaps are shown in Table 4.3. The gap is averaged over all the experiments of a given

time-window width. We also calculate the average gap for instances that did not reach the

optimal value. The last three rows of the table indicate the maximum gap over all the experiments

for each single version of the ALNS.

Table 4.3: Gaps for single versions of the ALNS on set1

Gap TW VR1 VR2 VR3 VR4 VR5 VR6 VR7 VI1 VI2 FV

Average gap (%)

10 0.080 0.154 0.130 0.145 1.154 0.165 0.123 0.635 0.232 0.249

30 0.124 0.075 0.568 0.172 2.851 0.461 0.242 2.754 0.931 0.924

50 0.336 0.206 0.494 0.231 4.201 1.062 0.675 4.763 0.774 0.922

Gap (%) for
instances that did

not reach the
optimal value

10 2.319 2.633 2.126 2.584 3.546 1.770 2.099 3.133 2.348 2.398

30 1.659 1.121 3.806 1.793 6.109 3.526 2.218 6.298 4.059 3.936

50 3.035 3.637 2.649 2.755 8.403 4.912 4.379 9.476 3.673 4.212

Maximum gap (%)

10 3.753 5.622 3.753 4.836 10.526 3.753 4.771 7.631 7.609 7.609

30 3.644 2.963 13.889 4.815 21.875 8.713 6.061 19.149 18.750 14.063

50 8.333 8.858 9.091 8.333 34.146 15.287 15.873 31.746 18.182 26.829

 The bold entries indicate the three best gaps for the single removal versions and FV. The bold entries in
columns VI1 and VI2 indicate the better gap for the two single insertion versions.

The average gap was less than 1.1% for all the single removal versions except VR5. VR1,

VR2, and VR4 had the smallest average gaps; these gaps were always better than those of FV.

Versions VR1, VR2, and VR4 had the smallest maximum gaps on the hardest instances

(TW=50). For the insertion versions, VI2 achieved better gaps than VI1 in all cases.

Tables 4.4 and 4.5 present the results of other tests. We applied the ALNS with the three best

removal heuristics: R1, R2, and R4. Version VR124I2 includes I2 as the insertion heuristic, and

VR124I12 includes both I1 and I2. Table 4 lists how many times these versions found the

optimal solution for all the instances.

Version VR124I12 performs better than VR12I2. Note that although VR2 outperforms VR1,

the algorithm obtains better results when both insertion heuristics are included. Overall,

VR124I12 is the best version. It finds the optimal solution for 95.9% (1074/1120) of times.

Table 4.5 lists the gaps for VR124I2 and VR124I12. It shows that VR124I12 is quite stable:

the average gap never exceeds 0.2% and it has the smallest average gap of all versions of the

ALNS.

71

Table 4.4: Performance of versions VR124I2 and VR124I12 on set1

R TW n.e. VR124I2 VR124I1I2

≤10
10 215 215 215
30 215 210 214
50 215 205 205

12
10 45 45 45
30 45 45 45
50 45 42 44

16
10 15 15 15
30 15 15 15
50 15 15 15

21
10 30 30 30
30 30 30 30
50 30 29 30

27
10 20 15 15
30 20 20 20
50 20 12 18

35
10 30 29 30
30 30 13 21
50 30 23 29

45
10 20 13 13
30 20 14 15
50 15 7 10
Total 1120 1042 1074

 The table should be interpreted like Table 2. Bold entries indicate when the version solved a maximum
number of problems to optimality over all versions of the ALNS (VR1 to VR7, FV, VI1, VI2, VR124I2,
and VR124I12).

Table 4.5: Gaps for VR124I2 and VR124I12 on set1

Gap (%) TW VR124I2 VR124I1I2

Average
10 0.098 0.078
30 0.302 0.043
50 0.387 0.163

Instances that did not
reach the optimal

value

10 2.816 2.447
30 4.044 1.071
50 3.867 3.183

Maximum
10 3.753 3.753
30 13.889 1.887
50 15.873 8.333

 The interpretation is as for Table 4.3. Bold entries indicate when the corresponding version obtained the
smallest gap over all versions (VR1 to VR7, FV, VI1, VI2, VR124I2, and VR124I12).

72

Finally, we compared the performance of the best version with that of the cutting plane

algorithm (Monroy-Licht et al., 2014). The results are summarized in Table 4.6. VR124I12 fails

to find the optimal solution for only 6 instances. Moreover, the computational time of the cutting

plane algorithm increases significally on the hardest instances: ALNS solves the hardest

problems in less than 5.5 min. on average while the cutting plane algorithm requires 34.3 min.

Table 4.6: Comparison of VR124I12 and cutting plane algorithm

TW 10 30 50

 R ins

VR124I12 Cutting plane VR124I12 Cutting plane VR124I12 Cutting plane

sol Avg-t Max-t Avg-t Max-t sol Avg-t Max-t Avg-t Max-t sol Avg-t Max-t Avg-t Max-t

≤10 43 43 7.35 11.50 0.13 0.83 43 7.65 12.61 0.18 0.79 41 7.80 12.23 0.27 0.98

12 9 9 20.22 22.04 0.51 0.81 9 22.01 24.74 1.60 2.85 9 22.98 25.24 1.27 1.99

16 3 3 31.86 34.25 1.68 2.31 3 36.03 38.69 3.32 7.27 3 36.19 39.77 4.70 6.53

21 6 6 58.49 64.60 4.26 9.65 6 63.64 69.84 6.74 9.14 6 68.05 75.19 10.34 33.70

27 4 3 87.52 96.44 8.44 10.75 4 95.59 103.92 16.36 34.08 4 99.20 109.10 1484.43 5494.11

35 6 6 145.36 175.01 29.14 46.00 5 151.51 179.98 44.44 83.02 6 174.50 187.26 6110.53 23729.59

45 4 3 257.88 287.62 44.63 60.23 3 301.05 332.02 6892.40 25779.46 4 306.25 335.30 2060.24 6030.17

 The table gives the number of problems solved to optimality and the computational times. Column ins
shows the number of instances of size R. The data set is divided into three groups: TW=10, TW=30, and
TW=50. For each group we report how many problems were solved to optimality (sol) and the average
(Avg-t) and maximum (Max-t) ALNS computational time. The columns for the cutting plane algorithm
show the average and maximum computational times reported by Monroy-Licht et al. (2014). Bold
entries indicate the faster method.

4.4.4 Results for set2

Our final experiments were carried out on 8 larger instances based on a real network (Monroy-

Licht et al., 2014). We applied only VR124I12, because it had good results in the previous tests.

Because we are interested in an algorithm that works well quickly, we analyze the quality of

the solutions in terms of the running times. We also analyze the effect of the parameter q, which

has the largest impact on the solution time: when more requests can be removed in a single

iteration the solution time is higher.

We applied the ALNS with different values of q, and we used different limits on the

computational time. We set q = 3, 5, 10, 40 or a random number between 0.1|𝑅| and 0.2|𝑅|. We

set the time limit to 180, 600, 900, and 1800 s. We applied the ALNS five times for each instance

73

and each combination of q and the time limit. We stopped the algorithm when it reached 25,000

iterations or the time limit.

Table 4.7 presents the average gap for all the experiments. The average gap is not reported if

the algorithm uses less time to reach 25,000 iterations than the time limit; we reallocated those

experiments to a group based on the upper bound of their running times. For q = 5 the algorithm

obtained the best average gap in 4 instances, using a maximum of 685 s. For q = 10 and a time

limit of 1800 s, we obtained the smallest gaps for 4 instances.

Table 4.7: Average gap: Study of the effect of q and time limit

 Instance q

Time limit Avg. gap -

 all time limits (%) 180 600 900 1800

Inst-01

|𝑅| = 74

𝐵𝑊 = 30

random 3.363 2.814 2.688 2.281 2.793

3 4.585 4.368 4.422

5 3.627 2.922 3.098

10 3.591 3.148 3.174 2.969 3.220

40 34.355 18.820 9.997 7.975 17.787

Avg. gap - all q (%) 9.904 5.183 5.230 4.456 6.264

Inst-02

|𝑅| = 74

𝐵𝑊 = 50

random 4.317 3.641 3.594 3.272 3.706

3 4.347 4.412 4.396

5 3.838 3.630 3.682

10 4.190 3.695 3.585 3.219 3.672

40 10.980 7.671 7.275 5.556 7.871

Avg. gap - all q (%) 5.535 4.348 4.818 4.016 4.665

Inst-06

|𝑅| = 93

𝐵𝑊 = 10

random 9.232 7.143 5.121 5.212 6.677

3 5.702 3.766 4.250

5 5.942 2.854 3.626

10 9.633 5.461 3.806 3.516 5.604

40 21.062 15.696 13.904 11.851 15.505

Avg. gap - all q (%) 10.169 5.427 7.467 6.968 7.132

Inst-07

|𝑅| = 93

𝐵𝑊 = 30

random 4.341 3.361 2.646 1.613 2.990

3 3.235 3.213 3.219

5 2.853 1.905 2.142

10 3.809 1.891 1.399 0.528 1.907

40 12.253 7.577 7.205 5.176 7.897

Avg. gap - all q (%) 5.108 3.196 3.750 2.439 3.631

74

Table 4.7: Average gap: Study of the effect of q and time limit

 Instance q

Time limit Avg. gap -

 all time limits (%) 180 600 900 1800

Inst-08

|𝑅| = 93

𝐵𝑊 = 50

random 4.582 2.509 2.485 1.732 2.827

3 4.544 3.645 3.870

5 3.122 2.467 2.631

10 4.253 2.596 1.726 0.851 2.357

40 9.232 7.315 4.834 4.701 6.486

Avg. gap - all q (%) 5.091 3.446 2.974 2.478 3.634

Inst-03

|𝑅| = 104

𝐵𝑊 = 10

random 9.682 5.519 6.837 5.252 6.823

3 4.159 2.965 3.264

5 2.548 1.472 1.470 1.740

10 6.126 3.909 3.141 2.461 3.910

40 20.702 15.902 16.507 14.524 16.909

Avg. gap - all q (%) 8.643 4.358 8.368 7.413 6.529

Inst-04

|𝑅| = 104

𝐵𝑊 = 30

random 3.568 2.743 2.414 2.155 2.720

3 2.583 2.247 2.331

5 1.421 0.831 0.884 0.983

10 2.595 1.861 1.593 0.984 1.758

40 17.825 13.789 11.801 10.634 13.378

Avg. gap - all q (%) 5.263 3.317 4.831 4.591 4.234

Inst-05

|𝑅| = 104

𝐵𝑊 = 50

random 5.534 4.770 3.758 2.519 4.145

3 2.742 2.691 2.704

5 1.753 1.266 0.968 1.258

10 4.170 2.676 1.932 1.646 2.606

40 20.196 14.820 12.748 11.986 14.938

Avg. gap - all q (%) 6.879 4.396 4.250 5.384 5.130

Avg. gap - all instances (%) 7.085 4.205 5.167 4.719 5.153

 The columns are as follows. Instance gives the name and description of each instance, q is the number of
requests to remove and insert in each iteration, and the next four columns are the maximum running time
for each time limit. The final column is the average gap for all experiments with the corresponding value
of q. The table also reports for each instance the average gap over all experiments with a given time limit.
The last row of the table gives the average gap over all instances with a given time limit.

Table 4.8 summarizes the best results obtained by the algorithm in each instance. The first

three columns present the features of each instance. The value of the best solution obtained by the

algorithm is presented in column ALNS. The corresponding values of q and the time limit are

given in the column Best combination. The average computational time in seconds is presented in

75

column T. The number of times the algorithm obtained the optimal solution is given in column n.

The last columns give the optimal value, the computational time in seconds for the cutting plane

algorithm (Monroy-Licht et al., 2014), and the gap. Note that in some cases the running time T is

smaller than the time limit because the algorithm has reached the limit on the number of

iterations. Although the running times of the exact method are in general better, the metaheuristic

finds good solutions; it solves six instances to optimality, and the minimum gap for the other two

is less than 0.6%.

Table 4.8. Best solutions: set2

Instance R TW ALNS
Best combination

q, time limit T N OF* t* Gap (%)

Inst-01 74 30 259.7
random,600 600 1

259.7 165.46 0.00
random, 1800 1654 1

Inst-02 74 50 261.2 5,1800 456 0 259.7 366.17 0.59

Inst-06 93 10 301.0 5, 600 545 0 299.7 193.41 0.45

Inst-07 93 30 299.7

random, 1800 1800 1

299.7 208.75 0.00 5, 600 499 1

10, 1800 1695 4

Inst-08 93 50 299.7

random, 600 600 1

299.7 137.76 0.00 random, 1800 1800 3

10, 1800 1678 1

Inst-03 104 10 289.2

5, 180 180 1

289.2 202.29 0.00 5, 900 582.50 2

5, 1800 555.66 3

Inst-04 104 30 289.2

5, 600 585.8 5

289.2 615.35 0.00 5, 900 614 1

5, 1800 580.25 4

Inst-05 104 50 289.2

5, 600 600 2

289.2 366.88 0.00 5, 900 641 3

5, 1800 632 2

Bold entries indicate the faster method.

76

4.4.5 Summary of computational results

We have applied different versions of the ALNS to compare the performance of seven

removal and two insertion heuristics and a full version that includes all of them. The selection of

the removal heuristic has an impact on the solution quality: the removal heuristics based on

randomness (R1 and R2) and the one that considers distance requirements (R4) perform better

than the others. I2, the insertion heuristic that prioritizes the most difficult insertions, outperforms

I1, which prioritizes the cheapest insertions.

The most efficient version is VR124I12; it uses R1, R2, and R4 as removal heuristics and I1

and I2 as insertion heuristics. It was able to find 218 optimal solutions for set1 and 6 for set2.

The results show that the ALNS performs well; for the hardest instances (TW=50) the average

gap of VR124I12 was 0.163%, and it required less than 336 s in the worst case; the exact method

takes 20 times as long.

For larger instances, the number of requests that can be removed and inserted at each iteration

has an important impact on the solution time. For q = 5 the average gap is 2.39% and the

maximum running time is 685 s.

Although the instances in set2 have more required edges than those in set1, the latter are

harder to solve because of their time-window structure.

4.5 Conclusions

We have proposed an ALNS algorithm for the RPPTW. We have proposed and evaluated

seven removal heuristics and two insertion heuristics. The best results were achieved when the

algorithm used a combination of the best removal heuristics.

The ANLS is robust and performs well compared to exact methods. It found 224 optimal

solutions for the 232 benchmark instances while significantly reducing the computational time on

the hardest instances.

It would be interesting to apply the ideas presented here to other arc routing problems with

time windows, taking advantage of the flexibility of the algorithm.

77

References

Corberán, A., & Prins, C. (2010). Recent results on Arc Routing Problems: An annotated

bibliography. Networks, 56(1), 50-69. doi: 10.1002/net.20347

Dror, M. (2000). Arc routing: theory, solutions and applications: Kluwer Academic Publishers.

Gueguen, C. (1999). Méthodes de résolution exacte pour les problèmes de tournées de véhicules.

École Central Paris.

