
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2013

Analysis of Parallel Montgomery Multiplication in
CUDA
Yuheng Liu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Liu, Yuheng, "Analysis of Parallel Montgomery Multiplication in CUDA" (2013). Master's Projects. 304.
DOI: https://doi.org/10.31979/etd.fjnr-tpa8
https://scholarworks.sjsu.edu/etd_projects/304

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70408405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/304?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Analysis of Parallel Montgomery Multiplication in CUDA

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Yuheng Liu

May 2013

c© 2013

Yuheng Liu

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Analysis of Parallel Montgomery Multiplication in CUDA

by

Yuheng Liu

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2013

Mark Stamp Department of Computer Science

Richard Low Department of Mathematics

Soon Tee Teoh Department of Computer Science

ABSTRACT

Analysis of Parallel Montgomery Multiplication in CUDA

by Yuheng Liu

For a given level of security, elliptic curve cryptography (ECC) offers improved

efficiency over classic public key implementations. Point multiplication is the most

common operation in ECC and, consequently, any significant improvement in perfor-

mance will likely require accelerating point multiplication.

In ECC, the Montgomery algorithm is widely used for point multiplication. The

primary purpose of this project is to implement and analyze a parallel implementation

of the Montgomery algorithm as it is used in ECC. Specifically, the performance of

CPU-based Montgomery multiplication and a GPU-based implementation in CUDA

are compared.

ACKNOWLEDGMENTS

I would like to thank to my advisor, Dr. Mark Stamp, who helped me with my

research and provided continuous support, and immense patience during my studying

of the project. Without Dr.Stamp’s persistent help and guidance, this paper would

not have been finished.

I also want to thank my committee members, Dr. Richard Low and Dr. Soon

Tee Teoh, for their patience and support of my project.

I also would like to thank my family for their understanding, encouragement,

and support.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Previous work . 2

1.2 Organization . 2

2 Elliptic Curve Cryptography . 4

2.1 Background . 4

2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) 5

2.3 Fundamental of ECC . 6

2.4 History of ECC . 6

2.5 ECC vs RSA . 6

3 Mathematics of Elliptic Curve Cryptography 8

3.1 Finite fields . 8

3.2 Characteristic of a field . 10

3.3 Polynomial basis . 10

3.3.1 Introduction to polynomials 10

3.3.2 Polynomial basis represenation 11

3.3.3 Addition and subtraction 11

3.3.4 Multiplication . 12

3.3.5 Inversion . 12

3.4 Mathematics of elliptic curves over Galois field 12

3.5 Point Addition . 13

vi

vii

3.6 Point Doubling . 14

4 Montgomery Algorithm . 16

4.1 General Montgomery multiplication algorithm 17

5 CUDA . 19

5.1 GPGPU . 19

5.2 GPGPU Programming Concepts 19

5.3 CUDA Architecture . 20

5.4 CUDA Programming Model . 20

5.5 CUDA Threading model . 21

5.6 CUDA Memory architecture . 22

6 Implementation and Experiment 23

6.1 Purpose and design . 23

6.2 Brief introduction of scalar multiplication 24

6.3 Hierarchy of scalar multiplication 24

6.4 General scalar multiplication . 25

6.4.1 Define data storage structure 26

6.4.2 Define EC parameters . 26

6.4.3 Implement polynomial arithmetic operations 27

6.4.4 Point addition in affine coordinates 27

6.4.5 Implement point doubling 28

6.4.6 Scalar multiplication . 28

6.5 Montgomery multiplication . 28

6.6 Parallel Montgomery multiplication in CUDA 30

viii

6.6.1 Design . 30

6.6.2 Implementation in CUDA 31

6.7 ECC vs RSA . 32

7 Results and analysis . 34

7.1 Hardware and software usage . 34

7.2 General scalar multiplication . 35

7.2.1 Experiment 1 . 35

7.2.2 Experiment 2 . 36

7.3 Montgomery scalar multiplication 37

7.3.1 Experiment 3 . 37

7.3.2 Experiment 4 . 39

7.4 Parallel Montgomery scalar Multiplication in CUDA 40

7.5 Experiment 5 . 40

7.5.1 Experiment 6 . 41

7.5.2 Experiment 7 . 43

7.5.3 Experiment 8 . 44

7.6 Three methods comparison . 45

7.6.1 Comparison in different key size 45

7.6.2 Comparison in different scalar K 48

8 Conclusion and Future Work . 51

APPENDIX

Algorithm . 55

A.1 Inversion from Algorithm 3.1 . 55

A.2 Inversion for Algorithm 3.2 . 55

ix

LIST OF TABLES

1 Timing of key generation between ECC and RSA. 33

2 Test cases for key size 75, 93, 131, 163, 194 and 294 for general scalar
multiplication . 35

3 Timings in key size 75, 93, 131, 163, 194 and 294 for general scalar
multiplication . 36

4 Test cases for different scalar K 9, 30, 90, 160, 240 and 360 for general
scalar multiplication . 37

5 Timings of different scalar K 9, 30, 90, 160, 240 and 360 for general
scalar multiplication . 37

6 Test cases for key size 75, 93, 131, 163, 194 and 294 for Montgomery
scalar multiplication . 38

7 Timings in key size 75, 93, 131, 163, 194 and 294 Montgomery scalar
multiplication . 38

8 Test cases for different scalar K 9, 30, 90, 160, 240 and 360 Montgomery
scalar multiplication . 39

9 Timings of different scalar K 9, 30, 90, 160, 240 and 360 Montgomery
scalar multiplication . 40

10 Test cases for key size 75, 93, 131, 163, 194 and 294 for CUDA Mont-
gomery multiplication . 41

11 Timings in key size 75, 93, 131, 163, 194 and 294 for CUDA Mont-
gomery multiplication . 41

12 Test cases for key size 75, 93, 131, 163, 194 and 294 for CUDA Mont-
gomery multiplication with allocation overhead 42

13 Timings in key size 75, 93, 131, 163, 194 and 294 for CUDA Mont-
gomery multiplication with allocation overhead 42

14 Test cases for different scalar K 9, 30, 90, 160, 240 and 360 for CUDA
Montgomery multiplication . 43

x

xi

15 Timings of different scalar K 9, 30, 90, 160, 240 and 360 for CUDA
Montgomery multiplication . 43

16 Test cases for different scalar K 9, 30, 90, 160, 240 and 360 for CUDA
Montgomery multiplication with allocation overhead 44

17 Timings of different scalar K 9, 30, 90, 160, 240 and 360 for CUDA
Montgomery multiplication with allocation overhead 45

18 Timing of scalar multiplication comparison with different key size
among RSM, MSN, CUDAMSM and CUDAMSMO 46

19 Run time comparison of scalar multiplication with different K 49

LIST OF FIGURES

1 An ellitpic curve . 5

2 Structure of Elliptic Curves . 9

3 The geometric meaning of point addition P + Q = R 14

4 Point doubling 2P = R . 15

5 Traditional GC vs Programmable GC. 20

6 Automatically scaling . 21

7 The three layer hierarchy of scalar multiplication 25

8 Block Partitioning. Each kernel contains n blocks. 32

9 Run time with different key size for Regular scalar multiplication VS
Montgomery scalar Multiplication VS Parallel Montgomery Mul-
tiplication in CUDA . 47

10 Run time with different key size for RSM, MSN, CUDAMSM and CU-
DAMSMO . 48

11 Run time with different K for Regular scalar multiplication VS Mont-
gomery scalar Multiplication VS Parallel Montgomery Multiplica-
tion in CUDA . 50

xii

CHAPTER 1

Introduction

For the past 20 years, throughout many types of communication, especially over

the Internet, public key cryptography has become the major secure form of commu-

nication in the area of security. Public key cryptography is a crypto system with

two different keys. One key is called a public key, which is used for encryption, and

the other key is called a private key, which is used for decryption.The private key is

exclusive to users themselves and should not be revealed to anyone else. The public

key, as its named, is an open to everyone [1].

