
Groups Complex. Cryptol. ? (????), 1–27
DOI 10.1515/gcc-????-??? © de Gruyter ????

A parallel evolutionary approach to solving systems
of equations in polycyclic groups

Matthew J. Craven and Daniel Robertz

Abstract. The Anshel-Anshel-Goldfeld (AAG) key exchange protocol is based upon the
multiple conjugacy problem for a finitely-presented group. The hardness in breaking this
protocol relies on the supposed difficulty in solving the corresponding equations for the
conjugating element in the group. Two such protocols based on polycyclic groups as a
platform were recently proposed and were shown to be resistant to length-based attack.
In this article we propose a parallel evolutionary approach which runs on multicore high-
performance architectures. The approach is shown to be more efficient than previous
attempts to break these protocols, and also more successful. Comprehensive data of ex-
periments run with a GAP implementation are provided and compared to the results of
earlier length-based attacks. These demonstrate that the proposed platform is not as se-
cure as first thought and also show that existing measures of cryptographic complexity are
not optimal. A more accurate alternative measure is suggested. Finally, a linear algebra
attack for one of the protocols is introduced.

Keywords. Evolutionary algorithms, polycyclic groups, cryptography,
Anshel-Anshel-Goldfeld key agreement protocol, high performance computing, parallel.

2010 Mathematics Subject Classification. 20P05, 68W30, 90C27, 94A60.

1 Introduction

Since the late nineties there have been many cryptosystems and key exchange pro-
tocols proposed based on group theory. Two of the most popular ones [2, 20] had
base problems posed over a braid group platform. These protocols were thought to
be secure by the complexity of algebraic and computational attacks. For example,
the conjugacy problem in the braid group was originally solved by [14] in 1969
but the solution was of exponential complexity, whereas the word problem was
eminently solvable. The Anshel-Anshel-Goldfeld (AAG) key exchange protocol
[1] was based upon the (subgroup restricted) multiple conjugacy problem and that
of [20] on the conjugacy problem. Over the next few years, both protocols were
attacked through attempts to solve the base problem. For example, super summit
set attacks [9] and length-based attacks (LBAs) (of which [18] was the first) were
used. The LBA was strengthened subsequently by [12, 13, 22, 25]. The work [6]

Matthew
Text Box
This is the author's accepted manuscript. The final published version of this work (the version of record) is published by De Gruyter in Groups Complexity Cryptology (Nov 2016) available at: https://doi.org/10.1515/gcc-2016-0012.This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

2 M. J. Craven and D. Robertz

also successfully proposed an attack on the multiple conjugacy problem over a
homomorphic preimage of the braid group.

Since then there have been efforts to find platform groups that offer security.
Polycyclic groups are but one platform [7], over which, again, the word problem
is quickly solvable but the conjugacy problem has been said to be difficult [11].
Two key exchange protocols based on AAG over polycyclic groups have been
proposed. The work of [11] proposed a protocol over polycyclic groups which are
defined by a number field and applied several LBA algorithms against the protocol,
with instances indexed by Hirsch length, finding that for a high Hirsch length LBA
is unsuccessful. The work of [19] proposed a protocol over Heisenberg groups, a
specific kind of polycyclic group defined in terms of matrices. These authors again
applied LBA algorithms with similar results, concluding that polycyclic groups are
indeed a viable platform group for cryptology.

In this article, a method for attacking the above two protocols of [11,19] is pro-
posed. The method is based on an evolutionary algorithm (EA), which overcomes
common deficiencies of LBAs, showing that the protocols based on polycyclic
groups are not as secure as suggested. This is shown through analysis of a large
number of runs of the method. From this, it is also demonstrated that the Hirsch
length is not an optimal measure of the complexity of a group (and so hardness
of the problem). Moreover, an algebraic solution for the protocol over Heisen-
berg groups [19] is presented. (Note, subsequent to submission of this article, an
independent solution for the generalised Heisenberg case was published [24].)

The approach is inherently parallelisable. One important effect of a parallel
search of a solution is that, in comparison to LBAs, larger parts of the search
space can be investigated in a much shorter time. The method was implemented
in GAP [10] and applied to many examples in a high performance computing
(HPC) environment. An extensive list of benchmarks is provided, the majority of
which were adopted from [11, 19]. A detailed analysis of these runs is included,
comparing the results to those of [11, 19] and providing additional statistical data.

The article is structured as follows. In Section 2 the proposed AAG-like proto-
cols are summarised, before detailing a general scheme of the EA attack in Sec-
tion 3. In Section 4 we give an implementation in ParGAP, enabling us to achieve a
speedup in the attack through the use of multiple cores in a high performance com-
puting environment. Section 5 gives the application of the EA to the two proposed
protocols, directly comparing results with the work of [11, 19] before proposing a
direct algebraic attack on [19]. We conclude the article in Section 6.

Solving systems of equations in polycyclic groups 3

2 The Problem

The work of [11,19] presented AAG over two different types of polycyclic groups.
The description below follows that of [11].

Suppose Alice and Bob are two individuals who wish to exchange cryptographic
keys so that they may communicate in secret. They each have their own (private)
keys and, via the key exchange protocol, wish to combine both keys into a shared
key known to only both of them. Let G = 〈 g1, . . . , gn | R 〉 be a finitely presented
group. Positive integer-valued cryptographic parameters N , L, L1 and L2 are
assumed to have been chosen.

The standard key exchange in the literature proceeds as follows.

(i) Alice chooses a public N -tuple (ai)
N
i=1 = (a1, . . . , aN) of words in the gen-

erators of G, each having length in the interval [L1, L2] and publishes it;

(ii) Similarly, Bob chooses a public N -tuple (bi)
N
i=1 = (b1, . . . , bN) of words in

the generators of G, each having length in [L1, L2] and publishes it;

(iii) Alice chooses a private key A = aε1
µ1
aε2
µ2
. . . aεLµL where µi ∈ {1, . . . , N},

εi ∈ {±1} for all i = 1, . . . , L. Here L denotes the length of the key A in
the subgroup 〈 ai | i = 1, . . . , N 〉;

(iv) Similarly, Bob chooses a private keyB = bδ1
ν1
bδ2
ν2
. . . bδLνL with νi ∈ {1, . . . , N},

δi ∈ {±1} for all i = 1, . . . , L;

[Alice now holds A, (ai)
N
i=1 and (bi)

N
i=1, and Bob holds B, (ai)

N
i=1 and

(bi)
N
i=1.]

