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Recent advances in DNA sequencing technology have dramatically increased 

the scale and scope of DNA sequencing. These data are used for a wide variety of 

important biological analyzes, including genome sequencing, comparative genomics, 

transcriptome analysis, and personalized medicine but are complicated by the volume 

and complexity of the data involved. Given the massive size of these datasets, 

computational biology must draw on the advances of high performance computing.  

Two fundamental computations in computational biology are read alignment 

and genome assembly. Read alignment maps short DNA sequences to a reference 

genome to discover conserved and polymorphic regions of the genome. Genome 

assembly computes the sequence of a genome from many short DNA sequences. Both 

computations benefit from recent advances in high performance computing to 

efficiently process the huge datasets involved, including using highly parallel 

graphics processing units (GPUs) as high performance desktop processors, and using 

the MapReduce framework coupled with cloud computing to parallelize computation 

to large compute grids. This dissertation demonstrates how these technologies can be 

used to accelerate these computations by orders of magnitude, and have the potential 

to make otherwise infeasible computations practical. 
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Chapter 1: Background and Significance 

Motivation 

Recent advances in DNA sequencing technology from Illumina 

(http://www.illumina.com/), 454 Life Sciences (http://www.454.com/), Applied 

Biosystems (http://www.appliedbiosystems.com), and other vendors have enabled 

DNA sequencing instruments to sequence the equivalent of the human genome in few 

days and at low cost. In contrast, the sequencing for the human genome project of the 

late 90’s and early ’00s required years of work on hundreds of machines with 

sequencing costs measured in hundreds of millions of dollars [1]. This dramatic 

increase in efficiency has spurred tremendous growth in applications for DNA 

sequencing. For example, whereas the human genome project sought to sequence the 

genome of a small group of individuals, the 1000 genomes project 

(http://www.1000genomes.org/) aims to catalog the genomes of 1000 individuals 

from all regions of the globe. Recent related projects aim to catalog all of the 

biologically active transcribed regions of the genome over a wide variety of 

environmental and disease conditions. Similar studies are also underway for model 

organisms such as mouse, rat, chicken, rice, and yeast, and other organisms of 

interest.  

There is high demand for analyzing DNA sequences, but the raw outputs for 

these studies often exceed 1 terabyte of data and are pushing the limits of feasibility 

for the computations involved. Furthermore, biological datasets are only increasing in 

size, as data for more individuals and more environments are collected, so if we have 
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not yet reached the breaking point for traditional models of computation for 

computational biology, it is just over the horizon. It is clear that the only long-term 

solution is to combine research in computational biology with advances from high 

performance computing (HPC), especially to parallelize computations to multiple 

processors, and to utilize high performance distributed file systems. 

 

DNA Sequencing 

The genome of an organism encodes genetic information within a long 

sequence of 4 different DNA nucleotides: adenine (A), cytosine (C), guanine (G) and 

thymine (T). The nucleotides are configured along two strands of a double helix, 

called the forward and reverse strands, with the nucleotides of one strand bonding 

with complementary nucleotides on the other.  Under normal conditions adenine 

nucleotides only bond with thymine, and cytosine nucleotides only bond with 

guanine, so the sequence of one strand determines the sequence of the other, with 

each bonded nucleotide called a basepair (bp). The length and complexity of a 

genome sequence varies considerably depending on the complexity of the organism. 

For example, the genomes of small single-cell bacteria are typically a few million 

nucleotides long, while the genomes of higher organisms, such as humans, are 

billions of nucleotides long organized in several chromosomes. See Brown’s classic 

textbook for a more complete introduction to DNA and genomics [2]. 

Traditional Sanger sequencing [3] uses chain termination with radioactively or 

fluorescently tagged nucleotides to sequence DNA. The technique is effective and 

widely used, but is limited to sequencing at most ~1000 consecutive nucleotides, each 
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called a sequencing read. Newer methods use a variety of low cost and high 

throughput sequencing technologies, but are currently limited to ~25-500 consecutive 

nucleotides [4]. Reads from all technologies have sequencing errors in the form of 

miscalled, extra, or missing nucleotides, at a rate of 1% to 5% of bases. For example, 

the 454 Life Sciences sequencing technology is limited in its ability to correctly 

sequence homo-polymer sequences (sequences consisting of a single repeated 

nucleotide), and most sequencing technologies tend to have more errors at the ends of 

the reads as the biochemical sequencing reactions become less efficient [4].  

Sequencing reads are much shorter than the full genome sequence, so the 

complete genome sequence cannot be directly sequenced. Instead genome sequencing 

projects commonly use whole genome shotgun sequencing (WGSS) [5] approach to 

sequence an entire genome. In WGSS, the genome is first randomly sheared into 

small fragments, and then those small fragments are individually sequenced with a 

DNA sequencer (Figure 1). Some sequencing technologies also allow for sequencing 

pairs of reads from both ends of a fragment, creating what is a called a mate-pair. 

Consequently, mate-pairs are separated in the genome by an approximately known 

distance (Figure 1), and provide long range linking information crucial for analyzing 

complex genomes. The short reads and mate-pairs are then computationally analyzed, 

and reads with consistent sequences are assembled into larger sequences, similar to 

how small puzzle pieces can be connected to form larger and larger blocks. The 

number of reads necessary to sequence an entire genome depends on the size of the 

genome, including the 8-fold to 30-fold oversampling necessary to ensure each 

position in the genome has been sequenced with high probability [6]. For large 
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genomes, such as the human genome, literally billions of reads are used to analyze the 

full genome with raw outputs exceeding 1 TB of data and sequence data exceeding 

100 GB. 

 

 

Figure 1. Whole Genome Shotgun Sequencing and Mate Pairs.  
In WGSS, the genome is randomly sheared into many short pieces of DNA each called a fragment, 
which are later sequenced and analyzed (left). Each DNA fragment can be embedded within a cloning 
vector, with 2 mated reads sequenced from the same fragment (right). 
 

Read Alignment 

The genomes of two individuals of the same species or two individuals from 

closely related species are often very similar. In these cases it is possible to align or 

map a large fraction of the reads from one individual to a reference genome to find 

the most likely position each read occurs [7]. This information reports the regions of 

the genome that are conserved in the two genomes, and the regions with 

polymorphisms, including regions of the reference that are not present in the query 

reads at all (deletions). Regions of the query that are not present in the reference 

(insertions) are noted as unmappable reads, which consequently require de novo 

assembly for complete analysis (explained below).  

The mapping processes is computationally challenging because the amount of 

sequence data is very large and the mapping algorithm must allow for differences 

between a given read and the reference genome, for both biological and technological 
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reasons. For example, the recently published analysis of the genomes of an African 

[8] and an Asian [9] individual from the 1000 genomes project required 4.0 and 3.3 

billion 35bp reads, respectively, and hundreds of hours of computation.  

Many read mapping algorithms use a technique called seed-and-extend to 

accelerate the mapping computation [10-15]. The key insight for this technique is if a 

read maps to the genome at a particular location with a relatively small number of 

differences, then a significant fraction of the read must map without any error at all. 

A difference can be a change of character (mismatch), additional characters in the 

query (insertion), or missing characters from the reference (deletion) (Figure 2). 

 

 

Figure 2. Seed-and-extend read mapping. 
The 5bp sequence GCCGA is shared by the read and the reference sequence and acts as an alignment 
seed. The left flanking sequence has a mismatch, and the right flanking sequence has a deletion for a 
total of 2 differences for this alignment. 
 

For example, if a 40bp read aligns to a reference with at most one difference, 

and the first base differs, the remaining 39 must match exactly. If only the 2nd base 

differs, the remaining 38 must match exactly, and so forth, until if the 20th is the only 

difference, then the remaining 20 bases must match exactly (the length of the exactly 

matching sequence is symmetric for the remainder of the sequence). More generally 

if a read of length R maps to a sequence with at most k errors, then it must contain a 
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substring of length ⌊R/(k+1)⌋ that exactly matches. This fact is due to a simple 

application of the pigeon-hole principle: if the read is divided into k+1 chunks, then 

the k errors must leave 1 chunk unmodified which will exactly match [16]. This 

insight leads to a general strategy for quickly computing end-to-end alignments: first 

short exactly matching regions called seeds in the read and the reference sequence are 

found, and then those seeds are extended into end-to-end matches using a more 

sensitive algorithm that allows for errors. The seeds are chosen so all alignments of 

sufficient quality are detected, but only regions with potential for high quality 

alignments are investigated. 

The read mapping algorithms use several different approaches for finding 

seeds. The method used by RMAP [12] and others is to construct a hash table of the 

non-overlapping substrings of length ⌊R/(k+1)⌋ in the reads. Then the genome 

sequence is scanned to consider each ⌊R/(k+1)⌋ length substring of the genome. At 

each position in the reference, the set of reads with the current substring is retrieved 

from the hash table, and the end-to-end sequence of each read is compared to the 

genome allowing for a number of mismatches. The main limitation of this approach is 

the space requirements for the hash table may be very large, and it must be 

recomputed for different values of R or k. In addition, if the seed length becomes very 

small, then many chance occurrences of the seed may be present in the genome that 

will not lead to a high quality alignment. 

Given the limitations of a hash table approach, other methods have been 

developed using a more sophisticated index to quickly evaluate candidate seeds, such 
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as a suffix tree [14]. A suffix tree encodes all suffixes of string along a path from the 

root to a leaf, so the presence of a query sequence in a suffix tree of a reference 

sequence is determined by walking from the root of the tree along the edges 

according to the sequence of the query (Figure 3). The suffix tree can be quickly 

constructed in time proportional to the length of the sequence, and can be reused for 

queries of any length. Once the exact matches are found in the suffix tree, a more 

sensitive alignment algorithm is used for to align the flanking sequence into end-to-

end alignments. 

 

 

 

Figure 3. Aligning a query against a suffix tree. 
Aligning the query ATAT against the suffix tree for ATATCAT$. The path from the root to each leaf 
encodes a sequence that occurs in the reference at the label of that leaf. The blue path shows the extent 
of the alignment in the tree. The query occurs at position 1 in the reference, and partially match with 
length 2 (AT) at positions 6 and 3 as shown by the red paths.  (Figure from [17]) 
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Genome Assembly 

Early genome assembler including phrap [18] and the TIGR Assembler [19] 

used a greedy algorithm to assemble the genome from a collection of reads. In these 

assemblers, reads with the longest overlap, meaning the suffix of one read matches 

the prefix of another, are iteratively merged into longer and longer sequences. This 

approach is sufficient for the simplest genomes, but in general fails to produce a 

correct genome sequence because genomes contain repeated sequences and reads 

from these repeated sequences will have “false overlaps”, meaning these reads should 

not be assembled based on their original placement in the genome even though they 

are sufficiently similar. When a greedy assembler incorporates false overlaps, distant 

regions of the genome become falsely connected and incorrectly reconstructed [20]. 

The limitations of the greedy assembly algorithms lead to the development of 

a graph theoretic approach for genome assembly called overlap-layout-consensus 

implemented in several modern assemblers including the Celera Assembler [21], 

which was used for the private effort to sequence and assemble the human genome in 

2001 and dozens of organisms since, and Arachne [22, 23], another widely used 

assembler for large genomes. In the overlap stage, all pairs of reads are compared for 

overlaps, allowing for a small amount of difference in the overlapping region from 

sequencing error. The result of these comparisons is an overlap graph, where reads in 

the graph have an edge if they have an overlap with sufficient quality. In the layout 

stage, consistent paths of overlaps are chosen from the overlap graph. A correct path 

of overlaps should visit each node exactly one time, a Hamiltonian path. The scale of 

the problem prevents a search for an exact Hamiltonian path, so heuristics are 
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employed to simplify the problem. Regions of the genome between the boundaries of 

repeats create non-branching chains of overlaps that can be found and collapsed into 

linear paths, called unitigs in the terminology of the Celera Assembler. At repeat 

boundaries, the overlap graph forks where reads in the repeat overlap reads from 

different regions of the genome, but the reads from the different regions do not 

overlap (Figure 4). Finally in the consensus stage, each layout is refined to produce a 

consensus sequence called a contig, correcting for sequencing error in the underlying 

reads (Figure 5). 

 

Figure 4. Overlaps and Layouts. 
In the overlap stage, all pairs of reads are compared for overlaps. Here the last 10bp of Read i overlaps 
the first 10bp of Read j with 1 mismatch (left). The collection of overlaps form an overlap graph where 
reads are connected by a directed edge from a to b if the suffix of the read a overlaps the prefix of read 
b with sufficient quality (middle). The overlap graph is then analyzed to compute the layout of reads 
with an approximate offset of each read (right). The overlap graph forks at read k, so three separate 
unitig layouts are generated. 

 

If mate-pairs are available, the linking information is used to better resolve 

true overlaps from false overlaps, and improve the layouts. For example, if the mate-

pairs indicate reads l,m,n should immediately follow i,j,k and reads x,y,z are from an 

unrelated region of the genome, the layouts will be arranged and expanded 

appropriately. The contigs can also be ordered and oriented into larger scaffolds, with 

gaps between contigs representing missing sequence or ambiguous repeats. Ideally a 

single scaffold will represent each chromosome of the organism, but if the organism 
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has repeats larger than the span of the mate pairs, then the assembler will create 

multiple scaffolds for the different unambiguous regions. 

 

 

Figure 5. Scaffolding and Consensus. 
In the scaffolding phase (left), mate pairs, shown as curved lines, indicate the correct order of the 
unitigs. If the resolved unitigs overlap, the unitigs are merged into a longer contiguous sequence as in 
Contig 1. If the unitigs do not overlap, the contigs are placed into a scaffold with a gap between the 
contigs of known size but unknown sequence. In the consensus computation (right), the unitig or 
contig layouts are refined into a true multiple alignment of reads correcting for sequencing error in the 
individual reads. 

 

The primary complicating factor in genome assembly is the presence of 

repeats, which create false overlaps that confound the assembly process [24]. If the 

false overlaps are incorrectly incorporated, they can cause mis-assemblies that corrupt 

the genome sequence by rearranging the sequence of the genome, mis-representing 

repeat instances, fragmenting contigs, or otherwise mis-representing the true genome 

sequences. The fraction of a genome that is repetitive depends on the sequence 

composition of the genome and the read length, but also a tension in the assembly 

problem between allowing for sequencing error and mis-assembling repeats: the 

assembler must allow for some amount of sequencing error between overlapping 

reads, but allowing for differences in overlaps causes more of the genome to appear 

repetitive. As such, modern assemblers attempt to statistically detect and correct 

sequencing error, but are limited in their ability to correct all errors.  
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Given the tension from sequencing error and the presence of long identical 

repeats, genome assemblers act cautiously to detect and avoid mis-assembling repeats 

whenever possible. Even so, modern assemblers are still prone to make errors, such as 

collapsing multiple copies of a repeat into a single copy [24]. This is especially 

problematic if the repeat copies occur in tandem at adjacent positions in the true 

genome sequence (Figure 6). Since the reads from sufficiently large exact repeats 

overlap without error, it can be impossible to determine the correct placement from 

overlaps alone. Fortunately, collapsed repeats do have detectable mis-assembly 

signatures [20, 25], such invalid mate-pair relationships or as the depth of coverage 

(number of reads spanning a given position) suddenly increasing, so assemblies can 

be verified by analyzing the assembly and reviewing any suspicious region. 

 

 

Figure 6. Mate pair signatures of collapsed repeats. 
(a) Two copy tandem repeat R shown with properly sized and oriented mate-pairs. (b) Collapsed 
tandem repeat shown with compressed and mis-oriented mate-pairs. (c) Two copy repeat R, bounding 
unique sequence B, shown with properly sized and oriented mate-pairs. (d) Collapsed repeat shown 
with compressed and mis-linked mate-pairs. (Figure from [20]) 
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Once the genome has been assembled, the genome sequence is analyzed for a 

variety of biological reasons. For example, the genome sequence is compared to other 

genomes to catalog the conserved (similar) and unique regions of the new genome. 

Protein encoding regions of the genome called genes are predicted using 

computational and laboratory techniques. Regulatory elements, transposable 

elements, insertion sequences, and a host of other biologically significant sequences 

are analyzed. In short, a complete and correct genome sequence is a fundamental 

requirement to a wide variety of analyses and is a key to unlocking the health and 

biology of the organism. 

 

High Performance Computing 

Research in high performance computing (HPC) has lead to many advances, 

including techniques for coordinating computation across multiple processors within 

one computer, and across multiple processors within multiple computers. The high 

level goals of this research are to use more processors to accelerate the end-to-end 

computation time for a given problem (strong scaling), or to increase the size of the 

computation possible in a fixed amount of time (weak scaling).  

One of the simplest and most widely used techniques of HPC is called batch 

computing, in which, a (large) set of independent computations is partitioned into 

multiple batches, which are then simultaneously and separately evaluated on multiple 

processors [26]. For example, within computational biology this is a well known 

technique for accelerating protein alignment using the tool BLAST [11] using P 
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processors, such as is performed using the tool mpiBLAST [27]. The input is a set of 

Q query sequences, and the goal is to align each query sequence to a database of 

known protein sequences. Since the alignment of one sequence is independent of the 

other sequences, the input can be trivially split into P batches each containing Q/P 

sequences, and then simultaneously execute P instances of BLAST. The total amount 

of computation performed remains the same, so a system like this should in principle 

achieve perfect linear speedup, meaning the wallclock running time should be 

decreased by a factor of P when running on P processors as compared to the serial 

runtime.   

In practice, a parallel system will not always reach perfect linear speedup, but 

will often have less than 100% parallel efficiency, measured as the ratio of the serial 

runtime over the parallel runtime on P processors times P. In this example, the total 

number of alignments computed will be exactly the same while running in parallel, 

but extra computation and time is needed to distribute and monitor the work between 

the processors which reduces the parallel efficiency. Furthermore, if the system is not 

entirely parallel but contains a serial component, such as a sequential scan of the 

inputs before distributing the alignment computations, then the overall speedup will 

be limited relative to the fraction of serial work. This relationship, known as 

Amdahl’s law [28], states that the overall speedup for a parallel system is limited to 

1/(1-%P), where %P is the proportion of the program that is executed in parallel. For 

example, if 5% of the runtime is needed for serial computation, then the overall 

speedup is at most 20 times faster, assuming the remaining 95% of the runtime is 

reduce to zero.  
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 Finally, some query sequences may take much longer than others to align 

than others, such as repetitive sequences with many more alignments or query 

sequences that are much longer than average. The batches with these sequences may 

take considerably longer than batches without those sequences, but the wallclock 

runtime will be dominated by the longest running batch. This load imbalance will also 

negatively impact the overall speedup of the system. In the extreme, if a single batch 

takes twice as long as the average, then the speedup will be cut in half by the single 

“straggler”. Therefore it is generally beneficial to divide the input set into more than 

P batches so that any load imbalance can be hidden by scheduling fewer batches on 

machines analyzing the stragglers. However, if the size of the batch size is too small, 

then the extra communication overhead could negatively decrease performance. 

Clearly a careful balance between batch size and performance must be made 

depending on the characteristics of the parallel system.  

In contrast to batch systems are parallel computations that cannot be 

partitioned into independent computations, but require communication between the 

different processors. A basic example is evaluating a function on a regular matrix, in 

which case each processor evaluates the function on a submatrix and uses 

interprocessor communication to coordinate the results at the boundaries of the 

submatrices. The most extreme versions are parallel computations on irregular data 

structures, such as computing the minimum spanning tree of a graph [29]. For very 

simple graphs it may be possible to partition the graph into non-overlapping 

components of approximately the same size that are examined independently, but this 
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will not be possible for general graphs or will be difficult to find such a partitioning in 

a reasonable amount of time.  

For these types of problems, a sophisticated parallel algorithm is necessary to 

coordinate the computation across processors [30]. These parallel algorithms are 

usually described using a variant of the parallel random access model (PRAM), which 

is an abstract model for synchronous shared memory computation. Under this model 

many processors execute an algorithm under control of a single clock with full access 

to a shared memory resource (See Jaja’s seminal textbook for a full discussion of the 

model [31]). These requirements are clearly not realizable for very large systems with 

many processors, but inventing abstract PRAM algorithms frees the algorithm 

designer from low level system details to focus on the abstract computation. 

Furthermore many abstract PRAM algorithms can be efficiently simulated on non-

synchronized, non-shared memory system using interprocessor and intermachine 

communication techniques such as the message passing MPI [32]. However, it may 

be very complicated or inefficient to simulate the PRAM algorithm because the 

communication costs are not included in the PRAM analysis. 

 The main benefit of the abstract PRAM model is that is useful for describing 

an algorithm and analyzing its efficiency, much like how the random access machine 

model (RAM) [33] is useful for analyzing serial computation. Central to this analysis 

are the concepts of parallel work W and parallel time T (sometimes also called 

depth). Parallel work is the total number of operations performed in a parallel system, 

and parallel time is total number of parallel steps. For example, consider the problem 

of computing the sum of n integers using up to n/2 processors. A serial algorithm 
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computes the sum in O(n) time using a sequential scan of the values. The well known 

parallel pairwise summation algorithm also performs a total of O(n) additions, but 

performs those additions in 3 steps, by summing pairs of items organized into a 

binary tree (Figure 7).  

 

Figure 7. Illustration of Parallel Pairwise Summation Algorithm. 
In each round, several additions are simultaneously computed by adding pairs of items from the 
previous round organized in a binary tree. 
  
 

 In every step, the number of items to sum is cut in half so this algorithm 

requires T=O(log n) total parallel steps. Since the total number of additions, the 

parallel work, is the same as the serial algorithm, this algorithm is considered work 

optimal. Furthermore since any other work optimal PRAM algorithm also requires 

T=O(log n) [34], this algorithm is both work and time optimal. In this way, many 

parallel algorithms that process n elements can be optimally implemented in W=O(n) 

and T=O(log n) [34]. 
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GPGPU Computing 

One recent development in HPC has been the growth of general purpose 

graphics processing unit (GPGPU) computation, where computation is executed on 

commodity but highly parallel graphics processing units (GPUs). While GPUs were 

original limited in capability and used exclusively for graphics processing, modern 

GPUs from nVidia and ATI contain dozens or hundreds of stream processors and can 

be programmed for non-graphics computation. The stream processors simultaneously 

execute the same instructions on different data items (SIMD computation), allowing 

for parallel, and nearly arbitrary computations, on large datasets (Figure 8). 

The GPUs are programmed in a modified version of C, but have restricted 

programming capabilities such as a relatively small numbers of registers, no call 

stack, and no direct IO access. These limitations make implementing algorithms on 

the GPU challenging, but certain scientific and numeric GPGPU applications have 

demonstrated 10- to 100-fold improvements in running times on one GPU versus a 

traditional CPU. Consequently, there is great interest for developing GPGPU versions 

for computationally intensive applications. The most successful GPGPU applications 

typically have had high arithmetic intensity, meaning the computation is dominated 

by numerical and arithmetic operations as opposed to data access and comparisons. 

However, high performance data intensive algorithms are possible using techniques 

such as data reordering and register reduction to maximize cache performance and 

processor occupancy [35]. 
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Figure 8. Overview of G80 Architecture and Workflow. 
This figure shows how the GPU is organized into several (N) multiprocessors, each containing 
multiple (M) stream processors that simultaneously execute the same instruction (left). Each processor 
can access the texture cache very quickly, but reads and writes to the onboard RAM have high latency. 
Input data for a GPGPU application must be copied to the GPU's memory along with a pre-allocated 
output buffer prior to invoking the GPU-based kernel (right). Output from the kernel is read back into 
main memory and reported to the user. (Figures from [17]) 

 

MapReduce and Cloud Computing 

Another advance in HPC is the MapReduce framework [36] developed at 

Google for their computations on extremely large data sets, including their index of 

more than 1 trillion web pages. Computation in MapReduce is structured into three 

main phases: the map phase, which emits key-value pairs from the input data, the 

sort/shuffle phase, which groups key-value pairs with the same key, and the reduce 

phase, which evaluates a function using all values with the same key (Figure 9). 

These operations conceptually construct a large distributed hash table (map and 

sort/shuffle functions), from which each bucket is independently evaluated (reduce 

function). MapReduce is primarily used with datasets much larger than can be stored 

in RAM, so MapReduce relies on the Google File System (GFS) to efficiently 

transfer data within the large clusters. The GFS is specially designed using 
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redundancy, intelligent scheduling, and a lightweight directory master to provide 

performance and reliability even on commodity disks with high failure rates.  

MapReduce aims to simplify large scale parallel programming so application 

developers need only implement custom map and reduce functions, and the 

MapReduce framework provides the scheduling, monitoring, fault tolerance, and 

other common parallel services automatically. The power of MapReduce is many 

instances of the map and reduce functions can execute in parallel, potentially on large 

compute grids with hundreds or thousands of compute nodes. The main challenges 

using MapReduce are casting the algorithm into a format compatible with the 

execution model, and then tuning the application to be as efficient as possible, 

especially to minimize overhead and maximize load balance between compute nodes. 

One exciting recent result showed than a large class of PRAM algorithms can be 

efficiently implemented in a MapReduce framework [37].  

Open-source versions of MapReduce and the GFS, called Hadoop 

(http://hadoop.apache.org) and the Hadoop Distributed File System (HDFS), are 

actively developed and used by Google, Yahoo, Amazon, and other major vendors. 

Yahoo uses Hadoop clusters to support, in part, every web search result, and recently 

set a performance record for general purpose computing by sorting 1 terabyte of data 

(10 billion 100 byte records) in 209 seconds using 910 nodes with Hadoop 

(http://sortbenchmark.org/).  
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Figure 9. Schematic Overview of MapReduce. 
The input file(s) are automatically partitioned into chunks depending on their size and the desired 
number of mappers. Each mapper (shown here as m1 and m2) executes a user-defined function on a 
chunk of the input and emits key-value pairs. The shuffle phase creates a list of values associated with 
each key (shown here as k1, k2, and kn). The reducers (shown here as r1 and r2) evaluate a user-defined 
function for their subset of the keys and associated list of values, to create the set of output files. 
(Figure from [38]) 
 

Hadoop’s capabilities for efficient computations on large data sets are starting 

to also draw attention for scientific computing, and some early applications have 

demonstrated orders of magnitude improvements in running time using Hadoop and 

MapReduce. Furthermore, Hadoop is becoming a de facto standard for cloud 

computing, where remote computing resources are accessed generically, without 

regard for location or specific configuration. Several companies, including Amazon 

(http://aws.amazon.com) and their Elastic Compute Cloud (EC2), lease compute time 

on their large clusters, and Hadoop is a recommended solution for executing large 

scale cloud computing with minimal effort. 
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Thesis Statement 

GPGPU and MapReduce technologies can be successfully applied to 

accelerate and enable the problems of short read alignment and genome assembly 

from large volumes of short DNA sequences. 

 

Towards this thesis, Chapters 2 and 3 describe MUMmerGPU, which uses 

GPGPU technology to accelerate the alignment of many query sequences against a 

suffix tree representation of the reference. Chapter 4 describes CloudBurst, which 

also accelerates the alignment of many query sequences against a genome, but uses a 

distributed inverted index of the reference within MapReduce for the alignment. 

Chapter 5 builds on this result, and describes the Crossbow pipeline for rapidly 

aligning and genotyping entire human genomes using MapReduce. Chapter 6 

provides an in depth review of genome assembly, including the recent advances for 

assembling large genomes from short reads. Chapter 7 describes common mis-

assembly problems and the visual analytics program Hawkeye for inspecting genome 

assemblies for mis-assemblies. Chapter 8 describes the genome assembler Contrail, 

which uses the MapReduce paradigm to make feasible the assembly of large genomes 

from short reads without requiring large amounts of main memory. Chapter 9 

summarizes my contributions and describes possible avenues for future work. 
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Chapter 2: High-throughput Sequence Alignment Using 
Graphics Processing Units 
 

Summary of Contribution 

This chapter describes version 1.0 of the high-throughput sequence alignment 

program MUMmerGPU published in BMC Bioinformatics [17], and was developed 

in collaboration with Cole Trapnell, Art Delcher, and Amitabh Varshney at the 

University of Maryland. MUMmerGPU is a GPU accelerated implementation of the 

exact string matching component of the widely used sequence alignment program 

MUMmer [10, 14, 39], specifically designed to align large batches of short query 

sequences to a reference genome.  

GPUs were originally designed to accelerate graphics computation for on-

screen display, but can now be used to accelerate general purpose computation using 

their dozens or hundreds of lightweight stream processors composed of an ALU 

(arithmetic logic unit) and processor specific memory. MUMmerGPU uses the GPU 

to align many query sequences to the reference sequence in parallel, by aligning each 

query sequence on a different GPU stream processor. Each stream processor then 

executes the alignment kernel to match the given query string to a suffix tree 

representation of the reference stored on the GPU. 

With dozens or hundreds of stream processors, GPUs are especially well 

suited to regular, numerically intensive computation, such as matrix computations or 

image processing. Accelerating data intensive programs require careful consideration 

of memory usage to maximize cache coherency and minimize cache misses. 

MUMmerGPU uses a novel space filling curve memory layout to reorder the suffix 
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tree memory to improve locality for the characteristics of the GPU, and achieves a 10 

fold speedup in the alignment kernel, and a 3.5 fold overall speedup in end-to-end 

application processing time. 

Michael Schatz implemented the initial suffix tree construction, alignment 

kernel, and suffix tree reordering algorithms. Cole Trapnell and Michael Schatz 

worked together to complete the alignment kernel and CPU driver program, 

performed the performance experiments, and drafted the manuscript together. Arthur 

Delcher and Amitabh Varshney edited the manuscript and provided guidance for the 

project. 

 

Abstract 

The recent availability of new, less expensive high-throughput DNA 

sequencing technologies has yielded a dramatic increase in the volume of sequence 

data that must be analyzed. These data are being generated for several purposes, 

including genotyping, genome resequencing, metagenomics, and de novo genome 

assembly projects. Sequence alignment programs such as MUMmer have proven 

essential for analysis of these data, but researchers will need ever faster, high-

throughput alignment tools running on inexpensive hardware to keep up with new 

sequence technologies. 

This chapter describes MUMmerGPU, an open-source high-throughput 

parallel pairwise local sequence alignment program that runs on commodity Graphics 

Processing Units (GPUs) in common workstations. MUMmerGPU uses the new 

Compute Unified Device Architecture (CUDA) from nVidia to align multiple query 
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sequences against a single reference sequence stored as a suffix tree. By processing 

the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves 

more than a 10-fold speedup over a serial CPU version of the sequence alignment 

kernel, and outperforms the exact alignment component of MUMmer on a high end 

CPU by 3.5-fold in total application time when aligning reads from recent sequencing 

projects using Solexa/Illumina, 454, and Sanger sequencing technologies. 

MUMmerGPU is a low cost, ultra-fast sequence alignment program designed 

to handle the increasing volume of data produced by new, high-throughput 

sequencing technologies. MUMmerGPU demonstrates that even memory-intensive 

applications can run significantly faster on the relatively low-cost GPU than on the 

CPU. 

 

Background 

Sequence alignment has a long history in genomics research and continues to 

be a key component in the analysis of genes and genomes. Simply stated, sequence 

alignment algorithms find regions in one sequence, called here the query sequence, 

that are similar or identical to regions in another sequence, called the reference 

sequence. Such regions may represent genes, conserved regulatory regions, or any of 

a host of other sequence features. Alignment also plays a central role in de novo and 

comparative genome assembly [21, 40], where thousands or millions of sequencing 

reads are aligned to each other or to a previously sequenced reference genome. New, 

inexpensive large-scale sequencing technologies [41] can now generate enormous 

amounts of sequence data in a very short time, enabling researchers to attempt 
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genome sequencing projects on a much larger scale than previously. Aligning these 

sequence data using current algorithms will require very high-performance 

computers, of the type currently available only at the largest sequencing and 

bioinformatics centers. Furthermore, realizing the dream of widespread personal 

genomics at hospitals and other clinical settings requires sequence alignment to be 

low cost in addition to high-throughput. 

Most personal computer workstations today contain hardware for 3D graphics 

acceleration called Graphics Processing Units (GPUs). Recently, GPUs have been 

harnessed for non-graphical, general purpose (GPGPU) applications. GPUs feature 

hardware optimized for simultaneously performing many independent floating-point 

arithmetic operations for displaying 3D models and other graphics tasks. Thus, 

GPGPU programming has been successful primarily in the scientific computing 

disciplines which involve a high level of numeric computation. However, other 

applications could be successful, provided those applications feature significant 

parallelism. 

In this chapter, we describe a GPGPU program called MUMmerGPU that 

performs exact sequence alignment using suffix trees on graphics hardware. Our 

implementation runs on recent hardware available from nVidia using a new software 

development kit (SDK) for GPGPU progamming called Compute Unified Device 

Architecture (CUDA). MUMmerGPU is targeted to tasks in which many small 

queries, such as reads from a sequencing project, are aligned to a large reference 

sequence. To assess the performance of MUMmerGPU we compare it to the exact 

alignment component of MUMmer called mummer. MUMmer is a very fast and 
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widely used application for this type of task [14], and is also used as the alignment 

engine for the comparative assembler AMOScmp [40]. Overall MUMmerGPU is 

more than three times faster than mummer on typical sequence alignment tasks 

involving data from three recent sequencing projects. As implemented, 

MUMmerGPU is a direct replacement for mummer and can be used with any other 

programs that process mummer output, including the other components of MUMmer 

that post-process the exact alignments computed by mummer into larger inexact 

alignments. 

 

Sequence alignment 

One of the most successful algorithms for computing alignments between 

sequences is MUMmer. The first stage of MUMmer is performed by a component 

called mummer, which computes exact alignments between the pair of sequences. 

