7 research outputs found

    Recent advances in algorithmic problems for semigroups

    Full text link
    In this article we survey recent progress in the algorithmic theory of matrix semigroups. The main objective in this area of study is to construct algorithms that decide various properties of finitely generated subsemigroups of an infinite group GG, often represented as a matrix group. Such problems might not be decidable in general. In fact, they gave rise to some of the earliest undecidability results in algorithmic theory. However, the situation changes when the group GG satisfies additional constraints. In this survey, we give an overview of the decidability and the complexity of several algorithmic problems in the cases where GG is a low-dimensional matrix group, or a group with additional structures such as commutativity, nilpotency and solvability.Comment: survey article for SIGLOG New

    Evolution of group-theoretic cryptology attacks using hyper-heuristics

    Get PDF
    Abstract In previous work, we developed a single evolutionary algorithm (EA) to solve random instances of the Anshel–Anshel–Goldfeld (AAG) key exchange protocol over polycyclic groups. The EA consisted of six simple heuristics which manipulated strings. The present work extends this by exploring the use of hyper-heuristics in group-theoretic cryptology for the first time. Hyper-heuristics are a way to generate new algorithms from existing algorithm components (in this case, simple heuristics), with EAs being one example of the type of algorithm which can be generated by our hyper-heuristic framework. We take as a starting point the above EA and allow hyper-heuristics to build on it by making small tweaks to it. This adaptation is through a process of taking the EA and injecting chains of heuristics built from the simple heuristics. We demonstrate we can create novel heuristic chains, which when placed in the EA create algorithms that out perform the existing EA. The new algorithms solve a greater number of random AAG instances than the EA. This suggests the approach may be applied to many of the same kinds of problems, providing a framework for the solution of cryptology problems over groups. The contribution of this article is thus a framework to automatically build algorithms to attack cryptology problems given an applicable group.</jats:p

    On the Identity Problem for the Special Linear Group and the Heisenberg Group

    Get PDF
    We study the identity problem for matrices, i.e., whether the identity matrix is in a semigroup generated by a given set of generators. In particular we consider the identity problem for the special linear group following recent NP-completeness result for SL(2,Z) and the undecidability for SL(4,Z) generated by 48 matrices. First we show that there is no embedding from pairs of words into 3 Ă— 3 integer matrices with determinant one, i.e., into SL(3,Z) extending previously known result that there is no embedding into C^2Ă—2. Apart from theoretical importance of the result it can be seen as a strong evidence that the computational problems in SL(3, Z) are decidable. The result excludes the most natural possibility of encoding the Post correspondence problem into SL(3,Z), where the matrix products extended by the right multiplication correspond to the Turing machine simulation. Then we show that the identity problem is decidable in polynomial time for an important subgroup of SL(3,Z), the Heisenberg group H(3,Z). Furthermore, we extend the decidability result for H(n,Q) in any dimension n. Finally we are tightening the gap on decidability question for this long standing open problem by improving the undecidability result for the identity problem in SL(4, Z) substantially reducing the bound on the size of the generator set from 48 to 8 by developing a novel reduction technique

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore