
        

Citation for published version:
Shelbourne, B, Battarra, M & Potts, CN 2017, 'The Vehicle Routing Problem with Release and Due Dates',
INFORMS Journal on Computing, vol. 29, no. 4, pp. 705 - 723. https://doi.org/10.1287/ijoc.2017.0756

DOI:
10.1287/ijoc.2017.0756

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

The final publication is available at pubsonline.informs.org via https://doi.org/10.1287/ijoc.2017.0756.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161915252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1287/ijoc.2017.0756
https://researchportal.bath.ac.uk/en/publications/the-vehicle-routing-problem-with-release-and-due-dates(985ebc6a-f3bb-4e18-86d6-5d931de362d2).html


Submitted to INFORMS Journal on Computing

manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

The vehicle routing problem with job availability
constraints

BC Shelbourne
School of Mathematical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK, bcs1g11@soton.ac.uk

M Battarra
School of Management, University of Bath, Bath, BA2 7AY, UK, m.battarra@bath.ac.uk

CN Potts
School of Mathematical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK, c.n.potts@soton.ac.uk

A novel extension of the classical vehicle routing and scheduling problem is introduced that integrates

aspects of machine scheduling into vehicle routing. Associated with each customer order is a release date

that defines the earliest time that the order is available to leave the depot for delivery, and a due date

that indicates the time by which the order should ideally be delivered to the customer. The objective is

to minimize a convex combination of the operational costs and customer service level, represented by the

total distance traveled and the total weighted tardiness of delivery, respectively. A path-relinking algorithm

(PRA) is proposed to address the problem, and a variety of benchmark instances are generated to evaluate its

performance. The PRA exploits the efficiency and aggressive improvement of neighborhood search, but relies

on a new path-relinking procedure and advanced population management strategies to navigate the search

space effectively. To provide a comparator algorithm to the PRA, we embed the neighborhood search into

a standard iterated local search algorithm (ILS). Extensive computational experiments on the benchmark

instances show that the newly defined features have a significant and varied impact on the problem, and the

performance of the PRA dominates that of the ILS algorithm.

Key words : vehicle routing and scheduling; weighted tardiness; release dates; path relinking; hybrid

population-based metaheuristics.

1. Introduction

The vehicle routing problem (VRP) is a classical NP-hard combinatorial optimization problem.

Starting with the paper of Dantzig and Ramser (1959), it has been studied widely for more than 50

years. The class of VRPs traditionally involve minimizing the total distance traveled by a number

of vehicles to visit a set of customers. Commonly, the vehicles are assumed to operate from a single

1



Shelbourne, Battarra and Potts: The VRP with job availability constraints

2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

depot, and each customer’s demand must be satisfied through a single visit from one of the vehicles,

although various studies propose a significant variety of additional features and constraints. There

are direct applications in transportation and logistics, and others in a variety of areas including

manufacturing, communications, and the military. A more detailed discussion of application areas

is given in the book of Toth and Vigo (2002), and more recently by Hoff et al. (2010).

In both the vehicle routing and production scheduling literature, a trend toward simultaneously

addressing a greater proportion of the operational supply-chain is observed. Some notable examples

include supply chain scheduling problems (Hall and Potts 2003), production-routing problems

(Boudia et al. 2007), location-routing problems (Nagy and Salhi 2007), and inventory-routing

problems (Coelho et al. 2014). Many of these consider integrating operational decisions about

distribution with others from different elements of the supply-chain. A problem class of particular

interest combines machine scheduling to process customer orders and vehicle routing to deliver

the processed orders. A variety of these integrated problems are proposed in the literature, and

some examples are described by Chang and Lee (2004), Chen and Vairaktarakis (2005), and Ullrich

(2013). Reviews of these problems, and the wider class of integrated machine scheduling and

distribution problems, are given by Chen (2010) and Ullrich (2013).

The problems considered above motivate us to define a VRP where orders become available for

delivery to the customers at different times, which we call release dates. Delivery of the orders

therefore requires a traditional VRP to be solved, except that the departure time of each vehicle

from the depot is dependent on the release dates of the orders on its route. Moreover, the objective

is to minimize a convex combination of transportation cost and customer service level, measured as

the total distance traveled and total weighted tardiness associated with delivery, respectively. We

refer to this problem as the VRP with job availability constraints (VRPJA). Situations in which

release dates can arise include processing or production of the orders as described above, and also

the arrival of the orders at the depot from a higher echelon VRP.

At the polar extremes of the objective, the VRPJA models the classical capacitated vehicle

routing problem (CVRP), and a parallel machine total weighted tardiness problem with sequence-

dependent set-up times (PWTPSST) and additional constraints. Although this generalization of

the CVRP and the PWTPSST is of high practical and theoretical importance, to our knowledge

it has not been addressed in the literature. A similar problem is being studied in parallel by Johar

(2014), but no results have been published. Independently of this study, some preliminary results

are presented by Cattaruzza et al. (2013) for a multi-trip VRP with hard time windows and release

dates. The latter authors consider batched release dates, a purely transportation cost objective,

and vehicles that can perform multiple routes.

We propose a novel path-relinking algorithm (PRA) to solve the VRPJA. This is based on a

hybrid evolutionary framework rooted in scatter search and concepts proposed by Glover (1989)



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

to enhance tabu search. Our algorithm utilizes the exploratory potential and adaptive memory

of evolutionary algorithms, but relies on more intelligent solution recombination and population

(diversity) management. A new relinking procedure is described to enable efficient exploration of

the search space between the solutions in the population, and which introduces some controlled

randomization. To intensify the search and improve the convergence of the algorithm, an efficient

and powerful neighborhood search (NS) is applied to some solutions resulting from relinking. With

the aim of assessing the performance of our proposed PRA against an alternative method, we

extend the NS from the PRA to produce an iterated local search (ILS) algorithm. An ILS algorithm

iteratively applies NS followed by a kick to escape the resulting local optima. Examples for a broad

range of problem types show that ILS achieves competitive results (see Lourenço et al. 2010).

The remainder of the paper is organized as follows. § 2 defines the VRPJA formally and discusses

its complexity. A thorough literature review is presented in § 3. In § 4, we describe the proposed

PRA in detail. Computational experience is reported in § 5, where we also introduce the proposed

set of benchmark instances and outline the comparator ILS algorithm. Lastly, § 6 concludes our

findings.

2. Preliminaries

In this section, we introduce some notation and formally define the VRPJA. We also present some

results on the worst-case complexity of the problem, and describe the results of a small experiment

that assess its practical tractability.

2.1. Problem definition

The VRPJA is defined on a complete graph G= (V,A), where the vertex set is V = {0,1, . . . , n}

and arc set is A = {(i, j) : i, j ∈ V, i 6= j}. Vertex 0 corresponds to the depot, while V ′ = V \{0}

represents the set of n customer vertices. For customer (vertex) i, the order to be delivered is

characterized by an individual load qi ≥ 0, a due date di ≥ 0, a release data ri ≥ 0, and a weight

wi ≥ 0. A homogeneous fleet of m vehicles, each with capacity Q, is stationed at the depot (vertex)

0. Each arc (i, j) ∈A has an associated distance cost cij and travel time τij. We assume each τij

includes the service time at vertex i (which is zero if i is the depot). If the triangle inequality holds

for travel times, then it also holds for the modified τij values that include equal service times.

A solution x to the VRPJA comprises m routes, one for each vehicle, where each customer is

assigned to exactly one route and empty routes are allowed. Each route r is an elementary circuit in

G that contains the depot. More precisely, for any route r= 1, . . . ,m, let Rr be the set of customers

visited in r and let nr = |Rr| be the number of customers in r. Then a route r can be represented by

a permutation (σr(1), . . . , σr(nr)) of the elements of Rr, where σr(i) is the ith customer to be visited,

for i= 1, . . . , nr. The route starts and ends at the depot, so we naturally set σr(0) = σr(nr+1)= 0.

The solution is feasible if the capacity constraint
∑

i∈Rr qi ≤Q is satisfied for r= 1, . . . ,m. Further,



Shelbourne, Battarra and Potts: The VRP with job availability constraints

4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

the vehicle for route r leaves the depot at time maxi∈Rr ri, so that the vehicle’s earliest departure

time is equal to the maximum release date of the orders for the customers visited in r.

The objective function f to be minimized is a convex combination of the total distance cost and

total weighted tardiness, and is defined by

f(x) =α
m
∑

r=1

nr
∑

i=0

cσr(i),σr(i+1) +(1−α)
m
∑

r=1

∑

i∈Rr

wimax{0, Si − di}, (1)

where x is a solution, Si is the time at which the service for customer i starts in solution x,

max{0, Si− di} is the tardiness for customer i and 0≤α≤ 1 defines the relative weight of the two

objective function components. Since f is a non-decreasing function of the arrival times Si, then

vehicle idle time is never beneficial. Therefore, without loss of generality, we may assume that

Sσr(i) =max
j∈Rr

{rj}+
i
∑

j=1

τσr(j−1),σr(j), ∀ i=1, . . . , nr, r= 1, . . . ,m. (2)

Sometimes, we allow solutions that are infeasible with respect to the capacity constraint and modify

the objective defined in (1) to include a penalty cost. This yields a penalized objective function

f p(x) = f(x)+β
m
∑

r=1

max

{

0,
∑

i∈Rr

qi−Q

}

, (3)

where β is a parameter.

Figure 1 presents a small-sized instance I, together with two different solutions a and b. Instance

I has n = 5, m = 2, Q = 3, and qi = wi = 1 for i ∈ V ′. For each arc (i, j) ∈ A, we have τij = dij,

and these values are shown on the edges. For each customer i, the values [ri, di] are given in the

problem instance within Figure 1, and solutions a and b show the values (Si,wiTi) for the given

routing. The respective total distance traveled and total weighted tardiness are reported below

the solutions. If α = 0.7, then a is optimal and f(a) = 7.6 and f(b) = 8.4, but if α = 0.3, then b

is optimal and f(a) = 8.4 and f(b) = 7.6. Finally, if α= 0.5, then both solutions are optimal and

f(a) = f(b) = 8.

2.2. Problem complexity and tractability

In this section, we will establish the complexity of the VRPJA, and describe a small experiment

attempting to solve a natural mixed integer programming formulation with a commercial solver.

We claim that the VRPJA is unary NP-hard for all values of α satisfying 0≤ α≤ 1. For α= 1,

or for 0 < α < 1 and di =∞ for i ∈ V ′, then (1) reduces to the total distance traveled objective

function. For this objective the problem is equivalent to the CVRP, which is unary NP-hard by

reduction to the traveling salesman problem. For α= 0, Q=∞, m= 1, ri = 0 and wi = 1 for i∈ V ′,

then the problem reduces to the total tardiness problem with sequence dependent set-up times.

The total tardiness objective reduces to the makespan objective (Lenstra et al. 1977), and the



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

01

3

42

5

D=7, WT =9

(7,4)

(8,0)

(8,0)

(7,4)

(6,1)

01

3

42

51

1
1

1
1

1

3 1

1

[0,3]

[6,8]

[5,9]

[1,3]

[3,5]

Solution a

Problem instance I

5

2 4

3

1 0

D=9, WT =7

(5,0)

(4,1)

(11,2)

(8,0)

(7,4)

Solution b

Figure 1 VRPJA instance and optimal solutions for different values of α.

resulting problem is unary NP-hard by reduction from the Hamiltonian path problem. Notice that

the traveling salesman problem is reducible to the Hamiltonian path problem.

To explore the tractability of the VRPJA for exact methods, we attempt to solve the problem as

a mixed integer program (MIP) using a commercial solver. We propose a classical multi-commodity

flow formulation for the VRPJA, and this is provided in §A. We use the branch-and-cut algorithm

of CPLEX 12.5.1.0, for which we trial various settings of the algorithm parameters. For instances

generated with between 30 and 50 customers, where neighborhood search is used to provide an

upper bound, the average relative gap between the best lower and upper bound after more than 5

hours of computation time is around 30%. This suggests that instances of these sizes or larger are

challenging for exact methods, and that tighter bounds must be found for enumerative methods

to be effective. We therefore rely on heuristic methods to tackle instances of practical size, and to

provide tight upper bounds.

3. Literature review

In this section, we describe some VRPs with time windows that have similarities to the VRPJA.

A review of some milestones in the development of heuristics for these VRPs is presented, where

we seek to identify currently available techniques that are successful in providing high-quality

solutions. Lastly, the main features of these heuristics are compared and contrasted.

3.1. Vehicle routing problems with time windows

One of the most widely-studied VRPs is the vehicle routing problem with (hard) time windows

(VRPTW). In contrast to the VRPJA, the customer orders are assumed to be available for delivery

immediately and (hard) time window constraints are defined by lower and upper limits on the start

time of service at each customer. Additionally, the number of vehicles is usually unlimited and the

objective is hierarchical, where minimizing the number of vehicles required is the primary objective



Shelbourne, Battarra and Potts: The VRP with job availability constraints

6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

and minimizing the total distance traveled is the secondary objective, and otherwise the number

of vehicles is omitted from the objective. Notice that if a vehicle arrives at a customer before the

lower limit of the customer’s time window, then it must wait to begin service.