These alignments can be used directly to infer large-scale sequence structure, or they 

can be used to seed extensions to longer inexact alignments using the post-processing 

tools bundled with MUMmer [10, 14, 39]. Unlike other popular sequence alignment 

programs such as BLAST [11], FASTA [42], and LAGAN [43], which use fixed 

length seeds for constructing their alignments, mummer alignments are variable-

length maximal exact matches, where maximal means that they cannot be extended 

on either end without introducing a mismatch. First, mummer pre-processes the 

reference sequence to create a data structure, called a suffix tree. This data structure 

allows mummer to then compute all maximal exact substring alignments of a query 

sequence in time proportional to the length of the query. The time to pre-process the 
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reference sequence is proportional to its length (which may be considerable for very 

long sequences), but this time becomes insignificant when amortized across many 

query searches. Consequently, suffix trees are used in several alignment algorithms, 

including MGA [44] and REPuter [45]. The suffix tree [46] for string S is a tree that 

encodes every suffix of S with a unique path from the root to a leaf. For a string of 

length n, there are n leaf nodes for each of the n suffixes in S. Each edge in T is 

labeled with a substring of variable length of S called an edge-label. Concatenating 

edge-labels along a path from the root to a node i forms a substring, called i's path-

label in S. Leaves in the tree are labeled with the position where the path-label begins 

in S. Internal nodes have at least 2 children, representing positions where repeated 

substrings diverge. The edge-labels of the children of a node each begin with a 

different character from the alphabet, so there is at most one child for each letter of 

the reference string's alphabet. Consequently, the depth of any leaf is at most n, and 

there are O(n) nodes in the tree. 

A suffix tree can be constructed in O(n) time and O(n) space for a string over 

a fixed alphabet, such as for DNA or amino acids, by using additional pointers in the 

tree called suffix links. The suffix link of node v with path-label xα points to node v' 

with path-label α where x is a single character and α is a substring [47, 48]. Suffix 

links are used to navigate between equivalent nodes of consecutive suffixes without 

returning to the root of the tree. 
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Figure 10. Aligning a query against a suffix tree. 
Aligning the query ATAT against the suffix tree for ATATCAT$. The path from the root to each leaf 
encodes a sequence that occurs in the reference at the label of that leaf. The blue path shows the extent 
of the alignment in the tree. The query occurs at position 1 with an alignment length of 4. For l ≥ 2, 
MUMmerGPU will print the red nodes as alignments with an alignment length equal to 2, the sequence 
depth of the lowest common ancestor between the red nodes and the blue node. 

 

All substrings of a query string Q of length m that occur in a string S can be 

determined in time proportional to m by navigating the suffix tree T of S to follow the 

characters in Q. The algorithm begins by finding the longest prefix of Q that occurs in 

T, descending from the root of T and following exactly aligning characters in Q for as 

long as possible. Assume that substring Q[1, i] is found in T along the path-label to 

node v, but there is no edge from v labeled with the next character in Q because Q[1, i 

+ 1] is not present in S. The algorithm can then report the occurrences of Q[1, i] at the 

positions represented by all leaves in the subtree rooted at v after checking the 

alignments are maximal by comparing the left flanking base of the query and 

reference. The algorithm then continues by finding the longest substrings for each of 

the m - 1 remaining start positions in Q. However, instead of navigating the tree from 
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the root each time, the algorithm resumes aligning with Q[i + 1] after following the 

suffix link from v to v' and without reprocessing previously aligned characters. 

Given a user-specifed minimum length l and a query Q, suppose there is an 

exact alignment of length M ≥ l for the substring starting at position i in the query and 

ending at or along the edge to node N. The length of the alignment (M) is equal to the 

length of the path-label of the parent of node N plus the length along the edge to N. 

Starting from N, the algorithm follows successive parent links up the tree, subtracting 

the edge length of each link from the alignment length, until the alignment length is 

less than l as shown in Figure 10. Let R be the node with the smallest string depth 

greater than l on this path. For each leaf L in the subtree rooted by R, the path-label to 

the lowest common ancestor of N and L defines a substring starting at i in Q which 

occurs in both Q and S at the reference position defined by the leaf label of L. For a 

thorough discussion of suffix trees and their applications, see Gusfield's classic work 

on sequence analysis [48]. 

 

GPGPU programming 

As the GPU has become increasingly more powerful and ubiquitous, 

researchers have begun exploring ways to tap its power for non-graphics, or general-

purpose (GPGPU) applications [49]. This has proven challenging for a variety of 

reasons. Traditionally, GPUs have been highly specialized with two distinct classes of 

graphics stream processors: vertex processors, which compute geometric 

transformations on meshes, and fragment processors, which shade and illuminate the 

rasterized products of the vertex processors. The GPUs are organized in a streaming, 



 

 30 
 

data-parallel model in which the processors execute the same instructions on multiple 

data streams simultaneously. Modern GPUs include several (tens to hundreds) of each 

type of stream processor, so both graphical and GPGPU applications are faced with 

parallelization challenges [50]. Furthermore, on-chip caches for the processing units 

on GPUs are very small (often limited to what is needed for texture filtering 

operations) compared to general purpose processors, which feature caches measured 

in megabytes. Thus, read and write operations can have very high latency relative to 

the same operations when performed by a CPU in main memory. 

Most GPGPU successes stem from scientific computing or other areas with a 

homogeneous numerical computational component [51, 52]. These applications are 

well suited for running on graphics hardware because they have high arithmetic 

intensity – the ratio of time spent performing arithmetic to the time spent transferring 

data to and from memory [53]. In general, the applications that have performed well 

as a GPGPU application are those that can decompose their problems into highly 

independent components each having high arithmetic intensity [54]. Some 

bioinformatics applications with these properties have been successfully ported to 

graphics hardware. Liu et al. implemented the Smith-Waterman local sequence 

alignment algorithm to run on the nVidia GeForce 6800 GTO and GeForce 7800 

GTX, and reported an approximate 16× speedup by computing the alignment score of 

multiple cells simultaneously [55]. Charalambous et al. ported an expensive loop 

from RAxML, an application for phylogenetic tree construction, and achieved a 1.2× 

speedup on the nVidia GeForce 5700 LE [56]. 
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nVidia's new G80 architecture radically departs from the traditional 

vertex+fragment processor pipeline. It features a set of multiprocessors that each 

contain a number of stream processors (Figure 11). Graphics applications can use 

these as either vertex or fragment processors, and GPGPU applications can program 

them for general computation. All processors on a single multiprocessor 

simultaneously execute the same instruction, but different multiprocessors can 

execute different instructions. nVidia anticipated the benefits of such a unified 

architecture for GPGPU computing, and released the Compute Unified Device 

Architecture (CUDA) SDK to assist developers in creating non-graphics applications 

that run on the G80 and future GPUs. CUDA offers improved flexibility over 

previous GPGPU programming tools, and does not require application writers to 

recast operations in terms of geometric primitives, as was required by earlier GPGPU 

environments [57]. 

 

 

Figure 11. Simplified view of the nVidia G80 Architecture. 
This figure, inspired by a similar figure in [57] shows how the GPU is organized into several (N) 
multiprocessors, each containing multiple (M) stream processors that simultaneously execute the same 
instruction. Each processor can access the texture cache very quickly, but reads and writes to the 
onboard RAM have high latency. 
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CUDA enables programmers to write programs that run on the GPU in a 

restricted form of the C programming language, and compiled into G80 bytecode. 

CUDA programs typically consist of a component that runs on the CPU, or host, and 

a smaller but computationally intensive component called the kernel that runs in 

parallel on the GPU (Figure 12). The kernel cannot access the CPU's main memory 

directly – input data for the kernel must be copied to the GPU's on-board memory 

prior to invoking the kernel, and output data also must first be written to the GPU's 

memory. All memory used by the kernel must be preallocated, and the kernel cannot 

use recursion or other features requiring a stack, but loops and conditionals are 

allowed. Furthermore, the number of registers per multiprocessor is limited and the 

multiprocessor schedules fewer processors to compute simultaneously if the number 

of registers used per kernel is too high. Consequently, high-performance kernel code 

requires careful tuning to reduce the number of registers used and limit the amount of 

branching. 

 

Figure 12. Typical GPGPU application flow. 
Input data for a GPGPU application must be copied to the GPU's memory along with a pre-allocated 
output buffer prior to invoking the GPU-based kernel. Output from the kernel is read back into main 
memory and reported to the user. 
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The improved flexibility of CUDA does not solve the more fundamental 

problems caused by the G80's stream-computing organization: the relatively small 

cache and associated high memory latency for memory intensive programs. However, 

the G80's texture memory is cached to speed up memory intensive texture mapping 

operations, and can be used by GPGPU programs. GPGPU programs can pack their 

data structures into one-, two-, or three-dimensional arrays stored in texture memory, 

and thus use the cache for read-only memory accesses to these data structures [57]. 

Performance is further improved by utilizing one of several software techniques for 

maximizing the benefit offered by even a small cache. One such class of techniques 

involves reordering either the data in memory or the operations on those data to 

maximize data and temporal locality. Mellor-Crummey et al. reported significant 

speedup in particle interaction simulations, which feature highly irregular access 

patterns, by reordering both the locations of particles in memory and the order in 

which interactions were processed. They tested a reordering strategy based on space-

filling curves, such as the Hilbert and Morton curves [58]. 

 

Implementation 

The MUMmerGPU algorithm performs parallelized exact string alignment on the 

GPU (Figure 13). First a suffix tree of the reference sequence is constructed on the 

CPU using Ukkonen's algorithm [47] and transfered to the GPU. Then the query 

sequences are transfered to the GPU, and are aligned to the tree on the GPU using the 

alignment algorithm described above. Alignment results are temporarily written to the 

GPU's memory, and then transfered in bulk to host RAM once the alignment kernel is 
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complete for all queries. Finally, all maximal alignments longer than a user-supplied 

value (l) are reported by post-processing the raw alignment results on the CPU. The 

output format and many parameters of MUMmerGPU are identical to those of 

mummer (with the -maxmatch option), up to the order in which alignments appear in 

the output for each query, and thus MUMmerGPU can be used as a drop-in 

replacement for mummer. In particular, all programs in the NUCmer suite of 

programs that use the output of mummer, including those that extend the exact 

alignment seeds to larger inexact alignments, can take advantage of the GPU 

parallelization [10, 14, 39]. 

 

 

Figure 13. MUMmerGPU Algorithm. 
MUMmerGPU builds multiple suffix trees of the reference and partitions the query sequences into 
sets, called QueryBlocks, depending on the memory available on the GPU. Sequences within a given 
QueryBlock are aligned in parallel on the GPU. 
 

The G80 has a relatively small amount of on-board memory, so the data are 

partitioned into large blocks so that the reference suffix tree, query sequences, and 

output buffers will fit on the GPU. As of this writing, the amount of on-board 
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memory for a G80 ranges from 256 MB to 768 MB. A suffix tree built from a large 

reference sequence, such as a human chromosome, will exceed this size, so 

MUMmerGPU builds k smaller suffix trees from overlapping segments of the 

reference. MUMmerGPU computes k at runtime to fill approximately one third of the 

total GPU device memory with tree data. The trees overlap in the reference sequence 

by the maximum query length m supported by MUMmerGPU (currently 8192 bp) to 

guarantee all alignments in the reference are found, but alignments in the overlapping 

regions are reported only once. 

After building the trees, MUMmerGPU computes the amount of GPU 

memory available for storing query data and alignment results. The queries are read 

from disk in blocks that will fill the remaining memory, concatenated into a single 

large buffer (separated by null characters), and transferred to the GPU. An auxiliary 

1D array, also transfered to the GPU, stores the offset of each query in the query 

buffer. Each multiprocessor on the GPU is assigned a subset of queries to process in 

parallel, depending on the number of multiprocessors and processors available. The 

executable code running on each processor, the kernel, aligns a single query sequence 

from the multiprocessor's subset to the reference. The kernel aligns the query to the 

reference by navigating the tree using the suffix-links to avoid reprocessing the same 

character of the query, as described above. Reverse complement alignments are 

computed using a second version of the kernel which reverse complements the query 

sequences on-the-fly while aligning, allowing for computing both forward and 

reverse alignments without any additional data transfer overhead. The output buffer 

contains a slot to record the alignment result for each of the m - l + 1 substrings for a 
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query of length m. The fixed size alignment result consists of the node id of the last 

visited node in the tree and length of the substring that exactly aligns. This 

information is sufficient to print all positions in the reference that exactly align the 

substring on the CPU. 

After the kernel is complete for all the queries, the output buffer on the GPU 

is transfered to host RAM and the alignments are printed by the CPU. Each slot in the 

output buffer corresponds to a specific substring of a query. If multiple trees were 

built from the reference (k > 1), then the output slots for each tree are preserved until 

the queries in a block have been aligned against each tree. This way all of the 

alignments for a given query can be printed in a single block, following the syntax 

used by mummer. 

 

GPU Memory Layout 

The suffix tree is "flattened" into two 2D textures, the node texture and the 

child texture. Each tree node is stored in a pair of 16-byte texels (texture elements) in 

these two textures. The node texture stores half the information for a node, including 

the start and end coordinates of the edge sequence in the reference, and the suffix link 

for the node. The remaining information for a node – the pointers to its A, C, G & T 

children – is stored in the child texture, addressed in parallel to the node texture. An 

auxiliary table containing each node's edge length, sequence depth, parent pointer, 

and suffix number for leaf nodes, is stored in RAM and is used during the output 

phase. 
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In the CUDA architecture, a program can store read-only data as cached 

textures. The G80's proprietary caching scheme takes advantage of 2D locality 

common in texturing operations. Therefore, the algorithm attempts to optimize the 2D 

locality of the tree structure in these textures by organizing the nodes in 32 × 32 texel 

blocks as shown in Figure 14. Near the root of the tree (node depth <16), nodes are 

assigned using a level-order (breadth-first) traversal of the tree creating "wide" blocks 

of the tree. This ensures that all nodes near the root of the tree are placed in the first 

32 × 32 texel blocks, and guarantees the children of a given node will be at (nearly) 

adjacent cells in the texture. This is useful because at this depth, loading a single 32 × 

32 block for one kernel is likely to be reused for the other kernels running in parallel. 

Further from the root (depth ≥ 16), nodes are arranged in "tall" blocks so that a node, 

its children, grandchildren, and great-grandchildren are adjacently placed in the same 

(or adjacent) 32 × 32 block. As multiple queries are aligned against lower parts of the 

tree, it becomes less likely that their kernels will access many of the same nodes. 

Thus, the data reordering scheme attempts to increase the cache hit rate for a single 

thread. The exact specification of the G80's caching scheme is proprietary 

information, but empirically, this hybrid layout seems to maximize the cache hit rate 

near the root of the tree, and towards the leaves where the kernel access patterns are 

radically different. 
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Figure 14. Suffix Tree Layout in MUMmerGPU. 
The nodes of the suffix tree are rearranged into cache blocks to optimize 2D locality. Near the root of 
the tree, nodes of the same depth are placed into the same "wide" block. Futher down the tree, nodes 
from the same subtree are placed into the same "tall" block. MUMmerGPU uses blocks of 32 × 32 
nodes, but for clarity, 8 nodes cache blocks are displayed here. 
 

The reference sequence for the tree is transferred to the GPU as a third 2D 

texture, and is reordered along a simple 2D space-filling curve to maximize the cache 

hit rate for subsequent accesses along a node's edge. The sequence is reordered so that 

beginning with the first character, every four characters in the reference become the 

topmost four characters in the columns of the 2D array. Once the array contains 4 × 

65,536 characters, successive four-character chunks become the next four characters 

in the columns, left-to-right, and so on. We experimented with a variety of other data 

reordering schemes, including along a Morton curve and other space filling curves, 

and found this to have the best performance on several reference sequences. 

Altogether, using cache memory organized with the spacing-filing curves for the 

suffix tree and reference sequence improved the kernel execution speed by several 

fold. 
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Complexity of MUMmerGPU 

MUMmerGPU constructs its suffix trees in O(n) time with Ukkonen's 

algorithm, where n is the length of the reference. The alignment kernel running on the 

card computes all exact substring alignments for each query in time linear in the 

length of the query. The kernel is an implementation of existing alignment methods 

[48], but with many independent instances running simultaneously on the GPU. 

MUMmerGPU uses both GPU memory and main system memory. Suffix 

trees use an amount of memory linear in the length of the reference from which they 

are constructed [48]. The suffix trees in MUMmerGPU thus each occupy O(n/k + m) 

space, where k is the number of overlapping trees specified by the user, and m is the 

maximum query length supported by MUMmerGPU. Note that for most expected 

uses of MUMmerGPU n >> m. Only a fraction of that total space is actually 

transferred to the GPU. In the current implementation, 32 out of every 48 bytes per 

node are transferred. The remaining bytes are stored in the host-only auxiliary table 

used only for printing results by the CPU. For each query, MUMmerGPU transfers 

the null terminated query sequence prepended with a special mismatch character, 

along with two 4-byte entries in auxiliary tables used by the kernel. For a query of 

length m, and a minimum substring length l, m - l + 1 output slots are reserved to 

record the query's substring alignments, and each output slot occupies 8 bytes. The 

total space required on both the CPU and the GPU for each query is 8(m - l + 1) + (m 

+ 10) bytes. On a G80 with 768 MB of on-board RAM, there is sufficient RAM to 

store a tree for a 5 Mbp reference sequence, and 5 million 25 bp or 500,000 100 bp 

query sequences. 
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Results and Discussion 

We measured the relative performance of MUMmerGPU by comparing the 

execution time of the GPU and CPU version of the alignment code, and the total 

application runtime of MUMmerGPU versus the serial application mummer. The test 

machine has a 3.0 GHz dual-core Intel Xeon 5160 with 2 GB of RAM, and an nVidia 

GeForce 8800 GTX. The 8800 GTX has 768 MB of on-board RAM and a G80 with 

16 multiprocessors, each of which has 8 stream processors. At the time of this 

writing, the retail price of the 8800 GTX card is $529, and a retail-boxed Intel Xeon 

5160 CPU is $882 (http://www.newegg.com). Input and output was to a local 15,000 

RPM SATA disk. The machine was running Red Hat Enterprise Linux release 4 

update 5 (32 bit), CUDA 1.0, and mummer 3.19. 

We ported the MUMmerGPU alignment kernel to use the CPU instead of the 

GPU to isolate the benefit of using graphics hardware over running the same 

algorithm on the CPU. CUDA allows programmers to write in a variant of C, so 

porting MUMmerGPU to the CPU required only straightforward syntactic changes, 

and involved no algorithmic changes. Where the CUDA runtime invokes many 

instances of the kernel on the GPU simultaneously, the CPU executes each query in 

the block sequentially. 

The first test scenario was to align synthetically constructed reads to a 

bacterial genome. We used synthetic reads in order to explore MUMmerGPU's 

performance in the absence of errors and over a wider variety of query lengths than 

are available with genuine reads. The synthetic test reads consisted of 50-, 100-, 200-, 

400-, and 800-character substrings (uniformly randomly) sampled from the Bacillus 
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anthracis genome (GenBank ID: NC_003997.3). Thus, each read exactly aligns to the 

genome end-to-end at least once, and possibly more depending on the repeat content 

of the genome. When aligning each of the five sets of reads, we used l equal to the 

read size for the set. Each set contained exactly 250,000,000 base pairs of query 

sequence divided evenly among all the reads in the set. 

The time for building the suffix tree, reading queries from disk, and printing 

alignment output is the same regardless of whether MUMmerGPU ran on the CPU or 

the GPU, since those parts of MUMmerGPU always run on the CPU. The actual 

sequence alignment portion of MUMmerGPU ran dramatically faster, over 10× faster, 

on the GPU, despite the added cost of transferring the tree and query data to the GPU. 

The speedup of MUMmerGPU (not including the costs mentioned above shared by 

both variants) running on the GPU over MUMmerGPU on the CPU is shown in 

Figure 15. 

 

Figure 15. MUMmerGPU Speedup on the GPU over the CPU. 
The decrease in speedup when processing error-free synthetic reads as read length increases is due to a 
combination of thread divergence and poor cache hit rate. 
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For longer reads, the speedup of using the GPU is diminished, because of poor 

cache performance and thread divergence, both of which are acknowledged as 

potential performance problems on the G80 [57]. All queries begin at the root of the 

tree, and many queries will share common nodes on their paths in the tree. However, 

as the kernel travels deeper into the tree for longer reads, the texture elements stored 

in the cache are reused less often, thus reducing the cache hit rate, and increasing the 

overall average access time. In addition, even though queries are the same length, the 

alignment kernel may not visit the same number of nodes, nor spend the same amount 

of time comparing to edges, because edges in suffix trees have variable length. This 

creates divergence among the threads processing queries, and the multiprocessor will 

be forced to serialize their instruction streams. It is difficult to quantify the relative 

contribution of these effects, but it is likely that both are significant sources of 

performance loss. 

In addition to the test with synthetic data, we also aligned reads from several 

recent sequencing projects against the genomes from which the reads were generated. 

The projects included Streptococcus suis sequenced with the Solexa/Illumina 

sequencer (http://www.sanger.ac.uk/Projects/S_suis/), multiple strains of Listeria 

monocytogenes sequenced using 454 pyrosequencing (Genome GenBank ID: 

NC_003210.1, read TI numbers 1405533909 – 1405634798, 1406562010 – 

1406781638, 1407073020 – 1411183505, 1413490052 – 1415592095, 1415816363 – 

1415903784) and Caenorhabditis briggsae sequenced with standard ABI 3730xl 

Sanger-type sequencing [59]. We aligned the reads against both strands of the 

chromosomal DNA for L. monocytogenes and S. suis, and against both strands of 
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Chromosome III of C. briggsae. Little data from Solexa/Illumina has been made 

public at the time of this writing, and the public data set available had only a single 

lane’s worth of data. To represent the full set of reads from a full Solexa/Illumina run, 

we concatenated 10 copies of the publicly available file containing 2,659,250 36 bp 

reads to form the S. suis query set. The reference sequence and queries in all three 

tests did not include ambiguous bases. For these three tasks, Table 1 shows the 

runtime parameters used and the overall speedup of MUMmerGPU over mummer. 

Figure 16 shows the wall-clock time spent by MUMmerGPU in the various phases of 

the algorithm, including kernel execution and I/O between CPU and GPU. 

 

Table 1. MUMmerGPU Runtime Parameters and Speedup. 

 

 

Figure 16. MUMmerGPU Runtime by Algorithm Phase 
The stacked bar charts indicate the amount of time spent in each phase of the MUMmerGPU for the 
three test sets. Given a sufficiently large number of sequencing reads, the time spent building the suffix 
tree is small compared to time spent aligning queries. 
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For each of the alignment tasks, MUMmerGPU was between 3.47 and 3.79 

times faster than mummer. For C. briggsae, MUMmerGPU spent most of its time 

aligning queries on the GPU. Because we aligned all of the reads from the sequence 

project against chromosome III of the C. briggsae, many of the reads did not align 

anywhere in the reference. As a result, a relatively short amount of time was spent in 

writing alignment output to disk. For other alignments, such as for the L. 

monocytogenes and S. suis test sets, the output phase dominates the running time of 

MUMmerGPU. For these tasks, printing the output in parallel with aligning a block 

of queries would provide substantial speedup, as it would hide much of the time spent 

aligning queries on the card. We plan to adopt this strategy in a future release of 

MUMmerGPU. 

Despite the performance hazards experienced for longer simulated reads, 

MUMmerGPU on the GPU consistently outperforms mummer on real sequencing 

data by more than a factor of three in wall-clock application running time. Unlike the 

idealized simulated reads, these reads are variable length and have sequencing error, 

which will cause further divergence in the kernel executions. Furthermore, the C. 

briggsae alignment required the use of a segmented suffix tree and associated data 

transfer overhead. In general, MUMmerGPU confers significant speedup over 

mummer on tasks in which many short queries are aligned to a single long reference. 
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Conclusion 

Operations on the suffix tree have extremely low arithmetic intensity – they 

consist mostly of following a series of pointers. Thus, sequence alignment with a 

suffix tree might be expected to be a poor candidate for a parallel GPGPU 

application. However, our results show that a significant speedup, as much as a 10-

fold speedup, can be achieved through the use of cached texture memory and data 

reordering to improve access locality. This speedup is realized only for large sets of 

short queries, but these read characteristics are beginning to dominate the marketplace 

for genome sequencing. For example Solexa/Illumina sequencing machines create on 

the order of 20 million 50 bp reads in a single run. For a single human genotyping 

application, reads from a few such runs need to be aligned against the entire human 

reference genome. Thus our application should perform extremely well on workloads 

commonly found in the near future. The success of our application is in large part the 

result of the first truly general purpose GPU programming environment, CUDA, 

which allowed us to directly formulate and implement our algorithm in terms of 

suffix tree navigation and not geometric or graphics operations. This environment 

made it possible to efficiently utilize the highly parallel and high speed 8800 GTX. 

An 8800 GTX is similar in price to a single 3.0 Ghz Xeon core, but offers up to 3.79× 

speedup in total application runtime. Furthermore, in the near future, a common 

commodity workstation is likely to contain a CUDA compliant GPU that could be 

used without any additional cost. 

Even though MUMmerGPU is a low arithmetic memory intensive program, 

and the size of the stream processor cache on the G80 is limited, MUMmerGPU 



 

 46 
 

achieved a significant speedup, in part, by reordering the nodes to match the access 

patterns and fully use the cache. We therefore expect with careful analysis of the 

access pattern, essentially any highly parallel algorithm to perform extremely well on 

a relatively inexpensive GPU, and anticipate widespread use of GPGPU and other 

highly parallel multicore technologies in the near future. We hope by making 

MUMmerGPU available open source, it will act as a roadmap for a wide class of 

bioinformatics algorithms for multi-processor environments. 
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Chapter 3: Optimizing Data Intensive GPGPU Computations for 

DNA Sequence Alignment 

Summary of Contribution 

This chapter describes version 2.0 of the high-throughput sequence alignment 

program MUMmerGPU published in the journal Parallel Computing [35], and was 

developed in collaboration with Cole Trapnell at the University of Maryland. 

MUMmerGPU 2.0 improves on MUMmerGPU 1.0 [17] to increase performance of 

aligning large batches of next generation sequence reads to a reference genome.  

MUMmerGPU 1.0 accelerates this computation with a single GPU kernel that 

computes maximal substring matches between the query sequence and a suffix tree 

representation of the reference genome stored on the GPU. The match kernel outputs 

the longest exact match between the query and the reference starting at each position 

of the query. MUMmerGPU 1.0 would then post-process the exact matches on the 

CPU to compute all maximal exact matches between the query and the reference. 

MUMmerGPU 2.0 accelerates this post-processing with a second GPU kernel using a 

novel stackless depth first search of the suffix tree. A stackless depth first search was 

necessary to overcome a major limitation of the GPU that memory cannot be 

dynamically allocated on the GPU. The new kernel was 10 times faster than the CPU 

version of the depth first search. 

MUMmerGPU 2.0 also carefully examined the memory and kernel parameters 

to better tune the performance on a variety of common workloads. A total of 128 
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different configurations were evaluated, and we determine higher stream processor 

occupancy is the dominate factor towards achieving high GPU performance. 

 Michael Schatz implemented the second GPU kernel and improved 

performance of the match kernel. Cole Trapnell evaluated the memory and kernel 

parameters, implemented support for the second GPU kernel in the driver program, 

and made major improvements to the driver program for processing large genomes. 

Cole Trapnell and Michael Schatz wrote the paper together. 

  

Abstract 

MUMmerGPU uses highly-parallel commodity graphics processing units 

(GPU) to accelerate the data-intensive computation of aligning next generation DNA 

sequence data to a reference sequence for use in diverse applications such as disease 

genotyping and personal genomics.  MUMmerGPU 2.0 features a new stackless 

depth-first-search print kernel and is 13x faster than the serial CPU version of the 

alignment code and nearly 4x faster in total computation time than MUMmerGPU 

1.0. We exhaustively examined 128 GPU data layout configurations to improve 

register footprint and running time and conclude higher occupancy has greater impact 

than reduced latency. MUMmerGPU is available open-source at 

http://mummergpu.sourceforge.net. 
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Introduction 

Graphics Processing Units (GPUs) were originally designed for efficient data-

parallel graphics computations, such as in scene rasterization or lighting effects. 

However, as GPUs have become more powerful with dozens or hundreds of stream 

processors, researchers have begun using them for general-purpose (GPGPU) 

computations. Early attempts to exploit GPU’s high level of parallelism for non-

graphical tasks required application developers first re-cast their problem into 

graphics primitives, and re-interpret graphical results. However, recent toolkits from 

both nVidia [57] and ATI [60] have enabled developers to write functions called 

kernels in a restricted variant of C that execute in parallel on the stream processors. 

High-level toolkits coupled with powerful, low cost hardware have sparked huge 

interest in developing GPGPU versions of data-parallel applications. 

Read mapping is a data-parallel computation essential to genome re-

sequencing, a rapidly growing area of research. In this computation, millions of short 

DNA sequences, called reads, obtained from a donor are individually aligned to a 

reference genome to find all locations where each read occurs in the reference 

sequence, with allowance for slight mismatches for biological and technical reasons. 

Read mapping can be used, for example, to catalog differences in one person’s 

genome relative to the reference human genome, or compare the genomes of model 

organisms such as Drosophila melanogaster (fruit fly) or Arabidopsis thaliana (thale 

cress). Researchers use this information for a wide variety of analyses, since even a 

single nucleotide difference can have a dramatic effect on health and disease. Next-

generation DNA sequencing technologies from Illumina, 454 Life Sciences, and 
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Applied Biosystems have recently become extremely popular because they can create 

billions of bases of sequence data in a single sequencing run at relatively low cost 

[41].  The DNA of James Watson, a co-discoverer of the molecule’s structure, was 

recently sequenced using technology from 454 Life Sciences in just two months.  

Biotechnology researchers believe that within the next several years, an individual 

will be able to have his or her DNA sequenced in only a few days and for as little as 

$1000 [61]. Despite their popularity, the most widely used sequence alignment 

programs are unable to handle the extreme workload required by the new technology. 

The MUMmerGPU system uses the highly parallel graphics cards from nVidia and 

their CUDA GPGPU toolkit to process next generation sequencing reads in a fraction 

of the time of other programs [17].  

MUMmerGPU 2.0 uses the same suffix tree based match kernel as described 

in the original version of MUMmerGPU, but we have added several significant 

improvements to increase performance and capabilities for the overall application. 

First, we implemented a new query streaming model in which reads are streamed past 

overlapping segments of the reference, allowing us to compute alignments to 

Mammalian-sized reference genomes. Second, we implemented a new GPU-based 

print-kernel that post-processes the tree coordinates from the match kernel into exact 

alignment coordinates suitable for printing. This computation had previously been the 

limiting factor in end-to-end application time for commonly used parameters. The 

print kernel performs the computation via an iterative depth-first-search on the suffix 

tree using a constant amount of memory and no stack. This non-traditional 

implementation is required to meet the severe restrictions on kernel code, but is 
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between 1.5- and 4-fold faster than the previous (CPU-based) version of the routine. 

Popov et al recently reported a different algorithm for traversing trees in a CUDA 

kernel [62] which requires additional pointers between the leaf nodes in a kd-tree, but 

our technique is applicable to any tree without additional pointers. Finally, we 

optimized performance for both kernels by identifying the best organization of the 

DNA sequencing reads and suffix tree in GPU memory. We explore and report on 

128 variations of the data layout policy, and quantify the tradeoffs involved for kernel 

complexity, cache use, and data placement. We find that optimizing these choices can 

greatly accelerate performance, and mistuned choices have an equal but negative 

effect on performance compared to the naïve version. Processor occupancy 

dominated performance for our data-intensive application, but techniques that reduce 

GPU memory latency without compromising occupancy were also generally 

beneficial.  We describe several techniques to reduce kernel register footprint and 

thus improve occupancy that are widely applicable to GPGPU programs. Overall, 

MUMmerGPU 2.0 is nearly 4x faster in total computation time than the originally 

published version of the code for the most commonly encountered workloads. 

 

GPGPU Programming 

Recent GPUs from nVidia have up to 256 stream processors running at a core 

frequency of up to 650 MHz. [63] Each stream processor has an individual arithmetic 

logic unit (ALU), but the stream processors are grouped into multiprocessors such 

that all of the stream processors in the same multiprocessor execute the same 

instruction at the same time (SIMD architecture). The functions that execute on the 
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stream processors are called kernels, and a single instance of a running kernel is 

called a thread. Threads are launched in groups of 32 called warps that the 

multiprocessor uses for scheduling, and are further organized in larger groups called 

thread blocks of user specified size with the guarantee that all threads in the same 

thread block will execute concurrently. A GPU has up to 1.5 GB of on-board 

memory, but very small data caches compared to general purpose CPUs (only 8KB 

per multiprocessor). Cached memory is only available for read-only data and for a 

small number of word-aligned data types called textures. Non-cached memory has 

very high latency (400 to 600 clock cycles), but multiprocessors attempt to hide this 

latency by switching between warps as they stall.  

