
VU Research Portal

Radio-Astronomical Imaging on Accelerators

Veenboer, Abraham Jacobus Petrus

2021

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Veenboer, A. J. P. (2021). Radio-Astronomical Imaging on Accelerators. Print Service Ede.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://research.vu.nl/en/publications/f944d16b-c846-450c-98df-d7dc074255a5

VRIJE UNIVERSITEIT

Radio-Astronomical Imaging on Accelerators

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen

op maandag 20 september 2021 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Abraham Jacobus Petrus Veenboer

geboren te Heemskerk

promotor: prof.dr.ir. H.E. Bal
copromotor: dr. J.W. Romein

Table of contents

Summary vii

I Introduction and Background 1

1 General Introduction 3
1.1 Research questions . 6
1.2 Thesis outline . 8

2 Background 13
2.1 Radio-astronomical imaging . 14

2.1.1 W-projection gridding . 22
2.1.2 AW-projection gridding . 22
2.1.3 Image-domain gridding . 24
2.1.4 Imaging applications . 26

2.2 The SKA challenge . 26
2.3 Accelerators . 27
2.4 Performance analysis . 29
2.5 Related work . 31
2.6 Metrics . 32

3 Energy Efficiency Analysis 35
3.1 Introduction . 36
3.2 PowerSensor . 36

3.2.1 Operation modes . 37
3.2.2 Installation and usage . 38
3.2.3 Examples . 39

3.3 Related work . 41

iv Table of contents

3.4 Conclusion . 41

4 Image-Domain Gridding 43
4.1 Introduction . 44
4.2 Algorithm . 44
4.3 Execution plan . 48
4.4 Single-precision gridding . 51
4.5 Complexity . 51
4.6 Conclusion . 53

II Image-Domain Gridding
Implementation and Analysis 55

5 IDG on CPUs 57
5.1 Introduction . 58
5.2 Architecture . 58
5.3 Implementation . 59

5.3.1 Gridder kernel . 59
5.3.2 Degridder kernel . 59
5.3.3 FFTs . 61
5.3.4 Adder and splitter kernel . 63
5.3.5 Sine/cosine computations . 64
5.3.6 Intel Xeon Phi . 65

5.4 Results . 66
5.4.1 Experimental setup . 66
5.4.2 Performance . 67
5.4.3 Throughput and energy efficiency 69
5.4.4 Scalability . 69

5.5 Conclusion . 70

6 IDG on GPUs 73
6.1 Introduction . 74
6.2 Background . 74
6.3 Implementation . 76

6.3.1 Gridder kernel . 76
6.3.2 Degridder kernel . 77
6.3.3 Sine/cosine . 80

Table of contents v

6.3.4 Subgrid FFTs . 80
6.3.5 Adder and splitter . 82
6.3.6 Asynchronous I/O and kernel execution 82
6.3.7 Scaling to large images . 84

6.4 Results . 85
6.4.1 Experimental setup . 85
6.4.2 Performance . 86
6.4.3 Throughput and energy efficiency 87
6.4.4 Creating large images . 88
6.4.5 Imaging a different number of channels 89

6.5 Conclusion . 93

7 IDG on FPGAs 95
7.1 Introduction . 96
7.2 Background . 96
7.3 Implementation . 98

7.3.1 Sine/cosine computations . 99
7.3.2 Frequency optimization . 99
7.3.3 Resource optimization . 100

7.4 Results . 100
7.4.1 Experimental setup . 100
7.4.2 Resource usage . 101
7.4.3 Throughput and energy efficiency 103
7.4.4 Performance analysis . 104

7.5 Lessons learned . 105
7.6 Related work . 107
7.7 Conclusion . 107

8 CPUs versus GPUs versus FPGAs 109
8.1 Introduction . 110
8.2 Performance bounds . 110
8.3 Throughput and energy efficiency . 111
8.4 Conclusion . 113
8.5 Outlook . 113

vi Table of contents

III Image-Domain Gridding in Context 115

9 IDG versus AWPG 117
9.1 Introduction . 118
9.2 Background . 118
9.3 AW-projection gridding implementation 118
9.4 Performance comparison . 119
9.5 Energy efficiency comparison . 123
9.6 Conclusion . 123

10 IDG for the Square-Kilometre Array 125
10.1 Introduction . 126
10.2 Required data rates . 126
10.3 Science Data Processor (SDP) . 126
10.4 IDG for SKA . 127
10.5 Conclusion . 128

11 IDG use cases 129
11.1 Introduction . 130
11.2 IDG in WSClean . 130
11.3 IDG for EoR . 132
11.4 IDG for direction-dependent calibration 132
11.5 Conclusion . 132

IV Closing Words 133

12 Conclusions and Outlook 135
12.1 Thesis contributions . 136
12.2 Conclusion . 136
12.3 Outlook . 137

Acknowledgements 140

List of publications 143

References 145

Summary

Imaging is generally considered the most compute-intensive and therefore most
challenging part of the data processing pipeline of a radio telescope. To reach the
high dynamic ranges imposed by the high sensitivity and large field of view of the new
generation of radio telescopes, we need to be able to correct for direction-independent
effects (DIEs) such as the curvature of the earth as well as for direction-dependent
time-varying effects (DDEs) such as those caused by the ionosphere during imaging.
Existing imaging algorithms such as W-projection correct for DIEs, and AW-projection
additionally corrects for DDEs, but these algorithms have their limitations which
make them computationally infeasible for future radio telescopes.

The novel Image-Domain gridding (IDG) algorithm was designed to avoid the
performance bottlenecks of traditional AW-projection gridding by applying instru-
mental and environmental corrections in the image domain instead of in the Fourier
domain [1]. We implement, optimize, and analyze the performance and energy effi-
ciency of IDG on a variety of hardware platforms to find which platform is the best
for IDG. We analyze traditional CPUs, as well as several accelerator architectures.

Over the last decade, graphics processors (GPUs) have emerged as a popular
computing platform, as they offer substantially more compute power over traditional
processors (CPUs) at higher energy efficiency. While GPUs are generally more difficult
to program than CPUs, easy-to-use development environments such as CUDA [2]
and OpenCL [3] make GPUs attractive accelerators.

Due to recent technology developments for configurable processors (FPGAs) these
devices have now also entered the domain where GPUs are used. FPGAs now
support the high-level OpenCL programming language, have support for floating-
point operations in hardware, and tight integration with CPU cores allow them to be
used as accelerators. Combined, these are game changers: they dramatically reduce
development times and allow using FPGAs for applications that were previously
deemed too complex.

viii Table of contents

Thorough performance analysis, in which we apply roofline analysis [4], shows that
our parallelization approaches and optimizations lead to close-to-optimal performance
on all these platforms. The analysis also indicates that, by leveraging dedicated
hardware to evaluate trigonometric functions, GPUs are both much faster and more
energy-efficient than CPUs.

Our FPGA implementation of IDG makes efficient use of DSP resources to
implement arithmetic (floating-point) operations. Almost all DSP resources are used
almost all cycles to perform useful operations at runtime. The achieved performance
is bound by clock speed, something we cannot improve with the current development
tools. FPGAs do not outperform GPUs for IDG, but still, provide significant
acceleration over using traditional CPUs.

We also show that on GPUs, IDG is an order of magnitude faster and more energy-
efficient than AW-projection. IDG alleviates the limitations of traditional imaging
algorithms while it enables the advantages of GPU acceleration: better performance
at lower power consumption. The hardware-software co-design presented in this
thesis has resulted in a highly efficient imager. This makes IDG on GPUs an ideal
candidate for meeting the computational and energy efficiency constraints of the
Square Kilometre Array (SKA) [5].

IDG has been integrated with a widely-used astronomical imager (WSClean) and
is now being used in production by a variety of different radio observatories such as
LOFAR [6] and the MWA [7]. It is not only faster and more energy-efficient than its
competitors, but it also produces better quality images.

Pa
rt I

Introduction and Background

C
ha

pt
er 1

General Introduction

This chapter starts with an introduction of the field of radio astronomy and describes
the main challenges in radio-astronomical imaging. This leads to a number of research
questions, which we describe in Section 1.1. Section 1.2 provides an outline of the
remainder of the thesis.

1

4 General Introduction

Radio astronomy is the field of astronomy where radio telescopes are used to
study the universe at radio-frequency wavelengths. To this end, electromagnetic
waves emitted by radio sources, up to billions of light-years away, are detected by
the telescopes and processed into a map of the sky. Unlike optical telescopes, radio
telescopes are not affected by the weather conditions on earth, as the low-frequency
signals are not blocked by clouds, see also Figure 1.1.

In optical telescopes, the resolution is determined by the diameter of the primary
mirror or lens in the instrument. This is also known as the ‘aperture’ of the telescope.
Similarly, for a typical single-dish radio telescope the resolution is determined by
the collecting area of the dish. Large telescopes are needed to create high-resolution
images of the sky. The largest telescope currently in existence is FAST [8], which
consists of a single dish of 500 meters in diameter. Since the resolution of a telescope
scales inversely proportional with wavelength, the aperture of a radio telescope needs
to be much larger than the aperture of an optical telescope to obtain the same
resolution.

By using a technique called ‘aperture synthesis’, the signals received by an
array of telescopes (receivers) can be combined to simulate a telescope with a larger
collecting area than that of a single dish. This creates an ‘astronomical interferometer’
that is equivalent in resolution to a single telescope with a diameter equal to the
maximum spacing between the receiver elements in the array. Every pair of receivers
(every baseline) contributes to the aperture of this simulated telescope, but the
aperture is sparse. Therefore observations typically span multiple hours so that
due to earth-rotation, the orientation of baselines with respect to the observed
sky changes (earth-rotation synthesis). This way the aperture gets filled, which
increases sensitivity. This process of aperture synthesis and earth-rotation synthesis
is illustrated in Section 2.1.

The measurements (visibilities) of multiple baselines are the input for a radio-
astronomical imager that produces a ‘sky image’, which is a map of sources in the
sky. The relation between visibilities and the sky brightness that we would like to
obtain is given by a measurement equation, which in its simplest form is essentially a
Fourier transformation. To efficiently perform this operation using a Fast Fourier
Transformation (FFT), the non-uniform visibilities first need to be placed on a regular
grid. This operation is called gridding and is typically one of the most time-consuming
subparts of imaging.

The LOw-Frequency ARray (LOFAR) [6] radio telescope is currently the most
sensitive low-frequency radio telescope and comprises tens of stations (each consisting

1

5

of many receivers) centered around The Netherlands with remote stations all over
Western Europe, with a maximum baseline length of about 2000 km. The future
Square-Kilometre Array (SKA) will have even more receivers and will be built as two
arrays, one in South Africa (SKA1-Low) and one in Western Australia (SKA1-Mid).

While the design and construction of such instruments are challenging themselves,
another challenge awaits when the instrument is put into use. A radio telescope
such as the SKA produces enormous amounts of data (at a rate multiple times the
global internet traffic) and it is impossible to store all this data. The measurements
produced by the instrument, therefore, need to be processed in (near) real-time
to create data products for use by astronomers around the world. This requires
processing techniques optimized for both high performance and high energy efficiency.

Even for existing telescopes such as LOFAR, with in the order of 50,000 antennas
grouped into about 50 stations, data processing remains challenging – in particular,
when direction-dependent effects (DDEs) have to be taken into account [9]. Correcting
for the DDEs improves the ‘dynamic range’ of the image, which is the ratio between
the power of the brightest and dimmest source in the sky image. For instance, to
construct the deepest extragalactic LOFAR surveys, a dynamic range of up to ≈ 1:105

to 1:106 is needed. The next generation of highly sensitive radio interferometers are
capable of providing an even higher dynamic range (≈ 1:106 to 1:108), but only when
the DDEs are corrected for [10].

Fig. 1.1: Radio astronomy, like optical astronomy, studies the celestial objects
(planets, stars, galaxies etc.) by “capturing” the light that they emit, but that, unlike
optical astronomy, cannot be seen with our eyes. With their instruments (radio
telescopes) radio astronomers detect radio emission from these objects.

1

6 General Introduction

1.1 Research questions
Motivated by the challenges outlined above, the main research question of this thesis
is:

RQ: What is the best, fastest, and most energy-efficient imaging algorithm
for future radio telescopes?

To answer this question, we first provide the necessary background on radio-astronomical
imaging in Chapter 2, where we discuss the challenges for imaging in future radio tele-
scopes, and we introduce state-of-the-art computing hardware (accelerators). In this
thesis, we will analyze the performance and energy efficiency for radio-astronomical
imaging on various accelerators. This analysis requires a way to measure power
consumption. This leads to the first research question, which we will answer in
Chapter 3:

RQ1: How do we compare the energy consumption of CPUs and acceler-
ators?

Next, we focus on the Image-Domain Gridding (IDG) algorithm. This algorithm is
designed to solve the limitations of state-of-the-art imaging algorithms. An efficient
implementation of this algorithm might be a good candidate for current and future
radio telescopes. Therefore, in Chapter 4, we first explain how we implement this
algorithm using various processing steps, and an execution plan. An implementation
of IDG comprises of a set of compute kernels (one for each processing step) and a
mechanism to execute these processing steps according to the execution plan.

We need to find out which processing steps are most suitable for acceleration and
implement corresponding compute kernels on various hardware architectures:

RQ2: How do we efficiently implement Image-Domain Gridding on
accelerators?

For each architecture, we discuss the optimizations that we applied, and we analyze
the performance and energy efficiency:

RQ3: What is the most efficient class of hardware architectures for IDG?

We address CPUs in Chapter 5, to answer the following sub research question:

RQ3a: How efficient is IDG on CPUs?

1

1.1 Research questions 7

In Chapter 6, we look at Graphics Processing Units (GPUs) to answer:

RQ3b: How efficient is IDG on GPUs?

Finally, in Chapter 7, we study Field Programmable Gate Arrays (FPGAs):

RQ3c: How efficient is IDG on FPGAs?

Chapter 8 provides a condensed overview of the results from Chapter 5 through 7
and answers the following research question: We compare our implementation of IDG
on CPUs and GPUs to W-Projection and AW-Projection in Chapter 9 to answer the
following research question:

RQ4: How does IDG compare to traditional imaging techniques in terms
of performance and energy efficiency?

In Chapter 10 we use the best imaging solution (established in RQ3) and analyze its
performance and energy efficiency in the context of the Square Kilometre Array to
answer the final research question:

RQ5: Does IDG meet the performance and energy efficiency requirements
for the Square Kilometre Array?

To this end, we first establish the rate at which the SKA will produce measurements
that have to be processed in (near) real-time and the processing resources and power
budget available for imaging. Next, we extrapolate our results to see whether IDG
meets these requirements.

1

8 General Introduction

1.2 Thesis outline
In this thesis, we propose to use an imager based on the novel Image-Domain
Gridding (IDG) algorithm as a candidate solution for future radio telescopes such as
the Square-Kilometre Array (SKA). The various chapters have been grouped into
four parts:

1. Introduction and Background (Chapters 1 to 4)

2. Image-Domain Gridding Implementation and Analysis (Chapters 5 to 8)

3. Image-Domain Gridding in Context (Chapters 9 to 11)

4. Conclusion and Outlook (Chapter 12)

We will now provide an overview of the contents of this thesis.

Chapter 2: Background

In this chapter we provide the necessary background on radio-astronomical imaging:
we give a brief overview of various gridding algorithms, we discuss the challenges that
the upcoming Square Kilometre Array poses and we sketch the history of computer
chips, which ultimately led to the accelerators that we will evaluate in this thesis.
We end this chapter with an explanation of roofline analysis [4]. We use this model
throughout the thesis to help understand the achieved performance, and to identify
bottlenecks.

Chapter 3: Energy Efficiency Analysis

To assess the energy efficiency of various devices, we need tools to measure energy
consumption. Several (software) tools exist to measure energy consumption using
built-in power meters, but these vary in accuracy and time resolution. Therefore
we created PowerSensor, an easy-to-use tool that performs energy consumption
measurements at millisecond resolution. This chapter is based on:

PowerSensor 2: A Fast Power Measurement Tool
Romein, J. W., Veenboer, B.
In Proceedings of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 111-113, IEEE, 2018

1

1.2 Thesis outline 9

John W. Romein came up with the idea to build a custom tool, which is based on an
Arduino microcontroller, Hall-effect current sensors, and a software library, while the
author of this thesis helped with the realization and with the writing of the paper.

Chapter 4: Image-Domain Gridding

Radio-astronomical imaging comprises a few steps, of which gridding is typically
the most compute-intensive. During gridding, input samples (visibilities) are placed
onto a regular grid by applying an operation that resembles a convolution to every
sample. Depending on the imaging use case, this convolution kernel could be large, be
different for different subsets of visibilities, and may need to be computed frequently
to take direction-dependent effects (DDEs) into account.

S. van der Tol realized that there is an alternative: by moving the gridding
operation to the image domain, the convolution kernels are not needed. In this setting,
called ‘Image-Domain Gridding’ (IDG), gridding becomes the complex multiplication
of visibilities with a correction term. While the number of operations performed
per visibility for IDG is higher than that for traditional (Fourier-domain) gridding,
correcting for DDEs in the image domain is computationally cheap.

Image-Domain Gridding started as a rough proof-of-concept CUDA code. The
author derived a reference implementation to study its properties and next created
the first highly optimized imaging routines based on this algorithm for CPUs as well
as for GPUs. This work is published in:

Image-Domain Gridding on Graphics Processors
Veenboer, B., Petschow, M., Romein, J. W.
in Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), pages 545–554, IEEE, 2017

In that paper, the concept of an ‘execution plan’ is introduced to orchestrate the
execution of the IDG algorithm. This was an essential step in the process of getting
from a proof-of-concept gridding kernel to an imager capable of producing sky images
from real LOFAR data. Furthermore, this IDG implementation has become the
foundation for the IDG library that is used in production today. In this paper, we
also present a thorough performance analysis in which we apply a roofline analysis
to find performance bounds.

In the meantime, S. van der Tol completed a formal derivation of the IDG algorithm
and analyzed the accuracy compared to traditional gridding. The aforementioned
implementations of IDG for CPUs and GPUs were indispensable for the performance

1

10 General Introduction

experiments and imaging examples that were part of this study. This study, which is
not a part of this thesis, is published in:

Image Domain Gridding
van der Tol, S., Veenboer, B., Offringa, A. R.,
In Astronomy & Astrophysics (A&A), article A28, EDP Sciences, 2018

Chapter 5 and 6: IDG on CPUs and GPUs

In these two chapters we take a deep dive into our Image-Domain Gridding imple-
mentations for CPUs, and for GPUs, respectively. The contents of these chapters are
based on an extended subset of [11] and are published in [12]:

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

In this paper we introduce new features that make IDG a versatile imager for a
variety of real-world imaging use cases. We also optimized IDG for several additional
devices, including new generations of GPUs from AMD and NVIDIA, as well as the
Intel Xeon Phi manycore processor.

Chapter 7: IDG on FPGAs

Three major FPGA technology developments, hardware Floating-Point units, tight
integration with CPUs, and support for the OpenCL programming language, make
FPGAs an interesting platform for HPC applications. Combined, these are game
changers: they dramatically reduce development times and allow using FPGAs for
applications that were previously deemed too complex. We implemented IDG for
FPGA and compared programming models, optimizations, performance, and energy
efficiency in the following paper:

Radio-Astronomical Imaging: FPGAs vs GPUs
Veenboer, B., Romein, J. W.
In Proceedings of the International Conference on Parallel and Distributed
Computing (Euro-Par), pages 509-521, Springer, 2019 (best paper award)

Chapter 8: CPUs versus GPUs versus FPGAs

In this chapter we do not present any new research, but we provide an overview of
the performance bounds identified in Chapters 5 to 7. Next, we show normalized

1

1.2 Thesis outline 11

performance and energy efficiency results to compare the CPU, GPU, and FPGA
architectures in relative terms to find the most suitable architecture for IDG.

Chapter 9: IDG versus AWPG

After having analyzed the performance and energy efficiency of IDG in quite some
detail, we compare the performance and energy efficiency of IDG with the previous
state-of-the-art imaging technique AW-Projection in Chapter 9. To this end, we
explain how we implemented AW-Projection gridding (AWPG) as an extended version
of the highly optimized W-projection gridding (WPG) implementation presented
in [13], and we conduct various experiments to compare performance and energy
efficiency. The contents of this chapter are also part of [12].

Chapter 10: IDG for the Square-Kilometre Array

In Section 2.2 we explain the challenges that the Square Kilometre Array (SKA)
poses with respect to the pipeline that produces high-resolution images. After having
demonstrated how we tackle this challenge by using IDG on accelerators, we assess
whether our best candidate solution is sufficiently fast and energy-efficient to serve
as a SKA imager. The contents of this chapter is also published in [12].

Chapter 11: IDG use cases

The research outlined above has resulted in more than just some publications, it has
also led to a publicly available software package [14] which now finds widespread use
throughout the radio-astronomical community. A high-profile science case, research
into the Epoch-of-Reonization (EoR), benefits greatly from IDG, as shown in:

Precision requirements for interferometric gridding in the analysis of
a 21 cm power spectrum
Offringa, André R., Mertens F., van der Tol, S., Veenboer, B., Gehlot, B. K.,
Koopmans L. V. E., Mevius M.,
In Astronomy & Astrophysics (A&A), article A12, EDP Sciences, 2019

1

12 General Introduction

IDG can also be used for radio-astronomical calibration, as presented in:

Estimating continuous direction-dependent gain screens from radio
interferometric visibilities and a large skymodel
van der Tol, S., Veenboer B., Offringa, A. R., Rafferty, D.,Mevius M., Dijkema
T. J.,
In Astronomical Data Analysis Software and Systems (ADASS), 2019

We have summarized our experiences with Image-Domain Gridding in practice in the
following overview paper, which also formed the basis for Chapter 11:

Radio-Astronomical Imaging with WSClean and Image-Domain Grid-
ding
Veenboer, B., van der Tol, S., Offringa, A. R., Romein, J. W., Dijkema, T. J.,
In General Assembly and Scientific Symposium (GASS) of the International
Union of Radio Science (URSI GASS), 2020

The work on high-resolution imaging [12] and on the use of FPGAs for IDG [15] has
led to a collaboration where a near-memory accelerator architecture is used for the
acceleration of high-resolution imaging. Although it is not a part of this thesis, it is
published in:

Near Memory Acceleration on High Resolution Radio Astronomy
Imaging
Corda, S., Veenboer, B., Awan, A. J., Kumar, A., Jordans, R., Corporaal, H.,
In Mediterranean Conference on Embedded Computing (MECO), IEEE, 2020

This line of research is ongoing with an investigation on the use of (dynamic) reduced-
precision computing (using FPGA hardware) for radio-astronomical imaging.

Part IV: Closing Words

In the last part of this thesis we answer the main research question and we provide
an outlook for future work.

C
ha

pt
er 2

Background

In this chapter we first explain in Section 2.1 the basic concepts of radio-astronomical
imaging. Section 2.2 introduces the challenges for data processing in the Square
Kilometre Array. In Section 2.3 we explain why we need accelerators to solve this
challenge, Section 2.5 discusses related work, and in Section 2.6 we introduce various
performance and efficiency metrics used throughout this thesis.

22

14 Background

2.1 Radio-astronomical imaging
A radio telescope detects electromagnetic waves that originate from radio sources in
the universe. The signals are used, among other things, to construct a map of the sky
containing the positions, intensity, and polarization of the sources. Radio telescopes
such as LOFAR (see Fig 2.8) and SKA1-Low (see Fig 2.9) are comprised of arrays
of (small) antennas, while other radio telescopes (such as the VLA, MeerKAT, and
SKA1-Mid) are based on an array of dishes. A notable exception is the single-dish
Five-hundred-meter Aperture Spherical radio Telescope (FAST). Antenna arrays
are used for frequencies around 100 MHz, while dishes are used for frequencies of 1
GHz or higher. In the remainder of this thesis, we only consider array-based radio
telescopes.

By using ‘aperture synthesis’, the signals received by the individual elements of
the array are combined to create a sky image. The first step in this process is to
correlate the signals of every pair of receivers (baselines) in the observation. The
resulting visibilities for all baselines are combined in an imaging step that produces
the sky image. A single visibility shows up in the image as a waveform, this is
illustrated in Fig. 2.1. This example uses simulated data with one source in the
center of the image. This source only becomes visible when multiple visibilities (from
multiple baselines) are added to the image, see Fig. 2.2 and Fig. 2.3. By adding
longer baselines (i.e. by imaging visibilities originating from stations spaced further
apart), the resolution of the image increases as illustrated in Fig. 2.4. Finally, by
observing over an extended period of time, coverage of the visibilities in uv-space
improves, resulting in a better image (see Fig. 2.5). These images are courtesy of
NRAO [16].

As shown in Fig. 2.6, the creation of a sky image requires roughly three steps:
(1) the digitized signals from pairs of distinct receivers are correlated to produce
the visibilities, (2) calibration is used to estimate and correct errors in the data,
and (3) an imaging step converts visibilities into a sky image. Each visibility has
an associated (u, v, w)-coordinate that depends on the location of the receivers with
respect to the observed sky. Due to earth rotation, the (u, v, w)-coordinates of
consecutive visibilities differ slightly. Therefore, every pair of receivers (called a
baseline) contributes a track of measurements in the (u, v, w)-space, as detailed later
in Fig. 2.10.

22

2.1 Radio-astronomical imaging 15

Fig. 2.1: The top left plot shows the position of two receivers (A00 and A01). These
receivers form a baseline (and its mirror baseline) with corresponding ‘uv-coordinates’
– the bottom left plot. After imaging, a measurement (a ‘visibility’) of this baseline
shows up as a waveform in the corresponding image shown – the plot on the right.

Fig. 2.2: Every baseline (pair of two receivers) adds a waveform to the image.

22

16 Background

Fig. 2.3: Using 16 receivers, the source in the center of the image becomes visible.

Fig. 2.4: With longer baselines (larger receiver spacings), the resolution of the image
increases.

22

2.1 Radio-astronomical imaging 17

Fig. 2.5: For an observation over an extended period of time, the orientation of
the baselines with respect to the sky changes. This leads to the tracks in uv-space as
shown in the bottom left image and is known as ‘earth-rotation synthesis’. Having a
better coverage of the uv-space (more dense sampling), typically results in a better
image.

gridding iFFT

degridding FFT

imagevisibilitiesincom
ing

radio
signal

baseline (pair of receivers)

receiver

× C I

correlation (1) calibration (2) imaging (3)

visibilities visibilities image

Fig. 2.6: Incoming radio signals are received by a pair of receivers. The correlator
combines the signals into measurements that we call visibilities. The visibilities
contain information on the amplitude and phase of the radio source. After calibration
of the visibilities, an imaging step is used to create an image of the sky.

22

18 Background

Fig. 2.7: This image of the ‘Toothbrush’ cluster of radio sources is created using
ten hours of observational LOFAR data with High-Band Antenna (HBA) receivers at
120-181 Mhz [9].

An example of a sky-image is shown in Fig. 2.7. Advanced calibration and
processing techniques are needed to create deep images. These are images with high
signal-to-noise such that faint radio sources are visible [9].

The (dipole) receivers in a typical radio telescope measure the interference pattern
of a radio signal for two orthogonal polarizations X and Y . Multiplying and inte-
grating (correlating) the signals of a receiver pair (q, r) for a short period of time (in
the order of seconds) produces a single measurement. We will use the term visibility
to denote all four combinations XX, XY , Y X and Y Y of a receiver pair, hence
V (q,r) ∈ C2×2. All relevant parameters for imaging are summarized in Table 2.1.