The vehicle routing problem with soft time windows (VRPSTW) is a generalization of the

VRPTW, allowing violations of the time windows with penalties for earliness and tardiness. Again,

if the number of vehicles is unlimited, then the objective is again hierarchical, where minimizing

the number of vehicles is the primary objective and minimizing the total distance plus the weighted

earliness and tardiness is the secondary objective. Fu et al. (2008) provide some motivations for

the VRPSTW over the VRPTW, and a classification of six types of soft time windows. Popular

examples are type 1 that relaxes the upper limit on the time window, type 4 that is the same as

type 1 but also introduce (hard) time deadlines for each customer, and type 2 that relaxes both

the upper and lower limits on the time windows. Note that the studies in the literature on the

VRPSTW predominately use equal earliness and tardiness weights in the objective.

The significant practical value of VRPs motivates their study, including the design of exact

algorithms that can prove optimality in reasonable computational time. For the VRPTW, this is

currently possible for most benchmark instances with 100 customers, but many with 200 or more

cause significant difficulties. For the interested reader, reviews of exact methods for the VRPTW

are given by Desaulniers et al. (2010), and more recently by Desaulniers et al. (2014). The literature

is generally sparser and more fragmented for the VRPSTW, and to the best of our knowledge a

branch-and-cut algorithm has not been proposed for any variant. The intractability of the problem

is demonstrated by the branch-and-price algorithm for the type 2 VRPSTW with a fixed number of

vehicles proposed by Liberatore et al. (2010), which cannot solve most instances with 75 customers

or more in one hour of computation time and for some instances finds no valid lower bound.

The most successful exact approaches currently rely heavily on implicit route enumeration, and

therefore instances that have a greater number of feasible routes are generally the most difficult.

As a result of the complexity of these VRPs, a significant variety of heuristics are proposed in

the literature. The earliest of these are constructive and neighborhood search (NS) heuristics, and

many can be found in the comprehensive survey of Bräysy and Gendreau (2005a). Metaheuristic

frameworks have since received significant attention, as evidenced for the VRPTW by the surveys

of Bräysy and Gendreau (2005b), Gendreau and Tarantilis (2010), and by Desaulniers et al. (2014),

and for both hard and soft time windows in the extensive survey of Vidal et al. (2013a). The

evolutionary algorithms paradigm receives particular attention, and dedicated surveys are given

by Bräysy et al. (2004) and more recently by Potvin (2009). There is also a notable trend in these

surveys towards hybridization of strategies and components of different metaheuristics, and this

aims to balance the individual advantages and disadvantages.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

3.2. Single solution based heuristics

Many of the earlier implementations of metaheuristics for the VRPTW and VRPSTW rely on

single solution based and neighborhood-centric frameworks. These are often extensions of NS and

differ in the techniques used to achieve diversification. Although historically the initial solution

had a significant impact on the objective quality of the final solution in many of these heuristics,

it is now common to use random or simple constructive procedures and the initial solution has

little influence on the overall solution quality. We now discuss some important implementations of

single solution based metaheuristics.

Tabu search (TS) is historically popular, with notable TS heuristics for the VRPTW and

VRPSTW being proposed by Cordeau et al. (2001) and Fu et al. (2008), respectively. These heuris-

tics both require a definition of solution attributes to construct the tabu list, and the TS and

guided local search (GLS) hybrid algorithm of Cordeau et al. (2001) also relies on these for defining

the guiding penalties. In contrast, the TS algorithm of Fu et al. (2008) uses a strategy of exploring

a random set of neighbors from the union of several neighborhoods in each iteration. Solutions are

also represented as a single giant tour with the depot between routes, and although this slightly

increases the number of solutions it also results in greater connectivity of the search space. Cordeau

et al. (2001) also increase the connectivity of the search space by relaxing a number of constraints,

such as those defined by the vehicle capacities and time windows. The amounts of infeasibility

are individually weighted and penalized in the objective function, and are periodically adapted to

facilitate controlled exploration of the search space and to adjust the numbers of infeasible solu-

tions. More details on different relaxations for the time windows can be found in the review of

Vidal et al. (2015a).

Another elementary framework with some popularity is iterated local search (ILS), and ILS

heuristics are proposed by Cordeau and Maischberger (2012) for the VRPTW and by Ibaraki et al.

(2008) for the VRPSTW with convex penalties on time-window violations. The ILS algorithm of

Ibaraki et al. (2008) uses an internal variable neighborhood search (VNS) algorithm that explores

a variety of neighborhoods of increasing size, and Cordeau and Maischberger (2012) use a slightly

improved version of the TS and GLS hybrid algorithm of Cordeau et al. (2001). The differences

between these internal heuristics are notable, and contrast the efficient search of a range of neigh-

borhoods with fewer neighborhoods and diversification techniques. These differences also require

different types of perturbation or kick. Accordingly, Ibaraki et al. (2008) choose a random neighbor

from a larger neighborhood than any used in the VNS algorithm, and Cordeau and Maischberger

(2012) use a large neighborhood (LN) or ruin-and-recreate heuristic. Ibaraki et al. (2008) also

describe an efficient route-first and schedule-second evaluation technique in the NS, which decom-

poses the problem into finding a set of routes and then scheduling the start times of customer

services for each route. This approach is discussed in more detail in Section § 3.5.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

3.3. Hybrid evolutionary algorithms

Recently, much of the research focus shifts to population-based metaheuristics, which have advan-

tages and drawbacks. Specifically, these methods usually offer greater adaptive control over the

balance of diversity and intensity, although they are often observed to converge to good-quality

solutions slowly. Hybridization of both single-solution and population-based metaheuristics is often

proposed to balance such strengths and weaknesses. Hybrid evolutionary algorithms (HEAs) are

particularly popular, and use single solution-based or NS heuristics to improve solutions generated

as combinations of solutions stored in a population. These HEAs are the subject of this section

and some important contributions are discussed.

In the majority of the HEAs described below, the number of vehicles is fixed and if the objective

is hierarchical it is not handled explicitly. If this is the case, then either a route minimization

heuristic is applied initially to fix the number of routes as suggested by Nagata et al. (2010), or an

iterative approach is used to increase or decrease the number of vehicles depending on whether a

feasible solution is found as suggested by Hashimoto and Yagiura (2008). Notice that this increases

the similarity between the objective function of the problem solved by these HEAs and the VRPJA.

A very early HEA is proposed by Taillard et al. (1997) for the type 1 VRPSTW with a fixed

number of vehicles, and is described as a hybrid algorithm based on adaptive memory programming

(AM), TS and GLS. The heuristic maintains a steady-state and elitist population of solutions, and

in each iteration an offspring solution is constructed probabilistically from routes in the population.

Each offspring is then improved by the TS and GLS hybrid algorithm before replacing the worst

solution in the population if it has better objective value. The authors also suggest decomposing

the instance, where the decomposition is based on a current solution, and they describe an iterative

decomposition and recomposition (ID) framework using their guided TS to improve the initial

population of solutions.

The heuristic of Taillard et al. (1997) can be characterized as a hybrid genetic algorithm (HGA)

with a multi-parent crossover, but other studies typically give greater importance to the manage-

ment and recombination of solutions in the population. For example, the HGA of Berger et al.

(2003) for the VRPTW evolves two subpopulations independently, which individually minimize the

total distance traveled, and the weighted infeasibility and number of vehicles required. Individual

fitness functions are used for parent selection, and the subpopulations interact when a feasible

solution with a lower number of vehicles is identified. A similar approach is described by Vidal

et al. (2013b) in their HGA for the VRPTW and VRPSTW (see Vidal et al. 2014). Subpopulations

for feasible and infeasible solutions are managed independently in their HGA, but the interaction

is through selecting solutions for recombination from the union of these subpopulations.

Given the use of heuristics to improve the offspring solutions, the diversity of a population may

fall quickly with the solutions becoming more similar. A simple approach which reduces the chances



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

of this is suggested by Nagata et al. (2010) in their HGA for the VRPTW, and only considers

replacing parent solutions with their offspring. If a distance between solutions is defined, then the

diversity of a solution can be measured by its distance to solutions in the population. Vidal et al.

(2013b) use this approach and introduce a measure of diversity into the fitness function, which is

used for parent selection and population management. This permits the diversity of the population

to be managed adaptively, and if the diversity falls, then more diverse offspring solutions will

survive population management and be selected for recombination.

A variety of methods for recombining solutions are proposed, and often these technique vary quite

significantly. For example, Hashimoto and Yagiura (2008) propose a path-relinking algorithm for

the VRPTW. In the path-relinking (PR) procedure, the solution attributes are defined as the edges

and the distance between two solutions as the number of different edges. By iteratively reducing the

distance between an initial and a guiding solution using inter- and intra-route neighborhoods, then

a trajectory of offspring solutions is constructed. Another type of specialized crossover operator is

proposed by Nagata et al. (2010) that builds on the powerful edge assembly-based crossover (EAX)

proposed for the CVRP and TSP in previous work by the first author. Similar to PR, the EAX has

significantly less randomization and more structural consideration than most traditional crossover

operators, and produces a set of offspring solutions. In contrast, a traditional ordered crossover

(OX) is used by Vidal et al. (2013b), where solutions are represented as a single giant tour without

the depot. The optimal partitioning into routes is then found using an adaptation of the dynamic

programming split algorithm presented by Prins (2004), which runs in polynomial time.

3.4. Comparison of heuristics

Certain algorithmic strategies and components are frequently used in heuristics for the VRPs

considered, and there are combinations of these which seem popular. To observe this, a comparison

of the main features of the heuristics is presented in Table 1. The columns from left to right are:

the algorithm; whether the heuristic can be applied to a version of the VRPSTW (as indicated by a

“Y”); the main metaheuristic frameworks; how insert, swap, 2-Opt, 2-Opt* and large neighborhoods

are used; details of NS as defined by the exploration strategy ,whether infeasible solutions are

allowed (as indicated by a “Y”) and the types of neighborhood pruning; the type of solution

recombination and whether infeasible offspring solutions are produced and how they are treated;

and the population management strategy.

From Table 1, we observe that all the heuristics feature NS, and except for F08 (Fu et al. 2008)

they are hybrids. This suggests that NS is vital in achieving competitive performance, and that a

variety of strategies in combination performs best for these complex problems. In the NS compo-

nents, the exploration strategies are generally balanced between accepting the best-improving or

first-improving neighbor. Interestingly, for V13 (Vidal et al. 2013b), this HGA achieves more div-



S
h
e
lb

o
u
r
n
e
,
B
a
t
t
a
r
r
a

a
n
d

P
o
t
t
s
:

T
h
e
V
R
P

w
ith

jo
b
a
v
a
ila

b
ility

c
o
n
s
tra

in
ts

1
0

A
rtic

le
su

b
m
itte

d
to

IN
F
O
R
M

S
J
o
u
r
n
a
l
o
n

C
o
m
p
u
tin

g
;
m
a
n
u
sc
rip

t
n
o
.
(P

le
a
se
,
p
ro
v
id
e
th

e
m
a
n
su

c
rip

t
n
u
m
b
e
r!)

Table 1 Features of heuristics for the VRPTW and VRPSTW

STW Frameworks Neighborhood search Population

Neighborhoods Str. Infeas. Prun. Recombination Management

Ins. Swap 2-O 2-O* LNs Type Infeas.

T97 Y AM, ID, GLS, TS + + − B A Insertion Steady-state, elit.
B03 HGA + x F Y D Insertion Repair Periodic, elit., tailored fit., subpops
F08 Y TS x x x + B Y R — — —
H08 PRA x + + F Y S, D PR Accept Steady-state, elit., unique
I08 Y ILS, VNS x′ x′ − + A+ Y S, D — — —
N10 HGA x′ x′ + F D EAX Repair Steady-state, elit., repl. parent
C12 ILS, GLS, TS + x B Y — — —
V13 Y ID, HGA x′ x′ − + RF Y S, D OX + split Copy + rep. Periodic, diversity in fit., subpops

Algorithms. T97: Taillard et al. (1997); B03: Berger et al. (2003); F08: Fu et al. (2008); H08: Hashimoto and Yagiura (2008); I08: Ibaraki et al. (2008); N10: Nagata et al. (2010);
C12: Cordeau and Maischberger (2012); V13: Vidal et al. (2013b).

