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Abstract

The impact of the next generation DNA sequencing technologies (NGS) produced a revolu­

tion in biological research. New computational tools are needed to deal with the huge amounts 

of data they output. Significantly shorter length of the reads and higher per-base error rate 

compared with Sanger technology make things more difficult and still critical problems, such 

as genome assembly, are not satisfactorily solved. Significant efforts have been spent recently 

on software programs aimed at increasing the quality of the NGS data by correcting errors. The 

most accurate program to date is HiTEC and our contribution is providing a completely new 

implementation, HiTEC2. The new program is many times faster and uses much less space, 

while correcting more errors in the same number of iterations. We have eliminated the need 

of the suffix array data structure and the need of installing complicating statistical libraries as 

well, thus making HiTEC2 not only more efficient but also friendlier.

Keywords: HiTEC, error correction, DNA sequencing
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Chapter 1

Introduction

Deoxyribonucleic Acid (DNA) is the fundamental block and the blueprint of biological life 

from the inception to its growth and till death. All the cells with nucleus in human being’s 

bodies have the same copy of DNA. All the functions performed by a cell are coded by DNA. 

It is the genetic material found not only in human beings but in all the living organisms. The 

discovery of DNA has revolutionized the science and medicine perhaps more than any another 

discovery. What makes DNA so important? There are numerous answers for the question. 

DNA transfers hereditary information from generation to generation, controls protein synthesis 

and determines the structure of the cell, meaning the cell should be a nerve cell, blood cells 

etc. DNA holds all this information using a sequence of four nucleotides to form a chain 

of nucleotides. The bases include two purines (Adenine and Guanine) and two pyrimidines 

(Cytosine and Thymine) commonly referred as A, G, C and T. Human DNA has 3 billion bases 

and 99% of it is common with all the other human beings. To unlock the information present 

in the DNA, analysis of the sequence of bases in DNA is essential. The technology which is 

used in determining the sequence of bases in DNA is called DNA sequencing.

The applications of DNA sequencing are many and the significance of these applications is 

huge. Genealogy, the study of ancestry is one of the prominent application of DNA sequencing. 

We resemble our parents because we have inherited DNA from them. The inheritance is due 

to the fact that our parent’s DNA duplicates itself at cell division (in embryo) and passes on all 

of its properties to its daughter cells. This is how the information is passed on from generation 

to generation. Also genealogy helps in finding out the biological parents and other relatives by

1



2 C hapter 1. Introduction

comparing the DNA. DNA sequencing helps in detecting hereditary diseases and finding a cure 

for those diseases. In forensic science, DNA sequencing has resulted in breakthroughs in many 

criminal cases. By comparing the DNA samples found on the crime scene with those extracted 

from the suspects, many criminal cases have been solved. The applications of DNA sequencing 

extend to agriculture as well. The results of DNA sequencing have been successfully used to 

improve the food products and crops by genetically modifying them and making the crops more 

resistant to diseases. Similar technology can be used in animal farming industry to produce 

improved breed of stronger build of animals.

The first DNA sequences were obtained in early 1970’s based on two dimensional chro­

matography by academic researchers using very laborious methods. Now DNA sequencing 

has become easier and orders of magnitude faster. One of the earlier sequencing methods was 

RNA sequencing of Bacteriophage MS2, by Walter Fiers and his coworkers at University of 

Ghent, Belgium in 1972. At the same time scientists such as Frederick Sanger, Walter Gilbert 

and Allan Maxam were trying laborious methods to sequence DNA. Gilbert and Maxam were 

successful in sequencing 24 base pairs using a method named wandering-spot analysis. After 

the development of chain termination by Sanger and his coworkers in 1977, the DNA sequenc­

ing became easy and reliable.

After the introduction of Sanger’s method of DNA sequencing, development of high through­

put sequencing protocols and computational analysis methods have made sequencing a routine 

procedure. In 2007, a non Sanger ultra high throughput second generation sequencing technol­

ogy became commercially popular. Third generation of sequencing technology named single 

molecular sequencing (SMA) were available in 2008 and it could overcome the limitation 

of first and second generation sequencing techniques. The first generation technology DNA 

sequencing methods including Sanger chain termination method relied on sequencing DNA 

based on the fragment length which was accurate but still there were many errors. For ex­

ample, the first 15-40 bases had poor quality and the quality deteriorates again after 700-900 

bases. Another major problem with the first generation techniques is that it consumed lots of 

space; it needs a place to run the reaction, capillary tube or gel to determine the DNA frag­

ments length. Due to this reason only few hundreds of these reaction can be ran in parallel. 

Imagine sequencing human DNA with 3 billion base pairs. Sequencing human DNA using
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first generation techniques with 500 base pairs length of DNA fragments would take very long 

time.

Second generation sequencing techniques, like Illumina, overcame the restrictions of Sanger 

method by finding a way to sequence DNA without moving the DNA around. A bit of DNA 

which has to be sequenced is placed as a little dot, called cluster and do the sequencing in 

that cluster itself. Due to this behaviour millions of clusters can be fed into the machine at 

once. In Illumina, calling the first base takes long because it has to make sure the other DNA 

fragments are not gone out of sync. Illumina can produce a maximum of 100 base pairs length 

DNA fragments compared to 500-100 base pairs of Sanger method. 454 sequencing is another 

second generation sequencing method which uses nucleotides which produces a flash when a 

polymerase is added. This method gives out reads of length almost equal to that of Sanger 

method. However it produces much fewer reads. The significant problem common to all these 

techniques is higher error rate than Sanger method. The main advantages of the new methods 

are much higher speed and lower costs. Sequencing the genomes of many species became pos­

sible. Even after making the DNA sequence cheaper, the second generation sequencing still 

cost around 10 to 20 thousand to sequence a human genome. The low length reads is a huge 

problem because the machine takes longer time to figure out from which part of the DNA the 

read came from. Some of the third generation sequencers Pacific Biosciences, Oxford Nano­

pore and Life Sciences Qdot technology are trying to sequence single molecules of DNA in 

real-time.

The DNA sequencing machines, no matter which generation, produce huge amounts of 

data as output. The output data size has been exponentially increasing with the new generation 

DNA sequencing methods. There has been significant development in the area of softwares, 

which process these data. The two most widely studied problems are gene assembly and gene 

mapping. Gene assembly softwares try to construct the original DNA sample using the output 

reads of the sequencing machines. Gene mapping softwares try to map the particular read to 

a part of DNA, to know which part of the DNA it resembles. To be successful in both gene 

assembly and gene mapping, one of the important aspect is that reads have fewer errors. Some 

of the softwares have attempted to correct these erroneous reads or discard them. In this thesis 

we will focus on the software which attempt to correct these errors.
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The simplest way to handle error in reads is to discard all the reads with an error and use 

only reads without errors for further processing. Assembly tools such as the spectral alignment 

based preprocessing step in Euler assembly program [CP09] and pre-filter reads of SHARCGS 

[Doh07] use this method. Discarding the erroneous reads may seem uneasy solution to the 

error correction problem but, following this approach leads to fewer reads to use. In this thesis 

we focus on correcting these errors and provide error free reads for any further processing. 

The success of error correction lies in having a good coverage of the specified DNA sample. 

The main idea is, if you sequence a DNA sample multiple times the correct value prevails. 

This idea has been used in multiple variations to provide better and better error correction 

softwares. SHREC [SSP+09] uses suffix trees with weights in order to detect and correct the 

errors. CUDA [SSLW10] provides a successful hardware architecture using CUDA-enabled 

graphics in order to correct the sequencing errors in parallel. Reptile [YDA10] is another error 

correction method using k-mers mentioned in the spectral alignment problems to correct the 

sequencing errors. HiTEC [IFI10] took a step forward and used the statistical approach in 

figuring out the best parameters to suite the input data set and use these parameters with suffix 

array and LCP(Longest Common Prefix) to maximize the error correction. This helped HiTEC 

to be the most successful error correction software available to date.

In Chapter 2, some of the popular sequencing techniques are explained in breif. Chapter 

3 will explain in detail about the error correction algorithms used in recent times. HiTEC2 

software is built using C++ programming language. In HiTEC2, we took all the positive 

concepts and built a software which corrects the same amount of errors in less than one third the 

time and using one fourth the space compared to HiTEC. HiTEC2 uses 2-bit binary encoding 

and binary operation in achieving the above results. This is explained in Chapter 4 in detail. We 

have tested HiTEC2 on many simulated and real data sets. The comparison is made only with 

HiTEC, because we know that it the most accurate error correction software till date. During 

the period of testing, we have observed that the HiTEC2 is as robust as HiTEC as HiTEC2 

inherits the statistical approach from HiTEC. This helped HiTEC2 to operate on data sets with 

wide range of read lengths and data size. Due to 2-bit encoding of the input data set, removal 

of suffix array approach and use of hash table approach has made HiTEC2 5 to 7 times faster1 *

'Table 5.7 and 5.8
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and 2 to 3 times less space2 consuming than any other error correction software. We have built 

a software which is faster and less space consuming without hampering the accuracy of error 

correction. Nevertheless, we are planning to improve the time and space of out software by 

providing a parallel implementation, the details of which are given in Chapter 6.



Chapter 2

DNA Sequencing

In 1843, Gregor Mendel, “father of genetics”, performed experiments on thousands of pea 

plants [HenOl, MeyOO], the results of which led to increased interest in the study of Genetics. 

Mendal used two pea plants, one with white flowers and one with purple flowers, cross fer­

tilized two true breeding pea plants and observed the offsprings characteristics: they both had 

purple flowers. Then, he let the offspring self fertilize and he saw that some flowers were white 

and majority of them were purple. He continued his experiments and came to a conclusion that 

“units o f information’', one from each parent, existed in the offsprings and one trait was dom­

inant (purple) because it covered the other trait (white), thus laying the foundation of genetics 

and heredity. It took almost a century after that to have a breakthrough in the field and the 

breakthrough was given by an army medical officer named Frederick Griffith [Jos85], Who, 

by trying to find a vaccine against pneumonia, made an accidental breakthrough in the world 

of heredity. He pointed out that DNA was the molecule of inheritance which was proved by 

Oswald Avery some years later. Around 1940 Erwin Chargaff noticed a pattern in the amounts 

of the four bases, adenine, guanine, cytosine, and thymine. In his experiments he took samples 

of DNA of different cells and found out that the amount of adenine was almost equal to the 

amount of thymine and that the amount of guanine was almost equal to the amount of cyto­

sine. The rule A=T and G=C was named as Chargaff’s Rule [EE48]. Scientists all around the 

world were indulged in finding more and more information about this DNA, little was known 

about its structure. Two scientists Maurice Wilkins and Rosalind Franklin were the first to ob­

tain very good x-ray diffraction of DNA fibers by crystallizing the DNA [FG48, Eve07], The

6
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DNA in the X-ray was shaped like an X. Using these X-ray photos, James Watson and Fran­

cis Crick[WC53] in 1951 came up with the double helix, the structure that is almost always 

associated with DNA.

2.1 Biological molecules

DNA is a nucleic acid that contains the genetic instructions used in the development and func­

tioning of all the known living organisms. The nucleic acid’s structure or the sequence is the 

compositions of the atoms and the chemical bonding between them. DNA is an unbranched 

polymer, the sequence of the nucleotides in the molecules will represent the structure of the 

nucleic acid. The sequence of the nucleotides has the capacity to represent information. There 

are four types of nucleotide bases adenine, guanine, cytosine, and thymine. The technology or 

the methods used to determine the sequence of these nucleotides in a DNA fragment is called 

DNA sequencing. No method can sequence an entire DNA molecule. They all produce short 

DNA sequence, called reads.

2.1.1 Applications of DNA sequencing

Medicine: Identify, diagnose and potentially develop treatments for genetic diseases and can­

cers.

Forensics: To match the physical evidence from the crime scene to a particular individual, 

determine the paternity of an individual etc.

Agriculture: Specific genes of the bacteria have been used in some food plants to increase 

their resistance against insects and as a result, the productivity and the nutritional value 

of the plants is increased.

2.2 Sanger method

The sequencing of DNA molecules began in the 1970s with two group of scientists, one led by 

Americans Maxam and Gilbert, used a chemical cleavage protocol for DNA sequencing. The
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English, led by Sanger, designed a procedure similar to the natural DNA replication [Rus02], 

This method was later on famously called as Sanger or Chain Termination method [San80]. 

Most DNA sequencing that occured in medical and research laboratories in the past several 

decades was performed using sequencers employing variations of the Sanger method.

Sanger’s method is based on the use of dideoxynucleotides in addition to the normal nu­

cleotides found in DNA. Dideoxynucleotides are the same as nucleotides with one exception: 

they contain a hydrogen group on the 3' carbon instead of a hydroxyl group. This extra hy­

drogen group nucleotide when integrated into a sequence, prevents the addition of further nu­

cleotides. This occurs because a phosphodiester bond cannot form between the dideoxynu- 

cleotide and the next incoming nucleotide due to the presence of the hydrogen group in the 3' 

end and thus the DNA chain is terminated. So the name Chain Termination method.