With higher security demands in massive computation or better performance in

mobile devices, new techniques have been developed over the past 20 years in public

key cryptography. In all new public key cryptography algorithms, the elliptic curve is

the most promising and best crypto when compared to the first generation public key

cryptography, such as RSA and Diffie-Hellman [2]. Similar to RSA, ECC offers vast

abilities in key generation, digital signatures, secure key distribution, and encryption,

etc [3]. Elliptic curves have more advantages in many aspects due to their rich and

complex mathematical structures. The strength of an elliptic curve cryptography is

increasing with the current booming mobile device industry. Wireless devices and

cellular phones have more limitations regarding computing power, battery supply,

storage, and processing capacity than computers, so efficiency of resource distribution

is crucial. One outstanding feature of ECC is that it provides an equivalent security

level to RSA with fewer key size, achieving a promising high security level, and, at

the same time, saves precious resources on mobile devices [3].

1

According to [4], we realize that a core feature for changing the execution time

of ECC is multiplication. As the most crucial mathematic operation, multiplication

has been studied in many papers in order to improve the performance of ECC.

1.1 Previous work

Research in both software and hardware have been done in terms of accelerating

multiplication of elliptic curve cryptography. In paper [5], an algorithm is presented

that multiplies polynomials with integer coefficients, efficiently using the Number

Theoretic transform (NTT) on GPU. Another article [7] utilizes residue number sys-

tem to modular exponentiation in order to attain the best performance on a GPU in

terms of throughput and latency. In the hardware research area, we have seen the

development of [6] a cryptographic processor architecture for elliptic curve in GF(2m)

in an attemp to achieve higher performance [6]. By using FPGA and an applied,

widely used, Montgomery algorithm, this study [8] perform an extreme fast point

multiplication of elliptic curve. They claim that their result is more than 3.4 times

faster than other work reported within the literature.

1.2 Organization

This research project introduces a parallel method for multiplication based on

the Montgomery algorithm and implementation in CUDA programming language in

an attempt to achieve a higher execute time.

The project is organized as follows. Chapter 2 provides background knowledge

and presents an overview of elliptic curve cryptography. In Chapter 3, we present

the mathematics of elliptic curve cryptography which is the basis for this project.

Chapter 4 describes the Montgomery algorithm. In Chapter 5, we briefly give an

2

introduction for the parallel technique CUDA. In Chapter 6, we present the design

and implementation of parallel Montgomery multiplication in CUDA architecture.

Our experiments, results, and an analysis are discussed in chapter 7. In the end, we

present our conclusion and future work.

3

CHAPTER 2

Elliptic Curve Cryptography

2.1 Background

Elliptic Curve Cryptography(ECC) was first discovered by Neal Koblitz and

Victor Miller in 1985 independently. It solves a discrete logarithm problem which is

the core and strength leading to why elliptic curve cryptography is more secure than

RSA [8].

There are many advantages to using various aspects of elliptic curve cryptogra-

phy. One is that it can reach the same level of security as RSA while using a smaller

key size; this not only saves computer power comsumption, especially when using

wireless devices, but also requires less memory. This is a very attractive feature for

mobile devices, tablets, and especially on smart cards. Another advantage is from an

internal structure, mathematics, is that ECC is aimed at solving a discrete logarithm

problem, which is more difficult than the problem that RSA can solve, which is in-

teger factorization [9]. We will discuss a discrete logarithm problem in the following

chapter.

An simple elliptic curve E can be displayed as follows [10]:

E : y2 = x3 + ax+ b

We denote a special point at infinity ∞. A typical elliptic curve, with points, is

displayed in Figure 1 [9].

Figure 1 shows a geometric figure of a point addition operation in ECC. It can

be defined as drawing a line between two points P and Q [9] in an attempt to gain the

4

Figure 1: An ellitpic curve

third point R. Discussed in a previous study [8], if geometric elliptic curves are over

an infinite field of real numbers, it is not practical for a cryptography background,

though better results are produced [8]. Therefore, an elliptic curve cryptographic

system should be designed in a finite field with large key size in order to satisfy

security and real world requirements. The specific mathematical illustration will be

explained in the next chapter.

2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

ECDLP has been considered as a difficult problem to solve in modern cryptog-

raphy, especially in public key cryptography. The problem is described as a point

multiplication of ECC that can be interpreted as follows: we have a point P on the

elliptic curve, in order to get point Q on the same elliptic curve, point P is added k

times to itself.

So ECDLP involves a scalar multiplication. When we have determined k and P

5

then it is quite easier to find kP , which is Q. If we know point P and point Q, its very

hard to find the scalar K. In the case that scalar K becomes larger, it is considered

that K is computationally infeasible to obtain [11].

2.3 Fundamental of ECC

When it comes to choose an elliptic curve, for the level of cryptosystem is in

consideration, an important aspect when selecting an elliptic curve is to avoid su-

persingular curves [12]. The math can be much faster since several terms go to 0.

The curves presented in this paper are nonsupersingular and, to date, require fully

exponential algorithms to crack.

2.4 History of ECC

Nearly 20 years ago, elliptic curve cryptography was seen as one of the Discrete

Logarithm Problem-based crypto systems [11]. In 1985, Miller and Koblitz discovered

that elliptic curves could be very useful for public key cryptography. During that time

it was not very efficient to perform the needed calculations. By the late 1990s, the

way to implement the scheme was ten times faster, which allowed the performance of

elliptic curve mathematics to take the same amount of time as the implementation

of integer factorization for the same number of bits.

2.5 ECC vs RSA

As we mentioned in the previous chapter, one reason why we favor an elliptic

curve cryptosystem is that it requires fewer bits for the same security compared to a

cryptographical system, such as RSA and PGP. It’s known that security increases sub

exponentially in RSA cryptography, while in elliptic curve cryptography the increase

6

of the security is exponentially [2]. This significant feature leads to a net reduc-

tion in computing power, cost, memory storage, and execute timing, which security

companies favor and is also endorsed by National Security Agency.

Although ECC is a more promising alternative as the foundation for future In-

ternet security, currently most applications use RSA. One reason is that the most

widespread public key algorithm, RSA, came first before ECC, its mathematics are

simpler than those involved in elliptic curve cryptography, and RSA is easier to im-

plement. Users like to use something that they are familiar with and find easy to

understand; ECC still has a long way to go before it becomes the mainstay of public

key cryptosystem. One other reason for its widespread use is that a company called

Certicomm owns many of the patents, including the curves themselves, and is making

it difficult to deal with ECC.

7

CHAPTER 3

Mathematics of Elliptic Curve Cryptography

The ability to add any two points on a particular curve in order to obtain the third

point on the same curve is where the magic of Elliptic curves comes in. In geometric

meaning, refer to Figure 1, point addition is described as finding the Summation

P + Q, a line is drawn between point P and point Q, and arrive at the third point

P + Q = R, which is also on the elliptic curve. The difficulty to crack ECC is

exponential with key size if the elliptic curve parameters are base point and the form

of curves are chosen correctly.

The mathematics of Elliptic curves appear in different shapes when it comes to

different fields. This paper focuses on Elliptic curves in a Galois field. The mathe-

matics involved in this field are illustrated in detail.

3.1 Finite fields

A field satisfies the following properties [5]: a field has an additive identity el-

ement for the addition rules; a field has a multiplicative identity element for the

multiplication rules; and every element in a field has an inverse.

In honor of Evariste Galois, a finite field is also named as the Galois field, which

consists of an addition operation, a multiplication operation, and an inversion oper-

ation. Noted here is that these two operations, addition and multiplication, are not

traditional mathematical addition and multiplication in different fields [8].

Prime fields GF(Zp) and binary fields GF(2m) are two main types of finite fields

that are widely used in elliptic curve cryptography. We count all integers between 1

8

and a prime p in prime fields. Binary fields have a set number of bits in binary form.

For elliptic curves, this corresponds to

y2 = x3 + ax+ b mod p for prime fields

and

y2 + xy = x3 + ax+ b for binary fields.

In binary fields, there are a polynomial basis and a normal basis that can be selected

as the representation of elements. We focus on a polynomial basis in this project

since it is faster and easier to realize. Figure 2 shows the overall picture of elliptic

curves taxnomy.

Figure 2: Structure of Elliptic Curves

9

3.2 Characteristic of a field

The meaning of the characteristic of a field can be interpreted as the number of

values in a field. Therefore, if a field has characteristic p, we write the characteristic

of that field as Fp. This kind of finite field is also known as Galois Fields in honor of

the mathematician who was the first one to describe them.

3.3 Polynomial basis

3.3.1 Introduction to polynomials

The definition of a polynomial is the sum of different powers of a variable. For

example:

x5 + 3x2 + 6

In this case, the arithmetic above has not set the polynomial equal to any specific

constant, thus there is no way to know the value of x. Furthermore, the arithmetic

assumes that the coefficients of the polynomial are real and that x is real or possi-

bly complex. For computer arithmetic, to prevent numbers from exceeding storage

capacity, we select coefficients modulo 10 in this example. Suppose we add another

polynomial to the above one:

x3 + 7x2 + 6

Since the coefficients are modulo 10, we have:

x5 + x3 + 2

This type of arithmetic is called a polynomial basis. Suppose a prime number is

chosen for the modulus of the coefficients. Then we have a polynomial basis over a

finite field. This is an important concept for cryptography, error correction, and so

on. The related deep knowledge can be read [19].

10

For our project, and for a computer and cryptography perspective, we choose

the prime number 2 as the modulus, which means the coefficients can only take on

the value of zero or one. For computer storage, the polynomials can be stored as

continuous bits in the memory with each bit position representing the coefficient of

a power of x. For example, a polynomial as such:

x8 + x5 + x3 + x+ 2

would be stored on a computer as:

100100011 represents each position of bits representing the coefficient of a power of

x and 876543210 represents the corresponging index.

3.3.2 Polynomial basis represenation

The standard binary field element representation is the coefficients of a polyno-

mial. We take the coefficients modulo 2 to facilitate an efficient implementation and

make them binary. This allows an element to be defined as a string of bits. The

polynomial representation of an element in GF (2m) is given as [21]:

am−1x
m−1 + am−2x

m−2 + · · ·+ a2x
2 + a1x+ a0 : aii ∈ (0, 1)

3.3.3 Addition and subtraction

Addition modulo 2 is just exclusive-or. For example, 1 + 1 = 0 mod 2, 0 + 1 =

1 mod 2, and 0 + 0 = 0 mod 2. In a computer operation, we can use the XOR

instruction to add two polynomials rapidly. There is no carry to propagate, which is

a very fast operation, even in high-level languages.

Addition and subtraction are true and only true for mod 2 coefficients. For

example, 1− 1 = 0, since 1 + 1 = 0 mod 2, addition equals to subtraction. Therefore,

11

in binary modular mathematics, we recognize addition and subtraction as the same

type of operation.

3.3.4 Multiplication

Modular multiplication is an important operation in popular Public Key Cryp-

tography, such as ECC and RSA, with a different implementation approach.

In a polynomial basis for ECC, multiplication is simply a shift and exclusive-or

operation. Note that the highest exponent keeps increasing in the polynomial. The

high exponent is called the degree of the polynomial. We never want is the degree of

polynomials to overflow our storage capacity. So we use modular math to solve this

problem. But there is a difference from an integer basis, instead of modulo being a

prime number, we want modulo to be a prime polynomial. A prime polynomial, also

known as an irreducible polynomial, is an identical concept using different terms. An

irreducible polynomial is like a prime number and has no polynomial factors.

3.3.5 Inversion

An inversion is defined as follows: Given a(x) ∈ GF (2m), find a(x)−1 such that

a(x)a(x)−1 ≡ 1 mod f(x), where f(x) is the irreducible polynomial. The most pop-

ular method is the Extended Euclidean Algorithm, seen in Algorithm 3.1 . For an

implementation optimized for GF(2m), refer to Algorithm 3.2 [21, 5].

3.4 Mathematics of elliptic curves over Galois field

The Galois field, usually in the form of F2, could be represented either as a

polynomial basis or normal basis. An Elliptic curve equation could be based on one

12

curve, which is called a Weierstrass form elliptic curve:

y2 + xy = x3 + a2x
2 + a6

The variable x and y cover a plane, and x, y can be integers, real, complex, polynomial

basis, or optimal normal basis. This is the part that makes the math deep. According

to previous research:

y2 + y = x3 + a4x+ a6

y2 + xy = x3 + a2x
2 + a6

The first equation is called a supersingular curve, which is not what we are looking

for though it can be calculated quickly. What we need is the second curve of the

equation, which is called nonsupersingular. Until now, no known attack has taken

full exponential time to conquer this method. Therefore, this form is perfect for

cryptographic applications. Another point we need to consider is to carefully choose

the correct coefficients in order to achieve maximum security benefits; incorrectly

selecting the wrong coefficients would let the curve become an easy target for a

cryptanalyst to attack [5].

3.5 Point Addition

Suppose we have two points P = (x1, y1) and Q = (x2, y2) that are distinct. The

sum of P and Q is R which finds a line across P and Q. Arithmatic notation [5]:

Given:

P = (x1, y1)

Q = (x2, y2)

Then:

R = P +Q = (x3, y3)

13

if P 6= Q:

θ =
y2 − y1
x2 − x1

x3 = θ2 + θ + x1 + x2 + a2

y3 = θ(x1 + x3)− y1

if P = Q:

θ = x+
y

x

x3 = θ2 + θ + a2

y3 = x2 + (θ + 1)x3

The geometric meaning as follow in Figure A.13.

Figure 3: The geometric meaning of point addition P + Q = R

3.6 Point Doubling

Arithmetic notation [5]:

14

When yP is not 0,

2P = R where

s =
3x2P + a

2yP

xR = s2 − 2xP and yR = −yP + s(xP − xR)

Figure 4 The geometric meaning of point doubling.

Figure 4: Point doubling 2P = R

15

CHAPTER 4

Montgomery Algorithm

Montgomery’s algorithm is used for an efficient modular multiplication. As we

know, division operation is very time consuming. Montgomery’s algorithm can effi-

ciently calculate modular multiplication by not performing a division operation. From

an elliptic curve cryptography perspective, the Montgomery multiplication algorithm

could be in different forms and different coordinate systems in order to achieve the

best performance.

According to many cryptographic systems, modular multiplications usually op-

erate in chains. For example, RSA cryptographic system [4], Paillier’s probabilistic

public-key scheme [16], Diffie-Hellman key exchange scheme [15], and elliptic curve

cryptography are required for a chain of modular multiplication with a large integer

or prime polynomial. Therefore, efficient design for implementing modular multipli-

cation is essential.

For mathematic representation, Montgomery’s algorithm and its other improve-

ments for modular multiplication are displayed as follows. x = a × b mod n. For

modular exponentiation is given as: x = ab mod n [7].

First, the basic procedures for Montgomery’s algorithm are convert all the

operands to Montgomery representations; second, we perform Montgomery’s algo-

rithm for each operations as required; finally, we convert all Montgomery representa-

tion of operands back to their original representations [4].

16

4.1 General Montgomery multiplication algorithm

The Montgomery multiplication algorithm is a way to speed-up modular expo-

nentiation [22]. One good feature of Montgomery’s algorithm is that it works for any

modular N [23]. Suppose we want to calculate the following operation:

ab mod N

we select R = 2k, where k is large enough so that R > N . Because R is represented

as a power of two, it is very easy for a computer to determine the result of modulo

R. We know that the numbers used in computer computing are represeted as binary,

so the operation is a k bits shift.

N ′ and R′ are obtained as

RR′ −NN ′ = 1

R′ and N ′ can be found via Euclidean Algorithm.

Next, we need to find a Montgomery form, which are a′ = aR mod N and b′ =

bR mod N . The advantage and the power of a Montgomery form is that, when

repeated, multiplication is required, as it performs modular exponentiation.

Then, two numbers are multiplied under a Montgomery form, so that we get a

result which is also in a Montgomery form, refer to:

a′b′ = abR2

In order to have a result demonstrates a Montgomery form, we want to have

abR(mod N) not abR2. The following is a mathematical derivation in terms of how

to convert abR2 to abR(mod N).

17

Let X = abR2, calculate

m = (X(mod R))N(mod R)

note that R = 2K , so that all modular operations are efficient.

Then let

x =
X +mN

R(mod R)

Verify x = abR (mod N)

x = xRR′ = XR′ = abR2R′ = abR(mod N)

18

CHAPTER 5

CUDA

The activities involved in cryptographic systems are computationally intensive,

with some showing a significant features of parallelism. With the emergence of

general-purpose computing for graphics processing units, much research regarding

cryptographic computation has been done in these two cross areas. In this chap-

ter, we briefly introduce a popular parallel technique, CUDA, which is presented by

NVIDIA.

5.1 GPGPU

GPGPU is the short term for General-purpose computing on graphics processing

units, and is a GPU technique generally dealing with graphics data computation, but

also performs traditional application computation by CPU, such as in Cryptogra-

phy [24].