Kernel code is written in a restricted variant of C and compiled to GPU 

specific machine code using the CUDA compiler, NVCC. Developing kernel code 

can be challenging because commonly used programming features, such as dynamic 

memory allocation and recursion, are not available. Loops and conditionals are 

allowed in kernel code, but if different threads in the same warp follow different 

branches, then the multiprocessor will automatically serialize or stall execution until 

the threads resynchronize, thus cutting effective parallelism and end-to-end 

application performance. Furthermore, each multiprocessor has a fixed number of 

registers available for its stream processors, so the number of threads that can execute 

concurrently is determined in part by how many registers each thread requires. The 

percent of stream processors in a multiprocessor that execute concurrently, processor 

occupancy, is available in discrete levels depending on the number of registers used 

by each thread, the thread block size, and the physical characteristics of the device 
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including the number of registers present on each multiprocessor, the maximum 

number of concurrent warps, and the maximum number of concurrent thread blocks 

Threads are executed in discrete units of the thread block size such that the total 

number of registers used by all concurrent threads is at most the number available on 

the device. For example, an nVidia 8800 GTX has 8192 registers per multiprocessor, 

and can execute at most 8 concurrent thread blocks per multiprocessor and at most 24 

concurrent warps of 32 threads per multiprocessor (a maximum of 768 concurrent 

threads total). If the thread block size is 256 a kernel will have 100% occupancy if it 

uses at most 10 registers (allowing 3 complete thread blocks), 66% occupancy for at 

most 16 registers (allowing 2 complete thread blocks), 33% occupancy for at most 32 

registers (allowing 1 complete thread block) , and fail to launch if each thread 

requires more than 32 registers because one thread block would require more than 

8192 registers  Finally, kernel code cannot directly address main memory nor other 

devices, so inputs to the kernel must be copied to the GPU’s on-board memory prior 

to execution and outputs must be copied to main memory from on-board memory 

after execution. The full details of the device capabilities and programming model are 

described in the CUDA documentation. [57] 

GPU accelerated versions of data parallel-applications have been developed 

for numerous application domains, including molecular dynamics, numerical 

analysis, meteorology, astrophysics, cryptography, and computational biology. [55, 

64-66] The most successful GPGPU applications have generally had high arithmetic 

intensity, meaning processing time is dominated by arithmetic operations with 

relatively few memory requests. These applications are well suited to the numerical 
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capabilities of the stream processors. In contrast, data intensive applications requiring 

fast random access to large data sets have been generally less successful on the GPU, 

because of the GPUs small data caches and relatively high latency (400-600 clock 

cycles) for on-board memory accesses.  

 

DNA Sequence Alignment 

DNA is the molecule that encodes the genetic blueprint for the development 

and traits of an organism. It is composed of a long sequence of four possible 

nucelotides or ‘base pairs’ (bp): adenine (abbreviated A), cytosine (C), guanine (G) 

and thymine (T). The sequence of base pairs in biologically active regions called 

genes determines the amino acid sequence and function of biologically active 

molecules called proteins. Even a single nucleotide difference in a gene between two 

individuals can substantially change the function of its protein product and lead to 

disease. Larger insertion, deletion, or rearrangement events of several nucleotides can 

have profound effect on development, such as the chromosomal duplication 

responsible for Down syndrome. Numerous other human diseases and traits have 

been linked to both small-scale single nucleotide polymorphisms and larger genetic 

variations, and thus make DNA sequence analysis an extremely active and important 

field of research. [67] 

Until recently, the most widely used protocol for determining the sequence of 

nucleotides in a genome used Sanger sequencing. Sanger sequencing can determine 

the order of ~1000 consecutive nucleotides by separating fluorescently tagged 

molecules based on their charge; each sequence fragment is called a “read.” Longer 
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regions, including full genomes, are sequenced by sequencing random overlapping 

fragments, and then stitching the reads together computationally into the original full-

length sequence. [21] New DNA sequencing protocols from Illumina, 454 Life 

Sciences, and Applied Biosystems sequence DNA at a much higher rate and 

dramatically lower cost, but the reads are significantly shorter (30-200bp). 

Nevertheless, there has been a dramatic shift towards using the cheaper sequencing 

protocols and placing the burden on computational resources to analyze the result 

with less information per read. 

One of the most widely performed DNA analysis tasks is to align a pair of 

sequences to find regions that are similar. In the case of short sequencing reads, 

researchers will generally require that the entire read aligns end-to-end to a reference 

sequence except for a small number of differences, which may be real polymorphisms 

or sequencing errors. Modern sequence alignment algorithms use a technique called 

seed-and-extend to quickly perform the alignment by focusing the search to regions 

that are reasonably similar. In the first phase, the algorithms find substrings of 

sufficient length called seeds that are shared between the sequences. In the second 

phase, the algorithms extend the relatively short exact seeds into longer inexact 

alignments using a more sensitive dynamic programming algorithm. The widely used 

BLAST algorithm considers all possible fixed-length substrings called k-mers as 

seeds [11]. In contrast, the popular MUMmer algorithm and our high-performance 

variant MUMmerGPU compute variable length maximal exact matches (MEMs) as 

seeds for alignment. Both algorithms are much faster than using the original Smith-

Waterman local sequence alignment algorithm, which requires time that is quadratic 



 

 56 
 

with respect to the input sequence sizes.  By contrast, MUMmer and MUMmerGPU 

find MEMs using a suffix tree, which requires linear space and enables substring 

matching in linear time. [10, 17, 39] MUMmerGPU uses a very similar output format 

as MUMmer, and thus one can reuse MUMmer’s components for extending the exact 

seeds into longer inexact alignments. 

A suffix tree is a tree that encodes all suffixes of a string on a path from the 

root node to a leaf (Figure 17). A special character that does not occur in the original 

string ($) is appended to the reference string to ensure that each suffix ends at a 

unique leaf node, which is labeled by the starting position of the suffix called the leaf 

id. Edges of the tree are labeled with substrings of the reference, and internal nodes 

have at least 2 children representing positions where repeated suffix prefixes diverge. 

The path string of a node is the concatenation the edge labels along the path from the 

root to that node. The string depth of a node is the length of its path string. Suffix 

trees over fixed alphabets, such as for DNA nucleotides, can be constructed in linear 

time and space using additional pointers called suffix links, that point from node n 

with path string x∂ to node n’ with path string ∂, where x is a single character and ∂ is 

a string. [47] Once built, a suffix tree allows one to find occurrences of a query string 

or substrings of a query string in the reference string in time proportional to the length 

of the query substring by matching characters of the query along the edges of the tree. 

Substring matches can be extended into MEMs by walking the suffix tree along the 

path of the substring matches as described below. For a complete description of suffix 

tree construction and search algorithms see the comprehensive reference by Gusfield. 

[48] 
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Figure 17. MUMmerGPU 2.0 Aligning a query to the suffix tree. 
Aligning the query “ATAT” against the suffix tree for “ATATCAT”.  MUMmerGPU will report a 
match at position 1 in the reference, provided that the minimum match length l ≥ 4. 
 

Alignment Algorithm 

MUMmerGPU computes all MEMs that are at least the minimum match 

length (the parameter l) characters long between a reference sequence and a set of 

query sequences. The MEM computation is divided into four phases: 

1. Reference Preprocessing – Load the reference from disk and construct 

a suffix tree of it. 

2. Query Streaming – Load blocks of queries from disk and launch the 

alignment kernels. 

3. Match Kernel – Match each suffix of each query to the suffix tree to 

find candidate MEMs. 
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4. Print Kernel – Post-processes the candidate MEMs to report all MEMs 

at least l characters long. 

Both the match kernel and the print kernel are executed in parallel on the 

graphics card, as illustrated in Figure 18.  A separate GPU thread running the match 

kernel processes each query.  Then for each matching suffix of each query, a separate 

instance of the print kernel reports MEMs for that suffix. Suffix tree construction and 

I/O are executed serially on the CPU and require a small fraction of the overall 

runtime for large read sets. 

 

Figure 18. MUMmerGPU 2.0 Overview 
MUMmerGPU constructs suffix trees for overlapping sections of the reference string.  Reads are first 
matched to the suffix tree in the match kernel.  Tree coordinates are passed from the match kernel to 
the print kernel to convert tree coordinates to alignment coordinates in the reference string. 
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Reference Preprocessing 

Since the reference sequence may be very large, the reference is divided into 

overlapping 8Mbp segments called pages. For each reference page, the algorithm 

constructs a suffix tree using Ukkonen’s algorithm in linear time and flattens the tree 

into a large array suitable for processing on the GPU. Suffix tree construction time is 

generally a small fraction of the total runtime for typical datasets involving millions 

of reads [17]. Each suffix tree node requires 32 bytes of data, which is divided into 

two 16 byte structs called the node and children structs. The node struct contains the 

coordinates of the reference string for the edge label into that node, the string depth of 

the node, and the address of the parent and suffix nodes. The children struct contains 

the address of each of the five children (A,C,G,T,$) and a flag indicating if the node 

is a leaf. If the node is a leaf, then the leaf id and the character of the reference just 

prior to that suffix of the reference is stored instead of the children pointers. Node 

addresses are stored using 24 bit addresses to conserve space but limits the suffix tree 

to 16 million nodes, and the maximum page size to 8 million base pairs. The nodes of 

the tree are reordered using the previously described reordering scheme [17]. Briefly, 

nodes near the top of the tree are numbered according to a breath-first-traversal to 

maximize locality across threads, while nodes at depth ≥ 16 are assigned using a 

depth-first-traversal to maximize locality for a particular thread.  

 

Query Streaming 

Unlike previous versions of the code, which processed queries in memory 

across all reference pages, queries are streamed across the reference, meaning after a 
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query is aligned to a reference page, the alignments are printed immediately and the 

query is flushed from memory. If the reference is larger than the page size, then it will 

be necessary to reload the queries multiple times from disk. This tradeoff was 

necessary to support aligning against very large reference sequence or aligning a large 

set of reads, either of which required a prohibitively large amount of host RAM in the 

previous version of the code. 

 

Match Kernel 

The match kernel is essentially the same as described in previous version of 

the code. Briefly, the kernel finds the longest matching substring of the query starting 

at each position of the query, i.e. each suffix of the query is considered. Starting with 

the first character of the query (i=1) and the root node of the reference suffix tree, the 

characters in the query are matched to the edges of the suffix tree one character at a 

time until a mismatch or the end of the query is reached. If the number of matching 

characters is at least l, the match is recorded in the output buffer for position i as the 

id of the lowest node visited and the length along the edge to that node. The next 

suffix of the query is then considered by following the suffix link from the parent of 

lowest node reached. This has the effect of removing the first base of the query from 

consideration, and allows the next suffix to be evaluated without returning to the root 

in the suffix tree. 
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Print Kernel 

The print kernel post-processes the match kernel results into potentially many 

MEMs per match (see Figure 19). The match kernel reports the lowest node L in the 

tree that matches the ith suffix of the query. If the query match to L is longer than l, 

there are multiple substrings of ith suffix that match the reference and are at least l 

characters. Call node P the highest ancestor of L that has a string depth at least l 

characters long. The leaves of the subtree rooted at P determine where in the 

reference a substring starting at i occurs, and the string depth of the lowest common 

ancestor of those leaves and L determines the matching substring length. Because the 

match kernel reports the longest possible match for suffix i, all of the matches at the 

leaves are guaranteed to be right maximal. However, the print kernel must be careful 

to not report matches that are fully contained by matches to suffix i-1.  That is, the 

raw matches for  suffix i may not be left maximal so the left flanking base must be 

explicitly checked by comparing the i-1th character of the query to the corresponding 

character of the reference. The print kernel computes this check for all candidate 

MEMs via a depth-first-search of the suffix tree to all of the leaves in the subtree 

rooted at P. 

The algorithm begins by following parent pointers from L to find node P by 

following the parent pointer stored in each node, and stopping when the string depth 

field  is < l. It also finds the parent of P called node B. Starting at P, it attempts to 

traverse to the A child. If the A child is null, it tries the C child and so forth in 

lexicographical order. It proceeds down the tree in this way to the first 

(lexicographically smallest) leaf below P where the MEM criterion is evaluated by 
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comparing the i-1th character of the query to the corresponding character in the 

reference string. This character is the character in the reference that is just before the 

suffix ending at that leaf, and is stored in the leaf node for efficiency. If the characters 

are different, the substring is a MEM and the coordinates of the substring are stored to 

the output buffer, as explained below. After processing the first leaf, the kernel 

traverses up to the parent of the leaf, and resumes processing with the 

lexicographically next child. Because leaves are always visited in lexicographic order 

and because the last child visited can be determined with a pointer comparison, the 

algorithm does not require a stack to determine where to search next. After processing 

the $ child, the kernel traverses up the tree and continues processing 

lexicographically. The algorithm ends when the current node is B. 

 

 

Figure 19. MUMmerGPU 2.0 Print Kernel Overview. 
The query matches to the suffix tree along the bold path from the root to L. The print kernel post-
processes this information to consider MEMs at the leaves by a stackless depth-first-search starting at 
P to leaves 1,2,3 & 4 shown by dashed arrows. The match length at leaf 1 is the string depth of Q, the 
match length at 2 and 3 is the string depth of Q plus the partial edge match to L, and the match length 
at leaf 4 is the string depth of P. 
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The coordinates of a MEM depend on the leaf id of the leaf for the start 

position, and the location of the leaf in the suffix tree relative to L, for the length. The 

length of the MEM is the string depth of the lowest common ancestor of the leaf node 

and L in all cases except for the leaves below L because the query may only have a 

partial match along the edge to L. Call the path of nodes between the parent of L and 

P the query path. Note the lowest common ancestor of a visited leaf must fall along 

the query path. When the traversal algorithm begins at P, the substring length is the 

string depth of P, and by definition P is along the query path. When traversing down 

the tree and the current node is along the query path, the algorithm checks if the child 

node is also on the query path. Call the character of the query at the string depth of 

the current node the query character. The query character determines which child of 

the current node is also in the query path. If the next node is along the query path, the 

matching substring length is the string depth of that node. If the next node is not on 

the query path, the matching substring length is not updated. Instead the kernel 

records and updates the distance to the query path throughout the traversal. When the 

distance returns to 0, the current node is once again in the query path and the 

algorithm resumes checking for the query child as before. Since there may be only a 

partial match to node L, a special condition checks when this node is visited, and the 

match length is set to the string depth of L’s parent plus the partial edge match length 

reported by the match kernel. 

Data Policies 

MUMmerGPU 1.0 organized data on the GPU according to the few “best 

practices” that existed at the time.  However, those best practices, such as whether or 



 

 64 
 

not to use texture memory, were developed for arithmetically intensive applications. 

In MUMmerGPU 2.0, we have revisited our decisions for seven possible boolean data 

organization policies and exhaustively tested all 128 possible combinations of 

choices.  The policy choices are as follows. 

1. Two-dimensional reference – store the reference string in a two-

dimensional array instead of in linear memory. 

2. Query texture – store the query strings in texture memory instead of 

global memory. 

3. Reference texture – store the reference string in texture memory 

instead of global memory. 

4. Tree texture – store the tree in a pair of textures instead of global 

memory.  

5. Two-dimensional tree – store the tree in two-dimensional arrays 

instead of linear memory. 

6. Tree reordering – reorder the nodes of the tree to improve locality 

instead of the node numbering determined by the construction algorithm. 

7. Merged tree – for a given node, store the node and children structs 

adjacent in memory, instead of two parallel arrays. 

MUMmerGPU 1.0 stored the reference in a two-dimensional texture, the 

queries in linear global memory, and the tree in parallel two-dimensional textures 

after reordering the nodes. The texture cache in G80 series GPUs is described as 

being optimized for two-dimensional locality, so the node reordering was designed to 

exploit a two-dimensional cache block. Textures were selected for the reference and 
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tree after preliminary testing suggested this selection had better performance. The tree 

structs were placed in parallel arrays to simplify addressing. In the following 

discussion, the naïve control configuration disables all optimization: no query texture, 

no reference texture, 1D reference, no tree texture, 1D tree, no tree reordering, and 

parallel arrays for the node and child structs. 

We evaluated MUMmerGPU under each of the 128 possible combinations of 

policy choices on several workloads. Each workload constitutes a small slice of the 

input a life sciences researcher would provide to MUMmerGPU when mapping reads 

to a reference genome. The first workload, HSILL, represents a human resequencing 

project using next generation Illumina technology. The second workload, CBRIGG, 

represents a large eukaryotic resequencing project using traditional Sanger 

sequencing technology. The last two workloads, which we call SSUIS and LMONO, 

represent typical inputs for resequencing bacteria using next generation sequencing 

technologies from Illumina and 454 Life Sciences. All four workloads are comprised 

of genuine (non-simulated) sequencing reads, and are large enough to constitute a 

representative slice of work from the project, but terminate quickly enough to permit 

testing all 128 configurations. Table 2 presents the additional details about the 

reference sequences and read sets for each workload. 

In a resequencing project, reads from a donor organism are aligned to a 

reference genome. Errors in the sequencing reads along with genuine variations 

between the donor and the reference genome will prevent some reads from aligning 

end-to-end without error. MUMmerGPU allows users to control the amount of error 

to tolerate by allowing users to specify the minimum match length (l) to report. The 
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full details for choosing a proper value for l are beyond the scope of this chapter, but 

the choice of l can have a dramatic impact the running time, including determining 

which CUDA kernel dominates the computation, since smaller values of l produce 

more MEMs for the print kernel to report. For HSILL, we have chosen l to allow at 

most 1 difference in an alignment between a read and the reference, 2 differences for 

SSUIS, and numerous differences for LMONO and CBRIGG. 

Table 2. MUMmerGPU 2.0 Workloads. 

 

 

Policy Analysis 

For MUMmerGPU 2.0, we looked for a set of policy choices that universally 

reduced running time, as opposed to workload specific improvement. Ideally, a single 

configuration would be optimal for all workloads, otherwise, we desired 

configurations that improve HSILL, since we expect human resequencing projects 

using short reads will constitute the majority of the read alignment workloads in the 

near future. To this end, we executed MUMmerGPU with all 128 possible policy 

combinations on all 4 workloads. The test machine was a 3.0 GHz dual-core Intel 

Xeon 5160 with 2 GB of RAM, running Red Hat Enterprise Linux release 4 update 5 

(32 bit). The GPU was an nVidia GeForce 8800 GTX, using CUDA 1.1. The 8800 

GTX has 16 multiprocessors, each with 8 stream processors (128 stream processors 
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total), and 768 MB of on-board RAM, with 8 KB of texture cache per multiprocessor. 

The data that follows is for the HSILL workload and excludes time spent reading 

from or writing to disk, as this time was identical within the workload, and only 

obscures the impact of different policy choices. In the figures, we have isolated the 

policy choice in question, and each bar represents the percent change in running time 

for enabling that policy while keeping the policy configuration otherwise the same. A 

positive value indicates the running time increased after enabling that policy, and 

negative values indicate the running times decreased. The bars are clustered by which 

textures are enabled, and are labeled by their non-texture policy choices. The label 

control indicates the default configuration without any non-texture policies enabled.  

The full results table for all workloads is available online at 

http://mummergpu.sourceforge.net. 

 

 

Two-dimensional reference 

Storing the reference string in a two-dimensional layout instead of a one-

dimensional string consistently increased the total computation time, but only by an 

insignificant .4% on average (data not shown). We suspect the extra instructions 

necessary for addressing 2D memory slowed the overall performance relative to any 

potential gains by 2D locality. Consequently, only configurations that use a one-

dimensional layout for the reference string were considered further. The following 

sections describe the remaining 64 policy configurations. 
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Query Texture 

Configurations that placed the queries in a texture increased the print kernel 

time by 6.% and the match kernel time by 3% on average. When the tree texture is 

not used, the match runtime consistently decreased except in 2 exception cases with 

dramatically increased running time due to increased register footprint and decreased 

occupancy (Figure 20). When the tree texture is enabled, we  observe what appears to 

be a small amount of cache competition in the match kernel which tends to slow 

down those configurations. The print kernel had similar results. 

 

 

Figure 20. MUMmerGPU 2.0 Query Texture Impact. 
Using the query texture with the match kernel generally improves the runtime, except when there is 
cache competition from the tree texture. 

 

Reference texture 

Configurations that placed the reference string in texture memory instead of 

global memory had significantly different match kernel running times (-12% to +35% 

change), but had essentially identical print kernel running times.  This is as expected, 

since the print kernel does not access the reference string.  Placing the reference 

string in a texture improved running time for the match kernel by up to 12% (without 

changing register usage), but only when the tree was not in texture memory as well 
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(Figure 21). We speculate that the tree, queries, and reference negatively compete for 

the texture cache in those cases, leading to overall lower performance. The two large 

increases (35%) in match kernel running time observed when the query texture was 

also used is a result of an increase in register usage and corresponding decrease in 

processor occupancy. 

 

 

Figure 21. MUMmerGPU 2.0 Reference Texture Impact. 
The reference string competes with the suffix tree for the texture cache.  Configurations only benefit 
from placing the reference in texture memory when the tree is not also in texture memory. 

 

 

Suffix tree texture 

Storing the tree in a texture instead of global memory improves print kernel 

performance in almost all configurations and by 8% on average. The impact of this 

policy is more complicated for the match kernel (Figure 22). On average, using a 

texture for the tree improves match kernel performance by 11%, presumably because 

the cache lowers effective memory latency. In some configurations, though, the tree 

competes for the cache with the queries or reference and those configurations are 

generally slower than the equivalent configuration that uses global memory for the 

tree.   
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Interestingly, cache competition does not always result in an overall 

slowdown, especially when the register footprint was improved. In the match kernel, 

two configurations with multiple data types in texture requires 18 registers, yielding 

33% occupancy. However, if these configurations are altered such that the tree is 

placed in a texture, the match kernel requires only 16 registers, achieving 66% 

occupancy and an overall speedup. In the print kernel, the control configuration uses 

17 registers, and only 16 registers when the tree is placed in a texture and thus has 

improved occupancy and cache use. We also observed the opposite effect: for some 

configurations, placing the tree in a texture increased the print kernel register 

footprint, dropped occupancy, and slowed the overall computation. 

 

 

Figure 22. MUMmerGPU 2.0 Suffix Tree Texture Impact. 
Placing the suffix tree in texture memory is not universally beneficial, presumably due to cache 
competition in some configurations.  

 

Two-dimensional tree 

Configurations that placed the suffix tree in two-dimensional arrays were on 

average 15% slower than the configurations that used one-dimensional arrays for total 

computation time (Figure 23). Placing the tree in a texture appears to mitigate some 

of the negative impact of using a two-dimensional array for the tree, but not using the 
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2D layout was faster overall. In addition, some configurations using a two-

dimensional tree array increased the register footprint in the print kernel across the 

threshold from 66% to 33% occupancy and had drastically reduced performance 

(52% worse). 

 

 

Figure 23. MUMmerGPU 2.0 2D Tree Impact. 
Placing the suffix tree in a two-dimensional array universally slows overall computation time. 

 

Tree reordering 

In HSILL, configurations that reordered the suffix tree nodes in the GPU 

memory run significantly and universally faster than the equivalent configurations 

that do not (between 1% and 11% faster, 5% on average)  (Figure 24). This is perhaps 

the most surprising finding from our benchmark tests, since the reordering is only 

supposed to improve running time for configurations that use (cached) texture 

memory for the suffix tree. Furthermore, the node reordering is entirely performed on 

the CPU, and the GPU kernels are bit-for-bit identical when reordering is enabled 

over the equivalent configuration with the reordering disabled. However, the actual 

number of instructions executed by a multiprocessor can vary between invocations 

based on the access pattern of the kernel.  A G80 multiprocessor may serialize 
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execution of threads in a warp if the memory accesses made by threads have 

significantly different latencies. nVidia offers a profiler that counts events during a 

kernel execution such as the number of global memory loads and the number of 

instructions executed. For HSILL, profiling shows a decrease in total instruction 

count and in the number of instructions due to warp serialization when reordering is 

enabled.   

 

 

Figure 24. MUMmerGPU 2.0 Node Reordering Impact. 
Reordering the tree nodes in GPU memory improves running time not only for configurations that 
place the tree in cached texture memory, but all configurations.  

 

Merged tree 

Merging the two suffix tree arrays into a single array places the two halves of 

a single tree node adjacent in GPU memory. This policy was originally conceived to 

exploit a common access pattern in the match kernel where the halves are 

sequentially accessed. This should have improved cache performance from the 

increased spatial locality. However, merging the arrays also required slightly more 

complicated kernel code for addressing nodes. This had a more significant impact by 

altering the register footprint of both the match and print kernel. 
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In the print kernel, using a merged array increased running time by 6% on 

average, including some extreme changes caused by increasing or decreasing the 

register footprint. (Figure 25).  Configurations that placed the suffix tree in a texture 

or used a two-dimensional array generally suffered when using a merged array. The 

other configurations saw a reduced footprint, and for a few configurations that 

reduction boosted the occupancy to 66%.  The impact on match kernel time was less 

dramatic though occupancy differed for some configurations when merged arrays 

were enabled.  

 

 

Figure 25. MUMmerGPU 2.0 Merge Node Impact. 
(top) The match kernel generally improved in performance with merge nodes enabled. (bottom) The 
print kernel generally had worse performance using merged nodes.  However, a few configurations 
with merged nodes required only 16 registers, which increasing occupancy to 66% and reduced 
running time by almost 20%. 
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Comparison to MUMmerGPU 1.0 

Based on the above discussion, the new default policy configuration in 

MUMmerGPU uses a reordered one-dimensional texture for the suffix tree, global 

linear memory for the queries and reference, and splits the tree into parallel arrays. 

This configuration is optimal for HSILL and creates a nearly four-fold speedup in 

total GPU compute time over MUMmerGPU 1.0. For other workloads, it is not 

optimal, but this configuration consistently outperforms MUMmerGPU 1.0. For 

example, in LMONO, CBRIGG and SSUIS, reordering suffix tree nodes generally 

degrades performance, although a few configurations enjoy a modest speedup.  

Surprisingly, none of the configurations with increased performance placed the tree in 

texture memory. In general, the impact of reordering appears very sensitive to the 

specific access pattern of the kernels for a given input and choice of parameters.  

However, in all workloads, the new configuration speeds up the match kernel by at 

least 20%, and the new print kernel is between 1.5x and 4x faster than the CPU based 

print procedure of MUMmerGPU 1.0 (Table 3).  To reach as broad a user base as 

possible, MUMmerGPU also implements tuned, optimized versions of the matching 

and print procedures that run on the CPU. For HSILL, MUMmerGPU 2.0’s GPU 

kernels run 13-fold faster than these CPU-based routines.  
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Table 3. Comparison of MUMmerGPU 1.0 and 2.0 runtimes. 

 

Discussion 

Our exhaustive policy analysis shows occupancy is the single most important 

factor for the performance of data-intensive applications. This is because higher 

occupancy allows for more threads to be executed concurrently. Higher occupancy 

has the added benefit that memory latency can be better hidden with more threads. As 

such we attempted to improve occupancy of all configurations by reducing their 

register footprint. In several configurations, we successfully reduced register use to 

reach 66% occupancy by making small adjustments to the kernel code, such as 

moving variable declarations to the tightest possible scope, and using bit masks 

instead of named fields within structs. We also used more aggressive techniques such 

as using goto’s to intentionally disable some compiler optimizations with some 

success. The CUDA compiler NVCC is actively being developed, and as its register 

allocation and optimization routines improve, it should be easier to achieve higher 

occupancy.  

Our analysis finds proper use of the texture cache is also critical. Haphazardly 

placing data in texture memory in the hopes of reducing latency is dangerous. The 

texture cache is limited to 8KB per multiprocessor, so cache competition can easily 

hurt overall performance. Furthermore, using textures instead of global memory can 
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reduce occupancy and slow execution. Conversely, proper use of cache that places the 

most important data in textures can greatly improve performance.  

Data reordering can also greatly improve performance. Our results show that 

it universally improved performance when aligning short reads to a large reference, 

which we expect to be the most common read mapping use case.  For this type of 

workload, data reordering unexpectedly reduced divergence and warp serialization. 

Normally used to increase locality and reduce latency, data reordering also is a 

promising avenue for reducing thread divergence.  We plan to explore other 

reordering strategies in future versions of MUMmerGPU. However, reordering 

should be used with caution and careful measurement. In MUMmerGPU, it was used 

to improve cache hit rate in two-dimensional textures, but storing the tree in two-

dimensions turned out to be a universally bad choice, despite the claims that the 

texture cache is optimized for 2D locality. Similarly, merging the node and children 

halves into the same array was supposed to improve data locality and thus cache 

performance, but this improvement was lost in most configurations to increased 

register footprint and reduced occupancy from the more complicated addressing.  

These conclusions reflect properties and design decisions concerning the 

current nVidia graphics processing line, and may fail to hold in the future as the 

hardware and CUDA evolve. A policy analysis such as the one presented here can 

help identify high performance policy configurations, and can help “future-proof” an 

application against rapidly evolving hardware.  Ideally, MUMmerGPU would be able 

to self-tune its policies for an individual system, and we are considering such 

functionality.  In the short term, MUMmerGPU’s instrumentation and alternate policy 
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implementations remains in the code, so the application can adapt to new nVidia 

hardware and CUDA versions as they appear. 

 

Conclusions 

MUMmerGPU 2.0 is a significant advance over MUMmerGPU 1.0, featuring 

improved functionality and higher performance over previous versions of the code.  

With the new query streaming data model, MUMmerGPU 2.0 can map reads to 

genomes as large or larger than the human genome. The new GPU-based print kernel 

post-processes the suffix tree matches into full MEMs, and provides a major 

performance boost, between 1.5x and 4x, over the serial CPU version in 

MUMmerGPU 1.0. This kernel required a non-traditional stackless implementation of 

a depth-first-search of the suffix tree. Its tree-walking technique is applicable to 

essentially any common tree data structure, and thus we expect many data processing 

tasks could benefit from running on the GPU. In the future, we plan to extend 

MUMmerGPU with a second post-processing GPU kernel that computes inexact 

alignments. 

Both the match and print kernels benefited from our exhaustive analysis of 

seven data organization policies. The impact of individual policies is often surprising 

and counterintuitive, and we encourage other GPGPU developers to carefully 

measure their applications when making such decisions. Our analysis shows 

occupancy is the main determining factor of data-intensive kernel performance. We 

are optimistic that new versions of the CUDA compiler will simplify reaching high 

occupancy, but currently, it is imperative that developers monitor their register 
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footprint, and reduce it when possible. The next most important factor is proper use of 

the textures. The texture cache is very small, and haphazard use of textures will 

quickly overwhelm it. Instead, applications should only use textures for the most 

important data. Data reordering can be used to improve locality and cache hit rate, but 

since different workloads may have different access patterns, developers should select 

a reordering that is appropriate for the most common workload.  Reordering also 

affects thread divergence, and we recommend that developers consider reordering 

strategies that reduce divergence, even when not using cached memory. 

Data-intensive applications are believed to be less well suited than arithmetic-

intensive applications.  Nevertheless, our highly data-intensive application 

MUMmerGPU achieves significant speedup over the serial CPU-based application.  

A large part of this speedup is due to tuning techniques that may be used in any 

GPGPU application. The enormous volume of sequencing reads produced by next 

generation sequencing technologies demands new computational methods. Our 

software enables individual life science researchers to analyze genetic variations 

using the supercomputer hidden within their desktop computer. 
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Chapter 4: Highly Sensitive Read Mapping with MapReduce 

Summary of Contribution 

This chapter describes the high-throughput sequence alignment program 

CloudBurst published in the journal Bioinformatics [38]. Similar to MUMmerGPU, 

CloudBurst aligns large batches of query sequences to a reference genome in parallel. 

Unlike MUMmerGPU, CloudBurst computes end-to-end alignments of the reads to 

the reference, allowing for a user specified number of mismatches or differences. In 

addition, CloudBurst uses a cluster of computers for the alignment using the 

MapReduce framework to distribute and manage the computation.  

CloudBurst uses a seed-and-extend alignment strategy similar to the serial 

program RMAP [12], except within the MapReduce framework. In the map stage, 

CloudBurst conceptually constructs an inverted index of k-mers in the reads and k-

mers in the reference distributed across all available computers in the cluster. In the 

reduce function, CloudBurst extends exactly matching k-mer seeds into end-to-end 

alignments using either scan of the flanking sequences when computing mismatches, 

or using the Landau-Vishkin k-difference dynamic programming algorithm to also 

allow for indels. On a cluster with 96 cores, CloudBurst was up to 100 times faster 

than a serial execution of the program RMAP. 

Michael Schatz wrote the software and the manuscript. 

  



 

 80 
 

Abstract 

Next-generation DNA sequencing machines are generating an enormous 

amount of sequence data, placing unprecedented demands on traditional single-

processor read-mapping algorithms. CloudBurst is a new parallel read-mapping 

algorithm optimized for mapping next-generation sequence data to the human 

genome and other reference genomes, for use in a variety of biological analyses 

including SNP discovery, genotyping and personal genomics. It is modeled after the 

short read-mapping program RMAP, and reports either all alignments or the 

unambiguous best alignment for each read with any number of mismatches or 

differences. This level of sensitivity could be prohibitively time consuming, but 

CloudBurst uses the open-source Hadoop implementation of MapReduce to 

parallelize execution using multiple compute nodes. 

CloudBurst's running time scales linearly with the number of reads mapped, 

and with near linear speedup as the number of processors increases. In a 24-processor 

core configuration, CloudBurst is up to 30 times faster than RMAP executing on a 

single core, while computing an identical set of alignments. Using a larger remote 

compute cloud with 96 cores, CloudBurst improved performance by >100-fold, 

reducing the running time from hours to mere minutes for typical jobs involving 

mapping of millions of short reads to the human genome. 

CloudBurst is available open-source as a model for parallelizing algorithms 

with MapReduce at http://cloudburst-bio.sourceforge.net/. 
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Introduction 

Next-generation high-throughput DNA sequencing technologies from 454 

Life Sciences, Illumina, Applied Biosystems and others are changing the scale and 

scope of genomics. These machines sequence more DNA in a few days than a 

traditional Sanger sequencing machine could in an entire year, and at a significantly 

lower cost [41]. James Watson's genome was recently sequenced [8] using 

technology from 454 Life Sciences in just 2 months, whereas previous efforts to 

sequence the human genome required several years and hundreds of machines [68]. If 

this trend continues, an individual will be able to have their DNA sequenced in only a 

few days and perhaps for as little as $1000. 