Nucleotide structure DideoxyNucleotide structure

Figure 2.1: Structure of a Nucleotide and Dideoxynucleotide used for chain termination. The figure clearly 
shows the hydroxyl group required for chain termination

First the DNA is extracted and isolated from the host. Then the DNA is subjected to heat 

so that one strand can be stripped off and a fluorescent label is attached to one end of the 

single stranded DNA. The output of this method will have a single stranded DNA. The method 

requires four test tubes each filled with all four nucleotides, DNA ligase and DNA polymerase. 

Each one of the G, A, T, C dideoxynucliotides are filled individually in the four different test 

tubes.

As the DNA is synthesized, nucleotides are added on to the growing chain by the DNA 

polymerase. Flowever, on occasion a dideoxynucleotide is incorporated into the chain in place



2 .2 . S anger method 9

of a normal nucleotide. This results in a chain-terminating event. For example if we looked at 

only the ”T” tube, we might find a mixture of the following products:

Genome ATCGGGGATGCTGAGCTAGGAATG
Chain 1 AT
Chain 2 ATCGGGGAT
Chain 3 ATCGGGGATGCT
Chain 4 ATCGGGGATGCTGAGCT
Chain 5 ATCGGGGATGCTGAGCTAGGAAT

Table 2.1: Example of the contents in the T-tube of Sanger method

The best part about this method is that the chain starts at a specific location and always 

ends up with the same base. The natural replication will enable this method to have the similar 

end bases at different positions. This makes each DNA sequence to be of different length. The 

contents of each of the four tubes are run in separate lanes on a polyacrylmide gel in order to 

separate the different sized bands from one another. After the contents have been run across 

the gel, the gel is then exposed to some kind of electric field. Due to the nature of nucleotides 

being negatively charged, the electric held will push the chains of DNA towards the positive 

end. The chains being variable in length, constitutes different molecular weights. Each chain 

of DNA will move with specific speed. That is, lower length chain will move faster and reach 

the positive end earlier than the other longer chain of DNA. If all of the reactions from the 

four tubes are combined on one gel, the actual DNA sequence in the 5' to 3' direction can be 

determined by reading the banding pattern from the bottom of the gel up. The DNA sequence 

read will be the reverse complement of the original DNA. Figure 2.2 shows the DNA chains in 

the gel properly aligned with respect to their lengths.

2.2.1 Shotgun sequencing

Shotgun sequencing is a product of chain termination method [Sta79, And81], This method 

uses the chain termination method along with gene assembly technique to get a sequence whose 

length is more than the one produced by the chain termination method. In this method the 

DNA is broken into small pieces( 2, 10 and 50 base pairs). The broken DNA pieces are then 

sequenced using chain termination method to obtain a higher length DNA read. Numerous
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Template (ortgmal) DNA strartd

■
/T ÌÌgJ / a\  t

H 3 E J / g\ Zc\

unlabelec dNTPs fluomsoently labelled dcNTPs

rz\------------------------------

am L A \--------------------------
warn
warn ---------------------
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Figure 2.2: Sanger method

overlapping reads are obtained by more cycles of fragmentation and sequencing. The com­

puter algorithms then use the overlapping ends to assemble the reads and build a continuous 

sequence.The table 2.2 shows a simple example.

The example shown in Table 2.2 is an ideal case and very simple. The practical sequencing 

is much complex. Because the assembly algorithms use a lot of information which is ambigu­

ous due to sequencing errors. Then there are repetitive sequences, which are the worst enemy 

of the assembly algorithms. As the sequences considered are small in length, there is a chance 

that they appear in a different part of the genome.

2.3 High throughput sequencing methods

Sanger’s shotgun sequencing and Maxam-Gilbert sequencing were first few methods available 

for DNA sequencing. These methods and Dye-Terminator sequencing method with some other
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Strand Sequence

Original sequence AGCTTAGGCTCGTTTAGGCAAAT
Sequence 1 AGCTTAGGCTCGTTTAGG..........
Sequence 2  CAAAT
Sequence 3 AGCTTAGG.......................................
Sequence 4  CTCGTTTAGGCAAAT
Reconstruction AGCTTAGGCTCGTTTAGGCAAAT

Table 2.2: Example showing the overlapping of reads in shotgun sequencing

initial techniques were named as first generation DNA sequencing methods. The high demand 

of low cost sequencing techniques which produces thousands and millions of sequences at 

once gave birth to second generation DNA sequencing techniques. The second generation 

DNA sequencing methods used technologies that parallelize the sequencing process to produce 

high output with low cost. The latter part of the Section 1.3 will explore some of the second 

generation DNA sequencing techniques.

2.3.1 Maxam-Gilbert sequencing

Maxam and Gilbert came up in 1976 with an idea for sequencing DNA based on chemical 

modification of DNA and subsequent cleavage at specific bases. This method was published 

two years before the initial Sanger and Coulson plus-minus method of sequencing [Jos85, 

EE48]. Due to the ready use of the purified DNA this method became famous right away. 

However with the improvement of chain termination made by Sanger to his initial method, the 

Maxam Gilbert method lost its charm. The downfall of this method is caused by the technical 

complexity, extensive use of hazardous chemicals, and difficulties with scaling up [FG48]. The 

method for sequencing is as follows. First prepare a homogeneous single strand of DNA and 

then add a radioactive label at one 5’ end of the DNA. In each of the four reactions, G, A+G, C, 

C+T, the DNA breaks at small proportion of one or two or some small number of nucleotides. 

The concentration of the chemicals are modified in such a way as to modify an average of one 

modification per DNA molecule. The DNA will be cut on one end using the 5' radioactive 

label information. Then the four different DNA fragments are subjected to an electrophoresis 

reactions side by side in denaturing acrylamide gels for size separation, similar to that of the
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chain termination method. Then, to visualize the format, the gel is exposed to X-ray film for 

autoradiography. This process yields a series of dark bands each corresponding to a radio 

labeled DNA fragment, from which the sequence may be inferred.

2.3.2 Dye-Terminator sequencing

Dye-Terminator sequencing is very similar to that of the Sanger chain termination method. In­

stead of having four different reactions, there will be only one reaction but the four dideoxynu- 

cleotide chain terminators will be labelled with a unique fluorescent dye, each of which will 

emit light at different wavelengths. This method having greater expediency and speed has been 

used extensively in automated sequencing. The only thing we need to take care of is the dye 

labelling fluorescence band should be distinct and far apart to make a confident base call.

The next generation DNA sequencing platforms produce sequencing reads with increased 

depth of coverage1 but reduced read length and lower per-base accuracy than data than Sanger 

method.

2.3.3 PyroSequencing

PyroSequencing is based on the “sequencing by synthesis” principle and one of the first of 

many next generation sequencing techniques. The technique was developed by Pal Nyren 

and Mostafa Ronaghi at the Royal Institute of Technology in Stockholm in 1996 [MMP98, 

MKP+96, Pal07]. This method involves taking a single stranded DNA and synthesizing its 

complementary strand enzymatically [Mar08]. The experiment detects the activity of DNA 

polymerase with chemiluminescent enzyme, in building a complementary strand base by base. 

The template of DNA will be fixed and the solution A, C, G, T nucleotides will be added and 

removed sequentially followed by analyzing the light produced when an nucleotide solution 

complements the first unpaired base of template. This allows to determine the sequence of 

nucleotides. The drawback of this method is that it produces the DNA sequencing of lengths 

300-500 compared to 800-1000 of Sanger method and also increase in sequencing errors.

1 Coverage is defined as the average number of reads representing a given nucleotide in the original genome 
sequence. It can be calculated from the length o f the original genome (G), the number of reads(N), and the average 
read length(L) as c = N?k
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2.3.4 Illumina Method

The Illumina method of sequencing debuted in 2006 and has been used to sequence the first 

African, Asian and cancer patient genomes. Fragments are bound to a slide and grown in 

clusters to provide a stronger fluorescent signal. The process starts with a double stranded 

DNA. The DNA sample is broken into smaller pieces and each of two different types of adaptor 

(short DNA sequences) are attached to the DNA fragments on both ends. Then a slide is 

prepared, where a lawn of primers are attached to the slide and the DNA fragments are put 

onto this slide. The amplification starts once the DNA fragments are put onto the slide and the 

DNA bends over and finds a complementary primer on the surface. From the primer on the 

surface a complementary strand is obtained as result of amplification process. The strands are 

then split apart, and the replication process is repeated to create more copies of the replicated 

complementary DNA strand. This process forms a dense clusters of DNA strands which is 

termed as channels. The channel contains both straight and complementary strands; to make 

the sequencing much effective one type of strands are removed. To the slides, A, C, G, T 

nucleotides and DNA polymerase are added. Due to the reaction, the nucleotides go and stick to 

the single stranded DNA. As the bases are incorporated, a laser is used to activate fluorescence 

and the color is read. A computing machine monitors each cluster and notes each color as a 

new base is added from which it works out a sequence from many clusters [Mar08]. One of 

the major drawbacks of the Illumina method is that reads are shorter than other sequencing 

methods. It is less suitable for sequencing an organism for the first time. One of the major 

advantage of this method is that it is faster and cheaper. In comparison with Sanger method 

which requires a year to read one gigabase at $0.1 per 1000 bases, the Illumina take just over 

half a day to read one gigabase for $0,001 per 1000 bases. Figure 2.3 shows the amplification 

process and creation of channels in Illumina technique.

2.3.5 SOLiD sequencing

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is developed by Life Tech­

nologies and is a next-generation sequencing technology [FPM+08]. This has been com­

mercially available since 2008. SOLiD sequences the DNA by ligation process. The single
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Figure 2.3: Illumina sequencing method

stranded DNA is shredded into many small DNA pieces of specific size and adapters are lig­

ated at both ends of the DNA pieces to construct a fragment library. So the library consists of 

millions of DNA molecules which represent the entire target sequence. Each molecule is then 

clonal amplified into beads in an emulsion PCR reaction. The sample is then enriched on the 

beads to replicate the DNA piece. The beads are then covalently attached to glass slides and 

then put in contact with the large pool of dibase probes which are fluorescent labelled with 4 

dyes and DNA polymerase. Each of the 4 dyes represent 4 of the 16 possible dinucleotide se­

quences. The complementary probe hybridizes to the template sequences and is ligated. After 

the measurement of the fluorescence the die is stripped of leaving the 5' end of the DNA for 

further reactions. The step can be repeated to as many cycles as needed for appropriate read 

lengths. After these cycles the synthesized strand is removed and new primer is hybridized with 

an offset of one base and the ligation cycles are repeated. This will give a much needed dual 

measurement of each base. The accuracy is increased with the number of cycles of above op­

erations. The unique 2 base encoding process is designed to increase the accuracy and reduce

measurement errors.
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2.3.6 Ion semiconductor sequencing

Ion semiconductor sequencing is based on a simple and well characterized biochemical pro­

cess. In nature each time a base of nucleotide is added to a DNA by a polymerase an hydrogen 

ion is released [Rusll]. This phenomenon is used to sequence a DNA in ion semiconductor 

method. The method uses a high density array of micro wells to sequence multiple pieces of 

DNA in a parallel way. Below the micro arrays of wells there is layer of ion sensitive layer 

and below that high sensitive ion sensors. Each well has a single DNA template and a micro 

sample of single nucleotide is put into each well with the polymerase. If the base ligates to the 

DNA strand, then an hydrogen ion is released. This hydrogen ion is sensed by the layer below 

the micro well and voltage is recorded to see if there is single base are consecutive bases of the 

induced nucleotide. If the hydrogen ion is not released then the voltage will be null and base 

call is not made. One of the major advantages of this method is the parallelism of sequencing. 

But in practice this method does not produce higher read lengths.



Chapter 3

Error Correction Algorithms

The continuous improvement in high throughput sequencing technique has open doors for 

many new applications. But sequencing errors still remain a major problem. There are many 

techniques proposed to solve the error correction problem for the uniform and non uniform 

datasets. But the chance of improvement is still there. In this section we will discuss some of 

the basic concepts of the error correction problem and some of the techniques used to solve it.

3.1 Basic Idea of Error Correction

To define error in DNA sequencing, lets take an example. Consider a genome G which is a 

string of length |G| = L1 over the alphabet £  = (A,G,C,T). The probability of occurrence of 

each letter is 0.25. Also assume that there are n reads of length / produced from the same 

genome with the per base error rate being p. Now if we have had to add a base in front of a 

random read r„ there are four possibilities. We call the position to be erroneous if that read 

with the concatenated base as a string is not a substring of the genome G. The basic idea of 

correcting errors in DNA sequencing is as follows: If a genome is replicated and sequenced 

multiple times the correct base value prevails.

To clearly present the concepts with examples lets put some notations in place. Consider n 

reads r\, r2,  r„, each of read length l. R is a set of reads {r\, f \ , r2, r2.....r„, r„}. r is the reverse

'Length is the number of bases in the string.

16
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complement2 of read r. The ith letter of G is denoted G[i].

Assume a read r, is sampled from position j  of the genome and there is an error at position 

k. Also assume that the w positions before the position k are error free. That is r, = jmay, where 

x, u, y € £* , \*\ = k ~ w -  1, |w| = w, and a e £ . The set of all strings over £  is denoted by 

2*. This means that the letter a should be letter b = G[j + k -  1] which appears in the genome. 

