732 research outputs found

    Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Full text link
    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics

    DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next-generation sequencing technologies have led to the high-throughput production of sequence data (reads) at low cost. However, these reads are significantly shorter and more error-prone than conventional Sanger shotgun reads. This poses a challenge for the <it>de novo </it>assembly in terms of assembly quality and scalability for large-scale short read datasets.</p> <p>Results</p> <p>We present DecGPU, the first parallel and distributed error correction algorithm for high-throughput short reads (HTSRs) using a hybrid combination of CUDA and MPI parallel programming models. DecGPU provides CPU-based and GPU-based versions, where the CPU-based version employs coarse-grained and fine-grained parallelism using the MPI and OpenMP parallel programming models, and the GPU-based version takes advantage of the CUDA and MPI parallel programming models and employs a hybrid CPU+GPU computing model to maximize the performance by overlapping the CPU and GPU computation. The distributed feature of our algorithm makes it feasible and flexible for the error correction of large-scale HTSR datasets. Using simulated and real datasets, our algorithm demonstrates superior performance, in terms of error correction quality and execution speed, to the existing error correction algorithms. Furthermore, when combined with Velvet and ABySS, the resulting DecGPU-Velvet and DecGPU-ABySS assemblers demonstrate the potential of our algorithm to improve <it>de novo </it>assembly quality for <it>de</it>-<it>Bruijn</it>-graph-based assemblers.</p> <p>Conclusions</p> <p>DecGPU is publicly available open-source software, written in CUDA C++ and MPI. The experimental results suggest that DecGPU is an effective and feasible error correction algorithm to tackle the flood of short reads produced by next-generation sequencing technologies.</p

    High-Performance Meta-Genomic Gene Identification

    Get PDF
    Computational Genomics, or Computational Genetics, refers to the use of computational and statistical analysis for understanding the structure and the function of genetic material in organisms. The primary focus of research in computational genomics in the past three decades has been the understanding of genomes and their functional elements by analyzing biological sequence data. The high demand for low-cost sequencing has driven the development of highthroughput sequencing technologies, next-generation sequencing (NGS), that parallelize the sequencing process, producing thousands or millions of sequences concurrently. Moore’s Law is the observation that the number of transistors on integrated circuits doubles approximately every two years; correspondingly, the cost per transistor halves. The cost of DNA sequencing declines much faster, which implies more new DNA data will be obtained. This large-scale sequence data, produced with high throughput sequencing technologies, needs to be processed in a time-effective and cost-effective manner. In this dissertation, we present a high-performance meta-genome gene identification framework. This framework includes four modules: filter, alignment, error correction, and gene identification. The following chapters describe the proposed design and evaluation of this pipeline. The most computationally expensive kernel in the framework is the alignment procedure. Thus, the filter module is developed to determine unnecessary alignment operations. Without the filter module, the alignment module requires 1.9 hours to complete all-to-all alignment on a test file of size 512,000 sequences with each sequence average length 750 base pairs by using ten Kepler K20 NVIDIA GPU. On the other hand, when combined with the filter kernel, the total time is 11.3 minutes. Note that the ideal speedup is nearly 91.4 times faster when new alignment kernel is run on ten GPUs ( 10*9.14). We conclude that accuracy can be achieved at the expense of more resources while operating frequency can still be maintained

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical

    A FAST IMPLEMENTATION FOR CORRECTING ERRORS IN HIGH THROUGHPUT SEQUENCING DATA

    Get PDF
    ABSTRACT The impact of the next generation DNA sequencing technologies (NGS) produced a revolu­tion in biological research. New computational tools are needed to deal with the huge amounts of data they output. Significantly shorter length of the reads and higher per-base error rate compared with Sanger technology make things more difficult and still critical problems, such as genome assembly, are not satisfactorily solved. Significant efforts have been spent recently on software programs aimed at increasing the quality of the NGS data by correcting errors. The most accurate program to date is HiTEC and our contribution is providing a completely new implementation, HiTEC2. The new program is many times faster and uses much less space, while correcting more errors in the same number of iterations. We have eliminated the need of the suffix array data structure and the need of installing complicating statistical libraries as well, thus making HiTEC2 not only more efficient but also friendlier

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    GPU-Accelerated BWT Construction for Large Collection of Short Reads