Kang, M.-J., & Han, C.-G. (1998). Comparison of Crossover Operators for Rural Postman

Problem with Time Windows. In P. K. Chawdhry, R. Roy, & R. K. Pant (Eds.), Soft

Computing in Engineering Design and Manufacturing (pp. 259-267): Springer London.

Lenstra, J. K., & Kan, A. H. G. R. (1976). On general routing problems. Networks, 6(3), 273-280.

doi: 10.1002/net.3230060305

Letchford, A. N., & Eglese, R. W. (1998). The rural postman problem with deadline classes.

European Journal of Operational Research, 105(3), 390-400. doi:

http://dx.doi.org/10.1016/S0377-2217(97)00090-8

Monroy-Licht, M., Amaya, C. A., & Langevin, A. (2014). The Rural Postman Problem with time

windows. Networks, 64(3), 169-180. doi: 10.1002/net.21569

Mullaseril, P. A. (1997). Capacitated rural postman problem with time windows and split

delivery. (PhD.), University of Arizona, Arizona.

Nobert, Y., & Picard, J. C. (1994). A heuristic algorithm for the Rural Postman Problem with

Time Windows. Paper presented at the ORSA/TIMS, Detroit.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &

Operations Research, 34(8), 2403-2435. doi: http://dx.doi.org/10.1016/j.cor.2005.09.012

Reghioui, M., Prins, C., & Labadi, N. (2007). GRASP with Path Relinking for the Capacitated

Arc Routing Problem with Time Windows. In M. Giacobini (Ed.), Applications of

Evolutionary Computing (Vol. 4448, pp. 722-731): Springer Berlin Heidelberg.

Riquelme-Rodríguez, J.-P., Langevin, A., & Gamache, M. (2014). Adaptive large neighborhood

search for the periodic capacitated arc routing problem with inventory constraints.

Networks, 64(2), 125-139. doi: 10.1002/net.21562

Ropke, S., & Pisinger, D. (2006a). An Adaptive Large Neighborhood Search Heuristic for the

Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4), 455-

472. doi: doi:10.1287/trsc.1050.0135

http://dx.doi.org/10.1016/S0377-2217(97)00090-8
http://dx.doi.org/10.1016/j.cor.2005.09.012

78

Ropke, S., & Pisinger, D. (2006b). A unified heuristic for a large class of Vehicle Routing

Problems with Backhauls. European Journal of Operational Research, 171(3), 750-775.

doi: http://dx.doi.org/10.1016/j.ejor.2004.09.004

Salazar-Aguilar, M. A., Langevin, A., & Laporte, G. (2012). Synchronized arc routing for snow

plowing operations. Computers & Operations Research, 39(7), 1432-1440. doi:

http://dx.doi.org/10.1016/j.cor.2011.08.014

Salazar-Aguilar, M. A., Langevin, A., & Laporte, G. (2013). The synchronized arc and node

routing problem: Application to road marking. Computers & Operations Research, 40(7),

1708-1715. doi: http://dx.doi.org/10.1016/j.cor.2013.01.007

Tagmouti, M., Gendreau, M., & Potvin, J.-Y. (2007). Arc routing problems with time-dependent

service costs. European Journal of Operational Research, 181(1), 30-39. doi:

http://dx.doi.org/10.1016/j.ejor.2006.06.028

Tan, G., & Sun, J. (2011). An Integer Programming Approach for the Rural Postman Problem

with Time Dependent Travel Times. In B. Fu & D.-Z. Du (Eds.), Computing and

Combinatorics (Vol. 6842, pp. 414-431): Springer Berlin Heidelberg.

Wøhlk, S. (2005). Contributions to arc routing. University of Southern Denmark.

This article was submitted as:

Monroy-Licht, M, Amaya, C.A., & Langevin, A. ALNS for the rural postman

problem with time windows. Networks. IN SUBMISSION

Preliminary results were presented at:

Monroy-Licht, M, Amaya, C.A., & Langevin, A. (2014) The rural postman problem

with time windows. IIE Annual Conference. May 31-June 3, Montréal, Canada

Monroy-Licht, M, Amaya, C.A., & Langevin, A. (2014) Solution methods for the

rural postman problem with time windows. INFORMS annual meeting. November

9-12, San Francisco, United State

http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1016/j.cor.2011.08.014
http://dx.doi.org/10.1016/j.cor.2013.01.007
http://dx.doi.org/10.1016/j.ejor.2006.06.028

79

CHAPTER 5 ARTICLE 3 : THE RESCHEDULING CAPACITATED

ARC ROUTING PROBLEM

Marcela Monroy-Licht1,2, Ciro Alberto Amaya3, André Langevin1,2, Louis-Martin Rousseau1,2

1Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal, Canada

2Centre de recherche sur les réseaux d’entreprises, la logistique et le transport (CIRRELT), Montréal,
Canada

3Departamento de Ingeniería Industrial, Universidad de Los Andes, Bogotá, Colombia

Abstract

In this paper, the rescheduling capacitated arc routing problem (RCARP) is introduced. This

is a dynamic routing and scheduling problem that considers adjustments to an initial itinerary

when one or more vehicle failures occur during the execution stage and the original plan must be

modified. We minimize the operational and schedule disruption costs. Formulations based on

mixed integer programming are presented to compare different policies in the rerouting phase. A

solution strategy is developed when both costs are evaluated and it is necessary to find a solution

quickly. Computational tests on a large set of instances compare the performance of the

formulations for different decision-maker policies.

Keywords: Rescheduling, Disruption schedule costs, Mixed-integer programming, CARP

5.1 Introduction

Winter maintenance operations such as snow plowing or salt spreading can be modeled using

a capacitated arc routing problem (CARP) formulation. Indeed, the solution of this problem

produces a schedule for the drivers, i.e., a sequence of road segments to visit. Once each vehicle

starts its schedule, it should follow the planned itinerary if no unexpected event happens.

Various disruptions may occur during the execution of the plan; they include traffic jams,

vehicle breakdowns, and traffic accidents. It may also be necessary to include new services.

These changes may make the original plan no longer optimal or even feasible. When an

important disruption occurs, the dispatcher must adjust the available resources if possible or

80

arrange overtime if the tasks cannot be postponed to the next day. Usually, all winter

maintenance routing operations must be completed because safety is the priority (Campbell et al.,

2014). Thus, if the vehicles fail or are involved in accidents, the plan must be adjusted based on

the current state of the system.

When a disruption occurs, the routes should be quickly adjusted in real time to minimize

negative effects. The vehicles are often equipped with communication technologies that provide

real-time information, so up-to-date data is available to the rescheduling algorithms.

There are different costs to consider in the rerouting phase: operational costs, delay costs, and

disruption costs. If only the operational and delay costs are minimized, the initial schedule could

be considerably altered (Li et al., 2009). In some cases it is necessary to keep the changes in

schedule low, since drivers may not be familiar with the new itineraries. Deviation from the

original plan may cause service delay or drivers’ overtime work.

Some research has been done on dynamic arc routing problems. Moreira et al. (2007) studied a

cutting path determination problem, modeled as an undirected rural postman problem (RPP). The

dynamic essence arises because the associated graph is allowed to change during the solution

procedure: it is possible to incorporate new edges, in the context of the minimization of the

overall distance covered. Tagmouti et al. (2011) presented a dynamic version of the CARP with

time-dependent service costs; the optimal service-time intervals change due to weather updates.

Yazici et al. (2014) studied a dynamic CARP for the multi-robot sensor-based coverage problem.

When the robots encounter unexpected obstacles due to partially unknown nature of the

environment, a rapid re-planning is necessary. Finally, Liu (2014) explored the dynamic CARP,

considering the availability of the vehicles, the accessibility of the roads, added and deleted tasks

and demands, and traffic congestion. A memetic algorithm with a new split scheme is proposed

to minimize the total distance traveled.

For vehicle routing with vehicle breakdowns, Li et al. (2004) introduced the vehicle

rescheduling problem. They studied vehicle breakdowns in public transit systems. They initially

modeled the problem as a sequence of static vehicle scheduling problems and solved it using an

auction-based algorithm (Li et al., 2004). They also developed a decision support system for an

application involving rescheduling trucks for solid waste collection (Li et al., 2007). These series

of Li et al. (2004, 2007a, and 2007b) are based on the single depot vehicle scheduling problem,

81

which is the problem of assigning vehicles to a set of predetermined trips with fixed start and end

times. The authors assumed that scheduled trips, other than the disrupted trip, must not be

delayed. They minimized the operational and delay costs. Li et al. (2009) expanded on their

earlier work by simultaneously considering scheduling disruptions and trip delays in the rerouting

problem with time windows. The rerouting problem was formulated as a set covering problem.

They proposed a Lagrangian-relaxation-based insertion heuristic that includes an insertion-based

algorithm to obtain a feasible solution for the primal problem. Some tests were executed using

Solomon (1987) instances, and the results showed a considerable cost saving over the manual

solution approach.

Mu et al. (2011) studied the vehicle routing problem with vehicle breakdowns. They proposed

a mathematical formulation and two tabu search algorithms that minimize the operational costs

but not the deviation from the original plan. They assume that one extra vehicle is available at the

depot and could be used. They minimized the number of vehicles used and the total distance

traveled after the disruption to complete the deliveries. They tested the algorithm on a set of

problems generated based on standard vehicle-routing benchmark instances.

Dealing with disruptions is a complicated decision-making process; therefore a decision-

support system with effective algorithms is invaluable. This paper presents the case where

disruption is caused by vehicle failure during the execution of a CARP itinerary. We consider the

operational and disruption costs. To the best of our knowledge, this is the first time that schedule

disruption costs have been considered in dynamic arc routing problems.

This paper is organized as follows. The problem is defined in Section 5.2. An exploration of

indicators of disruptions costs is presented in Section 5.3. Section 5.4 proposes a mixed integer

programming formulation and discusses different policies. Section 5.5 presents the computational

experiments and discusses a solution strategy that aims to simultaneously minimize the

operational and disruption costs. At the end, Section 5.6 provides concluding remarks.

5.2 Problem definition

We now formally define the RCARP.

An initial schedule is given for a network defined on a graph 𝐺 = (𝑉,𝐸), where 𝑉 is the set of

vertices, 𝐸 is the set of edges, and the subset of required edges is denoted 𝑅. Let 𝐾 be a set of

82

vehicles of equal capacities that leave the depot, located at the vertex 𝑣0, and follow an assigned

itinerary (a sequence of edges to visit). We assume that all the vehicles start the working day at

the same time, 𝑡0. Let 𝐵 ⊂ 𝐾 be the set of vehicle breakdowns, with breakdown time, 𝐵𝐵, equal

to 𝑡𝑏 > 𝑡0. While minor vehicle failures can be repaired quickly, serious failures require longer

repair times, and in the latter case the dispatcher must adjust the schedule for other vehicles. The

RCARP defined in this paper considers:

i. Vehicle breakdowns: We allow more than one vehicle breakdown at the same time.

However, it is unlikely that more than one vehicle will fail on the same day.

ii. Active vehicles: If at 𝐵𝐵 any vehicle in 𝐾 has already finished its planned itinerary, it is

no longer available. We do not have extra vehicles at the depot. The set of active vehicles

𝐾𝑅 consists of those vehicles still in operation at 𝑡𝑏.

iii. Multiple starting points: During the execution of the initial plan, the vehicles are at

different locations. An active vehicle cannot be diverted until it has finished the service in

progress on a given edge. Therefore, in the rerouting plan, the starting point for active

vehicle 𝑘, 𝑣𝑘0, is the end vertex of its current edge. Note that all active vehicles must end

at the depot, vertex 𝑣0.

iv. Requests: The set of required edges 𝑅𝑅 = 𝑅𝑜 ∪ 𝑅𝑏 for the rerouting consists of the

currently unserved edges of the active vehicles (denoted 𝑅𝑜) and the unserved edges of

the failed vehicles (denoted 𝑅𝑏). If at the 𝐵𝐵 a vehicle 𝑘 in 𝐵 was serving an edge 𝑒, that

edge is included in 𝑅𝑏.

v. No cancellations: All the requests defined in the initial plan must be satisfied; we do not

allow cancellations. At the 𝐵𝐵, the capacity of each vehicle is the capacity remaining after

the completion of the service in progress. However, if this is not given explicitly, we relax

the capacity constraints, and therefore the active vehicles may exceed their capacities in

order to satisfy all the requests.

The RCARP seeks to find a new schedule in which routes start at multiple points and finish at

the depot, all the requests are served, and a cost function is minimized.

83

5.3 Measures of disruption cost

Several works have agreed that traverse distance or time spent traversing the edges can be

associated to an operational cost measure in routing problems. However, the definition of

disruption cost remains largely unexplored. This section summarises some indicators that

enable perturbation cost to be measured in routing problems.

Kelleher and Cavichiollo (1999) studied disruption in a manufacturing system. Disruption is

defined as differences in the allocation, time, or resources of common operations in two

schedules. They define a disruption function. Inserting a new operation or moving an operation to

the right does not change the function value, and moving an operation to the left or to another

resource increases the function value. The total disruption is the sum of the disruption for each

operation. This approach was extended to vehicle routing by Rhalibi and Kelleher (2003), but no

results were reported.

The disruption metric must be able to measure the similarity of two schedules. If minimal

disruption is desirable, the new schedule must be as much as possible similar to the original one.

If a CARP solution is represented as ordered sequences of requests (order in which each vehicle

visits the assigned requests), the similarity of two solutions could be defined as the distance

between the corresponding permutations of requests. We now summarize some metrics studied in

optimization problems to determine the distance between order-based encoding solutions.

Let 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) and 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛) be two permutations of elements. In our case the

elements in 𝑐 and 𝑡 represent indices of required edges. Now we can define the following metrics.

5.3.1 Edit distance

The edit distance was first used to calculate the distance between strings composed of

characters from a finite alphabet Σ. Λ is the null-character, signifying the absence of a character.

Given two strings 𝑐 and 𝑡 on alphabet Σ, the edit distance 𝐸𝑒(𝑐, 𝑡) is the minimum-weight sum of

edit operations that transforms 𝑐 into 𝑡. One of the simplest sets of edit operations is that defined

by Levenshtein (1966):

– Insertion of a single character: If 𝑡 = 𝑢, then inserting the character 𝑣 produces 𝑡 = 𝑢𝑣.

– Deletion of a single character: If 𝑡 = 𝑢𝑣 , then deleting the character 𝑣 changes 𝑡 = 𝑢𝑣
to 𝑡 = 𝑢.

84

– Substitution of a single character: If 𝑡 = 𝑢𝑣, then substituting 𝑣 for 𝑤 ≠ 𝑣 produces
𝑡 = 𝑢𝑤.

Sörensen (2006) adapted the edit distance to vehicle routing problems. Verbally, the edit

distance calculates the minimal number of edit operations, weighted with 1, required to transform

the first solution into the second.

5.3.2 Exact match

The exact match was introduced by Ronald (1998). It is an n-ary extension of the Hamming

distance to an alphabet or set of numbers. The distance function is the number of matched values.

Given 𝑐 and 𝑡, the distance 𝐸𝑚(𝑐, 𝑡) is

𝐸𝑚(𝑐, 𝑡) = �𝑚𝑠,𝑡,𝑖

𝑛

𝑖=1

 (5.1)

where 𝑚𝑠,𝑡,𝑖 = � 1 𝑖𝑓 𝑐𝑖 = 𝑡𝑖
0 𝑐𝑡ℎ𝑒𝑓𝑤𝑖𝑐𝑒.