As we know, the genome is sequenced multiple times for the same base. This means that the 

correct string ub appears in many more reads as a substring than ua. The proof of erroneous 

base a in string ua is derived from the fact that u is followed more often by b than by a. The 

string u is said to be witnessing the error a and implying that it should be changed to b. For a 

e 2 , the support of u for a, supp(w, a), is the number of occurrences of the string ua in R. In 

Figure 3.1 from [IFI10] the support and the witness concept is illustrated in detail.

r ii
r *2
n 3
r i t

n s
r *6

CGTCTCCTCCAAGCCCTGTTGTCTC A TACC
TCCTCCAAGCCCTGTTGTCTCT TACCAGGA 

GTCTCCTCCAAGCCCTGTTGTCTCT TACCC
TCCAAGCCCTGTTGTCTCT TACCCGCATGT 

CTCCAAGCCCTGTTGTCTCT TACCCGGATG 
CAAGCCCTGTTGTCTCT TACCCGGATGTTC

CGTCTCCTCCAAGCCCTGTTGTCTCTTACCCGGATGTTC

Figure 3.1: An example of an error covered by six reads; the genome region where the reads came from is 
shown at the bottom. The letter (inside the frame) following the witness u = CTGTTGTCTC (underlined) should 
be T and not A. The support values are supp(w, T) = 5 and supp(w, A) = 1.

3.2 Euler SR alignment

Euler SR alignment is used before the assembly process of the shotgun technique for error 

correction to get the most out of assembly algorithms to produce contigs of higher length. The 

spectral alignment problem [CP09] is very simple in concept and can be implemented in many

2Reverse complement of DNA sequence is the complement of DNA sequence when read from end to the start 
of the sequence
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different ways. Below are few of the definitions used further to understand the concept.

Definition 1: An ¿-tuple (i.e., a DNA string of length k) is called solid with respect to R and m, 

if it is a substring of at least m reads in R and weak otherwise.

Definition 2: The spectrum of R with respect to m and k, denoted as Tm.i(R), is the set of 

all solid ¿-tuples with respect to R and m.

The spectral alignment problem [CP09] is stated as: Given a DNA string s and spectrum 

Tm.i(R), find a string s* in the set of all Tm.i(R)-strings that minimizes the distance function 

d(s, s*).

The distance function is the measurement of number of base changes present between two DNA 

strings or it may be cost of insertion or deletion or modifying a base to make the DNA strings 

the same. The distance function can be any standard function, such as Hamming distance (suit­

able for Soleza/Illumina) or edit distance (suitable for 454 Life Science/Roche) function.

If there is an error at f 1 position in the genome, then according to the above definitions, 

the read r„ sampled for that position, will have min(k, j, l -  j)  weak ¿-tuples. For these weak 

¿-tuples a nearest strong ¿-tuple will be found and replaced. If there are errors in read rh it is 

not always min(k, j, l -  j)  tuples which are going to be weak. This is because a read r, can have 

more than one error. To add to the list there are weak tuples to be represented as strong and 

strong tuples being represented as weak, due to high error rates in the sequencing technique. 

The first issue of read r, having more error than one is tackled by increasing the distance. But 

doing so will see a huge change in the time complexity. The other issue can be minimized by 

selecting carefully the values of the multiplying factor m and length of the tuple k.

3.3 SHREC

The main idea of the SHREC (SHort Read Error Correction) method [SSP+09] involves build­

ing a generalized suffix tree ST(Rs) of all the reads and their reverse complements.
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Suffix Tree

The Suffix tree is a data structure where a string is represented in a way to perform operations 

on strings very fast. In a suffix tree each edge is given a string value. By traversing from the 

root node to any leaf and collecting all the string on the way, a unique suffix from the original 

string is obtained. This is one of the fundamental concepts of suffix tree. Also each edge should 

have a non empty string associated to it and all internal nodes should have at least two children 

(except the root). The concept was first introduced by Weiner [Wei73] in 1973 as position tree. 

Then the concept was significantly simplified by McCreignt in 1976. Ukkonen after that gave 

a beautiful online-construction of suffix trees, now known as Ukkonen’s algorithm [Ukk95]. 

Figure 3.2 shows the suffix tree for the string BANANAS.

Figure 3.2: Example of Suffix Tree

3.3.1 Suffix Tree in SHREC:

The suffix tree in SHREC is built for all the reads and their reverse complements with each 

read and its complement terminated with a unique value from 1,2,... 2k.
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Rsl = n  1 n 2 r2 3 r2 4 2k r„

Each edge in the ST(Rs,) is uniquely labelled with a single string to ensure the path from the 

root to each suffix is unique. The string formed by concatenating the characters found on the 

path from the root to node v is called the path-label of node v. The level of node v is the string 

length of the path-label of node v. Level zero is the top level of the Rst and level n is the bottom 

level. The suffix tree built by the SHREC algorithm has one more important characteristic to 

it, the weight of the edge. The weight of the edge is defined as the number of leaves in the 

subtree below the edge. In turn the weight of the node is v is the number of times the path label 

v appears as substring in the reads from Rst.

The generalized suffix tree used in SHREC has some properties listed below

• fn the top t levels, where t = min{log4L, log4k}, the tree is almost complete. That is 

almost every node has 4 children.

• The total number of times a string of length t+r can occur in a random string of length L 

is ^ 4 . So if the reads are correct the expected nodes in the level t+r should not be more 

than 4..

• With the reads having an error rate of p, it is expected that the suffix tree at each level 

will have at least p x L nodes with more than one child, ff there is sufficient coverage, 

the weight of the edge of one of the child will be much higher than the other one.

• The closer to the root, the less certain that a node is erroneous. So a parameter q is 

defined, such that ^  < p. This helps in saying that most of the nodes below level t+q 

have errors.

• Nodes below level s do not have sufficient weight to distinguish between correct and 

erroneous nodes. (See Figure 3.3 from [SSP+09].)

SHREC differentiates between the erroneous nodes and correct nodes in the generalized 

suffix tree. Looking at the properties of the generalized suffix tree constructed in SHREC, the 

error correction algorithm is very simple. The coverage as we know should be sufficient, it 

is one of the main deciding factor in differentiating between the erroneous nodes and correct
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Figure 3.3: Structure of suffix tree ST( Rst)

nodes. As shown in Figure 3.4, if there is a error in the node it will have more than one child 

and the weight of edge connecting to one of the children will be considerably high than the 

others. This is how the algorithm will know that the child connected with the higher weighted 

edge is the correct node and the rest are wrong.

3.3.2 Algorithm for SHREC

Construct the generalized suffix tree for the reads and the reverse complements with all the 

weights of edges, nodes and map appropriate read information to the nodes. Traverse the suffix 

tree as mentioned in the below steps.

1: Perform a depth-first traversal of ST(Rst) inspecting the nodes from level s up to level 

t+q for potential errors.

2: Identify all nodes w with at least two children where one of the children w has a smaller 

than expected weight.

3: For each identified node w find the set of reads R(w) belonging to the suffixes in the 

sub-tree below w.

4: For each read r, e R(w) examine if correction to a sibling of w fits the suffix.

a. If so, calculate error-position in r, and correct the nucleotide to the edge label
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of siblings or associated edge.

b. Otherwise, mark r, as erroneous.

5: After all nodes have been analyzed, if there are marked reads that have not been corrected 

during the algorithm, remove them from the set of reads before assembly.

Figure 3.4: Typical error scenario in SHREC

There are three different approaches to run the above algorithms based on the requirement 

of the user.

Identify - only approach: The simple method to handle errors in the reads is to discard er­

roneous reads and keep only those reads which are correct. The SHREC can be run to 

detect the erroneous nodes in the suffix tree and delete all the reads which have that path 

label. This approach is not suited for practical applications because there will be less 

reads available which do not contain any errors.

Static approach: In this approach, whenever the algorithm finds an erroneous node it corrects 

the error and marks the read so that the same error is not corrected. Which means to say 

if more than one error occurs in a read, only one error is corrected and still the read is

erroneous.
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Dynamic approach: In this approach whenever the algorithm finds an erroneous node, it cor­

rects the error and updated the suffix tree to reflect this correction. Following this ap­

proach can lead in correcting multiple errors in the reads. The downfall of this approach 

is the time complexity. To update the suffix tree whenever a base in a read is correcting 

involves deleting the whole sub tree below that error node and updating proper sub tree 

structure of the correct node with all the weights. This shoots up the time complexity.

3.4 CUDA

This is a parallel algorithm for error correction in high throughput short read data on CUDA 

enabled graphics hardware [SSLW10]. Compute Unified Device Architecture (CUDA) is an 

extension of C or C++ used to write scalable multi threaded programs for CUDA enabled 

GPUs. CUDA provides error correction in high throughput sequence by solving the spec­

tral alignment problem briefed in section 3.2. The advantage of CUDA is its multi threaded 

functionality which speeds up the process of error correction through parallel programming 

approach.

To implement the multi threaded functionality certain architecture should be laid first. The 

CUDA programs contains certain sequential part called a kernel. The kernel is written in a 

scalar C-code. It lays out the function of the single thread and is invoked as a part of concur­

rently executing threads. The threads are hierarchically organized to form thread blocks and 

the set of thread blocks are grouped as grids. Each grid is uniquely associated with a ID which 

is the set of two values (threadldx.blockldx). Each thread has it own space and parameters to 

operate on. The size and the parameter list are predefined. When there are multiple threads 

operating concurrently, there is always a need of communication between the threads. Threads 

in the same block can communicate using the shared memory space called per-block shared 

memory (PBSM). When there is a need for communication between thread blocks, a different 

hierarchy of memory structure is needed. Here is the list of different memory spaces used in 

CUDA:

Readable and writable global memory is relatively large (typically around 1GB), but 

has high latency, low bandwidth, and is not cached.
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Readable and writable per-thread local memory is of limited size (16 KB per thread) 

and is not cached. Access to local memory is as expensive as access to global memory.

Read-only constant memory is of limited size (totally 64 KB) and is cached. Reading 

from constant memory can be as fast as reading from a register.

Read-only texture memory is large and is cached. Texture memory can be read from 

kernels using texture fetching device functions. Reading from texture memory is generally 

faster than reading from global or local memory.

Readable and writable PBSM is fast on-chip memory of limited size (16KB per block). 

Shared memory can only be accessed by all threads in a thread block.

Readable and writable per-thread registers is the fastest memory but is very limited.

3.4.1 Hardware model of CUDA

The scalable processor array in Telsa architecture supports CUDA applications (see Figure 

3.5 from [SSP+09]). Telsa is made up of array of Streaming microprocessors (SM). Each 

SM is made of typically 8 Streaming processors (SP). Each of these eight processors share a 

common per block share memory of 16KB. Typically 32 threads, called as a wrap, are executed 

concurrently in a single SM by single instruction multiple thread fashion. Due to the parallel 

implementation the performance is directly dependent on the data independency. That is, the 

more the data is independent, the less the thread needs to synchronize and therefore less time 

complexity. The GPUs with NVIDIA’s Tesla unified computing architecture are well suited to 

execute the CUDA programs. Examples of CUDA- enabled GPUs include the Tesla 800/1000, 

GeForce 8/9/200 and Quadro FX 3000/4000/5000 series.

3.4.2 Bloom data structure:

In section 3.2 the spectral alignment problem is stated. One of the requirement for the 

spectral alignment is to maintain a list of solid tuples. When maintaining the solid tuple it is 

important to have a data structure to quickly access the solid tuple in the list. For this purpose 

the CUDA employs the probabilistic hashing scheme based on the space efficient bloom filter 

data structure [Blo70].
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Figure 3.5: Hardware model Telsa for CUDA enabled GPU’s

The Bloom data structure, conceived by Burton Howard Bloom in 1970, is a space ef­

ficient probabilistic data structure that is used to test whether an element is a member of a set. 

False positive are possible, but false negatives are not. To simplify the previous statement, the 

query of an / tuple being solid may will always result in yes. But sometime a query of an / 

tuple being weak may result in solid tuple. This particular drawback is tolerated because of the 

space efficiency of this data structure.

Bloom filter is a bit array of m bits, initially all set to 0. There should be k different hash 

function defined which will be the tuple length in case of SAPfSpectral Alignment Problem), 

each will map some elements of the one of the m array position with a uniform random distri­

bution. To add an element into the filter, the tuple is fed to the k hash functions and a set of k 

array positions are obtained. Then all those k array positions are set to 1. Only strong tuples 

are added to the Bloom filter. To query an element from the filter, the tuple is again fed to k 

hash function to retrieve the k array position. If all the k array positions are 1 then the tuple is 

solid. The false positives arises from the fact that the k bits can be set to 1 from any number of
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n keys. The false positive probability of a bloom filter is provided by Bloom is

FPP * (1 -  (1 -  = (1 -  e ^ ) k

m bits

Figure 3.6: Bloom filter

The FPP formula tells that, in order to maintain a fixed false positive probability, the length 

of the bloom filter must grow linearly with the number of elements being filtered. In practical 

implementation of this method the parameter values are k = 8 and m = 64 x n which give FPP 

= 3.63<T8.