The data from the new machines consists of millions of short sequences of 

DNA (25–250 bp) called reads, collected randomly from the target genome. After 

sequencing, researchers often map the reads to a reference genome to find the 

locations where each read occurs, allowing for a small number of differences. This 

information can be used to catalog differences in one person's genome relative to a 

reference human genome, or compare the genomes of closely related species. For 

example, this approach was recently used to analyze the genomes of an African [69] 

and an Asian [9] individual by mapping 4.0 and 3.3 billion 35 bp reads, respectively, 

to the reference human genome. These comparisons are used for a wide variety of 

biological analyses including SNP discovery, genotyping, gene expression, 

comparative genomics and personal genomics. Even a single base pair difference can 

have a significant biological impact, so researchers require highly sensitive mapping 
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algorithms to analyze the reads. As such, researchers are generating sequence data at 

an incredible rate and need highly scalable algorithms to analyze their data. 

Many of the currently used read-mapping programs, including BLAST [11], 

SOAP [15], MAQ [7], RMAP [12] and ZOOM [13], use an algorithmic technique 

called seed-and-extend to accelerate the mapping process. These programs first find 

sub-strings called seeds that exactly match in both the reads and the reference 

sequences, and then extend the shared seeds into longer, inexact alignments using a 

more sensitive algorithm that allows for mismatches or gaps. These programs use a 

variety of methods for finding and extending the seeds, and have different features 

and performance. However, each of these programs is designed for execution on a 

single computing node, and as such requires a long running time or limits the 

sensitivity of the alignments they find. 

CloudBurst is a new highly sensitive parallel seed-and-extend read-mapping 

algorithm optimized for mapping single-end next generation sequence data to 

reference genomes. It reports all alignments for each read with up to a user-specified 

number of differences including both mismatches and indels. CloudBurst can 

optionally filter the alignments to report the single best non-ambiguous alignment for 

each read, and produce output identical to RMAPM (RMAP using mismatch scores). 

As such CloudBurst can replace RMAP in a data analysis pipeline without changing 

the results, but provides much greater performance by using the open-source 

implementation of the distributed programming framework MapReduce called 

Hadoop (http://hadoop.apache.org). The results presented below show that 

CloudBurst is highly scalable: the running times scale linearly as the number of reads 
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increases, and with near linear speed improvements over a serial execution of RMAP 

for sensitive searches. Furthermore, CloudBurst can scale to run on large remote 

compute clouds, and thus map virtually any number of reads with high sensitivity in 

relatively little time. 

 

MapReduce and Hadoop 

MapReduce [36] is the software framework developed and used by 

GoogleTM to support parallel distributed execution of their data intensive 

applications. Google uses this framework internally to execute thousands of 

MapReduce applications per day, processing petabytes of data, all on commodity 

hardware. Unlike other parallel computing frameworks, which require application 

developers explicitly manage inter-process communication, computation in 

MapReduce is divided into two major phases called map and reduce, separated by an 

internal shuffle phase of the intermediate results (Figure 26), and the framework 

automatically executes those functions in parallel over any number of processors. 
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Figure 26. Schematic Overview of MapReduce. 
The input file(s) are automatically partitioned into chunks depending on their size and the desired 
number of mappers. Each mapper (shown here as m1 and m2) executes a user-defined function on a 
chunk of the input and emits key–value pairs. The shuffle phase creates a list of values associated with 
each key (shown here as k1, k2 and kn). The reducers (shown here as r1 and r2) evaluate a user-
defined function for their subset of the keys and associated list of values, to create the set of output 
files. 

 

The map function computes key–value pairs from the input data, based on any 

relationship applicable to the problem, including computing multiple pairs from a 

single input. For example, the map function of a program that counts the number of 

occurrences of all length k substrings (k-mers) in a set of DNA sequences could emit 

the key–value pair (k-mer, 1) for each k-mer. If the input is large, many instances of 

the map function can execute in parallel on different portions of the input and divide 

the running time by the number of processors available. Once the mappers are 

complete, MapReduce shuffles the pairs so all values with the same key are grouped 

together into a single list. The grouping of key–value pairs effectively creates a large 

distributed hash table indexed by the key, with a list of values for each key. In the k-

mer counter example, the framework creates a list of 1s for each k-mer in the input, 

corresponding to each instance of that k-mer. The reduce function evaluates a user-

defined function on each key–value list. The reduce function can be arbitrarily 
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complex, but must be commutative, since the order of elements in the key–value list 

is unstable. In the k-mer counting example, the reduce function is called once for each 

k-mer with its associated list of 1s, and simply adds the 1s together to compute the 

total number of occurrences for that k-mer. Each instance of the reduce function 

executes independently, so there can be as many reduce functions executing in 

parallel as there are distinct keys, i.e. k-mers in the input. 

As an optimization, MapReduce allows reduce-like functions called 

combiners to execute in-memory immediately after the map function. Combiners are 

not possible in every application because they evaluate on a subset of the values for a 

given key, but when possible, reduce the amount of data processed in the shuffle and 

reduce phases. In the k-mer counting example, the combiner emits a partial sum from 

the subset of 1s it evaluates, and the reduce function sums over the list of partial 

sums. 

Computations in MapReduce are independent, so the wall clock running time 

should scale linearly with the number of processor cores available, i.e. a 10-core 

execution should take 1/10th the time of a 1-core execution creating a 10x speedup 

with complete parallel efficiency. In practice, perfect linear speedup is difficult to 

achieve because serial overhead limits the maximum speedup possible as described 

by Amdahl's law [28]. For example, if an application has just 10% non-parallelizable 

overhead, then the maximum possible end-to-end speedup is only 10x regardless of 

the number of cores used. High speedup also requires the computation is evenly 

divided over all processors to maximize the benefit of parallel computation. 

Otherwise the wall clock running time will be limited to the time for the longest 
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running task, and reduce overall efficiency. MapReduce tries to balance the workload 

by assigning each reducer ~1/N of the total key space, where N is the number of 

cores. If certain keys require substantially more time than others, however, it may be 

necessary to rebalance the workload using a custom partition function or adjusting 

how keys are emitted. 

MapReduce is designed for computations with extremely large datasets, far 

beyond what can be stored in RAM. Instead it uses files for storing and transferring 

intermediate results, including the inter-machine communication between map and 

reduce functions. This could become a severe bottleneck, so Google developed the 

robust distributed Google File System (GFS) [70] to efficiently support MapReduce. 

GFS is designed to provide very high-bandwidth for MapReduce by replicating and 

partitioning files across many physical disks. Files in the GFS are automatically 

partitioned into large chunks (64 MB by default), which are replicated to several 

physical disks (three by default) attached to the compute nodes. Therefore, aggregate 

I/O performance can greatly exceed the performance of an individual memory storage 

device (e.g. a disk drive), and chunk redundancy ensures reliability even when used 

with commodity drives with relatively high-failure rates. MapReduce is also ‘data 

aware’: it attempts to schedule computation at a compute node that has the required 

data instead of moving the data across the network. 

Hadoop and the Hadoop Distributed File System (HDFS) are open source 

versions of MapReduce and the GFS implemented in Java and sponsored by 

AmazonTM, YahooTM, Google, IBMTM and other major vendors. Like Google's 

proprietary MapReduce framework, applications developers need only write custom 
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map and reduce functions, and the Hadoop framework automatically executes those 

functions in parallel. Hadoop and HDFS are used to manage production clusters with 

more than 10,000 nodes and petabytes of data, including computation supporting 

every Yahoo search result. A Hadoop cluster of 910 commodity machines recently set 

a performance record by sorting 1 TB of data (10 billion 100 bytes records) in 209 s 

(http://www.hpl.hp.com/hosted/sortbenchmark/). 

In addition to in-house Hadoop usage, Hadoop is becoming a de facto 

standard for cloud computing where compute resources are accessed generically as a 

service, without regard for physical location or specific configuration. The generic 

nature of cloud computing allows resources to be purchased on-demand, especially to 

augment local resources for specific large or time-critical tasks. Several organizations 

offer cloud compute cycles that can be accessed via Hadoop. Amazon's Elastic 

Compute Cloud (EC2) (http://aws.amazon.com) contains tens of thousands of virtual 

machines, and supports Hadoop with minimal effort. In EC2, there are five different 

classes of virtual machines available providing different levels of CPU, RAM and 

disk resources with price ranging from $0.10 to $0.80 per hour per virtual machine. 

Amazon offers preconfigured disk images and launches scripts for initializing a 

Hadoop cluster, and once initialized, users copy data into the newly created HDFS 

and execute their jobs as if the cluster was dedicated for their use. For very large 

datasets, the time required for the initial data transfer can be substantial, and will 

depend on the bandwidth of the cloud provider. Once transferred into the cloud, 

though, the cloud nodes generally have very high-internode bandwidth. Furthermore, 

Amazon has begun mirroring portions of Ensembl and GenBank for use within EC2 
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without additional storage costs, thereby minimizing the time and cost to run a large-

scale analysis of these data. 

 

Read mapping 

After sequencing DNA, researchers often map the reads to a reference genome 

to find the locations where each read occurs. The read-mapping algorithm reports one 

or more alignments for each read within a scoring threshold, commonly expressed as 

the minimal acceptable significance of the alignment, or the maximum acceptable 

number of differences between the read and the reference genome. The algorithms 

generally allow 1–10% of the read length to differ from the reference, although higher 

levels may be necessary when aligning to more distantly related genomes, or when 

aligning longer reads with higher error rates. Read-mapping algorithms can allow 

mismatch (mutation) errors only, or they can allow insertion or deletion (indel) errors, 

for both true genetic variations and artificial sequencing errors. The number of 

mismatches between a pair of sequences can be computed with a simple scan of the 

sequences, whereas computing the edit distance (allowing for indels) requires a more 

sophisticated algorithm such as the Smith–Waterman sequence alignment algorithm 

[71], whose runtime is proportional to the product of the sequence lengths. In either 

case, the computation for a single pair of short sequences is fast, but becomes costly 

as the number or size of sequences increases. 

When aligning millions of reads generated from a next-generation sequencing 

machine, read-mapping algorithms often use a technique called seed-and-extend to 

accelerate the search for highly similar alignments. This technique is based on the 
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observation that there must be a significant exact match for an alignment to be within 

the scoring threshold. For example, for a 30 bp read to map to a reference with only 

one difference, there must be at least 15 consecutive bases, called a seed, that match 

exactly regardless of where the difference occurs. In general, a full-length end-to-end 

alignment of an m bp read with at most k differences must contain at least one exact 

alignment of ⌊m/(k+1)⌋ consecutive bases [16]. Similar arguments can be made 

when designing spaced seeds of non-consecutive bases to guarantee finding all 

alignments with up to a certain numbers of errors [13]. Spaced seeds have the 

advantage of allowing longer seeds at the same level of sensitivity, although multiple 

spaced seeds may be needed to reach full sensitivity. 

In all seed-and-extend algorithms, regions that do not contain any matching 

seeds are filtered without further examination, since those regions are guaranteed to 

not contain any high-quality alignments. For example, BLAST uses a hash table of all 

fixed length k-mers in the reference to find seeds, and a banded version of the Smith–

Waterman algorithm to compute high-scoring gapped alignments. RMAP uses a hash 

table of non-overlapping k-mers of length ⌊m/(k+1)⌋ in the reads to find seeds, while 

SOAP, MAQ and ZOOM use spaced seeds. In the extension phase, RMAP, MAQ, 

SOAP and ZOOM align the reads to allow up to a fixed number of mismatches, and 

SOAP can alternatively allow for one continuous gap. Other approaches to mapping 

include using suffix trees [14, 17] to quickly find short exact alignments to seed 

longer inexact alignments, and Bowtie [72] uses the Burrows–Wheeler transform 

(BWT), to find exact matches coupled with a backtracking algorithm to allow for 

mismatches. Some BWT-based aligners are reporting extremely fast runtimes, 
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especially in configurations that restrict the sensitivity of the alignments or limit the 

number of alignments reported per read. For example, in their default high-speed 

configuration, SOAP2 (http://soap.genomics.org.cn/), BWA 

(http://maq.sourceforge.net) and Bowtie allow at most two differences in the 

beginning of the read, and report a single alignment per read selected randomly from 

the set of acceptable alignments. In more sensitive or verbose configurations, the 

programs can be considerably slower (http://bowtie-

bio.sourceforge.net/manual.shtml). 

After computing end-to-end alignments, some of these programs use the edit 

distance or read quality values to score the mappings. In a systematic study allowing 

up to 10 mismatches, [12] determined allowing more than two mismatches is 

necessary for accurately mapping longer reads, and incorporating quality values also 

improves accuracy. Several of these programs, including RMAPQ (RMAP with 

quality), MAQ, ZOOM and Bowtie, use quality values in their scoring algorithm, and 

all are more lenient of errors in the low-quality 3' ends of the reads by trimming the 

reads or discounting low-quality errors. 

Consecutive or spaced seeds dramatically accelerate the computation by 

focusing computation to regions with potential to have a high-quality alignment. 

However, to increase sensitivity the length of the seeds must decrease (consecutive 

seeds) or the number of seeds used must increase (spaced seeds). In either case, 

increasing sensitivity increases the number of randomly matching seeds and increases 

the total execution time. Decreasing the seed length can be especially problematic 

because a seed of length s is expected to occur ~ L/4s times in a reference of length L, 
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and each occurrence must be evaluated using the slower inexact alignment algorithm. 

Therefore, many of the new short read mappers restrict the maximum number of 

differences allowed, or limit the number of alignments reported for each read. 

Algorithm 

CloudBurst is a MapReduce-based read-mapping algorithm modeled after 

RMAP, but runs in parallel on multiple machines with Hadoop. It is optimized for 

mapping many short reads from next-generation sequencing machines to a reference 

genome allowing for a user specified number of mismatches or differences. Like 

RMAP, it is a seed-and-extend algorithm that indexes the non-overlapping k-mers in 

the reads as seeds. The seed size s=⌊m/(k+1)⌋ is computed from the minimum length 

of the reads (m) and the maximum number of differences or mismatches (k). Like 

RMAP, it attempts to extend the exact seeds to count the number of mismatches in an 

end-to-end alignment using that seed, and reports alignments with at most k 

mismatches. Alternatively, like BLAST, it can extend the exact seed matches into 

end-to-end gapped alignments using a dynamic programming algorithm. For this step, 

CloudBurst uses a variation of the Landau–Vishkin k-difference alignment algorithm 

[73], a dynamic programming algorithm for aligning two strings with at most k 

differences in O(km) time where m is the minimum length of the two strings. See 

Gusfield's [48] classical text on sequence alignment for more details. 

As a MapReduce algorithm, CloudBurst is split into map, shuffle and reduce 

phases (Figure 27). The map function emits k-mers of length s as seeds from the reads 

and reference sequences. The shufffle phase groups together k-mers shared between 

the read and reference sequences. Finally, the reduce function extends the shared 
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seeds into end-to-end alignments allowing both mismatches and indels. The input to 

the application is a multi-fasta file containing the reads and a multi-fasta file 

containing one or more reference sequences. These files are first converted to binary 

Hadoop SequenceFiles and copied into the HDFS. The DNA sequences are stored as 

the key–value pairs (id, SeqInfo), where SeqInfo is the tuple (sequence, start_offset) 

and sequence is the sequence of bases starting at the specified offset. By default, the 

reference sequences are partitioned into chunks of 65 kb overlapping by 1 kb, but the 

overlap can be increased to support reads longer than 1 kb.  

 

 

Figure 27. Overview of CloudBurst algorithm. 
The map phase emits k-mers as keys for every k-mer in the reference, and for all non-overlapping k-
mers in the reads. The shuffle phase groups together the k-mers shared between the reads and the 
reference. The reduce phase extends the seeds into end-to-end alignments allowing for a fixed number 
of mismatches or indels. In the figure, 2 grey reference seeds are compared to a single read creating 
one alignment with 2 errors and 1 alignment with 0 errors, while the black shared seed is extended to 
an alignment with 3 errors. 
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Map: extract K-mers 

The map function scans the input sequences and emits key–value pairs (seed, 

MerInfo) where seed is a sequence of length s, and MerInfo is the tuple (id, position, 

isRef, isRC, left_flank, right_flank). If the input sequence is a reference sequence, 

then a pair is emitted for every k-mer in the sequence, with isRef = 1, isRC = 0, and 

position set as the offset of the k-mer in the original sequence. If the given input 

sequence is a read, then isRef = 0, and a pair is emitted for the non-overlapping k-

mers with appropriate position. Seeds are also emitted for the non-overlapping k-mers 

of the reverse complement sequence with isRC = 1. The flanking sequences [up to (m 

– s + k) bp) are included in the fields left_flank and right_flank. The seeds are 

represented with a 2 bit/bp encoding to represent the four DNA characters (ACGT), 

while the flanking sequences are represented with a 4 bit/bp encoding, which also 

allows for representing an unknown base (N), and a separator character (.). 

CloudBurst parallelizes execution by seed, so each reducer evaluates all 

potential alignments for approximately 1/N of the 4s seeds, where N is the number of 

reducers. Overall this balances the workload well, and each reducer is assigned 

approximately the same number of alignments and runs for approximately the same 

duration. However, low-complexity seeds (defined as seeds composed of a single 

DNA character) occur a disproportionate number of times in the read and reference 

datasets, and the reducers assigned these high-frequency seeds require substantially 

more execution time than the others. Therefore, CloudBurst can rebalance low-

complexity seeds by emitting redundant copies of each occurrence in the reference 

and randomly assigning occurrences in the reads to one of the redundant copies. For 
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example, if the redundancy is set to 4, each instance of the seed AAAA in the 

reference will be redundantly emitted as seeds AAAA-0, AAAA-1, AAAA-2 and 

AAAA-3, and each instance of AAAA from the reads will be randomly assigned to 

seed AAAA-R with 0≤R≤3. The total number of alignments considered will be the 

same as if there were no redundant copies, but different subsets of the alignments can 

be evaluated in parallel in different reducers, and thus improve the overall load 

balance. 

Shuffle: collect shared seeds 

Once all mappers have completed, Hadoop shuffles the key–value pairs, and 

groups all values with the same key into a single list. Since the key is a k-mer from 

either the read or reference sequences, this has the effect of cataloging seeds that are 

shared between the reads and the reference. 

Reduce: extend seeds 

The reduce function extends the exact alignment seeds into longer inexact 

alignments. For a given seed and MerInfo list, it first partitions the MerInfo tuples 

into the set R from the reference and set Q from the reads. Then it attempts to extend 

each pair of tuples from the Cartesian product R x Q using either a scan of the 

flanking bases to count mismatches, or the Landau–Vishkin k-difference algorithm 

for gapped alignments. The evaluation proceeds block-wise across subsets of R and Q 

to maximize cache reuse, and using the bases flanking the shared seeds stored in the 

MerInfo tuples. If an end-to-end alignment with at most k mismatches or k 

differences is found, it is then checked to determine if it is a duplicate alignment. This 

is necessary because multiple exact seeds may be present within the same alignment. 
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For example, a perfectly matching end-to-end alignment has k +1 exact seeds, and is 

computed k +1 times. If another exact seed with smaller offset exists in the read the 

alignment is filtered as a duplicate, otherwise the alignment is recorded. The value for 

k is small, so only a small number of alignments are discarded. 

The output from CloudBurst is a set of binary files containing every alignment 

of every read with at most k mismatches or differences. These files can be converted 

into a standard tab-delimited text file of the alignments using the same format as 

RMAP or post-processed with the bundled tools. 

Alignment filtration 

In some circumstances, only the unambiguous best alignment for each read is 

required, rather than the full catalog of all alignments. If so, the alignments can be 

filtered to report the best alignment for each read, meaning the one with the fewest 

mismatches or differences. If a read has multiple best alignments, then no alignments 

are reported exactly as implemented in RMAPM. The filtering is implemented as a 

second MapReduce algorithm run immediately after the alignments are complete. The 

map function reemits the end-to-end alignments as key–value pairs with the read 

identifier as the key and the alignment information as the value. During the shuffle 

phase, all alignments for a given read are grouped together. The reduce function scans 

the list of alignments for each read and records the best alignment if an unambiguous 

best alignment exists. As an optimization, the reducers in the main alignment 

algorithm report the top two best alignments for each read. Also, the filtration 

algorithm uses a combiner to filter alignments in memory and reports just the top two 
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best alignments from its subset of alignments for a given read. These optimizations 

improve performance without changing the results. 

Results 

CloudBurst was evaluated in a variety of configurations for the task of 

mapping random subsets of 7.06 million publicly available Illumina/Solexa 

sequencing reads from the 1000 Genomes Project (accession SRR001113) to portions 

of the human genome (NCBI Build 36) allowing up to four mismatches. All reads 

were exactly 36 bp long. The test cluster has 12 compute nodes, each with a 32 bit 

dual core 3.2 GHz Intel Xeon (24 cores total) and 250 GB of local disk space. The 

compute nodes were running RedHat Linux AS Release 3 Update 4, and Hadoop 

0.15.3 set to execute two tasks per node (24 simultaneous tasks total). In the results 

below, the time to convert and load the data into the HDFS is excluded, since this 

time was the same for all tasks, and once loaded the data was reused for multiple 

analyses. 

The first test explored how CloudBurst scales as the number of reads increases 

and as the sensitivity of the alignment increases. In this test, sub-sets of the reads 

were mapped to the full human genome (2.87 Gbp), chromosome 1 (247.2 Mbp) or 

chromosome 22 (49.7 Mbp). To improve load balance across the cores, the number of 

mappers was set to 240, the number of reducers was set to 48, and the redundancy for 

low-complexity seeds was set to 16. The redundancy setting was used because the 

low-complexity seeds required substantially more running time than the other seeds 

(>1 h compared with <1 min), and the redundancy allows their alignments to be 

processed in parallel in different reducers. Figure 28 shows the running time of these 
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tasks averaged over three runs, and shows that CloudBurst scales linearly in 

execution time as the number of reads increases, as expected. Aligning all 7M reads 

to the full genome with four mismatches failed to complete after reporting ~25 billion 

mappings due to lack of available disk space. Even allowing zero mismatches created 

771M end-to-end perfect matches from the full 7M read set, but most other tools 

would report just one match per read. Allowing more mismatches increases the 

runtime superlinearly, because higher sensitivity requires shorter seeds with more 

chance occurrences. The expected number of occurrences of a seed length s in a 

sequence of length L is (L – s + 1)/4s, so a random 18 bp sequence (k = 1) is expected 

to occur ~0.04, ~0.003 and ~0.001 times in the full genome and chromosomes 1 and 

22, respectively, while a 7 bp sequence (k =4) is expected to occur >17,500, >15,000 

and >3000 times, respectively. Consequently, short seeds have drastically more 

chance occurrences and correspondingly more running time even though most chance 

occurrences will fail to extend into end-to-end matches. 
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Figure 28. CloudBurst Scaling Performance. 
Evaluation of CloudBurst running time while scaling the number of reads and sensitive for mapping to 
the (A) full human genome; (B) chromosomes 1; and (C) 22 on the local cluster with 24 cores. Tinted 
lines indicate timings allowing 0 (fastest) through four (slowest) mismatches between a read and the 
reference. As the number of reads increases, the running time increases linearly. As the number of 
allowed mismatches increases, the running time increases superlinearly from the exponential increase 
in seed instances. The four mismatch computation against the full human genome failed to complete 
due to lack of available disk space after reporting ~25 billion end-to-end alignments. 
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The second test compared the performance CloudBurst on 24 processor cores 

with a serial execution of RMAPM (version 0.41) on 1 core with the full read set to 

chromosomes 1 and 22. RMAP requires a 64 bit operating system, so it was run on 1 

core of a 64 bit dual core 2.4 GHz AMD Opteron 250 with 8 GB of RAM running 

RedHat Enterprise Linux AS Release 3 Update 9. CloudBurst was configured as 

before, except with the alignment filtration option enabled so only a single alignment 

was reported for each read identical to those reported by RMAPM. Figure 29 shows 

the results of the test, and plots the speedup of CloudBurst over RMAP for the 

different levels of sensitivity. The expected speedup is 24, since CloudBurst runs in 

parallel on 24 cores, but CloudBurst's speedup over RMAP varies between 2x and 

33x depending on the level of sensitivity and reference sequence. At low sensitivity 

(especially k =0), the overhead of shuffling and distributing the data over the network 

overwhelms the parallel computation compared with the in-memory lookup and 

evaluation in RMAP. As the sensitivity increases, the overhead becomes 

proportionally less until the time spent evaluating alignments in the reduce phase 

dominates the running time. The speedup beyond 24x for high-sensitivity mapping is 

due to implementation differences between RMAP and CloudBurst, and the 

additional compute resources available in the parallel environment (cache, disk IO, 

RAM, etc.). The speedup when mapping to the full genome did not improve as the 

level of sensitivity increased because of the increased overhead from the increased 

data size. This effect can be minimized by aligning more reads to the genome in a 

single batch, and thus better amortize the time spent emitting and shuffling all of the 

k-mers in the genome. 
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Figure 29. CloudBurst Speedup over RMAP. 
CloudBurst running time compared with RMAP for 7M reads, showing the speedup of CloudBurst 
running on 24 cores compared with RMAP running on 1 core. As the number of allowed mismatches 
increases, the relative overhead decreases allowing CloudBurst to meet and exceed 24x linear speedup. 

 

The next experiment compared CloudBurst with an ad hoc parallelization 

scheme for RMAP, in which the reads are split into multiple files, and then RMAP is 

executed on each file. In the experiment, the full read set was split into 24 files, each 

containing 294k reads, and each file was separately mapped to chromosome 22. The 

runtimes were just for executing RMAP, and do not consider any overhead of 

partitioning the files, remotely launching the program, or monitoring the progress, 

and thus the expected speedup should be a perfect 24x. However, the runtimes of the 

different files varied considerably depending on which reads were present, and the 

corresponding speedup is computed based on the runtime for the longest running file: 

between 18 and 41 s with a 12x speedup for zero mismatches, 26–67 s with a 14x 

speedup for one mismatch, 34–98 s with a 16x speedup for two mismatches, 132–290 

s with a 21x speedup for three mismatches and 1379–1770 s with a 29x speedup for 
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four mismatches. The superlinear speedup for four mismatches was because the total 

computation time after splitting the read set was less than the time for the full batch at 

once, presumably because of better cache performance for RMAP with fewer reads. 

This experiment shows the ad hoc scheme works well with speedups similar to 

CloudBurst, but fails to reach perfect linear speedup in most cases because it makes 

no special considerations for load balance. In addition, an ad hoc parallelization 

scheme is more fragile as it would not benefit from the inherent advantages of 

Hadoop: data-aware scheduling, monitoring and restart and the high-performance file 

system. 

 

Amazon Cloud Results  

CloudBurst was next evaluated on the Amazon EC2. This environment 

provides unique opportunities for evaluating CloudBurst, because the performance 

and size of the cluster are configurable. The first test compared two different EC2 

virtual machine classes with the local dedicated 24-core Hadoop cluster described 

above. In all three cases, the number of cores available was held constant at 24, and 

the task was mapping all 7M reads to human chromosome 22 with up to four 

mismatches, with runtimes averaged over three runs. The first configuration had 24 

‘Small Instance’ slaves running Hadoop 0.17.0, priced at $0.10 per hour per instance 

and provides one virtual core with approximately the performance of a 1.0–1.2 GHz 

2007 Xeon processor. The second configuration had 12 ‘High-CPU Medium 

Instance’ slaves, also running Hadoop 0.17.0 and priced at $0.20 per hour per 

instance, but offers two virtual cores per machine and have been benchmarked to 
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have a total performance approximately five times the small instance type. The 

running time for the ‘High-CPU Medium Instance’ class was 1667 s, and was 

substantially better per dollar than the ‘Small Instance’ class at 3805 s, and even 

exceeds the performance of the local dedicated cluster at 1921 s. 

The final experiment evaluated CloudBurst as the size of the cluster increases 

for a fixed problem. In this experiment, the number of ‘High-CPU Medium Instance’ 

cores varied between 24, 48, 72 and 96 virtual cores for the task of mapping all 7M 

reads to human chromosome 22. Figure 5 shows the running time with these clusters 

averaged over three runs. The results show CloudBurst scales very well as the number 

of cores increases: the 96-core cluster was 3.5 times faster than the 24-core cluster 

and reduced the running time of the serial RMAP execution from >14 h to ~8 min 

(>100x speedup). The main limiting factor towards reaching perfect speedups in the 

large clusters was that the load imbalance caused a minority of the reducers running 

longer than the others. This effect was partially solved by reconfiguring the 

parallelization settings: the number of reducers was increased to 60 and the 

redundancy of the low-complexity seeds was increased to 24 for the 48-core 

evaluation, 144 and 72 for the 72-core evaluation and 196 and 72 for the 96-core 

evaluation. With these settings, the computation had better balance across the virtual 

machines and decreased the wall clock time of the execution. 
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Figure 30. CloudBurst Scaling on EC2. 
Comparison of CloudBurst running time (in seconds) while scaling size of the cluster for mapping 7M 
reads to human chromosome 22 with at most four mismatches on the EC2 Cluster. The 96-core cluster 
is 3.5x faster than the 24-core cluster. 
 

Discussion  

CloudBurst is a new parallel read-mapping algorithm optimized for next-

generation sequence data. It uses seed-and-extend alignment techniques modeled after 

RMAP to efficiently map reads with any number of mismatches or differences. It uses 

the Hadoop implementation of MapReduce to efficiently execute in parallel on 

multiple compute nodes, thus making it feasible to perform highly sensitive 

alignments on large read sets. The results described here show CloudBurst scales 

linearly as the number of reads increases, and with near linear parallel speedup as the 

size of the cluster increases. This high level of performance enables computation of 

extremely large numbers of highly sensitive alignments in dramatically reduced time, 

and is complementary to new BWT-based aligners that excel at quickly reporting a 

small number of alignments per read. 
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CloudBurst's superior performance is made possible by the efficiency and 

power of Hadoop. This framework makes it straightforward to create highly scalable 

applications with many aspects of parallel computing automatically provided. 

Hadoop's ability to deliver high performance, even in the face of extremely large 

datasets, is a perfect match for many problems in computational biology. Seed-and-

extend style algorithms, in particular, are a natural fit for MapReduce, and any of the 

hash-table based seed-and-extend alignment algorithms including BLAST, SOAP, 

MAQ or ZOOM could be implemented with MapReduce. Future work for 

CloudBurst is to incorporate quality values in the mapping and scoring algorithms 

and to enhance support for paired reads. We are also exploring the possibility of 

integrating CloudBurst into RNA-seq analysis pipeline, which can also model gene 

splice sites. Algorithms that do not use a hash table, such as the BWT based short-

read aligners, can also use Hadoop to parallelize execution and the HDFS. 

Implementing algorithms to run in parallel with Hadoop has many advantages, 

including scalability, redundancy, automatic monitoring and restart and high-

performance distributed file access. In addition, no single machine needs to have the 

entire index in memory, and the computation requires only a single scan of the 

reference and query files. Consequently, Hadoop based implementations of other 

algorithms in computational biology might offer similar high levels of performance. 

These massively parallel applications, running on large compute clouds with 

thousands of nodes, will drastically change the scale and scope of computational 

biology, and allow researchers to cheaply perform analyses that are otherwise 

impossible. 
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Chapter 5: Searching for SNPs with Cloud Computing 

Summary of Contribution 

This chapter describes the pipeline Crossbow published in Genome Biology 

[74] in collaboration with Ben Langmead, Jimmy Lin, Mihai Pop and Steven 

Salzberg at the University of Maryland. Crossbow is a pipeline for rapid and large 

scale genotyping, including genotyping entire human genomes from short reads.  

Similar to CloudBurst, Crossbow uses the MapReduce framework to 

distribute and accelerate computation across a cluster of computers. Crossbow is 

composed of 3 major stages of computation. The first stage of Crossbow executes the 

ultrafast short read alignment program Bowtie [72] as the MapReduce map function 

to align batches of reads to the reference genome. The second stage is the MapReduce 

shuffle phase groups and sorts the alignments so that all alignments within the same 

chromosome region are collected and sorted on the same computer. The final stage 

reuses the tool SOAPsnp [75] as the MapReduce reduce function to scan the multiple 

alignment of reads to find significant differences between the reference genome and 

the reads. On a cluster with 320 cores, Crossbow was able to genotype 38 fold 

coverage of the human genome in just three hours with over 99% concordance with 

independently generated genotype information. 

Michael Schatz implemented the Crossbow pipeline for a local cluster, and 

executed the whole genome genotyping experiments on the local cluster. Ben 

Langmead designed the overall pipeline, implemented the Crossbow pipeline on the 

Amazon cluster, and executed the experiments at Amazon. Jimmy Lin contributed to 
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the algorithm design. Ben Langmead wrote the initial draft of the manuscript, and 

Michael Schatz made extensive edits to the manuscript. Jimmy Lin, Mihai Pop and 

Steven Salzberg edited the manuscript and provided guidance on the project. 

 

Abstract 

As DNA sequencing outpaces improvements in computer speed, there is a 

critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-

computing software tool that combines the aligner Bowtie and the SNP caller 

SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 

38-fold coverage of the human genome in three hours using a 320-CPU cluster rented 

from a cloud computing service for about $85. Crossbow is available from 

http://bowtie-bio.sourceforge.net/crossbow/. 

 

Rationale 

Improvements in DNA sequencing have made sequencing an increasingly 

valuable tool for the study of human variation and disease. Technologies from 

Illumina (San Diego, CA, USA), Applied Biosystems (Foster City, CA, USA) and 

454 Life Sciences (Branford, CT, USA) have been used to detect genomic variations 

among humans [7, 62, 71-73], to profile methylation patterns [76], to map DNA-

protein interactions [77], and to identify differentially expressed genes and novel 

splice junctions [78, 79]. Meanwhile, technical improvements have greatly decreased 

the cost and increased the size of sequencing datasets. For example, at the beginning 
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of 2009 a single Illumina instrument was capable of generating 15 to 20 billion bases 

of sequencing data per run. Illumina has projected (http://investor.illumina.com/) that 

its instrument will generate 90 to 95 billion bases per run by the end of 2009, 

quintupling its throughput in one year. Another study shows the per-subject cost for 

whole-human resequencing declining rapidly over the past year [1], which will fuel 

further adoption. Growth in throughput and adoption are vastly outpacing 

improvements in computer speed, demanding a level of computational power 

achievable only via large-scale parallelization. 