Frameworks. AM: Adaptive memory programming; GLS: Guided local search; HGA: Hybrid genetic algorithm; ID: Iterative decomposition-recomposition; ILS: Iterated local search;
PRA: Path-relinking algorithm; TS: Tabu search.
Neighborhoods. Ins: Insert neighborhood; Swap: Swap neighborhood; 2-O: 2-Opt; 2-O*: 2-Opt*; LNs: Large neighborhoods.
Neighborhood features. −: Intra-route; +: Inter-route; x: Intra- and inter-route; ′: original and reverse subsequences both considered.
Neighborhood exploration. A+: Aspiration plus; B: Best improvement; F: First improvement; RF: Random first improvement.
Neighborhood pruning. A: Approximate; D: Dynamic; R: Random; S: Static.
Recombination. EAX: Edge assembly crossover; OX: Order-based crossover; PR: Path-relinking.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

ersity by exploring neighbors from the union of a number of neighborhoods in a random order

and accepting the first-improving neighbor. Also, for I08 (Ibaraki et al. 2008), their ILS and VNS

hybrid algorithm uses an aspiration plus (A+) strategy, in which a neighborhood is explored until

it is complete or the computation time taken approximately exceeds that used for preprocessing.

It would appear that the benefits of efficiently searching neighborhood in each iteration outweigh

potential improvements in objective value that may occur by finding the best-improving neighbor.

All of the more recent heuristics use controlled exploration of infeasible solutions, and except

N10 (Nagata et al. 2010) they all explore infeasible solutions in the NS component. Alongside

the adaptive control of the penalties on infeasibility, considering some infeasible solutions appears

to be critical for instances with tight constraints and complex objectives. Note that all of these

heuristics relax the time window constraints, and this increases the similarity between the VRPTW

and VRPSTW, and therefore the VRPJA.

A variety of solution recombination approaches are suggested in the HEAs considered, and all

except V13 (Vidal et al. 2013b) explicitly consider the structure of solutions more than traditional

crossovers. This would suggest that diversity is important in creating offspring solutions, but often

the loss of the structural properties of the solution from traditional crossovers obscures the transla-

tion of information from the parents to the offspring. It is also notable that both H08 (Hashimoto

and Yagiura 2008) and N10 (Nagata et al. 2010) produce a set of offspring from each recombina-

tion, and V13 implicitly enumerates the set of offspring resulting from different partitions of the

giant tour created by their crossover.

The management of the population in earlier HEAs is purely elitist, but different techniques are

increasingly introduced to maintain and more carefully introduce diversity to the population. This

more recent development appears to be important for achieving current performance levels and

particularly for improving the robustness of the results. The adaptive control of population diversity

as used in V13 (Vidal et al. 2013b) is a particularly important development, which can enable the

population to escape the equivalent of local optima when the diversity of the population falls.

If infeasible offspring solutions are produced by the HEAs, then often a repairing NS is applied

that attempts to find a feasible solution whilst retaining objective quality. For V13 (Vidal et al.

2013b), the HGA does not repair solutions automatically but a with a certain probability. In

both V13 and B03 (Berger et al. 2003), the HGAs use infeasible solutions more explicitly and a

separate subpopulation of infeasible solutions is evolved. These strategies and techniques suggest

that infeasible solutions are still important in both the population and NS, although finding feasible

solutions quickly can be helpful for problems with tight constraints such as the VRPTW.

3.5. Neighborhoods

For any NS, the time complexity of evaluating the objective value of a neighbor is critical to

the efficiency. For the VRPTW, the difference in objective function for neighborhoods based on



Shelbourne, Battarra and Potts: The VRP with job availability constraints

12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

exchanging a bounded number of arcs can be evaluated in O(1) time. Importantly, Kindervater and

Savelsbergh (1997) prove that the use of preprocessing requiring O(n) time allows the feasibility

of the time windows (and route loads and durations) to be evaluated in O(1) time. Furthermore,

Vidal et al. (2013b) show that the use of preprocessing requiring O(n) time permits a popular

measure of time window infeasibility termed time-warp to be also evaluated in O(1).

For the types of VRPSTW in which both earliness and tardiness are permitted, the most effi-

cient NS approaches use the route-first and schedule-second technique. This is because even for a

given route the schedule of customer service start times is non-trivial. Dynamic programming is

used to construct piecewise-linear cost functions in a preprocessing phase, and structures such as

heaps or balanced binary trees are used to store and query these efficiently. If only earliness or

tardiness is permitted, then the schedule is trivial and dynamic programming is unnecessary, but

the cost functions are still constructed. For all the types of soft time windows described and neigh-

borhoods defined by a bounded number of arc exchanges, Ibaraki et al. (2008) show that the use of

preprocessing requiring O(n2) time allows an evaluation that requires O(logn) time. Further, for

any convex piecewise-linear penalty function of earliness and tardiness, these complexities increase

to O(n
∑

i hi) and O(log
∑

i hi) respectively, where hi is the number of segments of the penalty

function of customer i ∈ V ′. Note that these general techniques are first described independently

by Ibaraki et al. (2005), Ergun and Orlin (2006) and Hendel and Sourd (2006) for the VRP with

general time windows, and the single machine weighted tardiness and earliness-tardiness schedul-

ing problems respectively. More details on the implementations and other types of functions on

earliness and tardiness can be found in the comprehensive review of Vidal et al. (2015b).

A direct comparison of the neighborhoods used in the heuristics described is complicated by the

use of different exploration and pruning strategies. Instead a high-level view is adopted and five

underlying neighborhoods are identified: insert, changing the position of a subsequence (of consec-

utive customers); swap, exchanging the positions of two distinct subsequences; 2-Opt, removing two

arcs and reconnecting the associated route segments differently; 2-Opt∗, exchanging subsequences

at the ends of two routes; and large neighborhoods, which usually have exponential size and include

ruin-and-recreate heuristics. Most of the traditional neighborhoods proposed are subsets or com-

positions of subsets of the first four of these neighborhoods. Although 2-Opt∗ is the least general

and a subset of inter-route 2-Opt, it is included separately due to its apparent importance and

frequency of use.

We notice in Table 1 that a considerable number of neighborhoods are frequently used, and this

applies even in the HEAs. This again hints at the underlying complexity of the problems, and the

difficulty of designing an efficient and effective NS. A greater variety of neighborhoods are generally

used for the VRPSTW, and this may be attributable to the increased complexity and size of the

search space. Subsets of the insert and swap neighborhoods are the most popular, and the use



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

of both inter- and intra-route neighborhoods is also increasing. The intra-route subset of 2-Opt

is used in three of the four heuristics for the VRPSTW, and one of these heuristics is also the

most recently proposed of those considered for the VRPTW. Exploring neighbors resulting from

considering the subsequences involved in the move in reverse order is also gaining popularity for

both insert and swap. Possible reasons for this include instances with wider time windows that

allow such a reversal to be reduce the objective value, and the additional diversification, especially

when used in VNS and first-improvement methods.

LNs are used in three of the heuristics, and a general trend is observed toward larger neighbor-

hoods. For this reason, considerable efforts are made to achieve efficiency in NS and this is evidenced

by the range of pruning techniques that either statically or dynamically restrict the neighbors

considered, and the exploration and evaluation strategies that are used. Uniquely, Taillard et al.

(1997) propose selecting a set of neighbors in each iteration using an approximate evaluation that

requires O(1) time, and Fu et al. (2008) randomly restrict the neighborhoods. These general issues

again reveal the important balance between the greater potential for improving solutions and the

efficiency of exploring the neighborhood.

4. Path-relinking algorithm

PRAs and the closely related scatter search are EAs incorporating concepts for strategic recombi-

nation of solutions and population diversity management. Formalized by Glover et al. (2000), these

frameworks share many features of HGAs, such as a population of solutions, recombination, and

NS to improve offspring solutions. In contrast, solutions are recombined in an intelligent manner

by progressively adapting an initial solution to involve more features of a set of guiding solutions.

This is termed path-relinking or simply relinking. At each step of relinking a solution is created,

and the resulting solutions form a trajectory connecting the initial and guiding solutions. A more

detailed discussion of the variations, design choices and some applications of PRAs are given by

Resende et al. (2010).

We propose a PRA for the VRPJA, and a general outline is given in Algorithm 1. Notable

features of our method are the successful hybridization of concepts from different evolutionary

frameworks, the efficient and effective NS, and the novel relinking procedure. The algorithm relies

on various parameters: β is an infeasibility penalty that is used in equation (3) (see § 4.5 for our

method of computing β), µ is the reduced size of the population after updating, λ is the number

of additional solutions in the population before the population is reduced in size, γ is the number

of relinkings that are performed without improving the best-known solution until the population

is refreshed, κ is the number of offspring that are generated between updates to the value of β,

and Tmax is the computation time limit that is used as a termination criterion.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Algorithm 1 Path-relinking algorithm

1: Set the parameter values µ, λ, γ, κ, Tmax

2: Generate an initial population P and compute the value of β

3: while running time <Tmax

4: Select initial and guiding solutions xI and xG

5: Construct trajectory from xI to xG and select a subset S of these solutions (relinking)

6: Improve solutions in S by applying NS

7: Set P =P ∪S

8: if |P | ≥ µ+λ then

9: Reduce population size to µ (population management)

10: if Number of relinkings without improving both best and best feasible solution ≥ γ then

11: Refresh population

12: if Number of offspring since most recent penalty update or population refresh ≥ κ then

13: Update infeasibility penalty β

14: return Best feasible solution

A population comprising a set of feasible and infeasible solutions P is evolved through iterative

relinking, application of NS and population management. Two parent solutions xI and xG are

selected and relinked (§ 4.3), and a subset S of resulting offspring solutions are improved through

NS (§ 4.1). These improved solutions then enter P if not already present. P is reduced to size µ

when it reaches size µ+λ, by iteratively removing the solution with worst fitness (§ 4.4). Evaluation

of the fitness, used in population reduction and selection of solutions for relinking, follows the

approach developed in Vidal et al. (2012). More precisely, fitness is measured as a combination of

rank in the population for both the objective function value and diversity (§ 4.2). If the best feasible

solution and best solution do not improve after γ relinkings, then the population is refreshed (§ 4.4).

Infeasible solutions encountered during the search are penalized by the level of infeasibility, as

defined in (3). The associated infeasibility penalty weight β is adaptively updated each time κ

offspring are generated since β has been updated or the population has been refreshed (§ 4.5). The

algorithm terminates once the running time exceeds Tmax.

4.1. Neighborhood search

We apply a NS to improve and evaluate solutions before considering their introduction to the

population. This is an aggressive improvement procedure which enables fast progression to solu-

tions with low objective values. The neighborhoods used are popular for both VRPs and machine



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

scheduling problems. In hybrid approaches such as our PRA, NS is applied frequently and repre-

sents a large proportion of the computation time. In the later parts of the section, we describe an

efficient move evaluation procedure and a memory structure to reduce this time requirement.

Let nr and (σr(1), . . . , σr(nr)) be defined as in § 2.1. We consider subsets of four well-known

neighborhood structures, where the sizes are restricted by the parameters s1 and s2.

• N1 - Insert (or relocate): Remove (σr(i), . . . , σr(j)) and insert immediately after σr′(i′) /∈ (σr(i−

1), σr(i), . . . , σr(j)), where 1≤ i≤ j ≤ nr, 0≤ i′ ≤ nr′ , j− i < s1 and 1≤ r, r′ ≤m. The reverse order

of (σr(i), . . . , σr(j)) is also considered.

• N2 - Swap: Exchange the positions of (σr(i), . . . , σr(j)) and (σr′(i′), . . . , σr′(j′)), where 1≤ i≤

j < nr, 1≤ i′ ≤ j′ < nr′, j − i < s1, j
′ − i′ < s1, 1≤ r ≤ r′ ≤m, and the subsequences are disjoint.

The reverse order of either or both subsequences are also considered.

• N3 - Inter-route 2-Opt: Reverse the order of (σr(i), . . . , σr(i′)), where 1≤ i < i′ ≤ nr, i′− i < s2

and 1≤ r≤m.

• N4 - 2-Opt∗: Exchange (σr(i), . . . , σr(nr)) and (σr′(i′), . . . , σr′(nr′)), where 1≤ i≤ nr +1, 1≤

i′ ≤ nr′ +1, i > 1 or i′ > 1, i≤ nr or i′ ≤ nr and 1≤ r < r′ ≤m. By not considering i= i′ = 1 and

i= i′ = nr + 1, the cases where all customers are exchanged from r and r′ and no customers are

exchanged from r and r′, respectively, are eliminated.

The neighborhoods above can be described in terms of either vertex relocation, or the λ-Opt

neighborhood proposed by Lin (1965). Neighborhoods N1 and N2 operate on one or two routes,

whereas N3 operates on a single route and N4 on two routes. The inherent symmetry in neighbor-

hoodsN2 and N4 is removed by specifying that r≤ r′ in N2 and r < r′ in N4. NeighborhoodsN1 and

N4 can create an additional route by considering one empty route, or remove a route by combining

two routes. Initial experiments with a number of other traditional neighborhoods suggest that a

combination of those described perform best. Interestingly, this corroborates the suggestions from

our analysis of commonly-used neighborhoods in § 3.5.