3.4.3 Major steps of the algorithm

1. Spectrum counting: The important requirement of the SAP is to first distinguish the tuples 

into solid and weak tuples. For this requirement m (multiplicity factor to determine whether a 

tuple is solid or not) Bloom filters are required. The process starts with starting all the Bloom 

filters bit array set to zero. While starting to process the tuples linearly, the first Bloom filter is 

used and if the tuple is not present in that table, the entry is added. If the entry is already present 

in the table then the entry is added to the next Bloom filter. This process continues for all the 

tuples available. Now to determine the solid tuples, each tuple again is linearly processed and 

queried in the Bloom filters in descending order. If the result of the Bloom filter is YES in all 

the m bloom filter queries, then the tuple is solid, otherwise the tuple is weak. This operation 

is done in CPU not in parallel CUDA.
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2. Parallel error correction: The Bloom filter is loaded into the texture memory for parallel 

error correction. The error correction for SAP is done by converting the weak tuples into 

solid tuples, which has minimum distance A. Whenever a weak tuple is encountered, all its 

A-mutation solid tuples are queried for membership in the Bloom filter. A voting matrix of 

these solid tuples is created based on the distance function used, which in turn is based on 

the type of mutation. Based on the values in the matrix and the distance function used, an 

appropriate solid tuple is selected, thus correcting the errors. This method is not suitable for 

large value of A. So the CUDA algorithm does correction in sequences. First the correction is 

done for A = 1. If the voting matrix in the process is not able to correct the error, the reads are 

trimmed/discarding/A-mutation fixed in the GPU. Subsequently A is increased and targeted to 

the reads which are trimmed/discarding/A-mutation fixed in the GPU.

Overall, the steps of our CUDA implementation for error correction with up to two errors 

per read are as follows.

1: Pre-computation spectral counting on the CPU.

2: Data transfer from CPU to GPU: Transfer bloom filter bit-vector and read data to the 

allocated texture and global memory on the GPU.

3: Execute CUDA kernel: Parallel error correction step with A = 1.

4: Data transfer from GPU to CPU: Transfer set of error-free/corrected/trimmed/discarded 

reads to the CPU.

5: Data transfer from CPU to GPU: Transfer reads that are neither error-free nor corrected 

to the allocated global memory on the GPU.

6: Execute CUDA kernel: Parallel error correction step with A - 2 .

7: Data transfer from GPU to CPU. Transfer set of corrected/trimmed/discarded reads to 

the CPU.
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3.5 Reptile

Reptile (Representative tiling for short read error correction) is a scalable short read error 

correction method that uses alternative decomposition of the erroneous reads and contextual 

information of the neighbouring substring of the reads to conclude appropriate corrections 

[YDA10]. Reptile creates approximate multiple alignments with the possibility of substitutions 

in the absence of location information. Along with using contextual information in correcting 

the errors it uses the ¿-mer Hamming graphs, ¿-mer Hamming graphs help Reptile retrieve 

all the candidates for the erroneous reads with minimum Hamming distance. Reptile also 

incorporates the quality score information while correcting the reads.

A ¿-spectrum for particular read r is defined as set r* = {r[/ : i + k -  1]|0 < i < l -  ¿ + 1}, 

where r[ i: j ] denotes the substring from position i to j  in r. The ¿-spectrum of the set R which 

is the set of all the reads and their reverse complements is given by Rk = (J"=i ■■ Let a  and /?

be two strings such that a[(|a| -  c) : (|a| -  1)] = /?[0 : (c -  1)] for some 0 < c < min(\a\, |/?|). 

A c-concatenation of two sub string of reads a  and ¡3, denoted as a\\c(3 results in a string y of 

length |ar| + |/?| -  c such that y [0 : (|o'| -  1)] = a  and y[(|y| -  |/8|) : (|y| -  1)] = [3. The Hamming 

distance hd(o'i,o'2) between two strings o-i and a2 is the number of positions at which they 

differ. For a ¿-mer o', e Rk, the ¿/-neighbourhood is N f = {aj € Rk\hd(ai, ctj) < d). The 

complete ¿/-neighbourhood AK = {aj\hd(ai, aj) < d) of a ¿-mer contains of all ¿-mers within 

Hamming distance d, whether or not they occur in the set Rk. A tile t of a read r is defined as 

a illc^  (0 < c < k) only if t is a substring of r, and la'll = ^ l  =¿• A d mutant tile is defined as 

t' = a'\\cl3' of t = a\\c(3 if hd(a, ¿r')] < d and hd(f3,/3') < d. Tr = (ti, t2, ..., tm) is a tiling of read r 

if r = t\\\Clt2 ...\\cm-xtm such that t, (1 < / < m) is a tile of r and /, > 1 (1 < i < m).

3.5.1 Major steps of Reptile Algorithm

1: Information extraction.

a. Derive the ¿-spectrum Rk of R.

b. Derive Hamming graph.

c. Compute tile occurrences.

2: Individual read error correction.
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a. Place an initial tile t at the beginning of the read.

b. Identify ¿/-mutant tiles of t.

c. Correct errors in t as applicable.

d. Adjust tile t placement and go to step 2b, until tile placement choices are 

exhausted.

Information extraction is to construct the k-mers. The k-mer spectrum can be constructed 

by a linear scan of the reads. One of the important things to note here is that Reptile converts 

all non ACGT bases to A, so that they can be corrected, if wrong, later by the algorithm. The 

Hamming graph is where the &-mer are represented by vertices and each k-mer will be con­

nected to its mutated k-mer with an edge. The edge is weighed by the distance measured in 

terms of mutation. To fasten the error correction process, the algorithm should be able to query 

all the d neighbourhood ¿-mers in a constant amount of time. This requires a faster process of 

querying the ¿/-neighbourhood &-mer from the Hamming graph which is provided by Reptile. 

Reptile successfully does this by a simple recursive approximation. Tiles are c-concatenations 

of consecutive overlapping k-mers. The multiplicity of the k-mers is calculated by a linear scan 

of the reads. Along this Reptile also calculates the tile occurrence, where every position of the 

read has a quality score exceeding some threshold Qc.
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Figure 3.7: Contextual information used in Reptile

Figure 3.7 from [YDA10] shows how Reptile uses the contextual information in correcting 

errors. G is the target genome, shown as a bold line. The r^  (0 < i < 8) represent reads, shown
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as thin lines; aj (0 < j  < 8), a and a' are &mer instances in the reads, shown as rectangles. 

Every read is drawn aligned to its origin of sequencing position on the target genome. The 

bases at two positions in the /c-mers a2, a' , and a" are shown. All other positions in these k- 

mers match across all three variants. Without knowing the alignment, it is unclear if a'2 should 

be corrected to a2 or a2, since both hd(or' , a2) = h d ^  , a2) = 1 and a2 and a" have a similar 

higher frequency. However, the contextual information of a ' available from read r3 (in this 

case, (Ti) uniquely identifies a2 as the right correction.

Error correction in the Reptile is done by choosing a tile Tr from the erroneous read and 

replace it with its ¿/-mutant tile Ts which is error free. As Ts is the correct tile it should be 

available in huge number than Tr considering the uniform coverage. The mentioned technique 

works fine if there are very few errors in the reads. In the typical reads the errors tend to accu­

mulate over the 3' end of the DNA. Because of that, there would be a d mutant T' of Tr which 

will lower the maximum number of mutations per &mer to below d such that T' with high 

probability tilings is one of the d mutant tilings of T'. In order to solve this problem Reptile 

places a tile Tr on r and attempt to correct Tr via comparisons with its ¿/mutant tiles. If Tr is 

validated or correct, then the algorithm moves to the next tile. But if there is a cluster of errors, 

for which there will be no ¿/-mutant tile with high probability. Instead of moving to the next 

tile altogether, the algorithm jumps to the tile where it can find a d mutant tile. By doing this 

step by step each error in the read r is corrected.

Figure 3.8: Read correction using the tile placement in Reptile



3.6. HiTEC 31

For error correction using tiles some parameters are used with respect to each tile t in read 

R. Oc is defined as the number of times the tile t occur in read R. Og is the number of times the 

tile t occur in read R where each of the base has quality score exceeding a threshold value Qc. 

If Oc or Og value is greater than a threshold value Cq, the tile is considered to be correct.If Oc 

or Og value is less than a upper threshold value Cm, the tile is considered to be valid only if, 

there are no ¿/-mutant tiles against it.

The tile placement during the read correction is one of the important factors in the Reptile 

algorithms. Figure 3.8 shows in detail how the placement of tiles is done during the read 

correction. Initially a two tiles to and t\ are chosen. Having single error in each of the tile, after 

the correction the tile placement is moved by jumping a distance of one tile at once. But in the 

next tile sequencing there are more than one error. So the tile placement is readjusted to see 

that there will be only one error in the tile. If there are two errors in a tile, then it is not able 

to correct. To find d mutants the time complexity increases exponentially with increase in d. 

Therefore it is better for the algorithm to stick to the minimum value of d. The read correction 

in the Figure 3.8 is explained using the d 's value as 1.

The parameter value of Qc, Oc, Og, Cq and Cm can affect the performance of the Reptile. 

Therefore these parameters have to be chosen very carefully and much after statistical and 

practical analysis. The parameter values in Reptile are chosen after careful analysis of the 

input data. The Qc is choose such that 15% to 20% of the bases have quality scores below Qc, 

Cg is chosen such that a small part(l% to 3%) of the tiles have its occurrence value above Cg, 

Cm is chosen such that a large part(4% to 6%) of the tiles have its occurrence value more than 

Cm. As the Cm value decrease more errors are corrected, but there is high probability of false 

error correction. Increasing Cg increases the quality of error correction. The value of k is set to 

log^G. Hamming distance is defaulted to one. These parameters are changed with respect to 

input data.

3.6 HiTEC

The basic idea used in the HiTEC (High Throughput Error Correction) [IFI10], error correction 

method is to construct the suffix array of the string Rs, where Rs-  r\$f]$r2 $f2$....rn$rn. and
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use it to then determine and correct a wrong base, with support of a witness string u. The idea 

is very simple and is explained in detail as the basic error correction in section 3.1. In the next 

few sections the details about how the support is determined and the underlying data structure 

for the witnesses are explained.

3.6.1 Suffix array

The suffix array is a text index that was built mainly to compensate the memory and time com­

plexity of suffix tree. It was developed by Myers and Manber [MM93]. The suffix array is an 

array of numbers holding the starting position of the suffixes sorted in the lexicographical or­

der. Consider for example the string S = ACTAACACTGG. The alphabet set is 2  = {A,C,T,G} 

the four bases of the DNA. In Table 3.1, the i column is the lexicographical index order and 

SA[i] is the corresponding value of the starting position of the suffix in the string s in lexico­

graphical order. The LCP gives the Longest common prefix between the two consecutive suffix 

array elements, that is, between SA[i] and SA[i -  1J. If |5| = m, then the SA can be computed 

in O(m) time and space by any of the algorithms of Karkkainen and Sanders (2003) [KS03], 

Kim [Kim05], Ko and Aluru (2005) [YDA10]. The LCP array can be computed also in O(m) 

time and space by the algorithm of [TorOl]. HiTEC has used the libdivsufsort library of Yuta 

Mori3 in the program.

i SA[i] SUfsAH LCP[i]

1 4 AACACTG 0
2 5 ACACTG 1
3 1 ACTAACACTGG 2
4 7 ACTG 3
5 6 CACTG 0
6 2 CTAACACTG 1
7 8 CTG 2
8 10 G 0
9 3 TAACACTG 0
10 9 AACACTG 1

Table 3 .1 : Suffix array of string ACTAACACTGG

3libdivsufsort: A lightweight suffix sorting library, http://code.google.eom/p/libdivsufsort/.

http://code.google.eom/p/libdivsufsort/
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3.6.2 Statistical analysis

The novelity brought by HiTEC was a thorough statistical analysis that enabled correction of 

more errors than all the other programs. Considering u to be the support of length w, the cluster 

of u is defined as the set of all the positions where the witness u appears in the string R with a 

leading base value other than $

clust(u) = ^  supp(u, a).
ae2

The cluster of u is very easy to find in SA, because all the suffixes are lexicographically ordered. 