Two recent projects have leveraged parallelism for whole-genome assembly 

with short reads. Simpson et al. [80] use ABySS to assemble the genome of a human 

from 42-fold coverage of short reads [69] using a cluster of 168 cores (21 computers), 

in about 3 days of wall clock time. Jackson and colleagues [81] assembled a 

Drosophila melanogaster genome from simulated short reads on a 512-node 

BlueGene/L supercomputer in less than 4 hours of total elapsed time. Though these 

efforts demonstrate the promise of parallelization, they are not widely applicable 

because they require access to a specific type of hardware resource. No two clusters 

are exactly alike, so scripts and software designed to run well on one cluster may run 

poorly or fail entirely on another cluster. Software written for large supercomputers 

like BlueGene/L is less reusable still, since only select researchers have access to 

such machines. Lack of reusability also makes it difficult for peers to recreate 

scientific results obtained using such systems. 

An increasingly popular alternative for large-scale computations is cloud 

computing. Instead of owning and maintaining dedicated hardware, cloud computing 
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offers a 'utility computing' model, that is, the ability to rent and perform computation 

on standard, commodity computer hardware over the Internet. These rented 

computers run in a virtualized environment where the user is free to customize the 

operating system and software installed. Cloud computing also offers a parallel 

computing framework called MapReduce [82], which was designed by Google to 

efficiently scale computation to many hundreds or thousands of commodity 

computers. Hadoop (http://hadoop.apache.org) is an open source implementation of 

MapReduce that is widely used to process very large datasets, including at companies 

such as Google, Yahoo, Microsoft, IBM, and Amazon. Hadoop programs can run on 

any cluster where the portable, Java-based Hadoop framework is installed. This may 

be a local or institutional cluster to which the user has free access, or it may be a 

cluster rented over the Internet through a utility computing service. In addition to high 

scalability, the use of both standard software (Hadoop) and standard hardware (utility 

computing) affords reusability and reproducibility. 

The CloudBurst project [38] explored the benefits of using Hadoop as a 

platform for alignment of short reads. CloudBurst is capable of reporting all 

alignments for millions of human short reads in minutes, but does not scale well to 

human resequencing applications involving billions of reads. Whereas CloudBurst 

aligns about 1 million short reads per minute on a 24-core cluster, a typical human 

resequencing project generates billions of reads, requiring more than 100 days of 

cluster time or a much larger cluster. Also, whereas CloudBurst is designed to 

efficiently discover all valid alignments per read, resequencing applications often 

ignore or discount evidence from repetitively aligned reads as they tend to confound 
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genotyping. Our goal for this work was to explore whether cloud computing could be 

profitably applied to the largest problems in comparative genomics. We focus on 

human resequencing, and single nucleotide polymorphism (SNP) detection 

specifically, in order to allow comparisons to previous studies. 

We present Crossbow, a Hadoop-based software tool that combines the speed 

of the short read aligner Bowtie [72] with the accuracy of the SNP caller SOAPsnp 

[75] to perform alignment and SNP detection for multiple whole-human datasets per 

day. In our experiments, Crossbow aligns and calls SNPs from 38-fold coverage of a 

Han Chinese male genome [9] in as little as 3 hours (4 hours 30 minutes including 

transfer time) using a 320-core cluster. SOAPsnp was previously shown to make SNP 

calls that agree closely with genotyping results obtained with an Illumina 1 M 

BeadChip assay of the Han Chinese genome [75] when used in conjunction with the 

short read aligner SOAP [15]. We show that SNPs reported by Crossbow exhibit a 

level of BeadChip agreement comparable to that achieved in the original SOAPsnp 

study, but in far less time. 

Crossbow is open source software available from the Bowtie website 

(http://bowtie-bio.sf.net/crossbow). Crossbow can be run on any cluster with 

appropriate versions of Hadoop, Bowtie, and SOAPsnp installed. Crossbow is 

distributed with scripts allowing it to run either on a local cluster or on a cluster 

rented through Amazon's Elastic Compute Cloud (EC2) (http://aws.amazon.com) 

utility computing service. Version 0.1.3 of the Crossbow software is also provided as 

Additional data file 1. 
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Results 

Crossbow harnesses cloud computing to efficiently and accurately align 

billions of reads and call SNPs in hours, including for high-coverage whole-human 

datasets. Within Crossbow, alignment and SNP calling are performed by Bowtie and 

SOAPsnp, respectively, in a seamless, automatic pipeline. Crossbow can be run on 

any computer cluster with the prerequisite software installed. The Crossbow package 

includes scripts that allow the user to run an entire Crossbow session remotely on an 

Amazon EC2 cluster of any size. 

 

Resequencing simulated data 

To measure Crossbow's accuracy where true SNPs are known, we conducted 

two experiments using simulated paired-end read data from human chromosomes 22 

and X. Results are shown in Table 4 and Table 5. For both experiments, 40-fold 

coverage of 35-bp paired-end reads were simulated from the human reference 

sequence (National Center for Biotechnology Information (NCBI) 36.3). Quality 

values and insert lengths were simulated based on empirically observed qualities and 

inserts in the Wang et al. dataset [9]. 
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Table 4. Experimental Parameters for Crossbow experiments using simulated reads from human 
chromosomes 22 and X. 
 

 

Table 5. SNP calling measurements for Crossbow experiments using simulated reads from 
human chromosomes 22 and X. 
 

 

 

SOAPsnp can exploit user-supplied information about known SNP loci and 

allele frequencies to refine its prior probabilities and improve accuracy. Therefore, 

the read simulator was designed to simulate both known HapMap [83] SNPs and 

novel SNPs. This mimics resequencing experiments where many SNPs are known but 

some are novel. Known SNPs were selected at random from actual HapMap alleles 

for human chromosomes 22 and X. Positions and allele frequencies for known SNPs 

were calculated according to the same HapMap SNP data used to simulate SNPs. 
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For these simulated data, Crossbow agrees substantially with the true calls, 

with greater than 99% precision and sensitivity overall for chromosome 22. 

Performance for HapMap SNPs is noticeably better than for novel SNPs, owing to 

SOAPsnp's ability to adjust SNP-calling priors according to known allele frequencies. 

Performance is similar for homozygous and heterozygous SNPs overall, but novel 

heterozygous SNPs yielded the worst performance of any other subset studied, with 

96.6% sensitivity and 94.6% specificity on chromosome 22. This is as expected, since 

novel SNPs do not benefit from prior knowledge, and heterozygous SNPs are more 

difficult than homozygous SNPs to distinguish from the background of sequencing 

errors. 

 

Whole-human resequencing 

To demonstrate performance on real-world data, we used Crossbow to align 

and call SNPs from the set of 2.7 billion reads and paired-end reads sequenced from a 

Han Chinese male by Wang et al [9]. Previous work demonstrated that SNPs called 

from this dataset by a combination of SOAP and SOAPsnp are highly concordant 

with genotypes called by an Illumina 1 M BeadChip genotyping assay of the same 

individual [75]. Since Crossbow uses SOAPsnp as its SNP caller, we expected 

Crossbow to yield very similar, but not identical, output. Differences may occur 

because: Crossbow uses Bowtie whereas the previous study used SOAP to align the 

reads; the Crossbow version of SOAPsnp has been modified somewhat to operate 

within a MapReduce context; in this study, alignments are binned into non-

overlapping 2-Mbp partitions rather than into chromosomes prior to being given to 
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SOAPsnp; and the SOAPsnp study used additional filters to remove some additional 

low confidence SNPs. Despite these differences, Crossbow achieves comparable 

agreement with the BeadChip assay and at a greatly accelerated rate. 

We downloaded 2.66 billion reads from a mirror of the YanHuang site 

(http://yh.genomics.org.cn/). These reads cover the assembled human genome 

sequence to 38-fold coverage. They consist of 2.02 billion unpaired reads with sizes 

ranging from 25 to 44 bp, and 658 million paired-end reads. The most common 

unpaired read lengths are 35 and 40 bp, comprising 73.0% and 17.4% of unpaired 

reads, respectively. The most common paired-end read length is 35 bp, comprising 

88.8% of all paired-end reads. The distribution of paired-end separation distances is 

bimodal with peaks in the 120 to 150 bp and 420 to 460 bp ranges. 

Table 6 shows a comparison of SNPs called by either of the sequencing-based 

assays - Crossbow labeled 'CB' and SOAP+SOAPsnp labeled 'SS' - against SNPs 

obtained with the Illumina 1 M BeadChip assay from the SOAPsnp study [75]. The 

'sites covered' column reports the proportion of BeadChip sites covered by a 

sufficient number of sequencing reads. Sufficient coverage is roughly four reads for 

diploid chromosomes and two reads for haploid chromosomes (see Materials and 

methods for more details about how sufficient coverage is determined). The 'Agreed' 

column shows the proportion of covered BeadChip sites where the BeadChip call 

equaled the SOAPsnp or Crossbow call. The 'Missed allele' column shows the 

proportion of covered sites where SOAPsnp or Crossbow called a position as 

homozygous for one of two heterozygous alleles called by BeadChip at that position. 

The 'Other disagreement' column shows the proportion of covered sites where the 
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BeadChip call differed from the SOAPsnp/Crossbow in any other way. Definitions of 

the 'Missed allele' and 'Other disagreement' columns correspond to the definitions of 

'false negatives' and 'false positives', respectively, in the SOAPsnp study. 

 

Table 6. Coverage and agreement measurements comparing Crossbow (CB) and 
SOAP/SOAPsnp (SS) to the genotyping results obtained by an Illumina 1 M genotyping assay in 
the SOAPsnp study. 

 

 

Both Crossbow and SOAP+SOAPsnp exhibit a very high level of agreement 

with the BeadChip genotype calls. The small differences in number of covered sites 

(<2% higher for Crossbow) and in percentage agreement (<0.1% lower for 

Crossbow) are likely due to the SOAPsnp study's use of additional filters to remove 

some SNPs prior to the agreement calculation, and to differences in alignment 

policies between SOAP and Bowtie. After filtering, Crossbow reports a total of 

3,738,786 SNPs across all autosomal chromosomes and chromosome X, whereas the 

SNP GFF file available from the YanHaung site (http://yh.genomics.org.cn/) reports a 
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total of 3,072,564 SNPs across those chromosomes. This difference is also likely due 

to the SOAPsnp study's more stringent filtering. 

 

Cloud performance 

The above results were computed on a Hadoop 0.20 cluster with 10 worker 

nodes located in our laboratory, where it required about 1 day of wall clock time to 

run. Each node is a four-core 3.2 GHz Intel Xeon (40 cores total) running 64-bit 

Redhat Enterprise Linux Server 5.3 with 4 GB of physical memory and 366 GB of 

local storage available for the Hadoop Distributed Filesystem (HDFS) and connected 

via gigabit ethernet. We also performed this computation using Amazon's EC2 

service on clusters of 10, 20 and 40 nodes (80, 160, and 320 cores) running Hadoop 

0.20. In each case, the Crossbow pipeline was executed end-to-end using scripts 

distributed with the Crossbow package. In the 10-, 20- and 40-node experiments, each 

individual node was an EC2 Extra Large High CPU Instance, that is, a virtualized 64-

bit computer with 7 GB of memory and the equivalent of 8 processor cores clocked at 

approximately 2.5 to 2.8 Ghz. At the time of this writing, the cost of such nodes was 

$0.68 ($0.76 in Europe) per node per hour. 

Before running Crossbow, the short read data must be stored on a filesystem 

the Hadoop cluster can access. When the Hadoop cluster is rented from Amazon's 

EC2 service, users will typically upload input data to Amazon's Simple Storage 

Service (S3), a service for storing large datasets over the Internet. For small datasets, 

data transfers typically complete very quickly, but for large datasets (for example, 

more than 100 GB of compressed short read data), transfer time can be significant. 
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An efficient method to copy large datasets to S3 is to first allocate an EC2 cluster of 

many nodes and have each node transfer a subset of the data from the source to S3 in 

parallel. Crossbow is distributed with a Hadoop program and driver scripts for 

performing these bulk parallel copies while also preprocessing the reads into the form 

required by Crossbow. We used this software to copy 103 gigabytes of compressed 

short read data from a public FTP server located at the European Bioinformatics 

Institute in the UK to an S3 repository located in the US in about 1 hour 15 minutes 

(approximately 187 Mb/s effective transfer rate). The transfer cost approximately 

$28: about $3.50 ($3.80 in Europe) in cluster rental fees and about $24 ($24 in 

Europe) in data transfer fees. 

Transfer time depends heavily on both the size of the data and the speed of the 

Internet uplink at the source. Public archives like NCBI and the European 

Bioinformatics Institute (EBI) have very high-bandwidth uplinks to the >10 Gb/s 

JANET and Internet2 network backbones, as do many academic institutions. 

However, even at these institutions, the bandwidth available for a given server or 

workstation can be considerably less (commonly 100 Mb/s or less). Delays due to 

slow uplinks can be mitigated by transferring large datasets in stages as reads are 

generated by the sequencer, rather than all at once. 

To measure how the whole-genome Crossbow computation scales, separate 

experiments were performed using 10, 20 and 40 EC2 Extra Large High CPU nodes. 

Table 7 presents the wall clock running time and approximate cost for each 

experiment. The experiment was performed once for each cluster size. The results 
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show that Crossbow is capable of calling SNPs from 38-fold coverage of the human 

genome in under 3 hours of wall clock time and for about $85 ($96 in Europe). 

 

Table 7. Timing and cost for Crossbow experiments using reads from the Wang et al. study. 
 

 

 

Figure 31 illustrates scalability of the computation as a function of the number 

of processor cores allocated. Units on the vertical axis are the reciprocal of the wall 

clock time. Whereas wall clock time measures elapsed time, its reciprocal measures 

throughput - that is, experiments per hour. The straight diagonal line extending from 

the 80-core point represents hypothetical linear speedup, that is, extrapolated 

throughput under the assumption that doubling the number of processors also doubles 

throughput. In practice, parallel algorithms usually exhibit worse-than-linear speedup 

because portions of the computation are not fully parallel. In the case of Crossbow, 

deviation from linear speedup is primarily due to load imbalance among CPUs in the 

map and reduce phases, which can cause a handful of work-intensive 'straggler' tasks 

to delay progress. The reduce phase can also experience imbalance due to, for 

example, variation in coverage. 
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Figure 31. Crossbow Scaling Performance. 
Number of worker CPU cores allocated from EC2 versus throughput measured in experiments per 
hour: that is, the reciprocal of the wall clock time required to conduct a whole-human experiment on 
the Wang et al. dataset. The line labeled 'linear speedup' traces hypothetical linear speedup relative to 
the throughput for 80 CPU cores. 

 

Materials and methods 

Alignment and SNP calling in Hadoop 

Hadoop is an implementation of the MapReduce parallel programming model. 

Under Hadoop, programs are expressed as a series of map and reduce phases 

operating on tuples of data. Though not all programs are easily expressed this way, 

Hadoop programs stand to benefit from services provided by Hadoop. For instance, 

Hadoop programs need not deal with particulars of how work and data are distributed 

across the cluster; these details are handled by Hadoop, which automatically 

partitions, sorts and routes data among computers and processes. Hadoop also 

provides fault tolerance by partitioning files into chunks and storing them redundantly 
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on the HDFS. When a subtask fails due to hardware or software errors, Hadoop 

restarts the task automatically, using a cached copy of its input data. 

A mapper is a short program that runs during the map phase. A mapper 

receives a tuple of input data, performs a computation, and outputs zero or more 

tuples of data. A tuple consists of a key and a value. For example, within Crossbow a 

read is represented as a tuple where the key is the read's name and the value equals 

the read's sequence and quality strings. The mapper is generally constrained to be 

stateless - that is, the content of an output tuple may depend only on the content of the 

corresponding input tuple, and not on previously observed tuples. This enables 

MapReduce to safely execute many instances of the mapper in parallel. Similar to a 

mapper, a reducer is a short program that runs during the reduce phase, but with the 

added condition that a single instance of the reducer will receive all tuples from the 

map phase with the same key. In this way, the mappers typically compute partial 

results, and the reducer finalizes the computation using all the tuples with the same 

key, and outputs zero or more output tuples. The reducer is also constrained to be 

stateless - that is, the content of an output tuple may depend only the content of the 

tuples in the incoming batch, not on any other previously observed input tuples. 

Between the map and reduce phases, Hadoop automatically executes a sort/shuffle 

phase that bins and sorts tuples according to primary and secondary keys before 

passing batches on to reducers. Because mappers and reducers are stateless, and 

because Hadoop itself handles the sort/shuffle phase, Hadoop has significant freedom 

in how it distributes parallel chunks of work across the cluster. 
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The chief insight behind Crossbow is that alignment and SNP calling can be 

framed as a series of map, sort/shuffle and reduce phases. The map phase is short read 

alignment where input tuples represent reads and output tuples represent alignments. 

The sort/shuffle phase bins alignments according to the genomic region ('partition') 

aligned to. The sort/shuffle phase also sorts alignments along the forward strand of 

the reference in preparation for consensus calling. The reduce phase calls SNPs for a 

given partition, where input tuples represent the sorted list of alignments occurring in 

the partition and output tuples represent SNP calls. 

A typical Hadoop program consists of Java classes implementing the mapper 

and reducer running in parallel on many compute nodes. However, Hadoop also 

supports a 'streaming' mode of operation whereby the map and reduce functions are 

delegated to command-line scripts or compiled programs written in any language. In 

streaming mode, Hadoop executes the streaming programs in parallel on different 

compute nodes, and passes tuples into and out of the program as tab-delimited lines 

of text written to the 'standard in' and 'standard out' file handles. This allows 

Crossbow to reuse existing software for aligning reads and calling SNPs while 

automatically gaining the scaling benefits of Hadoop. For alignment, Crossbow uses 

Bowtie [72], which employs a Burrows-Wheeler index [84] based on the full-text 

minute-space (FM) index [85] to enable fast and memory-efficient alignment of short 

reads to mammalian genomes. 

To report SNPs, Crossbow uses SOAPsnp [75], which combines multiple 

techniques to provide high-accuracy haploid or diploid consensus calls from short 

read alignment data. At the core of SOAPsnp is a Bayesian SNP model with 
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configurable prior probabilities. SOAPsnp's priors take into account differences in 

prevalence between, for example, heterozygous versus homozygous SNPs and SNPs 

representing transitions versus those representing transversions. SOAPsnp can also 

use previously discovered SNP loci and allele frequencies to refine priors. Finally, 

SOAPsnp recalibrates the quality values provided by the sequencer according to a 

four-dimensional training matrix representing observed error rates among uniquely 

aligned reads. In a previous study, human genotype calls obtained using the SOAP 

aligner and SOAPsnp exhibited greater than 99% agreement with genotype calls 

obtained using an Illumina 1 M BeadChip assay of the same Han Chinese individual 

[75]. 

Crossbow's efficiency requires that the three MapReduce phases, map, 

sort/shuffle and reduce, each be efficient. The map and reduce phases are handled by 

Bowtie and SOAPsnp, respectively, which have been shown to perform efficiently in 

the context of human resequencing. But another advantage of Hadoop is that its 

implementation of the sort/shuffle phase is extremely efficient, even for human 

resequencing where mappers typically output billions of alignments and hundreds of 

gigabytes of data to be sorted. Hadoop's file system (HDFS) and intelligent work 

scheduling make it especially well suited for huge sort tasks, as evidenced by the fact 

that a 1,460-node Hadoop cluster currently holds the speed record for sorting 1 TB of 

data on commodity hardware (62 seconds) (http://sortbenchmark.org/). 

 



 

 122 
 

Modifications to existing software 

Several new features were added to Bowtie to allow it to operate within 

Hadoop. A new input format (option --12) was added, allowing Bowtie to recognize 

the one-read-per-line format produced by the Crossbow preprocessor. New 

command-line options --mm and --shmem instruct Bowtie to use memory-mapped 

files or shared memory, respectively, for loading and storing the reference index. 

These features allow many Bowtie processes, each acting as an independent mapper, 

to run in parallel on a multi-core computer while sharing a single in-memory image of 

the reference index. This maximizes alignment throughput when cluster computers 

contain many CPUs but limited memory. Finally, a Crossbow-specific output format 

was implemented that encodes an alignment as a tuple where the tuple's key identifies 

a reference partition and the value describes the alignment. Bowtie detects instances 

where a reported alignment spans a boundary between two reference partitions, in 

which case Bowtie outputs a pair of alignment tuples with identical values but 

different keys, each identifying one of the spanned partitions. These features are 

enabled via the --partition option, which also sets the reference partition size. 

The version of SOAPsnp used in Crossbow was modified to accept alignment 

records output by modified Bowtie. Speed improvements were also made to 

SOAPsnp, including an improvement for the case where the input alignments cover 

only a small interval of a chromosome, as is the case when Crossbow invokes 

SOAPsnp on a single partition. None of the modifications made to SOAPsnp 

fundamentally affect how consensus bases or SNPs are called. 
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Workflow 

The input to Crossbow is a set of preprocessed read files, where each read is 

encoded as a tab-delimited tuple. For paired-end reads, both ends are stored on a 

single line. Conversion takes place as part of a bulk-copy procedure, implemented as 

a Hadoop program driven by automatic scripts included with Crossbow. Once 

preprocessed reads are situated on a filesystem accessible to the Hadoop cluster, the 

Crossbow MapReduce job is invoked (Figure 32). Crossbow's map phase is short read 

alignment by Bowtie. For fast alignment, Bowtie employs a compact index of the 

reference sequence, requiring about 3 Gb of memory for the human genome. The 

index is distributed to all computers in the cluster either via Hadoop's file caching 

facility or by instructing each node to independently obtain the index from a shared 

filesystem. The map phase outputs a stream of alignment tuples where each tuple has 

a primary key containing chromosome and partition identifiers, and a secondary key 

containing the chromosome offset. The tuple's value contains the aligned sequence 

and quality values. The soft/shuffle phase, which is handled by Hadoop, uses 

Hadoop's KeyFieldBasedPartitioner to bin alignments according to the primary key 

and sort according to the secondary key. This allows separate reference partitions to 

be processed in parallel by separate reducers. It also ensures that each reducer 

receives alignments for a given partition in sorted order, a necessary first step for 

calling SNPs with SOAPsnp. 
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Figure 32. Crossbow workflow. 
Previously copied and pre-processed read files are downloaded to the cluster, decompressed and 
aligned using many parallel instances of Bowtie. Hadoop then bins and sorts the alignments according 
to primary and secondary keys. Sorted alignments falling into each reference partition are then 
submitted to parallel instances of SOAPsnp. The final output is a stream of SNP calls made by 
SOAPsnp. 
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The reduce phase performs SNP calling using SOAPsnp. A wrapper script 

performs a separate invocation of the SOAPsnp program per partition. The wrapper 

also ensures that SOAPsnp is invoked with appropriate options given the ploidy of 

the reference partition. Files containing known SNP locations and allele frequencies 

derived from dbSNP [86] are distributed to worker nodes via the same mechanism 

used to distribute the Bowtie index. The output of the reduce phase is a stream of 

SNP tuples, which are stored on the cluster's distributed filesystem. The final stage of 

the Crossbow workflow archives the SNP calls and transfers them from the cluster's 

distributed filesystem to the local filesystem. 

 

Cloud support 

Crossbow comes with scripts that automate the Crossbow pipeline on a local 

cluster or on the EC2 utility computing service. The EC2 driver script can be run 

from any Internet-connected computer; however, all the genomic computation is 

executed remotely. The script runs Crossbow by: allocating an EC2 cluster using the 

Amazon Web Services tools; uploading the Crossbow program code to the master 

node; launching Crossbow from the master; downloading the results from the cluster 

to the local computer; and optionally terminating the cluster, as illustrated in Figure 

33. The driver script detects common problems that can occur in the cluster allocation 

process, including when EC2 cannot provide the requested number of instances due 

to high demand. The overall process is identical to running on a local dedicated 

cluster, except cluster nodes are allocated as requested. 
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Figure 33. Four basic steps to running the Crossbow computation. 
Two scenarios are shown: one where Amazon's EC2 and S3 services are used, and one where a local 
cluster is used. In step 1 (red) short reads are copied to the permanent store. In step 2 (green) the 
cluster is allocated (may not be necessary for a local cluster) and the scripts driving the computation 
are uploaded to the master node. In step 3 (blue) the computation is run. The computation download 
reads from the permanent store, operates on them, and stores the results in the Hadoop distributed 
filesystem. In step 4 (orange), the results are copied to the client machine and the job completes. SAN 
(Storage Area Network) and NAS (Network-Attached Storage) are two common ways of sharing 
filesystems across a local network. 
 

Genotyping experiment 

We generated 40-fold coverage of chromosomes 22 and X (NCBI 36.3_ using 

35-bp paired-end reads. Quality values were assigned by randomly selecting observed 

quality strings from a pair of FASTQ files in the Wang et al. dataset 

(080110_EAS51_FC20B21AAXX_L7_YHPE_PE1). The mean and median quality 

values among those in this subset are 21.4 and 27, respectively, on the Solexa scale. 

Sequencing errors were simulated at each position at the rate dictated by the quality 

value at that position. For instance, a position with Solexa quality 30 was changed to 

a different base with a probability of 1 in 1,000. The three alternative bases were 

considered equally likely. 

Insert lengths were assigned by randomly selecting from a set of observed 

insert lengths. Observed insert lengths were obtained by aligning a pair of paired-end 

FASTQ files (the same pair used to simulate the quality values) using Bowtie with 
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options '-X 10000 -v 2 --strata --best -m 1'. The observed mean mate-pair distance 

and standard deviation for this subset were 422 bp and 68.8 bp, respectively. 

Bowtie version 0.10.2 was run with the '-v 2 --best --strata -m 1' to obtain 

unique alignments with up to two mismatches. We define an alignment as unique if 

all other alignments for that read have strictly more mismatches. SOAPsnp was run 

with the rank-sum and binomial tests enabled (-u and -n options, respectively) and 

with known-SNP refinement enabled (-2 and -s options). Positions and allele 

frequencies for known SNPs were calculated according to the same HapMap SNP 

data used to simulate SNPs. SOAPsnp's prior probabilities for novel homozygous and 

heterozygous SNPs were set to the rates used by the simulator (-r 0.0001 -e 0.0002 

for chromosome 22 and -r 0.0002 for chromosome X). 

An instance where Crossbow reports a SNP on a diploid portion of the 

genome was discarded (that is, considered to be homozygous for the reference allele) 

if it was covered by fewer than four uniquely aligned reads. For a haploid portion, a 

SNP was discarded if covered by fewer than two uniquely aligned reads. For either 

diploid or haploid portions, a SNP was discarded if the call quality as reported by 

SOAPsnp was less than 20. 

 

Whole-human resequencing experiment 

Bowtie version 0.10.2 and a modified version of SOAPsnp 1.02 were used. 

Both were compiled for 64-bit Linux. Bowtie was run with the '-v 2 --best --strata -m 

1' options, mimicking the alignment and reporting modes used in the SOAPsnp study. 

A modified version of SOAPsnp 1.02 was run with the rank-sum and binomial tests 
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enabled (-u and -n options, respectively) and with known-SNP refinement enabled (-2 

and -s options). Positions for known SNPs were calculated according to data in 

dbSNP [86] versions 128 and 130, and allele frequencies were calculated according to 

data from the HapMap project [83]. Only positions occurring in dbSNP version 128 

were provided to SOAPsnp. This was to avoid biasing the result by including SNPs 

submitted by Wang et al. to dbSNP version 130. SOAPsnp's prior probabilities for 

novel homozygous and heterozygous SNPs were left at their default values of 0.0005 

and 0.001, respectively. Since the subject was male, SOAPsnp was configured to treat 

autosomal chromosomes as diploid and sex chromosomes as haploid. 

To account for base-calling errors and inaccurate quality values reported by 

the Illumina software pipeline [87, 88], SOAPsnp recalibrates quality values 

according to a four-dimensional matrix recording observed error rates. Rates are 

calculated across a large space of parameters, the dimensions of which include 

sequencing cycle, reported quality value, reference allele and subject allele. In the 

previous study, separate recalibration matrices were trained for each human 

chromosome; that is, a given chromosome's matrix was trained using all reads 

aligning uniquely to that chromosome. In this study, each chromosome is divided into 

non-overlapping stretches of 2 million bases and a separate matrix is trained and used 

for each partition. Thus, each recalibration matrix receives less training data than if 

matrices were trained per-chromosome. Though the results indicate that this does not 

affect accuracy significantly, future work for Crossbow includes merging 

recalibration matrices for partitions within a chromosome prior to genotyping. 

 



 

 129 
 

An instance where Crossbow reports a SNP on a diploid portion of the 

genome is discarded (that is, considered to be homozygous for the reference allele) if 

it is covered by fewer than four unique alignments. For a haploid portion, a SNP is 

discarded if covered by fewer than two unique alignments. For either diploid or 

haploid portions, a SNP is discarded if the call quality as reported by SOAPsnp is less 

than 20. Note that the SOAPsnp study applies additional filters to discard SNPs at 

positions that, for example, are not covered by any paired-end reads or appear to have 

a high copy number. Adding such filters to Crossbow is future work. 

 

Discussion 

In this chapter we have demonstrated that cloud computing realized by 

MapReduce and Hadoop can be leveraged to efficiently parallelize existing serial 

implementations of sequence alignment and genotyping algorithms. This combination 

allows large datasets of DNA sequences to be analyzed rapidly without sacrificing 

accuracy or requiring extensive software engineering efforts to parallelize the 

computation. 

We describe the implementation of an efficient whole-genome genotyping 

tool, Crossbow, that combines two previously published software tools: the sequence 

aligner Bowtie and the SNP caller SOAPsnp. Crossbow achieves at least 98.9% 

accuracy on simulated datasets of individual chromosomes, and better than 99.8% 

concordance with the Illumina 1 M BeadChip assay of a sequenced individual. These 

accuracies are comparable to those achieved in the prior SOAPsnp study once 

filtering stringencies are taken into account. 
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When run on conventional computers, a deep-coverage human resequencing 

project requires weeks of time to analyze on a single computer by contrast, Crossbow 

aligns and calls SNPs from the same dataset in less than 3 hours on a 320-core 

cluster. By taking advantage of commodity processors available via cloud computing 

services, Crossbow condenses over 1,000 hours of computation into a few hours 

without requiring the user to own or operate a computer cluster. In addition, running 

on standard software (Hadoop) and hardware (EC2 instances) makes it easier for 

other researchers to reproduce our results or execute their own analysis with 

Crossbow. 

Crossbow scales well to large clusters by leveraging Hadoop and the 

established, fast Bowtie and SOAPsnp algorithms with limited modifications. The 

ultrafast Bowtie alignment algorithm, utilizing a quality-directed best-first-search of 

the FM index, is especially important to the overall performance of Crossbow relative 

to CloudBurst. Crossbow's alignment stage vastly outperforms the fixed-seed seed-

and-extend search algorithm of CloudBurst on clusters of the same size. We expect 

that the Crossbow infrastructure will serve as a foundation for bringing massive 

scalability to other high-volume sequencing experiments, such as RNA-seq and ChIP-

seq. In our experiments, we demonstrated that Crossbow works equally well either on 

a local cluster or a remote cluster, but in the future we expect that utility computing 

services will make cloud computing applications widely available to any researcher. 
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Chapter 6: Assembly of Large Genomes using Second-

Generation Sequencing. 

Summary of Contribution 

This chapter is a review of current genome assembly methods and results, 

written in collaboration with Steven Salzberg and Arthur Delcher at the University of 

Maryland, and is currently under review for publication. The review is written as an 

introduction to the challenges of genome assembly, especially in consideration of the 

current second-generation sequencing technologies. 

Michael Schatz wrote the initial draft of the review of the assembly methods 

and challenges, and made the figures (including the necessary computations). Steven 

Salzberg wrote the initial draft of the introduction, and the recommendations for 

future sequencing projects. Arthur Delcher wrote the initial draft of the review of the 

current assembly results. 

   

Abstract 

Current second-generation sequencing technology can now be used to 

sequence an entire human genome in a matter of days and at low cost.  Sequence read 

lengths, initially very short, have rapidly increased since the technology first 

appeared, and we now are seeing a growing number of efforts to sequence large 

genomes de novo from these short reads.  In this Perspective, we describe the issues 

associated with short-read assembly, the different types of data produced by second-
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gen sequencers, and the latest assembly algorithms designed for these data.  We also 

review the genomes that have been assembled recently from short reads, and make 

recommendations for sequencing strategies that will yield a high-quality assembly. 

 

Introduction 

As genome sequencing technology has evolved, methods for assembling 

genomes have changed with it.   Genome sequencers have never been able to "read" 

more than a relatively short stretch of DNA at once, with read lengths gradually 

increasing over time.   Reconstructing a complete genome from a set of reads requires 

an assembly program, and a variety of genome assemblers have been used for this 

task.  In 1995, when the first bacterial genome was published (Haemophilus 

influenzae), read lengths were approximately 460 base pairs (bp), and that whole-

genome shotgun sequencing project generated 24,304 reads [5]. The human genome 

project required approximately 30 million reads, with lengths up to 800 bp, using 

Sanger sequencing technology and automated capillary sequencers [68, 89].   This 

corresponded to 24 billion bases (Gb), or approximately 8-fold coverage of the 3-Gb 

human genome.  Redundant coverage, in which on average every nucleotide is 

sequenced many times over, is required to produce a high-quality assembly.  Another 

benefit of redundancy is greatly increased accuracy compared to a single read: where 

a single read might have an error rate of 1%, 8-fold coverage has an error rate as low 

as 10-16 when eight high-quality reads agree with one another. High coverage is also 

necessary to fully and accurate sequence polymorphic alleles within diploid or 

polyploid genomes. 
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Current second-generation sequencing (SGS) technologies produce read 

lengths ranging from 35-400 bp, at far greater speed and much lower cost than Sanger 

sequencing.  However, as reads get shorter, coverage needs to increase to compensate 

for the decreased connectivity and produce a comparable assembly.  Certain problems 

cannot be overcome by deeper coverage: if a repetitive sequence is longer than a read, 

then coverage alone will never compensate, and all copies of that sequence will 

produce gaps in the assembly.  These gaps can be spanned by paired reads—

consisting of two reads generated from a single fragment of DNA and separated by a 

known distance—as long as the pair separation distance is longer than the repeat.  