(v) Alice computes the tuple of conjugatesA−1 (bi)
N
i=1 A and transmits it to Bob;

(vi) Similarly, Bob computes the tuple of conjugatesB−1 (ai)
N
i=1 B and transmits

it to Alice.

Even without knowing Bob’s private key B, Alice can use her private key A
and B−1a1B, B−1a2B, . . ., B−1aNB to compute

A−1 ((B−1aµ1B)ε1 . . . (B−1aµLB)εL
)

= A−1 (B−1aε1
µ1
B . . . B−1aεLµLB

)
= A−1 (B−1aε1

µ1
. . . aεLµLB

)
= A−1B−1AB.

Similarly, Bob can compute the inverse of the above key and then by inversion
reach the identical key to Alice. Breaking the above protocol means solving a
subgroup restricted multiple conjugacy search problem (MCSP),

A−1 (bi)
N
i=1 A = (ci)

N
i=1 (1)

4 M. J. Craven and D. Robertz

of which the objective is to find the private key of either recipient.
The groups G to be dealt with here are assumed to be polycyclic. By definition

(cf., e.g., [17]), there exists a subnormal series G = G1 �G2 � . . .�Gn+1 = {1}
for some non-negative integer n such that each factor group Gi/Gi+1 is cyclic,
i = 1, . . . , n. Elements g1, . . . , gn of G such that, for each i, the coset giGi+1
generates Gi/Gi+1 form a generating set for G. If ri ∈ N ∪ {∞} is the order of
giGi+1 in Gi/Gi+1, then the number of infinite ri’s does not depend on the above
choices and is referred to as the Hirsch length, h(G), of G. Due to its polycyclic
structure, G admits a presentation

G ∼= 〈 g1, . . . , gn | grii = wi,i for i = 1, . . . , n such that ri 6=∞,

g−1
k gjgk = wj,k, gkgjg

−1
k = wk,j for 1 ≤ k < j ≤ n 〉,

where each wi,j is a word in the generators gk of the form g
emin(i,j)

min(i,j) . . . g
en−1
n−1 g

en
n

with ek ∈ Z and 0 ≤ ek < rk. With respect to such a presentation every element
of G has a unique normal form, which can be computed, so that the word problem
for G has an effective solution.

The approach used to solving problem (1) will be to convert it into a combinato-
rial optimisation problem so it may be then solved via an optimisation algorithm.
The combinatorial optimisation problem is then as follows:

Minimise

K(α) :=
N∑
i=1

length(α−1biαc
−1
i) (2)

where length(g) refers to the length of the normal form of g in G.

The next section introduces the rationale behind the approach.

3 Stochastic optimisation algorithms

The realm of stochastic optimisation algorithms houses many methods of using
probabilities to find the optimum of a given function (or functions) over a contin-
uous or discrete search space. Two such examples are given below.

3.1 Length attack algorithms

A length attack (or length-based attack, LBA) may also be known as a random
mutation hillclimbing algorithm [16]. The essential idea is that a solution to a

Solving systems of equations in polycyclic groups 5

problem may be built from “building blocks” (in this case, the generators of the
group will be the building blocks from which the solution word is built):

g
εi1
i1

g
εi1
i1
g
εi2
i2

· · ·

g
εi1
i1
g
εi2
i2
. . . g

εil
il

In this case, ik ∈ {1, . . . , n} and εik ∈ {−1,+1} for k = 1, . . . , l. A simplistic
example of an LBA begins with a word α, of which a generator is appended to the
end of the word to make a new word, α′. Appending a new generator to the current
word will usually not cause a cancellation in the new word. If K(α′) < K(α)
then let α ← α′ and repeat. If the correct generator is chosen each time, then
this process converges to a solution. Several applications of this method have been
attempted in the domain of group-based cryptography [11–13, 18, 19, 22, 23, 25],
involving memory and other mixed approaches.

Such algorithms have common deficiencies. The field of search of the algorithm
is narrow, for example, because of a lack of parallel search. That is, the algorithm
moves down one branch of the search tree. Along this branch local search may
reveal no generators such that K(α′) < K(α) holds, giving only a local minimum
in the cost landscape. This makes it extremely difficult, and sometimes impossible,
to move to another point of decreased cost in the landscape. This is compounded
by the realisation that an LBA technique depends on its initial guess for a building
block, and so a good initial guess is often required. In addition, during the LBA
process, suboptimal candidate solutions which may lead to branches of lesser cost
are not examined, imposing further efficiency constraints on this type of algorithm.

On the other hand, such an algorithm may be simple to analyse (in terms of its
time complexity or runtime). Various strategies exist to assist with the above issues
(e.g., lookahead, where a number of generators are appended) but the basic flaw –
a lack of parallel search – still remains. The next subsection gives a generalisation
of LBAs to a larger class of algorithms that is believed to overcome the above
deficiencies.

3.2 Evolutionary algorithms

Evolutionary algorithms form a class of iterative probabilistic population-based
optimisation algorithms which take advantage of the principles of natural evolu-
tion. An EA begins with a random initial population of candidate solutions (initial
guesses) to a given problem. Through simulation of Darwinian operations such as

6 M. J. Craven and D. Robertz

natural selection (which is elitist), mutation and crossover, these solutions breed
to create further generations. The above operations are performed relative to a
best-fitness-first ranking of the population (“survival of the fittest”). In this way,
evolution continues producing candidate solutions to the problem which are of
equal or higher fitness to those found previously, terminating when some condi-
tion is invoked. In the case of this work, the chosen EA terminates when an exact
solution to (1) is reached.

There are no restrictions upon operations, and such operations are typically per-
formed at any position in a candidate solution. EAs are also inherently parallel;
that is, a large proportion of the search space of all possible candidate solutions is
capable of being explored simultaneously. This allows potential solutions which
may have been off-limits to an LBA to be reached, and independently of the initial
guesses. EAs are generally thought to provide efficiency gains over more restric-
tive algorithms such as an LBA, making it a more suitable class of algorithms for
searching a search tree (or search space) that is very large.

Finally, operations which overcome local minima of the cost function by en-
abling jumps to be made in the cost landscape are often included. An example of
such an operation is crossover, which enables large changes to be made to candi-
date solutions and the EA jumps to another branch of the search tree as a result.
It is, however, not an easy task at all to detect whether the search is in a local
minimum or not. In the interests of brevity, further discussion of EAs in general is
omitted in this work. Further information may be found in other references (e.g.,
[16]). The next section gives details of the implementation.

4 An implementation in ParGAP

The EA developed in this paper was implemented in GAP [10]. The GAP package
Polycyclic [8] was used for processing of polycyclic groups, and ParGAP [4] to
implement parallelisation and make the attack more efficient.

4.1 Parallel approach

The EA described in this paper uses parallel processing in a high-performance
computing environment.

ParGAP is executed on a given number of cores, one process being a master pro-
cess and the others slave processes which are controlled by MPI (Message Passing
Interface). The master maintains a list of candidate solutions (individuals of the
population) to the MCSP instance. More precisely, G is given by a finite presen-
tation, i.e., G = F/[R], where F is a free group of rank n and [R] is the smallest
normal subgroup of F containing the given relators. The list of candidates, which

Solving systems of equations in polycyclic groups 7

are elements in F , is sorted with respect to a cost function, where comparison of
list entries is delegated to the slave processes. The cost function is assumed to
evaluate to zero precisely those words in the generators f1, . . . , fn of F which
map to solutions of the MCSP instance in G. The comparisons for sorting the list
of candidates involve computing the normal forms as required by (2).

The algorithm allows flexible operation at any point in the word and has a mech-
anism to make local minima in the cost landscape less likely (see Section 4.4).

4.2 Representation and operations

The individuals (candidate solutions) are words w in the generators f1, . . . , fn of
F , as are the chosen generators ai of a subgroup of F . The length of w is denoted
by `(w), and w[s . . . t] is the subword of w from position s to t (which is empty if
s > t). The operators of the EA fall into several categories. It is acknowledged that
other operators could have been used. It is also worth stating that when generators
are chosen from a group or subgroup, this includes inverses, and that when an
action is performed at random the uniform distribution is assumed.

• Mutation: choose a word w from the top m% of the population by cost value
(smallest cost first). Then perform one of the following types of mutation:

(i) By insertion of subgroup generator: insert a generator ai at the imme-
diate left of a random position r ∈ {1, . . . , `(w) + 1} (so including the
possibility of insertion at the left of position 1 or at the right of position
`(w)). That is, assign

w′ = w[1 . . . r − 1]aiw[r . . . `(w)];

(ii) By insertion of free group generator: identical to operation (i) but with
ai replaced by fi;

(iii) By deletion: delete a generator at a random position r ∈ {1, . . . , `(w)}
of w. This gives the word

w′ = w[1 . . . r − 1]w[r + 1 . . . `(w)];

(iv) By substitution: insert a generator fi in place of the given one at a
random position r ∈ {1, . . . , `(w)}. The word

w′ = w[1 . . . r − 1]fiw[r + 1 . . . `(w)]

is obtained;

8 M. J. Craven and D. Robertz

(v) By position conjugation: take a random position r ∈ {1, . . . , `(w)}.
Conjugate the generator at position r by a random generator fi, i.e.

w′ = w[1 . . . r − 1]f−1
i w[r]fiw[r + 1 . . . `(w)];

(vi) By subword conjugation: take a random position r ∈ {1, . . . , `(w)}
and a positive integer s such that r + s ≤ `(w) + 1. Conjugate the
subword of length s starting at position r by a random generator fi.
That is, assign

w′ = w[1 . . . r − 1]f−1
i w[r . . . r + s− 1]fiw[r + s . . . `(w)].

• Crossover: choose two words w1, w2 from the top m% of the population
by cost value. Choose two random numbers r1 ∈ {1, . . . , `(w1)}, r2 ∈
{1, . . . , `(w2)}. At random, output either of the two words

w′ = w1[1 . . . r1]w2[r2 + 1 . . . `(w2)],

w′ = w2[1 . . . r2]w1[r1 + 1 . . . `(w1)].

• Selection: elitist. Select the top word in the population by cost value and
ns − 1 words from the top m% of the population. Selection is performed in
this way for simplicity of operation, although it is acknowledged there are
other selection methods (cf., for example, [16]).

The new population is formed of the resulting words w′. The above operations are
performed according to set EA parameters, which sum to the (fixed) population
size. The implementation uses a population size of 100, m = 20 (to allow for
population diversity) and the parameter vector S = (36, 1, 1, 35, 1, 1, 20, 5) for
the number of operations given in the above order (hence, e.g., ns = 5). Among
various choices of parameter vectors in experiments for polycyclic groups, as dis-
cussed in Section 5.4, the above vector generally led to the minimal number of
generations for many problem instances.

4.3 Cost function

Given a word w = f
ei1
i1
f
ei2
i2
. . . f

eir
ir

, where ej ∈ Z are non-zero, f1, f2, . . . , fn
are the generators of F , and consecutive pairs of i1, i2, . . . , ir ∈ {1, . . . , n} are
distinct, the following length functions are used to evaluate costs:

`(w) =
r∑
k=1

|eik |

Solving systems of equations in polycyclic groups 9

`wt(w) =
r∑
k=1

ωik |eik |,

where the weight ωj is defined as the sum of the lengths of the normal forms of
the commutators [gj , gk] in G for k = 1, . . . , n.

The EA cost function is a metric of how close a candidate solution is to an
exact solution. Of course, there may be many ways in measuring this. The cost
function defined in the given implementation is a tuple composed of the following
components (reached by experimentation), where λi(α) := `(α−1biαc

−1
i) and

µ := 1
N

∑N
i=1 λi(α):

Su(α) =
N∑
i=1

λi(α), Swt(α) =
N∑
i=1

`wt(α
−1biαc

−1
i), Wu(α) =

∑
i :λi(α)>µ

λi(α),

maxu(α) = max
i=1,...,N

λi(α), minu(α) = min
i=1,...,N

λi(α),

in a certain order, with `(α) as the last component. Cost tuples of individuals α
are then compared lexicographically. An individual α is an exact solution of the
MCSP if and only if any one of the first five components is zero (provided not all
weights ωj are zero, in which case G is abelian).

4.4 Algorithm layout

For a vector S of numbers, the notation S[i] is used to mean the number at position
i of S. Several features are identified before the algorithm pseudocode is given.