LCP makes it even easier to find out the cluster of u. The occurrence of the witness string u 

of length w is random in the genome. To detect an erroneous base it is very important that the 

witness u does not appear anywhere else in the genome. HiTEC models this randomness using 

a Bernoulli model and derives w, the length of the witness u. The witness length w derived 

using the Bernoulli model will be balanced in such a way that there is low probability of that 

witness to appear some where in the genome and have enough occurrence to successfully detect 

an erroneous base. There are two cases to consider here. First the witness u is correct and the 

base following it is also correct. The probability of any substring of length / in the genome and 

the read sequenced for that exact substring having a correct witness of length w with a correct 

base following it is

qc = ^ ( l - P)w+l

If Rc is the number of reads satisfying the mentioned condition, then

Prob(Rc = k) =
/ \ 
n

KkJ
qkc( \ - q c )n-k

Thus the expected number of pairs («, a), both u and a correct, given that supp(w, a) = k, is

Wc(k) =
( \ 
n

\k /
qkc(l -  qc)n~kL

Second case is the witness u is correct and the base following it is wrong. Giving the same 

reason as that in case one the probability of the second case to occur is

« .  =  ¥ §  a - r i ’
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The number of reads Re has the probability distribution

Prob(Re = k) =
(
n

¿(1  - q e ) n~k

Thus the expected number of pairs (u, a), where u is correct and a is wrong, given that supp(w,a) 

= k, is

We(k) =
( \ 
n

KkJ
¿(1 - q eT * L

One may argue that a third case exists, when an error is present in the witness u. If there are 

errors in the witness, those occurrence will anyway be few. The threshold value T is derived 

from k in the interval where Wc(k) and We(k) are very small. As the error rate decreases 

the interval increases. So T should remain good when some of the errors are corrected. The 

formula for T is

T -  min((k\Wc(k) > We(k)}) + 2

One more parameter which plays an important role in correcting most of the errors is the 

witness length w. Witness length can not be just randomly picked. Because if the witness 

length is small, the chances that the same witness appears somewhere else in the genome are 

high. The consequence will be that some of the erroneous reads are validated as correct reads. 

If the witness length is large then the support for the witness will be very small to detect the 

erroneous base. HiTEC uses a statistical approach to calculate the witness length w. Again, in 

order to successfully predict an appropriate value for the witness length we need to consider 

two cases. First the number of uncorrectable reads. The uncorrectable reads are those where 

the witness w when fitted any where in the read has errors in it. To estimate this we need to 

determine a way of placing k errors in the read of length /, so that the witness placed anywhere 

in the read will have at least one error. The function which reflects the required behaviour is

fw(k, /)•

U k ,l )  =

l
r

kV /

i f  l < w,

0, i fk  < L^J,

f w(k -  1,1 — i), otherwise
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Using this function, the number of uncorrectable reads with the witness length w is f w(k, l)pk( 1 -

p t k•

Figure 3 .9: The number o f reads with a given number of errors and no error-free interval of length w for L = n 
= 4.2 mil. and 1 = 70. The right plot uses w = 21 and the left w = 18.

Figure 3.9 from [IFI10] plots the total number of uncorrected reads for witness lengths of 21 

and 18 for a genome size of 4MB. The important point we can derive from the graph is that, as 

the witness length decreases the number of uncorrectable read count plummets. The downfall 

is, the smaller the witness length the higher the chances of that string appearing somewhere 

else in the genome which causes correct bases to be changed to wrong ones. This brings us to 

the second case, where we need to calculate the number of reads which are destroyed because 

of the above mentioned scenario. That is the witness being wrong, so that the correct bases are 

deemed wrong and changed. The probability of the witness u having error and posing as string 

v which is present in the genome followed by a different base is given by

qw = { \ - ( \ - p ) w) ( \ - p ) ( \ - { \ - ± ) L)l 

The total number of destructible reads using the above mentioned probability is

D(w) = (1 -  (1 -  qw)l~w){\ -  p)ln

Clearly we can see that both cases mentioned are going to hurt the error corrections process 

badly. HiTEC takes a common ground by deriving the witness value
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wm = arg minw(£/(w) + D(w))

Figure 3.10 shows the values of U(yv) + D(w) for various witness lengths. It is theoretically 

shown that, to get the highest accuracy the best witness length is wm. However in practical it 

turns to be combination of witness lengths around wm and smallest value w for which no correct 

reads are changed will yield the best results:

wm = min({w\D(w) < 0.0001 E e})

HiTEC uses the following witness lengths in sequence for 9 iterations in the software:

Wseq  =  W m  +  1 , W M  +  1 , W M  +  \ , W m , W m , W M , W m  -  1 , W M  ~  1 , W M  ~  1

Figure 3 .10: The values of U(w) + D(w) as percentages of the total number of erroneous reads, Ee, for L = n = 
4.2 mil., / = 70, and p  = 0.03.

The software runs in iterations and each iteration picks up different values of witness 

lengths. The number of iterations ran by HiTEC software is maximum of 9 and the only reason 

the program stops before iteration 9 is when the number of bases corrected by the program is 

below some threshold value the threshold value being 0.01 % of the total number of bases.

3.6.3 Algorithm

oo
14 15 16 17 18 19 20 21

w

The pseudo code for HiTEC is given in algorithm 1. The inputs HiTEC algorithm accepts are 

the error rate p, genome length L and input reads. The rest of the parameters are calculated
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as mentioned in the section 3.6.2 using the statistical approach. The support for a witness is 

calculated online instead of LCP because the online algorithm due to cache effect will reduce 

the complexity of space and time. If there is enough support for a witness then the erroneous 

base is changed. If the algorithm is ambiguous whether the base is erroneous or not, the 

successive bases are considered in determining the appropriate decisions. The algorithm runs 

for a maximum of 9 iteration or can end before that if the total number of bases changed in 

the particular iteration is less than the 0.01% of the total bases in the read file. To provide best 

time and space complexities, HiTEC also splits the high coverage input read files into reads of 

coverage 70 each.
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Algorithm 1 HiTEC
given: n reads r\, r2, r n (of length l each), L andp 
return: Corrected reads in the same input format 

1: compute wM and wm 
2: compute T 
3: i *- 1 
4: repeat 
5: c <— 0
6: w «- wseq[i]
7: Construct R and compute SA and LCP
8: Compute the clusters in SAfor all witnesses o f length w
9: for each witness u with clust(u) < T  + 1 do

10: Corr <— [a \ supp(u, a) > T)
11: Err <— {a \ supp(u, a) < T  — 1}
12: for each a e  Err do
13: if  | Corr \ = 1 then
14: correct a to b e  Corr
15: c <— c + 1
16: end if
17: if  | Corr |> 2 then
18: for each b e Corr do
19: if  ua, ub followed by same two letters then
20: correct a and b
21: c<r-c+ 1
22: end if
23: end for
24: end if
25: i <— I + 1
26: end for
27: end for
28: until ((^ < 0.0001) or (i > 9))
29: return all rf  s from R



Chapter 4

A fast implementation of HiTEC

When we analyse HiTEC solution for error correction in detail, the important aspect we notice 

is that the suffix array uses a high amount of space and time to construct it. The main goal of 

this thesis is to reduce this space and time. The purpos of the suffix array in HiTEC is to get 

the witnesses and the witness counts. In the fast implementation of HiTEC we propose, the 

witnesses and witness counts are calculated using 2-bit encoding of the bases and are stored 

in an hash table (array of witness). To speed up the process of finding an element in the hash 

table, linear probing technique is used. Using the mentioned techiques, the error correction 

algorithm uses significantly less space and less time in correcting errors.

4.1 Hashing

Most of the computer science algorithms use some type of search mechanism to fulfill their 

purpose. It is necessary to have an efficient search mechanism where the results can be ob­

tained in constant amount of time, that is 0(1) time complexity and with minimum storage 

requirements. To understand the above requirement in detail, we will consider an example. 

Consider a school that has 100 students in it. Each of them has a student Id  ranging from 1 

to 100 and we have to store them in an array. An array of size 100 will be allocated and each 

one of the students record can be identified in the array using the index in a constant time that 

is 0(1) time complexity with a space requirement of 100. If we notice the above solution in 

detail we can conclude that there is a one to one correspondence between the element key and

39
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the array index.

key

key 0 

key 1 

key 2

key 98 

key 99

Array of student 
records

Student record key 0

Student record key 1
m

Student record key 2
m

-
[-1

Ù

-
u

student record key Ü
m

Student record key 99
m

Figure 4.1 : Example for Hash table

However in reality establishing this perfect one to one relationship is quite a challenge. 

Now consider the same school with the same 100 students but the student Id ranges from 0 to 

99999, because the school decided to use 5 digit number as a primary key. Now it is not a good 

decision to have an array of 100000 elements, in which only 100 will hold a value. Instead 

we can trim the first 3 digits and using the last two digits to map it to a two digit indexed 

array. For example 45678 will be mapped to array element with index 78 and 76545 will be 

mapped to array element with index 45. Doing this would mean that the elements are not stored 

according to the key value as per previous design. Therefore there is a necessity of converting 

the five digits Id into a two-digit array index. The function used for the conversion is called 

hash function and the array is called the hash table.

4.1.1 Hash function and hash tables

A hash table is a data structure consisting of two parts, the key and the value, where the key 

points to the value. The easiest way to visualize the hash table is by visualizing the array data 

structure. The array index acts as the key and the data the location holds is a value. In this 

hash table any time can be searched in a constant amount of time that is 0(1), amortized time
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Array of student 
records

Figure 4.2: Example for Hash function and Hash table

using a hash function. The hash tables that are considered good also exhibits property such as 

constant time 0(1) for insertion and deletion of elements into the hash table [Knu88].

A hash function is a mathematical function which when applied to a key will produce a 

value that can be used as an address to the value. The intention here is to spread the elements 

uniformly and relatively random. Unfortunately reaching a solution to the hash function is 

not quite simple. Considering the school example and the mechanism of using the last two 

digits of the five digits to map the keys. Student Id 45678 will be mapped to the array element 

with index 78 and 76545 will be mapped to array element with index 45. What about 86745? 

This will also be mapped to the location 45, which contains the data of student with student id 

76545. This phenomenon is called a collision. In plain terms collision is a condition resulting 

when a hash function produces the same value for two or more keys. Collisions are important 

part of the hash table and a major factor considered while building a hash function.

The main question is can we design a hash function that doesn’t have any collision? The 

answer varies with the requirements. Sometimes a hash table without collision can be designed 

and those are called perfect hash functions. But in most of the practical scenarios it is impossi­

ble to create a perfect hash function. So, we settle for the next best that is good hash functions 

that have minimum collision by spreading the elements uniformly over the address space. De­

signing a hash function may be very complex due to the collision issues. Below are some of 

the steps used while designing the hash scheme for HiTEC2.

1. Set the hash table size to a prime number. (Eventually this prime number is used in the



42 Chapter 4. A fast implementation of H iTEC

hash function). This helps in uniformly distributing the key over the address space. The expla­

nation is quite simple; we will use this prime number that will be labeled as TABLE_SPACE 

in our hash function to get an address.

Due to the nature of maths, if the constant used as modulus in the hash function and the 

input variable are co-prime, then the collisions will be minimized and that minimizes the clus­

tering in the hash tables. If the hash table size is not a prime then the multiple common factors 

are obviously greater than one for most of the inputs. When the inputs are millions in number 

and the hash function has a modulus operation, it is better to have prime number to do the 

modulus of the input key, so that we are confident that the result of Greatest Common Factor 

(input, hash table size) = 1. Appendix, shows the list of the primes used in HiTEC2. We use 

a list of primes because the size of the hash table is set based on the input file size, so that the 

memory used will be minimum.

2. Transformation of inputs: In HiTEC2 there is a unique two-bit representation of the 4 

alphabets in DNA sequencing. So a string can be converted into a series of bits, which in turn 

will be an integer. The remainder of this integer when divided by the TABLE_SPACE gives the 

key in the hash table. The detailed explanation of this transformation is given in the Section

3.3.1

3. Collision handling: Even when TABLE_SPACE is a prime number, there will still be 

many collisions. There should be a mechanism in place to handle the collisions. HiTEC2 uses 

one of the most common and efficient solutions called Open Addressing with Linear Probing 

(see below).

4.1.2 Open Addressing

Open addressing is a method of collision resolution in hash tables, where all records are stored 

in the array itself (as opposed to, e.g., separate chains). The solution to the collisions is given by 

a mechanism called probing. Probing means searching alternative locations in the array until 

the target record is found or an empty spot is found where the target record inserted [TLA90]. 

There are many types of probing; the most important ones are linear, quadratic and double 

probing. In linear probing the interval between probes is fixed and it is usually 1. Quadratic
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probing increases the interval by values of a quadratic polynomial. Double probing invokes an­

other hash function to determine the probing sequence. The two important factors which helps 

us to determine which probing mechanism is best for our requirements is cache performance 

and sensitivity to clustering. In HiTEC2 linear probing is used to get the advantage of cache 

performance as the program deals with huge data and the sensitivity of clustering is anyways 

handled by allocated enough space for the hash table.

4.1.3 Linear probing

The simplest probing method in open addressing is linear probing. The simplicity comes from 

the fact that the sequence of probing is consecutive. The probing is very fast due to cache effect 

the probing will be faster. With all these advantages there is a disadvantage as well. To get 

a clear understanding here is an example. Let the size of the hash table be 10. Let the hash 

function be simple modulus function, that is H(k) = k mod 10. Initially all the elements in the 

array are empty. Insert the keys 15, 17, 8 (see Figure 4.3). When we insert 25, we compute P 

= H(25) = 25 mod 10 = 5. Position 5 is already occupied by 15. So we must look elsewhere 

for a position in which to store 25. Using linear probing, the position we would try next is 5+1 

mod 10 = 6. Position 6 is empty, so 25 is inserted there.