With GPGPU, engineers who want to explore the new usage of GPU perform

graphics data, as usual, in addition to taking advantage of applied stream processing

applied on non-graphics data.

The process is shown as the figure 5.

5.2 GPGPU Programming Concepts

There are some critical concepts involved in GPGPU programming that include

stream processing, GPU programming concepts, and GPU techniques. In conclusion,

an application that is perfect for GPGPU programming has the feature of arithmetic

19

Figure 5: Traditional GC vs Programmable GC.

intensity, large data sets, minimal dependency between data elements, and high par-

allelism [25].

5.3 CUDA Architecture

NVIDIA introduces a general purpose parallel computing architecture, CUDA,

whose purpose is for normal use in a traditional computation area using NVIDIAs

CUDA-enabled graphics hardware [24]. A programmer can then use C, Fortran,

OpenCL, and DirectCompute programming languages to compute in parallel using

multi-core.

5.4 CUDA Programming Model

There are basically three core abstract concepts of a CUDA programming model,

they are hierarchy of thread groups, shared memories, and barrier synchronization.

Introducing these abstract concepts, we can perform parallelism such as data par-

allelism, thread parallelism, or task parallelism, that can direct a developer whether

to divide a problem they have into sub problems. Any available processor core can

schedule and execute any threads for each block in any order, no matter if it is in

sequential or in parallel. Therefore, a compiled CUDA program can run on any of

cores in an NVIDA’s GPU.

20

Figure 6: Automatically scaling

For Figure 6, a multithreaded program can execute independently in any blocks

of threads [24]. Obviously, a multi-cores GPU can execute a multi-program in less

time than a GPU with fewer cores.

5.5 CUDA Threading model

The threading model of CUDA is single instruction, multiple data, and is short

for SIMD. In general, SIMD means the same instruction is performed on many pieces

of different data. Several Processors share a common Control Unit and Memory. All

processors receive the same instruction but operate on different data

Threads are grouped by a grid consisting of one dimension or two dimension

blocks. A block contains a set of threads. A parallel code, called a kernel, is executed

in multiple threads.

21

5.6 CUDA Memory architecture

Another important concept in parallel processing with multiple cores is how to

deal with memory allocation. When we use GPU to do calculations, we need to write

memory between the host (CPU) and the device (GPU) memory. Getting to know

the various types of memory is essential for a programmer who wants to program in

GPU with CUDA. We briefly explain the main four types of device memory: global

memory, texture memory, constant memory, and shared memory.

Global memory is the largest available chunk of memory and the slowest memory

store to access. Global memory is not cached.

Texture memory is a cached, read-only segment of memory. As it is named,

texture memory is optimized for 2D spatial locality and most of its usage, in reality,

is dealing with 2D textures.

Constant memory has the feature similar to texture memory. It’s cached and has

a read-only segment of memory that exists in the main memory of NVIDIA GPU. The

difference between constant memory and texture memory is that it is not particular

built for 2D spatial locality in an alternative way.

Shared memory shares memory across a unit block, so threads can access this

same block of memory. It is also where Kernel function parameters are stored. By

using a device code, other data can be moved into shared memory for manipulating.

22

CHAPTER 6

Implementation and Experiment

6.1 Purpose and design

There are three main goals of this project, which are as follows:

1. Explore normal method for implementing scalar multiplication of elliptic curve

cryptography in finite field characteristic 2.

2. Improve scalar multiplication of elliptic curve cryptography using Montgomery’s

algorithm in a projective coordinate

3. Improve scalar multiplication of elliptic curve cryptography using Montgomery’s

algorithm in a projective coordinate

From a cryptographic perspective, elliptic curves can be defined over real num-

bers, complex numbers, and any other fields. This paper is interested on elliptic

curves defined over finite fields with characteristics of 2(Binary field).

The paper focus on a scalar multiplication operation of an elliptic curve cryp-

tography since scalar multiplication is the most important operation and is key to

the speed of elliptic curve cryptography. An improved scalar multiplication is used in

order to create an elliptic curve cryptography that is faster. Our study is using the

most popular research available for elliptic curve cryptography.

In this chapter, basic concepts of scalar multiplication will be introduced for the

preparation of the improved method. What follows are the implementations of regular

scalar multiplication, applying Montgomery’s algorithm to scalar multiplication, par-

23

allel Montgomery multiplication in CUDA programming language, and comparison

to the other public key cryptography RSA.

6.2 Brief introduction of scalar multiplication

P is a point that belongs to an elliptic curve, and scalar K represents a positive

integer. We calculate the summation kP which means we add point P to itself K− 1

times. As known from previous research, scalar multiplication is also described as a

discrete logarithm problem.

6.3 Hierarchy of scalar multiplication

The three layer hierarchy of scalar multiplication is depicted in Figure 7. In this

way, the main implementation of scalar multiplication relies on the first and second

layer of the model. The first layer presents basic arithmetic operations that are the

basic foundation for scalar multiplication in elliptic curve cryptography. The second

layer includes point doubling and point addition for performing point mathematics

operations of elliptic curve crypto system. The third layer is the scalar multiplication

which consists of the first two layers. This paper focuses on the second layer used

to accelerate the speed of calculating scalar multiplication. There are also many

algorithms and strategies for the efficiency of computing arithmetic operations like

addition, squaring, division, multiplication, and inversion of the first layer; however,

this is not the scope of this paper. For those who are interested in those topics, refer

to [11].

24

Figure 7: The three layer hierarchy of scalar multiplication

6.4 General scalar multiplication

In this section, we are implementing general scalar multiplication over a finite

field. In order to perform a scalar multiplication, we need to define our data storage

structure in order to storage the numbers we will use to manipulate, define elliptic

curve parameters, and arithmetic operations that consist of scalar multiplication. The

following section illustrate this information in detail.

25

6.4.1 Define data storage structure

define WORDSIZE (sizeof(int)*8)

define NUMBITS 163

define NUMWORD (NUMBITS/WORDSIZE)

define MAXLONG (NUMWORD+1)

typedef unsigned long ELEMENT;

typedef struct {
ELEMENT e[MAXLONG];

} FIELD2N;

WORDSIZE represents the number of bits in a machine word. NUMBITS is the

number of bits the polynomial math will be expected to work on, which is the degree

of irreducible polynomial mathematically. NUMWORD is the maximum index of machine

words into a polynomial array. MAXLONG represents the number of machine words

needed to hold a polynomial. Once the above variables are defined, we can define

field storage structure FIELD2N, which is a field of characteristic 2 GF(2m).

6.4.2 Define EC parameters

Elliptic curve parameters in this project include the curve you choose and base

point. We use the curve equation

y2 + xy = x3 + ax+ b

where a = 5 and b = 9. We choose (007, 308338392 3736842520 1350130208) as our

base point. This point is chosen by pre-calculated [11] and assured that it is on the

curve we have selected.

typedef struct {
INDEX form;

FIELD2N a2;

FIELD2N a6;

} CURVE;

26

typedef struct {
FIELD2N x;

FIELD2N y;

} POINT;

typedef struct {
CURVE crv;

POINT pnt;

} EC PARAMETER;

6.4.3 Implement polynomial arithmetic operations

Polynomial addition is the exclusive-or of two sets of coefficients. For example:

INDEX i;

FOR LOOP (i) c.e[i] = a.e[i] XOR b.e[i];

Polynomial multiplication is slightly different from integer multiplication. Two

steps are needed to perform a complete polynomial modular multiplication. The first

routine will be a multiplication of two polynomials; in the second routine, we need

the product from the first routine modulo, a prime polynomial, in order to complete

the polynomial multiplication.

A prime polynomial is also called an irreducible polynomial. In mathematics, a

polynomial is defined as irreducible when it cannot be factored into the product of two,

and for polynomials case whose coefficients are of a specified type [26]. Identifying

whether a polynomial is a prime polynomial can be a large research topic in academy.

In this paper we use the existing prime polynomials from [11] that were previously

tested by mathematicians and engineers.

6.4.4 Point addition in affine coordinates

Affine coordinates are shown in the standard representation P = (x, y) for elliptic

curve points. Addition and doubling in affine coordinates are given in Chapter 3

27

respectively.

6.4.5 Implement point doubling

The elliptic curve doubling routine we used here is for Schroeppel’s algorithm [11]

over polymomial basis. Using an input with P1, P3 as our source and destination, we

operate the equation P3 = 2 · P1.