The relation between visibilities and sky brightness, B(l, m) ∈ R2×2, is given by
the following measurement equation [18]:

V pq =
∫
ℓ

∫
m

Ap(ℓ, m)B(ℓ, m)AH
q (ℓ, m) 1

n
e−2πi(upqℓ+vpqm+wpq(n−1)) dℓ dm, (2.1)

where ℓ, m ∈ R are the direction cosines of sky coordinates, n =
√

1 − ℓ2 − m2, and
Ap(ℓ, m), Aq(ℓ, m) ∈ C2×2 describe the aforementioned direction-dependent effects
(DDEs), see [19].

22

2.1 Radio-astronomical imaging 19

Fig. 2.8: Aerial photograph of the ‘Superterp’, the heart of the LOFAR core. The
large circular island encompasses the six core stations that make up the Superterp.
Two additional LOFAR stations (with a 300m diameter) are visible in the corners of
the image. Each of these core stations includes a field of 96 low-band antennas and
two sub-stations of 24 high-band antenna tiles each [6].

Fig. 2.9: Artist’s impression of the Square Kilometre Array (SKA), which will
consist of two instruments: SKA1-Low in Western Australia (the antennas) and
SKA1-Mid in Southern Africa (the dishes) [5].

22

20 Background

Name Symbol Additional information
observation time tobs ∈ R
receivers Robs ∈ N # elements in observation
baselines (q, r) Bobs ∈ N Bobs =

(
Robs

2
)

time 1 ≤ t ≤ Tobs Tobs time steps
channel 1 ≤ c ≤ Cobs Cobs (data) channels
visibility V ∈ C2×2 Tobs × Cobs per baseline
integration time tint ∈ R tint = tobs

Tobs−1

Table 2.1: Imaging parameters.

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

u [km]

v
[k
m
]

Fig. 2.10: (u, v, w)-coverage generated using proposed SKA1-Low receiver coordi-
nates [17]. Every baseline (pair of receivers) contributes one track in this plane.
The resulting (u, v)-plane is filled with both ‘short baselines’ and ‘long baselines’ and
therefore representative for a wide range of imaging use cases.

22

2.1 Radio-astronomical imaging 21

It follows from this equation that the sky brightness B(ℓ, m) can be reconstructed
from the measurement of visibilities from different baselines (∀p∀q V pq) with distinct
(u, v, w)-coordinates. A sky image is created by reconstructing the sky brightness for
a region of the sky in the observation direction.

In wide-field imaging, the w-coordinate of the visibility has to be taken into
account. Consequently, there exists a three-dimensional Fourier-transform relation
between the sampled data and the image [20]. A sky image can be constructed by
performing a non-uniform discrete Fourier transform from visibilities to image space.
This is a costly process, as the number of operations scales linearly with the number
of visibilities and quadratically with the number of pixels in the image.

By using W-projection, the three-dimensional samples can be projected onto a
uniform two-dimensional plane by gridding the visibilities [21]. In this operation
a convolution kernel is applied to each of the visibilities, see the top-right panel
of Fig. 4.1. In W-projection, gridding takes place in the frequency domain. After
gridding the visibilities, an inverse FFT is applied to the grid to obtain the image.

Astronomical observations are affected by variable gain effects that are broadly
classified as direction-independent effects (DIEs) and direction-dependent effects
(DDEs) [19]. These gain effects can be estimated by a process known as calibra-
tion. The gains due to direction-independent effects (such as beam patterns of
the antennas) can be corrected for directly after calibration. The time-dependent
direction-dependent gain effects (the A-terms, such as variations in the ionosphere)
can only be corrected for during imaging.

In W-projection, the convolution kernels depend solely on the w-coordinate associ-
ated with the visibility. For AW-projection, these kernels additionally depend on time,
frequency, and baseline [19]. In practice, the convolution kernels are precomputed on
an oversampled grid to accurately map the non-uniform visibilities onto a regular
grid. The convolution kernels in W-projection and AW-projection gridding form a
potentially large multi-dimensional data structure that scales quadratically in size
with both the number of pixels in one dimension of the convolution kernel and the
oversampling factor.

In the imaging step (see Fig. 2.6), imaging (gridding and inverse FFT) and
prediction of visibilities (FFT and degridding) are typically repeated a couple of
times to construct a sky image using a deconvolution algorithm such as the CLEAN
algorithm [22]. One such iteration of imaging, deconvolution, and prediction is called
a major cycle or an imaging cycle. The CLEAN algorithm forms the basis for most

22

22 Background

deconvolution algorithms in radio interferometry. It comprises many iterations (minor
cycles) in which peaks in the image are detected and added to a model image.

Many different deconvolution approaches have been developed, such as multi-scale
multi-frequency deconvolution [23], deconvolution based on compressive sensing/sam-
pling [24, 25], sparse recovery (MORESANE) [26], or Bayesian statistical inference
(RESOLVE) [27]. These algorithms all try to bring new deconvolution features to
allow for reconstruction of both bright and diffuse radio sources for highly sensitive
radio telescopes such as LOFAR, the Australian Square Kilometre Array Pathfinder
(ASKAP), and the Karoo Array Telescope (MeerKAT) [26].

With the advent of increasingly more advanced deconvolution algorithms, the
number of (faint) sources that can be reconstructed typically increases. Consequently,
more imaging cycles might be required to create the sky image.

Offringa et al. [28] compare the computational performance of various CLEAN
algorithms to their improved version of multi-scale CLEAN. They show that the
time spent in the minor cycles is improved, but that the required time per cycle
approximately scales with the number of pixels in the image. Since cleaning is
faster than inversion and prediction in most scenarios, it is less pressing to speed
up cleaning further compared to improving the performance of the inversion and
prediction tasks [28].

2.1.1 W-projection gridding

Currently, the most widely used gridding approach is known as W-projection [21].
This algorithm corrects for the W-term by means of a convolution in Fourier space,
but it does not correct for the DDEs (i.e., the A-terms). However, when antennas
are spaced far apart from each other, the support of the W-terms can become large,
making this technique inefficient and memory-intensive [29]. Figure 2.11 through 2.14
illustrate how the W-Projection gridding algorithm works. One approach to reduce
the support of the W-terms is to split the image into facets [20]. Furthermore,
W-projection gridding can be extended by W-stacking [30, 31] or W-snapshots [30]
to limit the support size of W-terms, at the cost of having to sort the visibilities.
W-stacking is illustrated in Fig. 2.15.

2.1.2 AW-projection gridding

The computational challenge increases further when the correction for DDEs is taken
into account [29]. The correction of these A-terms can be done similarly to the

22

2.1 Radio-astronomical imaging 23

Fig. 2.11: A schematic representation of visibilities (indicated with black dots) and
an u, v-plane (light gray rectangle).

Fig. 2.12: The visibilities are placed onto a regular grid by applying a convolution
kernel (dark gray circles) to each visibility.

Fig. 2.13: The result of the convolution (product of visibility and convolution kernel
term) is added to the grid. The updated pixels are indicated in red. The number
of pixels that are updated (the support of the convolution function) depends on the
imaging parameters.

22

24 Background

Fig. 2.14: The required size of the convolution kernel depends on the (u, v, w)-
coordinate associated with each visibility. In this example, a baseline draws a track with
rapidly changes w-coordinate (it gets bigger over time) and thus requires increasingly
larger convolution kernels.

W-term correction – called A-projection, see also Fig. 2.16. Applying both corrections
results in AW-projection gridding [19]. AW-projection is computationally expensive
because the AW-terms have to be recomputed frequently. This can be alleviated by
combining DDE correction with faceting such that a piece wise constant A-term is
applied to each facet [32]. This method has the disadvantage of taking DDEs into
account in a discontinuous manner in the image domain.

2.1.3 Image-domain gridding

A radio-astronomical imaging application needs to be able to correct for both W-terms
and A-terms to be able to attain the high-quality images required to make discoveries
in radio astronomy happen. The high cost of computing the convolution kernels in
W-projection and AW-projection was the main motivation for the development of
the Image-Domain Gridding algorithm (IDG) [1]. IDG effectively performs the same
operation as classical gridding and degridding with AW-projection, except that it is
designed to circumvent the computation of convolution kernels altogether.

The IDG algorithm corrects for both the W-terms and the A-terms in the image
domain rather than in the Fourier domain and addresses the limitations of traditional

22

2.1 Radio-astronomical imaging 25

Fig. 2.15: With W-stacking, visibilities are grouped based on their w-coordinate and
assigned to one of the potentially many w-layers. This example shows three different
w-layers. Gridding proceeds as with W-projection, albeit that visibilities are gridded
on the w-layer that they are assigned to. After gridding, the w-layers are combined
into a single grid.

Fig. 2.16: Direction-dependent effects need to be corrected for different for distinct
baselines, as each baseline ‘sees’ the sky in a (slightly) different way. This is illustrated
with two baselines, each with its convolution kernels (one in orange, and one in blue).
In this example the colors fade over time, illustrating that the convolution kernels
can also change over time, for instance, to compensate for changes in the ionosphere
during the observation.

22

26 Background

Fig. 2.17: In IDG, visibilities are mapped to subgrids (drawn in green), which are
low-resolution versions of the grid. Instead of applying a convolution to each of the
visibilities, every pixel in the subgrids is computed as a sum of visibilities multiplied
by a correction term. We explain the IDG algorithm in more detail in Chapter 4.

methods currently in use – in particular, the challenging DDEs. In this thesis,
we study the (energy) efficiency of accelerated imaging using IDG on a variety of
hardware platforms.

At the center of IDG are ‘subgrids’, onto which visibilities are gridded, rather
than gridding them onto the grid. This is illustrated in Fig. 2.17.

2.1.4 Imaging applications

Most state-of-the-art imagers make use of one or more of the various gridding
algorithms and their implementations: e.g., CASA [33] and LOFAR’s AWImager [10]
use a variant of W-projection and AW-projection, while WSClean [31] uses W-stacking
only. We integrated IDG into WSClean such that all its features (data handling,
deconvolution, etc.) are maintained, while the existing inversion (gridding) and
predict (degridding) functionality are replaced by IDG.

Another imaging method combines DDE correction with faceting by applying a
piecewise constant A-term to each facet [32]. This method has the disadvantage of
taking DDEs into account in a discontinuous manner in the image domain. IDG does
not have this limitation as it effectively applies the DDEs in an interpolated manner.

2.2 The SKA challenge
The SKA will require a large amount of computational power at high energy effi-
ciency [34]. To meet these requirements, we need better energy efficiency and compute
capabilities than current technology provides: as discussed in [35], simply waiting for

22

2.3 Accelerators 27

the next generation of hardware alone will not be sufficient. A co-design between
computing hardware and algorithms is needed to meet these demands.

The SKA community uses a parametric model [36] to analyze processing require-
ments for the Science Data Processor (SDP) compute platform. This model is available
online at [36]. We use the numbers from the “2019-06-20-2998d59_hpsos.csv” analysis
of imaging HPSOs to establish an estimated imaging visibility rate of around 1264
MVis/s. If we consider an average of 10 imaging cycles (see [37] for why this is needed)
and take into account that SKA1 Low might only be doing imaging observations half
the time [38], the required processing rate becomes 6.3 GVisibilities/s.

We roughly distinguish two imaging use cases: continuum imaging and spectral
line imaging, which differ mainly in the way that visibilities corresponding to different
frequency channels are combined into a single or multiple sky-images. Furthermore,
depending on the science case, sky images could either have a large field of view, a
high spatial resolution, or both [39]. The latter case requires up to 100,000 × 100,000
pixel images.

Thus in order to meet SKA imaging requirements, a candidate imaging solution
should (1) be able to process visibilities at a sufficiently high rate; (2) reach this data
rate for continuum imaging as well as for spectral-line imaging; (3) be able to create
very large sky-images; (4) remain within the power limits imposed for a computing
platform for the SKA.

2.3 Accelerators
Gordon Moore observed that the number of components per chip roughly doubled
every two years [40]. Moore divided the advances into three technical drivers: smaller
transistors (20% per year), an increase in the number of transistors per area (25%
per year) and, improved device and circuit designs (33% per year). The growth in
chip area by about 20% (per year) through the 1970s slowed to about 10% (per year)
in the 1990s and has now leveled off. Due to voltage scaling, transistors have become
faster over the years (due to higher clock frequencies) while they consume less power.
However, this form of scaling has also slowed over the years, transistors can be either
fast or consume a low amount of power, but not both [41].

Thus while chips are not getting much bigger and transistors are not getting
that much faster (without excessive power consumption), the remaining factor to
increase performance is an improved design. Over time, the performance of CPUs
has improved by increasing clock frequency, increasing the number of CPU cores,

22

28 Background

and by architectural improvements such as support for vector units. The maximum
clock frequency has hit a plateau at about 4 GHz. Higher clock frequencies (up to to
about 5 GHz) are only attained when one or a few CPU cores are utilized and can
be maintained only for a short period of time due to thermal or power constraints.
Modern CPUs are highly complex chips and highly optimized multi-threaded and
vectorized software is needed to fully utilize all compute capabilities.

In Fig. 2.18 we show the energy efficiency of major computer chip architectures
of the last decade in terms of single-precision GFlop/W. Intel CPUs (shown in blue)
has become increasingly more energy-efficient over the years, but energy efficiency
does not scale according to Moore’s Law. Intel has attempted to increase the energy
efficiency of their CPUs by introducing the Xeon Phi series of many-core processors
(shown in orange). The first commercially available processor in this series was
Knights Corner, which is a PCIe accelerator card that runs its own operating system
and is programmed much like a regular CPU.

In the meantime, manufacturers of graphics processing units (GPUs) started to
support high-level programming languages to use GPUs for tasks other than gaming.
The first GPU manufactured by NVIDIA to support the Compute Unified Device
Architecture (CUDA) programming language was based on the Tesla architecture.
As shown in Fig. 2.18 in green, this was the start of a series of computer chips
with superior energy efficiency compared to CPUs. In 2016, Intel released the next
Xeon Phi accelerator, Knights Landing. Like its predecessor, this chip has more
cores than typical CPUs, but these cores operate on a lower clock frequency. While
Knights Landing is significantly more energy-efficient compared to regular CPUs, it
cannot keep up with the superior energy efficiency of contemporary GPUs and Intel
announced in 2017 that its upcoming successor (Knights Hill) would be canceled.

In the same year, Intel acquired Altera. Altera is a well-established manufacturer
of Field-Programmable Gate Arrays (FGPAs). The recent Arria and Stratix FPGAs
perform floating-point operations natively in hardware (rather than through the use
of logic) and they can be programmed by using the high-level OpenCL programming
language. As Fig. 2.18 illustrates, the FPGAs (in brown) approach the energy
efficiency of contemporary GPUs and therefore are an interesting accelerator platform.

Looking at the energy efficiency trends from Fig. 2.18 (the dashed lines), we do
not expect that upcoming CPUs will surpass the energy efficiency of GPUs or FPGAs.
GPUs and FPGAs have emerged as very interesting accelerators, and we expect that
we will need to continue to investigate how such accelerators can be used to achieve
both high performance and high energy efficiency.

22

2.4 Performance analysis 29

2008 2010 2012 2014 2016 2018 2020

0

10

20

30

40

50

60 Turing
Volta

Pascal

Maxwell

Kepler

TeslaTesla

Stratix 10

Arria 10

KNC

Dunnington
Westmere

Sandy Bridge
Ivy Bridge

Haswell
Broadwell

Skylake
Coffee Lake

KNL

Cascade Lake

Year

E
ffi

ci
en

cy
[G

F
lo

p
/W

]
CPU
GPU
MCP

FPGA

Fig. 2.18: Energy efficiency for various CPUs, GPUs, manycore processors (MCP),
and FPGAs manufactured in the past decade. The energy efficiency is computed by
taking the peak single-precision floating-point performance as advertised by the vendor,
divided by thermal design power (TDP). For FPGAs we compute the peak floating-
point performance by multiplying the number of DSPs (which support floating-point
operations) by the peak operating frequency.

2.4 Performance analysis
Runtime is a very common performance metric and is typically used to compare
distinct candidate solutions in absolute terms. For radio-astronomical imaging, we
are especially interested in how much data can be processed in a given time to assess
whether (pseudo) real-time constraints can be met, rather than how long it took to
process a dataset of a given size. We, therefore, use throughput measured in the
number of visibilities per second as a primary performance metric.

While higher throughput is better, we also consider the theoretical peak perfor-
mance of the devices in comparison. One would expect that two devices with similar
peak performance should theoretically also achieve similar throughput. In practice,
however, this is not always the case as we will show in this thesis. Therefore, we use
the roofline model [4] to assess the achieved performance and identify bottlenecks and
optimization opportunities. This model provides insights on the achieved performance
of an application with respect to the architectural bounds of a given device, such as
memory bandwidth and floating-point performance.

22

30 Background

The roofline model relates the following quantities: the peak floating-point perfor-
mance of the device (perfpeak), the peak memory bandwidth of the device (bwpeak),
and the operational intensity (I) of the application. The operational intensity is
defined as the number of floating-point operations performed per byte loaded or
stored from or to memory.

The roofline model uses these quantities to define an upper bound (a roof) on
performance:

roof = min (perfpeak, I × bw)

which gives the theoretical maximum floating-point performance for a given opera-
tional intensity, with:

perfpeak = nfpu × nopc × clock

where clock is the clock speed, nfpu is the number of floating-point units (FPUs) on
the device, and nopc the number of floating-point operations a FPU can issue every
cycle.

Applications are plotted as points on a roofline plot, with the x-value corre-
sponding to the operational intensity and the y-value corresponding to the measured
performance. Below the slanted part of the graph (where roof = I × bw) the appli-
cation is memory-bandwidth bound, whereas below the horizontal part of the graph
(where, roof = perfpeak) the application is compute bound.

We show an example roofline plot for an NVIDIA Titan X Pascal GPU in Fig. 2.19.
The gray dots correspond to synthetic benchmark kernels where threads issue memory
load instructions and floating-point arithmetic in a predefined mix to achieve a certain
operational intensity. As expected, the measured performance for these kernels is
very close to the theoretical limit that is indicated with the green roofline.

The green dots are examples to illustrate kernels that fall either in the memory-
bound region of the plot or in the compute-bound region of the plot. In both cases
(additional) optimization might help to improve performance. However, without
increasing operational intensity, the exampleA kernel will remain bound by the
bandwidth of the memory.

2.5 Related work
Reed et al [42] describe that ever-more-powerful scientific instruments continually
advance knowledge. This led to the 2013 discovery of the Higgs boson, powerful
astronomy instruments such as the Hubble Space Telescope, and high-throughput

22

2.5 Related work 31

1 2 4 8 16 32 64 128 256 512 1024

0.1

1

10
Device

memory bound

compute bound
exampleB

exampleA

Operational intensity [Op/Byte]

P
er
fo
rm

an
ce

[T
F
lo
p
/s
]

benchmark example

Fig. 2.19: Example roofline graph.

DNA sequencing. Each such scientific instrument is critically dependent on computing
for sensor control, data processing, international collaboration, or access. Successive
generations of large-scale scientific instruments bring new capabilities, along with
technical design challenges of advanced computing systems. Broadly speaking, the
capability to generate data tends to grow more rapidly than the compute capabilities.
Scientific research thus increasingly depends on both high-speed computing and data
analytics.

Technology is changing rapidly. In the 1980s, supercomputing was dominated by
Cray supercomputers. A decade later, massively parallel processors (MPP) and shared
memory multiprocessors (SMP) were on the rise. In turn, clusters of commodity x86
hardware (built by Intel and AMD), as well as custom built processors (such as IBMs
BlueGene) dominated the field of supercomputing [42]. Nowadays, these clusters are
augmented with accelerators in the form of coprocessors, graphics processing units,
and field-programmable gate-arrays (FPGAs).

Scientific research increasingly depends on high-speed computing and data an-
alytics and interoperability and scaling of both are crucial to the future [42]. This
directly links to the work presented in this thesis, as we investigate how we can use a
novel imaging approach combined with the latest high-speed computing technologies
to improve the output of the radio-astronomical instruments.

While computers are getting faster, their energy consumption also tends to
increase. A study shows that computation per kilowatt-hour doubled every 1.57
years [43]. While this trend is encouraging, we still need to optimize for energy

22

32 Background

efficiency to meet stringent energy efficiency goals. DARPA, for instance, targeted to
build a 20 MW exaflop system which required a 56.8× performance improvement
over the predecessor, while the power budget was only increased 2.4× [43].

The Green 500 list provides a ranking of the most energy-efficient supercomputer
in the world [44]. This list shows that the energy efficiency of supercomputers tends
to increase over the years and that the energy efficiency of accelerator-based, and
custom-built systems dominate CPU-based systems [43]. With this in mind, we will
be studying the energy efficiency of radio-astronomical imaging on accelerators and
compare it to CPU-based reference systems.

Implementing a high-performance scientific application for emerging complex
parallel computing systems is no trivial task. There is a large body of work on
related topics, such as porting existing applications to these systems, directive-
based programming, and performance portability [45]. In this thesis, we are mainly
interested in achieving high performance at high energy efficiency, but we will also
discuss the programming models that we use and compare the programmability of
various (accelerator) architectures.

In the early days of accelerator computing, the theoretical performance available
increased with newer generations of accelerators faster than the achieved perfor-
mance [46]. This is called Realizable Utilization (RU). Today, accelerator pro-
gramming has matured significantly, for instance through the advancements in
programming eco-systems such as Compute Unified Device Architecture (CUDA)
[2] which offers high-performance libraries for common operations (e.g. for Fourier
transformations) and profiling tools. To meet the exascale requirements as outlined
above, we try to maximize the RU for every accelerator that we study and present a
thorough performance analysis to identify any bottlenecks.

2.6 Metrics
Throughout this thesis we use a number of different metrics to describe our results,
these are defined in Table 2.2. Most of the performance and energy efficiency metrics
are commonly used in the field of Computer Science.

Arguably the most common performance metric is Flop/s, which is also typically
used to express the theoretical performance a computer chip. We count the number
of floating-point operations in the different compute kernels and divide this number
by the measured runtime of the kernel. We verify that the floating-point operation

2.6 Metrics 33

counts are correct by comparing them with the actual number of operations performed
as reported by performance counters built into the chips.

As we describe in Chapter 5 through 7, the flop count of operations such as sine(x)
is implementation-dependent. Counting all operations equally, e.g. +, −, ∗, sin() or
cos() are all counted as a single operation, serves as a workaround but is not ideal
when comparing devices that implement sin() and cos() differently.

We need an implementation and hardware agnostic performance metric and
therefore introduce Vis/s: the number of input samples (visibilities in our case)
processed per second. This metric does not depend on implementation details of
individual operations and is easy to measure and to interpret.

For similar reasons as outlined above, Flop/W might be a common metric for
energy efficiency, it is not a very useful one when describing the efficiency of IDG.
Instead, we Vis/J to denote the number of visibilities that can be processed for every
Joule consumed. For both Vis/s and Vis/J, higher is better.

Finally, we occasionally refer to the quality of a computed data product, either in
terms of accuracy compared to a reference implementation or in terms of dynamic
range.

Table 2.2: Performance, efficiency, and quality metrics used in this thesis.

Name Unit Description
runtime s wall-clock time in seconds
performance Op/s number of operations performed per second
performance Flop/s number of floating-point operations per second
throughput Vis/s number of visibilities processed per second
energy consumption J number of Joules consumed
energy consumption W instantaneous energy consumption in Joule/s
energy efficiency Op/J number of operations performed per Joule
energy efficiency Flop/W number of floating-point operations per Watt
energy efficiency Vis/J number of visibilities processed per Joule
accuracy σ floating-point deviation wrt. a reference value
dynamic range no unit quality of the image (signal-to-noise ratio)

C
ha

pt
er 3

Energy Efficiency Analysis

The contents of this chapter are based on the following paper:

PowerSensor 2: A Fast Power Measurement Tool
Romein, J. W., Veenboer, B.
In Proceedings of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 111-113, IEEE, 2018

In this chapter we answer the following research question:

RQ1: How do we compare the energy consumption of CPUs and acceler-
ators?

333

36 Energy Efficiency Analysis

3.1 Introduction
To assess the energy efficiency of an architecture, we need a way to measure power
consumption. For CPU-based systems, we measure the power consumption of the CPU
(or CPUs for multi-socket machines) and the DRAM using LIKWID [47]. LIKWID
is a software tool that provides a convenient wrapper to read performance counters
built in the CPU and exposes these to the user. By taking measurements right
before and right after some region of code, we can measure the power consumption
of individual kernels. We do not take auxiliary power consumption (for instance for
storage or cooling) into account. Some GPUs manufactured by NVIDIA support the
NVIDIA Management Library (NVML), which can be used in a similar fashion as
LIKWID to measure power-consumption of the device. NVML however has a too low
time resolution to accurately measure individual kernels. Furthermore, we would like
to measure power consumption for (PCIe) devices that do not have support power
measurements. Therefore, we created PowerSensor [48] to measure the instantaneous
power consumption of PCIe cards and SoC development boards like GPUs, Xeon
Phis, FPGAs, DSPs, and network cards, at sub-millisecond time scale. The remainder
of this chapter is organized as follows: in Section 3.2 we introduce PowerSensor, we
describe the different operations modes that PowerSensor supports, and we show
a few examples of insights obtained with PowerSensor. In Section 3.3 we discuss
related work and in Section 3.4 we conclude.

3.2 PowerSensor
PowerSensor is a low-cost, custom-built device that measures the instantaneous
power consumption of GPUs and other (peripheral) devices at high time resolution.
It consists of an Arduino Leonardo (or Arduino Pro Micro) microcontroller board,
current sensors (ACS712) a PCIe riser card (to measure the power drawn from the
motherboard), an optional LCD screen, and a USB cable that is connected to the
host. Fig. 3.1 shows a typical use case of a PowerSensor attached to a GPU. In this
scenario, we use three sensors that measure the power drawn through the PCIe slot
(12V and 3.3V) and the external PCIe cable. As the microcontroller has only one
ADC, it reads the sensors one after another and reports the measurements via USB
to the host.

A small host library assists an application to determine its energy efficiency. The
high time resolution (up to 8.62 kHz) provides much better insight into energy usage

333

3.2 PowerSensor 37

than low-resolution built-in power meters (if available at all), as PowerSensor enables
analysis of individual compute kernels, which typically run for milliseconds.

The tool has been used successfully to analyze several applications on PCIe
devices like GPUs, a Xeon Phi, a 40 GbE network card, and an FPGA, as well as SoC
development platforms like the Jetson TX1 and an EVMK2H DSP board [49, 50, 11].
The firmware, host library, support programs, and how-to-build-it-yourself manual
are available for download [51].

Arduino

Sensor 2: 90W

Total: 165W

U
S
B

t
o

P
C

ACS712

ACS712

ACS712

5V gnd in

PCIe device

PCIe riser card

→

12V
←

3.3V
←

→

12V to PCIe device→

12V from PSU
←

PEG

Fig. 3.1: A PowerSensor measures the instantaneous power use of a PCIe device.

3.2.1 Operation modes

With interval-based measurements, an application measures the power use of
a device during some time interval. At the start and at the end, the application
invokes a library function that returns an object that represents the instantaneous
power state. With these two objects, the application asks the library how much
energy or time was spent during the interval (in Joules, Watt, or seconds). An
application can then determine its own energy efficiency by dividing the number of
operations (obtained by profiling or analytically) by the measured energy use. The
library interface (listing 3.2) is easy to use (listing 3.3).

As GPU kernels are typically launched asynchronously by enqueuing them to
some stream, the PowerSensor state must be read by a callback function that is
invoked whenever the GPU kernel starts or stops executing. Both CUDA and OpenCL
support these callback functions.