If we fix s1 and s2, then neighborhoods N1, N2 and N4 all have size O(n2), while N3 has size

O(n). We explore the composite neighborhood N =N1∪N2∪N3∪N4 as follows. We define subsets

of each neighborhood by each pair of vertices for σr(i) and σr′(i′) in the definitions above, where we

set σr(i) = σr′(i) for N3, and term these sub-neighborhoods. We search the composite neighborhood

by considering pairs (i, j) in a random order, where i and j are customers or a depot for each route.

For each pair (i, j), we evaluate the associated composite sub-neighborhood, and we accept the best

neighbor of the first sub-neighborhood that contains an improving neighbor. Inspired by Nagata

and Bräysy (2008) and Vidal et al. (2012), our initial experiments with this approach show an

effective balance between computational speed and improvement to the objective value is achieved.

A computational bottleneck is created in NS by the significant number of moves that must

be evaluated. This is especially significant for the tardiness objective that often leads to linear

evaluation, or constant-time approximate evaluation (see, for example, Taillard et al. 1997).



Shelbourne, Battarra and Potts: The VRP with job availability constraints

16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

To reduce the time complexity of move evaluation, we extend the evaluation by “concatenation”

approach that is developed by Kindervater and Savelsbergh (1997), and more recently expounded

by Vidal et al. (2015b). As an example, given routes r and r′, let us assume that an insert move

is applied, such that (σr(i), . . . , σr(j)) is inserted after customer σr′(i′). If we define ⊕ as the

concatenation operator, then the two modified routes of this neighboring solution can be found

as (σr(0), . . . , σr(i− 1))⊕ (σr(j + 1), . . . , σr(nr + 1)) and (σr′(0), . . . , σr′(i′))⊕ (σr(i), . . . , σr(j))⊕

(σr′(i′ +1), . . . , σr′(nr′ +1)).

The following preprocessed data is used to evaluate much of the information about a route:

• D(σr(i), . . . , σr(j)) is the total distance traveled while visiting (σr(i), . . . , σr(j)) in order;

• Q(σr(i), . . . , σr(j)) is the total load for (σr(i), . . . , σr(j));

• L(σr(i), . . . , σr(j)) is the duration of the route that visits (σr(i), . . . , σr(j)) in order;

• Rmax(σ
r(i), . . . , σr(j)) the latest release date for customers in (σr(i), . . . , σr(j)).

For a single customer i∈ V ′, we have D(i) = 0, Q(i) = qi, L(i) = 0, Rmax(i) = ri. Preprocessing this

data or evaluating a concatenation of subsequences is then achieved by successively applying the

following operators. If π = (σr(i), . . . , σr(j))⊕ (σr′(u), . . . , σr′(v)) for suitably defined i, j, u, v, r

and r′, then

D(π) =D(σr(i), . . . , σr(j))+ cσr(j)σr′ (u) +D(σr′(u), . . . , σr′(v)), (4)

Q(π) =Q(σr(i), . . . , σr(j))+Q(σr′(u), . . . , σr′(v)), (5)

L(π) =L(σr(i), . . . , σr(j))+ τσr(j)σr′ (u) +L(σr′(u), . . . , σr′(v)), (6)

Rmax(π) =max{Rmax(σ
r(i), . . . , σr(j)),Rmax(σ

r′(u), . . . , σr′(v))}. (7)

Proposition 1. Preprocessing using the operators (4)-(7) requires O(n2) time. For any neigh-

borhood in which a neighboring solution is obtained by moving a constant number of subsequences

to different positions, checking feasibility and evaluating its total distance cost require O(1) time.

Proof. There are O(n2) subsequences of consecutive customers. Using (4),

D((σr(i), . . . , σr(j)) =D((σr(i), . . . , σr(j− 1))⊕D(σr(j)). (8)

Thus, the preprocessed distance data is computed for each subsequence in O(1) time, and for all

subsequences in O(n2) time. A similar argument applies for the preprocessed load, duration and

latest release date data.

For a neighboring solution involving the movement of a constant number of subsequences, equa-

tions (4) and (5) are applied to obtain the distance and load for each route in O(1) time. Thus,

the capacity constraint can be checked in O(1) to ascertain whether the neighboring solution is

feasible, and its total distance cost can also be evaluated in O(1) time. �



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

Note that for the additive preprocessing data, only O(n) subsequences are needed to find the data

on any subsequence. Considering distance, for example, D(σr(1), . . . , σr(j)) for j = 1, . . . , nr and

r= 1, . . . ,m can be computed in O(n) time. From these values, we can evaluate D(σr(i), . . . , σr(j))

for any i and j in O(1) time using

D(σr(i), . . . , σr(j)) =D(σr(1), . . . , σr(j))−D(σr(1), . . . , σr(i)). (9)

We now consider how to evaluate the weighted tardiness efficiently. First, let Eσr(i′) be the

earliness of customer σr(i′) in a subsequence of route r. For example, if the subsequence of r begins

with customer σr(i), where 1≤ i≤ i′ ≤ nr, then Eσr(i′) =max{0, dσr(i′) −L(σr(i), . . . , σr(i′))}. We

also define the function gri,j(t) for t ≥ 0 to be the total weighted tardiness for customers in the

sequence (σr(i), . . . , σr(j)), where the service for customer σr(i) starts at time t, for all i and j

satisfying 1≤ i≤ j ≤ nr and r= 1, . . . ,m. We first focus on the computation of the values gri,nr(t).

The functions gri,j(t) are non-decreasing, continuous and piecewise-linear, and we adapt the

method of Ergun and Orlin (2006) for constructing the functions. We can represent gri,nr(t) by a

sequence (b0, g
r
i,nr(b0)), (b1, g

r
i,nr(b1)), . . . , (bk, g

r
i,nr(bk)) of (t, g

r
i,nr(t)) values at which the gradient of

the function changes, where k ≤ nr − i+ 1. Although the values of k and b1, . . . , bk depend on i

and r, for notational conciseness we omit introducing subscripts i and superscripts r. Each pair

(bh, g
r
i,nr(bh)) for h= 0,1, . . . , k is referred to as a breakpoint, where b0 = 0 is the first point in the

domain of the function gri,nr(t). Using this representation, the function can be expressed as

gri,nr(t) =

{

gri,nr(bh)+
gri,nr (bh+1)−gri,nr (bh)

bh+1−bh
(t− bh), if bh ≤ t < bh+1, h=0, . . . , k− 1,

gri,nr(bk)+
∑nr

h=iwσr(h)(t− bk), if t≥ bk.
(10)

For a given t, knowledge of the breakpoints allows the value of gri,nr(t) to be computed in O(logn)

time using bisection search to find the segment corresponding to the value of t.

Our procedure for computing breakpoints for gri,nr(t) for 1 ≤ i ≤ nr and 1 ≤ r ≤m is given in

Algorithm 2. This algorithm relies on the observation that for a subsequence (σr(i), . . . , σr(nr)), the

b1, b2, . . . , bk correspond to the distinct values among Eσr(i), . . . ,Eσr(nr), and that the order of these

earliness values does not change if the time that service starts at σr(i) is changed. Our algorithm

sets ν = (ν(1), . . . , ν(nr − i+1)) to be a sequence of the customers of Eσr(i), . . . ,Eσr(nr) ordered by

non-decreasing earliness, and ν̄ stores the sequence ν used in the previous iteration.

Having used Algorithm 2 to compute the breakpoints, function gri,nr(t) is specified by (10). The

function gri,j(t) for j = 1, . . . , nr is then defined by

gri,j(t) = gri,nr(t)− grj+1,nr(t+L(σr(i), . . . , σr(j))+ τσr(j),σr(j+1)). (11)

This allows us to define Z(σr(i), . . . , σr(j)) as the total weighted tardiness for the customers

(σr(i), . . . , σr(j)) visited in order, starting from the depot. That is computed using

Z(σr(i), . . . , σr(j)) = gri,j(Rmax(σ
r(i), . . . , σr(j))+ τ0,σr(i)), (12)



Shelbourne, Battarra and Potts: The VRP with job availability constraints

18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Algorithm 2 Procedure to create functions gri,nr(t)

1: for all 1≤ r≤m

2: Set i= nr, and ν = ∅

3: while i≥ 1

4: Set Eν(h) =max{0,Eν(h) − τσr(i)σr(i+1)} for 1≤ h< nr − i

5: Set Eσr(i) =max{0, dσr(i) −L(σr(i), . . . , σr(nr))}

6: Form sequence ν̄ = (ν̄(1), . . . , ν̄(nr − i+ 1)) by inserting σr(i) in ν so that

Eν̄(1) ≤ · · · ≤Eν̄(nr−i+1) and set ν = ν̄

7: Set k=0, bk = 0

8: Choose the largest index j ∈ {1, . . . , nr − i+1} such that Eν(j) =Eν(1)

9: Compute W =
∑j

h=1wν(h)

10: if Eν(j) = 0 then

11: Compute gri,nr(bk) =
∑nr

i′=iwσr(i′)max{0,L(σr(i), . . . , σr(i′))− dσr(i′)}

12: else

13: Set gri,nr(bk) = 0

14: while j < nr − i+1

15: Set k = k+1 and bk =Eν(j+1), and compute gri,nr(bk) = gri,nr(bk−1)+W (bk − bk−1)

16: Choose the largest index j′ ∈ {j +1, . . . , nr − i+1} such that Eν(j′) =Eν(j+1)

17: Set W =W +
∑j′

h=j+1wν(h) and j = j′

18: Set i= i− 1

where Rmax(σ
r(i), . . . , σr(j)) is the time that the vehicle departs from the depot. Analogous to

equations (4)-(7) in which ⊕ is defined as a concatenation operator for subsequences, we can also

evaluate the total weighted tardiness for a concatenation of subsequences using

Z(π) = gri,j(Rmax(π)+ τ0,σr(i))+ gr
′

u,v(Rmax(π)+ τ0,σr(i) +L(σr(i), . . . , σr(j))+ τσr(j),σr′ (u)), (13)

where π= (σr(i), . . . , σr(j))⊕ (σr′(u), . . . , σr′(v)).

Recall that some neighbors under the insert, swap and inter-route 2-Opt neighborhoods reverse

a subsequence of jobs. To evaluate such neighbors efficiently, we also compute values of ḡri,j(t) for

t≥ 0, which is the total weighted tardiness for customers in the sequence (σr(j), . . . , σr(i)), where

the service for customer σr(j) starts at time t≥ 0, in a similar way to our computation of gri,j(t).

Proposition 2. Preprocessing using Algorithm 2 to determine the breakpoints (bh, g
r
i,nr(bh)) for

h = 0,1, . . . , k, i = 1, . . . , nr and r = 1, . . . ,m requires O(n2) time. For any neighborhood where a

neighboring solution is obtained by moving a constant number of subsequences to different positions,

evaluating its total weighted tardiness after preprocessing requires O(logn) time.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

Proof. Steps 4-18 of Algorithm 2 require O(n) for each of the n choices of r and i, which

gives a time complexity for these steps of O(n2) overall. For Step 6, the sequence π is updated by

finding the appropriate position into which σr(i) is inserted by applying bisection search. Thus,

Step 6 requires O(logn) time for each σr(i), and O(n logn) time overall. This establishes that all

breakpoints are computed by Algorithm 2 in O(n2) time.

Iterative application of equation (13) shows that evaluating a neighboring solution created by

moving a constant number of subsequences to different positions requires a constant number of

evaluations of functions gri,j(t) for various values of i, j, r and t. Each gri,j(t) function is obtained

from (11) by evaluating two gri,nr(t) functions. Lastly, each gri,nr(t) is computed from (10) in O(logn)

time, which is the time for requirement for applying bisection search to find the correct piecewise

linear segment corresponding to t in (10). Combining these statements, we obtain an overall time

complexity of O(logn) for evaluating the total weighted tardiness after moving a constant number

of subsequences. �

4.2. Fitness function

The diversity amongst solutions in the population is a key consideration in PRAs, and increasingly

in EAs more widely. If the population diversity is too low, then the exploratory potential of the

algorithm becomes weak. This is because less information is captured in the population, and the

shorter relinking trajectories that are produced result in less of the search space being explored.

If solutions in the population are more diverse, then we may expect more interesting and varied

relinking trajectories, particularly if these solutions have good objective values. To address the

dual objectives of improving solution quality but retaining a useful level of diversity, we follow

the biased fitness approach of Vidal et al. (2012). This combines the rank of a solution in the

population both for the objective value and for a measure of diversity.