Paired-end sequencing is available from most of the SGS machines, although it is not 

yet as flexible or as reliable as paired-end sequencing using traditional methods. 

After the successful assembly of the human [68] and mouse [90] genomes by 

whole-genome shotgun (WGS) sequencing, most large-scale genome projects quickly 

moved to adopt the WGS approach, which has subsequently been used for dozens of 

eukaryotic genomes.  Today, thanks to changes in sequencing technology, a major 

question confronting genome projects is, can we sequence a large genome (>100 

Mbp) using short reads?  If so, what are the limitations on read length, coverage, and 

error rates?  How much paired-end sequencing is necessary?  And what will the 

assembly look like?  In this perspective we take a look at each of these questions and 

describe the solutions available today.  Although we provide some answers, we have 

no doubt that the solutions will change rapidly over the next few years, as both the 

sequencing methods and the computational solutions improve. 
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Overview of SGS technologies 

The two leading sequencing technologies today produce reads with decidedly 

different characteristics.  The pyrosequencing approach, embodied in the 454 

sequencer from Roche, produces read lengths approaching 400 bp, and in a single 1-

day run generates several hundred million nucleotides.   This technology sequences 

DNA by sequentially flowing bases in a predetermined order across templates that are 

captured on microscopic beads contained in tiny wells.  A single cycle will 

incorporate multiple bases whenever the template sequence has a homopolymer run.  

Base calling is done by measuring the fluorescence intensity at each well, with greater 

intensity corresponding to multiple bases.  Read lengths and error rates have steadily 

improved since this method was introduced in 2005 [91] and 800 bp reads are 

expected in the near future.  At that point, pyrosequencing read lengths will match 

those of Sanger sequencing. 

The alternative approach produces shorter reads, but at much higher 

throughput.  This approach is embodied in several different commercial sequencers, 

including those from Illumina, Applied Biosystems, and Helicos.  The shared theme 

is to incorporate only one base per cycle, using specially modified bases that include 

both a fluorescent tag and a terminator [92].  After reading the base with a laser, the 

tag and terminator are removed so that the template can be extended by one more 

base.  These machines operate at much higher densities, produce 20-30 Gb per run, 

although a single run takes 5-10 days depending on the machine.  Read lengths have 

grown over the past two years from 25-30 bases to >100 bases today on some 
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platforms.  The overall cost per run is similar to pyrosequencing, yielding a much 

lower per-base cost. 

All these platforms offer some form of paired-end sequencing, but thus far the 

reliability of paired ends is not nearly as good as it is for Sanger sequencing.  In 

conventional Sanger sequencing, a “long” paired-end protocol starts with DNA 

templates ranging from 5000 to 35,000 bp.  These fragments are cloned into a vector, 

which is then amplified in E. coli prior to sequencing.  The vectors are subsequently 

extracted and then both ends of the vector inserts are sequenced.  One drawback to 

this traditional method is that the E. coli cloning step introduces a bias, making it 

difficult to capture some regions of a genome. 

Paired-end protocols for SGS avoid the use of a bacterial cloning step.  

Instead, they generally start with DNA fragments of the desired size, and then try to 

sequence both ends by circularizing the DNA, using a special tag or linker to connect 

the ends.  By sequencing fragments containing the tag, both ends of the original 

fragment will be captured.  Although this sounds straightforward, experience to date 

has indicated that it is very difficult to get DNA to circularize efficiently, and 

problems increase as the fragments get longer [93].  As a result, many paired-end 

libraries contain too little DNA, and the paired-end sequences fail to cover the 

genome at the required depth. These protocols are also currently limited to relatively 

short insert sizes compared to those available with Sanger sequencing, and very long 

range fosmid or BAC-end sequence data are not currently available at all.  This has 

significant implications for genome assembly, as we discuss below. 
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Overview of assembly methods 

Current genome sequencing technology can only sequence a tiny portion of 

genome in a contiguous read. Nevertheless, just as a jigsaw puzzle can be assembled 

from small puzzle pieces, a complete genome sequence can be assembled from short 

reads. Unlike jigsaw puzzle pieces that precisely lock together, DNA sequence reads 

may fit together in more than one way because of repetitive sequences within the 

genome.  Assembly methods aim to create most complete reconstruction possible 

without introducing errors. 

The central challenge of genome assembly is resolving repetitive sequences. 

The magnitude of the challenge depends on the sequencing technology, because the 

fraction of repetitive reads depends on the length of reads themselves.  At one 

extreme, if the reads were just one base long, every read would be repetitive; at the 

other extreme, if we could simply read an entire chromosome from one end to the 

other, repeats would pose no problem at all.  In between these extremes, the fraction 

of unique sequences increases as the read length increases, until eventually every 

sequence in the genome is unique.  If DNA sequences were random (which they are 

not), then the expected number of occurrences of any sequence would decrease 

exponentially as the length of the sequence increases, and a modest increase in read 

length could dramatically reduce the number of repeats in the genome. However, real 

genomes have complicated repeat structures making some sequences nearly 

impossible to assembly correctly.   

To illustrate the variability in repetitiveness among species, Figure 34 shows 

the uniqueness ratio constructed using the tallymer tool [94] for varying read lengths 
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plotted for six genomes: fruit fly (Drosophila melanogaster), grapevine (Vitis 

vinifera), chicken (Gallus gallus), dog (Canis familiaris), human (Homo sapiens), and 

the single-celled parasite Trichomonas vaginalis. The figure shows how much of each 

genome would be covered by k-mers (reads) that occur exactly once. Among the 

multi-cellular species, dog and chicken are the least repetitive while fly is the most 

repetitive.   The percentage of a genome covered uniquely increases rapidly as read 

length increases to 50 bp and above, but the rate of increase varies due to the variable 

repeat lengths in different species. 

 

Figure 34. The K-mer uniqueness ratio for five well-known organisms and one single-celled 
human parasite. 
The ratio is defined here as the percentage of the genome that is covered by unique sequences of length 
K or longer.  The horizontal axis shows the length in base pairs of the sequences.  For example, 
~92.5% of the grapevine genome is contained in unique sequences of 100 bp or longer. 
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Early genome assemblers used a simple “greedy” algorithm, in which all pairs 

of reads are compared to each other, and the ones that overlap most are merged first. 

To allow for sequencing errors, assembler compute these overlaps with a variant of 

the Smith-Waterman algorithm [71], which allows for a small number of differences 

in the overlapping sequence, typically 1%-10%. Once all overlaps are computed, the 

reads with the longest overlap are concatenated to form a contig (contiguous 

sequence).  The process then repeats, each time merging the sequences with the 

longest overlap until all overlaps are used. 

This simple merging process will accurately reconstruct the simplest genomes, 

but fails for repetitive sequences longer than the read length.  The greedy algorithm 

will assemble all copies of a repeat into a single instance, because all reads with the 

repetitive sequence overlap equally well.  The problem is that the greedy algorithm 

cannot tell how to connect the unique sequences on either end of a repeat, and it can 

easily assemble together distant portions of the genome into mis-assembled, 

“chimeric” contigs.  Beginning in the 1990’s, assembly of bacterial genomes required 

development of more sophisticated methods to handle repetitive sequences.  

Assembly of large eukaryotic genomes required further innovations, not only in the 

handling of repeats, but also in the computational requirements for memory and 

processing time.  If these issues are not handled in a sophisticated way, then the 

enormous data sets comprising mammalian genome projects will simply overwhelm 

even the largest computers.  
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Large-scale shotgun assembly 

Several assemblers have been developed to assemble large, repetitive 

genomes from long ("Sanger") reads, including the Celera Assembler [21], Arachne 

[22, 23], and PCAP [95].  More recently the Newbler assembler [91] was designed to 

handle shorter 454 reads, which have a different error profile from Sanger reads.  

Unlike simple greedy assemblers, these algorithms assemble the reads in two or more 

distinct phases, with separate processing of repetitive sequences.  First they assemble 

reads with unambiguous overlaps, creating contigs that end on the boundaries of 

repeats.  (Myers et al. call these "unitigs" [21].) Then in a second phase, they 

assemble the unambiguous contigs together into larger sequences, using mate-pair 

constraints to resolve repeats. 

As with earlier methods, these large-scale assemblers begin by computing 

overlaps between all pairs of reads.  One technique for saving memory, used by 

Celera Assembler (CABOG), is to construct an overlap graph where each read is a 

node in the graph, and weighted edges connect overlapping reads.  These assemblers 

also attempt to correct sequencing errors by using overlapping reads to confirm each 

other.  These error correction methods can be very effective when coverage is deep, 

as it often is with newer short-read sequencing projects. 

The scaffolding phase of assembly focuses on resolving repeats by linking the 

initial contigs into scaffolds, guided by mate-pair data.  Mate pairs constrain the 

separation distance and the orientation of contigs containing mated reads.  A scaffold 

is a collection of contigs linked by mate pairs, in which the gaps between contigs may 

represent either repeats, in which case the gap can in theory be filled with one or 
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more copies of the repeat, or true gaps in which the original sequencing project did 

not capture the sequence needed to fill the gap.  If the mate pair distances are long 

enough, they permit the assembler to link contigs across almost all repeats. 

Assemblers vary in their strategies for calling a contig repetitive, but most of 

them rely on some combination of the length of the contig and number of reads it 

contains.  If a contig contains too many reads, then it is flagged as a repeat.   High 

copy-number repeats are easy to identify, because the coverage statistics make it 

obvious that they are repetitive; in contrast, 2-copy repeats are the most difficult to 

identify using statistical methods. 

After flagging repeats, an assembler can build scaffolds by connecting unique 

contigs using mate-pair links.  If the contigs in a scaffold overlap, the assembler can 

merge them at this point.  Otherwise, the assembler will record a gap of 

approximately known size within the scaffold.  Assemblers can also include repetitive 

contigs in these scaffolds, as long as the repeats are connected by mate pairs to unique 

contigs.  

 

Short Read Assembly 

In principle, assemblers created for long reads should also function for short 

reads.  The principles of detecting overlap and building contigs are no different.  In 

practice, initial attempts to use existing assemblers with very short reads either failed 

or performed very poorly, for a variety of reasons.  Some of these failures were 

mundane: for example, assemblers impose a minimum read length, or they require a 
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minimum amount of overlap that is too long for a short-read sequencing project.  

Other failures are caused by more fundamental problems.  

The computation of overlaps is one of the most critical steps in any assembly 

algorithm. Short-read sequencing projects require that this step be re-designed to 

make it computationally feasible, especially since many more short reads than long 

reads are needed to achieve the same level of coverage. (Coverage is defined as the 

average number of reads that contain any nucleotide; thus 8X coverage implies that 

the genome is sequenced eight times over.)  As such, the number of overlaps to 

compute will increase, and any per-read or per-overlap overhead will be greatly 

magnified.  This problem is exacerbated by the fact that short-read projects 

compensate for read length by obtaining deeper coverage, and it is not unusual to see 

SGS projects at 30, 40, or 50X coverage rather than the 8X coverage that is typical of 

Sanger sequencing projects. 

The parameters used for computing overlaps have to be carefully tuned to 

accommodate shorter read lengths.  Genome assemblers such as CABOG and 

Arachne do not compute the overlap between all pairs of reads, but instead use a 

seed-based strategy to identify reads that are likely to overlap.  With this approach, 

short fixed length substrings of the reads, k-mers, are used as an index, and only pairs 

of reads that share a seed are evaluated further.  The choice of seed length is critical, 

and depends on the length of the read, the amount of sequencing error, and the size of 

the genome.  If the seed is too long, legitimate overlaps will be missed, thereby 

fragmenting the assembly, but if the seed length is too short, the computation time 

increases dramatically, so much that the computation may no longer be feasible.  In 
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addition to adjusting the seed length for short reads, the amount of error varies among 

SGS technologies, meaning that assemblers may have to be fine-tuned separately for 

each sequencing technology. 

For these reasons and others, a new generation of genome assemblers has 

been developed specifically to address the challenges of assembling very short reads.  

These assemblers include Velvet [96, 97], ALLPATHS [98, 99], ABySS [80] and 

SOAPdenovo [100]. Rather than using an overlap graph, all of these assemblers use a 

de Bruijn graph algorithm, first described for the EULER assembler [101].  In this 

approach, the reads are decomposed into k-mers that in turn become the nodes of a de 

Bruijn graph.  A directed edge between nodes indicates that the k-mers on those 

nodes occur consecutively in one or more reads.  These k-mers take the place of the 

seeds used for overlap computation in other assemblers (Figure 35). 

 

Figure 35.  Comparison of the overlap graph and a de Bruijn graph for assembly.    
Based on the set of ten 8 bp reads in (a), we can build an overlap graph (b) in which each read is a 
node and overlaps >5 bp are indicated by directed edges.  Transitive overlaps, which are implied by 
other longer overlaps, are shown as dotted edges.  In a de Bruin graph (c), a node is created for every 
k-mer in all the reads; here the k-mer size is 3.  Edges are drawn between every pair of successive k-
mers in a read, where the k-mers overlap by k-1 bases.  In both approaches, repeat sequences create a 
fork in the graph. Note here we have only considered the forward orientation of each sequence to 
simplify the figure. 
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Unambiguous stretches of sequence form non-branching paths in the de Bruijn 

graph, making it easy to “read off” contigs by walking these paths.  Overlaps between 

reads are implicitly captured by the graph, rather than explicitly computed, saving a 

substantial amount of computing time. Similar to the overlap graph approach, all 

copies of a repeat will initially be represented by a single high coverage node.  Repeat 

boundaries and sequencing errors show up as branch points in the graph, and complex 

repeats appears as densely connected “tangles.”  

Sequencing error complicates the de Bruijn graph, but many errors are easily 

recognized by their structure in the graph.  For example, errors at the end of a read 

usually create k-mers that occur only once, and therefore form dead-end “tips” in the 

graph. Errors in the middle of a read create alternate paths called “bubbles” that 

terminate at the same node. De Bruijn graph assemblers search for these localized 

graph structures in an error correction phase, and remove the error nodes and other 

low coverage nodes.  Mate-pair information can be used to resolve ambiguity, using 

the coverage at each node to indentify repeats, and by searching for unique paths 

through the graph consistent with the mate-pairs. 

The main drawback to the de Bruijn approach is the loss of information 

caused by decomposing a read into a path of k-mers.  Compared to conventional 

assemblers, where a read is a single node in the overlap graph, de Bruijn assemblers 

initially create multiple nodes for each read, and these nodes may not form a linear 

path once edges from other reads are added. Furthermore, unlike the overlap graph, 

the de Bruijn graph is not read coherent [102], meaning there may be paths through 

the graph that form a sequence that is not supported by the underlying reads.  For 
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example, if the same k-mer occurs in the middle of two reads, but the reads do not 

otherwise overlap, the corresponding de Bruijn graph for those reads contains a 

branching node instead of two separate paths. Short repeats of this type can be 

resolved, but they require additional processing and therefore additional time. 

Another potential drawback of the de Bruijn approach is the de Bruijn graph 

can require an enormous amount of computer space (random access memory, or 

RAM).  Unlike conventional overlap computations, which can be easily partitioned 

into multiple jobs with distinct batches of reads, the construction and analysis of a de 

Bruijn graph is not easily parallelized.  As a result, de Bruijn assemblers such as 

Velvet and ALLPATHS, which have been used successfully on bacterial genomes, do 

not scale to large genomes.  For a human-sized genome, these programs would 

require several terabytes of RAM to store their de Bruijn graphs, which is far more 

memory than is available on most computers.   

To date, only two de Bruijn graph assemblers have been shown to have the 

ability to assemble a mammalian-sized genome.  ABySS [80] assembled a human 

genome in 87 hours on a cluster of 21 8-core machines each with 16GB of RAM (168 

cores, 336 GB of RAM total).  SOAPdenovo assembled a human genome in 40 hours 

using a single computer with 32 cores and 512GB of RAM [100].  Although these 

types of computing resources are not widely available, they are within reach for large-

scale scientific centers. 

In theory, the size of the de Bruijn graph depends only on the size of the 

genome, including polymorphic alleles, and should be independent of the number of 

reads. However, because sequencing errors create their own graph nodes, increasing 
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the number of reads inevitably increases the size of the de Bruijn graph.  In the de 

novo assembly of human from short reads, SOAPdenovo reduced the number of 25-

mers from 14.6 billion to 5.0 billion by correcting errors before constructing the de 

Bruijn graph [100].  Its error correction method first counts the number of 

occurrences of all k-mers in the reads, and replaces any k-mers occurring <3 times 

with the highest frequency alternative k-mer.   

 

Choice of assembler and sequencing strategy 

Only de Bruijn graph assemblers have demonstrated the ability to successfully 

assemble very short reads (<50bp). For longer reads (>100bp), overlap graph 

assemblers have been quite successful and have a much better track record overall.  A 

de Bruijn graph assembler should function with longer reads as well, but a large 

difference between the read length and the k-mer length will result in many more 

branching nodes than in the simplified overlap graph.  The precise conditions under 

which one assembly method is superior to the other remain an open question, and the 

answer may ultimately depend on the specific assembler and genome characteristics.  

As Figure 36 illustrates, there is a direct and dramatic tradeoff among read 

length, coverage, and expected contig length in a genome assembly.  The figure 

shows the theoretical expected contigs length, based on the Lander-Waterman model 

[103], in an assembly where all overlaps have been detected perfectly. This model 

was widely applied for predicting assembly quality using traditional sequencing, and 

shows under ideal conditions 710 bp reads should require only 3X coverage to 

produce an expected 4Kbp expected contig size, while 30bp reads require 28X 
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coverage.  In practice, the model is incomplete for modeling very short reads: the 

figure also shows the actual contig sizes for the dog genome, assembled with 710 bp 

reads, and the panda genome, assembled with 52 bp reads.  The dog assembly tracked 

closely to the theoretical prediction, while the panda assembly has contig sizes that 

are many times lower than predicted by the model.  The large discrepancy between 

predicted and observed assembly quality is because simplifying assumptions in the 

model are problematic for shorter reads, especially the assumptions that the genome 

is free of repeats and the reads uniformly sample the genome with uniform error rates. 

As seen in Figure 34, a larger proportion of a genome is repetitive at short read 

length, and consequently the assembler will be forced to end contigs more often at 

repeat boundaries. Furthermore, second-generation sequencing is known to have 

sequence dependent coverage biases and non-uniform error rates [88]. These 

sequence irregularities will cause unexpectedly low coverage regions and 

consequently end contigs more often than expected. Fortunately, many of these 

limitations can be overcome by additional oversampling of the genome to boost the 

low coverage regions. Future work remains to enhance the Lander-Waterman model 

to capture more of these effects.  
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Figure 36.  Expected average contig length by read length and coverage.   
Also shown are the average contig lengths and N50 lengths for the dog genome, assembled with 710-
bp reads, and the panda genome, assembled with 52-bp reads. 

 

The figure also shows that even for longer Sanger reads, the theoretical model 

is a better predictor of N50 contig sizes than of mean contig lengths.  An N50 contig 

size of N means that 50% of the assembled bases are contained in contigs of length N 

or larger.  N50 sizes are often used as a measure of assembly quality because they 

capture how much of the genome is covered by relatively large contigs.   
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A good compromise solution to the problem of assembling a genome with 

short reads using today’s technology, is to create a hybrid assembly using a mix of 

short and long reads.  One strategy that we have used with some success is to 

assemble the short reads with a de Bruijn graph method such as Velvet, and then treat 

the resulting contigs as reads.  The Velvet contigs together with the longer reads can 

then be assembled with CABOG or another overlap graph assembler.   

Another strategy is to assemble the short and long reads using a single de 

Bruijn graph assembler.  In this approach, the long reads are primarily used to 

disambiguate short repeats.  This can work well, although overlap graph assemblers 

(CABOG and Arachne) are more mature than the new short read assemblers, and 

generally produce much better assemblies, especially because of their more 

sophisticated use of mate pairs. Using an overlap graph assembler with a combination 

of long and short reads requires that the assembler is carefully tuned to accommodate 

the shorter reads and potentially higher error rates. 

By far the best approach is to use a reference genome sequence, which the 

assembler will use as a guide to resolve repeats.  This is known as comparative 

assembly [104], and the assemblers that can perform this are a special subclass of 

assemblers.  Most human re-sequencing efforts have followed this approach, if they 

attempted assembly at all, because it produces a far better result.  However, the 

obvious drawback is that comparative assembly is simply not possible unless the 

species has already been sequenced and assembled previously. Furthermore, purely 

comparative techniques can not resolve large insertions or structural variations, and 
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they face the same challenges of read quality, especially if there are significant 

coverage biases or high error rates. 

 

Genome coverage and gaps 

As coverage increases, the fraction of the genome sequenced increases while 

the number of gaps decreases.  However, each sequencing technology has its own 

biases that produce gaps in coverage.  Conventional Sanger sequencing uses cloning 

steps that amplify the genome in E. coli, which does not amplify all sequences 

equally well.  SGS technologies avoid cloning in E. coli, but they too seem to have 

biases. Therefore any genome sequenced with just one technology, regardless of the 

depth of coverage, is liable to contain gaps due to bias.  One way to overcome these 

biases and to close many gaps is to generate deep coverage in two or more 

sequencing technologies [105].  

For Sanger sequencing projects, the point of diminishing returns, where 

additional sequencing yields little additional genomic sequence, falls at ~8X 

coverage.  For very short reads (<50bp), higher coverage is clearly necessary, but the 

optimal depth of coverage has been a rapidly moving target over the past several 

years.  Below we describe a number of SGS projects that have used different read 

lengths, depths of coverage, and assembly algorithms, with a mixture of results. 

 

Read Length and Insert Size 

In the ideal case, the quality of an assembly will be determined by the read 

lengths, mate-pair distances, and by the repeat structure of the genome. In general, 
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longer reads make better assemblies because they span more repeats.  Similarly, 

longer insert sizes (mate-pair distances) will increase scaffold sizes, but longer inserts 

will not always improve contig sizes. For an assembler to close a gap within a 

scaffold, it must find a set of reads that form an unambiguous path between the 

flanking contigs.  With large gaps, multiple alternative paths through the overlap or 

de Bruijn graph are much more likely. 

For this and other reasons, using a mixture of insert sizes can be very 

effective. The shortest inserts are used to resolve the small repeats, and longer inserts 

can resolve progressively longer repeats.  In practice, long inserts tend to be less 

reliable, with a much higher variance in their length distribution. 

 

Published SGS Genome Assemblies 

In this section we survey short-read assembly results that have been published 

or recently announced.  A summary of the de novo short-read assemblies is contained 

in Table 8, which gives general characteristics of the assemblies.  Specific values can 

vary in how they are computed; e.g., the number of contigs depends on the minimum 

contig length included in the published assembly. 

Human Genomes 

Initial assembly results with SGS technology consisted primarily of mapping 

reads to a reference genome.  This was the case with several human assemblies, 

including that of James Watson [8], which was sequenced with 454 unpaired reads.  

Genomes from African (Yoruba) [106], Asian (Han) [107] and Korean [108] 
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individuals were all sequenced with Illumina technology and mapped to the reference 

human sequence.  For the Asian genome, 487 million reads that did not map 

successfully were assembled using Velvet, but only a small portion of these (0.36%) 

assembled into contigs >100bp.  The Korean genome included sequencing of targeted 

BACs in addition to WGS sequencing. 

The above-mentioned African genome data were later assembled de novo to 

test the ABySS assembler [80].  The assembly of the 3.5 billion paired-end reads 

(lengths 35-46 bp from DNA sequence fragments of ~210 bp) yielded an astounding 

2.76 million contigs with an N50 length of only 1499 bp.  These contigs covered only 

68% of the human reference genome.  The assembly took almost 4 days using a 168-

core compute cluster. This same dataset was later assembled in 40 hours on a 32-core 

512 GB RAM supercomputer by SOAPdenovo showing an improved N50 contig 

length of 4.6 kbp and covering 85% of the human reference genome. The current best 

published de novo assembly of the human genome was also assembled using 

SOAPdenovo on a total of 90x coverage of an Asian individual [100] producing an 

N50 contig length of 7.4kbp, These assemblies were computed from older Illumina 

sequence data (average read length <40bp), and may not be representative of what 

would be possible using improved technology today (average read length >75bp). 

However, the lack of paired reads from long (>10kbp) fragments combined with the 

short read lengths present a very difficult assembly problem given the repetitive 

nature of the human genome. 
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Combinations of Sanger and SGS Reads 

Several large draft genomes have been published that used a combination of 

Sanger and short-read sequencing.  The draft assembly of grapevine (Vitis vinifera, 

genome size ~500Mb) reported in [109] combined Sanger and 454 sequencing.  An 

initial assembly of the 6.5X coverage Sanger data was created, and the additional 

4.2X coverage of 454 sequence was used to correct errors and fill gaps. 

The draft genome sequence of cucumber, Cucumis sativus, was obtained using 

a combination of Sanger and Illumina sequencing [110].  Illumina reads represented 

68X coverage by pairs from fragment sizes 200, 400 and 2000 bp; while Sanger reads 

represented coverage of 4X coverage using pairs with insert sizes 2, 4, 6, 40, and 150 

Kb.  Results for 3 different assemblies—Illumina only, Sanger only, and combined—

were reported with the best results obtained, as expected, using the combined data set:  

N50 contig and scaffold sizes of 19.8 Kb and 1.14 Mb, respectively, and totals of 227 

Mb in contigs and 244 Mb in scaffolds.  It is interesting, however, that although the 

N50 sizes of the Sanger-only assembly were much smaller (2.6 Kb contigs and 19 Kb 

scaffolds), the coverage of the Sanger-only assembly was rather good—204 Mb in 

contigs and 238 Mb in scaffolds—and better than the Illumina-only assembly (190 

Mb in contigs and 200 Mb in scaffolds).  The entire genome is estimated to be 

~360Mb, indicating that something hampered the assembly, possibly a large number 

of repeats, or problems with the assembler itself, or with the laboratory protocols.  

The assembly was accomplished using the authors’ own software to assemble the 

Illumina reads first, and then RePS2 [111] was used to merge the Illumina scaffolds 

with the Sanger reads. 
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Panda 

The first de novo, exclusively SGS assembly of a novel, large genome, that of 

the giant panda, Ailuropoda melanoleura, was recently published by the Beijing 

Genome Institute [112].  This assembly used only Illumina reads and was done with 

the SOAPdenovo assembler.  37 paired-end libraries were constructed, with fragment 

sizes ranging from 150 bp to 10 Kb, totaling 176 Gb of sequence (73X coverage of 

the 2.4 Gb genome).  After filtering out low-quality and redundant reads, 134 Gb 

(56X coverage) of reads were used in the actual assembly.  The final assembly 

contained 200,604 contigs (of length at least 100bp) totaling 2.25 Gb (93.8% of the 

genome), with impressive N50 contig and scaffold sizes of 36,728 bp and 1.22 Mb, 

respectively.   There were 5,201 multi-contig scaffolds comprised of 124,336 contigs, 

and a total of 119,135 gaps with mean gap size of only 455 bp.   Thus the total span 

of all contigs and scaffolds (including gaps) was 2.30 Gb, 95.8% of the genome.  The 

remarkably good quality of this assembly is in large part due to the very high depth of 

sequence coverage, particularly by long-pairs, and the fact that the genome is much 

less repetitive than primate and rodent genomes. 

An interesting comparison is the dog genome, which has a nearly identical 

genome size (estimated to be 2.45Gb) and is used for several evolutionary 

comparisons in the panda paper.  The dog genome was assembled at the Broad 

Institute in 2005 using 7.5X coverage by Sanger sequence data [113].  The N50 

contig size for the dog assembly was 180 Kb, and the N50 scaffold size was an 

impressively large 45 Mb.  This rather significant advantage of the dog assembly over 

the panda assembly is likely due to three factors: 
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1. Longer Sanger reads—there are many very short gaps in the panda 

assembly that undoubtedly would be closed by the Sanger reads, which averaged 

770bp long.   

2. Longer insert libraries—the sequence available for the dog assembly 

included 2.2 million reads from a 40 Kb fosmid library and 302,000 BAC ends – that 

cannot be sequenced using current SGS technology. 

3. More mature assembly software—the dog assembly paper reported that 

improvements to the Arachne assembler alone increased contig N50 size from 123 Kb 

to 180 Kb.   

It is interesting to note that the panda download site includes several “gene 

scaffolds,” indicating locations where a gene spans separate scaffolds in the 

assembly.  This information could have been used to combine scaffolds and improve 

the scaffold N50 value. 

 

Announced but unpublished SGS assemblies 

A number of draft SGS assemblies have been announced but have not been 

published.  We describe them here to give a sense of the various strategies currently 

being used to assemble large genomes. 

 

Cod 

An assembly of the cod genome (Gadus morhua, genome size ~800 Mb) 

[http://www.genomeweb.com/sequencing/norwegian-consortium-assembles-

annotates-cod-genome-454-data?page=show] was generated from ~27X coverage of 
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454 reads and included paired libraries from 2, 3, 8, and 20 Kb fragments.  Additional 

Sanger sequencing of BAC ends was also used to confirm the assembly.  The N50 

scaffold size is reportedly 571 Kb and the scaffolds cover 618 Mb of the genome.  

The relatively low scaffold coverage and difficulty in accurately estimating the 

genome size are largely due to the presence of copious repeats in the sequence. 

 

Strawberry 

The announced draft assembly of the wild strawberry genome, Fragaria 

vesca, was obtained using a combination of 454, Illumina and ABI SOLiD sequence 

data (http://strawberry.vbi.vt.edu).  The assembly was created by first using CABOG 

to assemble the 454 data.  Then SOLiD pairs were added to grow scaffolds, using the 

scaffolder within CABOG.  Finally a Velvet assembly of the Illumina data was done, 

and the contigs were mapped to the 454/SOLiD assembly to fill gaps and correct 

homopolymer SNP errors.  The resulting N50 sizes of contigs and scaffolds were 28 

Kb and 1.44 Mb, respectively, for this ~220 Mb genome.  There are plans to improve 

the assembly by incorporating data from a restriction digest of a BAC library. 

 

Turkey 

The draft assembly announced for the turkey genome (Meleagris gallopavo, 

genome size ~1.1 Gb) was created primarily from a combination of 454 and Illumina 

sequencing.  The 454 sequences included 4 million read pairs from 3 Kb and 20Kb 

fragments plus 13 million unpaired reads.  Illumina sequencing included 400 million 

74bp reads from both paired and unpaired.  40,000 Sanger BAC-end sequences also 
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were used in the assembly, which was done with CABOG.  The N50 contig and 

scaffold sizes of the assembly were 12.6 Kb and 1.5 Mb, respectively, with the 

longest contig being 90 Kb and the longest scaffold 9 Mb.  These values are 

substantially smaller than the corresponding ones for the chicken genome, done with 

Sanger sequencing:  N50 contig 36Kb, N50 scaffold 7.1 Mb, longest contig 442 Kb, 

longest scaffold 7.1 Mb.  On the other hand, the sequencing costs for turkey were 

estimated to be less than 2.5% of those of chicken.  It is also interesting that the 

average sequence coverage in contigs in the turkey assembly was 17x, even though 

the overall level of sequence coverage was >30x, indicating that this version of the 

assembly had difficulty incorporating all available sequence data. 

 

Recommendations for SGS sequencing 

The above results make it clear that assemblies using SGS reads alone are 

substantially worse than what can be done using Sanger sequencing.  The two-to-

three orders of magnitude cost advantage of SGS, however, will continue to make it 

much more appealing, and for many genomes it may be the only affordable option.  

The assembly results now being obtained with SGS sequencing, such as the 

pioneering panda genome assembly, are scientifically useful: they cover most of the 

genome and they produce contigs and scaffolds long enough for comprehensive gene-

annotation efforts.  These results will continue to improve as SGS read lengths grow, 

paired-end protocols improve, and assembly software innovations appear. 

The keys to good assembly results include deep coverage by reads with 

lengths longer than common repeats, and paired-end reads from moderate (2-5Kb) 
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and large (>8Kb) DNA fragments.  Using currently available sequencing technology, 

the most cost-effective way to obtain sequence coverage with what are effectively 

200-300bp reads, is to use paired-end Illumina reads from 200-300bp fragments.  

With at least 20X coverage in such reads, assemblers using either de Bruijn graphs or 

overlap graphs should be able to assemble contigs that cover the unique regions of a 

large genome.  To obtain large scaffolds and fill in repeat-induced gaps, a sequencing 

project should generate a large set of reliable paired-end reads.  As long as both ends 

of a pair map uniquely to contigs, the pair can be used for scaffolding.  To fill in 

scaffold gaps, we need paired reads in which one read is anchored in a contig and its 

mate falls in the gap.  The gap read must be long enough to be assembled with other 

reads to fill the gap.  Thus for paired reads, longer reads have a distinct advantage.  

For this reason, paired 454 reads will likely provide (today) the most cost-effective 

type of long-range paired sequences, particularly when 800-bp physical reads become 

available.   