In continuous measurements mode, PowerSensor writes a stream of con-
secutive measurements to file. The library starts a low-overhead thread that runs

333

38 Energy Efficiency Analysis

class PowerSensor {
public :

. . .
State read () ;

} ;

double Jou l e s (const State &f i r s t , const State &second) ;
double Watt(const State &f i r s t , const State &second) ;
double seconds (const State &f i r s t , const State &second) ;

Listing 3.2: PowerSensor host library interface.

int main ()
{

PowerSensor s enso r (" /dev/ttyACM0") ;
State s t a r t = senso r . read () ;
. . . // do work , e . g . on GPU
State stop = senso r . read () ;
cout << " I t used " << Jou l e s (s t a r t , stop) << ’ J ’ << endl ;

}

Listing 3.3: Example use of the host library.

asynchronously with the application and writes tuples of the current time and wattage
to file (in ASCII), 8,620 times per second. The library allows the application to put
markers in this file, e.g., to annotate an event such as the start of a particular kernel
execution. These markers can be cross-correlated with the power measurements.
The file can be easily used to create time-vs.-power graphs by any plotting tool that
allows ASCII input, as shown below.

Modifying the application source code to use the library is not obligatory; the
included psrun utility can monitor the power use of a device during the execution of
an unmodified application. This utility also supports the continuous measurements
mode.

3.2.2 Installation and usage

The installation of this tool requires some basic skills in electronics, but is not
excessively difficult. Once installed, its use is simple. The number and types of the
used current sensors, the voltages of the power lines, and calibration weights are
easily configurable using the psconfig utility.

333

3.2 PowerSensor 39

The Hall-effect current sensors must be calibrated for the local magnetic field,
by performing a null-level measurement with the connected device turned off. To
measure very low currents, an ACS712 sensor board with an integrated voltage
multiplier can be used. A PCIe riser card of sufficient quality is needed to maintain
the PCIe signal integrity; we use the Adexelec PEXP16-EX.

As we do not measure voltages, the power supply voltage must be stable, also
under varying load. The sensor and ADC error tolerances add up to 3.7%, but with
proper calibration, our measurements are typically within 1% of built-in GPU power
meters and lab equipment.

The time resolution is 116µs times the number of attached sensors, and is limited
by the ADC conversion time.

3.2.3 Examples

PowerSensor gives insight into an application’s power efficiency, as illustrated by
Figure 3.4. This radio-astronomical pipeline filters, corrects, and correlates the signals
from 960 receivers [50]. The figure shows the instantaneous power consumption of
three different devices. The correlation between energy use and executed kernels is
clearly visible. The shaded area below the curve corresponds to the total energy used
by a kernel. On the NVIDIA GTX 1080 GPU (Fig. 3.4a), some kernels draw much
more power than others.

The AMD R9 nano GPU (Fig. 3.4b) has a Thermal Design Power (TDP) of 175W.
However, the graph shows temporary power consumption as high as 275W. After
13ms, the device starts throttling, stepwise reducing power usage to as low as 85W to
compensate for the excess power usage, then jumping back to 220W. The long-term
average power consumption is indeed 175W. The performance of one kernel depends
strongly on the power usage of the other kernels: the correlate-triangles function
runs at a high clock frequency and thus a high power consumption because the first
three functions did not use their full power budget. A high-time-resolution tool like
PowerSensor is indispensable to analyze this behavior.

The graph for the Xeon Phi 7120X (Fig. 3.4c) shows repetitive power dips at a
100Hz rate. The Linux kernel periodically interrupts all cores, during which much
less energy is drawn than when the application performs heavy vector computations.
We discovered this behavior with PowerSensor; we did not notice it when profiling
the application with VTune Amplifier.

333

40 Energy Efficiency Analysis

0.01 0.05 0.1

50

100

150

200

250

300

F
IR

fi
lt

e
r

F
F

T

d
e
la

y
/
b

a
n

d
p

a
ss

c
o
rr

e
la

te
(s

q
u

a
re

s)

c
o
rr

e
la

te
(t

ri
a
n

g
le

s)

time (s)

P
ow

er
(W

)
NVIDIA GTX 1080

(a) NVIDIA GTX 1080

0.01 0.05 0.1 0.15

50

100

150

200

250

300

F
IR

fi
lt

e
r

F
F

T

d
e
la

y
/
b

a
n

d
p

a
ss

c
o
rr

e
la

te
(t

ri
a
n

g
le

s)

c
o
rr

e
la

te
(s

q
u

a
re

s)

time (s)

P
ow

er
(W

)

AMD R9 Nano

(b) AMD R9 Nano

0.01 0.05 0.10 0.15 0.19 0.46 0.5

50

100

150

200

250

300

F
IR

fi
lt

e
r

F
F

T

d
e
la

y
/
b

a
n

d
p

a
ss

c
o
rr

e
la

te
(t

ri
a
n

g
le

s)

c
o
rr

e
la

te
(s

q
u

a
re

s)

time (s)

P
ow

er
(W

)

Intel Xeon Phi 7120X

(c) Intel Xeon Phi 7120X

Fig. 3.4: Continuous measurement of the power consumption for various PCIe
devices using PowerSensor. With the high time-resolution of PowerSensor, the
correlation between kernel execution and energy consumption is clearly visible. Some
kernels (e.g. correlation) consume more energy than others (e.g. delay and bandpass
correction). Furthermore, features such as TDP limits (in case of AMD R9 Nano)
and kernel interrupts (in case of Intel Xeon Phi 7120), are visible.

333

3.3 Related work 41

3.3 Related work
There are many power-measurement tools that bear some resemblance. They are
all elegant in some aspects, but none of them combines all advantages of high time
resolution, simplicity, low cost, availability, and full library support. PowerInsight [52]
measures both voltages and currents, but has lower time resolution and does not
support the interval-based mode described above. PowerMon 2 [53] uses a well-
designed but difficult-to-obtain custom PCB; it also cannot handle 150W PCIe power
cables. Ilsche et al. present a highly accurate but costly and complex method [54].
Others have built their power measurement tools, for example, to validate a power
estimation framework for GPUs (GPUSimPow) [55], or to analyze the power behavior
of the Xeon Phi [56], but these tools are not publicly available.

3.4 Conclusion
The ability to perform power measurements at high time resolution is indispensable to
study the power efficiency of individual compute kernels on accelerators like GPUs or
the Xeon Phi. PowerSensor is an easy-to-use tool that performs these measurements
at millisecond time scale. PowerSensor can be used for peripheral devices like PCIe
cards but also for SoC development boards. PowerSensor consists of commodity
components. PowerSensor reports measurements back to the host processor, via USB.
An application can link to a simple library to analyze its energy efficiency (e.g., of
GPU compute kernels), but the power can also be measured without modifying the
application. The high time resolution, low cost, ease of use, and public availability
make PowerSensor a useful tool for power measurements of (peripheral) devices.

RQ1: How do we compare the energy consumption of CPUs and acceler-
ators?

The energy consumption of CPUs is measured in software. Some accelerators have
built-in power meters, but these are typically limited in time resolution. We designed
PowerSensor to overcome this limitation. We use these tools throughout the thesis
to analyze the energy efficiency of individual compute kernels.

C
ha

pt
er 4

Image-Domain Gridding

The contents of this chapter are based on the following papers:

Image-Domain Gridding on Graphics Processors
Veenboer, B., Petschow, M., Romein, J. W.
in Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), pages 545–554, IEEE, 2017

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

In this chapter we answer the following research question:

RQ2: How do we efficiently implement Image-Domain Gridding on
accelerators?

4444

44 Image-Domain Gridding

4.1 Introduction
The Image-Domain Gridding (IDG) algorithm is a novel imaging approach and is
described and analyzed from a mathematical perspective in [1]. In [11], we analyzed
its performance on an Intel Xeon CPU and GPUs from both AMD and NVIDIA.
Section 4.2 provides a high-level overview of the IDG algorithm. We describe how
this algorithm elegantly maps onto parallel devices by providing a work division
strategy in Section 4.3. In [15] we added a discussion on the precision requirements
and the complexity of the IDG algorithm. These topics are addressed in Section 4.4
and Section 4.5. To make IDG accessible for use by astronomers, we integrated IDG
into the widely used WSClean [31] imaging application. Our IDG implementations
are currently being used to process the data for various radio telescopes, such as
LOFAR [6] and the MWA [7].

4.2 Algorithm
W-projection and AW-projection apply a convolution kernel to each of the visibilities,
see the top-right panel of Fig. 4.1. In W-projection, these kernels depend on the
(u, v, w)-coordinate associated with the visibility. For AW-projection, these kernels
additionally depend on time and baseline. In practice, the convolution kernels are
precomputed on an oversampled grid. The convolution kernels in W-projection or
AW-projection gridding form a potentially large multi-dimensional data structure
that scales quadratically in size with both the number of pixels in one dimension
of the convolution kernel and quadratically with the oversampling factor. The
classical convolution theorem [57] states that the Fourier transform of a product is
the convolution of the Fourier transforms: F{f ∗g} = F{f} ·F{g} IDG [1] makes use
of this theorem to replace the convolution operation with a multiplication, followed by
a Fourier transform. This way, both W-correction, and A-correction are performed in
the image domain. Consequently, oversampled convolution functions are not needed.

At the center of the Image-Domain Gridding (IDG) [1] algorithm are subgrids,
which represent low-resolution versions of the sky brightness for a small subset of
visibilities, (see Figs. 4.1 and 4.2). IDG maps visibilities to subgrids by performing a
direct Fourier Transform at subgrid resolution. This operation is similar to a direct
evaluation of the measurement equation (see Chapter 2), but at subgrid-resolution
instead of at the resolution of the full grid. A direct summation of visibilities to the
subgrid is computationally feasible as in practice the size of a subgrid N̄ × N̄ is 4-6

4444

4.2 Algorithm 45

W-projection gridding
using convolution kernels

Image-Domain gridding
using subgrids

subgrid

grid

visibility:
convolution:

subgrid:

channels

time

Fig. 4.1: In traditional W-projection and AW-projection gridding, visibilities are
gridded using convolutions in the uv-domain (top-right) as opposed to correcting
the W-term and A-term effects in the image domain (bottom right). For the latter,
neighboring visibilities (indicated with thick dots) are gridded on small ‘subgrids’.
After gridding, a 2D FFT brings subgrids to the frequency domain, see also Fig. 4.3.

4444

46 Image-Domain Gridding

Vj : (1, C̄), (1, 1), (T̄ , 1), (T̄ , C̄)

subgrid

grid

Fig. 4.2: A subset of visibilities (V, black dots), including their associated AW-
projection convolution kernels (yellow circles), is covered by a subgrid.

orders of magnitude smaller than the size of the grid N × N . This approach has the
added benefit of allowing for cheap application of W-terms and A-terms.

After direct summation, A-term correction is applied to each pixel of the subgrid.
(The details of the A-term correction, which are not critical for performance, can
be found in [1].) Since we have performed the corrections in the image domain, the
subgrid has to be Fourier-transformed before the result is added to the larger N × N

grid (i.e., four N̄ × N̄ FFTs per subgrid, one for each of the four polarizations).
The entire process of Image-Domain gridding and degridding is illustrated in

Figure 4.3. The first step in gridding is to place visibilities onto subgrids. This step
is performed by the gridder kernel, which applies Algorithm 1 for every subgrid s.

The cexp(phase) evaluation in Line 9 of this algorithm comprises one evaluation
of cos(phase) and one evaluation of sin(phase). cmul denotes a complex multipli-
cation, which comprises four multiply-add operations. Thus for every evaluation of
cexp(phase) in Line 9, 17 real-valued multiply-add operations are performed, one in
the computation of phase in Line 8 and 16 in the complex multiplication of phasor

with visibilities and addition to the subgrid in Line 12. The offset (the position of
the subgrid relative to the center of the grid), the index (the position of a pixel in the
subgrid), and the wavenumber (frequency-dependent scaling factor) terms are used

4444

4.2 Algorithm 47

gridding iFFT

degridding FFT

imagevisibilities

splitter kernel

FFT

FFT

degridder kernel

degridder kernel

Fourier
subgrid

Fourier

subgrid

image
subgrid

image
subgrid

visibilities

visibilities

Fourier grid

gridder kernel

gridder kernel iFFT

iFFT

adder kernel

image
subgrid

image
subgrid

Fourier
subgrid

Fourier

subgrid

visibilities

visibilities

Fourier grid

Fig. 4.3: Gridding consists of three steps: (1) the visibilities are gridded onto
subgrids by the gridder kernel which applies an operation that resembles a DFT to
each of the visibilities; (2) subgrids are Fourier transformed by applying an inverse
2D FFT; (3) the subgrids are added to the grid by the adder kernel. Degridding is
similar to the gridding, but proceeds in reverse order: (1) subgrids are extracted from
the grid by a splitter kernel; (2) subgrids are Fourier transformed by a FFT kernel;
(3) the degridder kernel computes visibilities.

4444

48 Image-Domain Gridding

1 complex<float> subgrid[P][N̄×N̄];
2 for i = 1..N̄×N̄ do
3 float offset = compute_offset(s, i);
4 for t = 1..T̄ do
5 float index = compute_index(s, i, t);
6 for c = 1..C̄ do
7 float scale = wavenumbers[c];
8 float phase = offset - (index × scale);
9 complex<float> phasor = cexp(phase);

10 for p = 1..P do
11 complex<float> visibility = visibilities[t][c][p];
12 subgrid[p][i] += cmul(phasor, visibility);
13 end
14 end
15 end
16 end
17 apply_aterm(subgrid);
18 apply_taper(subgrid);
19 apply_ifft(subgrid);
20 store(subgrid);

Algorithm 1: Image-Domain Gridding pseudocode that is executed for every
subgrid s in the gridder kernel. This routine is a drop-in replacement for the
gridding step shown in Fig. 2.6. The variables T̄ and C̄ denote the number of
visibilities in time and frequency mapped to a subgrid, respectively. P is the
number of correlations per visibility. In case of IDG, we assume P = 4, for
visibilities corresponding to all four combinations of polarizations X and Y .

to compute a phase shift in Line 8. Before subgrids are stored (Line 20), correction
for DDEs (Line 17) and a tapering function (Line 18, to suppress aliasing, see [1])
are applied.

In IDG, these convolution kernels and the tapering function are two-dimensional
arrays where the size in the number of pixels in one dimension is given by NW .
Consequently, the minimum size of the subgrid N̄ ≥ NW . In practice, we use larger
subgrids (e.g., N̄ = 32) so that multiple visibilities and their associated AW-kernels
are covered (see also Fig. 4.2).

4.3 Execution plan
Before gridding or degridding starts, an execution plan is generated that specifies
the subgrid locations and associated visibilities. If V = {V (q,r)(t, c)} denotes the

4444

4.3 Execution plan 49

1 apply_fft(subgrid);
2 apply_taper(subgrid);
3 apply_aterm(subgrid);
4 complex<float> visibilities[T̄][C̄][P];
5 for t = 1..T̄ do
6 for c = 1..C̄ do
7 float scale = wavenumbers[c];
8 for i = 1..N̄×N̄ do
9 float index = compute_index(s, i, t);

10 float offset = compute_offset(s, i);
11 float phase = (index × scale) - offset;
12 complex<float> phasor = cexp(phase);
13 for p = 1..P do
14 complex<float> pixel = subgrid[p][i];
15 visibilities[t][c][p] += cmul(phasor, pixel);
16 end
17 end
18 end
19 end
20 store(visibilities);

Algorithm 2: Degridding is the inverse operation of gridding, visibilities are
computed taking a grid as input. The degridder kernel computes visibilities for
every subgrid s.

visibilities from all time steps T and baselines (q, r), the positions of the subgrids
induce a partitioning V = V1 ∪V2 ∪ . . .∪Vn. The process of positioning the subgrids to
cover all visibilities is implemented in the form of a greedy algorithm that distributes
the visibilities over subgrids. As depicted in Fig. 4.2, not only the visibilities need
to be covered by the subgrids, but also the surrounding support of their associated
AW-projection convolution kernels [1]. Thus, for each baseline, starting with the first
integration period, and having C̄ channels that can be covered by an N̄ ×N̄ subgrid,
we include as many integration periods as possible (each with C̄ channels) until the
support of the next integration period is no longer covered by the subgrid. We use T̄

to denote the number of integration periods on a subgrid.
If for T̄ visibilities not all frequency channels can be covered by a single subgrid

the frequency channels are split into channel groups and mapped to distinct subgrids.
Each channel group has a configurable maximum number of frequency channels C̄.
For every channel group, the execution plan (mapping of visibilities to subgrids) is
created as described above.

4444

50 Image-Domain Gridding

(1) work

(2) subset of work

(3) subgrid

(4) pixels

(1) work

(2) subset of work

(3) subgrid

(4) pixels

(1) work

(2) subset of work

(3) subgrid

(4) pixels

Fig. 4.4: Work division within IDG: (1) The work is partitioned into (2) subsets.
(3) Every subset contains tasks, represented by individual subgrids. (4) For gridding,
the smallest unit of computation is a single pixel. For degridding, the smallest unit
of computation is a single visibility.

Since A-term correction is applied on a per-subgrid basis, neighboring visibilities
corresponding to different baselines are mapped to distinct subgrids to allow baseline-
dependent A-term correction.

We might additionally require that T̄ ≤ T̄max (where T̄max is architecture-specific)
to limit the maximum number of time steps that are associated with a single subgrid.
This approach controls the number of computations to be performed for each subgrid,
and therefore provides a load-balancing mechanism.

We call each subgrid Sj (including its metadata such as its position in the grid)
together with its associated visibilities Vj , including (u, v, w)-coordinates, a task. The
set of all n tasks is called the work and is generated by an execution plan. Subsets of
the work are processed by the gridder and degridder kernels, using Algorithm 1 and
Algorithm 2 for every task, respectively. This work division hierarchy is illustrated in
Fig. 4.4, and we will refer to it later to show how the algorithm is mapped differently
onto the distinct architectures.

4444

4.4 Single-precision gridding 51

4.4 Single-precision gridding
A common question for any scientific code is what level of precision is required.
For any computation, as well as for any (intermediate) data structure, one might
choose between different data types, for instance single-precision, or double-precision
floating-point numbers and/or arithmetic.

In radio-astronomical imaging, the dynamic range of a sky image is an important
quality metric. It is not trivial to determine whether single-precision floating-point
is sufficiently accurate to obtain the maximum achievable dynamic range in a sky
image [58–60].

Inaccuracies, which may or may not influence the final sky image, could potentially
be introduced during gridding, where a pixel in the grid is repeatedly updated while
the visibilities are added to that pixel. This might lead to rounding errors, as a
contribution to a pixel might be (very) small, while the pixel itself has a large value.
In IDG this is less of an issue than for traditional convolution-based gridding, because
the number of updates per pixel is smaller due to the use of subgrids.

Most compute architectures provide at least double the theoretical peak perfor-
mance when using single-precision arithmetic instead of double-precision arithmetic.
This gives us a clear incentive to favor single-precision floating-point for IDG.

In a configuration as typically used in radio astronomy, IDG (using single-precision)
is shown to provide comparable accuracy to classical W-projection gridding [1].
Therefore, we use a single-precision floating-point format for the computations and
data structures in all our implementations and omit the term “single-precision“ from
here on.

4.5 Complexity
We now determine the complexity of IDG, using the symbols listed in Table. 4.1.
The first step in gridding is the gridder kernel. The complexity of this step for a
single subgrid follows from Algorithm 1:

Ogridder(T̄ C̄N̄2),

The complexity of a 2D FFT applied to a subgrid is:

Offt(N̄2logN̄2),

4444

52 Image-Domain Gridding

Table 4.1: Symbols used in the complexity analysis of IDG.

Symbol Description
T̄ number of visibilities in the time dimension on a subgrid
C̄ number of visibilities in the frequency dimension on a subgrid
N̄ number of pixels in one dimension of the subgrid
V̄ average number of visibilities per subgrid
Tobs total number of visibilities in the time dimension for one baseline
Cobs total number of visibilities in the frequency dimension for one baseline
Vobs total number of visibilities in observation

and the complexity of adding a subgrid to a grid is:

Oadder(N̄2).

If we assume an average of V̄ = T̄ ×C̄ visibilities per subgrid, the complexity of
gridding S subgrids is given by:

Ogridding(SN̄2(V̄ + logN̄2 + 1)).

We will refer to V̄ as the visibility density from now on. The visibility density mostly
depends on the size of the subgrid (N̄), the size of the convolution kernel (NW) and
the (u, v, w)-coordinates associated with the visibilities.

For a dataset with Vobs visibilities, S is given by: S = Vobs × V̄ −1, therefore:

Ogridding(VobsN̄2(1 + V̄ −1logN̄2 + V̄ −1)).

This expression illustrates that the workload scales linearly with the number of
visibilities and quadratically with the size of the subgrid. Furthermore, the workload
of the 2D FFT and adder kernel compared to the workload of the gridder kernel
directly follows from the visibility density. We illustrate these properties with two
examples.

First, we assume T̄ = 128 and C̄ = 16, and normalize Ogridding = 1 for N̄ = 32.
For N̄ = [24, 48, 64], Ogridding = [0.56, 2.25, 4.0]. Thus doubling the size of the
subgrid results in a quadratic growth of gridding complexity. In all four cases,
Ogridder ≫ (Offt + Oadder): the workload of the 2D FFT and adder kernel are
negligible with respect to the gridder kernel.

4444

4.6 Conclusion 53

Next, we use N̄ = 32 and set V̄ = [1, 2, 4, 8, 16] to find Offt + Oadder =
[0.52, 0.26, 0.13, 0.06]. This illustrates that with a low visibility density (V̄ ≤ 8), the
workload of the 2D FFT and adder kernel is noticeable.

The splitter kernel, 2D FFT, and degridder kernel in degridding have the same
complexity as the 2D FFT, adder kernel and gridder kernel in gridding, respectively.
The complexity of degridding is therefore the same as the complexity of gridding:

Odegridding = Ogridding.

4.6 Conclusion
Image-Domain Gridding comprises two main steps: gridding and degridding. We
explained how the execution plan helps to break these steps down into substeps that
can be implemented by various distinct compute kernels. In Part II we demonstrate
how we implement these kernels for (many-core) CPUs, as well as on Graphics
Processing Units (GPUs) from both AMD and NVIDIA, and on Field Programmable
Gate Arrays (FPGAs).

We made the IDG source code available online [14]. We have also integrated IDG
with the WSClean imager [31] such that all its features (data handling, deconvolution,
etc.) are maintained, while the existing inversion (gridding) and predict (degridding)
functionalities are replaced by IDG. The gridding and degridding steps are split into
smaller sub-steps (i.e. the gridder kernel, and the adder kernel) such that these
sub-steps can be executed efficiently on a variety of (accelerator) hardware.

RQ2: How do we efficiently implement Image-Domain Gridding on
accelerators?

We use an execution plan to map input data to subgrids and split the computation into
distinct kernels that can be implemented and optimized separately. This approach
enables us to offload certain parts of the computation (e.g. the gridder kernel) to an
accelerator, while others (e.g. the 2D FFT of the grid) are performed at the host.

Pa
rt II

Image-Domain Gridding
Implementation and Analysis

C
ha

pt
er 5

IDG on CPUs

The contents of this chapter are based on the following papers:

Image-Domain Gridding on Graphics Processors
Veenboer, B., Petschow, M., Romein, J. W.
in Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), pages 545–554, IEEE, 2017

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

In this chapter we answer the following research sub question:

RQ3a: How efficient is IDG on CPUs?

55555

58 IDG on CPUs

5.1 Introduction
In this chapter, we will describe our implementation of the Image-Domain Gridding
algorithm for CPUs. We first provide an overview of the CPU architectures that we
target in Section 5.2. Next, in Section 5.3 we describe the implementation of the
various parts of the algorithm.

While we use well-known optimization techniques such as multi-threading, vector-
ization, and loop transformations, the use of these techniques to implement optimized
Image-Domain Gridding CPU kernels is new. Most importantly, this implementation
serves as a baseline to compare our implementations for accelerators (in Chapter 6
and 7) against.

We analyze the performance and energy efficiency of our IDG implementation for
CPUs in Section 5.4.

5.2 Architecture
We consider two types of CPU series: Intel Xeon (Haswell architecture) and Intel
Xeon Phi (Knights Landing architecture). Xeon is Intel’s server-grade series of CPUs,
while Xeon Phi is a many-core processor targeted at energy-efficient high-performance
computing (see also Section 2.3).

The Haswell architecture implements the AVX2 instruction set, which supports
8-element single-precision vector instructions, including fused multiply-add (FMA).
These FMA instructions double the throughput of computations like a = a + (b ∗ c)
compared to issuing the multiply and add instructions separately.

The Knights Landing architecture additionally supports the AVX-512 instruction
set, which doubles the vector length to 16 elements. The peak floating-point perfor-
mance for Haswell and Knights Landing can only be achieved when these vectorized
FMA instructions are used.

The Haswell architecture has a three-level cache hierarchy combined with DRAM,
whereas Knights Landing has two cache levels and features 16 GB of high-bandwidth
MCDRAM next to DDR4 DRAM.

Both Haswell and Knight Landing support hyper-threading, which allows multiple
threads (two for Haswell, up to four for Knights Landing) to be executed on the same
physical core.

55555

5.3 Implementation 59

On both devices tasks (groups of subgrids with their associated visibilities) are
distributed over all logical cores (threads) using OpenMP. In other words, each thread
computes a subset of the subgrids.

5.3 Implementation
All CPU kernels are implemented in C++ and are executed for every subset of the
work: tasks are distributed over all logical cores using OpenMP. Given a sufficiently
large number of subgrids (which is typically the case), this method scales linearly
with the number of logical cores as we will show in Section 5.3.6.

IDG needs to exploit both thread-level and vector-level parallelism to fully utilize
the CPU. Finding the right granularity for both levels is key to good performance
and scalability. We now detail our strategy for various subparts of the algorithm (see
also Figure 4.3).

5.3.1 Gridder kernel

The gridder kernel (as all other CPU kernels implemented in C++) is executed
for every subset of the work. It distributes the tasks over all logical cores using
OpenMP. In other words, each thread computes a subset of the subgrids according
to Algorithm 1. We provide pseudo-code for this gridder kernel in Algorithm 3.

The most important performance optimizations are the following: (1) We prefetch
and transpose all visibility data associated with a subgrid into a memory-aligned
array to allow for fast, non-strided data access in the inner loops of the kernel. At
this moment, for a better mapping to the instruction set, we also separate the real
and imaginary part of the operands; (2) the sine/cosine-computations (Line 9 of
Algorithm 1) are precomputed, see Section 5.3.5 for details; (3) we collapse the time
and channel loops (Line 4 and 6); (4) the computation in the remaining inner-loop is
written in the form of an reduction over visibilities as illustrated in Algorithm 4; (5)
we use intrinsics (in the reduction) to force the compiler to use the desired (vector)
instructions.

5.3.2 Degridder kernel

We distribute the work in the same manner as in the gridder kernel: each thread
processes a subset of the work by applying Algorithm 2 to every task. In other
words, each thread computes the visibilities for a subset of the subgrids. The kernel

55555

60 IDG on CPUs

1 #pragma omp parallel
2 for s = 1..S do
3 complex<float> subgrid[P][N̄×N̄];
4 float offset[N̄×N̄] = compute_offset(s);
5 float vis_real[P][T̄×C̄] = transpose_visibilities_real(s, visibilities);
6 float vis_imag[P][T̄×C̄] = transpose_visibilities_imag(s, visibilities);
7 for i = 1..N̄×N̄ do
8 complex<float> pixel[P];
9 for t = 1..T̄ do

10 float index = compute_index(s, i, t);
11 for c = 1..C̄ do
12 float scale = load_scale(c);
13 float phase = offset - (index * scale);
14 complex<float> phasor = cos(phase) + i sin(phase);
15 for p = 1..P do
16 complex<float> visibility = load(vis_[real|imag], t, c, p);
17 pixel[p] += visibility * phasor; // complex multiply–accumulate
18 end
19 end
20 end
21 for p = 1..P do
22 apply_aterm(pixel[p]);
23 apply_taper(pixel[p]);
24 subgrid[p][i] = pixel[p];
25 end
26 end
27 apply_ifft(subgrid);
28 store(subgrid);
29 end

Algorithm 3: This pseudo-code for the CPU gridder kernel illustrates that
multiple subgrids are processed in parallel. The computation inside the loops
over time (T̄) and frequency channels (C̄) resembles a discrete Fourier transform
(DFT) of visibilities to an image. Operations such as computing the offset (the
position of the subgrid in the grid), and loading and transposing of input data (e.g.
visibilities) take place outside the critical path. In the loop over pixels, an array
of phasor values is computed (one for every visibility). A pixel is computed as the
(complex) dot product of phasor and visibilities. This operation is implemented as
a reduction (see Algorithm 4) and vectorized using fused multiply-add instructions.
The apply_aterm and apply_taper operations are performed only once per pixel
and are therefore not performance-critical.

55555

5.3 Implementation 61

1 #pragma omp simd reduction(+ : . . .)
2 for v ∈ VISIBILITIES do
3 Re(pix11) += Re(vis11[v]) ∗ Re(phasor[v]);
4 Im(pix11) += Re(vis11[v]) ∗ Im(phasor[v]);
5 Re(pix11) −= Im(vis11[v]) ∗ Im(phasor[v]);
6 Im(pix11) += Im(vis11[v]) ∗ Re(phasor[v]);
7

8 // [... same for pix12 and pix21]
9

10 Re(pix22) += Re(vis22[v]) ∗ Re(phasor[v]);
11 Im(pix22) += Re(vis22[v]) ∗ Im(phasor[v]);
12 Re(pix22) −= Im(vis22[v]) ∗ Im(phasor[v]);
13 Im(pix22) += Im(vis22[v]) ∗ Re(phasor[v]);
14 end

Algorithm 4: The complex multiplication of visibility with phasor and addition
to pixels (Line 12 in Algorithm 1) comprises four FMAs. The loop over polar-
izations (Line 10) is fully unrolled. Thus for every visibility, a total of 16 FMAs
are executed. The reduction clause in this pseudocode instructs the compiler to
process multiple visibilities at once using vector instructions.

optimizations are similar to the optimizations for the gridder kernel. A notable
difference is that we apply vectorization over pixels (Line 8 of Algorithm 2) instead
of over visibilities, see the pseudo-code in Algorithm 5. This way, the computation of
a visibility can be implemented as a complex dot product of phasor and pixels.

5.3.3 FFTs

All subgrids are Fourier-transformed before adding them to the grid and after splitting
the subgrids from the grid, for gridding and degridding, respectively. (see Figure 4.3).
This is a parallel process and most efficiently done by using a math library such as
FFTW or Intel’s Math Kernel Library (MKL).

In a full imaging cycle, the grid is Fourier transformed after all visibilities are
gridded. Since the grid contains four polarizations, this effectively amounts to
executing four distinct FFTs. These are (much) larger transformations than the
many transformations applied to the individual subgrids.

We implemented the large FFT operation in two ways, using fine-grained paral-
lelism, where multiple threads perform the transformation and using coarse-grained
parallelism with one thread per polarization, and up to four polarizations in parallel.
We show the runtime for different grid sizes in Fig. 5.1 for both FFTW and MKL.

55555

62 IDG on CPUs

1 #pragma omp parallel
2 for s = 1..S do
3 complex<float> subgrid[P][N̄×N̄] = load_subgrid(s);
4 apply_fft(subgrid);
5 apply_taper(subgrid);
6 apply_aterm(subgrid);
7 float pixels_real[P][N̄×N̄] = transpose_subgrid_real(subgrid);
8 float pixels_imag[P][N̄×N̄] = transpose_subgrid_imag(subgrid);
9 float offset[N̄×N̄] = compute_offset(s);

10 for t = 1..T̄ do
11 for c = 1..C̄ do
12 complex<float> visibility[P];
13 for i = 1..N̄×N̄ do
14 float index[N̄×N̄] = compute_index(s, i, t);
15 float scale = load_scale(c);
16 float phase = (index * scale) - offset;
17 complex<float> phasor = cos(phase) + i sin(phase);
18 for p = 1..P do
19 complex<float> pixel = load(pixels_[real|imag], p, i);
20 visibility[p] += pixel * phasor; // complex multiply–accumulate
21 end
22 end
23 for p = 1..P do
24 visibilities[t][c][p] = visibility[p];
25 end
26 end
27 end
28 end

Algorithm 5: The CPU degridder kernel uses the same optimizations as the
gridder kernel, but proceeds in the reverse order. First, a subgrid is loaded and
A-term correction and tapering are applied. Afterwards, the pixels of the subgrid
are transposed into seperate buffers. The phasor values are computed in the same
manner as in the gridder kernel. Unlike in the gridder kernel where we unrolled
the loops over time and frequency, we unroll the loop over pixels such that a
visibility can be computed as the complex dot product of phasor and pixels.

55555

5.3 Implementation 63

1,000 10,000

0.01

0.1

1

10

100

Size [pixels2]

R
u
n
ti
m
e
[s
]

MKLcoarse

MKLfine

FFTWfine

FFTWcoarse

Fig. 5.1: Fourier transformation runtime for grids of different size, using MKL and
FFTW in two modes: fine (1 polarization at once, multiple threads per FFT) and
coarse (multiple polarizations at once, one thread per FFT).

Runtime naturally scales with the size of the transformation. The results indicate
that FFTW using coarse-grained parallelism is the best option, as it achieves the
lowest runtime for all grid sizes.

5.3.4 Adder and splitter kernel

As subgrids might partially overlap in the grid, for the adder, parallelization over
subgrids would require atomic additions to the pixels in the grid. To avoid prohibitive
synchronization costs, we use a different parallelization strategy that avoids the need
to use atomic operations: (1) threads are mapped onto rows of the grid; (2) for
every row, the execution plan is used to find rows of subgrid pixels that intersect the
current row in the grid; (3) the corresponding subgrid pixels are loaded from memory
and added to the grid. For the splitter, overlapping subgrids are not a problem as
the data from the grid is read-only. Therefore, multiple subgrids can safely be read
in parallel.

55555

64 IDG on CPUs

5.3.5 Sine/cosine computations

The critical path of the gridder and degridder kernels consists of three parts: (1)
computation of phase; (2) computation of phasor; (3) a complex multiplication and
addition. Both the phase computation and the complex multiplication and addition
are implemented using (vectorized) fused multiply-add operations. The phasor value
on the other hand is computed by evaluating sine and cosine. The CPU architectures
that we evaluate do not have hardware instructions to perform (vectorized) sine/cosine
operations. We, therefore, have to perform these operations using software libraries.
There is no simple relation between a sine/cosine evaluation and the number and type
of instructions executed. We found that this differs significantly between different
libraries, accuracy settings (if any) and might even be input dependent. This leads
to an instruction mix consisting of fused multiply-add and sine/cosine operations.
We define ρ as the ratio between these two operations in the critical path of the
computation. For the gridder and degridder kernels, ρ = 17: for every evaluation
of sine and cosine, 17 FMAs are performed. We measured the runtime for different
values of ρ and for various methods to implement sine/cosine. We compute the
performance by only taking the FMAs into account and show results in Figure 5.2.

In all cases, the achieved performance is lower than the theoretical peak (indicated
with the horizontal blue line) and scales linearly with ρ. This illustrates that evaluating
sine/cosine is a costly operation and (on Haswell) has a noticeable impact on
performance. For ρ = 17, performance is only about 20% of the theoretical peak in
the best case. This best-case performance is achieved when we use an Intel compiler
(version 2018.0) in combination with Intel’s Vector Math Library (VML), which is
part of the Intel Math Kernel Library (MKL, version 2018.0). These libraries provide
an optimized implementation of common math functions. However, these functions
are evaluated in software, e.g. by executing a particular sequence of instructions.
Current x86 CPUs do not support the evaluation of sine and cosine in dedicated
hardware. Surprisingly, using the MKL library in combination with a GNU compiler
(version 7.3.0) results in lower performance than when an Intel compiler (version
2018.0) is used. On recent systems (with Glibc 2.22 or newer), the GNU compiler uses
Libmvec (an optimized open-source vector math library [61]) to compute sine/cosine
using vector instructions and otherwise falls back to a scalar evaluation of sine/cosine.
The use of sine/cosine computations thus heavily reduces the processor’s ability to
perform multiply-add operations. It leads to a lower, ρ-dependent peak-performance
bound as we will see in Fig. 5.2.

55555

5.3 Implementation 65

The libraries mentioned above have different specified calculation errors. This
error is typically measured in Units of Least Precision (ULP), which is a unit to
describe the distance between the smallest numbers that can be represented using
floating-point numbers. MKL can be configured in different modes and we use Low
Accuracy (LA), for the sine/cosine computation. This mode has an error of about 2
ULPs, but we saw no significant differences in IDG’s output compared to running in
High Accuracy (HA) mode, which has an error of 0.5 ULPs. We suspect that due to
summing over many sine/cosine products (e.g. N̄ ×N̄ times for the phasor∗visibility

product in the gridder kernel), small errors in the sine/cosine computation cancel
out.

We implemented a custom lookup table based on integer arithmetic and config-
urable precision. Given a finite number of lookup table entries, the lookup table will
inherently be inaccurate due to (slight) mismatches between the argument and the
lookup table indices. Interpolation is a well-known technique to improve accuracy,
but it comes at the cost of having to execute more instructions for every lookup.

We measured the error of the lookup table by comparing the subgrid values after
gridding, with subgrid values in an execution where VML was used to compute
sine/cosine. This analysis shows that we could obtain (up-to floating-point accuracy)
the same results without interpolation, by simply increasing the number of lookup
table entries.

In this setting, the lookup table implementation performs better than the GNU
compiler with VML, but less well than the Intel compiler with VML. Still, this
implementation might prove useful in situations where neither Intel MKL nor a
recent Libmvec is available. From now on, we will only report performance using the
best-performing option.

5.3.6 Intel Xeon Phi

The Intel Xeon Phi Knights Landing architecture is mostly binary compatible with
Xeon CPUs and we, therefore, use the CPU kernels optimized for the Haswell
architecture as the starting point.

We make a few additions to the aforementioned CPU kernels for the Xeon Phi: (1)
We extended the batched reduction in the gridder and degridder kernels to match the
vector width of 16 floating-point elements as found in the AVX-512 instruction set.
(2) we use the T̃max setting when creating the execution plan to limit the number of
visibilities per subgrid. This exposes more coarse-grain parallelism (more subgrids are

55555

66 IDG on CPUs

1 2 4 8 16 32 64

101

102

103
100%
72%

60%
48%

16%

Haswell

ρ [fma/sincos]

P
er
fo
rm

an
ce

[G
F
lo
p
/
s]

IntelVML

GNUlookup

GNUVML

GNUvector

GNUscalar

Fig. 5.2: Performance for different instruction mixes consisting of a number of
FMA instructions as well as an evaluation of sine/cosine. For the gridder and
degridder kernels, ρ = 17. The labels indicate performance relative to the fastest
option (IntelV ML) at ρ = 16. In case of ρ = 17 and using VML, the CPU spends
about 20% of the time on the FMAs.

created) so that the load can be better balanced over all the cores in this many-core
processor.

5.4 Results
After introducing our experimental setup in Section 5.4.1, we conduct a performance
analysis in Section 5.4.2. Next, in Section 5.4.3 we show throughput and energy
efficiency results, and in Section 5.4.4 we take a look at scalability.

5.4.1 Experimental setup

We perform experiments using the hardware listed in Table 5.1. We refer to this
hardware as Haswell (a dual-socket system with two Intel Haswell-EP processors
with 14 CPU cores each), Knl (a system with one Intel Xeon Phi Knights Landing
processor with 64 CPU cores). We use the number of threads that give the best
performance. Haswell is part of the DAS-5 cluster [62] and the Knl machine was

55555

5.4 Results 67

Table 5.1: The Intel Haswell-EP CPU (Xeon E5-2697v3) and Intel
Knight Landing Xeon Phi (7210) used in our experiments.

Name Architecture Peak Mem size Mem bw TDP
(TFlop/s) (GB) (GB/s) (W)

Haswell Haswell-EP 2.60 ≤1536 136 290
Knl Knight Landing 5.32 ≤384 102 215

provided by Intel. We used the Intel compiler (version 19.0) together with Intel MKL
(version 2019.0).

We use the following observation parameters: Robs = 120, Bobs = 7,140, Tobs =
8,192, Cobs = 16 and tint = 0.9. These parameters are mainly chosen to provide a
dataset that is sufficiently large for benchmarking, but still manageable in terms of
size (we generate the dataset in memory) and total execution time of the benchmark.

The number of stations is chosen to have at least a few baselines per available
CPU core. While LOFAR has fewer stations and SKA will likely have many more
receivers, our results can easily be extrapolated to either use-case as the performance
is not dependent on the number of baselines. Tobs = 8,192 corresponds to about 2.5
hours of observation while observations typically last longer (e.g. 8 hours). Again, we
argue that our results can easily be extrapolated. Finally, a real dataset will typically
comprise many more frequency channels (grouped into subbands). We assume that
the frequency channels can trivially be split into smaller sets and processed by IDG
one after the other. Moreover, for these experiments, we are mainly interested in
performance, energy efficiency, and throughput, not so much in absolute run-time.

The (u, v)-data that we generate using these parameters is shown in Fig. 2.10
and is representative for a wide range of imaging use cases. We set the imaging
parameters as follows: NW = 9, N̄ = 32 and N = 8,192.

The A-terms (in this benchmark, all set to identity) are updated every 256 time
steps. Therefore, ⌈T̄ ⌉ = 256. We reduce T̄ when this increases performance. The
maximum number of channels per subgrid is not limited, thus C̄ =Cobs.

5.4.2 Performance

For a single imaging cycle, we present the execution time in Fig. 5.3. The execu-
tion time is computed as the sum of the runtime for individual kernel invocations.
While Knl has double the theoretical peak floating-point performance compared to
Haswell, the runtime is only marginally lower.

55555

68 IDG on CPUs

20 40 60 80 100 120 140 160

Knl

Haswell

Runtime [seconds]

gridder subgrid-ifft adder grid-fft
splitter subgrid-fft degridder

Fig. 5.3: Distribution of runtime for all kernels in an imaging cycle.

Runtime is dominated by the gridder and degridder kernels, it accounts for more
than 90% of the runtime. Since the impact on the execution time of all other kernels
is limited, we focus on the gridder and degridder kernels for the remainder of the
performance analysis.

In Fig. 5.4 we show roofline plots [4], where an operation (an op) is defined as
one of the following: +, −, ∗, sin(), cos(). The dashed lines correspond to the upper
bound for peak performance for the instruction mix of 17 FMA instructions and 1
sine/cosine evaluation as found in the gridder and the degridder kernels. See Fig. 5.2
where we measured this value for Haswell. We used the same methodology to
establish this limit for Knl.

Even without sine/cosine evaluations, the advertised peak performance on Knl
(shown with the dotted line) can not be achieved in practice, as the clock speed is
reduced when AVX-512 instructions are executed.

Both the gridder and the degridder kernels on Haswell and Knl perform much
lower than the theoretical peak. However, given the limitations of hardware and
the supporting mathematical library, the kernels on Haswell perform close to
optimal. The performance of Knl is slightly further from the peak, for which we
have two explanations: there is some load-imbalance (due to a varying number of
visibilities per subgrid), and by the execution of (partially) masked vector instructions.
Furthermore, since Knl is compute-bound, we found no advantage of using high-
bandwidth MCDRAM over DRAM.

55555

5.4 Results 69

2 4 8 16 32 64 128 256 512 1024

0.1

1

H
as
we

ll

80%

K
nl

80%

gridderdegridder

Operational intensity [Op/Byte]

P
er
fo
rm

an
ce

[T
O
p
/
s]

Knl Haswell

Fig. 5.4: Roofline analysis: one operation is +, −, ∗, sin() or cos(). Peak performance
is only achieved if non-masked FMA instructions (two operations) are used exclusively.
While the operation count is known exactly, the data movement is measured.

5.4.3 Throughput and energy efficiency

We call the combined throughput for gridding and degridding the imaging throughput.
This metric provides insights into the processing rate for one imaging cycle and we
show results in Fig 5.5. The throughput numbers are computed by dividing the
number of visibilities processed (which is a known quantity) by the runtime.

As described in Chapter 3, we use LIKWID [47] to measure the energy consumption
of Haswell and Knl. To this end, LIKWID performs measurements of CPU package
and DRAM energy consumption in software, by querying performance counters. We
sum the two measurements to get the total energy consumption of the platform. We
did not use PowerSensor, because it would also include auxiliary energy consumption
(since PowerSensor would need to be connected to the motherboard power cables),
not just the energy consumption of the CPU package and the DRAM. We plot the
energy efficiency in terms of visibilities processed for every Joule consumed in Fig. 5.6.

By having a higher peak performance (see Fig. 5.2) Knl achieves a higher imaging
throughput than Haswell. Furthermore, Knl is almost 50% more energy-efficient.

5.4.4 Scalability

We evaluate gridding scalability in Fig. 5.7. As this graph illustrates, throughput
scales linearly with the number of cores used, for both Haswell and Knl. While
Haswell has better per-core performance, the higher core count of Knl leads to

55555

70 IDG on CPUs

0

2

4

6

K
n
l

H
a
sw

e
ll

T
h
ro
u
g
h
p
u
t
[M

V
is
ib
il
it
ie
s/
s]

Fig. 5.5: Imaging throughput
0

0.2

0.4

0.6

K
n
l

H
a
sw

e
ll

E
ffi

ci
en

cy
[M

V
is

ib
il

it
ie

s/
J
]

Fig. 5.6: Energy efficiency

higher throughput when all cores are used. On Haswell, hyper-threading has a
negligible impact on performance. On Knl, we use two threads per core as this gives
the highest throughput.

5.5 Conclusion
We discussed in Section 2.3 that the performance of processors has increased signifi-
cantly over the years, mostly due to higher clock frequencies, increasing core-counts
and more advanced instruction sets. We had to take the clock frequency as a given
as it is dynamically adjusted based on the workload (e.g. the number of CPU cores
used and the type of instructions executed).

The execution plan allows tuning of the amount of work per subgrid, such that the
workload is properly distributed over across all available processor cores. Finally, we
vectorized the most critical parts of the compute kernels to maximize the number of
operations performed per clock cycle. Still, the achieved performance on these devices
fell short of our expectations. We identified that this is caused by the evaluation of
sine/cosine, which takes about 80% of the total kernel runtime.

Despite architectural differences, we found that optimizations on a regular Intel
(Haswell) CPU and Intel Xeon Phi (Knights Landing) many-core processor were
mostly identical. In both cases, the evaluation of sine/cosine in software is the
most important performance limiter. We tried to use lookup tables to work around

55555

5.5 Conclusion 71

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

5

10

15

cores

T
h
ro
u
g
h
p
u
t

[M
V
is
ib
il
it
ie
s/
s]

Haswell Knl

Fig. 5.7: Subgrids are distributed over logical cores and are processed in parallel.
Consequently, throughput scales linearly with the number of physical cores used.

this bottleneck, but found that the proprietary MKL library provides the best
performance.

We showed that the higher peak performance of the Xeon Phi compared to the
regular Xeon indeed translates to higher throughput. Furthermore, we showed that
the Xeon Phi many-core processor is more energy-efficient than the Xeon processor.

The clock frequencies of contemporary CPUs have hit a plateau and they can not
even be attained while executing the most advanced instruction set. The current
trend seems to lean towards ever-increasing core counts. However, for IDG, this will
not resolve the issue of sub-par sine/cosine performance. We will need accelerators
capable of evaluating sine/cosine more efficiently to speed up IDG and bring radio-
astronomical imaging to the exascale era.

RQ3a: How efficient is IDG on CPUs?

We demonstrated that our IDG implementation for CPUs is scalable to many CPU
cores and to wide vector units, but also that attainable performance is fundamentally
limited by the ability of the CPU to perform sine/cosine operations. Therefore,
we conclude that on CPUs, IDG is not very efficient due to low performance of
sine/cosine operations in software.

C
ha

pt
er 6

IDG on GPUs

The contents of this chapter are based on the following papers:

Image-Domain Gridding on Graphics Processors
Veenboer, B., Petschow, M., Romein, J. W.
in Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), pages 545–554, IEEE, 2017

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

In this chapter we answer the following research sub question:

RQ3b: How efficient is IDG on GPUs?

666666

74 IDG on GPUs

6.1 Introduction
In this chapter, we will be looking at Graphics Processors (GPUs) as candidate
accelerators for Image-Domain Gridding. These devices have a significantly higher
peak performance compared to CPUs (see also Section 2.3) but have a different
programming model. After providing some background on GPUs in Section 6.2, we
discuss our GPU implementations of IDG in Section 6.3. In Section 6.4 we present
results and perform a performance and energy efficiency analysis. We demonstrated
the first implementation of IDG on GPUs in [11]. We presented an extended subset
of this work in [12] where we demonstrate new features such as support for some
specific imaging use cases and additional performance optimizations. The contents of
Section 6.3 and 6.4 are therefore mostly based on [12].

6.2 Background
Back in the 1950s, the first ‘video cards’ were being produced, with the primary
goal of processing a stream of data from a central processor into images rendered on
a display. Over the course of decades, these devices have evolved into increasingly
more powerful devices. In 1999 NVIDIA introduced the first ‘graphics processing
unit’ (GPU), a single-chip processor with integrated engines for 3D rendering. In the
early 2000s both NVIDIA and another GPU manufacturer, ATI (which would later
become a part of AMD), were competing to build increasingly more powerful GPUs.

At this point, people started using GPUs for tasks other than graphics because they
were much faster than ‘traditional’ CPUs. At first, people used graphics programming
languages such as OpenGL to use GPUs for general-purpose computations (GPGPU).
While the first generations of GPUs were purely targeted at graphics computation,
newer generations of GPU architectures added functionalities such as conditional
branching (for instance to implement loops) and support for random-access memory
writes. In 2007, NVIDIA introduced the Compute Unified Device Architecture
(CUDA) development environment [2]. CUDA made GPUs much easier to program
and became a widely adopted programming model for GPU computing.

Two years later, OpenCL was introduced as a framework that allows for the
development of code for both CPUs and GPUs [3]. Today, NVIDIA GPUs are
typically programmed using CUDA while AMD GPUs are programmed in OpenCL.
Apart from syntactic differences and differences in terminology, these programming

666666

6.2 Background 75

languages offer the same basic functionality. In the remainder of this chapter, we
adhere to the CUDA terminology.

GPUs have several of Streaming Multiprocessors (SMs) with a number of CUDA
cores each. Every SM contains a register file, load-store units, dedicated caches, and
a software-managed cache (shared memory).

On a GPU, threads are organized in a three-level hierarchy: grid-level, block-level,
and warp-level. When a kernel is executed, the GPU spawns a grid of thread blocks
(both of user-specified dimensions) and dispatches the thread blocks onto the SMs.
A thread block is executed in the form of warps. A warp behaves similar to a vector
unit in a CPU: a single instruction is executed for multiple (distinct) data elements
(in SIMD fashion). The GPUs that we consider are connected to a host machine
and have dedicated device memory, we thus have to copy any input and output data
between host and device. See also Figure 6.1 for a schematic overview of the GPU
architecture.

Fig. 6.1: A schematic overview of the architecture of a GPU using CUDA terminol-
ogy [2]. The left part of the diagram illustrates the host (the CPU), which executes
kernels on the device (the GPU). Kernels are executed by multiple threads organized
in three-dimensional blocks, which can be organized in three-dimensional grids (middle
part of the figure). The user explicitly defines the dimensions of the blocks and the
grid. The GPU has different types of memory: registers and local memory private to
each thread, memory shared by threads in a block, and several types of global memory.
Shared memory has low latency and high bandwidth. Texture and constant memory
feature a cache as well and are typically used for read-only data. Global memory
can be read and written by the host and has the highest capacity of all these types of
memory.

666666

76 IDG on GPUs

6.3 Implementation
We detail our parallelization and optimization strategies for various parts of IDG in
the following sections.

6.3.1 Gridder kernel

We implemented a GPU gridder kernel by applying a number of code transformations
to the IDG gridder algorithm in Algorithm 1. First, subgrids are grouped into
batches and the gridder kernel is launched once for every batch of subgrids. The GPU
schedules these batches in the form of thread blocks onto the SMs such that multiple,
independent subgrids are computed in parallel, see the pseudo-code in Algorithm 6.

The computation of phase (Line 10) is implemented using a fused multiply-add
(FMA) operation of which the operands index and offset are computed outside
the critical path and scale is cached in shared memory. We use native sine/cosine
instructions for the computation of the phasor (Line 11), see Section 6.3.3 for details.

Next, in Algorithm 7, we show how we applied the loop strip-mining [63] technique
to split loops into two parts: a fixed-size inner loop and a variable-size outer loop.
We then moved the outer loop over frequencies (Line 10) outside to create a critical
path without conditional branches, since the inner loop over frequency channels has
a fixed number of iterations (Line 11), and the loop over polarizations (Line 15) is
unrolled. The compiler consequently generates better code that runs more efficiently.

Tuning parameters κt and κc are chosen such that a batch of visibilities can be
cached in shared memory. To this end, we add a shared-memory buffer of size κt×κc

visibilities and let threads collaboratively load visibilities from device memory in a
coalesced manner. We also apply thread coarsening [64] by partially unrolling the
inner loop over pixels (Line 5) such that a visibility loaded from shared memory is
used to update κi pixels. These pixels are stored in registers and are only written to
device memory after all visibilities (for the current κc channels) are processed. The
resulting code is shown in Algorithm 8.

In this kernel κthreads, κi and κt are tuning parameters. We set their values
empirically, e.g. κthreads = 128, κi = 4 and κt = 256. A future implementation
could use an autotuner such as Kernel Tuner [65] to find an optimal combination of
parameters automatically.

666666

6.3 Implementation 77

1 s ← get_thread_block_id() ; // s ∈1 to S
2 tid ← get_thread_id() ; // tid ∈ 1 to κthreads

3 complex<float> subgrid[P][N̄×N̄];
4 for i ← tid to N̄×N̄ by κthreads do // map threads to pixels
5 float offset = compute_offset(s, i);
6 for t← 1 to T̄ by 1 do
7 float index = compute_index(s, i, t);
8 for c ← 1 to C̄ by 1 do
9 float scale = load_scale(c);

10 float phase = offset - (index * scale);
11 complex<float> phasor = cos(phase) + i sin(phase);
12 for p← 1 to P by 1 do // P=4, fully unrolled
13 complex<float> visibility = load_visibility(s, t, c, p);
14 subgrid[p][i] += phasor * visibility;
15 end
16 end
17 end
18 end
19 apply_aterm(subgrid);
20 apply_taper(subgrid);
21 apply_ifft(subgrid);

Algorithm 6: This pseudo-code shows the first step in the GPU gridder kernel
implementation: subgrids s are mapped to thread blocks (Line 1), with κthreads

threads each. For every thread block, threads are mapped to pixels of a subgrid
using their thread identifier (Line 2) such that multiple pixels are computed in
parallel (Line 4).

Applying the A-term and tapering function (Line 30 and Line 31 in Algorithm 8)
takes place outside of the critical path, after which the pixels are written to device
memory. The subgrid FFT is performed seperately, see Section 6.3.4.