The first EA feature is that of detection of likely local minima of the cost func-
tion. One of the EA inputs is a “wait period”, ε, such that if the minimal cost word
α in each generation has identical cost C over ε subsequent generations, then the
EA parameter vector S is perturbed. This perturbation has the effect of biasing
the algorithm to operations which may be more likely to result in individuals of
cost less than the previous minimal cost C. The perturbation proceeds as in Algo-
rithm 1, rendering the EA adaptive. This perturbation repeats every ε generations
if no cost reduction occurs. If there is a cost reduction then the current parameter
vector is reverted to the initial parameter vector.

(A perturbation of parameter values as above is more likely to result in an es-
cape of the local minimum if the operation whose frequency is changed is not
‘selection’, i.e., p1 6= 8; the choice of a rather small value for S[8] ensures this.)

Second on the list of EA features is that of cost and length control. In some
cases, it may be true that a given candidate solution (word) may have a high cost
in comparison to the word of current least cost in the population. This means that

10 M. J. Craven and D. Robertz

Algorithm 1 Parameter Perturbation
Input: wait period ε, parameter vector S
Output: perturbed parameter vector S

1: Smax ← max
i
(S)

2: Sp ← {j ∈ {1, . . . , 8} : S[j] = Smax}
3: choose p1 at random from the set Sp
4: choose p2 at random from the set {S[j] : j = 1, . . . , 8} \ Sp
5: choose δ at random from the range S[p2], . . . , Smax
6: S[p1]← S[p1]− δ
7: S[p2]← S[p2] + δ
8: return S. End.

not only will the former word likely be ranked lower in the population, but also
that it takes a long time to process and evaluate. Thus the rule was instituted that
if a word has cost greater than some given limit (which may be set to a high value)
then the word is replaced by a random word of length one.

Similarly, word length of candidate solutions was found to be an issue for some
instances. For example, in the case of polycyclic groups associated to number
fields with defining polynomials of high degree (e.g., degree 9 or 11) the presenta-
tions contained relators of high length (see Section 5.6) which implies that normal
form computations result in long strings of generators. This typically results in
population drift towards very long words, costing a considerable amount of time.
Thus, similarly to the above, the rule that if a word had length greater than a given
limit then it was replaced by a word of length one, was instituted. It was concluded
that this limit on length should be appropriate for the relator lengths of the group
in question. Suitable cost and length limits were found by experimentation and are
indicated where used.

The pseudocode for the EA is given by Algorithm 2 with the full code provided
at the URL https://github.com/MJCraven/PCyclic .

In the next section, the application of the above EA to both proposed public key
protocols mentioned in the introduction is given.

5 Applications

Both proposed public key protocols [11, 19] are based upon the AAG scheme [1].
As in the first two references above, the number of equations in each MCSP in-
stance was set to N = 20 unless otherwise stated. The following six subsections
detail applications of the EA, treating the Heisenberg groups case followed by the

https://github.com/MJCraven/PCyclic

Solving systems of equations in polycyclic groups 11

Algorithm 2 Evolutionary Algorithm

Input: population size p, maximum number of generations M , MCSP in-
stance, wait period ε, maximum permitted word length `max, parameter vector
S, target cost value Cmin (usually zero), slave processors configuration
Output: solution of the MCSP instance or timeout

1: g ← 1
2: generate initial population P ′ = {w1, . . . , wp} as a multiset of random words

of length one from F
3: while g ≤M do
4: P ← P ′
5: compute the cost vector C(wi) for each wi in P , distributing the compu-

tation among all slave processors
6: sort P in increasing order with respect to the lexicographic order:

C(wi1) ≤lex C(wi2) ≤lex . . . ≤lex C(wip)

7: if Su(wi1) ≤ Cmin then . Su(wi1) is the first component of C(wi1)
8: return wi1 . End. . the word wi1 is a solution to the instance
9: end if

10: check for local minima, executing Algorithm 1 if necessary
11: replace each wij with C(wij) > Cmax or `(wij) > `max by a random word

of length one from F
12: P ′ ← ∅
13: execute operators according to the EA control parameter values in S, each

time adding to the multiset P ′ the output word(s)
14: g ← g + 1
15: end while
16: return timeout. End.

case of polycyclic groups defined by a number field. This order reflects the in-
creasing difficulty of the problems. Note that the work of [11, 19] did not provide
information about the distribution of runs or iterations. A key contribution of the
present work is the provision of such information.

12 M. J. Craven and D. Robertz

5.1 Heisenberg groups

An AAG key-exchange protocol based on the following family of polycyclic goups
was proposed in [19]. For each positive integer n let Hn be the group of matrices

M(x,y, z) :=

1 x1 x2 . . . xn z

0 1 0 . . . 0 y1

0 0 1 . . . 0 y2
...

...
...

...
...

...
0 0 0 . . . 1 yn

0 0 0 . . . 0 1

,

where xi, yj , z ∈ Z, with matrix multiplication.
In this subsection we run a direct comparison between the EA approach and

that of [19] on the above problem. In this case, it was found that the cost tuple
(Su(α),maxu(α),Wu(α),minu(α), `(α)) provided sufficient distinction between
candidate solutions α.

Results

For each of the polycyclic groups according to the values of n shown, one hundred
random instances were created and the EA was run once on each instance. The EA
success rate was recorded and compared in Tables 1–2 with the success rate for
[19] using LBA with a dynamic set. Each table records the following information.
On the fourth column is recorded the mean number of EA generations processed
(g), followed by the mean time taken in seconds (t) on the fifth column. Here the
time spent on each problem instance is determined as the maximum of the times
spent by each slave process in the high-performance computing environment. The
sixth column gives a calculation for the mean time per generation (in seconds).
In addition, to remove unrepresentative outliers, the 20% trimmed mean of the
EA generations processed (g.10) and time taken (t.10) have been included (that
is, the top and bottom 10% of experimental data were removed). It should also
be mentioned that the means and trimmed means include the unsuccessful trials.
The last column gives the standard deviation, sg, of the number of generations.
Finally, the Hirsch lengths for each of the groups are h(H5) = 11, h(H6) = 13,
h(H7) = 15 and h(H8) = 17 (see the discussion in Section 5.3).