Index --------------------- ► I 2 3 4 5 6 7 8 9  10

Figure 4.3: Example for Linear probing



44 C hapter 4. A fast implementation of H iTEC

Now suppose we insert 35. We first try position 5 =35 mod 10. It is occupied. Using linear 

probing we next try positions 6 =(5+1) mod 10, 7 = (6+1) mod 10, 8 = (7+1) mod 10. Finally 

position 9 = (8+1) mod 10 is tried and it is empty so 35 is inserted there. Now suppose we 

insert 75. 5, 6, 7, 8, 9 are tried unsuccessfully. Finally we try position 0 = (9+1) mod 10; it is 

empty so 75 is stored there. The potential problem of linear probing is evident from the above 

example. With the increase in clusters in the table, finding the value in the table takes more and 

more time. In HiTEC2 the experimental results show that allocating space twice the amount 

of space required to store the target number of keys for hash table will keep the clusters small. 

Allocating twice the space required for the hash table will spread the keys over the whole hash 

-'table, which result in less collision, making the retrival of the value faster.

4.2 Implementation

The basic idea of error correction in HiTEC has been already explained in Section 3.1. HiTEC2 

uses the same basic error correction method but the approach used to implement it is different 

than that of any other error correction techniques. HiTEC2 encodes each of the letters A, 

C, G and T using 2 bits. The reads are thus converted into bit strings. These strings are 

concatenated and represented as a sequence of integers. The witness length is then calculated 

using the statistics explained in Section 2.6.2. A 64-bit sliding window and a logical AND 

mask of witness length over the read is used to generate the witnesses and get the counts of 

the preceding and successive base value with respect to each witness. Then the same sliding 

window concept is used to validate the preceding and successive base value of the witness 

with the help of the witness pool and the counters created earlier. An important difference 

with respect to the initial implementation is that the reverse complements of the reads are not 

explicitely stored thus already reducing the space needed in half. However, we need clever 

manipulation techniques to make use of reverse complements directly from the reads. The 

details are explained in detail in the next few sections.
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4.2.1 2-bit encoding of the reads

The DNA alphabet consists of 4 letters A, C, T, and G. The DNA sequence is a long sequence 

of these 4 distinct values. The DNA is sequenced and obtained in the form of reads with a 

specific read length. There are two kinds of read files one can pass as an input to HiTEC2, 

fasta  and fastq.

Each read in a fasta file typically occupies two lines. The first line always starts with > and is 

followed by the information about the DNA hosts id and the read number. The second line is 

the DNA sequence of the specific length. Figure 4.4 will show an example of fasta file.

Read Information ------------- *. >ReadO
DNA read ------------- ► GGTAAAATTTCTATTCTTGTACTCGGTGCAGATAA

>Read I
G AG ACTGG AAAAGTT G ATATTACGAGT C AAAACC A

Figure 4.4: Example of fasta read file

In fastq files, each read occupies 4 lines. First line always starts with @ and is followed 

by the information about the DNA hosts id and the read number. Second line is the DNA 

sequence. The third line starts with either + or depending on whether the DNA read in the 

second line is from 3’ to 5’ or 5’ to 3’ end orientation. The fourth line is the quality score of 

each of the DNA base. The quality score of a base defines the probability of correctness of that 

base. Figure 4.5 will show an example of fastq file.

Read Information------------- ► @SRR001665.1 071112_SLXA-EAS I _s_4:1:1:672:654
DNA read ------------ ► GCTACGGAATAAAACCAGGAACAACAGACCCAGCAC
Orientation ------------ *  +

Quality scores ------------ ► llllllillllllllllllillllEII9lilEllii
@SRR0Q 1665.2 071112JSLXA-EASI _*j4:1: 1:657:649 
G C AG AAAAT G G GAGT G AAAAT CT CCG AT G AGCAGCT 
+
IIIIIIIIIIIIIIIIIIIIIIIIII8II=II;III 

Figure 4.5: Example of fastq read file

The two bit encoding of the DNA is simple: base A is represented as 00, base C as 01, base 

G as 10 and base T as 11 and any ambiguous base N is converted to A and is represented as 00. 

Encoding the DNA bases with these specific values has valid reasons behind it. As we know the
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G C T  A T T  A G C G T  A C G T  T A  C C

1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1

Figure 4.6: Example of read and its binary encoded form

complement of base A is base T and complement of base C is base G and vice versa. The DNA 

bases are encoding in such a way that the binary encoding of the bases when complemented 

yields the binary values of the complement bases. For example base A is encoded as 00 and 

when 00 is complement we get 11, which in turn represents base T, which is complement of 

base A. This makes it easier and faster for HiTEC2 to complement the whole witness value of 

whichever length by using the logical NOT operator. Figure 4.6 shows an encoding example 

in detail.

In HiTEC2 the whole read file is read into a character array and based on the type of file the 

loops are executed to extract only the DNA sequence in the read data. Each read while parsed 

from starting till the end is encoded base by base into an 8-bit integer array. The encoding is 

straightforward but placing them in the array is a bit tricky. Let us consider and example to 

illustrate how this is done (see also Figure 4.7). Consider a read with read length 10 and the 

DNA sequence GTCGTACGTC. Initially the 8 bit integer array binArray[ ] will be initialized 

to 0 and the index starts with 0. When our program reads the DNA read sequence, it first 

encounters G and encodes it to 10. Our program then pushes it left 6 positions and logically 

OR’s it with the binArray[0]. So binArray[0] has value 1000 0000. The next base in the 

sequence is T and the program encodes it to 11 and then pushes it left 4 positions and logically 

OR’s it with the binArray[0]. Now binArray[0] has value 1011 0000. The next base in the 

sequence is C and the program encodes it to 01 and then pushes it left 2 positions and logically 

OR’s it with the binArray[0]. Now binArray[0] has value 1011 0100. The next base in the 

sequence is G and the program encodes it to 10 and logically OR’s it with the binArray[0]. 

Now binArray[0] has value 1011 0110. At this point the 8-bit integer value in binArray[0] 

holds 4 bases and now the index value of the array is incremented by 1. The process is repeated 

again and again till the bases in the read are exhausted. If the read does not fit exactly into the 

multiples of 8 bit integer, the rest of the bits of that integer will be defaulted to 0 and a variable
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named offset stores the number of bits are that does not encode bases. In the above example 

the offset would be 4 because the read length is 10 and when encoded will take 20-bit space. 

20 bits require 3 bytes where the last byte has 4 nonencoding bits (the least significant ones).

In the Figure 4.8 there are two examples. One shows the DNA read of length 10 encoded 

and put into 3 bytes with the bits in the cells colored red are nonencoding bits and offset is set 

to 4. In the other example a DNA read of length 12 is encoded and put into 3 bytes that fits 

exactly and the offset is set to 0. The example illustrates why we choose an 8-bit integer array 

to store the encoded binary values of the read. The answer is to have a low maximum offset; 

always almost 6, so only up to 6 bits of space get wasted for each read. If we chose 32 or 64 

bits, a significant amount of space could be wasted.
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i o
i o

i 1

I 1

0 !

I 0

push to left 
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OK 0 0 0 0 0 0 0 0 binArrayfO]
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OR 1 0 0 0 0 0 T JT b5nArray(Q]

1 0 1 1 0 0 0 0

0 1
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OR I 0 1 10 1 0 0 binArrayfO]

1 0 | . 1 0 I 0 0
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OR 1 0 1 1 0 I 0 0 binArrayJO]
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0 0 0 0 0 0 0 0

Index

0
1
2

index

0
1
2

Index

0
1
2

index

0
1
2

Figure 4.7: 2-bit encoding of reads
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DNA read

GTCGTACGTC

Index

DNA read

GT CGTACGT CGA

Index

Figure 4 .8 : Examples of 2 bit encoding

4.2.2 Encoding of witness

Encoding the witnesses and creating the counters for the adjacent bases is one of the critical 

steps in the error correction. HiTEC2 uses a hash table and linear probing. To start the encod­

ing witness process (shown as Algorithm 3), the 2-bit encoding of the read should be ready in 

binArray[]. A sixty-four bit array witness[ J with size TABLE_SPACE, which acts as hash table 

is created and initialized to zero. This array holds all the witnesses. To build the counters cor­

responding to the adjacent bases, a two-dimensional 8 bit array counter[TABLEJSPACE][8] 

is created which is initialized to zero. The second dimension of the counters is of length 8 be­

cause we need 8 counters of 8 bit each to store 4 distinct bases for 2 positions, before, which 

is the preceding base of the witness and after  which is the succeeding base of the witness. The 

8-bit counter unsigned integer counter can hold a count of 255 which will be high enough for 

detecting and correcting errors. Any number of occurrences higher than 255 is represented as 

255.

binArray[ ] has all the reads data in binary, from which a single read data is copied into 

an array, called currRead[ ]. This can be easily done if we know the read length, that is by 

copying the data from binArray[ ] from index 0 to read length into curRead[ ] (Algorithm 2
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step 2). The last 64 bits of the curRead[ ] are loaded onto a 64 bit integer (currReadShare), 

while another 64-bit integer is loaded with the reverse complement of the currReadShare, as 

shown in the Figure 4.9. (The procedure for loading the values onto currReadShare and cur­

rReadShare .revcomp is given in Algorithm 4)

Then a witness widow is created which is twice the witness length, because each base is en­

coded into two bits (Algorithm 2 step 3). This witness window is then placed over to the 

rightmost end of the currReadShare. The bits value in the mask are obtained by doing a logical 

AND operation with the witness mask. The witness mask contains bit value 1 inside the wit­

ness window and 0 elsewhere. When a logical AND operation is done between currReadS hare 

and the witness mask only the value inside the witness window is obtained as output (Algo­

rithm 2 step 17). At the same time the witness window will be placed to the leftmost end of 

the reverse complement of currReadShare and get the value of the reverse complement of the 

witness using the same masking technique (Algorithm 2 step 18).

Now these two integer values of the witness and its reverse complement are compared to see 

which is smallest (step 19). This is done so that both the counts of straight and the reverse 

complement witness can be stored in the same place, thus reducing the memory for counters 

in half. The smallest value is then subjected to the modular hash function, modulus of TA- 

BLE_SPACE, to get the index value in the array witness[ ] to store the witness integer value, if 

that index value already holds a witness value then the linear probing is done to get a place to 

store the witness value (Algorithm 5).

As shown in Figure 4.9, the witness window helps in extracting the witness value; after 

and be fore  bases need to be extracted from currReadS hare to know for which base the witness 

string is a witness. They are extracted using the same masking procedure, with a mask of only 

two bits at the proper position (Algorithm 3 step 10 and 14). The after base A, C, G and T 

counts are stored in counters[ ][0..3] and the before base A, C, G and T counts are stored in 

counters[ ][4..7] respectively. Before incrementing the corresponding counter, the value of the 

counter is checked for less than 255 condition. If a counter with value 255 is incremented, then 

the value of counter will remain unchanged (because the counter is 8 bit can not hold higher 

values). One important thing to note down here is that we are storing both the straight and the 

reverse complement witness counts in the same place, So the after and before are relative to
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DNA read 
currReadShare 
64-bit window

T  A c g t c g c t g a t g t a c c g c a  t  |~g ] t  c  a a g  t  t g c a

Complement of DNA Read 
cu rrReadSh a re_revcomp 
64-bit window

0T G C A A C T T G A  C  A T  GCGGTACAT CAGCG ACG T  A

Witness window before
Index Value

ATCG 
TACG 
TCG C 
TGAT 
GTAC 
CGCA 
TG TC  
AAGT 
TG CA

0011 0110

0011 0110
1101 ION

1110 0011

ion 0001

©o

0100

1110 1101

0000 ION

1110 OKI

A  single read in array currRead[ ]

Figure 4.9: An example of read with sequence ATCGTACGTCGCTGATGTACCGCATGTCAAGTTGCA of 
length 36 is stored in currRead[ ] array. The currReadShare and currReadShare.revcomp both 64 bit variable 
holding a share of 64 bit of the currRead[ ]. The witness window of length 20 bit is shown and the after  and 
before  bases are shown in green and blue box respectively.

the witness or witness_revcomp based on which is the witnessMinValue (Algorithm 6).

In the next iteration the 64 bit window is shifted 2 bits left in currReadShare and 2 bits right 

in reverse complement of currReadS hare as shown in Figure 4.10. The iteration will stop when 

all the witnesses are exhausted in the read, that is total of (readLenlnBits -  witLenlnBits + 1) 

witness in each read. After processing every 4 bases, the algorithm check if there exists 

an extra read information in the currRead[ ] array, if yes then the next byte of informa­

tion is added to the most significant byte of the currReadS hare. The same applies for the 

currReadS hare.revcomp, but here the reverse complement of the next byte is added to the 

least significant byte (Algorithm 7).
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DNA read 
currReadShare 
64-bit window
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63 44 0

Complement of DNA Read 
currReadShare_revcomp » >
64-bit window

Figure 4.10: The 64-bit window is shifted 2 bits left in currReadShare and 2 bits right in 
currReadShare.revcomp. The after  and before bases is marked in green and blue box respectively. Based 
on the minimum value of the witness the proper after  and before  base counters are incremented. When the 
64-bit window is shifted the zeroes will be added to the vacant bits. This after processing every 4 bases will be 
replaced by the next consecutive byte
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t I
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4.3 Detecting and Correcting Errors

Once the witness pool and the counters are calculated, the detection and correction process 

can start. The 64 bit sliding window, extraction of the witness and its reverse complement, 

computation of after  and before bases are the same as in Algorithm 2. The witness[ ] and 

counters[ ][ ] are used to detect and correct errors. Initially the after and before bases are 

assumed to be correct unless the counters[ ][ ] prove it wrong. Algorithm 9 does this job for 

HiTEC2. If the count of the current base value is not higher than the threshold, the counters[][] 

are parsed to find whether the count of another base is higher than the current one and above 

the threshold (refer section 2). If yes then the erroneous base will be replaced with the correct 

base in both currReadShare and currReadShare revcomp. A important thing to note down here 

is the avalanche phenomenon. That is once an erroneous base is corrected, the next witness 

contains the corrected base in the witness. This helps in correcting more than one error in 

one read if present, in a single iteration. This avalanche phenomenon is an important factor in 

correcting the errors in as few iterations as possible.