6.3.2 Degridder kernel

We implemented the GPU degridder kernel such that subgrids are mapped onto
thread blocks and visibilities onto threads. Shared memory is used as a cache for input
data (batches of subgrid pixels) and for pre-computed data (offset). Pseudocode
for this kernel is provided in Algorithm 9. This batched execution strategy can be
configured by setting the size of the thread block (κthreads), the number of pixels
processed per iteration (κi) and the number of frequency channels computed per
thread (κc). When T̄ is small (e.g. less than twice the size of a warp), the kernel

666666

78 IDG on GPUs

1 s ← get_thread_block_id() ; // s ∈1 to S
2 tid ← get_thread_id() ; // tid ∈ 1 to κthreads

3 complex<float> subgrid[P][N̄×N̄];
4 for i1 ← tid to N̄×N̄ by κthreads×κi do // map threads to pixels
5 for i2 ← i1 to κi by 1 do // pixel batch
6 float offset = compute_offset(s, i);
7 for t1 ← 1 to T̄ by κt do
8 for t2 ← t1 to κt by 1 do // time batch
9 float index = compute_index();

10 for c1 ← 1 to C̄ by κc do
11 for c2 ← c1 to κc by 1 do // channel batch
12 float scale = load_scale(c);
13 float phase = offset - (index * scale);
14 complex<float> phasor = cos(phase) + i sin(phase);
15 for p ← 1 to P do // P=4, fully unrolled
16 complex<float> visibility = load_visibility(s, t2, c2, p);
17 subgrid[p][i1] += phasor * visibility;
18 end
19 end
20 end
21 end
22 end
23 end
24 end
25 apply_aterm(subgrid);
26 apply_taper(subgrid);
27 apply_ifft(subgrid);

Algorithm 7: This GPU gridder improves on Algorithm 6 by additionally
applying loop strip-mining to create fixed-size loops over pixels (Line 5), time
(Line 8), and frequency channel (Line 11). This technique enables the compiler
to generate better code that runs faster.

666666

6.3 Implementation 79

1 s ← get_thread_block_id() ; // s ∈1 to S
2 tid ← get_thread_id() ; // tid ∈ 1 to κthreads

3 complex<float> subgrid[P][N̄×N̄] = 0 ; // shared memory
4 complex<float> visibilities[κt][κc][P] ; // shared memory
5 for c1 ← 1 to C̄ by κc do
6 for i1 = tid to N̄×N̄ by κthreads × κi do
7 complex<float> pixel[P][κi] = 0;
8 for t1 ← 1 to T̄ by κt do
9 for j ← tid to κt×κc× P by κthreads do

10 visibilities[..][..][..] = load_visibility(..); // from device memory
11 end
12 for t2 ← 1 to κt by1 do
13 float index = compute_index(s, i, t);
14 for c2 ← c1 to κcby1 do // channel batch
15 float scale = load_scale(c1 + c2);
16 float phase = offset - (index * scale);
17 complex<float> phasor = cos(phase) + i sin(phase);
18 for i2 ← 1 to κi by 1 do // pixel batch
19 for p ← 1 to P by 1 do // P=4, fully unrolled
20 complex<float> visibility = visibilities[t2][c2][p];
21 pixel[p][i2] += phasor * visibility;
22 end
23 end
24 end
25 end
26 end
27 subgrid[..][..] += pixel[..][..];
28 end
29 end
30 apply_aterm(subgrid) ; // outside of the critical path
31 apply_taper(subgrid);
32 apply_ifft(subgrid);

Algorithm 8: In this GPU gridder, we added pre-fetching of visibility data
(Line 10 and 20). We have now found an elegant mapping from the IDG algorithm
to the GPU: multiple subgrids are computed in parallel (by distinct thread blocks),
multiple pixels of the subgrid are computed in parallel (by threads within a thread
block), while input data is pre-fetched into shared memory buffers to maximize
reuse, and memory accesses are coalesced.

666666

80 IDG on GPUs

automatically uses κc = 1 to maximize the number of visibilities that are processed
in parallel. To this end, in Line 9, threads are additionally mapped to frequency
channels.

6.3.3 Sine/cosine

On NVIDIA GPUs, the SMs contain a number of special-function units (SFUs) that
implement the computation of both transcendental functions and interpolation in
hardware [66]. The SFU provides fast approximations for sine/cosine with a maximum
error of 2 units of least precision (the spacing between two consecutive floating-point
numbers) [67]. The SFU operates at half the rate of an FMA unit, see also Fig. 6.2.
On AMD GPUs, sine and cosine are computed on the same execution units that
also perform FMA instructions. Whereas an FMA instruction has a throughput of
1 cycle per instruction, sine/cosine instructions are performed at a quarterly rate.
The maximum error is implementation-defined [68, 69]. Both NVIDIA’s and AMD’s
native instructions provide sufficient accuracy for IDG.

We measure the performance of the sine/cosine evaluation (cis) for different ratios
of sine/cosine evaluations and FMAs and show results for a NVIDIA Pascal GPU in
Fig. 6.3 and for an AMD Vega GPU in Fig. 6.4 (See Section 6.4.1 for details about
these GPUs). The NVIDIA GPU achieves superior performance by executing FMAs
and sine/cosine evaluations using separate processing units (the SFUs).

6.3.4 Subgrid FFTs

Small subgrids (up to 32×32 pixels) could fit in shared memory and it would therefore
be most efficient to compute the Fourier transformation before the data is written to
global memory. Unfortunately, the cuFFT and clFFT libraries assume that the input
data resides in global memory and processes 2D FFTs in two separate passes for rows
and columns respectively, while intermediate results are also stored in global memory.
We implemented a custom 32×32 FFT kernel that keeps intermediate data in shared
memory. While this method improves performance at least twofold, we would need to
implement a unique kernel for every possible different size of the subgrid. Moreover,
as we show in Section 6.4, the impact of the time spent in the subgrid FFT with
respect to the overall computation time is relatively low for the imaging use cases
that we consider here. NVIDIA has demonstrated the cuFFTDx library, which is
a device-callable library that retains and reuses data on-chip [71]. Like our custom
FFT, cuFFTDx allows inlining the FFT into the gridder or degridder kernel. Since

666666

6.3 Implementation 81

1 apply_ifft(subgrid);
2 apply_taper(subgrid);
3 apply_aterm(subgrid);
4 s ← get_thread_block_id() ; // s ∈1 to S
5 tid ← get_thread_id() ; // tid ∈ 1 to κthreads

6 complex<float> pixels[P][κi×κi] ; // shared memory
7 float offsets[κi] ; // shared memory
8 for c1 ← 1 to C̄ by κc do
9 for t← tid to T̄ by κthreads do // map threads to visibilities

10 complex<float> visibility[P][κc];
11 for i1 ← 1 to N̄×N̄ by κi do
12 for i2 ← (i1 + tid) to κi by κthreads do // map threads to pixels
13 offsets[i2] = compute_offset();
14 pixels[i2] = load_pixel() ; // from device memory to shared memory
15 end
16 for i2 ← 1 to κi by 1 do // pixel batch
17 float offset = offsets[i2] ; // from shared memory
18 complex<float> pixel = pixels[p][i2] ; // from shared memory
19 for c2 ← c1 to κc by 1 do // channel batch
20 float index = compute_index(s, i, t);
21 float scale = load_scale(c);
22 float phase = (index * scale) - offset;
23 complex<float> phasor = cos(phase) + i sin(phase);
24 for p ← 1 to P do // P=4, fully unrolled
25 visibility[p][c2] += pixel * phasor;
26 end
27 end
28 end
29 end
30 end
31 store(visibility);
32 end

Algorithm 9: We applied the same techniques as we detailed in Section 6.3.1
to implement the GPU degridder kernel: subgrids are mapped to thread blocks
and we split, reorder and unroll certain loops to create an efficient mapping of
threads to visibilities and pixels. The computation takes place in two stages: first
threads are mapped to visibilities, such that κthreads each compute κc visibilities
each. Next the subgrid is processed in batches of κi pixels, which are prefetched in
a shared memory cache. As offset is not time or frequency dependent, offset is
precomputed and stored in shared memory.

666666

82 IDG on GPUs

Fig. 6.2: This diagram of NVIDIA’s GP104 chip illustrates that each Streaming
Multiprocessors (SM) has a number of Special Function Units (SFUs) next to cores [70].
These units can be used to evaluate transcendental function (like sine/cosine) while the
cores perform ‘normal’ floating-point operations such as multiplications and additions.

cuFFTDx is not yet available and the custom FFT kernel is not practical in general,
we use the cuFFT library for all our measurements. As we will show later, this is an
acceptable approach for common imaging use cases where the FFT runtime has only
a modest impact on the overall runtime.

6.3.5 Adder and splitter

We use a simple adder kernel where atomic adds are used to perform the addition of
subgrids onto the grid. Unlike the adder kernel, no atomic operations are required
for the splitter kernel. For every subgrid, the relevant part of the grid is copied into
the subgrid buffer.

6.3.6 Asynchronous I/O and kernel execution

We use double-buffering such that the GPU can continue to execute kernels during
data transfers. To this end, we use multiple worker threads on the host that process
subsets of the work by issuing operations onto CUDA streams. CUDA events are
used to synchronize between streams and to ensure sequential consistency between

666666

6.3 Implementation 83

1
8

1
4

1
2

1 2 4 8 16 32 64 128

0.1

1

10
Pascal

ra
ti
o
in

gr
id
d
er

95%

22%
25%

ρ [fma/sincos]

P
er
fo
rm

a
n
ce

[T
F
lo
p
/
s]

peak
cisSFU
cisFPU

Fig. 6.3: This plot shows the maximum attainable performance on an NVIDIA
GPU of a workload comprised of FMA instructions and sine/cosine evaluations. For
ρ ≤ 2, the performance is a quarter of the theoretical single-precision floating-point
performance. This GPU has one SFU for every four FPUs. We can also identify
this in the plot, as the achieved performance is 25% of the theoretical floating-point
peak performance for ρ ≤ 1. For an instruction mix of 17 FMAs and one sine/cosine
evaluation (ρ = 17) as is the case in the gridder and degridder kernels, the operations
on the SFUs are almost completely overlapped with computations on the floating-point
units (FPUs). When sine/cosine is evaluated using FPUs, overall performance is
significantly lower at about 22% of the peak.

the operations within the kernel invocation; i.e., the kernel only starts when the input
data is transferred. This technique allows I/O and kernel execution to overlap, as
illustrated in Fig. 6.5. We use paged-locked host memory to enable DMA memory
transfers between host and device memory. This increases the PCIe transfer speed
while CPU overhead is reduced.

In our initial IDG paper ([11]) we presented benchmarks with small subgrids
(N̄ = 24). In this setting, the balance between I/O (to transfer visibilities) and
computations (to compute pixels) leaned toward the I/O side. In that scenario,
throughput was limited by the bandwidth of the PCIe bus. This limit can be
alleviated by using a faster interconnect, such as NVLink. However, as IDG matured
we concluded that larger subgrids (e.g. N̄ = 32) are more common in practice. While
this doubles the number of operations performed for every visibility, it also increases
the maximum supported kernel size and typically leads to a better visibility density
as more visibilities can be covered by a single subgrid (see also Section 4.5. Therefore,
in [15] we moved to N̄ = 32. Using this setting, the PCIe bandwidth is only a

666666

84 IDG on GPUs

1
8

1
4

1
2

1 2 4 8 16 32 64 128

0.01

0.1

1

10
Vega

ra
ti
o
in

gr
id
d
er60%

< 1%

ρ [fma/sincos]

P
er
fo
rm

an
ce

[T
F
lo
p
/s
]

peak
cisnative
cisdefault

Fig. 6.4: The default sine/cosine implementation on AMDs Vega GPU architecture
is very slow: less than 1% of the floating-point peak performance is achieved for
ρ = 17. Native instructions are a much faster alternative.

input:

compute:

output:

time

Fig. 6.5: In this double-buffering example, three threads (indicated with blue, yellow,
and gray) each offload their computation to the GPU. This technique overlaps I/O
with computations and helps to minimize GPU idle time.

bottleneck for the fastest GPUs available today (e.g. NVIDIA Tesla V100 or NVIDIA
Titan RTX).

6.3.7 Scaling to large images

We implemented three distinct imaging schemes: GPU-only, hybrid, and unified.
In the GPU-only scheme, all operations are performed on the GPU. It supports

images that fit in device memory. Every pixel requires 32 bytes (4 polarizations × 8
bytes for every complex floating-point number). An image of 40,000 × 40,000 pixels,
for instance, thus is about 48 GB in size, which is more than most GPUs currently
available provide.

666666

6.4 Results 85

The hybrid imager performs the gridder and subgrid-fft on the GPU and the
addition to the grid on the host. As the image is kept in host memory, the maximum
size of the image is not bound by the size of the device memory.

NVIDIA GPUs from the Pascal generation and newer support Unified Memory,
which provides a single memory address space between any processor (CPU or GPU)
in the system. This is implemented using on-demand page migration. When the
GPU addresses a memory page that is not resident in device memory, a page fault is
generated and the corresponding page is migrated from host to the device, possibly
evicting another page. The grid is allocated on the host, while the adder kernel
is executed on the GPU. Instead of having to explicitly copy the parts of the grid
accessed in the adder kernel, the pages are automatically migrated on-demand.

This mechanism is an excellent match for the irregular yet localized memory
accesses encountered when adding subgrids onto the grid. There is no need to keep
track in software which parts of the grid are being updated and should be copied to or
from GPU memory. This is all transparently resolved by the CUDA Unified Memory
runtime, greatly simplifying the application. We will refer to the implementations
that use this feature as the unified imager. We use a tiled memory layout for the grid
such that pixels that are close together in the grid are also close together in memory,
reducing the number of pages migrated when accessing the pixels corresponding to a
subgrid, see also Fig. 6.6.

6.4 Results
We first provide the experimental setup in Section 6.4.1. In Section 6.4.2 we analyze
the performance of our IDG implementations on an NVIDIA GPU and on an AMD
GPU. We compare these GPUs in terms of throughput and energy efficiency in
Section 6.4.3. In Section 6.4.4 and 6.4.5, we take a closer look at throughput for two
imaging use cases; large images and spectral-line imaging.

6.4.1 Experimental setup

We use the same dataset and parameters as described in Section 5.4.1 to compare two
GPUs: Vega (an AMD Vega Frontier Edition GPU) and Pascal (an NVIDIA Tesla
P100 GPU), see Table 6.7) for details. Vega is hosted by a dual-socket Haswell-EP
system, where the GPU is connected using PCIe 3.0. This is the same system as
described in Section 5.4.1. Pascal is hosted by a Minksy system that is part of
the JURON cluster [72]. A Minsky system is based on the Power 8 architecture

666666

86 IDG on GPUs

grid

pages

(a) Unified Memory (default)

grid

tile

(b) Unified Memory with tiling

Fig. 6.6: With on-demand page migration, the Unified Memory subsystem copies
pages of memory (indicated in red) between CPU and GPU memory. In the default
setting (on the left), pixels that are (vertically) close together in the grid are covered
by different pages. This leads to inefficient use of the migrated pages as many migrated
pixels are not updated. By tiling the grid, pixels that are close together in the grid
are also close together in memory. Therefore, the number of page migrations required
for accessing neighboring pixels (e.g. in a tile, indicated in green), is significantly
lower than in the default setting.

and supports the high-bandwidth NVLink 1.0 bus, which provides roughly three
times more bandwidth than PCIe 3.0. For Vega, we used the AMD APP SDK 3.0
OpenCL runtime and GPU driver version 2527.4; for Pascal, we used CUDA 9.2.88
and GPU driver 410.48.

6.4.2 Performance

In Figure 6.8 we show the execution time of a single imaging cycle. Like on the
CPU, imaging runtime is dominated by the gridder and the degridder kernels. We
analyze the performance of these kernels in Fig. 6.9. The solid lines correspond
to the peak FMA performance and peak memory bandwidth as advertised by the
manufacturers; the dashed lines correspond to the performance for the instruction mix
of 1 sine/cosine evaluation and 17 FMAs operations using native math instructions, see
Fig. 6.3 and 6.4. On Vega the performance is bound by the sine/cosine evaluations,

666666

6.4 Results 87

Fig. 6.7: The NVIDIA Pascal and AMD Vega GPUs used in our
experiments.

Name Architecture Peak Mem size Mem bw TDP
(TFlop/s) (GB) (GB/s) (W)

Pascal Pascal 10.6 16 732 250
Vega Vega 13.1 16 483 300

while on Pascal the performance is fairly close to the theoretical peak performance
of the floating-point units. The occupancy in the gridder and degridder kernels
is too low to hide all memory latencies, but the high register usage prevents the
GPU from achieving a higher occupancy. These results indicate that Pascal is a
very suitable architecture for IDG as it offers a balanced mix of floating-point units,
special-function units, and shared memory.

1 2 3 4 5 6 7 8 9 10 11 12

Pascal

Vega

Runtime [seconds]

gridder subgrid-ifft adder grid-fft
splitter subgrid-fft degridder

Fig. 6.8: Distribution of runtime for all kernels in an imaging cycle.

6.4.3 Throughput and energy efficiency

We present throughput and energy efficiency results for Pascal and Vega respectively
in Fig. 6.10 and in Fig. 6.11. For Vega, we measure the energy consumption of
the full PCIe device, using PowerSensor [48] (see also Chapter 3). Pascal uses
a mezzanine connector unsuitable for PowerSensor and we, therefore, resort to
the NVIDIA Management Library (NVML) to measure energy consumption. By
achieving better performance in the gridder and degridder kernels, Pascal naturally
also outperforms Vega in terms of throughput. Furthermore, Pascal is significantly
more energy-efficient than Vega.

666666

88 IDG on GPUs

2 4 8 16 32 64 128 256 512 1024

1

10
P
as
ca
l

V
eg
a

gridder degridder

Operational intensity [Op/Byte]

P
er
fo
rm

an
ce

[T
O
p
/s
]

Pascal Vega

Fig. 6.9: Roofline analysis for Pascal and Vega.

6.4.4 Creating large images

We show the imaging throughput for our Hybrid and Unified imagers on Pascal
in Fig. 6.12, and compare them to GPU-only imaging. While the Unified imager
achieves almost identical throughput to the GPU-only imager, it also allows for larger
images at a modest throughput decline.

Up to grid sizes of about 16,000×16,000 pixels the entire grid fits in GPU memory.
The GPU-only imager achieves 235 and 230 MVisibilities/s for gridding and degrid-
ding, respectively, resulting in an overall imaging throughput of 116 MVisibilities/s.
For the largest images that the GPU-only imager can create, we have to reserve
the majority of the device memory to store the grid. Consequently, the amount of
memory available for other data (e.g. visibilities and subgrids) is limited and this
causes a minor performance degradation as this is not sufficient to keep all SMs
occupied all the time.

For images that do not fit in GPU memory we need to use either the hybrid or
the unified imaging scheme. We observe that the hybrid imaging scheme performs
lower than the GPU-only scheme. This can be attributed to the adder and splitter
kernels that run slower on the CPU than on the GPU, as we show in Fig. 6.13a: in all
cases the computation on the CPU takes longer than the computation on the GPU.

666666

6.4 Results 89

0

20

40

60

80

100

120

V
e
g
a

P
a
sc
a
l

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

Fig. 6.10: Imaging throughput
0

0.1

0.2

0.3

0.4

0.5

V
e
g
a

P
a
sc
a
l

E
ffi

ci
en

cy
[M

V
is

ib
il

it
ie

s/
J
]

Fig. 6.11: Energy efficiency

There is a minor performance difference between the GPU-only and the unified
imaging routines for grid sizes up to 16,000×16,000 pixels. Since the page migrations
are overlapped with computation, the performance impact is low. These results
demonstrate that the performance of CUDA Unified-Memory and NVLink is excellent.

For larger images, not all parts of the grid covered by subgrids fit in device
memory. Consequently, the Unified-Memory runtime spends more time moving pages
from and to GPU device memory than for the smaller grids – resulting in a loss of
performance that scales with the size of the image. We take a closer look at the
runtime distribution for the Unified imaging in Fig. 6.13b.

6.4.5 Imaging a different number of channels

So far, we have shown results for C̄ = 16, but the gridder and degridder kernels
also achieve good performance for different settings of C̄, as we show for Pascal
in Fig. 6.14a. This is an appealing property, for instance for spectral-line imaging,
where C̄ = 1. As shown in Fig. 6.14b, throughput is affected for small values of C̄.
As we showed in the complexity analysis of IDG in Section 4.5, this can be explained
by looking at the visibility density (V̄): for small values of C̄, the runtime becomes
dominated by the time spent in the subgrid-fft and the adder kernel (for gridding) or
splitter kernel (for degridding).

666666

90 IDG on GPUs

4096 8192 16384 32768 65536

40

60

80

100

120

12%
16%

68% lower

Grid size [N×N]

T
h
ro
u
g
h
p
u
t
[M

V
is
ib
il
it
ie
s/
s]

GPU-only imaging
Unified imaging
Hybrid imaging

Fig. 6.12: Throughput for the Hybrid and Unified imagers.

With a fixed setting of N̄ and Cobs > C̄, not all Cobs channels might fit on a single
subgrid. In this case, IDG will create multiple subgrids with at most C̄ channels
each to cover all Cobs channels. The throughput for processing of Cobs channels will
therefore be comparable to the throughput for processing C̄ channels. For large
values of Cobs, the dataset is typically split into multiple subbands that are processed
independently, possibly even using multiple machines.

Typical datasets have Cobs ≫ 16, split into subbands (e.g with Csubband = 256)
that are gridded separately. For such datasets, and reasonably sized subgrids (e.g.
N̄ = 32 up to N̄ = 48), not all visibilities can be mapped to a single subgrid. To
solve this, we use channel groups, which are subsets of visibilities with neighboring
frequency channels. (See also Section 4.3.)

Section 4.3. A channel group can have a predetermined maximum number of
frequency channels, e.g. to match a C̄ value that achieves good performance on a
given platform.

666666

6.4 Results 91

8,1922 16,3842 32,7682
0

5

10

15

20

C
P
U

C
P
U

G
P
U

G
P
U

Grid size [N×N]

R
u

n
ti

m
e

[s
ec

o
n

d
s]

gridder subgrid-ifft adder
degridder subgrid-fft splitter

(a) Hybrid runtime distribution

8,1922 16,3842 32,7682
0

5

10

15

20

G
P
U

G
P
U

Grid size [N×N]

R
u

n
ti

m
e

[s
ec

on
d

s]

gridder subgrid-ifft adder
degridder subgrid-fft splitter

(b) Unified runtime distribution

Fig. 6.13: In Hybrid gridding (Fig. 6.13a), the gridder and subgrid-ifft are executed
on the GPU, while the host in the meantime executes the adder, and vice versa for
degridding. For both gridding and degridding, the computation on the host takes
longer than the computation on the GPU and thus limits throughput. In the case of
Unified (Fig. 6.13b), the runtime for the adder and splitter kernels increases for
larger images, as more tiles of the grid have to be migrated between host and device
memory. For both imagers, the throughput is affected by a reduced visibility density
for large images.

666666

92 IDG on GPUs

2 4 6 8 10 12 14 16

6

7

8

9

10

channels

P
er
fo
rm

an
ce

[T
F
lo
p
/s
]

gridder degridder

(a) Kernel performance

2 4 6 8 10 12 14 16

100

150

200

250

channels

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

gridding degridding

(b) Routine throughput

Fig. 6.14: The gridder and degridder performance is relatively consistent for all
values of C̄. For small values of C̄, the time spent in the other kernels (e.g. the
Fourier transform of the subgrid and the adder kernel for gridding, not shown in this
graph) negatively affects throughput.

666666

6.5 Conclusion 93

By splitting large datasets into subbands, and by processing subbands in channel
groups, the gridding process is similar for every subset of visibilities. Thus for large
datasets, the same gridding processes is simply repeated many times, on different
data. We, therefore, argue that our results (measured on relatively small datasets)
can be extrapolated to the larger datasets that are used in practice.

6.5 Conclusion
The Image-Domain Gridding algorithm efficiently maps onto GPUs. Like we have
shown for CPUs in Chapter 5, having proper support for the evaluation of sine/cosine
is key to achieving high performance for GPUs as well.

By leveraging special-function units, we have demonstrated that NVIDIA GPUs
achieve close to the theoretical floating-point unit peak performance. On AMD
GPUs, the sine/cosine evaluations are performed on the same execution units that
also execute floating-point operations such as multiplications and additions, albeit at
a lower rate. Thus like on CPUs, the sine/cosine operations on AMD GPUs compete
for resources.

We demonstrated that an NVIDIA (Pascal) GPU is faster than an AMD (Vega)
GPU, while it is also more energy-efficient. We have also demonstrated that our IDG
implementation for NVIDIA GPUs elegantly uses CUDA Unified Memory to create
very large sky images. Finally, we have shown that IDG can also handle specific
imaging use cases such as spectral-line imaging.

NVIDIA GPUs, while being general-purpose accelerators, almost seem tailored
for IDG, as they provide a balanced mix of floating-point units, special-function units,
shared memory, and other resources. Still, we had to carefully optimize the GPU
kernels to get close to the theoretical peak performance. Moreover, having a fast
interconnect (such as NVLink) and CUDA Unified Memory makes an NVIDIA GPU
a very suitable IDG accelerator even in cases where the sky image does not fit in
GPU memory.

RQ3b: How efficient is IDG on GPUs?

IDG runs highly efficient on GPUs. Especially, on NVIDIA GPUs, with support for
sine/cosine in dedicated hardware, performance is excellent as the most dominant
IDG kernels (the gridder and degridder kernel) approach theoretical peak performance
of the GPU.

C
ha

pt
er 7

IDG on FPGAs

The contents of this chapter are based on the following paper:

Radio-Astronomical Imaging: FPGAs vs GPUs
Veenboer, B., Romein, J. W.
In Proceedings of the International Conference on Parallel and Distributed
Computing (Euro-Par), pages 509-521, Springer, 2019 (best paper award)

In this chapter we answer the following research sub question:

RQ3c: How efficient is IDG on FPGAs?

7777777

96 IDG on FPGAs

7.1 Introduction
FPGAs excel in performing simple operations on high-speed streaming data, at high
(energy) efficiency. However, so far, their difficult programming model and poor
floating-point support have prevented a wide adoption for typical HPC applications.
This is changing, due to recent FPGA technology developments: support for the high-
level OpenCL programming language, hard Floating-Point Units, and tight integration
with CPU cores. Combined, these are game changers: they dramatically reduce
development times and allow using FPGAs for applications that were previously
deemed too complex.

In this chapter, we demonstrate how we implemented and optimized a complex
radio-astronomical imager on an Arria 10 FPGA. We compare architectures, pro-
gramming models, optimizations, performance, energy efficiency, and programming
effort to highly optimized GPU and CPU implementations. We show that we can
efficiently optimize for FPGA resource usage, but also that optimizing for a high
clock speed is difficult.

The rest of this chapter is organized as follows: Section 7.2 provides background
information on FPGA programming using the Intel FPGA SDK for OpenCL. Sec-
tion 7.3 explains how we implemented and optimized the most critical parts of the
Image-Domain Gridding algorithm. In Section 7.4 we analyze performance and show
energy efficiency measurements. Section 7.5 describes the lessons that we learned
while implementing and optimizing the same application for both FPGAs and GPUs.
We discuss related work in Section 7.6.

7.2 Background
A Field-Programmable Gate Array (FPGA) is a chip that contains a number of
configurable elements, such as registers, memory blocks (similar to L1 cache), logic
blocks, and transceivers, which are connected through reconfigurable interconnects.
An FPGA design is a particular configuration of the elements and interconnects,
such that the FPGA executes some fixed functionality. Floating-point arithmetic
traditionally had to be implemented by combining logic blocks into a circuit which is
inefficient as it consumes many resources.