To measure the diversity in the population, it is useful to define a measure of the distance

between two solutions x and x′. No single choice of distance measure appears ideally suited for the

problem. However several features of a solution may convey meaningful information, and different

attributes/distance measures can be defined. Considering computational effort, we propose the use

of arcs (i, j) ∈A as the attributes, with the distance between two solutions being the number of

different arcs used in those solutions. Let Iij(x,x
′ : ξ) be a binary indicator for any pair of solutions

x and x′, and arc (i, j)∈A used in x, which is defined by

Iij(x,x
′ : ξ) =











1, if (i, j) is used in solution x and not in x′,

1− ξ, if i 6= 0, j 6= 0, (i, j) is used in solution x and (j, i) in x′,

0, otherwise.

(14)

where ξ is a parameter in the interval 0≤ ξ≤ 1. Parameter ξ, for ξ > 0, reduces the distance if arcs

are used in opposite directions in the two solutions. This definition of Iij(x,x
′ : ξ) is used to create



Shelbourne, Battarra and Potts: The VRP with job availability constraints

20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

the effect of using a balance of edge- and arc-based distance. If ξ = 1 then the distance is edge-based,

and if ξ =0 then the distance is arc-based. Observe that ξ =1 considers the assignment of customer

vertices to the same routes more explicitly, but can underestimate the distance between solutions

when the schedules are important or the distances between customers are asymmetric, and vice

versa for ξ =0. Observe that in the second expression (14) the depot arcs are not considered.

Notice that
∑

(i,j)∈x Iij(x,x
′ : ξ) =

∑

(i,j)∈x Iij(x
′, x : ξ) if and only if x and x′ contain the same

number non-empty routes. To adjust for solutions with varying numbers of non-empty routes, we

therefore define ρ(x) as the number of non-empty routes in a solution x. The distance between x

and x′ is then defined as

dist(x,x′ : ξ) =
∑

(i,j)∈x

Iij(x,x
′ : ξ)+max{0, ρ(x)− ρ(x′)}, (15)

where dist(x,x′ : ξ) =dist(x′, x : ξ) and 0≤ dist(x,x′ : ξ)≤ n+m for any choice of x and x′. This

measure of distance is also related to the Hamming distance for solutions represented by n× n

binary matrices with the entry in row i and column j set equal to one if (i, j) ∈A is used in the

solution.

Let Nc(x) be a set containing nc solutions x′ from the population with smallest values of

dist(x,x′ : ξ). We define the diversity D(x) of x as the average distance to solutions of this set,

which is given by

D(x) =
1

nc

∑

x′∈Nc(x)

dist(x,x′ : ξ). (16)

Let Ne be a set containing ne solutions from the population with lowest objective value. We also

define p(x) and δ(x) as the rank of a solution x in the population, ordered by non-decreasing value

of the penalized objective (3) and non-increasing value of the diversity (16), respectively. We can

then define the fitness of a solution x in the population (which is to be minimized) as

F (x) = p(x)+ (1−ne/|P |) δ(x). (17)

If |P |> ne, the coefficient of δ(x) prevents the solutions Ne from being given the worst fitness in

the population. Even if one of these solution has the lowest diversity it will not be given the worst

fitness (for a proof, see Vidal et al. (2012)).

The population can contain both feasible and infeasible solutions. However, if all of the solutions

are infeasible, then it may be difficult to navigate to a feasible region of the search space. For

this reason, and to retain a feasible solution if one is found, we modify the ranking mechanism

by assigning the best feasible solution in the first position of the ranking defined by p. This will

also encourage this solution to be selected more frequently in relinking, thereby ensuring further

emphasis on exploring the feasibility boundary and achieving feasibility. This boundary is expected

to be of particular interest for instances where the capacity constraints are tight.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

4.3. Parent selection and relinking

Path-relinking is first suggested by Glover (1989) as a technique for exploring trajectories connect-

ing solutions found during NS. The method is now considered more generally as a recombination

approach, and compared to crossover in GAs relies less on randomization. First, two solutions

are selected as the initial solution xI , and the guiding solution xG. Starting from xI , a trajectory

is constructed by iteratively applying neighborhood moves to introduce attributes from xG. The

number of different attributes describes a distance measure between solutions. Also, the trajectory

contains offspring solutions with decreasing distance to xG and increasing distance from xI . Note

that xG can be defined as a set of solutions, although we choose xG to be a single solution in our

implementation.

We use binary tournament to select two parent solutions for relinking, which encourages some

variety in the selection but prioritizes lower fitness. Once two different solutions are selected, these

are randomly assigned to be either xI or xG. For the relinking procedure described and the problem

considered, our initial experiments suggest taking xI as the solution with highest fitness produces

trajectories structurally different to the reverse, although neither dominates the other. Both feasible

and infeasible solutions can be selected for xI and xG, and this encourages further exploration of

the boundary of feasibility.

For any solution x we need to define its attributes, and for a pair of solutions x and x′ we need to

define the set of attributes that are in x′ and not in x, and the cardinality of this set. As described

in § 4.2, the arcs (i, j) of a solution x can be regarded as the attributes. Further, for solutions x

and x′, we define A(x,x′) = {(i, j) ∈A : (i, j) ∈ x′, (i, j) /∈ x} as the set of attributes in x′ that are

not in x, and dist(x,x′ : 0) = |A(x,x′)| as stated in (15), as the cardinality.

Let ∆ = dist(xI , xG : 0), Nr be a chosen set of neighborhoods which introduce attributes, S be

the set of solutions returned from relinking, φ be a parameter representing the average number

of offspring returned from a relinking, φ′ = ∆/(φ+ 1), φ̄ be a parameter the indicates the next

iteration at which the current solution is copied to S, and the operator |[a]| rounds a to the nearest

integer. A general outline of the relinking procedure is given in Algorithm 3.

The current solution xc is initially set equal to xI , and at each iteration of relinking we seek to

progressively reduce dist(xc, xG : 0) by at least one. While dist(xc, xG : 0)> 2, we randomly order

the neighborhoods Nr, and choose the move which improves the penalized objective (3) the most

from the first neighborhood featuring a move that introduces an attribute from A(xc, xG) to xc.

Every φ̄ iterations, we copy xc into the set S, and each time φ̄ is chosen as a random integer

between |[0.75φ′]| and |[1.25φ′]|.

To design neighborhoods for the set Nr, we consider introducing an arc (i, j) ∈ A(xc, xG). As

suggested in Reghioui et al. (2007), we define a block as a subsequence of consecutive customers that

are connected in both xc and xG, and the immediate predecessor and successor of the subsequence



Shelbourne, Battarra and Potts: The VRP with job availability constraints

22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Algorithm 3 Relinking procedure

1: Set the parameter value φ′, initialize S = ∅ and xc = xI , and randomly pick an integer φ̄ from
[

|[0.75φ′]|, |[1.25φ′]|
]

2: while dist(xc, xG : 0)> 2

3: Randomly order neighborhoods Nr

4: Set Nc as the first neighborhood with a move introducing an attribute in xG to xc

5: Apply most improving move of Nc that introduces an attribute of A(xc, xG) to xc

6: if Number of iterations since φ̄ updated = φ̄ then

7: Copy xc into S and randomly pick an integer φ̄ from
[

|[0.75φ′]|, |[1.25φ′]|
]

8: return S

in xc and xG are different. Therefore, removing a block from its current position in xc causes

no increase in dist(xc, xG : 0). Furthermore, inserting this block in a position that introduces the

desired arc (i, j) ∈ A(xc, xG) into xc decreases dist(xc, xG : 0). If i, j ∈ Rr for xc, then there is a

block-insert neighbor which introduces (i, j). This neighbor has the block (σr(p), · · · , σr(p+ q)),

where σr(p) = j, relocated to immediately after vertex i. If i ∈ Rr and j ∈ Rr′ for xc, where

r 6= r′, then there is a 2-Opt∗ neighbor which introduces the desired arc (i, j) into xc and does

not increase dist(xc, xG : 0). This neighbor exchanges the subsequences (σr(p), · · · , σr(nr)) and

(σr′(q), · · · , σr′(nr′)), where σr(p− 1) = i and σr′(q) = j. The 2-Opt∗ moves to introduce an arcs

(0, j) for j ∈ V ′ in xc, create a new route, and are considered at any iteration if ρxc < ρxG. For

further clarity, an example relinking is illustrated in §B.

The penalized objective (3) is used in relinking to select neighborhood moves, which increases

the number of offspring that can be explored through relinking. Notice that solutions that are

infeasible with respect to the capacity are also possible in the trajectory for any value of β, due to

the constraint on introducing at least one arc of A(xc, xG) to xc. If no capacity feasible solutions

can be reached under this criterion, then infeasible solutions will be visited. By definition, the

trajectory is guaranteed to return to the level of feasibility of xG by the end. A solution which is

not neighboring either xI or xG can only be found if ∆> 4. Otherwise, only one or two offspring

solutions would be produced from the relinking of xI and xG, and both offspring neighbor xI or

xG. If xI and xG are locally optimal for the neighborhoods Nr then this relinking is unnecessary,

however this is not strictly true in our PRA because the value of β may since have changed in (3).

Relinking to different solutions in the population enables a comprehensive exploration of the

locality of a solution in “promising” directions. Further, the use of the penalized objective (3), and

varying between the inter- and intra-route neighborhood in Nr, compounds the potential for local



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

exploration and also encourages a more comprehensive exploration of the search space between

solutions.

Proposition 3. For given xI and xG, relinking can be performed in O(∆2n) time.

Proof. Finding ∆ from (15) and identifying the set A(xI , xG) can be performed in O(n) time,

and |A(xI , xG)|=O(∆). The number of solutions in the trajectory and consequently the number

of iterations of the relinking procedure is therefore O(∆). At each iteration, the maximum number

of possible moves is O(∆). The 2-Opt∗ moves are identified in O(1) time from A(xc, xG), but the

block-insert moves are found in O(n) time. Thus, the overall time complexity is O(∆2n). �

Note that an alternative implementation in which data is preprocessed in O(n2) time at each

iteration requires O(∆n2) time. Thus, the more straightforward implementation that leads to the

result in 3 is preferable.

The neighborhoods used in relinking are restricted and therefore solutions in the trajectory are

not guaranteed to be locally optimal. We perform NS on each solution in S prior to considering

introduction to the population. Defining S as the complete trajectory would require performing NS

on each of these solutions, which represents a significant computational effort. Introducing a large

number of solution to the population from a single relinking may also encourage lower diversity in

the population.

Solutions closer to each other in the trajectory have a greater probability of sharing basins of

attraction, and therefore leading to the same local optima. This fact is also exaggerated by the

use of similar neighborhoods in the NS and relinking procedures. Various techniques have been

proposed to select offspring solutions in the literature. For example, Hashimoto and Yagiura (2008)

propose storing a fixed number of the best solutions that have better objective value than their

immediate neighbors in the trajectory. A simpler policy is described by Reghioui et al. (2007),

who store solutions a fixed number of iterations apart in the trajectory. In contrast, Sörensen and

Schittekat (2013) return a single solution, which has the best objective value or is at the midpoint

of the trajectory.

Preliminary experiments on the VRPJA suggest the PRA described is robust to the approach

used to select S. We therefore decide to retain φ approximately equidistant solutions from the

trajectory. This reduces the computational effort and obtains a spread of solutions with some

additional randomization. The current solution xc is periodically copied into S, and the num-

ber of iterations to wait for the next copying is selected as a random integer from the interval
[

|[0.75φ′]|, |[1.25φ′]|
]

. The relinking procedure therefore produces |S| ∼ U
[

|[0.75φ]|, |[1.25φ]|
]

solu-

tions. Each solution is improved by NS and enters the population if not already present. Relinking

can be performed between the same initial and guiding solutions during the algorithm, and the

randomization ensures some variation in S.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

4.4. Population management

The population is initialized with 1.5µ randomly generated solutions improved by NS. This is moti-

vated by beginning the search with diverse solutions which have at least moderately low objective

values. When the population size reaches µ + λ, it is reduced to µ considering all solutions in

the population. The population is reduced by iteratively removing the solution with the highest

fitness and updating the fitness of the remaining solutions. As discussed in § 4.3, the set of solu-

tions S returned from each relinking are improved by NS and are introduced to the population if

not already present. Notice that solutions joining the population after relinking are immediately

available to be selected as parent solutions.

Many population-based approaches refresh the population or remove a portion of the population

and re-initialize with newly generated solutions. This is usually performed if the progress of the

search, or the diversity of the population, appears to have stagnated. In the PRA, each time γ

relinkings are performed and neither the best quality solution nor the best quality feasible solution

are improved, then the population is refreshed. The top µ/3 solutions in the population are retained

and µ new solutions are generated identically to the population initialization. This attempts to

utilize progress made during the search, whilst introducing a significant amount of diversity. Clearly,

if ne ≤ µ/3, then the feasible solution with best value and max{0, ne − 1} other solutions with

lowest value for the penalized objective are retained.