6.4.6 Scalar multiplication

Scalar multiplication will be calculated based on Koblizs balance expansion [11],

which consists of point addition and point doubling.

6.5 Montgomery multiplication

In this section, Montgomery point multiplication is discussed in detail and is

used to compute point addition and point doubling. Basic arithmetic operations are

the same as the operations that are used in general scalar multiplication.

Lets define P (x) as a irreducible polynomial over GF(2m). We will make sure an

elliptic curve E(Fq) is non-supersingular and also set base points (x, y) ∈ GF (2m)that

satisfies the following equation,

y2 + xy = x3 + ax+ b

First we define point P = (x1, y1) and point Q = (x2, y2) which belong to the

curve. Then the sum of P and Q, P + Q = (x3, y3) and the subtraction of P and Q,

P −Q = (x4, y4), also on the curve [27],

x3 = x4 +
x1

x1 + x2
+ (

x1
x1 + x2

)2

From the above equation, the x coordinates of P , Q and P −Q which are x1, x2

28

and x4 is all that we need to determine for the value of x4, which are the summation

of point P and Q. We use X/Z to represent the x coordinate of P . We then convert

2P = (X2P , Y2P , Z2P) and P + Q = (X3, Y3, Z3) to a projective coordinate. The

process is computed as [11],

X2P = X4 + b× Z4

Z2P = X2 × Z2

Z3 = (X1 × Z2 +X2 × Z1)
2

X3 = x× Z3 + (X1 × Z2)× (X2 × Z1)

Montgomery point multiplication

Algorithm 1 Algorithm for Montgomery point multiplication

Input : k = (kn−1, kn−2....., k1, k0)2 with kn−1 = 1, P (x, y) ∈ E(F2m)
Output : Q = kP
Set X1 = x, Z1 = 1, X2 = x4 + b, Z2 = x2

for i from n− 2 down to 0 do
if (ki = 1 then

Madd(X1, Z1, X2, Z2),Mdouble(X2, Z2)
else

Madd(X2, Z2, X1, Z1),Mdouble(X1, Z1)
end if

end for
Return(Q = Mxy(X1, Z1, X2, Z2))

Point addition: P (x, y) ∈ E(F2m) is a point defined on the curve E. Computing

point addition using the following algorithm Madd(X1, Z1, X2, Z2).

Point doubling - Mdouble(X2, Z2).

29

Algorithm 2 Algorithm for Montgomery point addition
T1 = x
X1 = X1 × Z2

Z1 = Z1 ×X2

T2 = X1 × Z1

Z1 = Z1 +X1

Z1 = Z2
1

X1 = Z1 × T1
X1 = X1 + T2

Algorithm 3 Algorithm for Montgomery point doubling
T1 = c
X = X2

Z = Z2

T1 = Z × T1
Z = Z ×X
T1 = T 2

1

X = X2

X = X + T1

6.6 Parallel Montgomery multiplication in CUDA

6.6.1 Design

Parallel scalar multiplication in CUDA is based on Montgomery’s algorithm over

a binary field from the previous chapter. In [23], it is stated that because of hardware

resource limitations, a trade off must be made for a fully parallel implementation

of the second and third layers. According to this study, the parallel on the second

layer demonstrates a better timing performance compared to the parallel on the third

layer, which is a more attractive approach.

Therefore, my investigation and design focuses on the point addition and point

doubling in the second layer. The design for each are as follows:

Parallel point addition: As algorithm 2 demonstrates, the first three operations

can be paralleled at the same time since they are calculated independently. T1 gains

30

from x, X1 gains fromX1 and Z2 , Z1 gains from Z1 andX2 . In total, the point

addition computation is composed of one squaring, four multiplications, and two

additions. Without time-consuming inversion, this is more efficient.

Parallel point doubling: As algorithm 3 above demonstrates, the first three steps

can be paralleled at the same time since they are calculated independently. T1 gets

from c. X gets from X2. Z gets from Z2. Point doubling consists of one addition, two

multiplications, and four squarings, whose computational complexity is simpler than

point addition.

6.6.2 Implementation in CUDA

This approach achieves task parallelism using CUDA on NVIDIA GPUs. To

realize task parallelism in CUDA, we schedule independent tasks on devices that are

designed for data parallel or SPMD applications.

First, according to Montgomery multiplication in figure 4, in order to parallel

operations in point addition and in point doubling, we need to allocate memory for

the parameters that are being calculated for a GPU device. In figure 4, we need to

allocate x, y, X1, Z1, X2, Z2 using cudaMalloc.

Secondly, using cudaMemcpy we copy the data from a host memory to device

memory.

In our third step, figure 8, we enable two different kernels to be executed by the

GPU, this approach is used block partition to achieve parallelism. The two kernels

in the project refer to a Montgomery point addition and point doubling. All CUDA

programs define an execution configuration using two instructions that process a

kernel launch by setting a block dimension and a grid dimension. The block dimension

31

specifies how many threads in each block, and the grid dimension refers to the total

number of threads to be launched. Once we have two kernels in different blocks,

Figure 8: Block Partitioning. Each kernel contains n blocks.

these two kernels will be issued as one along with the current CUDA scheduler to

conduct thread interleaving and block interleaving. Under each kernel(point addition

or point doubling) we can execute the multiplications in parallel as analyzed above

in the pre-fixed block by the following algorithm shown in Algorithm 4.

Algorithm 4 Algorithm for thread interleaving

merged kerne<<< dimGrid, dimBlock >>>(ptr1 1,ptr2 1,...,int dimGridKer-
nel1)
int index = blockID × dimBlock + threadID
if blockID ≤ dimGridKernel1 then then

kerne 1()
else

if index ¡ dimGrid then then
index = index - dimGridKernel1
kernel 2()

end if
end if

6.7 ECC vs RSA

In this section we will briefly compare the performance of ECC and RSA under

an equivalent key size.

32

Here the comparison from [24] shows, with different key length, the timing of

key generation are different between ECC and RSA. As we show in Table 1, ECC

provides fewer key size than RSA but can achieve higher security level. The results

ECC Key length RSA Key length ECC times RSA times

163 1024 0.08 0.16

233 2240 0.18 7.47

283 3072 0.27 9.80

409 7680 0.64 133.90

571 153605 1.445 679.06

Table 1: Timing of key generation between ECC and RSA.

show that ECC outperforms RSA with the increasing key size.

33

CHAPTER 7

Results and analysis

In this chapter we apply three approaches for implementing a scalar multipli-

cation for ECC, described in Chapter 6, by calculating each executing time for per-

formance estimation, and comparing and analyzing the advantages and disadvan-

tages. Three algorithms are presented as follows and in this sequence: general scalar

multiplication, Montgomery scalar multiplication, and parallel Montgomery scalar

Multiplication in CUDA.

7.1 Hardware and software usage

In this section, we describe the hardware and software used for our experiments.

In particular, graphics cards were required to be CUDA enabled NVIDIA’s graphics

card. So that we can perform the necessary functions.

Hardware:

Processor 2.7 GHz Intel Core i7

Memory 8 GB 1600 MHz DDR3

Graphics NVIDIA GeForce GT 650M

Software:

CUDA kit 5

Nsight IDE

Language:

C, CUDA

34

7.2 General scalar multiplication

The approach, in terms of how to implemenat general scalar multiplication, is

described in Chapter 6. We apply this method for a general scalar multiplication that

does not have a particular optimization or improvement.

7.2.1 Experiment 1

In our first experiment, we test the execution time(ms) of scalar multiplication

with a different key size and constant scalar k = 9 to evaluate performance.

Key size 1 2 3 4 5 6 7 8

75 0.005 0.005 0.005 0.004 0.005 0.005 0.004 0.005

93 0.007 0.008 0.008 0.008 0.008 0.007 0.008 0.007

131 0.015 0.015 0.016 0.015 0.016 0.015 0.015 0.015

163 0.03 0.031 0.03 0.034 0.032 0.03 0.031 0.031

194 0.041 0.04 0.04 0.041 0.04 0.042 0.04 0.04

294 0.105 0.103 0.103 0.105 0.103 0.103 0.105 0.103

Table 2: Test cases for key size 75, 93, 131, 163, 194 and 294 for general scalar
multiplication

Table 2 shows eight test cases for each key size, we then calculate average time,

minimum time, maximum time, and standard deviation time depending on the test

case table. The following experiments, experiments 2 to 8, will follow the same format

as experiment 1.