Recent FPGAs, such as the Intel (formerly Altera) Arria 10 and Stratix 10,
contain variable-precision Digital Signal Processing (DSP) blocks with a floating-
point multiplier and a floating-point adder such that floating-point units (FPUs)

7777777

7.2 Background 97

can be implemented in hardware. This makes floating-point computations much
more efficient, making FPGAs a potentially interesting target for high-performance
computing.

OpenCL is a framework for writing accelerated programs [3]. Using the Intel
FPGA SDK for OpenCL, FPGA designs can now be implemented using a high-level
programming language [73]. An OpenCL FPGA design is compiled into a dataflow
pipeline. To this end, the OpenCL compiler allocates a certain amount of each of
the available resources on the FPGA, such as memory blocks and DSP blocks. Each
allocated resource corresponds to a specific location in the source code and cannot be
employed for other operations in the source code. This makes it especially important
to optimize resource usage.

OpenCL GPU kernels are typically NDRange kernels: kernels for which the work
is divided into work items, which are grouped into work groups. A GPU several
compute units with a number of cores in each compute unit organized similar to
vector units on a CPU. The GPU distributes the work by issuing many work items
in parallel onto the compute units, where groups of work items execute the same
operation on different data. By having many independent instructions in flight,
memory and/or instruction latencies are hidden, resulting in optimal utilization of
the available compute units. On FPGAs we use single work-item kernels to explicitly
express a dataflow network. Parallelism is achieved by running multiple single-work-
item kernels concurrently within a pipeline. In an efficient design, every cycle, every
DSP in the pipeline performs an operation and shifts the results to the next stage in
the pipeline. Additionally, parallelism is achieved by replicating parts of a pipeline,
and by placing multiple independent kernels onto the FPGA.

Communication between the work items is facilitated by channels (an Intel
OpenCL extension). Channels are First In, First Out (FIFO) buffers where values
of arbitrary width can be enqueued at one end and dequeued at the other end. An
attribute called the channel depth can be set, which indicates the length of the FIFO
buffer.

OpenCL GPU kernels are typically compiled at runtime, just before a kernel is
used for the first time. For FPGAs, compilation takes much longer: hours instead
of seconds. The result of such a compilation is a particular configuration of the
elements and interconnects, along with a clock frequency at which this design runs.
The maximum clock frequency (the Fmax) depends on the complexity of (parts of)
the design and the lengths of the paths between elements on the FPGA. Placement

7777777

98 IDG on FPGAs

read visibilities

read scales

read offset

read uvw

read lmn

write subgrid

repeat offset

compute index

iFFT

repeat index

apply taper

compute phase

reorder pixels

compute phasor

apply aterm

compute pixel

multiplexer

I/O kernels

gridder pipeline, replicated φ times

post-processing pipeline, not replicated

Fig. 7.1: All kernels in this design are single-work-item kernels. The majority of
the computation takes place in the gridder pipeline, which is replicated ϕ times to
compute multiple subgrids in parallel. These subgrids are multiplexed and passed to
the post-processing pipeline, which applies A-term correction, tapering, and a 2D
FFT.

and routing of the design is a stochastic process. One can compile using different
random seeds and pick the compilation which has the highest clock.

On an FPGA, the performance of an application is bound by the achieved clock
frequency of a design and the number of DSP blocks used. When using OpenCL, the
relation between the design of the program and the clock frequency is mostly opaque
and cannot be influenced directly. It is only possible to use all DSP resources when
the design is not constrained by another resource, such as memory blocks or logic.

7.3 Implementation
FPGA applications are typically implemented as a data-flow pipeline. We show
the data-flow pipeline that we created for the Image-Domain Gridding algorithm
(Algorithm 1) in Figure 7.1. The floating-point operations in this algorithm are
implemented in hardware using DSP blocks. Our design is scalable and optimizes
both the number of DSPs used and the occupancy of these DSPs such that every
cycle, (nearly) every DSP performs a useful computation. Although the computations
in gridding and degridding are similar, the degridding data-flow network is different
and not shown in Figure 7.1.

To implement gridding on the FPGA, we applied the following changes to Algo-
rithm 1: (1) we create a gridder pipeline that executes Line 3 through Line 12 to

7777777

7.3 Implementation 99

compute a single subgrid; (2) we move the computation of the index value (Line 5)
and the computation of offset (Line 3) into separate kernels to avoid underutilization
of the DSPs used to implement these computations; (3) we unroll the loop over
pixels (Line 2) to increase reuse of input data; (4) we replicate the gridder pipeline
by a factor ϕ to compute multiple subgrids in parallel; (5) input data (such as the
visibilities, Line 11) is read from DRAM in bursts in separate kernels and forwarded
to the gridder pipelines in a round-robin fashion.

The remaining steps are implemented in the form of a post-processing pipeline
using as few resources as possible while still meeting throughput requirements imposed
by the gridder pipelines. A-term correction (Line 17) is implemented as a series of two
complex 2×2 matrix multiplications (one correction matrix per receiver). Tapering
(Line 18) is implemented as a scalar multiplication to every pixel in the subgrid. The
2D FFT (Line 19) is based on the 1D Cooley-Tukey FFT algorithm, which is applied
to the rows and columns of the subgrid to perform a 2D FFT.

7.3.1 Sine/cosine computations

The OpenCL compiler recognizes the sine and cosine pair and uses 8 memory blocks
and 8 DSPs to implement it by creating an IP block (cisip). In comparison, only a
single DSP is used to compute the phase term on Line 8, and 16 DSPs are used to
implement the computation on Line 12. Hence, 8 out of every 25 DSPs (32%) are used
for sine/cosine computations. To reduce resource usage for cis(x), we investigated
how lookup tables can be used as an alternative to the compiler-generated version.
In the case of cis(x) the input x is an angle and the output is given as a coordinate
on the unit circle, which opens opportunities to exploit symmetry. Our lookup table
implementation (cislu) contains precomputed values for sin(x) in the range of [0 : 1

2 π].
We use one DSP to convert the input x to an integer index and then derive indices for
sin(x) and cos(x) using logic elements. We analytically determined that a 1024-entry
table provides sufficient accuracy for this application. The lookup table is stored in
local memory blocks, which are automatically replicated by the compiler to provide
enough internal bandwidth for the many simultaneous sine/cosine lookups.

7.3.2 Frequency optimization

The OpenCL FPGA compiler gives feedback on resource usage by generating HTML
reports, which is highly useful when optimizing resource usage. Optimizing for high
clock frequencies is difficult though: apart from a few general guidelines, there is

7777777

100 IDG on FPGAs

little guidance, such as feedback on which part of a (large) program is the clock
frequency limiter. There are low-level Quartus timing reports, but these are difficult
to comprehend by OpenCL application programmers. Also, even though the FPGA
has multiple clock domains, these are not exposed to the programmer. The whole
OpenCL program runs at a single clock frequency. Hence, a single problematic
statement, possibly not even in the critical path, can slow down the whole FPGA
design.

We developed the following method to find clock-limiting constructs: we split the
OpenCL program into many small fragments, added dummy data generators and
sink routines (so that the compiler does not optimize everything away), and compiled
each of these fragments, to determine their maximum clocks. This way, we found
for example that a single inadvertently placed modulo 13 operation slowed down the
whole application, something which was difficult to pinpoint but easy to fix.

7.3.3 Resource optimization

OpenCL GPU kernels are typically compiled the first time they are used, at runtime.
The compilation of OpenCL FPGA kernels is a much more lengthy process that,
depending on the complexity design and the target FPGA, usually takes multiple
hours. OpenCL kernels for an FPGA are therefore compiled offline and loaded onto
the FPGA at runtime. The compiler allows the user to run only the first phase of
the compilation, where the compiler produces (amongst other things) a report with
an estimate of the required FPGA resources. This step takes minutes, not hours,
and allows the user to iteratively improve the FPGA design before running the full
(lengthy) compilation.

7.4 Results
We first show the resource usage when our designs are compiled for an Arria 10
FPGA in Section 7.4.2. Next, we compare throughput and energy efficiency with a
comparable CPU and GPU in Section 7.4.3. We analyze the achieved performance
in more detail in Section 7.4.4.

7.4.1 Experimental setup

We compare our gridding and degridding design on an Arria 10 FPGA to the CPU
and GPU implementations presented in Chapter 5 and 6, respectively. We use

7777777

7.4 Results 101

Table 7.1: The Intel Haswell-EP CPU (Xeon E5-2697v3), Intel Arria 10
FPGA (Nallatech 385A) and NVIDIA Maxwell GPU (GTX 750 Ti) used in
our experiments.

Name # FPUs Peak Bandwidth TDP Procedure
Haswell 224 1.39 TFlop/s 68 GB/s 145W 28nm (TSMC)
Arria 1518 1.37 TFlop/s 34 GB/s 75W 20nm (TSMC)
Maxwell 640 1.39 TFlop/s 88 GB/s 60W 28nm (TSMC)

contemporary devices with a similar theoretical peak performance and produced
using a similar lithographical process. We, therefore, use only one socket of the
Haswell system that we used earlier and an NVIDIA GPU based on the Maxwell
architecture. See Table 7.1 for details. Note that these devices are different from the
devices used previously: we use only one CPU of a dual-socket system and an older
and less powerful GPU compared to the GPUs in Chapter 6. This is a deliberate
choice, as it allows for a fair comparison. Ideally, these three devices should perform
similarly. In practice, as we will show later, this is not the case. Therefore, this
methodology allows us to uncover the architectural differences relevant in achieving
high performance and high energy efficiency for IDG.

The imaging parameters are set as follows: N̄ = 32, T = 128, and C = 16. The
FPGA designs are scaled up by increasing ϕ until the maximum number of DSPs
is reached. The GPU (Maxwell) uses the 396.26 GPU driver and CUDA version
9.2.88.

The Arria 10 GX 1150 FPGA (Arria) comes in the form of an PCIe accelerator
card and has two banks of 4 GB DDR3 memory. The FPGA runs a Board-Support
Package (BSP) that is required to use the FPGA using Intel’s OpenCL platform.
We use the min BSP, which exposes all 1518 DSPs present on the FPGA to the
application and uses only one DDR3 memory bank. We tested various combinations
of the Intel FPGA SDK for OpenCL (versions 17.1, 18.0 and 18.1), recompiled each
application with dozens of seeds, and report the results for the version that achieves
the best clock frequency.

7.4.2 Resource usage

We refer to designs that use cisip (sine/cosine using IP blocks) as gridding-ip and
degridding-ip, while the gridding-lu and degridding-lu designs use our
alternative implementation with lookup tables (cislu). We report resource usage and

7777777

102 IDG on FPGAs

Table 7.2: Resource usage of our gridding and degridding designs on Arria. Logic
(ALUTs or FFs) is counted in terms of thousand elements. The ϕ parameter is used
to scale up the design, see Fig. 7.1. Fmax is the achieved clock frequency of the design
in MHz.

ALUTs FFs rams dsps mlabs ϕ Fmax

gridding-ip 43% 31% 64% 95% 71% 14 258
degridding-ip 47% 35% 72% 95% 78% 14 254

gridding-lu 27% 32% 61% 99% 57% 20 256
degridding-lu 33% 38% 73% 99% 69% 20 253

0 200 400 600 800 1000 1200 1518

Gridding-IP

Degridding-IP

Gridding-LU

Degridding-LU

DSPfma DSPcis DSPmisc

Fig. 7.2: Breakdown of DSP resource usage. The vertical line at 1518 corresponds
with the number of DSPs available on Arria.

the highest achieved clock frequency (Fmax) of all designs in Table 7.2. In all four
designs, the number of DSPs used is very close to the 1518 DSPs available and we
run out of DSPs before we run out of any other resource (which is good; if we would
have ran out of another resource before we ran out of DSPs, we would not be able to
get close to the peak performance). We provide a breakdown of DSP resource usage
in Figure 7.2 where we distinguish between the DSPs used to implement various
subparts of the algorithm. For instance for gridding (Algorithm 1), we distinguish
between the DSPs used to implement the complex multiplication and addition in
Line 12 (DSPfma), the sine/cosine evaluation in Line 9 (DSPcis) and miscellaneous
computations (DSPmisc), e.g. in the post-processing steps. The implementation of
computations outside of the critical path consumes few resources (DSPmisc). Since
cislu uses fewer resources compared to cisip to implement the sine/cosine evaluation,
we can scale up gridding-lu and degridding-lu further (by increasing ϕ from 14
to 20) than is possible with gridding-ip and degridding-ip.

7777777

7.4 Results 103

0

5

10

15

A
rr
ia
-L

U

A
rr
ia
-I
P

M
a
x
w
e
ll

H
a
sw

e
ll

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

Fig. 7.3: Imaging throughput
0

0.1

0.2

0.3

0.4

A
rr
ia
-L

U

A
rr
ia
-I
P

M
a
x
w
e
ll

H
a
sw

e
ll

E
ffi

ci
en

cy
[M

V
is

ib
il

it
ie

s/
J
]

Fig. 7.4: Energy efficiency

7.4.3 Throughput and energy efficiency

We compare throughput in Figure 7.3. The designs that use a lookup table to
implement the sine/cosine evaluation (cislu) achieve a higher throughput due to a
larger number of replicated gridder or degridder pipelines running in parallel. Both
Arria and Maxwell accelerate gridding and degridding compared to Haswell by
achieving more than double the throughput.

On both the FPGA and GPU the visibilities (and other data) are copied to and
from the device using PCIe transfers. On Maxwell, we can fully overlap PCIe
transfers with computations, such that throughput is not affected by these transfers.
On Arria, we found that PCIe transfers overlap only partially: the FPGA idles 9%
of the total runtime waiting on PCIe transfers. This is probably a limitation in the
OpenCL runtime or Board Support Package. We see no fundamental reason why
PCIe transfers could not fully overlap on the FPGA.

We use PowerSensor [48] (see also Chapter 3) to measure the energy consumption
of the PCIe accelerator devices (Maxwell and Arria). On Haswell, we use
LIKWID [47] to measure the energy consumption of the CPU cores and the associated
DRAM memory. Our measurements in Figure 7.4 indicate that both accelerators are
much more energy-efficient than Haswell by processing over an order of magnitude
more visibilities for every Joule consumed.

7777777

104 IDG on FPGAs

0 20 40 60 80 100 120 140 160 180

Haswell

Maxwell

Arria-IP

Arria-LU

Runtime [s/GVis]

timefma

timecis
timemisc

Fig. 7.5: Runtime breakdown

7.4.4 Performance analysis

Despite their almost identical theoretical peak performance, there is quite a large
disparity between the achieved throughput on the various devices. As we illustrate
in Figure 7.5, these differences are mainly caused by how sine/cosine (cis(x)) is
implemented. On Haswell we use MKL to evaluate cis(x) in software: MKL issues
(vector) instructions that are executed by the FPUs in the CPU cores. On Maxwell,
Special Function Units (SFUs) evaluate cis(x) in hardware in a separate processing
pipeline, such that FMAs and sine/cosine evaluations can be overlapped. Similarly,
the distinct operations (fma, cis, and misc) also overlap on Arria, since these are
all implemented using dedicated DSPs. However, unlike Maxwell, these operations
compete for resources. On Haswell and Maxwell, the miscellaneous operations
contribute negligibly to the overall runtime. On Arria, the misc operations are
implemented using as few DSPs as possible (and shared by multiple gridder pipelines)
to minimize underutilization.

We analyze the achieved floating-point performance by applying the roofline
model, see Figure 7.6. In this analysis, we only include all +, − and × floating-point
operations in the operation count (e.g. Flopsfma + Flopsmisc), while we exclude
all cis(x) operations (e.g. Opscis). According to the operational intensity, the
performance of gridding and degridding is compute-bound on all devices. As we
illustrated in Figure 7.5, on Haswell the Flops and Ops are both executed on
the FPUs and the performance is therefore bound by the instructions executed to

7777777

7.5 Lessons learned 105

4 8 16 32 64 128 256 512

0.1

1

H
as
w
el
l

A
rr
ia

350 Mhz

255 Mhz

450 Mhz

M
ax
w
el
l

Haswell

Maxwell
90%

Arria-IP

Arria-LU 90%
63%

Operational intensity [Op/Byte]

P
er
fo
rm

a
n
ce

[T
O
p
/
s]

gridding degridding

Fig. 7.6: Roofline analysis

evaluate sine/cosine (indicated with the dashed line). Due to the SFUs, this problem
does not occur on Maxwell, and the achieved performance is about 90% of the
theoretical peak.

The dotted line on the roofline for Arria illustrates the theoretical peak, at the
advertised frequency of 450 Mhz. In practice, even with only a single DSP used,
the maximum clock frequency that the compiler achieves is 350 Mhz resulting in a
lower practical peak indicated by the solid line. The achieved clock frequency for
our gridding and degridding design is about 255 Mhz on average and is indicated
with the dashed line. The percentage of DSPs used to implement Flops (63% for
gridding-ip and degridding-ip, 90% for gridding-lu and degridding-lu,
see Figure 7.2) provides upper bounds on attainable performance. The achieved
performance is within 99% of these bounds, indicating that the designs are nearly
stall-free and perform a useful operation nearly every cycle. Note that stalls due to
PCIe transfers are not taken into account for this analysis (see Section 7.4.3).

7.5 Lessons learned
As we implemented and optimized Image-Domain Gridding for both FPGAs and
GPUs, we found differences and similarities with respect to architecture, programming
model, implementation effort, optimizations, performance, and energy efficiency.

7777777

106 IDG on FPGAs

The source code for the FPGA imager is highly different from the GPU code.
This is mostly due to the different programming models: with FPGAs, one builds
a dataflow pipeline, while a GPU executes instructions. The FPGA code consists
of many (possibly replicated) kernels that each occupy some FPGA resources, and
these kernels are connected by channels (FIFOs). The programmer has to think
about how to divide the FPGA resources (DSPs, memory blocks, logic, etc.) over
the pipeline components, so that every cycle all DSPs perform a useful computation,
avoiding bottlenecks and underutilization. Non-performance-critical operations, such
as initialization routines, can consume many resources, while on GPUs, performance-
insensitive operations are not an issue. On FPGAs, it is also much more important
to think about timing (e.g., to avoid pipeline stalls), but being forced to think about
it leads to high efficiency: in our gridding application, no less than 96% of all DSPs
perform a useful operation 99% of the time.

FPGAs have typically less memory bandwidth than GPUs, but we found that
with the FPGA dataflow model, where all kernels are concurrently active, it is less
tempting to store intermediate results off-chip than with GPUs, where kernels are
executed one after another. Our FPGA designs use memory only for input and
output data; we would not even have used FPGA device memory at all if the OpenCL
Board-Support Package would have implemented the PCIe I/O channel extension.
In contrast, the cuFFT GPU library even requires data to be in off-chip memory.

Both FPGAs and GPUs obtain parallelism through kernel replication and vec-
torization; FPGAs also by pipelining and loop unrolling. This is another reason
why FPGA and GPU programs look different. Surprisingly, many optimizations for
FPGAs and GPUs are similar, at least at a high level. Maximizing FPU utilization,
data reuse through caching, memory coalescing, memory latency hiding, and FPU
latency hiding is necessary optimizations on both architectures. For example, an
optimization that we implemented to reduce local memory bandwidth usage on the
FPGA also turned out to improve performance on the GPU, but somehow, we did
not think about this GPU optimization before we implemented the FPGA variant. 1

However, optimizations like latency hiding are much more explicit in FPGA code
than in GPU code, as the GPU model implicitly hides latencies by having many

1The performance of our initial gridder and degridder kernel for NVIDIA GPUs (presented
in [11]) was bound by the memory of shared memory. After coming up with this optimization for
FPGAs, we tested a similar optimization for our GPU kernels, which indeed also reduced local
memory bandwidth usage, and therefore increased performance. We take this optimization into
account in Chapter 6 where we present our GPU implementation and performance analysis.

7777777

7.6 Related work 107

simultaneous instructions in flight. On top of that, architecture-specific optimizations
are possible (e.g., the sin/cos lookup table; see Section 7.3.1).

Overall, we found it more difficult to implement and optimize for an FPGA than
for a GPU, mostly because it is difficult to efficiently distribute the FPGA resources
over the kernels in a complex dataflow pipeline. Yet, we consider the availability of
a high-level programming language and hard FPUs on FPGAs an enormous step
forward. The OpenCL FPGA tools have considerably improved during the past few
years, but have not yet reached the maturity level of the GPU tools, which is quite
natural, as the GPU tools have had much more time to mature.

7.6 Related work
Several studies compare energy efficiency between OpenCL applications for FPGAs
and GPUs [74–79]. In most cases, they compare FPGAs and GPUs manufactured
using a similar lithographical process and report higher energy efficiency for FPGAs
compared to GPUs. We compared contemporary and comparable devices (in terms of
lithographical process and peak performance) and showed that our implementations
perform close to optimal both on the FPGA and on the GPU. On Arria 10 we show
that the performance of our designs is bound by clock frequency, something we can
not improve with the current OpenCL compiler for FPGAs. On GPUs, this issue is
non-existent. Furthermore, we explained that GPUs have an advantage over FPGAs,
by computing sine/cosine using dedicated hardware. Therefore, and in contrast to
what the related work suggests, our results indicate that FPGAs are not necessarily
more energy-efficient than GPUs.

7.7 Conclusion
The high-level OpenCL programming environment enabled us to implement IDG on
an Intel Arria 10 FPGA, and to optimize resource usage and resource utilization:
we were able to use nearly all the available DSPs to perform useful computations,
almost every cycle. However, we were unable to achieve peak clock frequencies, and
the FPGA tools provide insufficient means to improve this.

Being able to implement a complex application for a FPGA illustrates that
having support for a high-level programming language is a major leap forwards in
programmability, as we would not have been able to implement this application using
a hardware description language.

7777777

108 IDG on FPGAs

FPGAs are traditionally used for low-latency, fixed-point, and streaming com-
putations. With the addition of hardware support for floating point computations
and the OpenCL programming model, the FPGA has also entered the domain where
GPUs are used: high-performance floating-point applications.

Having implemented IDG on both GPUs and on an FPGA, we conclude that for
this application GPUs are superior accelerators over the Arria 10 FPGA for a number
of reasons: (1) NVIDIA GPUs support the evaluation of sine/cosine in dedicated
hardware, which put the GPUs at a significant advantage; (2) clock frequency
bottlenecks as we encountered on Arria 10 are no concern on GPUs; (3) GPUs are
still easier to program than FPGAs; (4) the GPU programming environment (e.g., the
compiler and profiler) are more mature than the Intel FPGA SDK for OpenCL. Intel
has announced a new generation FPGAs (Agilex), which provide better theoretical
peak performance and energy efficiency compared to Arria 10. Together with ongoing
improvements to the programming tools, we expect that FPGAs will become an
increasingly popular accelerator platform for general HPC applications.

So far we used the FPGA as an accelerator, and like on a GPU, we used it to
offload the computation (and associated data) from a host system to an accelerator
device. We discussed that for the fastest GPUs available today, a high-bandwidth
interconnect (such as NVLink) is needed to keep the GPU busy. While we did not
encounter an interconnect I/O bottleneck for the Arria 10, this will likely change
for future (faster) FPGAs. Some FPGAs boards provide (multiple) high-bandwidth
(100 GBit/s) interfaces, which open up possibilities for a streaming implementation,
where data is transferred directly to the accelerator, rather than via a host system.
This is a distinguishing feature that sets FPGAs apart from other accelerators and
might prove to be a major advantage for specific workloads.

We demonstrated that our IDG implementation for the Intel Arria 10 FPGA
achieves almost three times the throughput of an optimized CPU implementation
while the FPGA consumes about eight times less energy than the CPU. This illustrates
that FPGAs have become a feasible accelerator platform for high-performance floating-
point applications. Programming and optimizations of FPGAs remain challenging,
even using OpenCL.

RQ3c: How efficient is IDG on FPGAs?

FPGAs are efficient accelerators for IDG, as our designs are able to utilize (almost)
all the DSP resources to perform useful computations at every cycle.

C
ha

pt
er 8

CPUs versus GPUs versus FPGAs

This chapter does not present any new research. Instead, we summarize the results
of Chapter 5 through 7 to answer the following research question:

RQ3: What is the most efficient class of hardware architectures for IDG?

88888888

110 CPUs versus GPUs versus FPGAs

8.1 Introduction
In the previous chapters, we explained how we implemented Image-Domain Gridding
(IDG) for CPUs, GPUs, and FPGAs and we showed the performance and energy
efficiency achieved on these classes of hardware architectures. In this chapter, we
compare the results to find the most suitable architecture for IDG.

8.2 Performance bounds
The roofline model proved to be a highly useful method to visualize performance
and to find performance bounds and optimization opportunities. Every device has a
theoretical peak performance (peakMAX), but we found that for no device this level
of performance is attainable in practice. In all cases there is another limit, peakIDG,
that limits the performance of our IDG implementation. We optimized the IDG
gridder and degridder kernels such that they perform as close to this limit as possible.
Table 8.1 provides an overview of the performance bounds and the percentage of the
peak performance achieved.

Table 8.1: Performance bounds for the architectures that we evaluated. peakMAX

is the theoretical floating-point peak performance that a device can achieve when
it executes single-precision floating-point operations such as +, − and ∗. peakIDG

denotes the architecture-specific performance bound for IDG, which is the peak per-
formance for the instruction mix in the gridder and degridder kernel, consisting of
17 real-valued fused multiply-add operations and one evaluation of sine/cosine.

Name Type % of peakMAX % of peakIDG Bound by
Haswell CPU 20% 95% sine/cosine in software
Knl CPU 15% 70% sine/cosine in software
Maxwell GPU 90% 95% latency
Pascal GPU 90% 95% latency
Vega GPU 60% 90% sine/cosine in hardware
Arria FPGA 70% 99% clock frequency

Both Haswell and Knl are bound by the evaluation of sine/cosine in software.
On Haswell the percentage of the peak (both for peakMAX and for peakIDG is
higher than for Knl. This is mainly due to load imbalance and (partially) masked
vector instructions. Since IDG is compute-bound, our implementation for Knl does
not benefit from architectural features as MCDRAM or four-way hyperthreading to

88888888

8.3 Throughput and energy efficiency 111

gain a performance advantage over Haswell. For IDG, Knl is therefore little more
than a many-core CPU running at lower clock frequency which requires code to be
vectorized with longer vector length compared to Haswell.

The GPUs support the evaluation of sine/cosine in hardware, but the implementa-
tion is different: Vega uses the floating-point units to evaluate them at a quarter of
the rate of normal floating-point additions or multiplications. NVIDIA GPUs on the
other hand has dedicated special-function units to evaluate sine/cosine simultaneous
with other computations. This gives NVIDIA GPUs a very significant advantage
over Vega which is also reflected in the much higher percentage of peak performance
that is achieved.

The FPGA has a completely different architecture compared to the CPUs and
GPUs discussed above. It is programmed as a dataflow engine where an application-
specific circuit is created. We were able to use close to all floating-point units (DSPs)
and these perform useful computations in almost all cycles. However, the performance
is limited by the clock frequency.

8.3 Throughput and energy efficiency
We have measured the throughput on devices with different theoretical peak perfor-
mances. To compare the underlying architecture, and not the specific device, we
normalize the results and show the results in Fig. 8.1a. These results indicate that
in relative terms, Knl is not faster than Haswell. The Arria FPGA performs
similarly to the Vega GPU. While the two NVIDIA GPUs (Maxwell and Pascal)
are based on a different architecture, IDG runs very efficiently on either one of
them. In this comparison, the results look similarly as they both achieve over 4× the
throughput compared to Haswell.