More important than the read length of paired reads, however, is the number 

of distinct, non-chimeric pairs produced.  Protocols to generate paired reads are still 

being refined, and we have seen sequencing runs that suffered from having very few 

distinct pairs in them, from having numerous redundant pairs (the same pairs 

occurred repeatedly), and from having chimeric pairs (the paired sequence were not at 

the expected separation and orientation in the genome).  Until the protocols become 

standardized, sequencing projects will need to identify experienced laboratories that 

have demonstrated an ability to generate these sequences. 
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Sequencing technology is a rapidly advancing field, and third-generation 

sequencing technologies have been announced for release this year that advertise 

even longer read lengths and insert sizes than were possible with first generation 

Sanger sequencing. When these technologies are available, our recommendations and 

associated cost analysis are likely to change. However, given the extremely high 

throughput and low cost of the current second-generation sequencing technolgies, we 

suspect hybrid assemblies composed of second and third generation sequencing 

technologies will be the norm for years to come.  

 
Table 8. Results from several second-generation sequencing projects. 
Summary of inputs and assembly results of recent genome assemblies using SGS reads.  Status 
indicates when the assembly was published; “announced” assemblies have been described publicly but 
not yet published.  Read Cov is the number of estimated genome size units contained in the sum of 
read lengths.  Pair Cov is the same value for the sum of lengths of fragments from which paired reads 
were sequenced.  NR: not reported.  GA: Illumina Genome Analyzer.   
 
Key to Notes column: 
a. Contig total greater than scaffold total is largely attributable to “single haplotype contigs” 
b. Assembly of only Sanger reads 
c. Assembly of only GA reads 
d. # of scaffolds includes single-contig scaffolds.  There were 5,201 multi-contig scaffolds. 
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Chapter 7: Genome Assembly Validation and Visualization 

Summary of Contribution 

This chapter describes the genome assembly validation and visualization 

program Hawkeye published in Genome Biology [25], in collaboration with Adam 

Phillippy, Ben Shneiderman, and Steven Salzberg at the University of Maryland. 

Hawkeye is an interactive tool for validating and visualizing a genome assembly, 

which is critical for assessing the quality of an assembly beyond size statistics.  

Hawkeye allows a user to interactively explore all levels of an assembly, from 

high level size and quality statistics, the relationships between contigs within 

scaffolds, and down to the relationships of reads within contigs, and the supporting 

evidence for the reads themselves. In addition, Hawkeye computes many quality 

statistics of an assembly such as the depth of coverage and the 

compression/expansion of the mate pairs at each position in the assembly, which are 

essential for revealing potential mis-assemblies. Mis-assembly signatures were 

further explored in a follow up publication describing the mis-assembly detection 

pipeline AMOSValidate [20]. 

Michael Schatz implemented most of Hawkeye and wrote the first draft of the 

manuscript. Adam Phillippy implemented several features within Hawkeye, 

especially for enhancing the scaffold view, and contributed to the manuscript. Ben 

Shneiderman and Steven Salzberg edited the manuscript, and provided guidance for 

the project. 
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Abstract 

Genome sequencing remains an inexact science, and genome sequences can 

contain significant errors if they are not carefully examined. Hawkeye is our new 

visual analytics tool for genome assemblies, designed to aid in identifying and 

correcting assembly errors. Users can analyze all levels of an assembly along with 

summary statistics and assembly metrics, and are guided by a ranking component 

towards likely mis-assemblies. Hawkeye is freely available and released as part of the 

open source AMOS project http://amos.sourceforge.net/hawkeye. 

 

Rationale 

Since the DNA of the first free living organism was sequenced in 1995 [5] 

using the whole-genome shotgun (WGS) technique [114], hundreds of other 

organisms, including the human genome [68, 89] and numerous model organisms, 

have been sequenced using WGS. The relatively low cost and high speed of the WGS 

method have made it the preferred method of genome sequencing for the past decade. 

However, achieving results of the highest quality often requires expensive manual 

analysis with tools that provide only a limited view of the data. 

Traditional WGS projects consist of three main steps, namely sequencing, 

assembly, and finishing. The first stage is highly automated, whereas the latter require 

painstaking manual curation. In the sequencing stage, fragments of the genome are 

sequenced by high-throughput laboratory protocols that randomly shear the original 

DNA molecules into short fragments that are then sequenced. In the assembly stage, 

sophisticated computer algorithms operated by a human assembly team assemble 
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these short sequences back together into a partially complete 'draft' genome sequence. 

Finally, in what is usually the most time-consuming stage, human 'finishers' curate 

the assembly to correct sequencing and assembly errors, and run additional 

sequencing reactions to fill in the unsequenced gaps. The result of this three-stage 

process is a high-quality reconstruction of the genome. However, the high cost of the 

finishing stage, both in terms of time and money, makes it economically unfeasible to 

finish any genome completely, other than relatively small ones (bacteria and viruses) 

and the most important model organisms (yeast, nematode, fruit fly, and human). 

Instead, most genomes are left in the draft stage, where some of the genome remains 

unsequenced and where even the assembled portions may contain significant errors. 

Our primary goals are to reduce the cost of finishing genomes and to increase 

the quality of draft genomes by providing genome assembly teams and finishers with 

a visual tool to aid the identification and correction of assembly errors. In addition to 

these primary goals, our tool - Hawkeye 1.0 - supports numerous other analytical 

genome tasks, such as consensus validation of potential genes, discovery of novel 

plasmids, and various other quality control analyses. 

Hawkeye blends the best practices from information and scientific 

visualization to facilitate inspection of large-scale assembly data while minimizing 

the time needed to detect mis-assemblies and make accurate judgments of assembly 

quality. Wherever possible, high-level overviews, dynamic filtering, and automated 

clustering are provided to focus attention and highlight anomalies in the data. 

Hawkeye's effectiveness has been proven in several genome projects, in which it was 

used to both to improve quality and to validate the correctness of complex genomes. 
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Hawkeye can be used to inspect assemblies of all sizes and is compatible with most 

widely used assemblers, including Phrap [18], ARACHNE [22, 23], Celera 

Assembler [21], AMOScmp [40], Newbler [91], and assemblies deposited in the 

National Center for Biotechnology Information (NCBI) Assembly Archive [115]. 

 

Genome assembly 

The need to assemble genomes has inspired many innovative algorithms that 

have been described in detail elsewhere [18, 21-23, 40, 91, 95, 116]. One of the 

fundamental steps in any assembly algorithm is to detect how the individual 

sequences ('reads') overlap one another. The assembler can then use these overlaps to 

merge reads together, building up longer contiguous stretches ('contigs') of DNA and 

eventually reconstructing entire chromosomes. More than anything else, repeated 

sequences in the genome complicate the assembly problem beyond the ability of 

modern assembly algorithms, and introduce the chance of significant mis-assembly. 

A repetitive element can be unambiguously assembled using just overlaps only if it is 

spanned by an entire read. This problem motivated the development of the double-

barreled shotgun sequencing approach [117], in which both ends of large fragments 

are sequenced, creating pairs of sequencing reads with known orientation and 

separation. A set of these larger fragments of similar size is called a library, and 

typical sizes range from 2 to 100 kilobases (kb). The end-paired reads, or mate-pairs, 

can be treated as a large pseudo-read with unknown interior sequence. 

State-of-the-art assemblers such as ARACHNE [22, 23], Celera Assembler 

[21], PCAP [95], and Phusion [116] depend on mate-pairs to untangle false overlaps 
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and bridge unsequenced portions of the genome to form 'scaffolds' of ordered and 

oriented contigs. Nevertheless, even with high quality reads and mate-pairs, repeat-

induced mis-assemblies are common and range from a single incorrect base to large 

chromosomal rearrangements [24]. Independent validation efforts [118] and 

additional finishing work [119] for the intensively curated human genome sequence 

has identified and corrected thousands of mis-assemblies. If the human genome had 

been left in a draft state, future attempts to identify structural polymorphisms (for 

example, between human and mouse) would have been difficult if not impossible. 

The nature and magnitude of mis-assemblies in other genomes is largely unknown, 

but mis-assemblies are likely to be present in all but the most carefully scrutinized 

genomes. 

Identifying mis-assemblies, as well as avoiding mis-assembly in the first 

place, is a difficult problem, mostly because of the complexity of the underlying data. 

The data are not only voluminous and subject to statistical variation, but also error 

prone because of laboratory error, machine error, and biochemical complications. 

Consequently, complications can occur at any level of the assembly data hierarchy 

(Table 9), and therefore all levels of this hierarchy must be collected and analyzed 

together to verify an assembly effectively. Ignoring even one level of the hierarchy 

can lead to false assumptions, just as an assembler that ignores mate-pair evidence 

risks mis-assembly in repetitive regions. Hawkeye is the first analysis tool that 

enables users to navigate the assembly hierarchy easily, and thus enables a complete 

and accurate analysis of the assembly. 
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Table 9. Hierarchy of assembly data types. 
 

 

Assembly visualization and analysis 

Prior work on genome assembly visualization has focused on three different 

levels of assembly artifacts. The first focuses on the raw signals emitted by 

sequencing machines as exemplified by the four-color chromatograms displayed at 

the NCBI Trace Archive [120]. The second is visualization by tools such as Consed 

[121], which focus on the overlaps and alignment of reads within contigs and allow 

for detailed inspection of the consensus sequence and its support. The third highlights 

the mate-pair relationships either between or within contigs, and is commonly 

displayed as linked arrows or line segments as in the NCBI Assembly Archive [115]. 

Mate-pair visualization most directly addresses the validation of an assembly 

by highlighting discrepancies between expected and observed read placements. 

Clusters of mated reads that are statistically too close together or too far apart are 

signatures of deletion and insertion mis-assemblies, whereas occurrences of mis-

oriented mate-pairs, or reads whose mate-pair are missing, are indicative of other 

types of mis-assembly. Tools such as Celamy (http://wgs-assembler.sf.net), 
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BACCardI [122], and the clone-middle diagrams proposed by Huson and coworkers 

[123] effectively highlight these 'unhappy' mates. TAMPA extends this idea further, 

and provides a positional bound for the mis-assembly event [124]. 

After a genome is sequenced and assembled, various meta-data, such as gene 

predictions, are computed and attached to particular intervals on the sequence. 

Genome browsers such as Ensembl [125], GBrowse [126], CGView [127], and the 

UCSC Genome Browser [128], lay the features out on either a linear or circular 

coordinate system as a set of arrows. Additional continuous information, such as GC 

content or alignment similarity, is often plotted as well. This type of view is widely 

popular among biologists because it brings multiple sources of evidence into a single 

display and can be made available over the web. However, these tools are poorly 

suited for assembly visualization because they cannot capture underlying sequence 

and assembly data, in part because of the large datasets involved. 

In addition to visualizations, various statistics have been described for the 

validation of read layouts. The A-statistic [21] compares the distribution of individual 

reads against a statistical model of random read coverage to detect contigs whose 

coverage is too deep, suggesting a collapsed repeat. Another measure, the 

Compression-Expansion (CE) statistic [129], developed by Roberts and coworkers at 

the University of Maryland IPST Genome Assembly Group, quantifies the degree of 

compression or expansion for the set of mate-pairs spanning any particular position in 

the assembly. It is computed on a per library basis as the mean of the insert sizes 

spanning a position minus the mean value of the library divided by the standard error 

(the library standard deviation multiplied by the square root of the number of inserts 
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at the position). The expected value of the CE statistic is zero, which occurs when 

inserts spanning a position have a size distribution that matches the global library 

distribution. CE values far from 0 outside the interval [-3, +3] indicate an unexpected 

distribution of insert sizes at that location. Certain mis-assemblies, such as collapsed 

repeats, generate characteristic insert size distributions with large negative CE values, 

whereas insertion mis-assemblies produce large positive CE values. 

The Hawkeye interface 

Launch Pad 

Effective overview, ranking, and navigation components are the keys to 

exploring large data spaces, just as sightseeing is more effective with a map, tour 

guide, and car. The Hawkeye Launch Pad is the first view presented to the user and it 

is designed to address these three needs as well as answer the first questions any 

analyst has about an assembly: 'How big are the contigs?' and 'How good is it?' 

To answer these initial questions graphically, Launch Pad displays two N-

plots in its initial view: one for contigs and another for scaffolds. An N-plot is a bar 

graph based on the popular N50 assembly metric (Figure 37). Each bar represents a 

contig (or scaffold), where the height of the bar represents its length in base pairs and 

the width represents its length as a percentage of the genome size. This plot gives 

immediate feedback on both the size and number of contigs contained within the 

assembly. A few wide steps covering most of the x-axis indicates that the assembly 

contains a small number of large contigs, whereas many steps of the same size 

indicate a fragmented assembly. In addition to N-plots, contig and scaffold sizes also 

can be visualized as a space-filling Treemap [130]. Various other assembly statistics 
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are presented in text-based tables for detailed inspection of high-level assembly 

quality. 

 

 

Figure 37. The Hawkeye Launch Pad. 
Scaffolds and Contigs are plotted so that the size of the scaffold represents the size of the object. The 
color of the rectangle indicates the number of mis-assembly features. Details and other abstract 
visualizations are available through the tabbed interface. 

 

Seo and Shneiderman [131] advocate a generalized rank-by-feature 

framework for the exploration of multivariate data sets to guide exploration and 

expedite the discovery process. Hawkeye employs a ranking strategy for contigs and 

scaffolds that was inspired by the rank-by-feature framework. The first ranking 
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criterion is size, which is implicit in the N-plot described above. The second ranking 

criterion focuses on contig or scaffold quality, and is encoded in the N-plot by color. 

Contigs and scaffolds with a high density of mis-assembly signatures (those likely to 

be mis-assembled) are shaded red in the N-plot, whereas contigs and scaffolds with a 

low density (those less likely to be mis-assembled) are shaded green. Mis-assembly 

signatures are regions in the assembly with characteristics indicative of a mis-

assembly, such as a cluster of compressed mate-pairs, which suggests a collapsed 

repeat. Utilities bundled with the software pre-compute some useful mis-assembly 

indicators such as read polymorphism, alignment breakpoints, and regions with poor 

insert 'happiness', although users can easily load new metrics via an XML-like 

interface as additional assembly metrics are invented. Short descriptions of the 

included metrics are given below in the discussion of the interface components. 

Ranking scaffolds and contigs by size and feature density guides users directly 

to the regions that require the most attention. This minimizes the time needed to 

pinpoint potential trouble, and provides the ability to drill down to either the scaffold 

or contig level to examine interesting objects and features in greater detail. Users 

simply double click in the N-plot to display a new window with the selected contig or 

scaffold in the more detailed scaffold or contigs views described below. In addition, 

users can click on other tabs in the Launch Pad to display sortable tables of scaffold, 

contig, read, library, and feature information. Histograms of insert sizes, GC content, 

and other attributes are also available that permit quality inspection of other aspects 

of the assembly. 

 



 

 170 
 

Scaffold View 

The Scaffold View provides an abstract graphical view of the assembly, and is 

often the most natural view to pursue after identifying an item of interest in the 

Launch Pad. This view displays the read layout on a per scaffold basis, along with 

integrated assembly statistics and feature information. The view consists of three 

panels: the Overview Panel, the Insert Panel, and the Control Panel (Figure 38). 

 

 

 

Figure 38. The Hawkeye Scaffold View. 
The scaffold view displays the insert panel, outlined with a yellow border, consisting of (a) plots of 
statistical information, (b) scaffolded contigs, (c) feature tracks, and (d) inserts. Also displayed are the 
(e) overview panel, (f) control panel, and (g) details panel. The insert panel displays the details and 
individual inserts for regions of the scaffold selected in the overview panel, whereas unselected regions 
are grayed out in the overview. By default, inserts are colored by category (green→happy, 
blue→stretched, yellow→compressed, purple→singleton). The eye is drawn to the cluster of 
compressed mates towards the bottom of the insert panel. 

 



 

 171 
 

The Overview Panel (Figure 38e) displays the entire current scaffold as a 

linear ordering of connected contigs along the x-axis, with the assembly features 

displayed below. The width of the contig boxes and the gaps between them are 

proportional to the length and separation of contigs, respectively, and contigs are 

'scaffolded' together by conjoining lines. Assembly features are laid out below the 

contigs in multiple tracks. The first two tracks are heat map plots of insert and read 

depth of coverage that color code coverage regions significantly above or below the 

mean value. Positions in the assembly with a coverage level near the mean are shaded 

to blend with the background, whereas positions significantly deviating from the 

mean, such as in collapsed repeats, are given a contrasting color to the background. 

Interval features are displayed in additional tracks below the coverage tracks. These 

discrete features are preloaded with the assembly data and represent arbitrary regions 

of interest, such as regions with mis-assembly signatures, or sequence characteristics 

such as gene models, and so on. Large features or clusters of different feature types 

demand attention and take precedence over small, isolated features. All feature tracks 

can be filtered by value (score or size), allowing users to focus their attention on the 

most egregious or interesting features. 

The Insert Panel (Figure 38d) provides a detailed look of the region selected 

in the Overview Panel. Users select regions to investigate in the Insert Panel with a 

magnifying glass tool, or by adjusting the scroll bars beneath the overview. At the top 

of the Insert Panel, statistical line plots (Figure 38a) display the depth of read (green) 

and insert coverage (purple) along with the CE statistic value for each library along 

the scaffold. The coverage tracks will vary from 0 to the maximum depth of coverage, 
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but the CE statistic track is fixed to display values in the range [-6,6] because the CE 

statistic value will be near 0 except in mis-assembled regions. Users can read the 

precise coverage or CE values by clicking on the plot that displays the value in the 

details panel. Extreme values or variation in any of the statistical tracks can indicate 

mis-assembly or other assembly issues and encourages users to look at statistically 

anomalous regions more thoroughly. 

A plot of the depth of k-mer coverage is optionally plotted overlaying the read 

and insert coverage. It displays the number of occurrences in the set of reads, of the 

substring of length k starting at each position along the contig consensus sequences. 

K-mer coverage spikes reveal the repeat structure of the genome and highlights 

regions of potential mis-assembly. Correctly assembled unique sequence has k-mer 

coverage approximately equal to the read coverage, whereas repeat sequences have k-

mer coverage that is a function of the number of copies of the repeat, regardless of 

whether the repeat has been correctly assembled. 

Below the contig and feature tracks lies the layout of the sequencing reads 

(Figure 38d). The reads are drawn as colored boxes connected to their mate by a thin 

line. If it is not possible to connect a read with its mate because of misplacement or 

other issues, a thin line is drawn proportional to the expected size of the insert. Using 

a size threshold based on the standard deviation of the library (called 'happiness' 

within the interface), and the orientation constraints of the mate-pair relationship, 

inserts are categorically grouped to enhance visibility and emphasize clusters of 

unexpected sizing or inconsistent mate-pair orientation (Table 10). Unfortunately, 

subtle mis-assemblies can be overlooked if most of the mis-assembled inserts fall 
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within the happiness threshold, and so an alternative continuous coloring scheme is 

available. In this scheme, happy inserts are shaded into the background to make them 

less visible, while stretched and compressed mates are given brighter colors 

corresponding to how compressed or expanded they are. Positions spanned by inserts 

that are even slightly skewed will show as clusters of bright, similarly colored inserts, 

indicating a possible problem (Figure 39). This view is more sensitive than setting 

arbitrary thresholds and has proven to be quite effective for identifying mis-

assemblies missed by categorical analysis. 

 

Table 10. Categorization of insert happiness. 
 

 



 

 174 
 

 

Figure 39. Mis-assembly detection in Scaffold View. 
Continuous coloring in the Scaffold View displaying a region of Xanthamonas oryzæ. Slightly 
compressed mate-pairs are colored increasingly bright yellow as they deviate from the mean. Slightly 
expanded pairs are also visible in blue, but are uncorrelated and most likely caused by inexact library 
sizing. 

 

The coordination of multiple forms of evidence combined with user 

interaction is the key to the Scaffold View's effectiveness. Statistical spikes, feature 

clusters and contrasting insert colors combine to guide users to the important areas of 
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the assembly. However, the underlying DNA sequences and chromatogram traces are 

absent from this view, and so another level of detail is required. This is handled by 

the Contig View, which is essentially a vertical slice of the Scaffold View displaying 

the read tiling in full detail with base-calls and chromatogram traces. The two views 

are synchronized, so that a user click in the background of the Insert Panel centers the 

Contig View to that position. 

 

Contig View 

Similar to the Scaffold View, the Contig View also displays the read tiling, 

except the abstract rectangles from the Scaffold View are replaced with the actual 

strings of base-calls for each read (Figure 40). The reads supporting the consensus at 

each position are arranged so that their individual bases are aligned vertically, 

including gaps inserted by the assembler to maintain the alignment. Consensus 

positions in which the underlying reads disagree are marked, and dissenting base-calls 

are highlighted. 
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Figure 40. The Hawkeye Contig View. 
Quality values and chromatograms are displayed on demand in the Contig View to confirm a potential 
stop codon outlined in red in the consensus. 

 

The Contig View can also display base-call quality values and chromatogram 

traces (if available) to examine discrepancies in more detail. Quality values are 

loaded with the assembly data, and the traces are either loaded from the file system or 

downloaded on-the-fly directly from NCBI Trace Archive or other archives. In the 

Contig View, the chromatograms may be compressed or expanded to ensure 

consistency between the reads, but double-clicking on a read displays the undistorted 

chromatogram for the selected read in a new window. Human examination of the 

trace data is often necessary to confirm conflicting base-calls as sequencing error or 

genuine single nucleotide polymorphisms (SNPs). False SNPs caused by sequencing 

or base-calling errors are quite common and can be largely ignored, whereas SNPs 

supported by the chromatogram or occurring in multiple reads at the same position 

must be examined more closely. 
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When two or more reads share a discrepancy from the multi-alignment, we 

call this a correlated SNP. Because most SNPs are caused by random sequencing 

error, it is highly unlikely that a random error in two separate experiments will occur 

at exactly the same position, especially if those bases have high quality values. 

Although biological or biochemical explanations can sometimes account for this 

correlated error, it is commonly caused by mis-placed reads from different positions 

in the genome, especially for haploid organisms. One very common cause of a 

correlated SNP is the collapse of two near-identical copies of a repeat into a single 

copy by the assembler. Because both copies of the repeat should have been sampled 

evenly, the same number of reads should be present for each copy, and the reads will 

partition into two equally sized groups distinguished by the differences in the multiple 

alignment. In addition to flagging these regions in the Scaffold View, the Contig 

View supports the separation of these groups via on-the-fly clustering of correlated 

discrepancies. Clicking the consensus base in question sorts the underlying reads into 

groups based on the base-calls at that position (Figure 41). 
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Figure 41. SNP sorted reads in the Contig View. 
Clicking in the consensus automatically clusters the reads into correlated groups by sorting and 
coloring the reads by their base at that position. SNP, single nucleotide polymorphism. 

 

In addition to SNPs correlated by row, they also can be correlated across 

multiple columns of the multi-alignment. In this case, it can be difficult to fit all the 

correlated columns on the screen at once, and so the Contig View employs a semantic 

zooming mechanism for viewing large regions of the multi-alignment simultaneously. 

Zooming out reduces the size of the base-calls until the text becomes unreadable. At 

this point, the view switches to a 'SNP barcode' view, inspired by the software 

DNPTrapper [132]. In this view, agreeing bases are blended with the background to 

remove them from view, and only the disagreeing bases are colored (Figure 42). 

Reads that share the same pattern of SNPs are quickly identified and can be clustered 

together as before. 
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Figure 42. Semantic zooming in the Contig View. 
Semantic zooming shifts from displaying the individual base pairs in reads to a compact abstract SNP-
Barcode in which only bases that disagree with the consensus are colored thus displaying a wider range 
of a contig. SNP, single nucleotide polymorphism. 
 

Results 

We designed Hawkeye to enhance understanding of genome assemblies and to 

assist in the detection and correction of assembly errors. Below we outline a sample 

of analysis tasks possible with Hawkeye. 

 

Assembly validation 

We applied Hawkeye to inspect potential mis-assemblies systematically in the 

draft assembly of a recent genome sequencing project for the bacterium Xanthamonas 

oryzæ pv.oryzicola [133]. The 4.8 megabase (Mb) genome was sequenced in 62,229 

end-paired shotgun reads representing approximately 9× coverage of the genome. The 

reads were assembled with Celera Assembler using default parameters. Over 96% of 
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the assembly was contained in three large scaffolds, each over 1 Mb in size. Hawkeye 

uncovered a number of mis-assemblies that were present in the draft assembly. 

One mis-assembly was discovered near the end of a contig in the third largest 

scaffold. The evidence for the mis-assembly was threefold: elevated read coverage, 

the presence of compressed mate-pairs, and correlated SNPs within the reads. As 

explained above, this combination of evidence suggests that the reads from two or 

more instances of a repeat have been collapsed into a single instance. 

The Scaffold View has strong support for the hypothesis of a collapse. It 

includes a spike in read coverage in this region, to more than twice the mean (Figure 

39). In the default categorical view, only one mate-pair is classified as compressed 

using a threshold of three standard deviations from the mean. However, the 

continuous insert coloring reveals a cluster of moderately compressed mates in this 

region (colored yellow). Furthermore, clicking in the CE statistic plot shows the CE 

statistic for this region falls to -6.36, which is well below the threshold of -3.0 for 

likely compression type mis-assembly. Finally, the red features spanning the area 

indicate a high level of read polymorphism. The coordinated Contig View shows two 

distinct clusters of reads, probably representing the two repeat copies that were 

collapsed together (Figure 42). 

Following our discovery, we created a second assembly using just the reads 

and mates from the collapsed region with stricter parameters for the assembler, which 

required a greater degree of similarity between overlapping reads. This local 

assembly was inspected, and did not have any mis-assembly signatures. A contig 

alignment dot plot generated by Nucmer [14] revealed that the collapsed repeat did 
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not occur exactly in tandem, but contained an additional approximately 500 base pairs 

of unique sequence between the two repeat copies that was missing from the original 

assembly. The mis-assembled region was replaced with the corrected local assembly 

using the AMOS tool stitchContigs (http://amos.sf.net), providing an accurate 

consensus sequence for gene annotation. 

 

Assembly diagnostics 

Hawkeye also has proved useful for improving assemblies globally by 

explaining why assemblies are worse than expected. The initial assembly for the 

Bacillus megaterium sequencing project (Ravel J, personal communication) had a 

surprisingly large number of small scaffolds given the expected read and insert 

coverage levels. The genome size was estimated at about 5 Mb, and the 74,000 

shotgun reads should have provided 12× read coverage and nearly 50× insert 

coverage of the genome. Despite adequate sequencing, the assembly had on average 

less than 10× read coverage and no scaffold larger than 1 Mb. Furthermore, over 12% 

of the reads were left out of the assembly (called 'singletons'). 

We explored the source of the fractured assembly by inspecting the largest 

scaffold. We quickly discovered a high percentage of singleton mates (reads in the 

scaffold whose mates were singletons). Clusters of singleton mates can be caused by 

deletion mis-assemblies, but the singleton mates in this assembly were distributed 

evenly throughout the scaffold, and were not correlated with other mis-assembly 

features. Another likely cause of singleton mates is low read quality, below what the 

assembler will tolerate. For example, with default parameters, Celera Assembler will 
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not assemble together reads if they disagree by more than 1.5%. To test for low read 

quality, we examined the largest contig using Hawkeye's SNP barcode view with a 

quality value heat map. As suspected, the ends of the reads were lower quality than 

the interior, but we were surprised to find clusters of differences near the ends of 

individual reads. Furthermore, these differences were not correlated and all were 

deletion events. 

This combination of evidence suggested that the base-caller systematically 

missed peaks near the ends of chromatograms. These missed peaks fell in relatively 

low quality regions, so we re-trimmed the reads with more aggressive parameters, and 

re-assembled the genome. This re-trimming reduced the number of singleton reads to 

fewer than 2% and greatly improved scaffold and contig sizes. In a follow-up 

investigation, we discovered that the base-calling software in the sequencing pipeline 

had been updated recently, but the trimming software had not been appropriately 

recalibrated. 

 

Discovery of novel plasmids 

The assembly of Bacillus megaterium also was interesting because the 

organism was thought to have seven plasmids in addition to the main chromosome of 

the organism. The complete sequence for four plasmids was previously available, but 

the sequences for the others were not. After assembly, we inspected the scaffolds 

using Hawkeye to find the novel plasmids by searching for circular scaffolds. In a 

linear version of a circular scaffold, reads near each end of the scaffold will be 

oriented such that their mate would fall outside the scaffold, while instead those 
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mates will appear within the scaffold at the opposite end. In addition, these mates will 

appear in Hawkeye as mis-oriented mates occurring on the ends of the scaffold 

without the presence of other mis-assembly evidence. We identified seven scaffolds 

with this structure, and four matched the known plasmid sequence. The additional 

circular scaffolds are the three novel plasmids (laboratory confirmation is pending). 

 

Consensus validation 

During the genome sequencing and annotation of the 160 Mb parasite 

Trichomonas vaginalis [134] a large number of 'split genes' were identified. In a split 

gene, two adjacent open reading frames (ORFs) are separated by a stop codon, but in 

other organisms' homologous genes the entire region is a single ORF forming a single 

functional gene. 

We attempted to confirm the correctness of these split genes by ruling out the 

possibility of mis-assembly and confirming the accuracy of the consensus sequence. 

The split gene annotations were loaded as features into Hawkeye. We then 

systematically checked for potential mis-assemblies near these genes in the Scaffold 

View, but found only happy inserts and no evidence of mis-assembly. In the Contig 

View, we examined the chromatograms and quality values for base-calls in these 

regions, looking particularly for mis-calls that would have introduced frame shifts or 

false stop codons. After finding no consensus discrepancies or signs of mis-assembly, 

we concluded the sequence was correct, and the genes had not been mis-assembled. 

The reads in this region came from several different genomic libraries, providing 

further evidence that the split genes are not an artifact of library construction. 
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Discussion 

Cognitive psychologist and computer science researcher Herbert Simon 

stated, 'Solving a problem simply means representing it so that the solution is 

obvious' [135]. In this spirit, Hawkeye strives to provide a visual, manipulable 

interface to help finishers understand and reason about complex assembly data. In 

addition to providing a useful interface for the examination of assembly data, 

Hawkeye further supports the analytical process by providing statistical and 

computational data analysis, enabling users both to reduce data complexity and to 

form accurate judgments. 

Hawkeye addresses the issues of scale and complexity by guiding users to the 

most likely areas of mis-assembly, and adhering to the visual information seeking 

mantra: overview first, zoom and filter, then details-on-demand [136]. The main 

application window, or 'Launch Pad', acts as a global overview by displaying 

summary assembly statistics, along with graphs and sortable tables of assembly 

information. The ranking component of this display encourages users to inspect 

regions of the assembly in order of importance: largest to smallest and low quality to 

high quality. The more detailed 'Scaffold View' is capable of displaying an entire 

contig or scaffold and its underlying reads on a single screen for scaffolds spanning 

10+ Mb of sequence and 100,000+ reads. Alternatively, users can zoom in and filter 

the display to focus on particular regions of interest. Finally, the lowest level 

assembly information is displayed in the coordinated 'Contig View', displaying the 

consensus sequence, read-tiling, base-calls, and supporting data. Coordination among 

these three views - Launch Pad, Scaffold View, and Contig View - allows for very 
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efficient top-down analysis of even the largest assemblies. It leads the user to a 

natural analytic progression: discern high-level quality from statistics and features; 

examine a poorly scoring scaffold for mis-assembly at the clone-insert level, looking 

for uneven insert distribution and improperly sized or mis-oriented mate-pairs; 

examine possible mis-assemblies in more detail at the base-call and chromatogram 

level, looking for correlated discrepancies supported by chromatogram traces; and 

confirm or refute hypothesis of mis-assembly. 

After confirming the presence of mis-assemblies, users have a choice of 

methods for correcting the assembly. If there are numerous or systematic errors, the 

best solution is often to reassemble the genome after adjusting the assembler 

parameters, such as adjusting the read trimming to be more conservative, or requiring 

a higher degree of similarity between overlapping reads to correct for collapsed 

repeats. If the errors are more localized, such as collapsed repeats or mis-placed 

reads, users can correct the individual mis-assemblies with the companion AMOS 

tools (http://amos.sf.net) or with other third party tools. Other assembly 

complications, such as high levels of sequencing error, can be automatically corrected 

with tools such as AutoEditor [137]. 

Hawkeye combines computational predictors with interactive visualizations to 

enable efficient and accurate human inspection of assembly data, resulting in 

decreased verification costs and higher quality data for the scientific community. We 

have utilized its ranking component to detect the presence of localized mis-

assemblies in various genome assemblies, and have used its abilities to verify the 

correctness of reassemblies. We have also used it to improve genome assemblies 
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globally by identifying systematic problems with read trimming, which had 

fragmenting assemblies. Finally, we have positively identified biologically interesting 

phenomena such as novel plasmid sequences, and demonstrated how Hawkeye can be 

used to confirm the base-call level consensus sequence of contigs to verify the 

accuracy of unusual gene structure. 

Hawkeye 1.0 emphasizes visual presentation, but future versions should 

include capability to edit individual bases, manipulate contigs, and interactively mark 

regions for further attention. We also plan to improve visualizations for new 

sequencing technologies such as the display of flowgrams used in 454 sequencing. 

Finally, we also plan to improve support for gene annotation tasks, including 

displaying the translated amino acid sequence in addition to the DNA sequence and 

enhanced support for displaying gene models with introns. 

Hawkeye is a desktop GUI application written in C++, and requires the Qt 

graphics library, which is freely available from Trolltech 

(http://www.trolltech.com/products/qt/). Otherwise, users can load and analyze 

assemblies without any other dependencies on Linux/Unix, Microsoft Windows (with 

Cygwin), and Mac OS X based computers. Desktop machines with 1 GB of RAM 

will easily accommodate small to mid-sized assemblies (<200,000 reads), whereas 

more RAM may be necessary for larger assemblies to remain responsive. The user 

manual and source code for Hawkeye are available from the Hawkeye website 

(http://amos.sf.net/hawkeye). 
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Chapter 8: De novo Assembly of Large Genomes using Cloud 

Computing 

Summary of Contribution 

This chapter describes the new de novo genome assembly program Contrail, 

created in collaboration with Dan Sommer, David Kelley and Mihai Pop at the 

University of Maryland. It is currently unpublished, but we hope it will ultimately 

become a published result.  