5.3.3 R-type distance

This metric was proposed by Martí et al. (2005), and it is useful when the relative ordering of

the items in the sequences is relevant. Given the permutations 𝑐 and 𝑡, the distance 𝐸𝑅(𝑐, 𝑡) is

defined to be the number of times each item does not immediately follow its successor in the

other solution. Formally,

𝐸𝑅(𝑐, 𝑡) = �𝑧𝑖

𝑛−1

𝑖=1

 (5.2)

where 𝑧𝑖 = � 1 𝑖𝑓 ∄𝑗: 𝑐𝑖 = 𝑡𝑗 𝑡𝑛𝐸 𝑐𝑖+1 = 𝑡𝑗+1
0 𝑐𝑡ℎ𝑒𝑓𝑤𝑖𝑐𝑒.

If we extend the codification of each sequence, by substituting each index of a required edge

by the indices of its two incident nodes, the R-type distance represents the number of common

edges plus the number of times consecutive requests appear in both sequences.

85

5.3.4 Longest sequence

We define this metric as the length of the longest common sequence in permutations 𝑐 and 𝑡.

Measure distances are defined for permutations of the same size, but this can be generalized

by adding null-characters to the shorter permutation. An adaptation of measure distances to

routing solutions can be derived from Sörensen (2006).

5.4 Formulations

The objective function of an initial schedule in arc routing usually minimizes the total

operational cost. When a disruption occurs, there may be additional costs, such as delay and

deviation costs from the original plan. We now present a mixed integer formulation for the

RCARP. To evaluate different rerouting policies we define different objective functions based on

the operational and disruption cost, each of them being more or less advantageous.

Most of the notation was defined in Section 5.2. The formulation is defined on a graph 𝐺.

Each edge in 𝐸 is replaced by two arcs (𝑖, 𝑗) and (𝑗, 𝑖) to identify the traversal direction. Let 𝐴 be

the set of arcs (𝑖, 𝑗) and (𝑗, 𝑖) such that (𝑖, 𝑗) ∈ 𝐸; let 𝐴𝑅 be the set of arcs (𝑖, 𝑗) and (𝑗, 𝑖) such

that (𝑖, 𝑗) ∈ 𝑅𝑅; and let 𝑃 be the set of pairs (𝑖, 𝑗), (𝑗, 𝑖), such that (𝑖, 𝑗) and (𝑗, 𝑖) represent the

same required edge. To simplify the notation an arc (𝑖, 𝑗) is denoted 𝑡. Finally, let 𝛿+(𝑣) be the

set of arcs with end vertex 𝑣, 𝛿−(𝑣) the set of arcs with initial vertex 𝑣, and 𝛿(𝑆) the set of arcs

with both vertices in the set of vertices 𝑆.

Let 𝑐𝑎 be the traversal cost of arc 𝑡, 𝐸𝑎 be the demand of arc 𝑡, and 𝑐𝑡𝑝𝑘 be the remaining

capacity of vehicle 𝑘. The decision variables are

𝑥𝑎,𝑘 = 1 if arc 𝑡 is serviced by vehicle 𝑘 and 0 otherwise;

𝑦𝑎,𝑘 = number of times arc 𝑡 is traversed by vehicle 𝑘.

5.4.1 Objective 1 (O1): Minimizing the total distance traveled

In this case the policy seeks a new schedule that takes into account only the operational cost.

minimize 𝑍 = ∑ ∑ 𝑐𝑎𝑦𝑎,𝑘𝑎∈𝐴𝑘∈𝐾𝑅 (5.3)

86

s.t.:

∑ (𝑥𝑎,𝑘 + 𝑥𝑎′𝑘) = 1 ∀(𝑡, 𝑡′) ∈ 𝑃𝑘∈𝐾𝑅 (5.4)

∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘) =𝑎∈𝛿+(𝑣) ∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿−(𝑣) ∀ 𝑣 ∈ 𝑉|𝑣 ≠ 𝑣𝑘0, 𝑣 ≠ 𝑣0, 𝑣 = 𝑣𝑘0 = 𝑣0, 𝑘 ∈ 𝐾𝑅

 (5.5)

∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿+(𝑣𝑘
0) − ∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿−�𝑣𝑘

0� = 1 ∀ 𝑘 ∈ 𝐾𝑅 (5.6)

∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿+(𝑣0) − ∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿−(𝑣0) = −1 ∀ 𝑘 ∈ 𝐾𝑅 (5.7)

∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿(𝑠) ≤ 𝑀𝑆 ∑ (𝑥𝑎,𝑘 + 𝑦𝑎,𝑘)𝑎∈𝛿−(𝑠) ∀ 𝑐 ⊆ 𝑆, 𝑘 ∈ 𝐾𝑅 (5.8)

𝑥𝑎,𝑘 ∈ {1,0} ∀ 𝑡 ∈ 𝐴𝑅 , 𝑘 ∈ 𝐾𝑅 (5.9)

𝑦𝑎,𝑘 ∈ ℤ+ ∀ 𝑡 ∈ 𝐴,𝑘 ∈ 𝐾𝑅 (5.10)

We look for a set of trips that minimizes the total traversal cost (5.3). Constraints (5.4) specify

that all required edges must be serviced. Constraints (5.5)–(5.7) ensure flow conservation for

each vertex. The connectivity constraints are specified by (5.8), where 𝑀𝑠 is equal to twice the

number of variables in 𝛿(𝑐). Finally, decision variables are defined by (5.9) and (5.10).

This problem is NP-hard because it is an extension of the RPP, which is NP-hard if there is

more than one connected component (Lenstra and Kan, 1976). Indeed, suppose we add an

artificial arc of cost zero from the depot 𝑣0 to each initial vertex 𝑣𝑘0. The problem can be

formulated as a RPP with an additional constraint: the minimum tour must return to the depot at

least |𝐾𝑅| times.

5.4.2 Objective 2 (O2): Minimizing the total distance traveled and considering

capacity

This formulation is similar to the previous one, but in this policy one and only one vehicle is

allowed to exceed its capacity while the operational cost is minimized. We add the variables

𝑤𝑘 = 1 if vehicle 𝑘 exceeds the remaining capacity 𝑐𝑡𝑝𝑘, and 𝑤𝑘 = 0 otherwise. Let the

constant 𝐶 be the initial vehicle capacity. The MIP-formulation includes the objective function

(5.3) and constraints (5.4)–(5.10). The following constraints are added:

87

∑ 𝐸𝑎𝑥𝑎,𝑘𝑎∈𝐴𝑅 ≤ 𝑐𝑡𝑝𝑘 + 𝐶𝑤𝑘 ∀𝑘 ∈ 𝐾𝑅 (5.11)

∑ 𝑤𝑘𝑘∈𝐾𝑅 ≤ 1 (5.12)

𝑤𝑘 ∈ {1,0} ∀ 𝑘 ∈ 𝐾𝑅 (5.13)

Constraints (5.11) and (5.12) specify that only one vehicle can exceed its remaining capacity.

The 𝑤𝑘 variables are defined by (5.13). This problem is NP-hard because it is an extension of the

previous one.

5.4.3 Objective 3 (O3): Minimizing disruption cost

This policy looks for a new schedule as close as possible to the initial one. The formulation in

this case seeks to minimize the changes to the baseline solution.

Although several indicators of disruption were discussed previously, we propose a metric that

penalizes the insertions in a different route from the baseline solution; we believe that this allows

getting a solution very similar to the initial one. The metric that measures the difference between

the baseline solution and the rescheduling solution is the number of edges moved to a different

route. This gives us information about the number of edges served by a different vehicle and the

number of edges that must be added to the active routes.

We assume that the baseline solution is defined by 𝑋� and 𝑌�, where 𝑋� and 𝑌� are vectors of

values of the decision variables �̅�𝑎,𝑘 and 𝑦�𝑎,𝑘 determined in a similar way to 𝑥𝑎,𝑘 and 𝑦𝑎,𝑘. The

values of �̅�𝑎,𝑘 are 1 or 0, indicating whether or not arc 𝑡 is served by vehicle 𝑘. Although the

variables 𝑦𝑎,𝑘 (and therefore 𝑦�𝑎,𝑘) are restricted to be integer (10), the upper bound on these

variables is 1 in a CARP formulation where the problem is effectively converted into a directed

problem (Eglese and Letchford, 2000). We assume that the baseline solution satisfies this.

Given a baseline solution 𝑋�,𝑌�, let 𝑀𝑋 be a coefficient matrix with component 𝑚𝑋𝑎,𝑘 equal to

0 if �̅�𝑎,𝑘 is equal to 1 in 𝑋�, and equal to 1 otherwise. An analogous matrix 𝑀𝑌 can be defined for

𝑦�𝑎,𝑘 in 𝑌�. Then, the number of edges moved to a different route (𝐷𝐸) is given by

 𝐷𝐸 = ∑ ∑ 𝑚𝑋𝑎,𝑘𝑥𝑎,𝑘𝑘∈𝐾𝑅𝑎∈𝐴𝑅 + ∑ ∑ 𝑚𝑌𝑎,𝑘𝑦𝑎,𝑘𝑘∈𝐾𝑅𝑎∈𝐴 (5.14)

88

Let 𝐷𝐸 be the measure of disruption cost. We can now formulate a RCARP that seeks to

minimize the disruption cost. The MIP-formulation is

min𝑍 =∑ ∑ 𝑚𝑋𝑎,𝑘𝑥𝑎,𝑘𝑘∈𝐾𝑅𝑎∈𝐴𝑅 + ∑ ∑ 𝑚𝑌𝑎,𝑘𝑦𝑎,𝑘𝑘∈𝐾𝑅𝑎∈𝐴 (5.15)

The constraints are given by (4)–(10).

This problem is NP-hard because it can be expressed as a min-cost allocation problem. The

cost of allocating the required edges to the remaining routes is equal to the number of edges

needed to join them to the routes.

5.4.4 Objective 4 (O4): Minimizing operational and disruption cost

After a disruption, minimizing the operational costs and the disruption costs are objectives that

often are in conflict, therefore it is necessary to find a trade-off to solve the problem. This policy

pretends to minimize both costs at the same time.

If only traveled cost is considered, the baseline solution might be significantly altered. The

dispatcher must look for a good solution in terms of operational cost trying to keep the changes in

the re-scheduling plan low; otherwise it may be too expensive in terms of disruption costs.

This formulation seeks to minimize a cost that is weighted by the value of the baseline

decision variables. The model is

min𝑍 =∑ ∑ 𝑚𝑋𝑎,𝑘𝑐𝑎𝑥𝑎,𝑘𝑘∈𝐾𝑅𝑎∈𝐴𝑅 + ∑ ∑ 𝑦𝑎,𝑘𝑘∈𝐾𝑅𝑎∈𝐴 (5.16)

The constraints considered are defined by (5.4)–(5.10).

5.5 Results

The main objective of our computational experiments is to compare different rerouting

policies. We present tests on a set of generated problems and on a set of larger problems derived

from a real network. We then present a solution strategy which reduces the computational time

and we discuss it for a specific case. Finally, we calculate different disruption metrics for our

solutions.

89

5.5.1 Test set and baseline solution

We used some benchmarks instances for the CARP to generate instances for the RCARP.

Initially we selected a group of undirected CARP benchmarks from the val set (Benavent et al.

1992), the egl set (Golden et al. 1983), the egl-large set (Brandão and Eglese, 2008), and the

BMCV set (Beullens et al. 2003). The picked group comprised instances with at least 32 required

edges, at least 3 vehicles, and at least 10 required edges per vehicle. The test set includes: 21 val,

4 egl, 56 BMCV, and 6 egl-larger instances, for a total of 87 instances.

We then determined a baseline solution for each instance. We obtained this solution from the

solution of the CARP. Although CARP solutions are given by the above authors, we did not use

these solutions if the authors did not list the values of the decision variables. Some solutions were

kindly provided to us by Bode (2014). In the other cases, we ran a heuristic to find a feasible

solution for the CARP. We implemented a route-first split-second algorithm (Prins et al. 2014).

We solved the routing phase using a version of the adaptive large neighborhood search for the

RPP with time windows (Monroy-Licht el a. 2015), and we solved the split phase using dynamic

programming. Finally, we defined the initial schedule for each vehicle: order in which each

vehicle traverses its edges.

5.5.2 Comparison of policies

We now compare the formulations of Section 5.4. The tests are carried out for the situation

where only one vehicle breaks down, since this is the most common case. However, the models

allow multiple simultaneous failures.

For each instance, we simulated a vehicle failure by choosing the breakdown vehicle

randomly. Three 𝐵𝐵 were set for the same vehicle: 𝐵𝐵= 0.3 𝑡𝑎, 0.5 𝑡𝑎, and 0.7 𝑡𝑎, where 𝑡𝑎 is the

average route length of the baseline solution. Each 𝐵𝐵 represents an earlier, middle, and later

breakdown vehicle. Finally, we updated the information after each vehicle failure. In order to

prevent confusion we name “problem” the result of simulating a vehicle failure at a specific 𝐵𝐵

for an instance.

We solved the 4 models (O1, O2, O3, and O4) for each problem. We iteratively added

connectivity constraints (see inequality 5.8) when the graph is not connected in the relaxed

90

solution. We solved the mixed-integer linear problems using the standard parameters of CPLEX

12.4.0 implemented on a 2.38-GHz AMD 250.

In the analysis, we include only the problems with at least 10 requests, at least one request still

unserved by the broken-down vehicle, at least 5 requests per active vehicle, and at least 2 active

vehicles. In order to present an appropriate comparison, problems not solved to optimality within

two hours of computational time for all the objectives are excluded from the analysis. Table 5.1

presents the description of the problems solved for each 𝐵𝐵 value. It gives the number of

problems solved to optimality; the minimum, maximum, and average number of initial vehicles

(“Vehicles”); the minimum, maximum, and average |𝑅| and |𝑅𝑅| (“Request0” and “Requestsr”);

and the average number of active vehicles (“Vehiclesr”).

Table 5.1: Characteristic of problems

 𝐵𝐵 : breakdown time

Table 5.2 summarizes the comparison of objectives. This table gives the average values of

extra travel cost with respect to the baseline solution as a percentage (% extra cost); the number

of services moved to a different route as a percentage of the total requests in the updated graph

(% diff. services); the number of edges moved to a different route as a percentage of the number

of edges in the graph (% diff. edges); the number of vehicles that exceed their capacities

(veh_over); the maximum percentage by which the capacity is exceeded (% exc. cap); and the

computational time in seconds (time).

Table 5.2 shows that minimizing the travel and disruption costs are conflicting objectives.