We compare the architectures in terms of energy efficiency in Fig. 8.1b. Knl is
slightly more energy-efficient than Haswell, but this is in stark contrast to Arria
and Vega, which achieve 8-fold better energy efficiency. Thanks to improvements to
the micro-architecture and by using a different processing technology (16nm versus
28nm), NVIDIA GPUs have become more energy-efficient over the years. This is
also reflected in these results, which indicate that Pascal is more energy-efficient
than Maxwell. Pascal demonstrates superior energy efficiency and is more than
an order of magnitude more energy-efficient compared to Haswell.

88888888

112 CPUs versus GPUs versus FPGAs

1

2

3

4

5

A
rr
ia
-L

U

V
e
g
a

P
a
sc
a
l

M
a
x
w
e
ll

K
n
l

H
a
sw

e
ll

T
h
ro
u
gh

p
u
t
[n
o
rm

a
li
ze
d
]

(a) Normalized throughput

1

5

10

A
rr
ia
-L

U

V
e
g
a

P
a
sc
a
l

M
a
x
w
e
ll

K
n
l

H
a
sw

e
ll

E
ffi

ci
en

cy
[n

or
m

al
iz

ed
]

(b) Normalized energy efficiency

Fig. 8.1: We normalized throughput and energy efficiency with Haswell as a
baseline and we corrected for the theoretical peak floating-point performance of the
various devices that we analyzed. This allows us to compare the architectures in
relative terms. Thus if we would run IDG on a Haswell CPU and a Pascal GPU
with identical peak floating-point performance, the GPU would achieve a 4× higher
throughput while consuming less than 10% of the energy compared to the CPU.

88888888

8.4 Conclusion 113

8.4 Conclusion
The performance of IDG is highly dependent on the support for sine/cosine evaluations.
Haswell and Knl only support these evaluations in software, which makes these
architectures less suitable for IDG than architectures that offer native support. On
Arria, we created a custom data-flow circuit tailored for IDG. However, Pascal
supports the evaluation of sine/cosine natively in a dedicated processing pipeline and
therefore performs best. Also in terms of efficiency, Pascal is the best architecture.
Furthermore, as we also discussed in Chapter 7, GPUs are significantly easier to
program than FPGAs, despite using a similar programming model.

RQ3: What is the most efficient class of hardware architectures for IDG?

The most efficient class of hardware architecture for IDG is GPUs. Especially
NVIDIA GPUs with support for sine/cosine in hardware perform excellently and
achieve superior energy efficiency.

8.5 Outlook
The Pascal GPU architecture supports 16-bit (half-precision) data types and arith-
metic operations. For the GA102 GPU as found in the GTX 1080, the performance is
only 1/64 of the 32-bit (single-precision) floating-point performance. For the GA100
GPU (as found in the Tesla P100) however, the half-precision performance is twice
that of single-precision. Moreover, newer generations of GPUs (Volta and newer)
support Tensor Cores, which provide 8 times the single-precision performance for
special matrix math at half-precision. For IDG, it is not straightforward to take
advantage of these advancements in GPU architecture, for two main reasons: 1) we
don’t yet know whether radio-astronomical imaging in general and IDG in specific
can tolerate low-precision data types and arithmetic. (See also Section. 4.4); 2) In
its current form, the IDG gridder and degridder kernel have an instruction mix well
balanced for GPUs like Pascal, with sine/cosine and FMA operations in roughly the
same ratio as the functional units on the GPU. Increasing the FMA performance
two-fold (e.g., by performing them in half-precision), would require double the number
of SFUs to keep up. If not for performance, reduced precision can still help to reduce
the data sizes (which is good to alleviate I/O overhead) and might also prove to be
more energy-efficient.

Pa
rt III

Image-Domain Gridding in Context

C
ha

pt
er 9

IDG versus AWPG

The contents of this chapter are based on the following paper:

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

In this chapter we answer the following research question:

RQ4: How does IDG compare to traditional imaging techniques in terms
of performance and energy efficiency?

999999999

118 IDG versus AWPG

9.1 Introduction
In this chapter we compare Idg with the W-projection implementation introduced
in [13] – the fastest W-projection implementation publicly available. This comparison
aims to estimate how much better IDG performs in comparison with traditional
W-projection. We refer to the optimized W-projection implementation as Wpg
(W-projection gridding) from now on. One of the distinguishing features of IDG is
the support for direction-dependent corrections (A-term correction) and we would
like to compare its performance to AW-projection. As no efficient AW-projection
implementation was available, we extended Wpg to AWpg to include A-term
correction to make a complete comparison. Both are available at [80].

9.2 Background
The minimum size of the W-kernels NW×NW is determined by the observation settings
(the instrument, the field of view, the target location, etc.) [19, 10]. Furthermore,
the size of the W-kernel depends on the baseline length. For LOFAR, the W-kernel
can be as large as 500×500 pixels for the longest baseline. In practice, W-stacking is
used to limit NW to small values in all situations (e.g., NW ≤ 16) [30, 31].

W-planes are distinct copies of the grid, where slices of the visibilities (based on
w-coordinate) are gridded onto. The W-planes in the W-stack may be processed
one by one to save memory, at the cost of having to sort visibilities. Allowing large
W-kernels, however, reduces the need to have additional W-planes. This presents a
trade-off between the number of computations to be performed, versus the amount
of memory required for the W-stack.

9.3 AW-projection gridding implementation
We implemented AWpg by extending Wpg with A-term corrections. We assume
that for AWpg, the W-term and A-term correction terms are combined into a single
convolution kernel, which we will refer to as the AW-kernel. Furthermore, we assume
that the AWpg imager has the following properties: (1) The AW-kernel is different
for every baseline; (2) the AW-kernel changes after a (fixed) number of time steps; (3)
the A-term, like in Idg, is provided in the image domain; (4) a Fourier transformation
is performed to get the AW-kernel into the Fourier domain.

999999999

9.4 Performance comparison 119

As the A-term correction is baseline dependent and varies over time (properties
1 and 2), the AW-kernel has to be recomputed frequently. The amount of (device)
memory required for the AW-kernels is prohibitively large and we, therefore, interleave
the computation of the AW-kernel with gridding. We implement the computation
of the AW-kernel according to properties 3 and 4, a Fourier transformation of the
AW-kernel is performed before the gridder kernel is executed. Pseudocode for AWpg
is shown in Algorithm 10. Like in Idg, the FFT is performed using an FFT library
(e.g. using FFTW or Intel MKL). For the GPU implementation of AWpg, the Fourier
transformations are performed on the GPU, using cuFFT.

By caching parts of the grid that are currently being updated in registers, Wpg
reduces the number of (atomic) grid accesses, which significantly increases perfor-
mance [13]. This optimization is also used in AWpg.

9.4 Performance comparison
Fig. 9.1a and 9.1b show the performance of IDG, WPg, and AWpg on Haswell
and Pascal respectively for various values of NW . On Haswell, Wpg outperforms
Idg by quite a large margin, for all kernel sizes, but recall that Wpg does not correct
for DDEs (affecting image quality). Both curves show a decline in throughput as the
size of the kernel (and hence the number of computations per visibility) increases.
The throughput of AWpg is about 2−3× lower than the throughput of Wpg. This is
mainly caused by the additional time spent in the Fourier transformation to compute
the AW-kernel. The performance of the FFT is highly sensitive to the size of the
transformation. Therefore, we use a larger kernel size than strictly necessary when
this increases overall throughput.

We observe that on Haswell, Idg is faster than AWpg for larger values of
NW . On Pascal, the differences between Wpg, AWpg and Idg is larger than on
Haswell. This is mainly due to Wpg and AWpg being mostly I/O bound, while
Idg is compute-bound. Due to fewer data transfers between host and device and
the W-kernel computation being cheaper than the AW-kernel computation, Wpg
on average performs about 4× better than AWpg. The highest overall throughput
is achieved on Pascal using Idg, outperforming AWpg by almost an order of
magnitude. Improvements to the GPU implementation of Wpg can increase its
performance twofold from roughly 28% of the peak floating-point performance (which
we measured in our tests) to 55% in the best case [64, 81]. Even if Wpg and AWpg
on Pascal would be twice as fast, they would still be outperformed by Idg.

999999999

120 IDG versus AWPG

1 for bl = 1..Bobs do
2 for ts = 1..Tobs..T̄stepsize do
3 int NW = compute_kernel_size(bl, ts);
4 complex<float> wkernel = compute_wkernel(NW);
5 complex<float> [NW × oversampling][NW × oversampling] awkernel =

compute_awkernel(bl, ts, NW , wkernel);
6 awkernel = apply_2d_fft(awkernel);
7 for t = 1..T̄stepsize do
8 for c = 1..Cobs do
9 for y = 1..NW do

10 for x = 1..NW do
11 for p = 1..P do
12 complex<float> weight = awkernel(y, x, p);
13 int yidx = compute_y_index(bl, t, c, y);
14 int xidx = compute_x_index(bl, t, c, x);
15 complex<float> visibility = visibilities[t][c][p];
16 grid[p][y_idx][x_idx] += weight * visibility; ;
17 end
18 end
19 end
20 end
21 end
22 end
23 end

Algorithm 10: This pseudocode for AWpg illustrates two main differences
between AWpg and IDG: (1) in AWpg kernels are computed prior to gridding,
while IDG computes them on-the-fly; (2) AWpg grids each visibility directly onto
NW ×NW pixels in the grid, while IDG grids onto subgrids of N̄ ×N̄ pixels. In
this pseudocode T̄ denotes the length of a timeslot for which the same A-term is
applied. Like in [13], we use an oversampling rate (oversampling = 8). The pixel
update in Line 16 comprises a complex multiplication and addition, followed by
an atomic update of the grid.

999999999

9.4 Performance comparison 121

8 16 32 64
1

10

100

1,000

W-kernel size NW

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

IDG
Wpg
AWpg

(a) CPU throughput

8 16 32 64
1

10

100

1,000

W-kernel size NW

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

IDG
Wpg
AWpg

(b) GPU throughput

Fig. 9.1: On the CPU, Wpg is the fastest gridder (but it does not correct for
DDEs). Idg performs similarly to AWpg for large kernel sizes. On the GPU, Idg
outperforms both AWpg and Wpg, for all kernel sizes.

999999999

122 IDG versus AWPG

8 16 32 64
0.001

0.01

0.1

1

10

W-kernel size NW

E
ffi

ci
en

cy
[M

V
is

ib
il

it
ie

s/
J
]

IDG
Wpg
AWpg

(a) CPU efficiency

8 16 32 64
0.001

0.01

0.1

1

10

W-kernel size NW

E
ffi

ci
en

cy
[M

V
is

ib
il

it
ie

s/
J
]

IDG
Wpg
AWpg

(b) GPU efficiency

Fig. 9.2: In relative terms, these energy efficiency results match the throughput
results in Fig 9.1. On Haswell, Wpg is the most energy-efficient gridder. Idg is
more energy-efficient than AWpg for large kernel sizes. Furthermore, also in terms
of energy efficiency, on Pascal, Idg is more energy- efficient than both Wpg and
AWpg.

999999999

9.5 Energy efficiency comparison 123

9.5 Energy efficiency comparison
We measured the energy consumption for Wpg, AWpg, and IDG on Haswell
and Pascal and found some notable differences, see Fig. 9.2. On Haswell, Wpg
consumes the most energy, followed by Idg (6% lower) and AWpg consumes the
least amount of energy (12% lower than Wpg). However, Wpg offsets this higher
energy consumption with its throughput. In terms of visibilities processed per Joule
consumed, on Haswell, Wpg is, therefore, the most energy-efficient imager. On
Pascal, the instantaneous energy consumption of Wpg and IDG approaches the
Thermal Design Power (TDP) of the device, while AWpg consumes about 30% less
energy. This is due to the FFTs that AWpg performs, which consume significantly
less energy in comparison to the gridder kernel. Overall, IDG on Pascal is the most
energy-efficient imager.

9.6 Conclusion
We have compared the performance and energy efficiency of W-Projection, AW-
Projection and IDG, and can now answer the research question:

RQ4: How does IDG compare to traditional imaging techniques in terms
of performance and energy efficiency?

On CPUs, IDG is not faster or more energy-efficient compared to W-Projection and
AW-Projection. On GPUs, IDG exceeds the performance of the simpler W-projection
gridding, while providing the functionality of the more challenging AW-projection
gridding.

C
ha

pt
er 10

IDG for the Square-Kilometre Array

The contents of this chapter are based on the following paper:

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

In this chapter we answer the following research question:

RQ5: Does IDG meet the performance and energy efficiency requirements
for the Square Kilometre Array?

10101010101010101010

126 IDG for the Square-Kilometre Array

10.1 Introduction
In Section 2.2 we explained that imaging for the Square Kilometre Array (SKA)
is a challenging task. We now come back to this challenge by analyzing whether
the Image-Domain Gridding (IDG) on GPUs is a viable solution for SKA real-time
imaging. To this end, in Section 10.2, we first establish the performance and energy
efficiency requirements that a candidate solution should meet. In Section 10.3 we
provide an estimate of the performance and energy consumption of a Science Data
Processor (SDP) system based on GPUs. In Section 10.4 we extrapolate our results
towards this system and in Section 10.5 we conclude.

10.2 Required data rates
The SKA community uses a parametric model [36] to analyze processing requirements
for the Science Data Processor (SDP) compute platform. This model is available
online at [36]. We use the numbers from the “2019-06-20-2998d59_hpsos.csv” analysis
of imaging HPSOs to establish an estimated imaging visibility rate of around 1264
MVis/s. If we consider an average of 10 imaging cycles (see [37] for why this is needed)
and take into account that SKA1 Low might only be doing imaging observations half
the time [38], the required processing rate becomes 6.3 GVisibilities/s.

This data rate does not take baseline-dependent averaging (BLDA) into account.
Using BLDA, the overall number of visibilities could reduce by an order of magnitude.
This could lead to having few visibilities per subgrid for the shortest baselines. The
results in Section 6.4.4 suggest that this has a negative effect on the throughput of
IDG. For the remainder of this discussion, we use the aforementioned processing rate
without BLDA and assume that the negative impact on throughput in the case of
BLDA will be offset by the lower overall visibility rate.

10.3 Science Data Processor (SDP)
The SKA consortium plans to build two main SDP systems, one for SKA-1 Low and
one for SKA-1 Mid. According to the most recent plans, these processing facilities
will initially provide a total double-precision peak performance of 50 PFlop/s [82].
The computing power will be distributed equally among the two sites and will later
be extended to a combined 260 PFlop/s. The power cap for the final system will be
5 MW per site.

10101010101010101010

10.4 IDG for SKA 127

Gridding and degridding are estimated to contribute about 13% to the total
SDP computation [83]. This implies that 0.13 × 50 PFlop/s ≈ 6.5 PFlop/s of the
total SDP compute budget is available for gridding and degridding and that these
operations may consume up to (50

260) × 5 MW × 0.13 ≈ 125 kW per site.
In this analysis, we use the performance and energy efficiency results of the

NVIDIA Tesla P100 GPU (Pascal). By the time that the SKA will be built, we
assume that the latest generation of GPUs will be used. These will likely be faster and
more energy-efficient compared to the GPUs available today. Since the theoretical
peak-performance in double-precision for Pascal is 5.3 TFlop/s, 6,500 TFlop/s

5.3 TFlop/s ≈ 1226
Tesla P100 GPUs would be needed to provide 6.5 PFlop/s of compute power. Next,
we use the measured throughput for IDG on Pascal to estimate how many GPUs
are needed to process the data rate of 6.3 GVisibilities/s.

10.4 IDG for SKA
The average throughput for Unified on Pascal for large images (40,000 × 40,000
pixels) is about 0.20 GVisibilities/s (see Fig. 6.12). Since both gridding and degridding
have to be performed every imaging cycle, the combined imaging throughput is
0.10 GVisibilities/s. The average GPU power consumption in this setting is 255 W.

This means that approximately 6.3/0.1 = 63 Tesla P100 GPUs are needed to
process all input data, only a fraction of the 1226 GPUs available. The total power
consumption for all these GPUs adds up to 63 × 255W = 16 kW, which is well within
the power budget of 125 kW per site.

Even given that imaging throughput is about halved for spectral-line imaging
(see Fig. 6.14a), and taking more imaging cycles and/or unforeseen bottlenecks in
other parts of the imaging pipeline into account, there is headroom to still meet
the constraints. Moreover, future generation GPUs will likely be faster and more
energy-efficient than Pascal, which will make it even easier to remain within the
compute and power constraints.

Next, we extrapolate our results for AWpg on Pascal from Section 9.4. On
Pascal, IDG gridding on average is about an order of magnitude faster and almost
7× more energy-efficient than AWpg gridding. Under the assumption that AWpg
is extended to support degridding (with degridding about as fast as gridding) and
that support for large images (e.g. 40,000 × 40,000 pixels) is added to AWpg, the
number of GPUs required for SKA would be approximately 9.6/0.01 = 960. The
power consumption of these GPUs would be about 960×175 = 168 kW. While AWpg

10101010101010101010

128 IDG for the Square-Kilometre Array

meets the SKA requirements in terms of GPUs needed, the power consumption would
be excessive given the power budget of 125 kW.

The dish-based SKA-1 Mid telescope has a considerably more stable beam shape
compared to the dipoles in SKA-1 Low. Therefore, there are also some SKA imaging
use-cases where it may not be necessary to apply full DDE correction with A-terms
that change continuously throughout the observation. In this setting, the imaging
throughput will be somewhere between Wpg and AWpg, such that fewer GPUs
are needed than computed above. In this case, AWpg with a limited form of DDE
correction may also meet the SKA power budget.

10.5 Conclusion
Idg runs much more efficiently than 10% of the peak performance generally considered
for SDP processing [36]. Our analysis reveals that even in the worst case (for spectral-
line imaging) an imager based on IDG using NVIDIA Tesla P100 GPUs would meet
SKA compute and power budget.

RQ5: Does IDG meet the performance and energy efficiency requirements
for the Square Kilometre Array?

Our results indicate that IDG solves the most demanding parts of imaging (gridding
and degridding with A-term correction), bringing us a big step closer to making
imaging for the SKA a reality.

C
ha

pt
er 11

IDG use cases

The contents of this chapter are based on the following paper:

Radio-Astronomical Imaging with WSClean and Image-Domain Grid-
ding
Veenboer, B., van der Tol, S., Offringa, A. R., Romein, J. W., Dijkema, T. J.,
In General Assembly and Scientific Symposium (GASS) of the International
Union of Radio Science (URSI GASS), 2020

There is no research question that we try to answer in this chapter. Instead, we
provide an overview of several use cases of Image-Domain Gridding, illustrating that
the research presented in this thesis has a substantial impact on the radio-astronomical
scientific community.

1111111111111111111111

130 IDG use cases

11.1 Introduction
Image-Domain Gridding started as proof-of-concept developed by Bas van der Tol
consisting of a few CUDA kernels along with host code to run these kernels. This code
has evolved into a much more extensive and feature-rich astronomical package publicly
available at [14]. This package comes with examples that run IDG on realistic albeit
generated input data, modeled after the LOFAR [6] or proposed SKA [5] telescope
layout. We used this code throughout the thesis to obtain performance and energy
efficiency measurements on both kernel level (gridder, degridder) as well as on routine
(gridding, degridding) level (i.e. gridding comprises the gridder, subgrid-fft, and
adder kernel).

We collaborated with André Offringa to integrate IDG in WSClean [31], such
that it could use the high-performance (GPU-accelerated) gridding and degridding
routines. This has led to the implementation of many new or improved features to
the IDG library, such as the ‘Execution Plan’, time-varying A-terms per subgrid, and
‘channel-groups’. Overall, these efforts make IDG a much more robust and widely
useable library.

We have published a paper about the use cases of IDG [84] and provide an
overview in the following sections.

11.2 IDG in WSClean
WSClean is a widely-used imager [31] that uses the W-stacking algorithm to imple-
ment inversion (gridding) and prediction (degridding) and provides several novel
deconvolution algorithms relevant for the SKA. This makes WSClean more robust to
calibration errors and an order of magnitude faster than alternative imagers.

We integrated IDG into WSClean such that features as data handling, decon-
volution, etc. are maintained, while the existing inversion (gridding) and predict
(degridding) functionalities are provided by IDG. Together, WSClean and IDG pro-
vide a unique mix of state-of-the-art imaging and deconvolution algorithms. This
combination is now used in production by a variety of different radio observatories,
such as LOFAR [6] and the MWA [7]. Figure 11.1 illustrates that the direction-
dependent ionospheric and gain corrections provided by WSClean+IDG result in
superior image quality compared to an image where these corrections are not applied.
We are currently working towards creating an imaging pipeline (called ‘Rapthor’) for
LOFAR data processing capable of direction-dependent calibration and imaging.

1111111111111111111111

11.2 IDG in WSClean 131

(a) WSClean with corrections for direction-independent effects (DIEs).

(b) WSClean with corrections for both direction-independent effects as well as
direction-dependent effects (DDEs).

Fig. 11.1: These images by [85] are an extract of the ‘Lockman Hole’ field (at 46 Mhz,
0.4" resolution) and illustrate the benefits of using an imager capable of correcting for
direction-dependent effects (DDEs, such as total electron content (TEC) and antenna
gain effects) in addition to correction for direction-independent effects (DIEs, such
as the shape of the primary beam). By applying a correction for DDEs, the artifacts
around the sources are significantly reduced. IDG is the first GPU-accelerated imager
capable of efficiently correcting for DDEs during imaging.

1111111111111111111111

132 IDG use cases

11.3 IDG for EoR
Experiments that try to observe the 21-cm redshifted signals from the Epoch of
Reionisation (EoR) using interferometric low-frequency instruments have stringent
requirements on the processing accuracy. In 21-cm EoR power spectrum experiments,
foregrounds are distinguished from the 21-cm signals by their spectral smoothness.
Therefore, spectral accuracy is a particularly important aspect of a gridder. Offringa
et al. [86] demonstrate that traditional algorithms, with standard settings, are not
accurate enough for 21-cm signal extraction. Of the various methods, IDG shows the
highest accuracy with the lowest imaging time. Therefore, Image-Domain Gridding
is overall the most suitable algorithm for 21-cm EoR power spectrum experiments,
including for future analysis of data from the Square Kilometre Array (SKA).

11.4 IDG for direction-dependent calibration
Many direction-dependent calibration algorithms split the sky in facets and solve
for a gain in each facet, e.g. [87]. Van der Tol et. al. [88] propose a new method
in which a smooth screen is directly fitted to the data. This is advantageous in
combination with gridders that apply smooth screens, such as IDG as this provides
better accuracy and a higher signal to noise. Van der Tol demonstrated IDG-Cal,
which is an implementation of such a solver based on the IDG degridder.

11.5 Conclusion
We created an imager (WSClean+IDG) that combines the state of the art in de-
convolution techniques with an efficient GPU-accelerated imager that corrects for
polarized direction-dependent effects during imaging. This imager offers unprece-
dented imaging capabilities for current and future radio telescopes. This imager is
publicly available and is being used in production by various astronomers around
the world. Image-Domain Gridding is highly accurate, which makes it very suitable
for research into the Epoch of Reionisation. With IDG-Cal we can more accurately
calibrate radio-astronomical datasets, which will result in high-quality sky images.
Altogether, Image-Domain Gridding contributes towards making discoveries in radio
astronomy happen.

Pa
rt IV

Closing Words

C
ha

pt
er 12

Conclusions and Outlook

In this chapter we first provide an overview of the contributions of this thesis. Next,
we summarize our main findings which allow us to answer the main research question:

RQ: What is the best, fastest, and most energy-efficient imaging algorithm
for future radio telescopes?

This work has lead to new research questions, which we discuss in the final section of
this thesis.

121212121212121212121212

136 Conclusions and Outlook

12.1 Thesis contributions
In this thesis, we set out to implement, optimize, and analyze the Image-Domain
Gridding (IDG) algorithm for a variety of accelerator hardware. What started as a
proof-of-concept of a new algorithm (by S. van der Tol.), has now become a high-
performance radio-astronomical imager that is being used in production by a variety
of different radio observatories.

The main contributions of this thesis are as follows:

• The first usable implementation of IDG.

• Highly optimized IDG kernels for CPUs, GPUs, and FPGAs.

• Thorough analysis of the performance and energy efficiency of IDG on the
above devices.

• A comparison of the performance and energy efficiency of IDG with traditional
imaging algorithms.

• An analysis on whether IDG meets the stringent requirements on performance
and energy for the upcoming Square Kilometre Array.

• A software library that is used in production for various radio observatories
around the world.

12.2 Conclusion
Radio-astronomical imaging is considered to be one of the most challenging stages
in the processing pipeline of modern radio telescopes. In this thesis, we used
hardware/software co-design to find a method (a new algorithm) and a suitable
computing platform (accelerator) to solve this challenge.

We implemented IDG on distinct architectures: an Intel Xeon (Haswell) CPU, an
Intel Xeon Phi (Knights Landing), GPUs from NVIDIA (Maxwell and Pascal), an
AMD Vega GPU, and an Intel Arria 10 FPGA, performed a thorough performance
analysis and we compared performance and energy efficiency.

We demonstrated that especially for the GPUs, the IDG algorithm maps elegantly
onto the underlying hardware. Due to hardware support for sine/cosine evaluations,
on NVIDIA GPUs, our code achieves close to the floating-point peak performance

121212121212121212121212

12.3 Outlook 137

and energy efficiency that is more than an order of magnitude higher than the
optimized CPU implementation. We also showed that our GPU implementation
achieves excellent performance for different imaging use cases, such as continuum
imaging and spectral-line imaging, as well as the creation of very large images.

While FPGAs cannot beat GPUs for this application, we showed that having
support for a high-level programming language is a major leap forward in programma-
bility. By supporting floating-point operation in hardware, FPGAs have now entered
the domain where GPUs are traditionally used.

The comparison with a traditional imaging algorithm illustrates that IDG on
GPUs exceeds the performance of the simpler W-projection gridding while providing
the functionality of the more challenging AW-projection gridding. Being able to
efficiently apply a correction for direction-dependent effects (DDEs), is essential
to achieve the dynamic ranges, high sensitivities, and large fields of view of new
generations of radio telescopes.

We made IDG available as an open-source library and integrated it with a widely-
used imaging application, WSClean. IDG is now being used in production by a
variety of different radio observatories. It is not only faster than its competitors, but
it also produces better images.

Finally, we answer the main research question of this thesis:

RQ: What is the best, fastest, and most energy-efficient imaging algorithm
for future radio telescopes?

The IDG algorithm is capable of correcting both DIEs and DDEs during gridding,
allowing for high-quality sky images. We efficiently mapping this algorithm onto
GPUs, we addressed the largest computational challenge in the imaging pipeline of
the modern radio telescopes: our results show that IDG meets the performance and
energy efficiency requirements needed for the future Square Kilometre Array.

12.3 Outlook
Now that the gridding and degridding have become so fast, other processing steps
have become bottlenecks. After having integrated IDG into WSClean, we measured
very significant speedups in overall imaging times. However, the throughput that
we achieve in benchmarks (such as the ones shown in the previous chapters) is not
achieved in practice. This is a typical case of Amdahl’s law, which states that the

121212121212121212121212

138 Conclusions and Outlook

theoretical speedup is limited by the part of the execution that is not optimized [89].
Parts of the imaging pipeline (such as deconvolution) used to be negligible in terms
of runtime, but have now become noticeable. We would need to conduct end-to-end
runtime profiling to identify all performance bottlenecks in the whole processing
pipeline and eliminate these bottlenecks one by one.