35

Key size Min Max Average Standard Devia-
tion

75 0.004 0.005 0.00475 0.00046291

93 0.007 0.008 0.007625 0.000517549

131 0.015 0.016 0.01525 0.00046291

163 0.03 0.034 0.031125 0.001356203

194 0.04 0.042 0.0405 0.000755929

294 0.103 0.105 0.10375 0.001035098

Table 3: Timings in key size 75, 93, 131, 163, 194 and 294 for general scalar multi-
plication

7.2.1.1 Analysis for experiment 1

As the results demonstrate, in Tables 2 and 3, in general scalar multiplication

the timing grows with increasing key size.

7.2.2 Experiment 2

In our second experiment, we test the execution time of scalar multiplication

with a different scalar k and constant key size = 163.

Table 4 demonstrates eight test cases for different scalar Ks, then we calculate an

average time, minimum time, maximum time, and standard deviation time depending

on the test case table.

7.2.2.1 Analysis for experiment 2

As our results demonstrate, in Tables 4 and 5, in general scalar multiplication

the timing grows with each increasing scalar K.

36

Scalar K 1 2 3 4 5 6 7 8

9 0.03 0.031 0.03 0.034 0.032 0.03 0.031 0.031

30 0.205 0.202 0.206 0.204 0.206 0.206 0.204 0.212

90 0.884 0.874 0.879 0.87 0.874 0.878 0.882 0.875

160 1.806 1.81 1.802 1.822 1.813 1.801 1.814 1.808

240 3.053 3.041 3.058 3.049 3.051 3.069 3.042 3.07

360 4.965 4.937 4.968 4.977 4.978 4.961 4.968 4.982

Table 4: Test cases for different scalar K 9, 30, 90, 160, 240 and 360 for general scalar
multiplication

Scalar K Min Max Average Standard Devia-
tion

9 0.03 0.034 0.031125 0.001356203

30 0.202 0.212 0.205625 0.002924649

90 0.874 0.884 0.877 0.0046291

160 1.801 1.814 1.8095 0.00688684

240 3.041 3.07 3.054125 0.010986193

360 4.937 4.982 4.967 0.014081396

Table 5: Timings of different scalar K 9, 30, 90, 160, 240 and 360 for general scalar
multiplication

7.3 Montgomery scalar multiplication

7.3.1 Experiment 3

In this experiment, we test the execution time of a Montgomery scalar multipli-

cation using a projective coordinate with a different key size and a constant scalar k

37

= 9. The algorithm is decribed in Chapter 6.

Key size 1 2 3 4 5 6 7 8

75 0.000175 0.000125 0.000127 0.000127 0.000128 0.000155 0.000129 0.000166

93 0.000155 0.000155 0.000153 0.000157 0.00015 0.000155 0.000153 0.000154

131 0.000463 0.000442 0.000466 0.000467 0.000514 0.000456 0.000486 0.000479

163 0.000686 0.000891 0.000726 0.000804 0.000686 0.000687 0.000783 0.0007

194 0.000942 0.000935 0.000932 0.000945 0.000963 0.000937 0.000929 0.000951

294 0.002006 0.001989 0.002017 0.00203 0.001987 0.001965 0.00216 0.002013

Table 6: Test cases for key size 75, 93, 131, 163, 194 and 294 for Montgomery scalar
multiplication

Key size Min Max Average Standard Devia-
tion

75 0.000125 0.000175 0.0001415 2.05E-05

93 0.00015 0.000155 0.000154 2.07E-06

131 0.000442 0.000514 0.000471625 2.17E-05

163 0.000686 0.000891 0.000745375 7.46E-05

194 0.000929 0.000963 0.00094175 1.12E-05

294 0.001965 0.00216 0.002020875 5.98E-05

Table 7: Timings in key size 75, 93, 131, 163, 194 and 294 Montgomery scalar multi-
plication

38

7.3.1.1 Analysis for experiment 3

Our results demonstrate(Tables 6 and 7) in a Montgomery scalar multiplication

the timing grows with each increasing key size.

7.3.2 Experiment 4

In this experiment, we test the execution time of a Montgomery scalar multipli-

cation with a different scalar k and a constant key size = 163.

Scalar K 1 2 3 4 5 6 7 8

9 0.000686 0.000891 0.000726 0.000804 0.000686 0.000687 0.000783 0.0007

30 0.005166 0.005113 0.005179 0.0052 0.005098 0.005378 0.005279 0.005235

90 0.015125 0.015299 0.015225 0.01702 0.015749 0.015294 0.015248 0.015304

160 0.026006 0.027987 0.027135 0.027018 0.027046 0.027062 0.026988 0.029314

240 0.039941 0.042505 0.040353 0.040271 0.040626 0.041077 0.042141 0.042034

360 0.061651 0.062912 0.061381 0.060826 0.062725 0.061193 0.064061 0.06085

Table 8: Test cases for different scalar K 9, 30, 90, 160, 240 and 360 Montgomery
scalar multiplication

7.3.2.1 Analysis for experiment 4

Our results demonstrate (Tables 8 and 9) in a Montgomery scalar multiplication

the timing grows with each increasing scalar K.

39

Scalar K Min Max Average Standard Devia-
tion

9 0.000686 0.000891 0.000745375 7.46E-05

30 0.005098 0.005378 0.005206 9.14E-05

90 0.015125 0.01702 0.015533 0.000628456

160 0.026006 0.029314 0.0273195 0.000965462

240 0.039941 0.042505 0.0411185 0.00098133

360 0.060826 0.064061 0.061949875 0.001161402

Table 9: Timings of different scalar K 9, 30, 90, 160, 240 and 360 Montgomery scalar
multiplication

7.4 Parallel Montgomery scalar Multiplication in CUDA

7.5 Experiment 5

In this experiment, we test an execution time for a parallel Montgomery scalar

multiplication without computing an allocation time from the main memory to GPU

memory while using a different key size and a constant scalar k = 9. The algorithm

is described in Chapter 6.

7.5.0.2 Analysis for experiment 5

Our results demonstrate (Tables 10 and 11) in a CUDA Montgomery scalar

multiplication, the timing grows with each increasing key size.

40

Key size 1 2 3 4 5 6 7 8

75 0.000062 0.000065 0.000074 0.000067 0.000066 0.000064 0.000063 0.000066

93 0.000065 0.000066 0.000065 0.000061 0.000066 0.000066 0.000067 0.000066

131 0.000066 0.000066 0.000063 0.000065 0.000064 0.000063 0.000064 0.000065

163 0.000066 0.000064 0.000071 0.000065 0.000066 0.000107 0.000063 0.000067

194 0.000067 0.000068 0.000065 0.000066 0.000066 0.000063 0.000066 0.000067

294 0.000065 0.000062 0.000063 0.000064 0.000075 0.000064 0.000065 0.000063

Table 10: Test cases for key size 75, 93, 131, 163, 194 and 294 for CUDA Montgomery
multiplication

Key size Min Max Average Standard Devia-
tion

75 0.000062 0.000074 0.000065875 3.68E-06

93 0.000061 0.000067 0.00006525 1.83E-06

131 0.000063 0.000066 0.0000645 1.20E-06

163 0.000063 0.000107 0.000071125 1.47E-05

194 0.000063 0.000068 0.000066 1.51E-06

294 0.000062 0.000075 0.000065125 4.12E-06

Table 11: Timings in key size 75, 93, 131, 163, 194 and 294 for CUDA Montgomery
multiplication

7.5.1 Experiment 6

In experiment 6, we test the execution time of a parallel Montgomery scalar

multiplication with computing allocation time along with a different key size and a

constant scalar k = 9.

41

Scalar K 1 2 3 4 5 6 7 8

75 0.275412 0.273803 0.255312 0.282646 0.272105 0.275174 0.284079 0.268895

93 0.376531 0.314122 0.3549 0.344457 0.323721 0.354259 0.336767 0.383522

131 0.563428 0.514985 0.526557 0.554458 0.530579 0.537951 0.568609 0.543341

163 0.690852 0.759843 0.668226 0.669494 0.690764 0.715209 0.729618 0.703363

194 0.875926 0.854781 0.833686 0.936573 0.915386 0.855753 0.907927 0.94181

294 1.618554 1.633568 1.676067 1.642039 1.609354 1.663714 1.660483 1.645004

Table 12: Test cases for key size 75, 93, 131, 163, 194 and 294 for CUDA Montgomery
multiplication with allocation overhead

Scalar K Min Max Average Standard Devia-
tion

75 0.255312 0.284079 0.27342825 0.0089125

93 0.314122 0.383522 0.348534875 0.024012641

131 0.514985 0.568609 0.5424885 0.018660191

163 0.668226 0.759843 0.703421125 0.030976014

194 0.833686 0.94181 0.89023025 0.040710303

294 1.609354 1.676067 1.643597875 0.022831227

Table 13: Timings in key size 75, 93, 131, 163, 194 and 294 for CUDA Montgomery
multiplication with allocation overhead

7.5.1.1 Analysis for experiment 6

Our results demonstrate (Tables 12 and 13) in a CUDA Montgomery scalar

multiplication, along with memory allocation overhead, the timing grows with each

increasing key size.