4.5. Infeasibility penalty

Exploring infeasible regions of the search space in heuristic approaches is conjectured to facilitate

transition between feasible regions, which may otherwise be distant or unreachable (e.g., see Glover

and Hao 2011). In exact approaches, a number of constraint relaxation techniques have proven use-

ful, such as Lagrangian, linear and state-space relaxation. We relax the route capacity constraints

and penalize the level of infeasibility, as shown in (3). The penalty on the level of infeasibility is

controlled by adapting β in (3) during the search.

To initially prevent infeasibility, β = β0, where β0 is a large value. After three solutions have been

generated in the initial population and NS applied, β is set to be the average of the cost per unit

of demand for each route. To encourage a useful trade-off between infeasibility and objective value

throughout the search, β is adaptively updated each time κ offspring solutions are produced since

the most recent update of the penalty or refreshing of the population. Let pf be the target propor-

tion of feasible solutions, ǫ the range of this proportion, p̄f the proportion of the κ solutions that

are feasible after NS, and δ the update factor. The value of β is then updated accordingly using

β =











βδ, if p̄f < pf − ǫ,

β/δ, if p̄f > pf + ǫ,

β, otherwise.

(18)



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

Although the size of the search space is increased by allowing infeasibility, our preliminary

experiments with NS (using random first-improvement) exhibit a faster progression through the

search space. This effect is attributed to a greater proportion of improving neighbors for some of

the solutions, which therefore creates many additional paths in the search space.

5. Computational experiments

In this section, we introduce a set of benchmark instances (§ 5.1), and describe the comparator

ILS (§ 5.2). Following this, we present the results from the calibration of the algorithms (§ 5.3),

a comparison of the performance of the proposed heuristics on the benchmark set (§ 5.4), and

an analysis of the PRA results independently (§ 5.5). Finally, a sensitivity analysis of the PRA

parameters is performed (§ 5.6).

The algorithms are implemented in C++ and complied using GCC 4.8.1. All experiments are

performed using a single core of an Intel Xeon E5–2670 2.6GHz processor (running Linux Red Hat

Enterprise Server release 6.3).

5.1. Benchmark instances

We propose three problem types that have different values for α in (1), and a set of 96 benchmark

instances for the VRPJA. This enables us to perform computational experiments with the aim of

assessing the performance of the proposed heuristics and obtaining insights into the problem.

Generating instances of scheduling problems is discussed by Hall and Posner (2001), who pro-

pose a number of principles and properties for generating adequately representative and unbiased

data. Following these principles, we restrict the set of problem features varied to enable greater

comparability and to facilitate analysis of the key features of the novel problem that we study. To

reduce any possible bias in the instances, we encourage size- and scale-invariance in the problem

features, and we also use the uniform distribution to generate many of the new features of the

instances. We define UZ[c, d] as the integer uniform distribution between integers c and d inclusive.

We extend four CVRP instances introduced by Christofides et al. (1979), where n = 50 and

m = 5, n = 100 and m = 10, n = 150 and m = 14, and n = 199 and m = 20. The coordinates of

customers are randomly distributed in the interval [0,100], so that they lie inside a square with sides

of length 100, and the depot is relatively close to the center. The instances are well documented

and are available from the website http://neo.lcc.uma.es. The optimal CVRP solutions for the

instances are found by Pecin (2014).

Let I be a CVRP instance with mI vehicles, and Dmax be the duration of the longest route in

the best known solution of I. After generating the travel times, we introduce E(τ) as an estimate

of the average travel time between vertices. Specifically

E(τ) =

∑

i∈V ′

∑

j∈Ni
τij

|V ′| |[n1/2]|
, (19)



Shelbourne, Battarra and Potts: The VRP with job availability constraints

26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

where the operator |[a]| is defined as previously and rounds a to the nearest integer, and Ni as the

set of |[n1/2]| vertices that have smallest travel times to vertex i. We choose the n1/2 vertices with

shortest travel time because a number of studies, such as Beardwood et al. (1959) and Johnson

et al. (1996), identify a relationship between the expected cycle costs of the TSP and n1/2.

Various parameters are used to generate the instances: em ≥ 0 defines the proportion of additional

vehicles above mI , so that the number of vehicles is (1+ em)mI , b≥ 0 is the spread of the release

dates as a proportion of Dmax, k ∈Z
+ is the looseness of the due dates as a multiple of E(τ), and

0≤ v≤ 1 is half of the range that k can vary within as a proportion of k.

We adapt and extend I as follows:

1. Set m= (1+ em)mI , wi = 1, for all i∈ V ′, and τij = cij, for all i, j ∈ V .

2. Generate ri =X, for all i∈ V ′, where X ∼UZ

[

0, |[bDmax]|
]

.

3. Calculate E(τ), and generate di = ri+ |[(k+Y −kv)E(τ)]|, for all i∈ V ′, where Y ∼U [0,2kv].

For simplicity, unit weights and unit vehicle speeds are used. Notice that if the underlying CVRP

instance has a feasible solution, then the resulting VRPJA instance also has a feasible solution

because em ≥ 0 and hence m≥mI .

In Table 2, the different values of the parameters used to generate the instances are presented.

Introducing constraints and objectives related to the arrival times of customers to the CVRP affects

the total distance traveled in optimal solutions. This is adjusted in the objective (1) by selecting

different values of α, where we consider the objectives weighted equally and use weightings to

increase the emphasis on each objective individually. In some instances, it may be beneficial to use

more vehicles than in the optimal CVRP solution, and sometimes considerably more. Therefore,

we consider two settings for em, resulting in instances with either an equal number of vehicles to

the underlying CVRP instance, or 50% more vehicles. Preliminary experiments with 100% more

vehicles suggest that more than 50% has little effect on the optimal solution for most of the

instances. The release dates are a novel consideration in VRPs, and we use a range of spreads to

enable a more detailed analysis. To decide on appropriate values for parameter k, we consider the

range of the number of customers in routes in the best known solutions, and the average number

of customers per route n/v, where v is the number of routes in the best known solution.

Table 2 Instance generation parameters

Instance parameter Values

α objective weight 0.3,0.5,0.7
em proportion of extra vehicles 0,0.5
b spread of release dates 0.25,0.50,0.75,1.00
k looseness of due dates 4,6,8
v range in looseness of due dates 0.25

Notice that if b and k are sufficiently low and high, respectively, then the distance traveled will

tend to dominate the objective for any value of α. Alternatively, high b and low k result in the



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

weighted tardiness dominating the objective for any value of α. If the weighted tardiness has high

priority, then more vehicles will be used to enable a greater variety of vehicle departure times

and earlier arrival times at customers; otherwise, additional vehicles often represent extra distance

traveled. As a consequence, if there is a low number of vehicles available, then the priority of

the weighted tardiness will increase. The considerations above demonstrate some of the complex

interplay between the problem features, and emphasize the need to generate a set of varied instances

to gain a better understanding of the impact on solutions of these key features.

5.2. Iterated local search

ILS is an elementary stochastic extension of NS, applying a kick to escape whenever a local opti-

mum is reached. The simplicity and generality of the framework are key features, and it performs

competitively when applied to numerous problems in combinatorial optimization. For an overview

of the design, implementation and some applications of ILS, we refer to Lourenço et al. (2010).

In Algorithm 4, we describe the basic implementation of our comparator ILS algorithm for the

VRPJA. This is primarily a comparison for the proposed PRA, and the NS of Section § 4.1 is used

as the improvement procedure. In the initialization, the current solution is generated randomly

and is then improved by NS. An alternate solution is produced by kicking the current solution,

NS is then applied and the resulting solution replaces the current solution if it has lower penalized

objective value (3).

Algorithm 4 Iterated local search

1: Initialize current solution x

2: Improve x by applying NS

3: while running time<Tmax

4: Apply η random moves to x producing x′ (apply a kick)

5: Improve x′ by applying NS

6: if f(x′)<f(x) then set x as x′

7: return x

For the kick, we apply η random moves in the swap neighborhood with s1 = 1 (see § 4.1). The

kick can produce infeasible solutions with respect to vehicle capacity, and the level of infeasibility

is restrictively penalized using β = β0 in (3), as defined in § 4.5. As a result, when NS is applied

to infeasible solutions, the objective will be dominated by initially achieving feasibility. The only

parameters of this method are the kick size η, and a limit on computation time Tmax, which is used

as a termination criterion.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

5.3. Algorithm calibration

Common to metaheuristics and particularly EAs, the PRA presented relies on a variety of correlated

parameters. The objective of parameter calibration is find a set of parameters to optimize some

performance measures of the algorithm. Mercer and Sampson (1978) suggest using metaheuris-

tics to calibrate metaheuristics, termed metacalibration, but this early work reports insufficient

computational resources.

To calibrate the PRA presented, we apply the covariance matrix adaptation-evolutionary strat-

egy (CMA-ES) metaheuristic proposed by Hansen and Ostermeier (2001). The CMA-ES has per-

formed well in a variety of settings, and in particular EAs have been calibrated to achieve compet-

itive performance (Smit and Eiben 2009, Vidal et al. 2012). To evaluate a set of parameters, the

PRA is executed on a training-set of instances that are selected to represent the problem range.

The calibration objective is to minimize the average percentage gap in the objective value across

the training-set compared to the best found in all previous experiments.

Our preliminary experiments suggested a number of parameters are more robust, and these are

fixed at values that appear to perform well. For the parameter limiting the size of the neighborhoods

N1 and N2, s1 = 2 is found to provide a good compromise between quality and efficiency. We set the

parameter limiting the size of N3 to s2 = 10 because reversals of large sections of routes appear to

increasingly disturb the schedules. To initially prevent infeasibility, the initial value of the penalty

β is set to β0 = 1000. For the parameters controlling the infeasibility penalty, the update rate is

δ = 1.2, the range of the target proportion of feasible offspring is ǫ = 0.05, and the number of

offspring between updates is κ= 50. Finally, the number of iterations considered in the condition

on population refresh is set to γ = 80.

Similarly to Vidal et al. (2012), we tune the remaining parameters separately for the different

problem types. This may reveal any dependency in the parameters on the value of α, and the

results can also be used to infer good parameter settings. In Table 3, the best solutions of the

parameter calibration are given for the three values of α, and the parameter values used in the

main experiments that follow are given in the “Final values” column. Multiple settings for the final

parameter values are given in order of increasing α. The boundaries on the parameter used in the

metacalibration are also given in the “Range” column. Some of these are simply proportions, µ

and λ are set through observations from the literature, and φ and pc are estimated.

The results suggest that the best parameters for the values of α are generally similar, and the

most diverse are λ, pe and pc. We found that averaging and rounding the other parameters across

the problem types caused negligible degradation of the final objective values achieved. For α=0.5

and 0.7, averaging pe and pc also caused negligible degradation of the final objective values.

The problem type dependent parameters suggest that the objectives ideally require different

exploration strategies in the PRA. When the weighted tardiness has a greater emphasis, then it



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 29

Table 3 Results from meta-EA calibration of PRA parameters

Parameter Range α= 0.3 0.5 0.7 Final values

µ population size [10,40] 10 14 13 12
φ number of solutions from relinking [1,30] 6 5 5 5
λ number of solutions in generation [φ,100] 8 14 28 10/15/30
pf target proportion of feasible solutions [0,1] 0.38 0.5 0.53 0.5
pe proportion of elite solutions (ne = µpe) [1/µ,1] 0.12 0.14 0.20 0.1/0.2/0.2
pc proportion of solutions in diversity (nc = µpc) [0,0.33] 0.12 0.27 0.21 0.1/0.25/0.25
ξ edge reduction in dist′ [0,1] 0.43 0.28 0.82 0.5

is preferable to more regularly manage the population. Additionally, only the closest solution in

the population is considered in the diversity of solutions, and this leads to a maximally diverse

population. Relinking and NS are therefore performed more frequently among solutions with low

fitness, and the diversity is given almost equal weight in the fitness.

When the total distance traveled has a greater emphasis, then the population is managed less

regularly. A further contrast to the case of weighted tardiness dominating is that the three closest

solutions are considered in the diversity, and this allows clusters of solutions to be formed by a

smaller penalization of solutions with lower distances to the two closest solutions. These differ-

ences encourage greater and more localized exploration in each generation before the population

is reduced.

For the ILS, we used the same set of training instances and consider η = 1,2,3,4. The results

suggested that η= 2 achieves the best objective values in acceptable computation time for the values

of α considered. Larger values of η are not considered due to the results, the greater disturbance

to the solutions and the resulting infeasibility that often occurs.

5.4. Comparison of algorithm performance

To evaluate the relative performance of the PRA and ILS methods for the VRPJA, results for

the benchmark set are compared in Table 4. For comparability, the total running time is set as

Tmax =10min for both PRA and ILS, and the results are based on 10 independent runs. The values

PIA and PIB represent the average percentage improvement in the objective value achieved by the

PRA compared to the ILS, for the average and best of the 10 runs respectively. Further, TBSP

and TBSI represent the average time in minutes that the solution with best objective value of a

run is first identified, for the PRA and ILS respectively.