Moreover, by performing gridding and degridding at these unprecedented speeds,
I/O has become a very important bottleneck as well. We generally assume that
the input data (e.g., the visibilities) and the output data (the sky image) are read
from and stored onto local disk or network storage. Recall that for the fastest GPUs
available today, the bandwidth provided by the PCIe bus (which is about 13 GB/s
in practice) is hardly sufficient to keep the GPU busy at all times. This implies that
data storage should be able to keep up. Even the fastest state-of-the-art NVME
SSDs currently available do not provide sufficient bandwidth to make this feasible.
Ideally, the processing pipeline should become a real-time streaming pipeline.

In the early days of processor technology performance increases used to be ‘for free’,
CPUs became faster due to an increase in clock speed. At a given moment in time,
this trend had reached a plateau and new solutions were needed to keep increasing
performance. Similarly, now that we can fully utilize the compute capabilities of
GPUs for imaging we have started to run into I/O bottlenecks and need to come up
with solutions to improve imaging throughput.

An avenue for future work is to apply Image-Domain gridding to other radio-
astronomical applications, most notably for calibration (See also Section 11.4. An
initial proof-of-concept has shown that this is feasible, as IDG allows direct fitting for
the A-terms (the calibration solutions) in the calibration step. By tightly integrating
the processing steps (e.g., calibration and imaging), we might be able to overcome
the I/O limitations outlined above. This could provide significant speedups in a full
astronomical data-processing pipeline.

High-resolution imaging is challenging because it requires large grids (e.g. 30,000×
30,000 pixels) during gridding and degridding. In Section 6.3.7 we demonstrated
that IDG is capable of handling these large grids by using CUDA Unified memory.
Furthermore, the long baselines used for high-resolution imaging lead to large W-
terms, which make gridding and degridding particularly costly. As we also explained
in Section 2.1.1, this is typically remedied by using W-stacking. W-stacking reduces
the maximum W-term size by using multiple grids (W-layers) onto which visibilities
are gridded based on their w-coordinate. Two downsides of this technique are the
potentially prohibitive memory consumption (if multiple W-layers are kept in memory)

121212121212121212121212

12.3 Outlook 139

and additional computations needed to combine the W-layers. We are currently
working on an IDG extension called W-tiling, which addresses both these issues.
With W-tiling, only a single grid is needed and W-stacking takes place on much
smaller W-tiles. The initial results with a GPU-accelerated W-tiling implementation
show that we can now easily make those 30,000×30,000 pixel images.

Acknowledgements

Now that I am writing this final section of the thesis and my PhD journey has almost
finished I would like to take the opportunity to thank all the people that helped me
along the way and contributed to making this thesis a reality.

First of all, I would like to thank Wan and Henri, for sparking my interest in
high-performance- and parallel computing during my time at the Vrije Universiteit.
As my professor, Henri enabled me to pursue a PhD degree to learn much more about
these subjects, while also diving deep into the fascinating world of radio astronomy.

Many thanks to John, for being my daily PhD supervisor at ASTRON. He not
only taught me all about accelerator programming and optimization but also how to
conduct scientific research and write papers.

The first stage of my PhD was conducted during the DOME time, where ASTRON
worked together with IBM on research for future-generation computing systems. This
was a great time with many nice colleagues. Rik, Erik, Leandro, Przemek, Sanaz,
Giovanni, and Li-Ying: you all contributed to creating an inspiring place to conduct
research and I really enjoyed all our discussions on work-related and other topics.

Bas deserves special attention, if it wasn’t for him, this thesis would likely have
turned out very differently. I am very grateful that in the early stage of my PhD, he
trusted me with a rough prototype of what we now call Image-Domain Gridding.

Initially, the research focused mainly on getting the algorithm to work correctly
and efficiently on CPUs. Matthias, thank you for the nice collaboration at this stage.
I could always turn to you with questions about the math behind signal processing,
and together we built the infrastructure of the IDG library. After a while, Matthias,
Bas, André and I started developing IDG as a high-performance component for the
WSClean imager. I am proud of what we have achieved together, as IDG is now used
for data-processing of various radio-telescopes around the world.

Many ASTRON colleagues have contributed in one way or another, and I would
like to name a few in particular: Tammo Jan, thank you for helping me get to grips
with complicated radio-astronomical software packages. Yan and Chris, also after

142 Conclusions and Outlook

the DOME colleagues had left, you two always seemed to be around for a coffee or a
nice chat. On many occasions, this has either led to new ideas on how to tackle the
problems at hand or provided the necessary distraction to keep things fun.

Next, I would like to thank the members of my PhD committee, Ana Lucia, Henk,
Kumar, Oleg, and Wan for reading my thesis and providing constructive feedback.
The same goes for all the anonymous reviewers that provided valuable feedback to
my papers.

During my PhD I had the opportunity to visit several interesting places. The
yearly meetings at IBM Zürich are memorable, but especially the visits to the GPU
Technology Conference in San Jose were amazing: I learned a lot and had a great
time. I would like to thank IBM, ASTRON, and several funding agencies that made
this possible.

Especially towards the end, it was sometimes difficult to combine my research
and the work on projects. Fortunately, Walter helped me to stay focused and made
sure that I had sufficient time to finish writing this thesis.

There are colleagues, collaborators, and family members that I haven’t mentioned
explicitly yet, but I am grateful for all the help and/or support that you provided
during my PhD.

List of publications

Image-Domain Gridding on Graphics Processors
Veenboer, B., Petschow, M., Romein, J. W.
in Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS), pages 545–554, IEEE, 2017

Image Domain Gridding
van der Tol, S., Veenboer, B., Offringa, A. R.,
In Astronomy & Astrophysics (A&A), article A28, EDP Sciences, 2018

PowerSensor 2: A Fast Power Measurement Tool
Romein, J. W., Veenboer, B.
In Proceedings of the International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 111-113, IEEE, 2018

Radio-Astronomical Imaging: FPGAs vs GPUs
Veenboer, B., Romein, J. W.
In Proceedings of the International Conference on Parallel and Distributed
Computing (Euro-Par), pages 509-521, Springer, 2019 (best paper award)

Precision requirements for interferometric gridding in the analysis of
a 21 cm power spectrum
Offringa, André R., Mertens F., van der Tol, S., Veenboer, B., Gehlot, B. K.,
Koopmans L. V. E., Mevius M.,
In Astronomy & Astrophysics (A&A), article A12, EDP Sciences, 2019

Estimating continuous direction-dependent gain screens from radio
interferometric visibilities and a large skymodel
van der Tol, S., Veenboer B., Offringa, A. R., Rafferty, D.,Mevius M., Dijkema
T. J.,
In Astronomical Data Analysis Software and Systems (ADASS), 2019

144 Conclusions and Outlook

Radio-Astronomical Imaging on Graphics Processors
Veenboer, B. Romein, J. W.
In Astronomy & Computing, Elsevier, Volume 32, July 2020

Radio-Astronomical Imaging with WSClean and Image-Domain Grid-
ding
Veenboer, B., van der Tol, S., Offringa, A. R., Romein, J. W., Dijkema, T. J.,
In General Assembly and Scientific Symposium (GASS) of the International
Union of Radio Science (URSI GASS), 2020

Near Memory Acceleration on High Resolution Radio Astronomy
Imaging
Corda, S., Veenboer, B., Awan, A. J., Kumar, A., Jordans, R., Corporaal, H.,
In Mediterranean Conference on Embedded Computing (MECO), IEEE, 2020

References

[1] Sebastiaan van der Tol, Bram Veenboer, and André R. Offringa. Image-Domain
Gridding: a fast method for convolutional resampling of visibilities. Astronomy
& Astrophysics, 616:A27, August 2018.

[2] David Luebke. CUDA: Scalable parallel programming for high-performance
scientific computing. In 2008 5th IEEE international symposium on biomedical
imaging, pages 836–838, May 2008.

[3] John E Stone, David Gohara, and Guochun Shi. OpenCL: A parallel program-
ming standard for heterogeneous computing systems. IEEE Comput. Sci. Eng.,
12(1-3):66–73, 2010.

[4] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An In-
sightful Visual Performance Model for Multicore Architectures. Communications
of the ACM, 52(4):65–76, April 2009.

[5] The SKA Organisation. Square Kilometre Array. https://www.skatelescope.org,
2018.

[6] M. P. van Haarlem et al. LOFAR: The LOw-Frequency ARray. Astronomy &
Astrophysics, 556, 2013.

[7] S. J. Tingay et al. The Murchison Widefield Array: The Square Kilometre Array
Precursor at Low Radio Frequencies. Publications of the Astronomical Society
of Australia, 30, January 2013.

[8] Rendong Nan et al. The five-hundred-meter aperture spherical radio telescope
(FAST) project. Int. J. Mod. Phys. D, 20(06):989–1024, June 2011.

[9] R. J. van Weeren et al. LOFAR facet calibration. The Astrophysical Journal
Supplement Series, 223(1):2, March 2016.

[10] C. Tasse et al. Applying full polarization A-Projection to very wide field of view
instruments: An imager for LOFAR. Astron. Astrophys., 553:A105, May 2013.

[11] Bram Veenboer, Matthias Petschow, and John W. Romein. Image-Domain
Gridding on Graphics Processors. In 2017 IEEE International Parallel and
Distributed Processing Symposium, pages 545–554. IEEE, May 2017.

[12] B Veenboer and J.W. Romein. Radio-astronomical imaging on graphics proces-
sors. Astronomy and Computing, 32:100386, jul 2020.

https://www.skatelescope.org

146 References

[13] John W. Romein. An efficient work-distribution strategy for gridding radio-
telescope data on GPUs. In Proceedings of the 26th ACM international conference
on Supercomputing, pages 321–330, June 2012.

[14] ASTRON Netherlands Institute for Radio Astronomy. Image-Domain Gridding.
https://gitlab.com/astron-idg/idg, 2019.

[15] Bram Veenboer and John W Romein. Radio-Astronomical Imaging: FPGAs
vs GPUs. In Euro-Par 2019: Parallel Processing, pages 509–521. Springer
International Publishing, 2019.

[16] Wilner J. David. Imaging and deconvolution, May 2014.

[17] The SKA Organisation. SKA Engineering Change Proposal.
https://skaoffice.atlassian.net/wiki/display/EP/ECP+Register, 2017.

[18] Oleg M. Smirnov. Revisiting the radio interferometer measurement equation.
Astronomy & Astrophysics, 531:A159, July 2011.

[19] S. Bhatnagar et al. Correcting direction-dependent gains in the deconvolution of
radio interferometric images. Astron. Astrophys., 487(1):419–429, August 2008.

[20] T. J. Cornwell and R. a. Perley. Radio-interferometric imaging of very large fields
- The problem of non-coplanar arrays. Astronomy and Astrophysics, 261:353–364,
1992.

[21] T. J. Cornwell, Kumar Golap, and Sanjay Bhatnagar. The Non-coplanar
Baselines Effect in Radio Interferometry: The W-projection Algorithm. IEEE J.
Sel. Topics Signal Process., 2(5):647–657, October 2008.

[22] U. Rau et al. Advances in Calibration and Imaging Techniques in Radio
Interferometry. IEEE Proceedings, 97:1472–1481, August 2009.

[23] U. Rau and T. J. Cornwell. A multi-scale multi-frequency deconvolution algo-
rithm for synthesis imaging in radio interferometry. Astronomy & Astrophysics,
532:A71, aug 2011.

[24] F. Li, T. J. Cornwell, and F. de Hoog. The application of compressive sampling
to radio astronomy. Astronomy & Astrophysics, 528:A31, apr 2011.

[25] J.N. Girard, H. Garsden, J.L. Starck, S. Corbel, A. Woiselle, C. Tasse, J.P.
McKean, and J. Bobin. Sparse representations and convex optimization as
tools for LOFAR radio interferometric imaging. Journal of Instrumentation,
10(08):C08013–C08013, aug 2015.

[26] A. Dabbech, C. Ferrari, D. Mary, E. Slezak, O. Smirnov, and J. S. Kenyon.
MORESANE: MOdel REconstruction by Synthesis-ANalysis Estimators. As-
tronomy & Astrophysics, 576:A7, apr 2015.

[27] H. Junklewitz, M. R. Bell, M. Selig, and T. A. Enßlin. RESOLVE: A new
algorithm for aperture synthesis imaging of extended emission in radio astronomy.
Astronomy & Astrophysics, 586:A76, feb 2016.

https://gitlab.com/astron-idg/idg
https://skaoffice.atlassian.net/wiki/display/EP/ECP+Register

References 147

[28] A. R. Offringa and O. Smirnov. An optimized algorithm for multiscale wideband
deconvolution of radio astronomical images. Monthly Notices of the Royal
Astronomical Society, 471(1):301–316, oct 2017.

[29] A. Scaife. SDP Memo: The SDP imaging pipeline. Technical report, SKA
Science Data Processor Consortium, 2016.

[30] T. J. Cornwell, M. A. Voronkov, and B. Humphreys. Wide field imaging for the
Square Kilometre Array. Proc. SPIE, 8500, August 2012.

[31] A. R. Offringa et al. WSClean: an implementation of a fast, generic wide-field
imager for radio astronomy. Mon. Not. R. Astron. Soc., 444(1):606–619, August
2014.

[32] C. Tasse et al. Faceting for direction-dependent spectral deconvolution. Astron-
omy & Astrophysics, 611:A87, March 2018.

[33] S. Jaeger. The Common Astronomy Software Application (CASA). In R. W.
Argyle, P. S. Bunclark, and J. R. Lewis, editors, Astronomical Data Analysis
Software and Systems XVII, volume 394 of ASP Conference Series, pages 623–
627, August 2008.

[34] R. Nijboer et al. Parametric models of SDP compute requirements. Technical
report, ASTRON Netherlands Institute for Radio Astronomy, 2015. SKA SDP
PDR deliverable.

[35] Erik Vermij et al. Challenges in exascale radio astronomy: Can the SKA ride
the technology wave? International Journal of High Performance Computing
Applications, 29(1):37–50, February 2015.

[36] The SKA Organisation. SDP parametric model.
https://gitlab.com/ska-telescope/sdp-par-model, 2019.

[37] R. Braun et al. SKA1 science priority outcomes. Technical report, ASTRON
Netherlands Institute for Radio Astronomy, 2014. SKA design document.

[38] R. Braun et al. SKA1 Level 0 Science Requirements. Technical report, The SKA
Organisation, 2015.

[39] Carole Jackson. SKA Science: A Parameter Space Analysis. Technical report,
SKA Consortium, 2003.

[40] Gordon E. Moore. Cramming more components onto integrated circuits. IEEE
Solid-State Circuits Society Newsletter, 11(3):33–35, sep 2006.

[41] Chris A. Mack. Fifty Years of Moore’s Law. IEEE Transactions on Semiconductor
Manufacturing, 24(2):202–207, may 2011.

[42] Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Commu-
nications of the ACM, 58(7):56–68, jun 2015.

https://gitlab.com/ska-telescope/sdp-par-model

148 References

[43] Balaji Subramaniam, Winston Saunders, Tom Scogland, and Wu Chun Feng.
Trends in energy-efficient computing: A perspective from the Green500. In 2013
International Green Computing Conference Proceedings, IGCC 2013, pages 1–8.
IEEE, jun 2013.

[44] Sushant Sharma, Chung-Hsing Hsu, and Wu-chun Feng. Making a case for
a Green500 list. In Proceedings 20th IEEE International Parallel Distributed
Processing Symposium, volume 2006, page 8 pp. IEEE, 2006.

[45] Sandra Wienke and Sridutt Bhalachandra. Accelerator Programming Using
Directives, volume 12017 of Lecture Notes in Computer Science. Springer
International Publishing, 2020.

[46] Justin W. Richardson, Alan D. George, and Herman Lam. Performance Analysis
of GPU Accelerators with Realizable Utilization of Computational Density. In
2012 Symposium on Application Accelerators in High Performance Computing,
pages 137–140. IEEE, jul 2012.

[47] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments. Proceedings of
the International Conference on Parallel Processing, pages 207–216, 2010.

[48] John W. Romein and Bram Veenboer. PowerSensor 2: a Fast Power Measurement
Tool. 2018 IEEE International Symposium on Performance Analysis of Systems
and Software, pages 111–113, 2018.

[49] Przemyslaw Lenkiewicz, P. Chris Broekema, and Bernard Metzler. Energy-
efficient data transfers in radio astronomy with software UDP RDMA. Future
Generation Computer Systems, March 2017.

[50] John W. Romein. A Comparison of Accelerator Architectures for Radio-
Astronomical Signal-Processing Algorithms. In International Conference on
Parallel Processing 2016, pages 484–489, August 2016.

[51] ASTRON Netherlands Institute for Radio Astronomy. PowerSensor. https:
//gitlab.com/astron-misc/PowerSensor, 2016.

[52] J. H. Laros III, P. Pokorny, and D. DeBonis. PowerInsight – A Commodity
Power Measurement Capability. In Int. Workshop on Power Measurement and
Profiling, Arlington, VA, June 2013.

[53] Daniel Bedard, Min Yeol Lim, Robert Fowler, and Allan Poterfield. Power-
Mon: Fine-grained and Integrated Power Monitoring for Commodity Computer
Systems. In Proc. of the IEEE SoutheastCon, pages 479–484, March 2010.

[54] Thomas Ilsche, Daniel Hackenberg, Stefan Graul, Joseph Schuchart, and Robert
Schöne. Power Measurements for Compute Nodes: Improving Sampling Rates,
Granularity and Accuracy. In 2015 Sixth International Green and Sustainable
Computing Conference, pages 1–8, December 2015.

https://gitlab.com/astron-misc/PowerSensor
https://gitlab.com/astron-misc/PowerSensor

References 149

[55] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink. How a Single
Chip Causes Massive Power Bills GPUSimPow: A GPGPU Power Simulator. In
2013 IEEE International Symposium on Performance Analysis of Systems and
Software, pages 97–106, April 2013.

[56] Francisco D. Igual et al. A Power Measurement Environment for PCIe Accel-
erators: Application to the Intel Xeon Phi. Computer Science - Research and
Development, 30(2):115–124, May 2015.

[57] Ron Bracewell. The Fourier Transform and Its Applications. McGraw Hill, 1965.

[58] Anthony Griffin and Andrew Ensor. End-to-end Modelling of the Imaging
Pipeline in Radio Astronomy. In 2018 IEEE 10th Sensor Array and Multichannel
Signal Processing Workshop (SAM), volume 8, pages 480–484. IEEE, jul 2018.

[59] Anthony Griffin and Andrew Ensor. SDP Memo: Numerical Precision. Technical
report, SKA Science Data Processor Consortium, 2018.

[60] Stefano Salvini. SDP Memo: On the Precision Required in SDP Pipelines.
Technical report, SKA Science Data Processor Consortium, 2018.

[61] Christoph Lauter. A new open-source SIMD vector libm fully implemented with
high-level scalar C. In 2016 50th Asilomar Conference on Signals, Systems and
Computers, pages 407–411. IEEE, November 2016.

[62] Henri Bal et al. A Medium-Scale Distributed System for Computer Science
Research: Infrastructure for the Long Term. IEEE Computer, 49(5):54–63, May
2016.

[63] Y.N. Srikant and P. Shankar. The Compiler Design Handbook: Optimizations
and Machine Code Generation. CRC Press, 2018.

[64] Bruce Merry. Faster GPU-based convolutional gridding via thread coarsening.
Astron. Comput., 16:140–145, July 2016.

[65] Ben van Werkhoven. Kernel Tuner: A search-optimizing GPU code auto-tuner.
Future Generation Computer Systems, 90:347–358, January 2019.

[66] S.F. Oberman and M.Y. Siu. A High-Performance Area-Efficient Multifunction
Interpolator. In 17th IEEE Symposium on Computer Arithmetic, pages 272–279,
June 2005.

[67] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2018.

[68] Michal Drobot. Low Level Optimizations for GCN, May 2014.

[69] S’ebastien Lagarde. Inverse trigonometric functions GPU optimization
for AMD GCN architecture. https://seblagarde.wordpress.com/2014/12/01/
inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture, De-
cember 2014.

[70] NVIDIA Corporation. NVIDIA GeForce GTX 1080 Whitepaper. Technical
report, NVIDIA Corporation, 2016.

https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture
https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture

150 References

[71] Stephen Jones. CUDA New Features And Beyond, 2019.

[72] Jülich Supercomputing Centre. JURON (IBM-NVIDIA pilot).
https://hbp-hpc-platform.fz-juelich.de/?page_id=1073, 2016.

[73] Byron Sinclair, Andrew C. Ling, and Genady Paikin. Harnessing the Power of
FPGAs with the Intel FPGA SDK for OpenCL™. In IWOCL 2017 Proceedings
of the 5th International Workshop on OpenCL, pages 1–1, 05 2017.

[74] Hamid Reza Zohouri et al. Evaluating and Optimizing OpenCL Kernels for High
Performance Computing with FPGAs. In SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 409–420,
nov 2016.

[75] Hamid Reza Zohouri. High Performance Computing with FPGAs and OpenCL.
PhD thesis, Tokyo Institute of Technology, 2018.

[76] Jason Cong et al. Understanding Performance Differences of FPGAs and GPUs.
In 2018 IEEE 26th International Symposium on Field-Programmable Custom
Computing Machines, pages 93–96, apr 2018.

[77] Zheming Jin and Hal Finkel. Power and Performance Tradeoff of a Floating-
Point Intensive Kernel on OpenCL FPGA Platform. In 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
716–720, may 2018.

[78] Fahad Bin Muslim et al. Efficient FPGA Implementation of OpenCL High-
Performance Computing Applications via High-Level Synthesis. IEEE Access,
5:2747–2762, 2017.

[79] Umar Ibrahim Minhas et al. Exploring Functional Acceleration of OpenCL
on FPGAs and GPUs Through Platform-Independent Optimizations. In 14th
International Symposium, ARC 2018, pages 551–563, 2018.

[80] ASTRON Netherlands Institute for Radio Astronomy. AW-Projection Gridding.
https://gitlab.com/astron-misc/wprojection, 2019.

[81] Bruce Merry. Spectral-line imager for MeerKAT.
https://github.com/ska-sa/katsdpimager, 2020.

[82] The SKA Organisation. Designing the Square Kilometre Array.
https://cdr.skatelescope.org, 2018.

[83] Alexander P. et al. SDP System Module Decomposition and Dependency View.
Technical report, SKA Science Data Processor Consortium, 2015.

[84] B. Veenboer, S. van der Tol, A. R. Offringa, J. W. Romein, and T. J. Dijkema.
Radio-Astronomical Imaging with WSClean and Image-Domain Gridding. In
URSI GASS, pages 3–6, sep 2020.

https://hbp-hpc-platform.fz-juelich.de/?page_id=1073
https://gitlab.com/astron-misc/wprojection
https://github.com/ska-sa/katsdpimager
https://cdr.skatelescope.org

References 151

[85] N. J. Jackson, S. Badole, J. Morgan, R. Chhetri, K. Prusis, A. Nikolajevs,
L. Morabito, and Et Al. Sub-arcsecond imaging with the International LO-
FAR Telescope. II. Completion of the LOFAR Long-Baseline Calibrator Survey.
Astronomy & Astrophysics, pages 1–14, may 2021.

[86] A. R. Offringa, F. Mertens, S. van der Tol, B. Veenboer, B. K. Gehlot, L. V. E.
Koopmans, and M. Mevius. Precision requirements for interferometric gridding
in the analysis of a 21 cm power spectrum. Astronomy & Astrophysics, 631:A12,
nov 2019.

[87] S. Kazemi, S. Yatawatta, S. Zaroubi, P. Lampropoulos, A. G. de Bruyn, L. V. E.
Koopmans, and J. Noordam. Radio interferometric calibration using the SAGE
algorithm. Monthly Notices of the Royal Astronomical Society, 414(2):1656–1666,
jun 2011.

[88] S. van der Tol, Veenboer B., A. R. Offringa, D. Rafferty, Mevius M., and
Dijkema T. J. Estimating continuous direction-dependent gain screens from
radio interferometric visibilities and a large skymodel. In Astronomical Data
Analysis Software and Systems (ADASS), 2019.

[89] M.D. Hill and M.R. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33–38, july 2008.

	Table of contents
	Summary
	I Introduction and Background
	1 General Introduction
	1.1 Research questions
	1.2 Thesis outline

	2 Background
	2.1 Radio-astronomical imaging
	2.1.1 W-projection gridding
	2.1.2 AW-projection gridding
	2.1.3 Image-domain gridding
	2.1.4 Imaging applications

	2.2 The SKA challenge
	2.3 Accelerators
	2.4 Performance analysis
	2.5 Related work
	2.6 Metrics

	3 Energy Efficiency Analysis
	3.1 Introduction
	3.2 PowerSensor
	3.2.1 Operation modes
	3.2.2 Installation and usage
	3.2.3 Examples

	3.3 Related work
	3.4 Conclusion

	4 Image-Domain Gridding
	4.1 Introduction
	4.2 Algorithm
	4.3 Execution plan
	4.4 Single-precision gridding
	4.5 Complexity
	4.6 Conclusion

	II Image-Domain Gridding Implementation and Analysis
	5 IDG on CPUs
	5.1 Introduction
	5.2 Architecture
	5.3 Implementation
	5.3.1 Gridder kernel
	5.3.2 Degridder kernel
	5.3.3 FFTs
	5.3.4 Adder and splitter kernel
	5.3.5 Sine/cosine computations
	5.3.6 Intel Xeon Phi

	5.4 Results
	5.4.1 Experimental setup
	5.4.2 Performance
	5.4.3 Throughput and energy efficiency
	5.4.4 Scalability

	5.5 Conclusion

	6 IDG on GPUs
	6.1 Introduction
	6.2 Background
	6.3 Implementation
	6.3.1 Gridder kernel
	6.3.2 Degridder kernel
	6.3.3 Sine/cosine
	6.3.4 Subgrid FFTs
	6.3.5 Adder and splitter
	6.3.6 Asynchronous I/O and kernel execution
	6.3.7 Scaling to large images

	6.4 Results
	6.4.1 Experimental setup
	6.4.2 Performance
	6.4.3 Throughput and energy efficiency
	6.4.4 Creating large images
	6.4.5 Imaging a different number of channels

	6.5 Conclusion

	7 IDG on FPGAs
	7.1 Introduction
	7.2 Background
	7.3 Implementation
	7.3.1 Sine/cosine computations
	7.3.2 Frequency optimization
	7.3.3 Resource optimization

	7.4 Results
	7.4.1 Experimental setup
	7.4.2 Resource usage
	7.4.3 Throughput and energy efficiency
	7.4.4 Performance analysis

	7.5 Lessons learned
	7.6 Related work
	7.7 Conclusion

	8 CPUs versus GPUs versus FPGAs
	8.1 Introduction
	8.2 Performance bounds
	8.3 Throughput and energy efficiency
	8.4 Conclusion
	8.5 Outlook

	III Image-Domain Gridding in Context
	9 IDG versus AWPG
	9.1 Introduction
	9.2 Background
	9.3 AW-projection gridding implementation
	9.4 Performance comparison
	9.5 Energy efficiency comparison
	9.6 Conclusion

	10 IDG for the Square-Kilometre Array
	10.1 Introduction
	10.2 Required data rates
	10.3 Science Data Processor (SDP)
	10.4 IDG for SKA
	10.5 Conclusion

	11 IDG use cases
	11.1 Introduction
	11.2 IDG in WSClean
	11.3 IDG for EoR
	11.4 IDG for direction-dependent calibration
	11.5 Conclusion

	IV Closing Words
	12 Conclusions and Outlook
	12.1 Thesis contributions
	12.2 Conclusion
	12.3 Outlook

	Acknowledgements
	List of publications
	References