While O1 obtains 1, 0.8, and 0.68 times the value of % diff. edges reported by O3 for each

𝐵𝐵, O3 increases the extra cost by 1.8, 1.04, and 0.64 times the value of extra cost reported by

O1. Note that if the vehicle breakdown occurs earlier the negative impact on the extra cost is

Feature 𝑩𝑩 = 𝟎.𝟑 𝒕𝒂 𝑩𝑩 = 𝟎.𝟓 𝒕𝒂 𝑩𝑩 = 𝟎.𝟕 𝒕𝒂
No. Problems 63 66 45

Vehicles 3 − 8 − 4.40 3 − 8 − 4.53 3 − 6 − 4.42

Rrequest0 32 − 107 − 65.33 34 − 121− 67.81 39 − 121−71.02

Requestsr 20 − 76 − 44.92 16 − 56 −33.15 11 − 42 −22.44

Vehiclesr 3.30 3.29 2.76

91

consistently lower. This behavior can be explained as follows. On an earlier 𝐵𝐵 there are more

available resources close to the failure zone, contrary to a later 𝐵𝐵, the resources would be far

away from the failure zone and it might be more expensive to move the active vehicles.

Table 5.2: Comparison of objectives

Statistics 𝑩𝑩 O1 O2 O3 O4

 % extra cost
0.3 2.39 2.58 6.71 3.62
0.5 4.51 4.88 9.23 5.67
0.7 7.74 7.99 12.74 8.19

% diff. Services
0.3 67.22 67.70 26.98 27.85
0.5 58.33 54.37 25.61 26.26
0.7 55.31 55.00 25.88 26.20

 % diff. Edges
0.3 58.16 58.82 28.95 30.91
0.5 41.61 39.57 23.05 24.91
0.7 27.46 27.63 16.31 17.75

veh_over
0.3 1.62 0.98 1.38 1.46
0.5 1.59 0.94 1.23 1.29
0.7 1.36 0.91 1.13 1.07

% exc. Cap
0.3 89.38 101.46 72.78 74.82
0.5 76.55 91.70 71.62 70.30
0.7 93.62 103.83 75.59 80.85

Time
0.3 355.36 696.85 9.50 19.07
0.5 130.39 153.31 5.86 8.71
0.7 76.99 103.53 23.78 44.85

 O1 - Minimizing the total distance traveled
 O2 - Minimizing the total distance traveled and considering capacity
 O3 - Minimizing disruption cost
 O4 - Minimizing operational and disruption cost

The capacity constraints complicate the problem, and therefore O2 requires more

computational time to find optimal solutions. Including the disruption cost in the objective

function (O3 and O4) seems to provide solutions where the veh_over value is not significantly

different from the value for O2. In addition, the computational time for O3 and O4 is much lower

than that for O2, and O3 and O4 give the best results for % exc. cap.

92

Figure 5.1 shows the values of % extra cost and % diff. edges for all the models and all the

problems, grouped by 𝐵𝐵. As one can observe, Figure 5.1a includes some negative values; in

these cases the capacity constraints of the baseline problem makes more expensive the initial plan

in terms of travel costs.

Figure 5.1a: % extra cost

 The line connects the minimum values.

Figure 5.1b: Diff. edges
 The line connects the minimum values.

 Figure 5.1: Comparison of travel and disruption costs

In general, O4, which includes both travel and disruption costs, seems to be a good choice. It

increases the minimum possible cost by factors of 0.51, 0.25, and 0.05 (compared to the O1

0 20 40 60 80 100 120 140 160 180
-20

-10

0

10

20

30

40

problems

ex
tra

 c
os

t %

0.3ta 0.5ta 0.7ta

O1
O2
O3
O4

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

problems

di
ff.

 e
dg

es
 %

0.3ta 0.5ta 0.7ta

O1
O2
O3
O4

93

results), and it increases the minimum disruption cost by factors of 0.06, 0.08, and 0.08

(compared to the O3 results) for each subset of problems defined by a specific 𝐵𝐵.

5.5.3 Larger networks

To test the performance of the formulations on larger networks we generated four undirected

CARP instances based on the real network of the Eastern Townships an administrative region in

the province of Quebec. This network has 140 nodes and 187 edges, all of them required. We set

the number of vehicles to 9, 10, 11, and 12 and the capacities to 224, 196, 173, and 157. The

baseline solutions of these instances were determined by the route-first split-second algorithm

presented previously. For each instance we defined two tests, each with a different failed vehicle,

and we again simulated vehicle failures at 0.3𝑡𝑡, 0.5𝑡𝑡, and 0.7𝑡𝑡.

We solved O1, O2, O3, and O4 for each test. Table 5.3 shows for each objective and for each

test the travel cost (cost), the number of edges moved to a different route (𝐷𝐸), the number of

vehicles that exceeded the remaining capacity (v_o) and the computational time in seconds

(time). The name of each test (test) is the number of initial vehicles followed by the index of the

failed vehicle. Column |𝑅𝑟| is the number of requests at 𝐵𝐵, |𝑁𝑅𝑟| is the number of non-required

edges at 𝐵𝐵, and |𝐾𝑅| is the number of active vehicles. A “-“ indicates that no optimal solution

could be found within 75 minutes.

As noted from Table 5.3, O1 and O2 fail to solve the larger problems. O3 solves to optimality

all cases, although the computational time can be high in some tests. O4 is competitive in terms

of the instances solved, but its computational time is sometimes high. When O2 finds an optimal

solution, the travel cost is the same as that reported by O1. The O2 solutions may be preferable

because fewer edges are moved to different routes and at most one vehicle exceeds its capacity.

5.5.4 Solution strategy

Several alternative good solutions may better support a dispatcher when operational and

disruption costs are considered. We present a solution strategy that aims at solving larger

networks, giving quick response and thus short computation time and generating several

alternative solutions for the decision-maker to choose from.

94

While minimizing the deviation from the original plan is an objective in the rescheduling,

benefit might be taken from the original solution. Additionally, it will be quicker to find a new

solution if we do not change all the initial solution.

95

Table 5.3: Comparison of results for larger networks

BT test |𝑹𝒓| |𝑵𝑹𝒓| |𝑲𝑹|
 O1 O2 O3 O4

 cost 𝑫𝑫 v o time cost 𝑫𝑫 v o time cost 𝑫𝑫 v o time cost 𝑫𝑫 veh o time

0.3ta

9_1 134 53 8 - - - - - - - - 25557 26 2 3600.8 - - - -
9_3 134 53 8 - - - - - - - - 24603 29 1 454.6 22992 33 1 390.9
10_4 139 48 8 - - - - - - - - 27108 23 1 1419.1 - - - -
10_8 139 48 8 - - - - - - - - 26021 28 1 79.7 24950 41 1 183.7
11_3 137 50 9 - - - - - - - - 27518 20 1 1731.7 25129 61 0 3621.9
11_7 137 50 9 - - - - - - - - 26952 22 1 140.5 25011 43 1 2162.6

12_10 135 52 10 - - - - - - - - 28613 20 1 81.4 25922 46 0 36.8
12_2 135 52 10 - - - - - - - - 28030 16 1 209.9 - - - -

Average 136.3 50.8 8.8

0.5ta

9_1 91 96 7 - - - - - - - - 18151 20 3 36.1 17051 30 2 19.7
9_3 91 96 7 15874 132 3 4194.0 15874 117 1 4164.4 17833 29 1 768.5 16389 31 1 195.9
10_4 85 102 8 - - - - - - - - 20700 14 1 243.2 - - - -
10_8 85 102 8 - - - - - - - - 19606 24 1 93.9 - - - -
11_3 87 100 8 19135 128 3 4418.6 - - - - 20817 15 1 329.9 19964 30 1 68.2
11_7 87 100 8 - - - - - - - - 20460 19 1 212.9 19538 42 1 591.5

12_10 88 99 10 - - - - - - - - 21953 16 0 1099.9 19959 32 0 6.1
12_2 88 99 10 18712 112 2 3841.2 18712 116 1 3661.9 20602 12 0 31.8 19614 24 1 92.7

Average 87.8 99.3 8.3

0.7ta

9_1 52 135 7 11137 55 2 417.1 11137 53 1 577.0 11662 7 1 2.0 11394 10 2 0.4
9_3 52 135 7 10115 67 2 2127.0 10115 63 1 1697.6 11983 24 2 3600.1 10304 26 1 103.1
10_4 44 143 8 12283 80 1 3146.9 12283 74 1 3221.1 13705 11 0 3619.9 12715 23 0 70.0
10_8 44 143 8 11105 57 1 728.2 11105 57 1 759.1 12873 14 1 49.5 11262 27 1 40.6
11_3 44 143 8 13343 57 1 273.6 13343 57 1 247.5 14605 9 0 2412.8 13654 25 0 3621.4
11_7 44 143 8 12801 51 1 483.3 12801 47 0 630.7 13694 12 1 95.0 12851 29 1 232.9

12_10 51 136 8 13703 41 1 128.1 13703 43 1 138.9 14770 11 0 3.9 13703 18 0 0.7
12_2 51 136 8 12516 48 1 122.1 12516 44 1 125.0 13500 3 0 0.2 12796 6 1 0.2

Average 47.8 139.3 7.8

96

Our strategy is based on two ideas. i) Reducing the size of the problem by setting some of the

decision variables 𝑥𝑎,𝑘 to their values in the original solution. On the one hand, requests that are

far from requests in 𝑅𝑏 will not be moved to another route. On the other hand, at the 𝐵𝐵, possibly

it is not necessary to reschedule all the routes: vehicles that are far from the requests in 𝑅𝑏 should

continue with their initial itineraries, whereas closer vehicles should be rescheduled. ii)

Disruption costs reduction.

The strategy comprises two stages: the first one determines the set of fixed arcs and the set of

vehicles to be rescheduled (see Algorithm 1). The second stage solves the RCARP with the new

set of active vehicles and with additional constraints (see Algorithm 2).

Let 𝐴𝑅 (defined in section 4) be partitioned into two sets 𝐴𝑜 and 𝐴𝑏, where 𝐴𝑜 is the set of arcs

(𝑖, 𝑗) and (𝑗, 𝑖) such that (𝑖, 𝑗) ∈ 𝑅𝑜, and 𝐴𝑏 is the set of arcs (𝑖, 𝑗) and (𝑗, 𝑖) such that (𝑖, 𝑗) ∈ 𝑅𝑏.

Let 𝑝𝑒𝑓 be the percentage of fixed arcs and 𝑚𝑐𝐸𝑒𝑎 be one of the formulations presented in

Section 5.4. We now present Algorithms 1 and 2.

Algorithm 1: Selection of fixed arcs and vehicles to be rescheduled

Input: 𝐴𝑜 ,𝐴𝑏 ,𝑝𝑒𝑓,𝐾𝑅 ,𝑋�
Output: The set 𝐿 contains the fixed arcs
 The set 𝐾𝑒𝑠 contains the vehicles to be rescheduled
Initialize the set of pairs (𝑡𝑓𝑐,𝐸𝑖𝑐𝑡𝑡𝑛𝑐𝑒) to 𝐷𝑖𝑐 = ∅
For 𝑡 in 𝐴𝑜 do
 Find the nearest arc in 𝐴𝑏 to arc 𝑡
 𝐸𝑖𝑎 ← Distance from 𝑡 to the nearest arc in 𝐴𝑏
 𝐷𝑖𝑐 ← 𝐷𝑖𝑐 ∪ {(𝑡,𝐸𝑖𝑎)}
End for
Initialize the set of arcs to 𝐿𝑐 = ∅
While 𝑛 < (1 − 𝑝𝑒𝑓)|𝐴𝑜| do
 Choose the arc 𝑡� from 𝐷𝑖𝑐 with minimum value 𝐸𝑖𝑎�
 𝐿𝑐 ← 𝐿𝑐 ∪ {𝑡�}
 𝐷𝑖𝑐 ← 𝐷𝑖𝑐 − {(𝑡,𝐸𝑖𝑎)}
End while
Initialize 𝐾𝑒𝑠 = 𝐾𝑅
For 𝑘 in 𝐾𝑅 do
 If ∄ 𝑡 � �̅�𝑎,𝑘 = 1,𝑡 ∈ 𝐿𝑐 then
 𝐾𝑒𝑠 ← 𝐾𝑒𝑠 − {𝑘}
 End if
End for
𝐿 ← 𝑅𝑜 ∖ 𝐿𝑐

97

Algorithm 2: Solution of the RCARP
Input: 𝑚𝑐𝐸𝑒𝑎,𝐾𝑒𝑠, 𝐿,𝑋�
Output: 𝑋,𝑌: solution of the RCARP
Load 𝑚𝑐𝐸𝑒𝑎
𝐾𝑅 ← 𝐾𝑒𝑠
For 𝑡 in 𝐿 and 𝑘 in 𝐾𝑒𝑠 do
 If �̅�𝑎,𝑘 = 1 then
 𝑥𝑎,𝑘 = �̅�𝑎,𝑘
 End if
End do
Solve 𝑚𝑐𝐸𝑒𝑎

Note that the solution strategy hardly improves the performance of model O3 regarding the

disruption costs, but the computational time may be reduced.

We tested our solution strategy on the set of tests from larger networks. We tested three values

for the parameter 𝑝𝑒𝑓 (0.3, 0.5, and 0.7), and we tested Algorithm 2 for all four models (O1, O2,

O3, and O4). The detailed results are reported in the annex 1. We now use an example to show

how the solution strategy works. We selected one of the larger problems from Table 5.3 with

optimal solution for all objectives. Indeed, we chose the problem: test 12_2, 𝐵𝐵=0.5𝑡𝑡.

Figure 5.2 illustrates the trade-offs between the travel cost and disruption cost (𝐷𝐸) of the

solutions. Each strategy is labeled FIX-𝑝𝑒𝑓-𝑚𝑐𝐸𝑒𝑎, where 𝑝𝑒𝑓 and 𝑚𝑐𝐸𝑒𝑎 are the values of the

corresponding parameters. In Figure 5.2, the circles refer to models O1–O4. The markers “+”

correspond to strategies with parameter 𝑚𝑐𝐸𝑒𝑎=O1, the markers “*” denote the strategies with

parameter 𝑚𝑐𝐸𝑒𝑎 =O2, and the markers “x” indicate the strategies with parameter 𝑚𝑐𝐸𝑒𝑎 =O4.

Note that the values reported by strategies FIX-0.3-O3, FIX-0.5-O3, and FIX-0.7-O3 are not

included because they do not improve the current solution of model O3.

Figure 5.2 highlights the pareto-optimal solutions: O1, FIX-0.3-O1, O4, FIX-0.3-O4,

FIX-0.5-O4, FIX-0.7-O4, and O3; their relative merits depend on the decision policy. Table 5.4

reports the computational times for all the strategies.

98

Figure 5.2: Travel and disruption costs (Problem 12_2, 𝐵𝐵 = 0.5𝑡𝑡)

Table 5.4: Computational times (Problem 12_2, 𝐵𝐵 = 0.5𝑡𝑡)

Strategy
FIX

-0.7-O1

FIX

-0.5-O1

FIX

-0.3-O1

FIX

-0.7-O2

FIX

-0.5-O2

FIX

-0.3-O2

FIX

-0.7-O3

FIX

-0.5-O3

FIX

-0.3-O3

FIX

-0.7-O4

FIX

-0.5-O4

FIX

-0.3-O4

Time (s) 13.5 40.5 301.2 10.6 53.3 332.0 1.0 2.2 8.9 2.9 4.2 22.1

We compare each solution with the previous solution that involved the same policy (see the

bold row of Table 5.3). For policies O1 and O2, the solutions of the strategies considerably

reduce the disruption costs. The solutions of the strategies that use 𝑚𝑐𝐸𝑒𝑎 =O1, and O2 are more

diverse than those that use 𝑚𝑐𝐸𝑒𝑎 =O4, and the computational time is reduced by more than

90%. For 𝑝𝑒𝑓 = 0.5 and 𝑝𝑒𝑓 = 0.7 the solutions of the strategies that use 𝑚𝑐𝐸𝑒𝑎 =O4 are

similar to the previous O4 solution; the solution for FIX-0.3-O4 is the same as that for O4. For

O3 the solutions of the strategies are the same as the previous O3 solution, and for the strategies

involving models O3 and O4 the computational time is reduced by more than 70%.