Once the errors in a reads are corrected, the read is put back in to binReads[ ]. This process
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DNA read 
currReadShare 
64-bit window

An extra byte added after processing 4 bases

0
Complement of DNA Read

A C T  T

63

G A C A  T  G £ c j GGTACATCAGCGACG T A

44

C G A T 

0

64-bit window 00 0 0 0 0 0  1 i 1 1 1 1 0 00  0 1 00  1 1 1 0 .......... .......................................1 1 0 0 0 1 1 0 0 0  1
i

I 1 1
before Witness window after

An extra byte added 
after processing 4 bases

Figure 4. 11:  If a read length is more than 64 bits the next byte is added after processing every 4 bases

goes on for a number of iterations, till the number of bases changed in one iteration due to 

correction fall below 0.01 percent of the total number of bases or till iteration 9, whichever 

is reached first. This condition is necessary because after this particular condition is reached, 

the algorithm is will correct very few errors in one iteration. Moving forward with another 

iteration means a lot of time consumption with very very less correction. So the satisfactory 

line is drew with this condition. Also for better management of time and space the reads with 

coverage more than 140 are split into individual reads of coverage size 70. This is one of the 

practical approaches that help HiTEC reaching the highest accuracy in less time with less space 

than any other error correction method. Another important aspect of the new implementation is 

that time is saved by reusing the witness length. In the original implementation, witnesses are 

changed and used for correction in each iteration. If we keep the same length then we do not 

have to recount the witnesses. Noting that this is not possible in the original implementation, 

due to the use of suffix array which cannot be dynamically updated.



4 .3 . D etecting and C orrecting E rrors 53

Algorithm 2 Encoding.witness {binArray[n\, witLenlnBits, witness[ ] and counters[ ][ ])
1: for i = 0 to n do 
2: currRead[ ] <— one full read
3: currReadjrevcomp[ ] <— reverse complement of currRead[ ] {use Algorithm 3}
4: currReadS hare <— 0
5: currReadS hare-revcomp <— 0
6: i <— i + readLenlnBytes
7: Load_CurrReadShare(cMrr/?eflii[ ], currReadjrevcomp\ ], readLenlnBytes)
8: for j  = 0 —» readLenlnBits -  witLenlnBits do
9: if j  t  0 then

10: after  <— currReadS hare & 3
11: currReadS hare <— currReadS hare »  2
12: end if
13: if j  ± readLenlnBits -  witLenlnBits then
14: before <— {currReadS hare »  witLenlnBits) & 3
15: end if
16: j  <- j  + 2
17: witness <— currReadS hare & witnessMask
18: witness-rev comp <— {currReadS hare-revcomp & {witnessMask «: 64 -

witLenlnBits)) »  (64 -  witLenlnBits)
19: witnessMinValue <— {witness < witness-revcomp) ? witness : witness-revcomp
20: Witness J4ash_Value(V7/me5iMmVa/Me, ], TABLEJSPACE)
21: Witness-Countersiwimeii/Zai/iVa/, counters[ ][ ], after, before)
22: currReadS hare-revcomp <— currReadS hare-revcomp «: 2
23: if % 8 = 0 AAD 7 ^ 0  then
24: Load_ExtraJByte(cMrr/?e«i/5 Aar<?, currReadS hare-revcomp, readLenlnBytes,

numOfBytesRead)
25: end if
26: end for
27: end for



54 C hapter 4 . A  fast implementation of HiTEC

Algorithm 3 All_Reverse_Complement_Of8bit 
1: tempRevComp <— 0 
2: complementOf-i <— 0 
3: for z = 0 —> 255 do 
4: allRevCompOfSBit[i] <— 0
5: complementOfJ *—  i
6: tempRevComp <— 3 & complementOfJ
7: allRevCompOf&Bit[i] <— allRevCompOf8Bit[i]
8: complementOfJ <— complementOfJ »  2
9: tempRevComp <— 3 & complementOfJ

10: allRevCompOfSBit[i] <— allRevCompOfSBit[i]
11: complementOfJ <— complementOf »  2
12: tempRevComp <— 3 & complementOfJ
13: allRevCompOfSBit[i] <— allRevCompOfSBit[i]
14: complementOfJ <— complementOf J  »  2
15: tempRevComp <— 3 & complementOf J
16: allRevCompOfSBit[i] <— allRevCompOfSBit[i]
17: i « -  i +  1
18: end for
19: Return allRevCompOfSBit[ ]

(tempRevComp <sc 6)

(tempRevComp <sc 4)

(tempRevComp <sc 2)

tempRevComp

Algorithm 4 Load_CurrReadShare (cMr/7?ead[ ], currReadjrevcomp\ ], readLenlnBytes)
1: counter For Read <— readLenlnBytes 
2: counterForRead-RevComp <— readLenlnBytes 
3: for A: = 0 —> 8& < readLenlnBytes do 
4: tempReadS hare <— currRead[counterForRead\
5: tempReadS hare-RevComp <— currReadRevComp[counterForReadJRevComp]
6: tempReadS hare <— tempReadS hare «c 8 x A:
7: tempReadS hare-RevComp <— tempReadS hare-RevComp <sc (56 -  8 X k)
8: currReadS hare <— currReadS hare \ tempReadS hare
9: currReadS hare-RevComp <— currReadS hare-RevComp | tempReadS hare-RevComp

10: counter For Read <— counter For Read -  1
11: counterF or Read-RevComp *— counterForRead-RevComp + 1
12: & <— Ac + 1
13: end for
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Algorithm 5 Witness_Hash_Value (WitnessMinValue, witness[ ],TABLE_SPACE)
1: WitnessHashValue <— witnessMinValue% TABLE_SPACE
2: while (witness[witnessHashVal\ i  0) AND (witness[witnessHashVal] t

witnessMinValue) do
3: if witnessHashVal < TABLE_SPACE then
4: witne ssHashVal witne ssHashVal + 1
5: else
6: witne ssHashVal <— 0
7: end if
8 : end while
9: witne ss[witne ssHashVal] <— witne ssMinV alue

Algorithm 6 Witness_Counters (witnessHashValue, witness, after, before)
1: if witnessHashV alue t  witness then 
2: after <— (~ before) & 3
3: before <— (~ after) & 3
4: end if
5: if counter[witnessHashVal][before + 3] < 255 then
6: counter\witnessHashVal][after] <— counter[witnessHashVal][before + 3] + 1
7: end if
8: if counter\witnessHashVal][after] < 255 then
9: counter[witnessHashVal][after] <— counter[witnessHashVal][after] + 1

10: end if

Algorithm 7 Load_Extra_Byte (currReadS hare, currReadS hare_revcomp, readLenlnBytes, numOf Byte. 
1: extraRead <— extraByte 
2: extraReadJievComp <— extraByte-RevComp 
3: if numOf Byte sRead < readLenlnBytes then 
4: extraRead <— extraRead <sc 56
5: currReadS hare-RevComp <— currReadS hare JlevComp \ extraRead JievComp
6: currReadS hare <— currReadS hare \ extraRead
7: numOf Byte sRead <— numOf Byte sRead + 1
8: end if
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Algorithm 8  C orrect_Errors (binReads[ ], witness[ ], counter[ ][ ], c)
1: for i -  0  to  n do 
2: currRead[ ] <— o n e  fu ll read
3: currRead.revcomp[ ] <— reverse  co m p lem en t o f  currRead[ ] {use A lg o r ith m  3}
4: currReadS hare <— 0
5: currReadS hare j-evcomp <— 0
6: i  <— i + readLenlnBytes
7: L o a d _ C u rrR ea d S h a re(a /r /7 tea d [ \, currReaderevcomp[ ], readLenlnBytes)
8: for j  = 0 —> readLenlnBits -  witLenlnBits do
9: if j  ± 0 then

10: after  <— currReadS hare &  3
11: currReadS hare <— currReadS hare « :  2
12: end if
13: if j  t  readLenlnBits -  witLenlnBits then
14: before  <— (currReadShare »  witLenlnBits) &  3
15: end if
16: j <- j + 2
17: witness currReadS hare &  witnessMask
18: witness jrevcomp «— (currReadS hare-revcomp & (witnessMask « :  64 -

witLenlnBits)) »  (64 -  witLenlnBits)
19: witnessMinValue <— (witness < witness jrevcomp) ? witness : witness j-evcomp
20: witnessHashVal <— GetJWitnessJiashSVa\ue.(WitnessMinValue, vv/m e.s.?[],T A B lJL SP A C E )
21: B a se_ C o r rec tio n (w im e1y5,/ /a 5 ,/iV a /, after, before, c)
22: currReadS hare-revcomp <— currReadS hare-revcomp »  2
23: if (7  % 8 = 0 A7VD 7 ^ 0  then
24: L oad_E xtra_B yte(cM rr/?eaif5  /ia r e , currReadS hare jrevcomp, readLenlnBytes,

numOfBytesRead)
25: end if
26: end for
27: end for
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Algorithm 9 Base-Correction (witnessHashVal, after, before, c)
1: corrected <— 0
2: after.count <— counters[witnessHashVal][af ter]
3: for j  = 0 —> 4 do
4: if counters[witnessHashVal][j] > after.count AND counters[witnessHashVal\Yj\ >

T then
5: before <— j
6: be fore.count <— counter s[witnes sHashVal\ [_/']
7: corrected <— 1

8: 7 7 +  1
9: end if

10: end for
11: if corrected = 1 then
12: Correct the base value with the correct value(j) in both currReadS hare and

currReadS hare.revcomp 
13: c <— c  + 1
14: end if 
15: corrected <— 0
16: be fore.count <— counter s[witnes sHashV al][before + 4]
17: for j  = 4 —> 8 do
18: if counters[witnessHashVal][j] > before.countANDcounters[witnessHashVal][j\ >

T then
19: before «— j  -  4
20: be fo re  .count <— counter s[witne s sH ashV al][j]
21: corrected <— 1
22: 7 7 + 1
23: end if
24: end for
25: if corrected = 1 then
26: Correct the base value with the correct value(j -  4) in both currReadS hare and

currReadS hare.revcomp 
27: c  <— c  +  1
28: end if
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Algorithm 10 HiTEC2_______________________________________
given: n reads r \ , r2, r n { o f  leng th  l each), L  and  p  
return: C orrec ted  reads in the sam e in p u t fo r m a t  

1: compute w M and wm 
2: compute T
3: w itn essM a sk  <— 2m,LenInB,ls+l -  1 
4: for i = 0 -> TABLE_SPACE do 
5: w itness[i] <— 0 , /<—/ + 1
6 : for j  = 0  —» 8 do
7: counter[i][j] Oj <— j  + 1
8 : end for
9: end for

10: i <— 1
11: w <—  wm
12: Construct binR eads[  ] from the original input reads
13: Choose appropriate TABLE_SPACE from the list of prime numbers
14: Encode_Witness(b in R e a d s ,w  x 2)
15: repeat 
16: C <— 0
17: C orrectJirrors(b inR eads[  ], w itness) ], coun ters) ][ ], c)
18: i" <— i +  1
19: until ((^ < 0.0001) o r  (i > 9))
20: Fill the c h a rR ea d s[ ] by decoding b in R ea d s[ ]
2 1 : return c h a rR ea d s[]



Chapter 5

Experiments

We present in this chapter several experiments using the simulated and real data sets in order to 

compare the new implementation, called HiTEC2 with the original one, HiTEC. The compar­

ison is done with respect to all aspects, accuracy, time and space. The accuracy is defined as 

the ratio between the number of corrected reads and the number of initially erroneous reads. If 

errbef  is the number of erroneous reads before and erraf, is the number of errors after. This can 

also be represented in terms of TP, TN, FP, FN(true/false positive/negative): errbef  = TP+FN 

and erraf, = FP+FN. Then the accuracy is the ratio of

accuracy = errbef -e r raf, _  TP -F P  
err^ f  TP+FN

5.1 Accuracy

We have compared the accuracy of HiTEC2 with HiTEC on several data sets consider in 

[IFI10], Table 5.1 lists several bacterial genomes downloaded from GenBank under the ac­

cession numbers specified. The IDs mentioned in the parenthesis in Table 5.1 of the bacterial 

genomes are referred in the successive table. The data sets were generated by uniformly sam­

pling the reads with given coverage, length and per base error rate from the genomes listed 

in Table 5.1. Table 5.4 contains data sets with different coverage and read lengths taken 

from the longest genome considered. The first real data set was used also by [Her08] and 

[SSP+09]; it is available from www.genomic.ch/edena.php. Both the first and the second real
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data sets were used by [Doh07] and [SSLW10]. The second data set is available from shar- 

cgs.molgen.mpg.de/download.shtml. The third one is available from clcbio.com/index.php7id-1290, 

the CLCbio web site, as an example of NGS data. Table 5.5 contains several real data sets of 

Illumina reads. The per base error rate taken from [IFI10] is calculated by counting the number 

of mismatches from the output file of the RMAP.