The experiments were run using five slave processors of an HPC cluster consist-
ing of Intel Xeon E5620 CPUs running at 2.40GHz. The amount of memory used
by the algorithm was typically around 150MB, and so relatively little memory was
needed. The random number seed is based upon the computer clock. It was found

Solving systems of equations in polycyclic groups 13

that (unless stated) for 5 ≤ n ≤ 7, a suitable maximum number of generations to
run was M = 2500 and for n = 8 a suitable maximum was M = 5000. A value
of ε = 10 was used for the wait period to counteract likely local minima of the
cost function.

n [19] EA g t t/g g.10 t.10 sg

L1 = 10, L2 = 13, L = 10

5 29% 100% 42.8 29.8 0.70 40.6 27.0 18.4
6 69% 100% 64.9 74.1 1.14 56.4 60.8 51.0
7 51% 97% 171.6 223.1 1.30 85.8 117.5 419.9
8 62% 90% 795.5 932.8 1.17 364.1 454.1 1543.4

L1 = 20, L2 = 23, L = 10

5 53% 100% 56.3 79.7 1.42 53.8 73.9 22.0
6 39% 100% 99.5 224.3 2.25 84.0 187.6 86.2
7 58% 93% 402.8 1360.1 3.38 226.5 875.6 647.3
8 67% 80% 1280.3 2812.2 2.20 966.6 1827.1 1899.8

L1 = 20, L2 = 23, L = 20

5 11% 100% 67.8 223.0 3.29 60.4 200.8 42.4
6 7% 100% 115.3 422.2 3.66 96.5 351.1 93.9
7 5% 91% 514.5 2220.1 4.32 328.2 1512.1 718.1
8 9% 75% 1782.5 7667.8 4.30 1589.0 5882.8 2067.2

L1 = 20, L2 = 23, L = 50

5 1% 100% 74.5 582.4 7.82 71.6 540.7 25.9
6 0% 100% 173.4 1211.5 6.99 130.2 888.4 200.4
7 1% 89% 588.8 3187.6 5.41 413.8 2204.6 746.5
8 7% 66% 2305.3 17373.3 7.54 2240.7 14540.3 2120.1

Table 1. Comparative success rates of the work of [19] and the EA with N = 20
and L1, L2 and L as shown.

5.2 Analysis

The following are observations of the data presented on Tables 1–2. The EA ap-
proach solves the problem in the range 5 ≤ n ≤ 8 for L1 ≤ 40, L2 ≤ 43 and
L ≤ 50, finding a secret word α′ = qα where q ∈ CG(bi) for i = 1, . . . , N . By

14 M. J. Craven and D. Robertz

n [19] EA g t t/g g.10 t.10 sg

L1 = 40, L2 = 43, L = 50

5 - 100% 103.0 1471.1 14.28 99.4 1354.7 34.4
6 0% 99% 222.3 4002.6 18.01 170.3 3004.7 281.8
7 0% 94% 820.4 14365.7 17.51 587.7 10542.9 978.2
8 1% 72% 2611.1 28128.0 10.77 2610.8 27141.4 1966.9

Table 2. Comparative success rates of the work of [19] and the EA with N = 20
and L1, L2 and L as shown. Values of M = 3750 were used for the n = 7 case, and
M = 7500 for n = 8. Due to the mean time taken, fifty instances were computed
with length cap 500 for the case n = 8. The ratio t/g in this case is lower than
expected due to the length cap.

Tables 1–2, the approach demonstrably outperforms the LBA algorithm of [19]
in terms of success rate in every case. The success rate seems to depend most
on the value of n, especially in terms of time complexity. Analysing the mean
number of seconds taken to compute a single generation, it is clear that when the
parameters L1, L2 and L are fixed, increasing the value of n produces only a small
increase in the mean number of seconds taken to compute a single generation.
For example, the mean time per generation varies between 0.70 and 1.30 seconds
when L1 = 10, L2 = 13 and L = 10, and between 5.41 and 7.82 seconds when
L1 = 20, L2 = 23 and L = 50. For more information, see Section 5.6.

With respect to computation time, assuming a constant value of n 6= 5, in-
creasing L1, L2 and L increases the total time taken, because the generators of
the subgroup 〈a1, . . . , aN 〉 are longer. Increasing L1 and L2 dramatically affects
the time taken and the success rate generally decreases. Finally in the cases with
L = 50, comparing the success rates of the EA with that of [19] provide a particu-
larly stark conclusion. For the larger matrix dimensions on the larger experiments
(e.g., n = 8 for L = 50), the EA tends to be slower but the success rate demon-
strably outstrips that of the authors.

Increasing the number of slave processors

This is primarily a test of scalability of the method and illustrates the impact of a
parallelised architecture upon EA time complexity. The cryptographic parameters
were fixed to L1 = 10, L2 = 13, L = 10 and the EA was rerun on 100 random
instances with 10 and then 20 slave processors. Each block in Table 3 gives the
mean number of generations, mean time and the mean time per generation for
each trial. The block for 5 slave processors contains the applicable numbers from

Solving systems of equations in polycyclic groups 15

Table 1. Finally, the cases of n = 5, 6 and 7 were run with M = 2500 and the
case of n = 8 was run with M = 5000.

n

#
5 10 20

g t t/g g t t/g g t t/g

5 42.8 29.8 0.70 66.3 31.7 0.48 41.3 16.2 0.39
6 64.9 74.1 1.14 78.7 61.7 0.78 115.3 44.5 0.39
7 171.6 223.1 1.30 240.5 148.2 0.62 312.8 127.9 0.41
8 795.5 932.8 1.17 1312.0 802.7 0.62 1157.2 429.8 0.37

Mean - 315.0 1.08 - 261.1 0.63 - 154.6 0.39

Table 3. The effect on EA time taken by varying the number of slave processors
used.

By Table 3, increasing the number of slave processors scales the computation
time well, with the mean time across the given values of n decreasing from 315.0
seconds (for 5 slave processors) to 154.6 seconds (for 20 slave processors). This
gives a factor 2.04 speedup from multiplying the number of slave processors by
four. A more realistic metric, perhaps, is that of average time per generation,
which decreases from 1.08 seconds per generation (for 5 slave processors) to 0.39
seconds per generation (for 20 slave processors). For this metric, there is a speedup
of 2.77. The work of [19] gave a one-hour time limit for solving an instance via the
LBA method. It is believed that this does not apply to the present work, as, being
inherently parallel, the EA processes many more words per iteration (generation),
providing increased success rates over that of the authors. It is assumed that the
LBA processes iterations more rapidly, being a non-parallel method comparing
only two individuals at a time, and so the number of iterations performed by an
LBA is assumed to be greater than that performed by the EA. In any case, since the
parallelised EA method is scaleable, it is believed that those instances not solved
within the prescribed time limit would likely be solved if the number of slave
processors were increased. Given the inexpensive nature of real-world computer
hardware and additional cores, by Table 3, this is a feasible objective.