Figure 5.3 illustrates some solutions of the problem 12_2, 𝐵𝐵 =0.5𝑡𝑡. The baseline solution

with 12 vehicles is presented in Figure 5.3a. The depot is located at the red node, and the requests

of each vehicle are shown in different colors. Figure 5.3b concerns the requests in 𝑅𝑟. The dashed

lines correspond to requests initially assigned to the failed vehicle, vehicle 2. At 𝐵𝐵 =0.5𝑡𝑡,

there are eight active vehicles.

1.85 1.9 1.95 2 2.05 2.1

x 10
4

0

20

40

60

80

100

120

travel cost

di
ff.

 e
dg

es

O1
O2
O3
O4
FIX-0.7-O1
FIX-0.5-O1
FIX-0.3-O1
FIX-0.7-O2
FIX-0.5-O2
FIX-0.3-O2
FIX-0.7-O4
FIX-0.5-O4
FIX-0.3-O4

99

Figure 5.3a: CARP solution

Figure 5.3b: Breakdown of vehicle 2 at 𝐵𝐵 =0.5𝑡𝑡

Figure 5.3c: RCARP solution for

O1: minimize total travel cost

Figure 5.3d: RCARP solution for
O3: minimize disruption cost

Figure 5.3e: RCARP solution for

O4: minimize operational and disruption costs

Figure 5.3f: RCARP solution with FIX-0.3-O1 for
O1: minimize total travel cost

Figure 5.3: Example of different policies for problem 12_2, 𝐵𝐵 =0.5𝑡𝑡

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11

100

Figures 5.3c–5.3e illustrate the solutions for O1, O3, and O4 respectively. The O1 solution

modifies the routes for all the active vehicles, and the geographical assignment of requests to

vehicles is highly dispersed. The O3 solution modifies the routes for only two vehicles: the

requests in 𝑅𝑏 are reassigned to vehicles 8 and 9. The O4 solution modifies the routes for

vehicles 1, 8, and 9: the requests in 𝑅𝑏 are reassigned to vehicles 8 and 9, and some requests

initially assigned to vehicle 1 are reassigned to vehicle 8. The solution FIX-0.3-O1, presented in

Figure 5.3f, modifies the routes for vehicles 1, 8, and 9: the requests in 𝑅𝑏 are reassigned to

vehicles 8 and 9, and various other reassignments occur. This solution significantly improves the

disruption cost of the O1 solution, reducing it by 54.5%, nevertheless the travel cost increases by

only 1.7%.

5.6 Evaluation of metrics

We defined 𝐷𝐸 in Section 5.4.3 as a measure of the disruption cost. We compare this measure

with other possible metrics of disruption costs by calculating their values in our solutions.

We present the values of edit distance, exact match, R-type distance, and longest sequence for

twelve problems selected randomly from the subset of problems with 𝐵𝐵=0.5𝑡𝑡. We selected this

subset because it includes the largest problems. Figure 5.4 shows the values of the metrics for

each solution of O1–O4.

In Figures 5.4a and 5.4c we plot the lower bound of edit distance and R-type distance, and in

Figures 5.4b and 5.4d we plot the upper bound of exact match and longest sequence. Although

O3 minimizes only the value of 𝐷𝐸, its solutions are the closest on average to (but still relatively

far from) the bounds of each metric. It is important to remember that the metrics are general

distance measures for ordered sequences and studies of their effectiveness in the routing context

would be interesting (this is beyond the scope of this work).

101

Figure 4a: Edit distance

Figure 4b: Exact match

Figure 4c: R-type distance

Figure 4d: Longest sequence

Figure 5.4: Disruption metrics

5.7 Conclusions

The RCARP is a challenging dynamic problem that aims to manage the disruptions caused by

vehicle failures. We have studied for the first time this problem when disruption schedule costs

are considered. A mixed-integer formulation is presented for different policies concerned to

operational and schedule disruption costs.

We have observed that operational and disruption costs are objectives in conflict. The

formulation that minimizes both costs (O4) works well, finding a trade-off between the

conflicting goals and solving 18 of 24 large problems to optimality.

To provide a set of solutions when both costs are considered and to reduce the computational

time, we have proposed a solution strategy. We tested it on the set of large instances. More

diverse solutions were found when the strategy includes the minimization of the total travel cost

C16 C19 D02 D09 D10 D12 D13 D17 val1B val2B val4A val6A
0

10

20

30

40

50

60

70

problems

ed
it

di
st

an
ce

O1
O2
O3
O4
LB

C16 C19 D02 D09 D10 D12 D13 D17 val1B val2B val4A val6A
0

10

20

30

40

50

60

70

problems

ex
ac

t m
at

ch

O1
O2
O3
O4
UB

C16 C19 D02 D09 D10 D12 D13 D17 val1B val2B val4A val6A
0

10

20

30

40

50

60

70

problems

R
-ty

pe
 d

is
ta

nc
e

O1
O2
O3
O4
LB

C16 C19 D02 D09 D10 D12 D13 D17 val1B val2B val4A val6A
0

10

20

30

40

50

60

70

problems

lo
ng

es
t s

eq
ue

nc
e

O1
O2
O3
O4
UB

102

as objective function. We have explored some disruption metrics; but these metrics need to be

adapted for rerouting problems.

Future work will consider other rerouting constraints such as route equilibrium or a maximum

number of modifications. We will also explore the use of metaheuristics to get a larger set of

pareto-solutions.

References

BENAVENT, E., CAMPOS, V., CORBERAN, A. & MOTA, E. 1992. The capacitated Chinese

postman problem: Lower bounds. Networks, 22, 669-690.

BEULLENS, P., MUYLDERMANS, L., CATTRYSSE, D. & VAN OUDHEUSDEN, D. 2003.

A guided local search heuristic for the capacitated arc routing problem. European Journal

of Operational Research, 147, 629-643.

BODE, C. 2014. Private communication.

BRANDÃO, J. and EGLESE, R. 2008. A deterministic tabu search algorithm for the capacitated

arc routing problem. Computers & Operations Research, 35, 1112-1126.

CAMPBELL, J. F., LANGEVIN, A. & PERRIER, N. 2014. Advances in vehicle routing for

snow plowing. In: ÁNGEL, C. & GILBERT, L. (eds.) Arc Routing: Problems, Methods,

and Applications. SIAM.

EGLESE, R. & LETCHFORD, A. 2000. Polyhedral theory for arc routing problems. In: DROR,

M. (ed.) Arc Routing. Springer US.

GOLDEN, B. L., DEARMON, J. S. & BAKER, E. K. 1983. Computational experiments with

algorithms for a class of routing problems. Computers & Operations Research, 10, 47-59.

KELLEHER, G. & CAVICHIOLLO, P. 1999. Intelligent support of the rescheduling of complex

manufacturing domains: An example application. Second International Workshop on

IMS. Leuven, Belgium.

LENSTRA, J. K. & RINNOOY KAN, A. H. G. 1976. On general routing problems. Networks, 6,

273-280.

LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady, 707-710.

103

LI, J.-Q., MIRCHANDANI, P. B. & BORENSTEIN, D. 2004. Parallel auction algorithm for bus

rescheduling. Proceedings of the Ninth International Conference on Computer-Aided

Scheduling of Public Transport. San Diego, California, USA.

LI, J.-Q., BORENSTEIN, D. & MIRCHANDANI, P. B. 2007a. A decision support system for

the single-depot vehicle rescheduling problem. Computers & Operations Research, 34,

1008-1032.

LI, J.-Q., MIRCHANDANI, P. B. & BORENSTEIN, D. 2007b. The vehicle rescheduling

problem: Model and algorithms. Networks, 50, 211-229.

LI, J.-Q., MIRCHANDANI, P. B. & BORENSTEIN, D. 2009a. A Lagrangian heuristic for the

real-time vehicle rescheduling problem. Transportation Research Part E: Logistics and

Transportation Review, 45, 419-433.

LI, J.-Q., MIRCHANDANI, P. B. & BORENSTEIN, D. 2009b. Real-time vehicle rerouting

problems with time windows. European Journal of Operational Research, 194, 711-727.

LIU, M. 2014. A memetic algorithm with a new split scheme for solving dynamic capacitated arc

routing problems. Proceedings of the 2014 IEEE Congress on Evolutionary Computation,

CEC 2014, September 16 2014, 595-602.

MARTÍ, R., LAGUNA, M. & CAMPOS, V. 2005. Scatter search vs. genetic algorithms. In:

SHARDA, R., VOß, S., REGO, C. & ALIDAEE, B. (eds.) Metaheuristic Optimization

via Memory and Evolution. Springer US.

MONROY-LICHT, M., AMAYA, C. & LANGEVIN, A. 2015. Adaptive large neighborhood

search for the rural postman problem with time windows. Montreal: CIRRELT.

MOREIRA, L. M., OLIVEIRA, J. F., GOMES, A. M. & FERREIRA, J. S. 2007. Heuristics for a

dynamic rural postman problem. Computers & Operations Research, 34, 3281-3294.

MU, Q., FU, Z., LYSGAARD, J. & EGLESE, R. 2011. Disruption management of the vehicle

routing problem with vehicle breakdown. J. Oper. Res. Soc., 62, 742-749.

PRINS, C., LACOMME, P. & PRODHON, C. 2014. Order-first split-second methods for vehicle

routing problems: A review. Transportation Research Part C: Emerging Technologies,

40, 179-200.

RHALIBI, A. & KELLEHER, G. 2003. An approach to dynamic vehicle routing, rescheduling

and disruption metrics. IEEE International Conference on Systems, Man and

Cybernetics, 5-8 Oct. 2003, 3613-3618 vol. 4.

104

RONALD, S. 1998. More distance functions for order-based encodings. Evolutionary

Computation Proceedings. IEEE World Congress on Computational Intelligence, 4-9 May

1998, 558-563.

SOLOMON, M. M. 1987. Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research, 35, 254-265.

SÖRENSEN, K. 2006. Route stability in vehicle routing decisions: A bi-objective approach using

metaheuristics. Central European Journal of Operations Research, 14, 193-207.

TAGMOUTI, M., GENDREAU, M. & POTVIN, J.-Y. 2011. A dynamic capacitated arc routing

problem with time-dependent service costs. Transportation Research Part C: Emerging

Technologies, 19, 20-28.

YAZICI, A., KIRLIK, G., PARLAKTUNA, O. & SIPAHIOGLU, A. 2014. A dynamic path

planning approach for multirobot sensor-based coverage considering energy constraints.

IEEE Transactions on Cybernetics, 44, 305-314.

105

Annex 1. Solution strategy

Table 5.5: Strategy solution in larger instances
BT=0.3ta 𝒑𝒑𝒓=0.7 𝒑𝒑𝒓 =0.5 𝒑𝒑𝒓 =0.3

test 𝒎𝒎𝒎𝒑𝒎 |𝑹𝒓| |𝑲𝑹| cost 𝑫𝑫 time Cost 𝑫𝑫 time cost 𝑫𝑫 time

9_1

O1 134 8 25100 47 913.7 24047 93 1086.8 - - -

O2 134 8 24983 50 928.4 - - - - - -

O3 134 8 25472 26 66.3 25557 26 907.7 25557 26 946.3

O4 134 8 25170 27 131.4 24255 35 441.9 23790 53 938.5

9_3

O1 134 8 23782 74 936.9 - - - - - -

O2 134 8 23782 66 1068.7 - - - - - -

O3 134 8 23942 29 45.2 24431 29 119.3 24431 29 165.4

O4 134 8 23862 31 10.4 23862 31 104.1 23314 33 194.5

10_4

O1 139 8 27024 79 933.6 26466 90 1130.9 - - -

O2 139 8 26944 70 916.7 26466 95 915.0 25504 132 1377.6

O3 139 8 28156 26 151.0 28180 26 117.6 27454 23 531.8

O4 139 8 27137 40 409.5 27137 40 906.7 - - -

10_8

O1 139 8 25489 56 160.7 24552 101 1021.9 - - -

O2 139 8 25489 60 309.7 24552 95 1041.2 - - -

O3 139 8 26021 28 8.0 26021 28 49.3 26021 28 21.1

O4 139 8 25613 30 6.5 25153 33 73.3 24950 41 196.0

11_3

O1 137 9 26500 58 1254.3 26189 96 1001.5 - - -

O2 137 9 26500 63 933.0 - - - - - -

O3 137 9 27756 19 47.9 27932 24 103.1 28385 24 130.2

O4 137 9 27068 29 45.6 26671 53 189.0 26289 48 754.9

11_7

O1 137 9 - - - - - - - - -

O2 137 9 - - - - - - - - -

O3 137 9 26952 22 44.1 26952 22 60.7 26952 22 61.6

O4 137 9 26616 29 159.3 - - - 25011 43 605.8

12_10

O1 135 10 26337 58 262.4 - - - - - -

O2 135 10 26337 54 194.2 - - - - - -

O3 135 10 28613 20 2.6 28321 20 18.4 28613 20 8.1

O4 135 10 26769 35 3.6 26097 43 5.5 26016 52 32.8

12_2

O1 135 10 - - - - - - - - -

O2 135 10 26709 83 1260.9 - - - - - -

O3 135 10 29086 16 32.1 29086 16 69.4 29086 16 204.8

O4 135 10 26863 29 16.0 - - - 25780 44 508.4

 - Not solution found in less than 1400s.