Considering the results from these experiments. the PRA appears superior, and achieves better

objective values in shorter computation time than ILS. Notably, both PIA and PIB are largest

when the weighted tardiness has a higher objective weighting. This suggests that the contrasting

features of the PRA, such as a more directed exploration of the search space and the information

contained in a diverse population of solutions, are useful for small α. Equivalently, this may be

attributable to the ILS finding a larger number of local optima, which therefore have a greater



Shelbourne, Battarra and Potts: The VRP with job availability constraints

30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 4 Comparison of the PRA and ILS results

n α=0.3 α=0.5 α= 0.7

PIA PIB TBSP TBSI PIA PIB TBSP TBSI PIA PIB TBSP TBSI

50 2.64 0.39 1.11 3.90 1.84 0.10 0.84 3.54 1.13 0.17 0.78 2.99
100 2.09 0.48 2.96 5.26 1.36 0.36 2.33 4.73 0.83 0.14 1.84 4.78
150 3.77 1.72 4.38 6.86 2.27 0.87 3.80 6.52 1.61 0.55 3.87 6.87
199 3.79 2.11 5.85 7.67 2.75 1.58 5.40 7.44 2.13 1.34 5.84 7.35

Avg. 3.07 1.18 3.57 5.92 2.06 0.73 3.09 5.56 1.42 0.55 3.08 5.50

chance of being distant from the optimal solutions, and the reliance on only accepting solutions

with improving objective value.

The PRA achieves good quality objective values more robustly than the ILS, as evidenced by

the large PIA values. The ratio between the PIA and PIB values is similar for the different values

of α, and this suggests that the relative robustness is consistent. Notably, both PIA and PIB

increase with n, showing that the PRA achieves greater improvement in objective value over the

ILS for the larger instances. These instances clearly have a larger search space and are expected to

contain a greater number of local optima. These results support the previous conjectures relating

to the contrasting features, and may also suggest that the effect of the kick in ILS is not large

or varied enough for larger instances. The PIA is notably lower for n= 100, which suggests that

the robustness of the methods are more similar. This characteristic may be attributable to these

instances having the most sparsely distributed set of customers.

Considering TBSP and TBSI , we observe that PRA finds the solution with best objective value

faster on average than ILS. Again, this suggests that the contrasting features of the PRA are

more effective and also efficient. When α is lower, then both TBSP and TBSI are larger, which

suggests that a higher objective weighting for the weighted tardiness increases the time taken for

the algorithms to converge and find the best solutions. Finally, note that the growth of TBSP with

respect to n is larger than for TBSI , but this is expected for a population-based method. This may

be a consideration when solving larger instances, although the PIA and PIB are also increasing

with n and we would expect longer computation times to achieve better objective values.

5.5. PRA results on the instances

To assess and validate the benchmark instances, we present a detailed analysis of the PRA results.

We consider the effects on the objective values of the different parameters that define the problem

features and the time taken to find the best solution.

In Table 5, we present the average results for the PRA across the 10 runs with Tmax set at 10

minutes, where Av represents the average objective value, and TBS is the average time taken to

find the best solution of the run. To analyze the effects of the problem attributes introduced, we

average the results for all the underlying CVRP instances or equivalently for all values of n.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

Table 5 Average results of PRA on benchmark instances

b k α= 0.3 α=0.5 α= 0.7

em =0 em = 0.5 em = 0 em =0.5 em = 0 em = 0.5

Av TBS Av TBS Av TBS Av TBS Av TBS Av TBS

0.25 4 1052.6 3.7 735.9 1.5 1088.2 4.0 946.8 1.9 1102.9 2.9 1077.3 2.9
6 458.0 3.9 407.6 3.1 650.0 3.2 632.8 1.9 817.0 2.7 815.4 2.1
8 304.4 4.3 304.4 4.8 503.2 3.7 503.2 4.1 694.4 3.9 694.4 3.3

0.50 4 1477.9 3.6 953.9 2.6 1410.6 3.1 1130.5 1.3 1319.2 2.3 1253.3 1.6
6 623.9 3.4 478.5 3.5 795.0 3.7 741.1 2.6 943.1 3.7 937.3 2.9
8 364.5 3.9 360.3 4.4 585.4 4.0 584.3 4.4 778.8 4.5 778.5 3.7

0.75 4 1834.1 3.9 1175.7 2.1 1688.9 3.6 1308.0 2.3 1520.9 3.4 1396.4 2.9
6 855.7 4.2 550.2 3.1 975.3 2.4 829.7 1.8 1074.0 2.9 1047.1 2.9
8 429.9 4.5 396.8 3.6 661.4 3.0 646.6 3.2 865.6 3.3 862.0 3.8

1.00 4 2119.5 4.3 1335.9 2.5 1914.4 4.2 1428.8 1.8 1675.6 3.9 1494.5 2.0
6 1064.7 3.9 627.6 2.0 1147.1 3.9 913.8 2.3 1202.0 3.5 1144.4 2.4
8 523.7 5.5 438.4 3.5 748.6 3.8 709.3 3.7 943.4 3.5 938.5 2.9

Avg. 925.7 4.1 647.1 3.1 1014.0 3.6 864.6 2.6 1078.1 3.4 1036.6 2.8

The experiments show contrasting performance, and this suggests a varied set of instances.

The instance parameters appear to have regular effects across the set, and respect the principles

discussed in the instance generation (§ 5.1). Different results are produced using the values of α

proposed, and this reveals the effect of different weightings in the objective.

A greater spread of release dates, which is represented by larger values for b, can cause the

weighted tardiness to become larger. This increases the overall objective values found, particularly

if the due dates are tight as indicated by low values of k. The value of TBS also increases, and this

is presumably because more computation time is necessary to find good partitions and schedules

of the customers.

The value of TBS is lower when the due dates are tighter, suggesting the instances can be solved

more quickly when a greater proportion of solutions have high tardiness. Notice that this will cause

a large number of feasible solutions (and infeasible solutions with respect to the vehicle capacity)

to have high objective values, resulting in a steeper landscape. The value of TBS also decreases as

the value α becomes higher. This may be attributable to the greater diversity of objective values

amongst solutions when the total distance traveled becomes dominant, which enables the algorithm

to navigate the search space more easily.

Increasing the number of vehicles by increasing em permits more flexibility in vehicle departure

times and therefore customer arrival times. The greater flexibility can decrease the weighted tardi-

ness for certain instances and values of α. If the change in total distance traveled due to an addi-

tional route is less than the reduction in weighted tardiness, then another vehicle clearly improves

the objective value. Also, if greater numbers of routes are used in a solution, then the scheduling

and capacity constraints will be less restrictive. This is most prominent when the scheduling is

tight, i.e., when b is large or k is small.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

5.6. Sensitivity analysis of PRA

We now present our results from experiments performed to analyze the individual importance of

some of the main components in the PRA. We disable each component independently, and the

results for each alternative are again taken from 10 independent runs with Tmax set at 10 minutes.

The variants of the PRA with a component disabled are: “No NS” that does not apply NS to

offspring solutions; “No Infe.” that does not adjust the infeasibility penalty β; and “No Div.” that

does not include diversity in the fitness function. The results from these variants are summarized in

Table 6, where the PRA column refers to the version with no disabling. The value Gap represents

the worsening of the average objective value compared to the full PRA as a percentage of the

latter, and again TBS is the average time taken to find the best solution in a run.

Table 6 Sensitivity analysis of the PRA

α No NS No Infe. No Div. PRA

0.3 Gap 4.10 0.46 0.28 –
TBS 5.80 4.98 3.62 3.57

0.5 Gap 2.72 0.22 0.17 –
TBS 5.60 4.42 3.37 3.09

0.7 Gap 1.80 0.19 0.09 –
TBS 5.55 4.44 3.36 3.08

The experiments confirm the importance of each component for solving the VRPJA with the

proposed PRA. Considering the results apart from those where NS is disabled, we note that all

variants of the method still have better average performance than the ILS. The most important

component tested appears to be the NS, but allowing solutions that are infeasible with respect to

capacity and incorporating a diversity measure also play an important role in the performance.

Removing the different components appears to have a similar effect for the different values of α, but

the results suggest these components are most critical to performance for lower values of α. Note

that the effect of disabling the components may be exaggerated because the algorithm parameters

are not changed accordingly.

Considering infeasible solutions and an adaptive penalty weight both improves the objective value

and significantly decreases the TBS values. This supports the results from preliminary experiments,

and the conjecture on the utility of infeasible solutions for heuristics, as described in § 4.5. The

diversity measure used in the fitness function appears to contribute the least of the components

tested, although when α is lower, the gap is almost equal for either disabling the infeasibility or

diversity. This suggests both components are important for minimizing the weighted tardiness, but

the diversity less so when the total distance becomes more dominant.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 33

6. Conclusion

In this paper, we present a new vehicle routing problem that considers the time that customer orders

become available for delivery at the depot. The objective is to minimize a convex combination

of operational cost and customer service objectives, represented by the total distance traveled

and total weighted tardiness, respectively. If a relationship between the operational costs and the

perceived cost of tardy deliveries to customers can be established, then the problem can be applied

at an operational level to find delivery routes for a single period. Another option is to evaluate a

small number of values for the weight that balances the objective components, and potentially the

individual customer tardiness weights, to find a solution which reaches a suitable compromise for

the decision maker. This also suggests an alternative more strategic application of the problem to

evaluate different possible scenarios and decisions. As one example, given a set of customers with

representative release and due dates and weights, the effect of different numbers of vehicles and

their capacity on the other features of the solution can be investigated.

We propose a path-relinking algorithm (PRA) to address the problem, and an iterated local

search algorithm (ILS) as a comparator. The PRA builds on features of recently proposed heuristics

for similar problems, although notably it is conceptually more simple than many. Some contri-

butions include the efficient neighborhood search and evaluation procedures, the path-relinking

procedure and the balanced edge- and arc-based solution distance used in measuring population

diversity. Observing the results from these heuristics, there are significant effects associated with

introducing release dates and weighted tardiness into a vehicle routing problem. Also, the perfor-

mance of the PRA is shown to dominate the ILS for the benchmark set introduced, considering

either the average time to find the best solution or the average or best objective values. Moreover,

the results support the growing interest in more sophisticated and population-based heuristics for

vehicle routing problems.

This introduction and initial investigation of the vehicle routing problem with job availability

constraints should prove valuable in initiating and promoting research of the problem, and the

integration of further aspects of machine scheduling into routing problems. This is particularly

important considering the novelty of these types of problems, and the immediate practicality for

managing the operations of supply chains. For practitioners, the results and discussion should

present a clear analysis of some of the effects associated with explicitly considering release dates

for customer orders, and introducing the customer service level objective. In addition, we reveal

relationships and dependencies between the problem features that hint at the complex and varied

interplay between these in different instances of the problem. Furthermore, the insights yielded

from the analyses presented should prove helpful in the future for designing exact algorithms and

heuristics for this and similar problems.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Acknowledgments

The authors thank Thibaut Vidal for a number of helpful comments and explanations about components

of his hybrid genetic algorithms. We also acknowledge the use of the IRIDIS High Performance Computing

Facility, and associated support services at the University of Southampton, in the completion of this work.

Appendix

A. MIP formulation

The VRPJA can be modeled as a mixed integer programming problem (MIP) using three-index flow variables.

This approach is common for solving VRPs with complicating constraints on the routes. To linearize the

constraints associated to arrival times at customer vertices, the bigM method is used. Although, this method

can lead to numerical instability and encourage fractional values for the variables.

The three-index vehicle flow formulation involves O(n2m) binary variables xijk ∈ {0,1}, which are equal

to one if route k uses (i, j)∈A. To model the VRPJA, we also define O(n) variables ui ∈R
+ for the arrival

time at i∈ V ′, O(m) variables vk ∈R
+ for the departure time of route k, and O(n) variables zi ∈R

+ for the

tardiness to the delivery of i∈ V ′. We will denote this formulation VF, and it is defined as follows.

z(VF)=min

{

α
∑

i,j∈V

cij
∑

k∈K

xk
ij +(1−α)

∑

i∈V ′

wizi

}

(20)

s.t.
∑

j∈V \{i}

∑

k∈K

xk
ij = 1, ∀ i∈ V ′, (21)

∑

j∈V ′

xk
0j ≤ 1, ∀ k ∈K, (22)

∑

j∈V \{i}

xk
ij − xk

ji = 0, ∀ i∈ V, k ∈K, (23)

∑

i∈V ′

qi
∑

j∈V \{i}

xk
ij ≤Q, ∀ k ∈K, (24)

ri
∑

j∈V \{i}

xk
ij ≤ vk, ∀ i∈ V ′, k ∈K, (25)

vk + τ0i − ui ≤M0i(1− xk
0i), ∀ i∈ V ′, k ∈K, (26)

ui + τij − uj ≤Mj

(

1−
∑

k∈K

xk
ij

)

, ∀ i, j ∈ V ′, i 6= j, (27)

ui ≤ zi + di ≤Mi, ∀ i∈ V ′, (28)

ui ≥ ri +
∑

j∈V \{i}

τji
∑

k∈K

xk
ji, ∀ i∈ V ′, (29)

zi ≥ 0, ∀ i∈ V ′, (30)

xk
ij ∈ {0,1}, ∀ i, j ∈ V, i 6= j, k ∈K. (31)

Where the M0i and Mi for i∈ V ′, are upper bounds on the arrival time at i directly from the depot and on

the arrival time at i, respectively.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 35

The objective function is identical to (1), and constraints (21)-(24) and (31) are the constraints of the

three-index vehicle flow formulation of the CVRP. Constraints (25) and (26) ensure that each route departs

at the latest release date of the assigned customers. Constraints (27) and (28) ensure that the correct time

is spent traveling between customers and the tardiness to each customer delivery is calculated, respectively.

Lastly, constraints (30) lower bound the z-variables and (29) lower bound the u-variables.

A tighter linear relaxation can be achieved from VF, if we require that there is at least one route r, and

vr = maxi∈V ′ ri. This is clearly valid, because any optimal solution must use at least one vehicle, and at

least one vehicle departs at the latest release date of all the customers. To attempt to tighten the relaxation

further, the u- and v-variables can also be disaggregated in a number of ways. We do not explore this or any

valid inequalities for VF, because the symmetry present in the x-variables will create significant difficulty

when solving any formulation of this type.

B. Illustration of an example of relinking

In Figure 2, an example of a relinking is given, where the vertical lines separating customers in xI represent

arcs not included in xG. We assume the first neighborhood chosen is 2-Opt∗ and the neighbor selected

introduces (3,4), which reduces dist(xc, xG : 0) by one. The following neighborhood is also 2-Opt∗ and (1,3)

is introduced, this also connects two routes and removes (1,0) which is not present in xG, and dist(xc, xG : 0)

is therefore reduced by two. The third neighborhood is block-insert, introducing (9,8) and as a side-effect

(0,1) and (8,0), therefore reducing dist(xc, xG : 0) by three. This continues until the sixth move produces xG.

xG

xI

∆=11

1

2

3 4 5

67

8 9

10

1. 2-Opt∗(8,4) 2. 2-Opt∗(3, [3]) 3. bl-ins(8,8, [2])

4. bl-ins(7,2, [1]) 5. 2-Opt∗(7,9) 6. 2-Opt∗(9,5)

dist2(xc, xG) = 10 dist2(xc, xG) = 8

1

2

3 4 5

67

89

10

dist2(xc, xG) = 5

dist2(xc, xG) = 3

0

0

0

0

0

0

0

0

1

2

3 4 5

6 7

89

100

0

0

0

dist2(xc, xG) = 2

1 23 4 5

6

7

89100

0

0

0

dist2(xc, xG) = 0

1

2

3 4

56 7

89

100

0

0

0

1

2

3

4 5

67

8

9

100

0

0

0

0

0

1 3 4

56 7

9

100

0

2

8

0

0

1

2

3 4 5
67

8
9

100
0
0 0

0
0

Figure 2 An example of a relinking trajectory.

Note. Vertical lines represent arcs not in xG.

References

Beardwood J, Halton JH , Hammersley JM (1959) The shortest path through many points. Math. Proc.

Cambridge Philos. Soc. 55:299–327.

Berger J, Barkaoui M, Bräysy O (2003) A route-directed hybrid genetic approach for the vehicle routing

problem with time windows INFOR Inf. Syst. Oper. Res. 41:179–194.

Boudia M, Louly MAO, Prins C (2007) A reactive GRASP and path relinking for a combined production-

distribution problem. Comput. Oper. Res. 34:3402–3419.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Bräysy O, Dullaert W, Gendreau M (2004) Evolutionary algorithms for the vehicle routing problem with

time windows. J. Heuristics 10:587–611.

Bräysy O, Gendreau M (2005a) Vehicle routing problem with time windows, Part I: Route construction and

local search algorithms. Transportation Sci. 39:104–118.

Bräysy O, Gendreau M (2005b) Vehicle routing problem with time windows, part II: Metaheuristics. Trans-

portation Sci. 39:119–139.

Cattaruzza D, Absi N, Feillet D, Guyon O, Libeaut X (2013) The multi-trip vehicle routing problem with

time windows and release dates. 10th Metaheuristics Internat. Conf., Singapore.

Chang Y-C, Lee C-Y (2004) Machine scheduling with job delivery coordination. Eur. J. Oper. Res. 158:470–

487.

Chen Z-L (2010) Integrated production and outbound distribution scheduling: Review and extensions. Oper.

Res. 58:130–148.

Chen Z-L, Vairaktarakis GL (2005) Integrated scheduling of production and distribution operations. Man-

agement Sci. 51:614–628.

Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. Christofides N, Mingozzi A, Toth

P, Sandi C, eds. Combinatorial Optimization (Wiley, Chichester, UK), 315–338.

Coelho LC, Cordeau J-F, Laporte G (2014) Thirty years of inventory routing. Transportation Sci. 48:1–19.

Cordeau J-F, Laporte G, Mercier A (2001). A unified tabu search heuristic for vehicle routing problems with

time windows. J. Oper. Res. Soc.52:928–936.

Cordeau J-F, Maischberger M (2012) A parallel iterated tabu search heuristic for vehicle routing problems.

Comput. Oper. Res. 39:2033–2050.

Dantzig GB, Ramser JH (1959) The truck dispatching problem. Management Sci. 6:80–91.

Desaulniers G, Desrosiers J, Spoorendonk S (2010) The vehicle routing problem with time windows: State-

of-the-art exact solution methods. JJ Cochran, ed., Wiley Encyclopedia of Operations Research and

Management Science. Wiley, New York, 5742–5749.

Desaulniers G, Madsen OBG, Ropke S (2014) The vehicle routing problem with time windows. P Toth,

D Vigo, eds., Vehicle Routing: Problems, Methods and Applications . SIAM, Philadelphia, US, 5742–

5749.

Ergun Ö, Orlin JB (2006) Fast neighborhood search for the single machine total weighted tardiness problem.

Oper. Res. Lett. 34:41–45.

Fu Z, Eglese R, Li LYO (2008) A unified tabu search algorithm for vehicle routing problems with soft time

windows. J. Oper. Res. Soc. 59:663–673.

Garey MR, Johnson DS (1978) “Strong” NP-completness results: Motications, examples and implications.

J. ACM 25:499–508.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 37

Gendreau M, Tarantilis CD (2010) Solving large-scale vehicle routing problems with time windows: The

state-of-the-art. Report CIRRELT-2010-04, Université de Montréal, Montreal, CA.

Glover F (1989) Tabu search - Part 1. ORSA J. Comput. 1:190–206.

Glover F, Hao J-K (2011) The case for strategic oscillation. Ann. Oper. Res. 183:163–173.

Glover F, Laguna M, Mart́ı R (2000) Fundamentals of scatter search and path relinking. Control Cybernet.

39:653–684.

Hall NG, Posner ME (2001) Generating experimental data for computational testing with machine scheduling

applications. Oper. Res. 49:854–865.

Hall NG, Potts CN (2003) Supply chain scheduling: Batching and delivery. Oper. Res. 51:566–584.

Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol.

Comput. 9:159–95.

Hashimoto H, Yagiura M (2008) A path relinking approach with an adaptive mechanism to control param-

eters for the vehicle routing problem with time windows. J. Hemert, C. Cotta, eds. Evolutionary

Computation in Combinatorial Optimization (Springer, New York), 254–265.

Hendel Y, Sourd F (2006) Efficient neighborhood search for the one-machine earliness & tardiness scheduling

problem. Eur. J. Oper. Res. 173:108–119.

Hoff A, Andersson H, Christiansen M, Hasle G, Løkketangen A (2010) Industrial aspects and literature

survey: Fleet composition and routing. Comput. Oper. Res. 37:2041–2061.

Ibaraki T, Imahori S,Kubo M, Masuda T, Uno T, Yagiura M (2005) Effective Local Search Algorithms

for Routing and Scheduling Problems with General Time-Window Constraints. Transportation Sci.

39:206–232.

Ibaraki T, Imaho S, Nonobe K, Sobue K, Uno T, Yagiura M (2008) An iterated local search algorithm for

the vehicle routing problem with convex time penalty functions. Discrete Appl. Math. 156:2050–2069.

Johar F (2014) PhD Progress Report. University of Southampton, UK.

Johnson DS, McGeoch LA, Rothberg EE (1996) Asymptotic experimental analysis for the Held-Karp trav-

eling salesman bound. Proc. 7th ACM-SIAM Sympos. Discrete Algorithms , SIAM, 341–350.

Kindervater G, Savelsbergh M (1997) Vehicle routing: Handling edge exchanges. E Aarts, JK Lenstra, eds.

Local Search in Combinatorial Optimisation (Wiley, Chichester, UK), 337–360.

Lenstra J, Rinnooy Kan AHG, Brucker P (1977) Complexity of machine scheduling problems. Ann. Discrete

Math. 1:343–362.

Liberatore F, Righini G, Salani M (2010) A column generation algorithm for the vehicle routing problem

with soft time windows. 4OR 9:49–82.

Lin S (1965) Computer solutions of the traveling salesman problem. Bell System Tech. J. 44:2245–2269.

Lourenço HR, Martin OC, Stützle, T (2010) Iterated local search: Framework and applications. M Gendreau,

J-Y Potvin, eds. Handbook of Metaheuristics (Springer, New York), 363–397.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

38 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Mercer RE, Sampson JR (1978) Adaptive Search Using a Reproductive Meta-Plan. Kybernetes 7:215–228.

Nagata Y, Bräysy, O (2008) Efficient local search limitation strategies for vehicle routing problems. Evol.

Comput. Combin. Optim. 4972:48–60.

Nagata Y, Bräysy O, Dullaert W (2010) A penalty-based edge assembly memetic algorithm for the vehicle

routing problem with time windows. Comput. Oper. Res. 37:724–737.

Nagy G, Salhi S (2007) Location-routing: Issues, models and methods. Eur. J. Oper. Res. 177:649–672.

Pecin D (2014) Exact algorithms for the capacitated vehicle routing problem. PhD Thesis, Pontif́ıcia

Universidade Católica do Rio de Janiero, Rio de Janiero, Brazil.

Potvin J-Y (2009) State-of-the art review: Evolutionary algorithms for vehicle routing. INFORMS J.

Comput. 21:518–548.

Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput.

Oper. Res. 31:1985–2002.

Reghioui M, Prins C, Labadi N (2007) GRASP with path relinking for the capacitated arc routing problem

with time windows. M Giacobini, ed., Appl. of Evol. Comput.. Springer, 722–731.

Resende MGC, Ribeiro CC, Glover F, Mart́ı R (2010) Scatter search and path-relinking: Fundamentals,

advances, and applications. M Gendreau, J-Y Potvin, eds. Handbook of Metaheuristics (Springer, New

York), 87–107.

Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. Proc. 11th

Cong. Evol. Comput. (IEEE, Picastaway, NJ), 399–406.

Solomon, MM (1997) Algorithms for the vehicle routing and scheduling problems with time window con-

straints. Oper. Res. 35:254–265.

Sörensen K, Schittekat P (2013) Statistical analysis of distance-based path relinking for the capacitated

vehicle routing problem. Comput. Oper. Res. 40:3197–3205.

Taillard EP, Badeau P, Gendreau M, Guertin F, Potvin J-Y (1997) A tabu search heuristic for the vehicle

routing problem with soft time windows. Transportation Sci. 31:170–186.

Toth P, Vigo D (2002) The vehicle routing problem. SIAM, Philadelphia, US.

Ullrich, CA (2013) Integrated machine scheduling and vehicle routing with time windows. Eur. J. Oper.

Res. 227:152–165.

Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic algorithm for multidepot

and periodic vehicle routing problems. Oper. Res. 60:611–624.

Vidal T, Crainic TG, Gendreau M, Prins C (2013a) Heuristics for multi-attribute vehicle routing problems:

A survey and synthesis. Eur. J. Oper. Res. 231:1–21.

Vidal T, Crainic TG, Gendreau M, Prins C (2013b) A hybrid genetic algorithm with adaptive diversity

management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res.

40:475 – 489.



Shelbourne, Battarra and Potts: The VRP with job availability constraints

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 39

Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-attribute vehicle

routing problems. Eur. J. Oper. Res. 234:658–673.

Vidal T, Crainic TG, Gendreau M, Prins C (2015a) Time-window relaxations in vehicle routing heuristics.

J. Heuristics 21:329–358.

Vidal T, Crainic TG, Gendreau M, Prins C (2015b) Timing problems and algorithms: Time decisions for

sequences of activities. Networks 65:102–128.