    Full text link
    Advances in DNA sequencing technology have stimulated the development of algorithms and tools for processing very large collections of short strings (reads). Short-read alignment and assembly are among the most well-studied problems. Many state-of-the-art aligners, at their core, have used the Burrows-Wheeler transform (BWT) as a main-memory index of a reference genome (typical example, NCBI human genome). Recently, BWT has also found its use in string-graph assembly, for indexing the reads (i.e., raw data from DNA sequencers). In a typical data set, the volume of reads is tens of times of the sequenced genome and can be up to 100 Gigabases. Note that a reference genome is relatively stable and computing the index is not a frequent task. For reads, the index has to computed from scratch for each given input. The ability of efficient BWT construction becomes a much bigger concern than before. In this paper, we present a practical method called CX1 for constructing the BWT of very large string collections. CX1 is the first tool that can take advantage of the parallelism given by a graphics processing unit (GPU, a relative cheap device providing a thousand or more primitive cores), as well as simultaneously the parallelism from a multi-core CPU and more interestingly, from a cluster of GPU-enabled nodes. Using CX1, the BWT of a short-read collection of up to 100 Gigabases can be constructed in less than 2 hours using a machine equipped with a quad-core CPU and a GPU, or in about 43 minutes using a cluster with 4 such machines (the speedup is almost linear after excluding the first 16 minutes for loading the reads from the hard disk). The previously fastest tool BRC is measured to take 12 hours to process 100 Gigabases on one machine; it is non-trivial how BRC can be parallelized to take advantage a cluster of machines, let alone GPUs.Comment: 11 page

    SMusket: Spark-based DNA error correction on distributed-memory systems

    Get PDF
    ©2020 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/bync-nd/4.0/. This version of the article has been accepted for publication in Future Generation Computer Systems. The Version of Record is available online at https://doi.org/10.1016/j.future.2019.10.038This is the accepted version of: R. R. Expósito, J. González-Domínguez, and J. Touriño, "SMusket: Sparkbased DNA error correction on distributed-memory systems", Future Generation Computer Systems, vol. 111, pp. 698-713, 2020, https://doi.org/10.1016/j.future.2019.10.038[Abstract]: Next-Generation Sequencing (NGS) technologies have revolutionized genomics research over the last decade, bringing new opportunities for scientists to perform groundbreaking biological studies. Error correction in NGS datasets is considered an important preprocessing step in many workflows as sequencing errors can severely affect the quality of downstream analysis. Although current error correction approaches provide reasonably high accuracies, their computational cost can be still unacceptable when processing large datasets. In this paper we propose SparkMusket (SMusket), a Big Data tool built upon the open-source Apache Spark cluster computing framework to boost the performance of Musket, one of the most widely adopted and top-performing multithreaded correctors. Our tool efficiently exploits Spark features to implement a scalable error correction algorithm intended for distributed-memory systems built using commodity hardware. The experimental evaluation on a 16-node cluster using four publicly available datasets has shown that SMusket is up to 15.3 times faster than previous state-of-the-art MPI-based tools, also providing a maximum speedup of 29.8 over its multithreaded counterpart. SMusket is publicly available under an open-source license at https://github.com/rreye/smusketThis work was supported by the Ministry of Economy, Industry and Competitiveness of Spain and FEDER, Spain funds of the European Union (project TIN2016-75845-P, AEI/FEDER/EU); and by Xunta de Galicia, Spain (projects ED431G/01 and ED431C 2017/04).Xunta de galicia; ED431G/01Xunta de Galicia; ED431C 2017/0

    Analysis of Parallel Montgomery Multiplication in CUDA

    Get PDF
    For a given level of security, elliptic curve cryptography (ECC) offers improved efficiency over classic public key implementations. Point multiplication is the most common operation in ECC and, consequently, any significant improvement in perfor- mance will likely require accelerating point multiplication. In ECC, the Montgomery algorithm is widely used for point multiplication. The primary purpose of this project is to implement and analyze a parallel implementation of the Montgomery algorithm as it is used in ECC. Specifically, the performance of CPU-based Montgomery multiplication and a GPU-based implementation in CUDA are compared

    Radio-Astronomical Imaging on Accelerators

    Get PDF
    Imaging is considered the most compute-intensive and therefore most challenging part of a radio-astronomical data-processing pipeline. To reach the high dynamic ranges imposed by the high sensitivity and large field of view of the new generation of radio telescopes such as the Square Kilometre Array (SKA), we need to be able to correct for direction-independent effects (DIEs) such as the curvature of the earth as well as for direction-dependent time-varying effects (DDEs) such as those caused by the ionosphere during imaging. The novel Image-Domain gridding (IDG) algorithm was designed to avoid the performance bottlenecks of traditional imaging algorithms. We implement, optimize, and analyze the performance and energy efficiency of IDG on a variety of hardware platforms to find which platform is the best for IDG. We analyze traditional CPUs, as well as several accelerators architectures. IDG alleviates the limitations of traditional imaging algorithms while it enables the advantages of GPU acceleration: better performance at lower power consumption. The hardware-software co-design has resulted in a highly efficient imager. This makes IDG on GPUs an ideal candidate for meeting the computational and energy efficiency constraints of the SKA. IDG has been integrated with a widely-used astronomical imager (WSClean) and is now being used in production by a variety of different radio observatories such as LOFAR and the MWA. It is not only faster and more energy-efficient than its competitors, but it also produces better quality images
    • …
    corecore