106

Table 5.5: Strategy solution in larger instances
BT=0.5ta 𝒑𝒑𝒓=0.7 𝒑𝒑𝒓 =0.5 𝒑𝒑𝒓 =0.3

test 𝒎𝒎𝒎𝒑𝒎 |𝑹𝒓| |𝑲𝑹| cost 𝑫𝑫 time cost 𝑫𝑫 time cost 𝑫𝑫 time

9_1

O1 91 7 18100 43 58.7 17263 59 176.7 16934 99 815.1

O2 91 7 18100 38 43.2 17263 64 158.0 16934 93 716.0

O3 91 7 18536 22 5.1 18151 20 30.7 18151 20 35.6

O4 91 7 18100 28 21.5 17263 29 5.0 17051 30 4.5

9_3

O1 91 7 16670 44 58.5 16196 52 967.0 16196 73 1097.9

O2 91 7 16670 40 120.1 16196 59 930.2 16196 68 1012.7

O3 91 7 16880 29 35.2 17452 29 339.9 18364 29 320.4

O4 91 7 16711 31 6.6 16711 31 79.3 16711 31 103.2

10_4

O1 85 8 19732 36 235.4 19551 58 687.5 18938 87 920.0

O2 85 8 19732 33 451.0 19551 61 639.1 18938 97 904.6

O3 85 8 20792 13 26.5 20792 13 13.2 20700 14 116.1

O4 85 8 19877 25 27.2 19877 25 71.9 19263 47 86.7

10_8

O1 85 8 19580 53 588.0 19280 61 905.0 - - -

O2 85 8 19580 53 827.6 19280 59 1030.9 - - -

O3 85 8 20513 24 10.1 20513 24 28.3 20513 24 93.4

O4 85 8 19601 24 32.0 19601 24 52.2 19063 36 210.3

11_3

O1 87 8 20520 30 68.0 19976 64 473.3 19536 91 943.3

O2 87 8 20520 31 112.5 19976 63 652.3 19536 94 1144.8

O3 87 8 21251 15 81.9 20817 14 89.1 21549 15 418.5

O4 87 8 20537 20 4.4 20066 30 18.3 19964 30 32.7

11_7

O1 87 8 20155 37 268.2 19489 74 997.6 18842 105 1005.6

O2 87 8 20155 48 317.2 19489 76 942.1 18842 93 934.0

O3 87 8 20483 18 10.4 20460 19 82.8 20483 19 127.2

O4 87 8 20155 23 22.8 19953 34 232.8 19538 42 289.2

12_10

O1 88 10 20120 30 1.7 20039 36 530.0 19958 82 937.2

O2 88 10 20120 32 3.1 20039 43 561.6 19958 86 922.3

O3 88 10 21953 16 64.7 21615 16 24.1 21615 16 260.2

O4 88 10 20134 29 0.5 20053 31 1.6 20053 31 0.6

12_2

O1 88 10 19695 27 13.5 19386 50 40.5 18911 51 301.2

O2 88 10 19695 29 10.6 19386 58 53.3 18911 61 332.0

O3 88 10 20602 12 1.0 20602 12 2.2 20602 12 8.9

O4 88 10 19695 22 2.9 19695 22 4.2 19614 24 22.1

 - Not solution found in less than 1400s.

107

Table 5.5: Strategy solution in larger instances
BT=0.7ta 𝒑𝒑𝒓=0.7 𝒑𝒑𝒓 =0.5 𝒑𝒑𝒓 =0.3

test 𝒎𝒎𝒎𝒑𝒎 |𝑹𝒓| |𝑲𝑹| cost 𝑫𝑫 time cost 𝑫𝑫 time cost 𝑫𝑫 time

9_1

O1 52 7 12051 18 0.5 11411 28 0.3 11278 33 6.4

O2 52 7 12051 22 0.9 11411 32 1.6 11278 42 12.4

O3 52 7 12161 10 0.6 11662 7 0.3 11662 7 0.2

O4 52 7 12051 13 0.5 11467 9 0.1 11394 10 0.2

9_3

O1 52 7 10304 31 2.2 10231 37 10.5 10231 45 29.8

O2 52 7 10304 30 2.7 10231 33 20.3 10231 48 88.4

O3 52 7 11983 24 34.6 11983 24 102.5 11983 24 103.7

O4 52 7 10304 26 0.3 10304 26 7.1 10304 27 6.1

10_4

O1 44 8 13260 19 253.0 12692 37 79.7 12692 49 400.7

O2 44 8 13260 19 200.0 12692 38 91.3 12692 37 340.0

O3 44 8 13664 12 890.6 13842 12 920.9 13863 10 904.3

O4 44 8 13260 17 76.4 12738 25 7.2 12738 25 12.9

10_8

O1 44 8 11773 19 0.3 11773 19 20.9 11416 31 278.9

O2 44 8 11773 19 0.7 11773 20 19.9 11416 31 225.6

O3 44 8 12685 14 0.4 12873 14 4.7 11961 14 33.9

O4 44 8 11773 14 0.1 11773 14 3.6 11416 21 8.0

11_3

O1 44 8 14268 20 2.2 13771 31 8.2 13521 38 20.0

O2 44 8 14268 24 2.1 13771 34 9.2 13521 39 25.5

O3 44 8 14605 9 323.4 14605 9 599.3 14605 9 527.7

O4 44 8 14465 13 145.0 13867 22 137.8 13544 28 398.8

11_7

O1 44 8 13297 20 4.8 13297 25 13.9 12851 42 31.1

O2 44 8 13297 23 5.7 13297 29 16.1 12851 34 47.9

O3 44 8 13694 11 4.2 13694 12 9.2 13694 12 16.7

O4 44 8 13297 17 1.9 13297 18 9.0 12851 29 15.6

12_10

O1 51 8 14458 21 0.7 13797 17 2.9 13797 25 20.0

O2 51 8 14458 21 0.9 13797 19 5.5 13797 19 21.2

O3 51 8 14770 11 0.4 14770 11 3.4 14770 11 0.8

O4 51 8 14501 14 0.2 13797 17 0.6 13797 17 0.3

12_2

O1 51 8 12796 8 0.2 12588 29 1.4 12516 32 3.4

O2 51 8 12796 6 0.1 12588 21 0.5 12516 28 6.3

O3 51 8 13500 3 0.1 13500 3 0.1 13500 3 0.2

O4 51 8 12796 6 0.1 12796 6 0.1 12796 6 0.1

 - Not solution found in less than 1400s.

108

This article was submitted as:

Monroy-Licht, M., Amaya, C.A., Langevin, A., & Rousseau, L-M. The rescheduling

capacitated arc routing problem. International Transactions in Operational

Research. IN SUBMISSION

Preliminary results were presented at:

Monroy-Licht, M., Amaya, C.A., Langevin, Rousseau, L-M. (2015). The

rescheduling capacitated arc routing problem. CORS/INFORMS International

Conference. June 14-17, Montréal, Canada

109

CHAPTER 6 GENERAL DISCUSSION

We have studied two problems of road winter maintenance: i) scheduling of a time-sensitive

route for detection of black-ice over roads, and ii) rescheduling of routes for snow plowing or salt

spreading after vehicles failure. To do this, we presented arc routing models and optimization

solution methods for both cases.

The road network monitoring for black-ice detection for a single vehicle was modeled as a

RPPTW. We proposed different mixed integer linear programming formulations, an exact

method and a heuristic approach to solve the problem.

We started exploring the “direct” formulation of the CARPTW given by Gueguen (1999).

However even if we introduce a new set of constraints that reduces the number of equivalent

solutions, this formulation is still not practical. Therefore we turned to two formulations that

transform the original graph: “model on edges” and “model on nodes”. The transformation used

shortest path algorithms to produce the travel time on the edges in the transformed graph. The

formulations were tested on a set of generated instances with different width of time windows. As

expected, the performance of formulations in terms of time and number of problems solved to

optimality is better for instances with tight time windows.

Then, we moved toward an exact solution method. Our choice is a polyhedral approach, which

was already used by Letchford and Eglese (1998) for the RPP with deadline classes. We

proposed a cutting plane algorithm for the “model on the nodes”, which is equivalent to a TSP

with time windows and side constraints. This approach was tested on two sets of instances: the

set of generated instances and a set of instances obtained from a real network. The first set of

instances has a different time window for each required edge while the second set includes 4 or 5

time slots defining the time windows; therefore subsets of required edges share the same time

windows. The cutting plane algorithm was able to solve to optimality all the instances based on

the real network, which are larger than the generated instances, in less than 11 minutes. The

algorithm solved to optimality most of the generated instances, but the computational times for

the harder instances of this group are high, reaching in some cases around 7 hours. This shows

that the cutting plane algorithm works better for time windows structured by time slots.

110

Other valid inequalities for the RRPTW could improve the efficiency of the method,

especially inequalities that consider precedence constraints (Balas et al., 1995). The

predecessor/successor inequalities were the most valuable in our tests.

A second approach to solve the RPPTW is presented in Chapter 4. We implemented an ALNS

algorithm, which aims at finding good quality solutions in shorter time for the larger instances.

Several versions of the algorithm were tested to compare the performance of seven removal and

two insertion heuristics and a full version that includes all of them. The best version of the

metaheuristic showed an efficient performance: for the hardest generated instances (wide time

windows) the average gap was 0.17% while the computational time reported by the cutting plane

algorithm was significantly reduced. In the case of the instances based on the real network, the

metaheuristic found 6 optimal solutions out of 8 problems and the gap reported for the other two

problems was less than 0.6%. However the running times of the exact method in this set of

instances were on average better.

The quality of initial solution in the performance of the metaheuristic could have an impact in

terms of computational time: we allow infeasible initial solutions, and therefore the ALNS

algorithm may take more time to converge to a good solution. In addition, the problems of time

windows given by time slots may suggest using other heuristics that remove and insert requests

with different rules to those proposed here.

The Chapter 5 of this thesis focuses on the problem of rescheduling an initial itinerary of road

maintenance operations such as snow plowing or salt spreading when a vehicle breaks down. In

this case various vehicles execute the initial plan and suddenly one or more vehicle failures

occur. Different policies considering operational and disruption costs are analyzed in the

rerouting phase: mixed integer programming formulations are presented to model the policies.

We have supposed that active vehicles could exceed the remaining capacity in order to service

all the required edges in the rerouting phase. We do not consider extra costs if a vehicle should be

refilled in the case of salt spreading or extra costs if drivers exceed the duration of their shifts.

The operational costs reflect only traveled distances in the rerouting phase. On the other hand, we

determined a metric of disruption costs given by the number of edges moved to a different route

in the rescheduling.

111

We generated test instances from the benchmark CARP instances and larger instances from a

real network. Our tests consider simulations of early, middle, and late vehicle breakdown during

the shifts. When a vehicle breakdown occurs early the negative impact on the extra operational

costs is lower than with middle or late vehicle breakdown. On an early vehicle breakdown there

are more available resources close to the failure zone, contrary to the other cases, where the

resources could be far away from the failure zone and it might be expensive to move resources to

the failure zone.

We showed that minimizing the operational and disruption costs are objectives in conflict and

we presented a solution strategy that offers a set of solutions to choose from, depending on the

policy of the planner. The strategy is based on the idea of fixing some decision variables to their

values in the initial schedule in order to reduce the disruption costs, and then a smaller problem is

solved using one of the mixed integer programming formulations proposed. This method gives

quick response to the planner in a dynamic context when larger instances are considered.

At the end of Chapter 5 we compared our disruption metric to 4 metrics already used in

optimizations problems, which measure the similarity of solutions encoded by permutations. We

calculated the values of these metrics for our solutions and we estimated the bounds of these

metrics based on the best possible case. In general, our solutions are relatively far from the

bounds of each metric however we believe that other possible measures of disruption costs may

arise from an adaptation of these metrics to the routing context.

112

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

This dissertation has contributed to the development of arc routing models and algorithms for

road network monitoring and rescheduling of snow plowing and salt spreading operations. In the

first case a rural postman problem with time windows (RPPTW) is explored and a rescheduling

capacitated arc routing problem (RCARP) is presented in the second case.

The RPPTW and the RCARP consider time-sensitive and dynamic features respectively; both

aspects are important in real applications of road winter maintenance operations. The former

problem looks at minimizing the total traveled cost; this dissertation presents for the first time

solution methods with numerical results for this problem. The second problem is introduced in

this work; due to the application context we consider operational and disruption costs to be

minimized.

The RPPTW were attacked from two optimization approaches: exact and heuristic solutions

methods were implemented to solve the problem.

In this work, we have presented three models for the RPPTW. We modified the Gueguen’s

formulation (1999) for the capacitated arc routing problem with time windows (CARPTW) and

we proposed a new set of constraints that allows reducing the number of equivalent solutions. We

have also presented two models for the RPPTW built on transformed graphs using the shortest

path assumption. All the models can be solved by integer optimization methods, and their

limitation is naturally the size of the instance to solve. The latter two models were solved for 225

randomly generated instances with different width of time windows and up to 45 required edges.

Computational results showed that the “model on the nodes” performs better than the “model on

the edges”: the former solved to optimality twelve more instances and its computational times

were smaller.

We have proposed a cutting plane algorithm for the “model on the nodes”. We included valid

inequalities derived from the valid inequalities for the traveling salesman problem (TSP) with

time windows and the precedence constrained TSP. The cutting plane algorithm was tested on a

set of 225 randomly generated instances and on a set of larger instances based on the real network

of the “Estrie” region in Quebec; these instances have 140 nodes and 104 required edges.

113

The cutting plane algorithm was able to solve 224 of 225 instances from the first group and all

the instances based on the real network. 222 instances from the first set were solved in less than 2

hours, while instances from the second set were solved in less than 11 minutes. The first set of

generated instances has a different time windows for each required edge, whereas the second set

of instances has time windows structured by time slots, therefore subsets of required edges have

the same time windows. Even if instances are larger in terms of required edges, it seems more

difficult to solve problems with a smaller number of required edges but with time windows

structured by each required edge.

We have also explored a heuristic solution method to the RPPTW. An adaptive large

neighborhood search (ALNS) algorithm is presented. We proposed seven removal heuristics and

two insertion heuristics which were tested in different versions of the ALNS algorithm. The best

version of the algorithm called VR124I12 includes: i) two removal heuristics based on

randomness and one that considers distance requirements as rules to remove requests, and ii) the

two insertion heuristics proposed (basic greedy insertion and regret insertion) to rebuild a partial

solution.

The computation results have showed that our ALNS algorithm performs well, solving to

optimality 224 of the 232 instances presented previously while significantly reducing the

computational time reported by the cutting plane algorithm on the hardest instances.

There are several ways that the cutting plane can be improved as well as the ALNS algorithm.

Other types of valid inequalities and the inclusion of heuristics that find good upper bounds could

help the cutting plane become more competitive. A natural extension is to develop a branch and

cut algorithm that aims at solving larger instances. On the other hand, new removal and insertion

heuristics could improve the efficiency of the ALNS algorithm taking into account the structure

of the time windows of the problem. Finally, the inclusion of other constraints in the RPPTW as

for example the prohibition of U-turns, for safety reasons, and the extension to the case of

multiple vehicles are possible areas of research.

Regarding the RCARP we have made a contribution in the field of dynamic arc routing

problems. We consider the rescheduling of the CARP when a vehicle fails and the initial plan

must be modified. We have introduced the problem exploring different policies in the rerouting

phase and we have proposed a solution strategy based on mixed integer programming.

114

We have modeled four policies that consider minimizing operational cost and disruption. We

compared the policies and concluded that the concerned costs are objectives in conflict. Our

computational tests showed that the model that minimizes both costs (O4) works well, getting a

good trade-off between the conflicting objectives.

We have presented a heuristic strategy for obtaining quickly solutions to the problem. The

idea considers a smaller problem to solve because some decision variables are fixed, and then the

smaller problem is solved to optimality using one of the four formulations proposed. The strategy

was tested on a set of instances generated from a real network having up to 88 required edges and

10 active vehicles after the vehicle breakdown. The strategy showed to be efficient solving the

two largest problems in less than one minute for 16 combinations of parameters “per” and

“model”. The limitation of the method is given by the size of the instance to solve (we used

CPLEX to solve the formulations).

In addition, we have explored other possible metrics of disruption costs based on measures of

distance between permutations. However, these metrics need to be adapted for the routing

context.

This dynamic problem requires quick responses; therefore the implementation of

multiobjective metaheuristics that find good quality solutions in short time can be a future area of

research. Future work will consider other constraints as balance of routes and the addition of

penalties when the remaining capacities are exceeded.

115

REFERENCES

Afsar, H. M. (2010). A Branch-and-Price Algorithm for Capacitated Arc Routing Problem with

Flexible Time Windows. Electronic Notes in Discrete Mathematics, 36(0), 319-326. doi:

http://dx.doi.org/10.1016/j.endm.2010.05.041

Alidaee, B., & Womer, N. K. (1999). Scheduling with time dependent processing times: Review

and extensions. Journal of the Operational Research Society, 50(7), 711-720. doi:

10.1057/palgrave.jors.2600740

Amaya, A., Langevin, A., & Trépanier, M. (2007). The capacitated arc routing problem with

refill points. Operations Research Letters, 35(1), 45-53. doi:

http://dx.doi.org/10.1016/j.orl.2005.12.009

Amaya, C. A., Langevin, A., & Trepanier, M. (2010). A heuristic method for the capacitated arc

routing problem with refill points and multiple loads. J Oper Res Soc, 61(7), 1095-1103.

Aminu, U. F., & Eglese, R. W. (2006). A constraint programming approach to the Chinese

postman problem with time windows. Computers & Operations Research, 33(12), 3423-

3431. doi: http://dx.doi.org/10.1016/j.cor.2005.02.012

Ascheuer, N., Fischetti, M., & Grötschel, M. (1999). Solving the Asymmetric Traveling

Salesman Problem with Time Windows by branch-and-cut. Belin, Germany: Konrad-

Zuse-Zentrun für informationstechnik Berlin.

Ascheuer, N., Fischetti, M., & Grötschel, M. (2001). Solving the Asymmetric Travelling

Salesman Problem with time windows by branch-and-cut. Mathematical Programming,

90(3), 475-506. doi: 10.1007/PL00011432

Ascheuer, N., Jünger, M., & Reinelt, G. (2000). A Branch & Cut Algorithm for the Asymmetric

Traveling Salesman Problem with Precedence Constraints. Computational Optimization

and Applications, 17(1), 61-84. doi: 10.1023/A:1008779125567

Balas, E., Fischetti, M., & Pulleyblank, W. (1995). The precedence-constrained asymmetric

traveling salesman polytope. Mathematical Programming, 68(1-3), 241-265. doi:

10.1007/BF01585767

Belenguer, E., & Benavent, E. (1991). Polyhedral results on the capacitated arc routing problem.

Spain: Departamento de Estadística e Investigación Operativa, Universidad de Valencia.

http://dx.doi.org/10.1016/j.endm.2010.05.041
http://dx.doi.org/10.1016/j.orl.2005.12.009
http://dx.doi.org/10.1016/j.cor.2005.02.012

116

Benavent, E., Campos, V., Corberan, A., & Mota, E. (1992). The Capacitated Chinese Postman

Problem: Lower bounds. Networks, 22, 669-690.

Beullens, P., Muyldermans, L., Cattrysse, D., & Van Oudheusden, D. (2003). A guided local

search heuristic for the capacitated arc routing problem. European Journal of Operational

Research, 147(3), 629-643. doi: http://dx.doi.org/10.1016/S0377-2217(02)00334-X

Bode, C. (2014). Personal communication, July 18, 2014.

Brandão, J., & Eglese, R. (2008). A deterministic tabu search algorithm for the capacitated arc

routing problem. Computers & Operations Research, 35(4), 1112-1126. doi:

http://dx.doi.org/10.1016/j.cor.2006.07.007

Busch, I. K. (1991). Vehicle routing on acyclic networks. (Ph.D. Dissertation), The Johns

Hopkins University, Baltimore, Md.

Campbell, J. F., & Langevin, A. (2000). Roadway Snow and Ice Control. In M. Dror (Ed.), Arc

Routing (pp. 389-418): Springer US.

Campbell, J. F., Langevin, A., & Perrier, N. (2014). Advances in vehicle routing for snow

plowing. In Á. Corberán & G. Laporte (Eds.), Arc Routing: Problems, Methods, and

Applications. (pp. 321-350): SIAM.

Christofides, N. (1973). The optimum traversal of a graph. Omega, 1, 13.

Christofides, N., Campos, V., Corberán, Á., & Mota, E. (1981). An algorithm for the Rural

Postman Problem. London: Imperial College.

Clarke, G., & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of

Delivery Points. Operations research, 12(4), 568-581. doi: doi:10.1287/opre.12.4.568

Corberán, A., & Prins, C. (2010). Recent results on Arc Routing Problems: An annotated

bibliography. Networks, 56(1), 50-69. doi: 10.1002/net.20347

Corberán, A., & Sanchis, J. M. (1994). A polyhedral approach to the rural postman problem.

European Journal of Operational Research, 79(1), 95-114. doi:

http://dx.doi.org/10.1016/0377-2217(94)90398-0

Corberán, Á., & Sanchis, J. M. (1991). A polyhedral approach to the Rural Postman Problem (D.

d. E. e. I. operative, Trans.). Spain: Universidad de Valencia.

Desrochers, M. (1988). An algorithm for the shortest path problem with resource constraints

Cahiers du GERARD. Montreal, Canada: Ecole des Hautes Etudes Commerciales.

http://dx.doi.org/10.1016/S0377-2217(02)00334-X
http://dx.doi.org/10.1016/j.cor.2006.07.007
http://dx.doi.org/10.1016/0377-2217(94)90398-0

117

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-

Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27-36. doi:

http://dx.doi.org/10.1016/0167-6377(91)90083-2

Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time constrained routing and

scheduling. Handbooks in operations research and management science, 8, 35-139.

Dror, M. (2000). Arc routing: theory, solutions and applications: Kluwer Academic Publishers.

Dror, M., Leung, J. Y., & Mullaseril, P. (2000). Livestock Feed Distribution and Arc Traversal

Problems. In M. Dror (Ed.), Arc Routing (pp. 443-464): Springer US.

Edmonds, J., & Johnson, E. (1973). Matching, Euler tours and Chinese postman. Mathematical

Programming, 5, 36.

Eglese, R., Golden, B., Wasil, E. (2014). Route optimization for meter reading and salt spreading.

In Ángel Corberán & Gilbert Laporte (eds.) Arc Routing: Problems, Methods, and

Applications, 303-320.

Eglese, R., & Letchford, A. (2000). Polyhedral Theory for Arc Routing Problems. In M. Dror

(Ed.), Arc Routing (pp. 199-230): Springer US.

Eglese, R. W. (1994). Routeing winter gritting vehicles. Discrete Applied Mathematics, 48(3),

231-244. doi: http://dx.doi.org/10.1016/0166-218X(92)00003-5

Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc Routing Problems, Part II: The Rural

Postman Problem. Operations research, 43(3), 399-414. doi: doi:10.1287/opre.43.3.399

Fischetti, M., & Toth, P. (1997). A Polyhedral Approach to the Asymmetric Traveling Salesman

Problem. Management Science, 43(11), 1520-1536. doi: 10.2307/2634585

Fu, L., Trudel, M., & Kim, V. (2009). Optimizing winter road maintenance operations under real-

time information. European Journal of Operational Research, 196(1), 332-341. doi:

http://dx.doi.org/10.1016/j.ejor.2008.03.001

Golbaharan, N. (2001). An Application of Optimization to the Snow Removal Problem: A Column

Generation Approach: Division of Optimization, Department of Mathematics, Linköpings

university.

Golden, B. L., Dearmon, J. S., & Baker, E. K. (1983). Computational experiments with

algorithms for a class of routing problems. Computers & Operations Research, 10(1), 47-

59. doi: http://dx.doi.org/10.1016/0305-0548(83)90026-6

http://dx.doi.org/10.1016/0167-6377(91)90083-2
http://dx.doi.org/10.1016/0166-218X(92)00003-5
http://dx.doi.org/10.1016/j.ejor.2008.03.001
http://dx.doi.org/10.1016/0305-0548(83)90026-6

118

Golden, B. L., & Wong, R. T. (1981). Capacitated arc routing problems. Networks, 11(3), 305-

315. doi: 10.1002/net.3230110308

Gueguen, C. (1999). Méthodes de résolution exacte pour les problèmes de tournées de véhicules.

École Central Paris.

Handa, H., Chapman, L., & Xin, Y. (2005, 5-5 Sept. 2005). Dynamic salting route optimisation

using evolutionary computation. Paper presented at the Evolutionary Computation, 2005.

The 2005 IEEE Congress.

Ibaraki, T., Imahori, S., Kubo, M., Masuda, T., Uno, T., & Yagiura, M. (2005). Effective Local

Search Algorithms for Routing and Scheduling Problems with General Time-Window

Constraints. Transportation Science, 39(2), 206-232. doi: doi:10.1287/trsc.1030.0085

Johnson, E. L., & Wøhlk, S. (2009). solving the capacitated arc routing problem with time

windows using column generation (D. o. B. Studies, Trans.) Coral working papers:

University of Aarhus.

Johnson, E. L., & Wøhlk, S. (2009). Solving the capacitated arc routing problem with time

windows using column generation: University of Aarhus, Aarhus School of Business,

Department of Business Studies.

Jünger, M., Reinelt, G., & Rinaldi, G. (1995). Chapter 4 The traveling salesman problem. In T. L.

M. C. L. M. M.O. Ball & G. L. Nemhauser (Eds.), Handbooks in operations research and

management science (Vol. Volume 7, pp. 225-330): Elsevier.

Kang, M.-J., & Han, C.-G. (1998). Comparison of Crossover Operators for Rural Postman

Problem with Time Windows. In P. K. Chawdhry, R. Roy, & R. K. Pant (Eds.), Soft

Computing in Engineering Design and Manufacturing (pp. 259-267): Springer London.

Kelleher, G., & Cavichiollo, P. (1999). Intelligent support of the Rescheduling of complex

Manufacturing domains – an Example application. Paper presented at the 2da

international workshop on IMS, Leuven, Belgium.

Kwan, M.-K. (1962). Graphic programming using odd or even points. Chinese Mathematics, 1, 5.

Lenstra, J. K., & Kan, A. H. G. R. (1976). On general routing problems. Networks, 6(3), 273-280.

doi: 10.1002/net.3230060305

Letchford, A. N., & Eglese, R. W. (1998). The rural postman problem with deadline classes.

European Journal of Operational Research, 105(3), 390-400. doi:

http://dx.doi.org/10.1016/S0377-2217(97)00090-8

http://dx.doi.org/10.1016/S0377-2217(97)00090-8

119

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. Paper presented at the Soviet physics doklady.

Li, J.-Q., Borenstein, D., & Mirchandani, P. B. (2007). A decision support system for the single-

depot vehicle rescheduling problem. Computers & Operations Research, 34(4), 1008-

1032. doi: http://dx.doi.org/10.1016/j.cor.2005.05.022

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2004). Parallel auction algorithm for bus

rescheduling. Paper presented at the Proceedings of the Ninth International Conference on

Computer-Aided Scheduling of Public Transport, San Diego, California, USA.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2009). A Lagrangian heuristic for the real-time

vehicle rescheduling problem. Transportation Research Part E: Logistics and

Transportation Review, 45(3), 419-433. doi: http://dx.doi.org/10.1016/j.tre.2008.09.002

Li, L. Y. O. (1992). Vehicle routeing for winter gritting. (Ph.D. Thesis), Lancaster University,

UK.

Li, L. Y. O., & Eglese, R. W. (1996). An Interactive Algorithm for Vehicle Routeing for Winter

Gritting. J Oper Res Soc, 47(2), 217-228.

Liu, G., Ge, Y., Qiu, T. Z., & Soleymani, H. R. (2014). Optimization of snow plowing cost and

time in an urban environment: A case study for the City of Edmonton. Canadian Journal

of Civil Engineering, 41(7), 667-675. doi: doi:10.1139/cjce-2013-0409

Liu, M. (2014, September 16). A memetic algorithm with a new split scheme for solving dynamic

capacitated arc routing problems. Paper presented at the Proceedings of the 2014 IEEE

Congress on Evolutionary Computation, CEC 2014.

Liu, M., Kumar, S., & Ray, T. (2014, July 6-11, 2014). A memetic algorithm with a new split

scheme for solving dynamic capacitated arc routing problems. Paper presented at the

Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014,

Beijing, China.

Martí, R., Laguna, M., & Campos, V. (2005). Scatter Search vs. Genetic Algorithms. In R.

Sharda, S. Voß, C. Rego, & B. Alidaee (Eds.), Metaheuristic Optimization via Memory

and Evolution (Vol. 30, pp. 263-282): Springer US.

Marzolf, F., Trépanier, M., & Langevin, A. (2006). Road network monitoring: algorithms and a

case study. Computers & Operations Research, 33(12), 3494-3507. doi:

http://dx.doi.org/10.1016/j.cor.2005.02.040

http://dx.doi.org/10.1016/j.cor.2005.05.022
http://dx.doi.org/10.1016/j.tre.2008.09.002
http://dx.doi.org/10.1016/j.cor.2005.02.040

120

Min, L., Singh, H. K., & Ray, T. (2014, 6-11 July 2014). A benchmark generator for dynamic

capacitated arc routing problems. Paper presented at the Evolutionary Computation

(CEC), 2014 IEEE Congress.

Monroy-Licht, M., Amaya, C., & Langevin, A. (2015). Adaptive Large Neighborhood Search for

the Rural Postman Problem with Time Windows. Montréal: Cirrelt.

Monroy-Licht, M., Amaya, C. A., & Langevin, A. (2014). The Rural Postman Problem with time

windows. Networks, 64(3), 169-180. doi: 10.1002/net.21569

Monroy, I. M., Amaya, C. A., & Langevin, A. (2013). The periodic capacitated arc routing

problem with irregular services. Discrete Applied Mathematics, 161(4–5), 691-701. doi:

http://dx.doi.org/10.1016/j.dam.2011.05.014

Moreira, L. M., Oliveira, J. F., Gomes, A. M., & Ferreira, J. S. (2007). Heuristics for a dynamic

rural postman problem. Computers & Operations Research, 34(11), 3281-3294. doi:

http://dx.doi.org/10.1016/j.cor.2005.12.008

Mu, Q., Fu, Z., Lysgaard, J., & Eglese, R. (2011). Disruption management of the vehicle routing

problem with vehicle breakdown. J Oper Res Soc, 62(4), 742-749.

Mullaseril, P. A. (1997). Capacitated rural postman problem with time windows and split

delivery. (PhD.), University of Arizona, Arizona.

Mullaseril, P. A., & Dror, M. (1996). A set covering approach for directed node and arc routing

problems with split deliveries and time windows: MIS Department, University of

Arizona.

Mullaseril, P. A., Dror, M., & Leung, J. (1997). Split-Delivery Routeing Heuristics in Livestock

Feed Distribution. The Journal of the Operational Research Society, 48(2), 107-116. doi:

10.2307/3010350

Nagata, Y. (1997). Edge Assembly Crossover.A High-power Genetic Algorithm for the

Traveling Salesman Problem. Proc. 7th ICGA, 450-457.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and Combinatorial Optimisation. New York:

Wiley.