Contrail addresses the problem that few assemblers are capable of assembling 

large genomes from short reads, primarily because large genome assembly requires 

tremendous computational resources. Addressing this limitation, Contrail uses 

MapReduce to parallelize computation across a cluster of commodity computers. 

Contrail’s assembly methods are based on existing assembly algorithms, but required 

inventing entirely novel and non-trivial parallel algorithms to manipulate an 

extremely large de Bruijn graph of the read sequences. As a result, Contrail is perhaps 

the third assembler created that is possible of assembling a human genome from short 

reads and is probably the only assembler that can do so on commodity resources. 

Michael Schatz designed and implemented the entire Contrail system 

described here, except for the read correction method developed by David Kelley. 

Michael Schatz wrote the manuscript and performed the experiments, except for the 

error correction of the E. coli dataset that David Kelley executed. Dan Sommer 

contributed in many discussions to the design, and is developing an overlap-graph 
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based component of Contrail that is not described here. Mihai Pop contributed in 

many design discussions, and provided guidance to the overall system. 

 

Abstract 

Current DNA sequencers can sequence the equivalent of multiple copies of an 

entire human genome in a few days and at low cost, but analyzing these data remains 

a difficult challenge. In particular, de novo genome assembly is essential to many 

sequencing projects, but to date requires compute resources out of reach for most 

researchers when assembling large mammalian sized genomes. Addressing this 

critical need, we have developed a new genome assembler Contrail that harnesses the 

power of cloud computing to scale genome assembly to large genomes on commodity 

resources. Contrail is available open-source at http://contrail-bio.sf.net. 

 

Introduction 

Sequencing the genome is fundamental for many biological analyses, and has 

become a standard technique for unlocking the genetic content of an organism. 

Current DNA sequencing technology is limited to sequencing relatively tiny 

fragments of DNA ranging from 25bp to 1000bp, although many billions of 

fragments can be sequenced in high throughput and at low cost from random 

positions in the genome [1]. Consequently, a genome can be reconstructed from short 

sequences by computationally assembling the sequences originating from overlapping 

positions in the genome [138].  
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Genome assembly is challenging because of errors and other technical 

artifacts of the preparation and sequencing. More fundamentally, repeated sequences 

in the genome complicated assembly by obscuring which sequences should be 

assembled together [20]. Large mammalian-sized genomes are especially challenging 

because in addition to the tremendous volume of data required, they contain highly 

repetitive sequences that are nearly impossible to disambiguate. As such, except for 

the very smallest and simplest genomes, a genome assembly will not contain a single 

contiguous sequence (contig) for the entire genome or for each chromosome, but will 

instead consist of a set of contigs for the regions that could be resolved. The success 

of an assembly is therefore typically evaluated by the size and accuracy of the contigs 

produced. 

Several genome assemblers were developed to assemble large repetitive 

genomes from traditional Sanger sequencing reads, including the Celera Assembler 

[21] and Arachne [22, 23], and later for 454 reads such as the assembler Newbler 

[91]. These assemblers assemble genomes in three major phases. In the first phase, 

the assembler constructs an overlap graph, where nodes represent reads, and weighted 

edges connect overlapping reads. In the second phase, these assemblers analyze the 

overlap graph, and conservatively assemble unambiguous regions of the genome into 

relatively small, but correctly assembled contigs. In the final phase, these assemblers 

analyze the mate-pairs, which are pairs of reads generated from opposite ends of a 

single fragment, to resolve ambiguities and link contigs into scaffolds. Mate-pairs 

constrain the order and orientation of contigs, and the assembler uses these 

relationships to construct a linear scaffold. If the contigs in the scaffold overlap, the 
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scaffolder will merge the contigs together. Otherwise, the sequence between the 

contigs will be unknown, but the size of the gap will be approximately known.  

The massive volume of data and short read lengths from the current second 

generation DNA sequencing machines sold by Illumina (http://www.illumina.com), 

Applied Biosystems (http://www.appliedbiosystems.com), and Helicos 

(http://www.helicosbio.com) has spurred development of a new class of genome 

assemblers specifically tuned to accommodate their data characteristics. Many of the 

new assemblers, such as Velvet [96, 97], ABySS [80], and SOAPdenovo [100] 

attempt to reconstruct the genome by constructing and simplifying the de Bruijn 

graph of the read sequences. Nodes in the de Bruijn graph represent substrings of the 

reads, and directed edges connect nodes of consecutive substrings. Genome assembly 

is then modeled as finding an Eulerian tour through the graph, or failing that because 

there are multiple Eulerian tours, finding unambiguous paths within the graph 

representing individual contigs. After the initial contigs are assembled from the de 

Bruijn graph, the assemblers resolve ambiguities and build scaffolds using the mate-

pairs much like how the overlap graph based assemblers operated.  

The de Bruijn graph framework has several advantages over the overlap graph 

framework when used to assemble short reads, including efficient computation of 

overlapping reads and robust handling of sequencing errors [96]. As such, these 

assemblers have successfully assembled many small genomes from short reads. 

However, the de Bruijn graph is also more challenging to analyze computationally, 

and usually requires the entire graph is available in main memory [96, 97]. 

Consequently, these assemblers have had limited adoption assembling larger 
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mammalian-sized genomes because the de Bruijn graph of genomes of this size 

contain billions of nodes and billions of edges. For example, the recently published de 

novo assembly of the panda and human genomes required a “supercomputer” with 

512 GB of main memory [100]. Furthermore, the parallel assembly of 120Mbp D. 

melanogaster genome completed in just 4 hours [81], but required an extremely high 

end BlueGene/L supercomputer with 512 nodes, not available to most researchers. 

Addressing this limitation, we have developed a new open source genome 

assembler Contrail that harnesses the power of cloud computing for the de novo 

assembly of large genomes from short sequencing reads. Contrail uses the open 

source implementation of MapReduce [82] called Hadoop (http://hadoop.apache.org) 

for parallel genome assembly, including on clusters of commodity computers leased 

from a 3rd part commercial cloud providers.  

For the initial assembly, Contrail builds contigs using the de Bruijn graph 

framework, using many operations to simplify the graph and remove spurious nodes 

and edges introduced by sequencing errors from the graph. After the initial contigs 

are constructed, Contrail then uses mate-pairs to resolve ambiguities and build 

scaffolds. Unlike the older programs for assembling large genomes, which require 

large servers or RAM resources, Contrail uses Hadoop to efficiently transform the 

graph across dozens or even hundreds of computers, using minimal system memory 

per machine. Contrail’s contigs are of similar size and quality to those generated by 

other leading assemblers when applied to small (bacterial) genomes, but provides 

vastly superior scaling capabilities when applied to large genomes. Contrail is 

available open source at http://contrail-bio.sf.net. 
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Results 

Bacterial Assembly 

We first evaluated Contrail by assembling E. coli K12 substrain MG1655 

using 20.8 million paired-end 36 bp Illumina reads (accession no. SRX0000429). 

Contrail created 300 contigs ≥ 100bp long, and a N50 contig size of 54,807 bp using 

an initial node size of 27bp. The assembly was computed on a relatively small cluster 

of 10 dual core computers hosted at the University of Maryland, providing a total of 

20 3.2 GHz Intel Xeon cores and 3.5 TB of local disk.. The runtime was 

approximately 8 hours (including ~.5 hours for error correction), although much of 

the time was dominated by overhead that is amortized on a larger genome. 

This exact dataset has been assembled by several other recent assemblers 

including ABySS [80], SOAPdenovo [100], Velvet [96], EULER-SR [139], SSAKE 

[140] and Edena [141] (reported in [80, 100]), so the relative assembly quality could 

be evaluated, as shown in Table 11. The contig N50 size is a standard metric for 

evaluating contig sizes, and is the size such that 50% of the genome is present in 

contigs of this size or larger. The complete reference genome is available (RefSeq 

accession no. NC_000913), so we also assessed the accuracy of the contigs by 

aligning the contigs to the reference using the program nucmer [14] (using option --

maxmatch) and then filtering the alignments using delta-filter –q to find the best 

mapping for each of Contrail’s contigs. Following the thresholds used in previous 

studies, contigs that aligned for less than 95% of their length or at less than 95% 

identity were considered to be incorrect (1 contig spans the origin and is not 
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considered incorrect). By these criterions, Contrail’s contigs are of similar size and 

quality to other leading assemblers. 

 
 
Table 11. Comparison of recent E. coli assemblies. 

Assembler Contigs ≥ 100bp N50 (bp) Incorrect contigs  
Contrail PE 300 54,807 4 
Contrail SE 529 20,062 0 
SOAPdenovo PE 182 89,000 5 
ABySS PE 233 45,362 13 
Velvet PE 286 54,459 9 
EULER-SR PE 216 57,497 26 
SSAKE SE 931 11,450 38  
Edena SE 680 16,430 6 
SE indicates single end data only, before any scaffolding. PE indicates paired-end analysis, including 
scaffolding. Total length indicates total length of contigs at least 100bp. 
 
 
 
Human Genome Assembly 

Next we evaluated Contrail by assembling the genome of an African male 

individual (HapMap DNA identifier NA18507) (International HapMap Consortium 

2003, 2007), using 3.5 billion reads downloaded from the NCBI short read archive 

(accession no. SRA000271). The read lengths ranged from 36 to 42 bp with a median 

fragment size of 210 bp. All together, the data consist of an average 42X coverage of 

the human genome in ~176 GB of compressed sequence data (gzipped fastq format). 

Previous studies of this data set found 72% of the reads aligned perfectly to the 

reference genome, and estimated the per-base error rate at 1.4% [80].  

Given the large volume of data, the assembly was executed on the much larger 

cluster managed by the NSF Cluster Exploratory (CLuE) program. This cluster 

consists of approximately 450 nodes, each with a dual core 2.8 GHz Xeon processor, 

8 GB of RAM, and two 400 GB disks. However, 5-10% of the machines are offline 
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for maintenance at any given time, and the cluster is shared with many other users. 

During the assembly, Contrail executed on as many as 500 cores in parallel, but the 

number of cores used varied dramatically depending on the number of other users 

using the cluster. The assembly was interrupted after ~65 hours after building the 

initial graph and correcting deadend tips and bubble popping described below 

(preassembly read error correction was also not performed). An earlier version of 

Contrail assembled this dataset up to scaffolding in 74 hours on a dedicated cluster 

with 188 cores at the University of Wisconsin. By comparison, ABySS required 

approximately 96 hours on a cluster of 168 cores connected by a high speed 

interconnect, and SOAPdenovo required approximately 40 hours on 40 cores, but also 

had peak memory usage over 140GB of RAM. 

 
 
Table 12. Contrail human genome assembly statistics 

Stage MR Cycles Contigs ≥ 100 bp N50 (bp) 
Construction & Compression 23 192,073 <100 
Error Correction    
- Tip Removal 73 5,080,285 650 
- Bubble Popping 36 4,285,080 923 
 
 

The initial de Bruijn graph used a k-mer length of 27bp, and consisted of more 

than 10 billion nodes. The initial compression reduced this to ~1.05 billion nodes, 

ranging in size from 27bp to 303 bp, and 192 thousand nodes were at least 100bp 

long. Trimming dead end tips removed 65 million tips less than 54bp long, and 

bubble popping removed 1.5 million bubbles within 5% sequence identity. This error 

corrected assembly had a total of 94.9 million nodes, although the majority of these 

were less than 100bp long. Additional assembly statistics are listed in Table 12 
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As shown in Table 13, the partial assembly statistics are comparable to both 

the ABySS and SOAPdenovo assemblies of this exact same dataset. In particular, 

Contrail’s contig N50 size is ~5% larger than either SOAPdenovo or ABySS at the 

contigging stage before using the paired-end data to build scaffolds. Future work 

remains to complete the assembly, and analyze the contigs for accuracy and also 

novel insertions not present in the reference human genome.  

 
Table 13. Comparison of human genome assemblies. 

Assembler Contigs ≥ 100bp N50 (bp) Total Length (Gbp) 
Contrail SE 4,285,080 923 2.13 
SOAPdenovo PE NA 4,611 2.63 
SOAPdenovo SE NA 886 2.10 
ABySS PE 2,762,173 1,499 2.18 
ABySS SE 4,348,132 870 2.10 
SE indicates single end data only, before any scaffolding. PE indicates paired-end analysis, including 
scaffolding. Total length indicates total length of contigs at least 100bp. 
 

Discussion 

DNA sequencing costs have fallen by several orders of magnitude over the 

last decade, and are projected to continue on this trend towards realizing a $1000 

human genome within the next few years. This dramatic shift has created a massive 

increase in the scale and scope of DNA sequencing, and sequencing projects are now 

underway to sequence organisms from all corners of the globe and across the entire 

tree of life. De novo assembly is obviously fundamental to each of these projects, but 

is useful even when a high quality reference genome is available. In these cases, de 

novo assembly can be used for resolving large-scale polymorphisms and structural 

variations that are difficult or impossible to resolve with purely comparative 

techniques.  
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Given the huge demand for assembly, including the huge demand for 

assembly of large genomes, scalable methods for de novo assemble are paramount. 

Contrail directly addresses this need as a scalable solution for de novo assembly of 

large genomes. The sequences assembled by Contrail today are comparable to those 

produced by other leading assemblers, and does so on a cluster of commodity 

machines without requiring any special high end resources. In the current 

implementation, Contrail’s runtime is comparable to ABySS, but is considerably 

slower than SOAPdenovo, mainly because SOAPdenovo can execute the assembly in 

main memory instead of transferring data across the network. Future work remains to 

improve the runtime performance, such as by removing tips and compressing linear 

paths in a single cycle, and also to improve the assembly quality. In particular, new 

network flow methods have recently been proposed to improve the assembly of 

repetitive sequences [102]. Conceptually these proposed methods are compatible with 

Contrail, and will be incorporated in future releases, as will specializations for de 

novo transcriptome and metagenome assembly. 

More generally, as sequencing and sequence analysis moves out of the large 

sequencing centers and into individual labs, there is a corresponding need for scalable 

methods for all forms of sequence analysis. MapReduce and cloud computing may be 

the enabling technologies for realizing the democratization of sequencing, as it 

enables researchers to easily tap the power of many hundreds commodity servers, and 

scale up their analyses on demand to using just the resources required for the task at 

hand.  
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Methods 

MapReduce Overview 

MapReduce [82] is a framework for computation invented at Google 

consisting of 3 major stages called map, shuffle, and reduce. In the map stage, a user 

defined map function scans each record of the input, and emits zero or more 

intermediate key-value pairs per record. In the shuffle phase, the intermediate key-

value pairs are routed and sorted so that all key-value pairs with the same key are 

collected into a single list of values. Then the user defined reduce function is 

executed once for each key, using the entire list of values associated with that key to 

compute the final output(s).  

The power of the MapReduce is the computation is evaluated in parallel on all 

available computers, including clusters with many hundreds or thousands of nodes. 

Furthermore, a new application need only implement the map and reduce functions, 

and the system automatically manages the large distributed sort necessary for the 

shuffle, and also provides all of the services necessary to guarantee reliable and 

efficient computation on large datasets.  

Not every algorithm benefits from MapReduce, nor is it even possible to 

implement every algorithm in the framework. In particular the map and reduce 

functions must be stateless and streaming, and each execution of the map or reduce 

function must by entirely independently from all others, and the functions cannot 

store the entire dataset in memory. Despite these limitations, MapReduce has been 

extremely successful accelerating many large data processing applications, including 
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constructing inverted indices and processing log files [82], but also short read 

mapping [38] and genotyping [74]. 

The relatively simple applications listed above operate using a single cycle of 

map, shuffle, and reduce for their algorithms, but MapReduce can also be chained 

together across multiple cycles, where the output from the reducer becomes the input 

to the mapper in the next cycle. In this way, iterative MapReduce expands the class of 

algorithms that can be efficiently implemented, especially for computations on 

graphs. For example, an iterative MapReduce graph algorithm could propagate 

information from all nodes to their immediate neighbors in the first MapReduce 

cycle, and then to their 2-hop (or more distant) neighbors in the second, and so forth. 

This technique has been used for efficiently computing a breath-first search or the 

spanning tree of a graph in a few MapReduce cycles [37]. 

Computations in MapReduce are restricted to executing on key-value pairs, 

but this requirement lends itself well to analyzing large graphs. The id of the node is 

used as the key and the adjacency list of edges and other node information is stored a 

“node-tuple” as the value. Then computation on nodes and edges is implemented 

using a form of message passing to exchange information between adjacent nodes as 

follow. The map function iterates over the graph stored as node-id, node-tuple pairs, 

and immediately emits the same node-id, node-tuple pairs. At the same time, the map 

function also emits messages for the neighboring nodes using the node id of the 

neighbor as the key, and a “message-tuple” with the content of the message as the 

value. The shuffle stage then sorts all of the key-value pairs, and collects all tuples 

with the same key (node-id) into a single list. Finally, the reduce function evaluates 
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once for each node in the graph, using both the node-tuple of the current node-id and 

any message-tuples from neighboring nodes. The reduce function processes the 

messages to compute the new state of the node-tuple, and stores the updated graph as 

a node-id,node-tuple pairs for the next cycle. 

 

Contrail Overview 

Contrail is implemented as an iterative MapReduce algorithm that runs in 

parallel on many computers starting from the initial set of unassembled reads, and 

finally outputting a set of contigs. All stages of the algorithm run in parallel using 

Hadoop across all available computers, and at no time is the entire assembly loaded 

into memory. The exact number of MapReduce cycles depends on the dataset and 

cluster configuration, but the algorithm executes in three major phases for (1) pre-

assembly read error correction, (2) contig construction, and (3) scaffolding, as 

explained below. Contrail can also assemble small genomes on a single machine 

without Hadoop using the unix sort command to simulate the MapReduce shuffle as 

disk space permits, but is likely to be slower than an assembler that operates entirely 

in memory.  

 

1. Read Error Correction 

The first phase of Contrail trims very low quality 3’ ends and corrects 

apparent sequencing errors in the reads.  First, MapReduce is used to count the 

number of occurrences of every k-mer present in the reads.  Sequencing errors are 

detected as k-mers in a read that occur less than a threshold, which is computationally 
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determined using a histogram of k-mer coverages. K-mers occurring more than this 

threshold are classified as “trusted” (to be in the genome), while the remaining low 

frequency k-mers are classified as “untrusted” (caused by sequencing error). The 

pattern of untrusted k-mers defines the region of the read in which the sequencing 

error(s) must have occurred.  Using the read’s quality values, we can assign a 

likelihood to a set of possible corrections to the read in this region.  Sets of 

corrections are considered in decreasing order of their likelihood, and if they make 

every k-mer in the read “trusted”, we correct the read accordingly. 

 

2. Contig Construction 

2.1. De Bruijn Graph Construction 

The de Brujin graph is constructed using MapReduce by scanning each read in 

the mapper and emitting the key-value pair (u, v) to encode the edge between 

consecutive k-mers u and v in the read. The reversed key-value pair (v,u) is also 

emitted and appropriately annotated to construct reverse edges in the de Bruijn graph. 

K-mers and their reverse complement are represented by a single value and the edges 

are bidirectional, with annotations to indicate the orientation of the associated nodes. 

After the map function completes, the internal shuffle phase collects key-

value pairs with the same key, which effectively collects edges with the same source 

k-mer. The reduce function saves the graph structure as key-value pairs, with the 

sequence of the k-mer as the key, and the adjacency list of oriented edges and other 

node information in a node-tuple as the value. In the following discussion, forward-

to-forward edges are considered out-links, as are forward-to-reverse and reverse-to-
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forward links when the first node has node-id lexicographically less than the second 

node. Otherwise, the links are considered in-links. Note that reverse-to-reverse links 

are stored as forward-to-forward links. 

  

2.2. Compression 

After the initial construction, the error-free regions of the genome between 

repeat boundaries form non-branching paths of nodes (Figure 43, top). Since these 

paths are unambiguous, they can be safely compressed into single nodes with a longer 

sequence without risk of mis-assembly (Figure 43, bottom). In particular, nodes u and 

v can be compressed together if the only outlink from node u connects to node v, and 

the only inlink into node v originates from node u. The compression expands the node 

label on u with the last length(v)-k-1 characters from v, replaces u’s outlinks with v’s 

outlinks and removes node v. By repeating this pairwise merging, any number of 

nodes can be compressed into individual nodes forming contigs of unlimited length. 

Path compression in Velvet and other serial de Bruijn graph based assemblers 

use an iterative serial algorithm that compresses unambiguous paths into individual 

nodes entirely in memory. In contrast, a parallel implementation must simultaneously 

compress different regions of the graph, all while keeping the graph in a consistent 

state for the next iteration. This is challenging to implement within MapReduce 

because adjacent nodes are not directly accessible, and may even be stored on the 

physically different machines. Nevertheless, it is possible to propagate updates 

between nodes stored on different machines using the MapReduce message passing 

technique described above.  
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A naïve MapReduce path compression algorithm iteratively compresses the 

first node from a linear path until no compressible nodes remain. It first tests if a 

given node u is the first node in a linear path by examining the in- and out-links 

stored in the node-tuple. If node u is the first node in a path, it is compressed with its 

sole successor v and updates the appropriate edges of its neighbors using the message 

passing technique. Then this process repeats until no nodes are merged, which occurs 

when every linear path in the graph is maximally compressed. The naïve approach 

correctly compresses the graph, but requires P iterations to compress a graph where P 

is the length of the longest linear path in the graph. For large genomes such as the 

human genome, linear paths may span tens of thousands of nodes, and would be 

computationally prohibitive to compress large graphs using this approach. 

Instead Contrail uses a novel MapReduce algorithm inspired by randomized 

parallel list ranking to merge long linear paths [142]. Consider a linear path of 8 

nodes shown in Figure 43 (top). If every other node is merged with its successor, the 

length of the linear path is cut in half (Figure 43, round 1). This merging could then 

be repeated a total of O(log p) rounds to compress a linear path of length p into a 

single node (Figure 43, bottom). However, in a parallel setting there is no information 

available to determine which set of nodes to compress, as every compressible node is 

symmetrical to every other except for those at the extreme ends of a linear path.  
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Figure 43. A linear path of 8 nodes compressed in 3 rounds. 
In each round of compression the number of nodes in the linear path is cut in half by merging every 
other node with its successor.  
 
 

This problem can be overcome by selecting an independent set of edges to 

compress using a randomized parallel algorithm [142]. First, each compressible node 

is randomly assigned the label head or the label tail with equal probability. Then 

edges between head nodes and tail nodes are compressed together using the pairwise 

merging algorithm described above. The process then repeats until there are no 

compressible nodes remaining as before. In each iteration, 25% of the edges are 

expected to be identified and resolved, thereby requiring O(log p) total iterations with 

high probability [142]. In practice, Contrail commonly compresses 50% - 60% of 

compressible edges in a single iteration, because Contrail also considers the edges of 

the de Bruijn graph are bidirectional, and also because Contrail applies additional 



 

 204 
 

rules to compress edges at the extreme edges of the linear path. Each iteration of 

compression requires 2 MapReduce cycles to correctly perform the appropriate 

message passing, but the total number of MapReduce cycles is O(log p). In addition, 

the overall computational complexity of algorithm is work optimal, because the total 

number amount of parallel work performed (merges executed) is exactly the number 

compressible edges. 

In addition, Contrail uses an additional fast in-memory compression mode to 

reduce the number of MapReduce cycles necessary to compress all paths. After each 

iteration, Contrail tests if there are less than M total compressible nodes remaining, 

and if so, Contrail partitions the graph so that all compressible nodes are in the same 

partition. These nodes are then compressed in memory by a single reducer, and the 

remaining non-compressible nodes are randomly assigned to a random partition. This 

is implemented by emitting all compressible nodes tagged with the same key C in the 

mapper, while all non-compressible nodes are tagged with a random key X. The 

reducer then temporarily stores all values with the compressible key in memory, and 

performs the compression entirely in memory including chains of m nodes long. This 

optimization skips up to O(log m) MapReduce cycles, but requires the value of m is 

sufficiently small so that m nodes can all be stored in the local memory of a single 

machine. 

 

2.3. Topological Error Correction 

Sequencing errors in the reads create false k-mers that do not exist in the true 

genome sequence. The corresponding nodes in the de Bruijn graph will therefore 
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have lower coverage or distorted topology. Similar to SOAPdenovo, Contrail 

recognizes error induced graph topologies, and removes the error nodes from the 

graph. 

If the sequencing error occurs within k bp from the end of the read, the error 

creates low coverage “tips” in the compressed de Brujin graph connected to the rest 

of the graph by a single edge (Figure 44, top). Contrail recognizes this topology using 

MapReduce, and removes the appropriate nodes and edges from the graph. If there 

are only tips as in- or out- links from a given node in the graph, the longest such tip is 

kept.  

If instead the error occurs in the middle of the read, then the sequencing error 

creates a “bubble” where 2 nodes have the same in-links and out-links and nearly 

identical sequences except a small number of differences (Figure 44, bottom). 

Contrail detects and pops (resolves) bubbles in two MapReduce steps. The first finds 

bubbles based on network topology and their sequence, and the second removes the 

bubbles from the graph keeping just the variant with higher coverage.  

Finally, sequencing error may also create chimeric reads connecting distant 

regions of the genome, but with low coverage. Contrail recognizes and removes these 

low coverage nodes using a single MapReduce cycle. 

Each of the error correction operations is iteratively applied, because 

removing errors may reveal additional opportunities for correction. For example, 

popping a bubble may reveal another bubble. 
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Figure 44. Topological Error Correction. 
(top, left) Dead end tips shorter than the threshold with only in- or out- links are removed (top, right). 
(bottom, left)) Bubbles with identical neighbors and nearly identical sequence are removed (bottom, 
right). 
 

2.4. Resolve Short Repeats 

Despite its advantages for recognizing errors and overlap efficiency, the de 

Bruijn graph approach to genome assembly suffers the limitation that it is not read 

coherent, meaning the graph allows paths that are not supported by any read [102]. 

This is because the graph is constructed from k-mers that may be considerably shorter 

than the full sequences of the reads. For example, if two reads share a small repetitive 

k-mer, but otherwise do not overlap, then the de Bruijn graph will contain a branching 

node (in degree and out degree = 2) for that k-mer, but only 2 of the 4 possible paths 

are supported by the read sequences (Figure 45). Contrail therefore annotates each 

edge with the ids of the spanning reads, and resolves branching nodes that are entirely 

spanned by multiple reads (default 5) by making separate, non-branching copies of 

the branching node for each confirmed path. This in effect resolves the ambiguities 

introduced by repeats shorter than the read length. 
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Figure 45. Resolve short repeats. 
Contrail annotates each branching edge with the ids of the reads spanning that edge, and then splits the 
edges appropriately. Here all of the reads spanning the edge from A->r exit along the edge r->B, and 
all of the reads spanning the edge C->r exit along the edge r->D. 

  

3. Scaffolding 

The output of Contrail’s second phase is an assembly graph consisting of 

error-corrected contigs, with edges between overlapping contigs. Each contig in the 

graph terminates either because there was a gap in coverage and overlaps no other 

contigs, or because of ambiguity in how the overlapping contigs should be connected. 

Coverage gaps generally require additional sequencing to resolve, but Contrail can 

resolve many ambiguities by finding unique paths through the assembly graph 

consistent with the mate-pair constraints.  

 

3.1 Mate Bundling 

The first step of scaffolding determines which contigs are linked by mate-

pairs, and their relative orientation and separation. By convention, mated reads have 

the same name except for their suffix (either _1 or _2). Contrail therefore finds all 

mate-linked contigs using a single MapReduce cycle by emitting from the mapper 

mate messages consisting of the read name without the suffix as the key, and the 
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contig name, read orientation, and read offset as the value. The reduce function scans 

these mate messages and saves contig link messages that contain the id of the two 

contigs that are linked and their expected separation and relative orientation. A 

second MapReduce stage emits the contig link messages and the assembly graph in 

the mapper, and then bundles together link messages between the same pair of contigs 

in the reducer (Figure 46, left). Mate-pairs between repetitive contigs are discarded, 

using a threshold on contig depth of coverage to filter repetitive contigs. 

 

 

Figure 46. Contrail mate-pair bundling and resolution. 
(left) Mate-pair bundles constrain the orientation and separation of unique nodes A, B, C & D with 
respect to repeat node R. (right) Contrail finds a linear path that satisfies the mate-pair constraints. 
 
 

3.2 Bundle Resolution 

Once the mates are bundled, Contrail searches the graph for paths of contigs 

consistent with bundles supported by multiple mate pairs (default 5). If there are 

multiple such bundles extending from the forward or reverse of a contig, then only 

the bundle to the nearest contig is considered. More distant connections are 

considered in subsequent rounds of scaffolding. A path is consistent if the separation 

between contigs implied by the path of overlapping contigs is within the expected 



 

 209 
 

distance recorded in the bundle, and their relative orientation matches the relative 

orientation implied by the mate pairs. If a unique path is found to be consistent with 

the bundle, it merges the contigs along that path into a single contig (Figure 46, right). 

 For this, Contrail uses a variation of breath-first frontier search [143] from all 

unique nodes with bundles. In the first MapReduce cycle, all paths of length 1 are 

explored, using message passing between the unique nodes and their immediate 

neighbors. In the second cycle, all paths of length 2 are explored using message 

passing from the 1-hop neighbors in the first cycle. The process repeats for n cycles 

(default 20), iteratively exploring more distant neighbors. Each hop adds at least one 

extra base to the candidate path, but will usually extend the path by a much larger 

stride, depending on the contig size. In each cycle, paths longer (in total base-pairs) 

than the expected distance to the mate-linked contig are pruned from further 

consideration. Paths ending with the correct separation and orientation at the mate-

linked contig are stored. If after n cycles, there is only a single path consistent with 

the bundled mate pairs, the path of contigs connecting those contigs are resolved into 

individual larger contigs using a variation of the repeat resolution method described 

above. In short, repetitive contigs along the path are split into multiple copies, 

depending on how many paths contain them, and then the linear path compression 

routine merges the path of now non-branching contigs into a single contig. The 

scaffolding process then repeats bundling and merging nodes until no more merges 

occur.  
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3.3 Assembly Finalization 

After scaffolding, the assembly is converted using MapReduce from the 

internal formats into a traditional multifasta file with the contig sequences, and a 

contig layout file storing the position of each read in each contig. In addition, after 

scaffolding and periodically throughout the assembly processes, Contrail will 

compute contig size statistics, such as the average or N50 contig size using 

MapReduce. 
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Chapter 9: Summary of Contributions 

The research in this dissertation enables accelerated alignment, genotyping, 

and de novo assembly of large genomes from short reads by bridging research in 

computation biology with research in high performance computation. This 

combination is essential in light of the large data sets involved, and has the potential 

to unlock discoveries of critical magnitude. 

Whereas the published analysis of the African and Asian human individuals 

required over 1000 CPU hours to analyze the ~100GB of compressed sequence data, 

the Crossbow pipeline can reproduce their results in just a few hours. CloudBurst 

demonstrates how to efficiently parallelize classic seed-and-extend algorithms from 

computational biology to achieve 100 fold improvements in runtime. MUMmerGPU 

lays the foundation for utilizing GPGPU technologies in computational biology.  

In addition to these advances for short read alignment, Contrail is a highly 

scalable genome assembler, capable of assembling the human genome de novo on a 

cluster of commodity computers. This is essential for understanding the large 

numbers of complex organisms that have never been sequenced before, and will 

directly contribute to new biological knowledge.  

Future work remains to develop additional scalable algorithms for other 

sequence based assays. For example, the alignment-shuffle-scan framework used by 

Crossbow for genotyping could be naturally extended to analyze RNAseq [78], 

CHIPseq [77], or Methyl-seq [76] assays. Contrail could be extended to with 

specializations for metagenomics or transcriptome assembly. The assembly validation 
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methods used by Hawkeye and the genome forensics pipeline would benefit from 

MapReduce technologies to scale to larger genomes. 

As demonstrated in this dissertation, computational biology can greatly 

benefit from research in parallel algorithms and parallel systems. Further research in 

these fields is also needed. MUMmerGPU demonstrates it is possible to use GPUs for 

analyzing tree structures, and Contrail demonstrates that it is possible to use 

MapReduce for analyzing graph structures, but further research is necessary to 

improve support for these types of algorithms, especially for analyzing irregular data 

structures. In particular, MapReduce is extremely inefficient when a small number of 

messages are exchanged relative to the size of the graph, since the entire graph is 

rewritten in every MapReduce cycle.  

 

Research Highlights 

1. Implemented GPGPU-based parallel suffix tree alignment program 

MUMmerGPU, featuring a novel space filling curve to reorder memory 

accesses and maximize cache performance, and a novel stackless depth-first-

search algorithm for traversing a suffix tree using a constant amount of space. 

 

2. Developed a MapReduce-based parallel short read mapping program 

CloudBurst and short read genotyping pipeline Crossbow capable of quickly 

and accurately genotyping an entire human genome in an afternoon. 
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3. Developed visualization and analysis tools used to improve the quality of the 

assembly of several genomes including cow [144], papaya [145], the rice 

pathogen Xanthomonas oryzae [133], the honey bee fungus Nosema ceranae 

[146], multiple species of fruit flies [147], mosquito [148] and the human 

pathogen Trichonomas vaginalis [134]. 

 

4. Developed a MapReduce-based short read assembler Contrail capable of 

assembling the human genome using a cluster of commodity computers, 

featuring a novel work-optimal parallel algorithm for path compression. 
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