It is acknowledged that there exist other methods of breaking the proposed pro-
tocol. Indeed, the attack described in the following section is proposed, which
makes use of the natural representation of the Heisenberg groups in terms of upper-
triangular matrices, allowing solution of the MCSP with methods of linear alge-
bra. While this article was under review an independent solution for generalised
Heisenberg groups as a platform was published [24].

16 M. J. Craven and D. Robertz

5.3 A linear algebra attack for the Heisenberg groups

Using the notation of Section 5.1, for all x, y, x′, y′ ∈ Zn, z, z′ ∈ Z, we have

M(x,y, z)M(x′,y′, z′) =M(x+ x′,y + y′,x · y′ + z + z′),

where x · y′ is the standard scalar product of x and y′, hence

M(x,y, z)−1 =M(−x,−y,x · y − z)

and

M(x′,y′, z′)−1 M(x,y, z)M(x′,y′, z′) =M(x,y,x · y′ − x′ · y + z).

Note also that M(0,0, 0) = In is the n × n identity matrix. It is easily verified
that the centre Z(Hn) of the group Hn consists of the matrices M(0,0, z) with
z ∈ Z, and that Hn/Z(Hn) is isomorphic to Zn ⊕ Zn = Z2n. In particular, Hn is
polycyclic with Hirsch length h(Hn) = 2n+ 1.

A polycyclic presentation of Hn is obtained as follows. For i = 1, . . . , n let ei
be the i-th standard basis vector of Zn. Then the matrices

Mi := M(ei,0, 0), i = 1, . . . , n,
Mn+i := M(0, ei, 0), i = 1, . . . , n,
M2n+1 := M(0,0, 1).

form a generating set for Hn. For 1 ≤ i ≤ j ≤ 2n+ 1 we have

[Mi,Mj] =

{
M2n+1, if i+ n = j < 2n+ 1,
In, otherwise.

Hence, Hn has the polycyclic presentation

Hn
∼= 〈 g1, . . . , g2n+1 | [gi, gn+i] = g2n+1, [gi, gj] = 1,

i = 1, . . . , n, j = 1, . . . , 2n+ 1, j 6= n+ i 〉.

If Hn is given by this presentation, then the simultaneous conjugacy problem

ci = bai , i = 1, . . . , N

in Hn can be attacked by representing the words bi and cj in g1, g2, . . . , g2n+1 as
the corresponding words in the matrices M1, M2, . . . , M2n+1 using the isomor-
phism constructed above and solving a system of linear equations over the integers.

Solving systems of equations in polycyclic groups 17

In fact, for every permutation σ of {1, . . . , n}, the map
gi 7→ gσ(i), i = 1, . . . , n,

gn+i 7→ gn+σ(i), i = 1, . . . , n,

g2n+1 7→ g2n+1

defines an automorphism of this finitely presented group, which shows that, even
if the numbering of the given generators is disguised, it is sufficient to identify the
pairs of letters {g1, gn+1}, {g2, gn+2}, . . . , {gn, g2n} in the given relators to set up
the matrix representation.

Let the unknown word a and the given words bi and cj be represented by the
matricesM(p,q, r), M(xi,yi, zi) andM(uj ,vj , wj), respectively. Then the for-
mula expressing conjugation in Hn at the beginning of this section shows that the
simultaneous conjugacy problem is equivalent to the system of linear equations

xi = ui, i = 1, . . . , N,
yi = vi, i = 1, . . . , N,

xi · q− p · yi + zi = wi, i = 1, . . . , N

for p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Zn. The first set of 2N equations
are necessary conditions for the simultaneous conjugacy of bi and ci, which can
readily be checked. The description of the centre of Hn shows that the unknown
r in M(p,q, r) cannot be determined and every word a which is represented by
M(p,q, r) for a solution p, q of the above equations is a solution of the simulta-
neous conjugacy problem.

5.4 Polycyclic groups defined by a number field

The additive group O of the ring of integers of a number field K is a finitely
generated free abelian group and its group of units U is a finitely generated abelian
group. By Dirichlet’s unit theorem, the rank ofU is s+t−1, where s is the number
of embeddings of K into R and t the number of conjugate pairs of embeddings of
K into C. Moreover, the torsion subgroup of U is a cyclic group of even order
(cf., e.g., [17, Theorem 8.27]).

Let K = Q[x]/(f) for some monic irreducible polynomial f ∈ Z[x] of degree
n. Then the Hirsch lengths of O and of U are h(O) = n and h(U) = s + t − 1,
respectively. In [7] the non-nilpotent infinite polycyclic groupOoU was proposed
as a platform group for cryptosystems. The semidirect product is defined by using
the right multiplication action of U onO, and we have h(OoU) = n+ s+ t− 1.

18 M. J. Craven and D. Robertz

A polycyclic presentation for O o U is obtained from a basis {b1, . . . , bn} of O
and a finite generating set {u1, . . . , us+t} of U by determining the coefficients in
the expressions of biuj and biu−1

j in terms of the basis {b1, . . . , bn}. Given f , the
GAP package Polycyclic [8] provides such a polycyclic presentation for O o U .

Length-based attacks have been documented in [11]. In [21] the multiple conju-
gacy search problem forOoU was attacked by consideringOoU as a subgroup
of K oK∗, where K∗ is the multiplicative group of K, by representing the ele-
ments of K as matrices with respect to a basis of K over Q, and by solving the
system of linear equations corresponding to the given problem.