Nobert, Y., & Picard, J. C. (1994). A heuristic algorithm for the Rural Postman Problem with

Time Windows. Paper presented at the ORSA/TIMS, Detroit.

Office of the Auditor General of Ontario. (2015). Winter highway maintenance Special report

(pp. 44).

http://dx.doi.org/10.1016/j.dam.2011.05.014
http://dx.doi.org/10.1016/j.cor.2005.12.008

121

Orda, A., & Rom, R. (1990). Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-length. J. ACM, 37(3), 607-625. doi: 10.1145/79147.214078

Orloff, C. S. (1976). On general routing problems: Comments. Networks, 6(3), 281-284. doi:

10.1002/net.3230060306

Padberg, M., & Rinaldi, G. (1990). An efficient algorithm for the minimum capacity cut problem.

Mathematical Programming, 47(1-3), 19-36. doi: 10.1007/BF01580850

Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems. SIAM Rev., 33(1), 60-100. doi: 10.1137/1033004

Papadimitriou, C. H. (1976). On the complexity of edge traversing. Journal of ACM, 23, 10.

Pearn, W.-L., Assad, A., & Golden, B. L. (1987). Transforming arc routing into node routing

problems. Computers & Operations Research, 14(4), 285-288.

Perrier, N., Campbell, J. F., Gendreau, M., & Langevin, A. (2012). Vehicle Routing Models and

Algorithms for Winter Road Spreading Operations. In R. M.-T. Jairo, A. J. Angel, H.

Luisa Huaccho, F. Javier, & L. R.-V. Gloria (Eds.), Hybrid Algorithms for Service,

Computing and Manufacturing Systems: Routing and Scheduling Solutions (pp. 15-45).

Hershey, PA, USA: IGI Global.

Perrier, N., Langevin, A., & Campbell, J. F. (2006a). A survey of models and algorithms for

winter road maintenance. Part I: system design for spreading and plowing. Computers &

Operations Research, 33(1), 209-238. doi: http://dx.doi.org/10.1016/j.cor.2004.07.006

Perrier, N., Langevin, A., & Campbell, J. F. (2006b). A survey of models and algorithms for

winter road maintenance. Part II: system design for snow disposal. Computers &

Operations Research, 33(1), 239-262. doi: http://dx.doi.org/10.1016/j.cor.2004.07.007

Perrier, N., Langevin, A., & Campbell, J. F. (2007a). A survey of models and algorithms for

winter road maintenance. Part III: Vehicle routing and depot location for spreading.

Computers & Operations Research, 34(1), 211-257. doi:

http://dx.doi.org/10.1016/j.cor.2005.05.007

Perrier, N., Langevin, A., & Campbell, J. F. (2007b). A survey of models and algorithms for

winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing and snow

disposal. Computers & Operations Research, 34(1), 258-294. doi:

http://dx.doi.org/10.1016/j.cor.2005.05.008

http://dx.doi.org/10.1016/j.cor.2004.07.006
http://dx.doi.org/10.1016/j.cor.2004.07.007
http://dx.doi.org/10.1016/j.cor.2005.05.007
http://dx.doi.org/10.1016/j.cor.2005.05.008

122

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle

routing problems. European Journal of Operational Research, 225(1), 1-11. doi:

http://dx.doi.org/10.1016/j.ejor.2012.08.015

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &

Operations Research, 34(8), 2403-2435. doi: http://dx.doi.org/10.1016/j.cor.2005.09.012

Prins, C., Lacomme, P., & Prodhon, C. (2014). Order-first split-second methods for vehicle

routing problems: A review. Transportation Research Part C: Emerging Technologies,

40(0), 179-200. doi: http://dx.doi.org/10.1016/j.trc.2014.01.011

Razmara, G. (2004). Snow removal routing problems: theory and applications. (PhD.),

Linköping University, Linköping, Sweden.

Reghioui, M., Prins, C., & Labadi, N. (2007). GRASP with Path Relinking for the Capacitated

Arc Routing Problem with Time Windows. In M. Giacobini (Ed.), Applications of

Evolutionary Computing (Vol. 4448, pp. 722-731): Springer Berlin Heidelberg.

Rhalibi, A., & Kelleher, G. (2003, 5-8 Oct. 2003). An approach to dynamic vehicle routing,

rescheduling and disruption metrics. Paper presented at the Systems, Man and

Cybernetics, 2003. IEEE International Conference.

Riquelme-Rodríguez, J.-P., Langevin, A., & Gamache, M. (2014). Adaptive large neighborhood

search for the periodic capacitated arc routing problem with inventory constraints.

Networks, 64(2), 125-139. doi: 10.1002/net.21562

Rodrigues, A. (2013). Edmonton spends more on snow removal than any other city in Western

Canada, figures show. Edmonton sun. Retrieved from

http://www.edmontonsun.com/2013/01/10/edmonton-spends-more-on-snow-removal-

than-any-other-city-in-western-canada-figures-show#disqus_thread website

Ronald, S. (1998, 4-9 May 1998). More distance functions for order-based encodings. Paper

presented at the Evolutionary Computation Proceedings, 1998. IEEE World Congress on

Computational Intelligence.

Ropke, S., & Pisinger, D. (2006a). An Adaptive Large Neighborhood Search Heuristic for the

Pickup and Delivery Problem with Time Windows. Transportation Science, 40(4), 455-

472. doi: 10.1287/trsc.1050.0135

http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.trc.2014.01.011
http://www.edmontonsun.com/2013/01/10/edmonton-spends-more-on-snow-removal-than-any-other-city-in-western-canada-figures-show#disqus_thread
http://www.edmontonsun.com/2013/01/10/edmonton-spends-more-on-snow-removal-than-any-other-city-in-western-canada-figures-show#disqus_thread

123

Ropke, S., & Pisinger, D. (2006b). A unified heuristic for a large class of Vehicle Routing

Problems with Backhauls. European Journal of Operational Research, 171(3), 750-775.

doi: http://dx.doi.org/10.1016/j.ejor.2004.09.004

Salazar-Aguilar, M. A., Langevin, A., & Laporte, G. (2012). Synchronized arc routing for snow

plowing operations. Computers & Operations Research, 39(7), 1432-1440. doi:

http://dx.doi.org/10.1016/j.cor.2011.08.014

Salazar-Aguilar, M. A., Langevin, A., & Laporte, G. (2013). The synchronized arc and node

routing problem: Application to road marking. Computers & Operations Research, 40(7),

1708-1715. doi: http://dx.doi.org/10.1016/j.cor.2013.01.007

Slone, S. (2014). High costs of winter road maintenance, 2013-14. Capitol research, 4. Retrieved

from http://knowledgecenter.csg.org/kc/system/files/CR_WinterMaintenanceCosts.pdf

website

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations research, 35(2), 254-265.

Sörensen, K. (2006). Route stability in vehicle routing decisions: a bi-objective approach using

metaheuristics. Central European Journal of Operations Research, 14(2), 193-207. doi:

10.1007/s10100-006-0168-3

Springintveld, J., Vaandrager, F., & R. D'Argenio, P. (2001). Testing timed automata.

Theoretical Computer Science, 254(1–2), 225-257. doi: http://dx.doi.org/10.1016/S0304-

3975(99)00134-6

Sun, J., Meng, Y., & Tan, G. (2013). A Cutting Plane Heuristic Algorithm for the Time

Dependent Chinese Postman Problem. In M. Fellows, X. Tan, & B. Zhu (Eds.), Frontiers

in Algorithmics and Algorithmic Aspects in Information and Management (Vol. 7924, pp.

163-174): Springer Berlin Heidelberg.

Sun, J., Meng, Y., & Tan, G. (2015). An integer programming approach for the Chinese postman

problem with time-dependent travel time. Journal of Combinatorial Optimization, 29(3),

565-588. doi: 10.1007/s10878-014-9755-8

Sun, J., Tan, G., & Meng, X. (2011, 19-22 Aug. 2011). Graph transformation algorithm for the

time dependent Chinese Postman Problem with Time Windows. Paper presented at the

Mechatronic Science, Electric Engineering and Computer (MEC).

http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1016/j.cor.2011.08.014
http://dx.doi.org/10.1016/j.cor.2013.01.007
http://knowledgecenter.csg.org/kc/system/files/CR_WinterMaintenanceCosts.pdf
http://dx.doi.org/10.1016/S0304-3975(99)00134-6
http://dx.doi.org/10.1016/S0304-3975(99)00134-6

124

Sundararaghavan, P. S., & Kunnathur, A. S. (1994). Single machine scheduling with start time

dependent processing times: Some solvable cases. European Journal of Operational

Research, 78(3), 394-403. doi: http://dx.doi.org/10.1016/0377-2217(94)90048-5

Tagmouti, M., Gendreau, M., & Potvin, J.-Y. (2007). Arc routing problems with time-dependent

service costs. European Journal of Operational Research, 181(1), 30-39. doi:

http://dx.doi.org/10.1016/j.ejor.2006.06.028

Tagmouti, M., Gendreau, M., & Potvin, J.-Y. (2010). A variable neighborhood descent heuristic

for arc routing problems with time-dependent service costs. Computers & Industrial

Engineering, 59(4), 954-963. doi: http://dx.doi.org/10.1016/j.cie.2010.09.006

Tagmouti, M., Gendreau, M., & Potvin, J.-Y. (2011). A dynamic capacitated arc routing problem

with time-dependent service costs. Transportation Research Part C: Emerging

Technologies, 19(1), 20-28. doi: http://dx.doi.org/10.1016/j.trc.2010.02.003

Tan, G., & Sun, J. (2011). An Integer Programming Approach for the Rural Postman Problem

with Time Dependent Travel Times. In B. Fu & D.-Z. Du (Eds.), Computing and

Combinatorics (Vol. 6842, pp. 414-431): Springer Berlin Heidelberg.

Tan, G., Sun, J., & Hou, G. (2013). The time-dependent rural postman problem: polyhedral

results. Optimization Methods and Software, 28(4), 855-870. doi:

10.1080/10556788.2012.666240

Transportation Research Board (2005). Winter highway operations, A synthesis of higway

practice. Washington DC: Transportation Research Board.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal

of Operational Research, 22(3), 329-337. doi: http://dx.doi.org/10.1016/0377-

2217(85)90252-8

Wang, H.-F., & Wen, Y.-P. (2002). Time-constrained Chinese postman problems. Computers &

Mathematics with Applications, 44(3–4), 375-387. doi: http://dx.doi.org/10.1016/S0898-

1221(02)00156-6

Weise, T., Devert, A., & Tang, K. (2012). A developmental solution to (dynamic) capacitated arc

routing problems using genetic programming. Paper presented at the Proceedings of the

14th annual conference on Genetic and evolutionary computation, Philadelphia,

Pennsylvania, USA.

Wøhlk, S. (2005). Contributions to arc routing. University of Southern Denmark.

http://dx.doi.org/10.1016/0377-2217(94)90048-5
http://dx.doi.org/10.1016/j.ejor.2006.06.028
http://dx.doi.org/10.1016/j.cie.2010.09.006
http://dx.doi.org/10.1016/j.trc.2010.02.003
http://dx.doi.org/10.1016/0377-2217(85)90252-8
http://dx.doi.org/10.1016/0377-2217(85)90252-8
http://dx.doi.org/10.1016/S0898-1221(02)00156-6
http://dx.doi.org/10.1016/S0898-1221(02)00156-6

125

Yazici, A., Kirlik, G., Parlaktuna, O., & Sipahioglu, A. (2014). A Dynamic Path Planning

Approach for Multirobot Sensor-Based Coverage Considering Energy Constraints.

Cybernetics, IEEE Transactions on, 44(3), 305-314. doi: 10.1109/TCYB.2013.2253605

	DEdicATION
	Acknowledgements
	Résumé
	Abstract
	Table OF CONTENTS
	List OF TABLES
	List OF figures
	List of symbols and abbreviations
	Chapter 1 Introduction
	1.1 Thesis Outline

	Chapter 2 LITERATURE REVIEW
	2.1 Arc routing problems with time windows
	2.1.1 The Chinese postman problem
	2.1.1.1 The Chinese postman problem with time windows
	2.1.1.2 The Chinese postman problem with time-dependent travel time
	2.1.1.3 Time dependent Chinese postman problem with time windows

	2.1.2 The rural postman problem
	2.1.2.1 The RPP with deadline classes
	2.1.2.2 The time-dependent rural postman problem

	2.1.3 Capacitated arc routing problem
	2.1.3.1 The CARP with time windows
	2.1.3.2 Capacitated arc routing problem with time-dependent service cost

	2.2 Dynamic arc routing problems
	2.2.1 Dynamic rural postman problem
	2.2.2 Dynamic CARP

	Chapter 3 ARTICLE 1 : The rural postman problem with time windows
	Abstract
	3.1 Introduction
	3.2 Undirected RPPTW
	3.2.1 Model on the edges
	3.2.2 Model on the required edges
	3.2.3 Model on the nodes

	3.3 Valid inequalities
	3.4 Solution algorithm
	3.4.1 Data preprocessing
	3.4.2 Cutting plane algorithm
	3.4.3 Solution of the MIP program

	3.5 Computational results
	3.5.1 Generated instances
	3.5.2 Instances based on the Estrie network
	3.5.3 Preprocessing
	3.5.4 Tests

	3.6 Directed case
	3.6.1 Model on the arcs
	3.6.2 Model on the required arcs
	3.6.3 Tests

	3.7 Conclusions
	References

	Chapter 4 ARTICLE 2 : ALNS FOR THE RURAL POSTMAN PROBLEM WITH TIME WINDOWS
	Abstract
	4.1 Introduction
	4.2 Literature review
	4.3 Adaptive large neighborhood search
	4.3.1 Initial solution
	4.3.2 Improvement phase
	4.3.2.1 Removal heuristics
	4.3.2.2 Insertion heuristics

	4.4 Results
	4.4.1 Instances
	4.4.2 Tuning set parameters
	4.4.3 Performance of removal and insertion heuristics
	4.4.4 Results for set2
	4.4.5 Summary of computational results

	4.5 Conclusions
	References

	Chapter 5 ARTICLE 3 : The rescheduling capacitated arc routing problem
	Abstract
	5.1 Introduction
	5.2 Problem definition
	5.3 Measures of disruption cost
	5.3.1 Edit distance
	5.3.2 Exact match
	5.3.3 R-type distance
	5.3.4 Longest sequence

	5.4 Formulations
	5.4.1 Objective 1 (O1): Minimizing the total distance traveled
	5.4.2 Objective 2 (O2): Minimizing the total distance traveled and considering capacity
	5.4.3 Objective 3 (O3): Minimizing disruption cost
	5.4.4 Objective 4 (O4): Minimizing operational and disruption cost

	5.5 Results
	5.5.1 Test set and baseline solution
	5.5.2 Comparison of policies
	5.5.3 Larger networks
	5.5.4 Solution strategy

	5.6 Evaluation of metrics
	5.7 Conclusions
	References
	Annex 1. Solution strategy

	Chapter 6 GENERAL DISCUSSION
	Chapter 7 CONCLUSIONS AND RECOMMENDATIONS
	References