42

7.5.2 Experiment 7

In experiment 7, we test the execution time of a parallel Montgomery scalar

multiplication without a computing allocation time while using a different scalar k

and constant key size = 163.

Scalar K 1 2 3 4 5 6 7 8

9 0.000064 0.000064 0.000067 0.000066 0.000065 0.000065 0.000065 0.000066

30 0.000072 0.00008 0.000073 0.000073 0.00007 0.000075 0.000074 0.000071

90 0.00009 0.000096 0.000085 0.000088 0.000085 0.000086 0.000083 0.00009

160 0.000097 0.000092 0.000094 0.000092 0.000094 0.000097 0.000092 0.000092

240 0.000096 0.000096 0.000091 0.000096 0.000095 0.000093 0.000095 0.000096

360 0.000102 0.000098 0.000098 0.0001 0.000101 0.000098 0.000098 0.000104

Table 14: Test cases for different scalar K 9, 30, 90, 160, 240 and 360 for CUDA
Montgomery multiplication

Scalar K Min Max Average Standard Devia-
tion

9 0.000064 0.000067 0.00006525 1.04E-06

30 0.00007 0.00008 0.0000735 3.07E-06

90 0.000083 0.000096 0.000087875 4.12E-06

160 0.000092 0.000097 0.00009375 2.19E-06

240 0.000091 0.000096 0.00009475 1.83E-06

360 0.000098 0.000104 0.000099875 2.30E-06

Table 15: Timings of different scalar K 9, 30, 90, 160, 240 and 360 for CUDA Mont-
gomery multiplication

43

7.5.2.1 Analysis for experiment 7

Our results demonstrate (Tables 14 and 15) in a CUDA Montgomery scalar

multiplication the timing grows with each increasing scalar K.

7.5.3 Experiment 8

In experiment 8, we test the execution time of a parallel Montgomery scalar

multiplication along with computing allocation time while using a different scalar k

and a constant key size = 163.

Scalar K 1 2 3 4 5 6 7 8

9 0.700126 0.668529 0.665548 0.76269 0.723339 0.674247 0.710953 0.701169

30 0.837697 0.892199 0.822166 0.881156 0.777102 0.88086 0.855339 0.804022

90 1.101502 1.105301 1.02507 1.119897 1.112071 1.048786 1.032163 1.105014

160 1.139519 1.192315 1.226287 1.213454 1.22521 1.136232 1.130745 1.209691

240 1.209115 1.202208 1.189265 1.175106 1.233138 1.17945 1.211495 1.148747

360 1.260058 1.347244 1.359554 1.294778 1.264083 1.329231 1.294484 1.091362

Table 16: Test cases for different scalar K 9, 30, 90, 160, 240 and 360 for CUDA
Montgomery multiplication with allocation overhead

7.5.3.1 Analysis for experiment 8

Our results demonstrate (Tables 16 and 17) in a CUDA Montgomery scalar

multiplication along with memory allocation overhead the timing grows with each

increasing scalar K.

44

Scalar K Min Max Average Standard Devia-
tion

9 0.665548 0.76269 0.700825125 0.03258227

30 0.777102 0.892199 0.843817625 0.041023883

90 1.02507 1.119897 1.0812255 0.03894406

160 1.130745 1.226287 1.184181625 0.041712163

240 1.148747 1.233138 1.1935655 0.026107257

360 1.091362 1.359554 1.28009925 0.084462766

Table 17: Timings of different scalar K 9, 30, 90, 160, 240 and 360 for CUDA Mont-
gomery multiplication with allocation overhead

7.6 Three methods comparison

In this section, we take the average timing, which are the results from the

last section, and use them as the estimation timing among our next three ap-

proaches. For representation convenience we will use Regular scalar multiplica-

tion(RSM), Montgomery scalar Multiplication(MSM), Parallel Montgomery Multi-

plication in CUDA(CUDAMSM) and Parallel Montgomery Multiplication in CUDA

with overhead(CUDAMSMO). CUDAMSN and CUDAMSMO are based on the same

algorithm, and the only different is CUDAMSMO calculate the time of CUDA over-

head.

7.6.1 Comparison in different key size

1. Timing of an ECC scalar multiplication comparison, with different key size

among RSM, MSN, CUDAMSM and CUDAMSMO, is demonstrated in table 18.

Runtime (Multiplication K = 9)

45

Key size RSM MSM CUDAMSM CUDAMSMO

75 0.00475 0.0001415 0.000065875 0.27342825

93 0.007625 0.000154 0.00006725 0.348534875

131 0.01525 0.000471625 0.0000705 0.5424885

163 0.031125 0.000745375 0.000071125 0.703421125

194 0.0405 0.00094175 0.000074 0.89023025

294 0.10375 0.002020875 0.00008125 1.643597875

Table 18: Timing of scalar multiplication comparison with different key size among
RSM, MSN, CUDAMSM and CUDAMSMO

7.6.1.1 Analysis

Since the CUDAMSMO method produces a larger execution time, we extract

RSM, MSM, and CUDAMSN then compare them in one graph in order to illustrate

our results clearly and precisely. In figure 9, it is demonstrated that the Montgomery

algorithm can accerelate scalar multiplication rapidly with increasing key size more

than a general scalar multiplication, which is used in an elliptic curve cryptosys-

tem. CUDAMSM also demonstrates good results when the overhead of copying data

from local memory to device(GPU) memory is ignored. The reason is that using

Montgomery multiplication reduces divison and inversion operations. The timing

calculated for a Montgomery scalar multiplication, using projective coordinates, is

required up to (m− 1)(6M + 3A+ 5S) + (10M + 7A+ 4S + I)clock cycles, where M,

A, S and I are represented by the number of clock cycles for multiplication, addition,

squaring, and inversion, respectively [25]. Therefore, the scalar multiplication needs a

46

Figure 9: Run time with different key size for Regular scalar multiplication VS Mont-
gomery scalar Multiplication VS Parallel Montgomery Multiplication in CUDA

991M + 976S+ 493A clock time in total which is overwhelming time consuming [19].

As our results demonstrate in figure 10, the Montgomery algorithm can largely

accelerate the speed of scalar multiplication for an ECC. The parallel Montgomery

method in CUDA can attain good results in the end; however, increased overhead of

transfer data from Host memory to device(GPU) memory can be expected and its

results are not optimal. For my project, CUDA overhead is created from: 1.allocated

new memory in GPU for the data I needed to calculate; 2. copied data from the host

memory to GPU memory; 3. copied results that were computed in the GPU back

to the host memory. The reason why CUDA overhead is so high is that the size of

an element depends on the key size; when the key size grows, the time for CUDA

to allocate memory(CUDA overhead) increases as well. For realistic applicaitons or

47

Figure 10: Run time with different key size for RSM, MSN, CUDAMSM and CUD-
AMSMO

when using an efficient allocating method, we can overcome this disadvantage in the

future.

7.6.2 Comparison in different scalar K

2. Timing of an ECC scalar multiplication in comparison with different K (Q =

KP) among RSM, MSN, CUDAMSM, and CUDAMSMO is demonstrated in table 18.

Runtime (key size: 163)

7.6.2.1 Analysis

Our results demonstrate (figure 11) with an increase in K the runtime of regu-

lar scalar multiplication (without any optimization) goes up extremely quick. Under

48

Scalar K RSM MSM CUDAMSM CUDAMSMO

9 0.031125 0.000745375 0.00006525 0.700825125

30 0.205625 0.005206 0.0000735 0.843817625

90 0.877 0.015533 0.000087875 1.0812255

160 1.8095 0.0273195 0.00009375 1.184181625

240 3.054125 0.0411185 0.00009475 1.1935655

360 4.967 0.061949875 0.000099875 1.28009925

Table 19: Run time comparison of scalar multiplication with different K

these circumstances, the overhead produced from cuda allocation can be ignored when

the value of K becomes a large number. The time lost from the Montgomery multi-

plication over a projective coordinate is due to the algorithm presented in Chapter 6.

The times we perform a point addition and a point doubling declines significantly

since the scalar k is represented in its binary form. For example, if K = 360, we

need to compute P = kQ. In general when using a scalar multiplication we need to

run a loop 360 times in order to gain our final results. However in a Montgomery

point multiplication over a projective coordinate system k = 360 converts to an array:

k[9] = 1, 0, 1, 1, 0, 1, 0, 0, 0; 101101000 is the binary form of 360. The times needed

for loop shrink becomes 9 times; this is a large reduction for scalar multiplication.

Other than the efficient computation gained from the Montgomery algorithm, we can

parallel two or more arithmetic operations at the same time; this improved process

49

Figure 11: Run time with different K for Regular scalar multiplication VS Mont-
gomery scalar Multiplication VS Parallel Montgomery Multiplication in CUDA

can increase speed as well.

50

CHAPTER 8

Conclusion and Future Work

In this project, a parallel design strategy in CUDA for elliptic curve point multi-

plication is presented in order to efficiently accelerate the speed and work along with

a scalar parameter K increasing. Our algorithm demonstrated good results with-

out CUDA allocation overhead. Therefore, in the future, we could study and apply

this new approach to access global memory in CUDA Kernels more efficiently. As a

whole, the architecture provided demonstrates a promising parallel solution in GPU

for elliptic curve scalar multiplication.

Future work should further explore better improvements in the areas of hardware

and software with in all three layers of scalar multiplication, implementing additional

design strategies in both software and hardware comparisons. Since inversion oper-

ation is an important operation within the arithmetic level of elliptic cuvres, this is

probably another interesting research topic for future study.

51

LIST OF REFERENCES

[1] Elliptic curve cryptography,
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

[2] Elliptic curve from NSA,
http://www.nsa.gov/business/programs/elliptic_curve.shtml

[3] K. Gupta, S. Silakari, ECC over RSA for Asymmetric Encryption: A Review,
IJCSI InternationalJournal of Computer Science Issues, Vol. 8, Issue 3,No. 2,
May 2011,
http://www.ijcsi.org/papers/IJCSI-8-3-2-370-375.pdf

[4] S. Baktri, E. Savas, Highly-Parallel Montgomery Multiplication for Multi-core
General-Purpose Microprocessors,
Department of Computer Engineering, Bahcesehir University, 2011,
http://eprint.iacr.org/2012/140.pdf

[5] P. Emeliyanenko, Efficient Multiplication of Polynomials on Graphics Hardware,
Max-Planck-Institut fur Informatik, Saarbrucken, Germany, 2009,
https://domino.mpi-inf.mpg.de/intranet/ag1/ag1publ.nsf/

0/ca00677497561c7ec125763c0044a41a/$FILE/gpgpu_mul.pdf

[6] T. F. Al-Somani, G. Adnan, M. K. Ibrahim, Highly Efficient Elliptic Curve
Crypto-Processor with Parallel GF(2m) Field Multipliers,
Journal of Computer Science, Jan 2006

[7] S. Fleissner, GPU-Accelerated Montgomery Exponentiation,
Department of Computer Science and Engineering, The Chinese University of
Hong Kong, 2007

[8] M. Estes, P. Hines, Efficient Implementation of an Elliptic Curve Cryptosystem
Over Binary Galois Fields in Normal and Polynomial Bases,
George Mason University, 2006, http://teal.gmu.edu/courses/ECE746/project/

reports_2006/ECC_IN_SW_report.pdf

[9] M. Y. Malik, Efficient implementation of elliptic curve cryptography using
low-power digital signal processor,
National UniversityofScience and Technology(NUST), Pakistan, 2010,
http://arxiv.org/ftp/arxiv/papers/1109/1109.1877.pdf

[10] M. Stamp, Information security principles and practice,Wiley, 2 edition, May 3,
2011

52

[11] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications,
January 1, 1998

[12] R. Lercier, F. Morain, Counting the Number of Points on Elliptic Curves Over
Finite Fields: Strategies and Performances,
Advances in Cryptology - EUROCRYPT 95, Lecture Notes in Computer Science
Volume 921, 1995, pp 79-94,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.2386

[13] W. Diffie, M. E. Hellman, New Directions in Cryptography, IEEE Transactions
on Information Theory,
http://www.cs.jhu.edu/~rubin/courses/sp03/papers/diffie.hellman.pdf

[14] I. Damgaard, M. Jurik, A generalisation, A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System,
In Proceedings of the4th International Workshop on Practice and Theory in Pub-
lic Key Cryptography: Public Key Cryptography, PKC 01,
pages 119-136, London, UK, 2001, Springer-Verlag

[15] A. E. Cohen, K. K. Parhi, GPU Accelerated Elliptic Curve Cryptography in
GF(2m),
it 53rd IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), 2010,
http://www.ece.umn.edu/users/aecohen/papers/aecohen_parhi_mwscas2010.pdf

[16] J. Bajard, S. Duquesne, N. Meloni, Combining Montgomery ladder for elliptic
curves defined over Fp and RNS representation,
Computer Science Department, UCLA, Los Angeles, California, 2010,
http://eprint.iacr.org/2010/311.pdf

[17] A. Hariri, Bit-Serial and Bit-Parallel Montgomery Multiplication and Squaring
over GF(2m),
IEEE Transactions on Computers, Volume: 58, Issue: 10, 2009

[18] Ramsey, Glenn Jr., Hardware/Software Optimizations for Elliptic Curve Scalar
Multiplication on Hybrid FPGAs,
Department of Computer Engineering, Rochester Institute of Technology, 2008,
https://ritdml.rit.edu/bitstream/handle/1850/

7765/GRamseyThesis06-2008.pdf?sequence=1

[19] M. Stamp, R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real
World,
Wiley-IEEE Press, 1 edition, April 25, 2007

53

[20] CUDA C Programming Guide 4.0, 2011,
http://www.shodor.org/media/content//petascale/materials/

UPModules/matrixMultiplication/cudaCguide.pdf

[21] R. Szerwinski, Exploiting the Power of GPUs for Asymmetric Cryptography,
Cryptographic Hardware and Embedded Systems, CHES 2008, 10th International
Workshop, Washington, D.C., USA, August 10-13, 2008

[22] Irreducible polynomial,
http://en.wikipedia.org/wiki/Irreduciblepolynomial

[23] D. Hankerson, J. Lopez-Hernandez, and A. Menezes, Software implementation
of elliptic curve cryptography over bi- nary fields,
Cryptographic Hardware and Embedded Systems - CHES 2000, Second Interna-
tional Workshop, Worcester, MA, USA, August 17-18, 2000,
Proceedings, 1965:124, August 2000

[24] N. A. Saqib, F. Rodriguez-Henriquez, A. Diaz-Perez, A Parallel Architecture for
Fast Computation of Elliptic Curve Scalar Multiplication over GF (2m),
Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-
national

[25] N. Jansma, B. Arrendondo, Performance Comparison of Elliptic Curve and
RSA Digital Signatures, 2004,
http://nicj.net/files/

performance_comparison_of_elliptic_curve_and_rsa_digital_signatures.pdf

[26] B. Ansari and M. Hasan, High Performance Architecture of Elliptic Curve Scalar
Multiplication,
IEEE Trans. Computers, vol. 57, no. 11, pp. 1443-1453, Nov. 2008

[27] M. Guevara, C. Gregg, K. Hazelwood, K. Skadron, Enabling Task Parallelism
in the CUDA Scheduler,
Department of Computer Science, University of Virginia, 2009,
http://www.cs.virginia.edu/kim/docs/pmea09.pdf

54

APPENDIX

Algorithm

A.1 Inversion from Algorithm 3.1

Figure A.12: Extended Euclidean Algorithm for Polynomial Representation

A.2 Inversion for Algorithm 3.2

55

Figure A.13: Inversion in GF(2m) for polynomial representation

56

	San Jose State University
	SJSU ScholarWorks
	Spring 2013

	Analysis of Parallel Montgomery Multiplication in CUDA
	Yuheng Liu
	Recommended Citation

	tmp.1369319957.pdf.GEnqO