Experimental results

In this subsection, a direct comparison between the EA approach and that of [11]
on the above problem was run. In the cited work, only the success rates are pre-
sented; the present work introduces further details on the performance. For each
experiment (line in the following tables), one hundred instances were run, except
where stated, with one trial of each. Independent experiments revealed that a value
of ε = 20 and the cost tuple (Su(α), Swt(α),maxu(α),Wu(α),minu(α), `(α))
gave the best EA performance and thus these are used. On Tables 4–5, the Hirsch
lengths of the polynomials in the given order were respectively 1, 3, 4, 7, 10, 14
and 16. To reduce the space taken by each of the following tables, the polyno-
mial is replaced by its degree d in the first place. Hence the polynomials x − 1,
x2 − x− 1, x3 − x− 1, x5 − x3 − 1, x7 − x3 − 1, x9 − 7x3 − 1 and x11 − x3 − 1
on Tables 4 and 5 are denoted by their degrees. Table 6 concentrates on degrees
7 and 11. Apart from that, Tables 4–6 have the same format as the tables in Sec-
tion 5.1. All statistical measurements include those instances in which the EA was
unsuccessful.

5.5 Analysis

Some key observations of the results on Tables 4–6 are as follows. First, the EA
approach outperforms the LBA algorithm of [11]. For degrees 1, 2 and 3 the EA
performs generally equally as well as the work of [11] as recorded in Table 4 and
the upper section of Table 5. But for higher degrees this is clearly not the case: in
Table 4 the EA outperforms the LBA at more than twice the success rate for degree
5 and approximately seven times the success rate for degree 7. In all tables in this
subsection, it is generally the case that increasing the degree of the polynomial
used results in a decrease in EA success rate. In the lower section of Table 5, the
LBA of [11] only shows success on the two classes of experiments for degree 2
and 11. The EA manages to solve a high percentage of instances for each degree.

Solving systems of equations in polycyclic groups 19

d [11] EA g t t/g g.10 t.10 sg

L1 = 10, L2 = 13, L = 5

1 98% 100% 5.3 1.0 0.19 5.0 0.9 2.4
2 100% 100% 32.6 34.3 1.05 23.9 19.1 37.8
3 100% 97% 102.1 52.5 0.51 21.6 15.1 426.6
5 35% 76% 1363.5 1291.0 0.95 1076.7 814.7 2092.8
7 8% 54% 2485.3 3970.1 1.60 2474.3 2874.6 2360.0
9 5% 30% 5683.9 38989.9 6.86 6149.8 27795.0 2996.6

11 5% 20% 6225.1 11728.4 1.88 6805.0 9797.4 2657.3

Table 4. Comparative success rates of the work of [11] and the EA with N = 20
and L1, L2 and L as shown. The maximum number of iterations M = 2500 was
used for degrees 1, 2 and 3, M = 5000 for degrees 5 and 7, and M = 7500 for
degrees 9 and 11. These values were found by experimentation. For degree 9, fifty
iterations were performed with length cap 1000. For degree 11 the same length cap
was imposed.

The mean number of generations taken by the EA to solve the average experi-
ment generally increases as the cryptographic parameters are increased (e.g., from
898.0 to 2504.5 for degree 5 as L1 and L2 are increased), as does the average
time per generation. This is, intuitively, to be expected. The EA success rate
correspondingly decreases. However, the mean number of generations taken is
still relatively low compared to what may be expected from an LBA. This may be
seen as an efficiency gain over the LBA which comes from the population-based
approach and its inherent parallelism. Even for high values of cryptographic pa-
rameters exhibited in Table 6, the EA reports successes which the LBA did not,
particularly in the case of degree 7.

In the unsuccessful experiments, the EA generally times out for two reasons.
First, the initial cost may be very high (e.g., with costs of the order of 108 to
1010 for degree 9 on the bottom section of Table 5) and, although the evolution
progresses well to find large reductions in cost, the sum of these reductions is
insufficient for the EA to find an exact solution to the instance. Second, the EA
is trapped in a succession of local minima that the parameter perturbation strategy
cannot overcome.

Commenting upon the mean time per generation for each degree, it is clear these
vary somewhat. For example, Tables 4–5 relate that this measurement broadly in-
creases with degree, with the pattern only being broken by experiments for degree
9. Further, the average problem for the case of degree 9 seems intuitively much

20 M. J. Craven and D. Robertz

d [11] EA g t t/g g.10 t.10 sg

L1 = 5, L2 = 8, L = 5

1 98% 100% 5.2 0.3 0.06 4.8 0.3 2.6
2 98% 100% 16.0 2.0 0.13 11.8 1.4 23.1
3 95% 94% 172.5 14.4 0.08 14.9 1.1 594.4
5 84% 898.0 176.4 0.20 496.4 77.8 1821.3
7 72% 1672.8 471.1 0.28 1464.8 323.1 2231.5
9 54% 3912.7 13503.0 3.45 3952.3 5544.2 3508.6
11 59% 61% 3140.6 1301.9 0.41 2987.2 696.6 3546.8

L1 = 15, L2 = 18, L = 5

1 100% 5.6 0.8 0.14 4.8 0.7 4.2
2 96% 100% 58.1 21.4 0.37 34.9 7.9 92.6
3 90% 298.8 65.0 0.22 59.9 18.7 742.5
5 56% 2504.5 1770.5 0.71 2502.5 964.5 2327.5
7 44% 2971.6 3129.1 1.05 3086.2 2338.0 2325.2
9 32% 5465.2 16368.1 2.99 5884.3 11489.0 3099.7
11 53% 26% 5908.8 5046.9 0.85 6429.8 3616.2 2886.0

Table 5. Comparative success rates of the work of [11] and the EA with N = 5
and L1, L2 and L as shown. Blank spaces are shown where no success rates were
provided by the authors. Values of M are as in Table 4. The length cap used was
1000 for d = 9 (upper and lower sections) and for d = 5, 7 and 11 in the lower
section of the table. Fifty iterations were performed for d = 9 (upper and lower
sections).

d [11] EA g t t/g g.10 t.10 sg

L1 = 10, L2 = 13, L = 10

7 2% 40% 3236.9 7604.4 2.35 3408.5 4246.2 2222.1
11 0% 10% 9338.2 54034.2 5.79 10001.0 27417.5 2332.8

Table 6. Comparative success rates of the work of [11] and the EA with N = 20
and L1, L2 and L as shown. The values of M used are respectively 5000 for degree
7 and 10000 for degree 11. A length cap of 500 for degree 7 and 2000 for degree 11
was used, with fifty instances run on degree 11.

