20,567 research outputs found

    A Reduction-Preserving Completion for Proving Confluence of Non-Terminating Term Rewriting Systems

    Get PDF
    We give a method to prove confluence of term rewriting systems that contain non-terminating rewrite rules such as commutativity and associativity. Usually, confluence of term rewriting systems containing such rules is proved by treating them as equational term rewriting systems and considering E-critical pairs and/or termination modulo E. In contrast, our method is based solely on usual critical pairs and it also (partially) works even if the system is not terminating modulo E. We first present confluence criteria for term rewriting systems whose rewrite rules can be partitioned into a terminating part and a possibly non-terminating part. We then give a reduction-preserving completion procedure so that the applicability of the criteria is enhanced. In contrast to the well-known Knuth-Bendix completion procedure which preserves the equivalence relation of the system, our completion procedure preserves the reduction relation of the system, by which confluence of the original system is inferred from that of the completed system

    Canonized Rewriting and Ground AC Completion Modulo Shostak Theories : Design and Implementation

    Get PDF
    AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground AC-completion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.Comment: 30 pages, full version of the paper TACAS'11 paper "Canonized Rewriting and Ground AC-Completion Modulo Shostak Theories" accepted for publication by LMCS (Logical Methods in Computer Science

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Reinterpreting Compression in Infinitary Rewriting

    Get PDF
    Departing from a computational interpretation of compression in infinitary rewriting, we view compression as a degenerate case of standardisation. The change in perspective comes about via two observations: (a) no compression property can be recovered for non-left-linear systems and (b) some standardisation procedures, as a ‘side-effect’, yield compressed reductions

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Termination orders for 3-dimensional rewriting

    Get PDF
    This paper studies 3-polygraphs as a framework for rewriting on two-dimensional words. A translation of term rewriting systems into 3-polygraphs with explicit resource management is given, and the respective computational properties of each system are studied. Finally, a convergent 3-polygraph for the (commutative) theory of Z/2Z-vector spaces is given. In order to prove these results, it is explained how to craft a class of termination orders for 3-polygraphs.Comment: 30 pages, 35 figure
    corecore