Reference genome (ID) Accession no. Len.(bp)

Saccharomyces Cerevisiae, Chr. 5 (S.cer5) N C .001137 
Saccharomyces Cerevisiae, Chr. 7 (S.cer7) NCL001139
Haemophilus Influenzae (H.inf) NC-007146
Escherichia coli str.K-12 substr.MG1655 (E.coli) NCL000913 
Escherichia coli str.K-12 substr.DHIOB (E.coli2) NC_010473
Staphylococcus aureus (S .aureus) NC_003923
Helicobacter acinonychis (H.acinonychis) NC_008229

576,869
1,090,946
1,914,490
4,639,675
4,686,137
2,820,462
1,553,927

Table 5.1: The genomes used for comparison.

Even if the idea of correcting errors of HiTEC2 is inherited from HiTEC, it is applied some­

what differently, aiming for a significant reduction in time. Since the witness length doesn’t 

change in HiTEC2, the results can be different. To have a fair comparison both programs were 

ran for same number of iterations. Table 5.2, 5.3, 5.4 contains results for the simulated data 

and Table 5.5 for real data. The conclusion we can derive from these results is, HiTEC2 has the 

same accuracy that of HiTEC. HiTEC2, though the technique of error correction is different 

from HiTEC, some of the merits of HiTEC still holds good for HiTEC2. Such as the accuracy 

for the simulated data is not affected by the change in coverage or error rate and both perform 

better for low coverage data sets compared to other techniques. One more important thing to 

note here is both HiTEC and HiTEC2 was ran for a maximum of 6 iterations. HiTEC2 unlike 

HiTEC uses only one witness length for all iterations rather than using different witness length 

for each iteration.The conclusion we can arrive after comparing the HiTEC and HiTEC2 in 

terms of accuracy is that HiTEC2 performs with similar or better accuracy.

5.2 Time and Space

The novelty is provided mainly in Table 5.6, 5.7, 5.8 where a significant decrease in the space 

and time complexities of HiTEC2 as seen compared to HiTEC. This is expected due to the hash
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table and smart use of binary operations. The results in Table 5.6, 5.7, 5.8 were performed 

for the data sets in Table 5.1 on SHARCNET ORCA cluster high performance computers: 

www.sharcnet.ca. The each node of the ORCA cluster has AMD Opteron Processors, Model 

6174 (Magny-Cours: 2.2 GHz, 12MB Level 3 Cache, 80 W), 32 GB of RAM and 160 GB of 

local storage. HiTEC has the lowest space complexities compared to other techniques [IFI10], 

but HiTEC2 significantly surpasses HiTEC in both space and time complexities.

Data set Accuracy
Genome err.(%) HiTEC HÌTEC2

S.cer5 1 99.79 99.58
S.cer7 1 99.74 99.60
H.inf 1 99.73 99.55
E.coli 1 99.22 99.58

Table 5.2: Accuracy comparison for the data sets of [SSP+09]. The read length is 70bp and 
coverage is 70 for all data sets.

Data set Accuracy
Genome err.(%) HiTEC HÌTEC2

S.cer5 1 96.27 97.02
S.cer7 1 95.76 96.63
H.inf 1 96.39 95.57
E.coli 1 94.41 95.663

Table 5.3: Accuracy comparison for the data sets of [SSLW10], The read length is 35bp and 
coverage is 70 for all data sets.

Data set Accuracy
Genome read len. covrg. err.(%) HiTEC HÌTEC2

E.coli 70 35 1 99.25 99.58
E.coli 50 50 1 97.88 99.04
E.coli 50 35 1 97.91 99.03
E.coli 35 50 1 91.10 95.63

Table 5.4: Accuracy comparison between HiTEC and HiTEC2 for a variety of read lengths, 
coverage levels, and error rates sampled from the E.coli genome.

http://www.sharcnet.ca
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Genome
Data set Accuracy
read len. covrg. err.(%) HiTEC HÌTEC2

S. aureus 35 42.5 1.00 90.23 94.87
H.acinonychis 36 94 1.60 89.15 91.66
E.coli2 35 17.8 0.38 73.185 86.94
E.coli 100 86 0.50 77.62 80.60

Table 5.5: Accuracy comparison for several real sets of Illumina reads.

Data set Space (MB)
Genome err.(%) HiTEC HÌTEC2

S.cer5 1 778 253
S.cer7 1 1471 505
H.inf 1 2582 805
E.coli 1 7200 1710
S. aureus 1 2100 415
E.coli 2 1 1400 322
H.acinonychis 1 2600 607

Table 5.6: Space comparison between HiTEC and HÌTEC2. The read length is 70bp and 
coverage is 70 for all data sets.

Genome
Data set Time(seconds)
read len. covrg. err.(%) HiTEC HÌTEC2

S. aureus 35 42.5 1.00 1114 145
H.acinonychis 36 94 1.60 1370 282
E.coli2 35 17.8 0.38 720 138
E.coli 100 86 0.50 4840 1128

Table 5.7: Time comparison between HiTEC and HiTEC2 for several real sets of Illumina 
reads.

Data set Time(seconds)
Genome read len. covrg. err.(%) HiTEC HÌTEC2

S.cer5 70 70 1 377 72
S.cer5 70 70 1 754 133
H.inf 70 70 1 1395 273
E.coli 70 70 1 3762 564
S.cer5 35 70 1 258 71
S.cer5 35 70 1 666 109
H.inf 35 70 1 1177 302
E.coli 35 70 1 3231 1408
E.coli 70 35 1 1793 255
E.coli 50 35 1 1848 335
E.coli 50 50 1 2467 358
E.coli 35 50 1 2199 465

Table 5.8: Time comparison between HiTEC and HÌTEC2 for a variety of read lengths, cover­
age levels, and error rates for various genomes.



Chapter 6

Conclusion and Future Research

The main goal of this thesis is to provide a better version of HiTEC in terms of time and space 

complexity without the cost of accuracy for correcting errors of high throughput sequencing 

technologies. The extensive experiments we have conducted shows that our algorithm has 

significantly improved the time and space complexities and the capability of algorithm to adjust 

with the input data remain the same as HiTEC. The results published in the experiments section 

with respect to real data sets are from Illmina and the algorithm is expected to behave similarly 

for any type of reads for which the errors consist mainly of substitutions.

Our algorithm’s accuracy will increase with the increase in the reads lengths and, according 

to [XialO], the read length is going to grow with the 3rd generation of sequencing technologies, 

such as single molecule sequencing or nanopore sequencing. So we hope our program will 

be competitive for future changes in the sequencing technologies. While we think of some 

features to add to HiTEC2, the immediate one we can think of is parallel implementation. This 

feature would help the program to handle more massive data output. Another feature we think 

of adding to HiTEC2 is efficient use of quality scores in improving the accuracy of the error 

correction.
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Appendix A

Appendix

The list of primes used in HiTEC2 as the hash table size.

1114523

1442087

1769627

2228483

2883767

3539267

4456643

5767187

7079159

8913119

11534819

14156543

17825999

23069447

28312007

35651783

1180043

1507379

1835027

2359559

3015527

3670259

4718699

6029603

7340639

9437399

12059123

14680067

18874379

24117683

29360147

37749983

1245227

1573667

1900667

2490707

3145739

3801143

4980827

6291563

7602359

9962207

12583007

15204467

19923227

25166423

30410483

39845987

1310759

1638899

1966127

2621447

3277283

3932483

5243003

6553979

7864799

10485767

13107923

15729647

20971799

26214743

31457627

41943347

1376447

1704023

2031839

2752679

3408323

4063559

5505239

6816527

8126747

11010383

13631819

16253423

22020227

27264047

32505983

44040383
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46137887

56623367

71303567

92275307

113246699

142606379

184549559

226493747

285215507

369100463

452986103

570425399

738198347

905971007

1140852767

1476395699

1811940419

2281701827

2952791147

3623878823

4563403379

5905580687

7247758307

9126806147

11811160139

14495515943

18253612127

48234623

58720307

75497999

96470447

117440699

150994979

192938003

234882239

301989959

385876703

469762067

603979919

771752363

939525143

1207960679

1543504343

1879049087

2415920939

3087008663

3758096939

4831838783

6174015503

7516193123

9663676523

12348031523

15032386163

19327353083

50331707

60817763

79691867

100663439

121635467

159383759

201327359

243269639

318767927

402654059

486539519

637534763

805307963

973079279

1275069143

1610613119

1946157419

2550137039

3221226167

3892314659

5100273923

6442452119

7784629079

10200548819

12884902223

15569257247

20401094843

52429067

62915459

83886983

104858387

125829239

167772239

209715719

251659139

335544323

419432243

503316623

671089283

838861103

1006633283

1342177379

1677721667

2013265967

2684355383

3355444187

4026532187

5368709219

6710886467

8053065599

10737418883

13421772839

16106127887

21474837719

54526019

65012279

88080527

109052183

130023683

176160779

218104427

260047367

352321643

436208447

520094747

704643287

872415239

1040187419

1409288183

1744830587

2080375127

2818572539

3489661079

4160749883

5637144743

6979322123

8321499203

11274289319

13958645543

16642998803

22548578579
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23622320927

28991030759

36507222923

47244640319

57982058579

73014444299

94489281203

115964117999

146028888179

188978561207

231928234787

292057776239

377957124803

463856468987

584115552323

755914244627

927712936643

1168231105859

1511828491883

1855425872459

2336462210183

3023656976507

3710851743923

4672924419707

6047313952943

7421703488567

9345848837267

24696062387

30064772327

38654706323

49392124247

60129542339

77309412407

98784255863

120259085183

154618823603

197568495647

240518168603

309237645803

395136991499

481036337207

618475290887

790273985219

962072674643

1236950582039

1580547965639

1924145348627

2473901164367

3161095931639

3848290698467

4947802331663

6322191860339

7696581395627

9895604651243

25769803799

31138513067

40802189423

51539607599

62277026327

81604379243

103079215439

124554051983

163208757527

206158430447

249108103547

326417515547

412316861267

498216206387

652835029643

824633721383

996432414899

1305670059983

1649267441747

1992864827099

2611340118887

3298534883999

3985729653707

5222680234139

6597069767699

7971459304163

10445360463947

26843546243

32212254947

42949673423

53687092307

64424509847

85899346727

107374183703

128849019059

171798693719

214748365067

257698038539

343597385507

429496730879

515396078039

687194768879

858993459587

1030792152539

1374389535587

1717986918839

2061584304323

2748779070239

3435973836983

4123168604483

5497558138979

6871947674003

8246337210659

10995116279639

27917287907

33285996803

45097157927

55834576979

66571993199

90194314103

111669150239

133143986399

180388628579

223338303719

266287975727

360777253763

446676599987

532575944723

721554506879

893353198763

1065151889507

1443109012607

1786706397767

2130303780503

2886218024939

3573412791647

4260607557707

5772436047947

7146825580703

8521215117407

11544872100683
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12094627906847

14293651161443

16492674420863

20890720927823

25288767440099

29686813951463

34084860462083

43980465111383

52776558134423

61572651156383

74766790688867

92358976733483

109951162779203

127543348823027

158329674402959

193514046490343

228698418578879

263882790666959

334251534845303

404620279022447

474989023199423

545357767379483

703687441776707

844424930134187

985162418489267

12644383722779

14843406975659

17042430234443

21990232555703

26388279068903

30786325577867

37383395344739

46179488367203

54975581392583

63771674412287

79164837200927

96757023247427

114349209290003

131941395333479

167125767424739

202310139514283

237494511600287

272678883689987

351843720890723

422212465067447

492581209246163

598134325510343

738871813866287

879609302222207

1020346790579903

13194139536659

15393162789503

18691697672867

23089744183799

27487790694887

31885837205567

39582418600883

48378511622303

57174604644503

65970697666967

83562883712027

101155069756823

118747255800179

136339441846019

175921860444599

211106232536699

246290604623279

299067162755363

369435906934019

439804651111103

510173395291199

633318697599023

774056185954967

914793674313899

1055531162666507

13743895350023

1594291860434

19791209300867

24189255814847

28587302323787

32985348833687

41781441856823

50577534878987

59373627900407

68169720924167

87960930223163

105553116266999

123145302311783

149533581378263

184717953466703

219902325558107

255086697645023

316659348799919

387028092977819

457396837157483

527765581341227

668503069688723

809240558043419

949978046398607

1090715534754863
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