Solving systems of equations in polycyclic groups 21

harder than that for degree 11 in terms of mean time taken, success rate and the
mean number of generations.

Next, the number of slave processors used on the first four cases of Table 4 is
increased, in order to quantify the time scalability of the algorithm.

Increasing the number of slave processors

d

#
5 10 20

g t t/g g t t/g g t t/g

1 5.3 1.0 0.19 5.2 0.8 0.15 5.4 0.7 0.13
2 32.6 34.3 1.05 32.7 14.5 0.44 25.8 6.9 0.27
3 102.1 52.5 0.51 113.6 35.0 0.31 139.8 29.1 0.21
5 1363.5 1291.0 0.95 1006.3 485.4 0.48 1358.0 449.9 0.33

Mean - 344.7 0.68 - 133.9 0.35 - 121.7 0.24

Table 7. Effect on time complexity of varying the number of slave processors used.
The cryptographic parameters N = 20, L1 = 10, L2 = 13 and L = 5 were used.

The EA was rerun on one hundred random instances for the degrees shown with
10 and then 20 slave processors. Each block in Table 7 gives the mean number of
generations, the mean time and the mean time per generation for each trial. The
columns for 5 slave processors contain the applicable numbers from Table 4. Ob-
serve that increasing the number of slave processors again appropriately scales the
computation time, with the average time across the given values of n decreasing
from 344.7 seconds (for 5 slave processors) to 121.7 seconds (for 20 slave pro-
cessors). This gives a factor 2.83 speedup from multiplying the number of slave
processors by four, in comparison with the factor 2.04 speedup observed for the
Heisenberg case, indicating that algorithm time complexity scales more with the
number of slave processors used. Calculating the mean number of seconds per
generation over all degrees d gives a decrease of 0.68 seconds (for 5 slave proces-
sors) to 0.24 seconds (for 20 slave processors), a factor 2.83 speedup (compared
with 2.77 for the Heisenberg case). The next subsection analyses this further.

5.6 Algorithm time complexity

Some observations on general EA time complexity are given below, according to
each given platform group.

22 M. J. Craven and D. Robertz

Polycyclic groups defined by a number field

For the group defined by the polynomial p = x9−7x3−1 it was noted that, during
the EA runs, the word lengths involved in the computation became disproportion-
ately long compared to the solution length, resulting in a decrease in operation
speed. Hence, the growth of words during normal form computation may repre-
sent a more reliable indicator of MCSP hardness over the given groups than Hirsch
length as proposed in [11]. (A length cap is used in the implementation described
in Section 4.4 to counteract this growth of words.)

For a polycyclic presentation of the form

G ∼= 〈 g1, . . . , gn | grii = wi,i for i = 1, . . . , n such that ri 6=∞,

g−1
k gjgk = wj,k, gkgjg

−1
k = wk,j for 1 ≤ k < j ≤ n 〉,

where each wi,j is a word in the generators gk of the form g
emin(i,j)

min(i,j) . . . g
en−1
n−1 g

en
n

with ek ∈ Z and 0 ≤ ek < rk, we associate to the relator grii = wi,i the length
ri+ `(wi,i), to the relator g−1

k gjgk = wj,k the length 3+ `(wj,k) and to the relator
gkgjg

−1
k = wk,j the length 3 + `(wk,j). The complexity of the given polycyclic

presentation is then the sum of these lengths1. Table 8 gives the lengths of the
relators in the presentation in each group and the complexities. Where applica-
ble, subscript notation refers to a sequence of repeated numbers. For example, 05
should be read as the subsequence of five zeros [0, 0, 0, 0, 0].

h(G) Relator Length Vector Complexity K(G)

1 [2,4] 6

3 [2,0,132] 28

4 [2,0,13,12,13] 40

7 [2,02,25,24,25,242] 124

10 [2,03,39,38,37,363,38] 262

14 [2,05,901,634,502,499,718,950,1115,1702,2241] 9264

16 [2,05,71,692,66,652,662,68,69,72] 748

Table 8. The lengths of the defining relators of each group, and the relator length
sums (complexities).

As the Hirsch length h(G) increases, the complexityK(G) does not necessarily
increase commensurately. It is argued that the complexities given above provide a

1 Alternatively, the increase in word length in an elementary reduction step using the given rela-
tors could be measured as `(wi,i)− ri, `(wj,k)− 3 and `(wk,j)− 3, respectively.

Solving systems of equations in polycyclic groups 23

more representative measure of average problem hardness than the Hirsch length
for the MCSP in polycyclic groups defined by a number field. This is borne out
by the results of Tables 4–6 which show that, by far, the problem for the group
generated by the polynomial p = x9 − 7x3 − 1 is intuitively the hardest. In
particular, for the settings L1 = 5, L2 = 8 in Table 5, the average number of
seconds per generation is 3.45 for degree 9 and 0.41 for degree 11. This is also
replicated in the remaining experiments shown. Practically it is observed that for
polycyclic presentations of high complexity the EA operations produce words of
large differences in cost.

Thus it is clear that algorithm time complexity is controlled by the complexity
of the polycyclic presentation as well as the cryptographic parameters N , L, L1,
L2 of the MCSP instance (see Section 5.5 for the dependence of time complex-
ity on these). While some complexity estimates for normal form computations in
polycyclic groups have been found (see, e.g., [15]), complexity analysis of EAs
is still a challenge [26]. Therefore, providing a concrete expression for time com-
plexity is expected to be an onerous task.

Heisenberg groups

Analogously, there were some findings in this case. Assuming a Heisenberg group
H2n+1 for a given value of n, the relator length vector was [0n, 12n, 0]. This gives
a relator sum complexity of K(H2n+1) = 12n, exhibiting linear behaviour in n.
Noting the work of [19] which relates the Hirsch lengths h(H2n+1) = 2n + 1,
which are also linear, it is clear that there is no advantage in this case using either
Hirsch length or relator sum complexity to define the problem hardness.

6 Concluding remarks

To begin with, key contributions of the present work are recalled. First, the pro-
posed EA approach has been shown to be successful across a range of crypto-
graphic parameters, and particularly on the protocol for Heisenberg groups (Sec-
tion 5.1). The EA approach demonstrably outperforms the LBA attacks suggested
in [11, 19], and, to the best of the knowledge of the authors, marks the first work
using this method to attack either of the proposed protocols.

It has also been shown that, in the case of polycyclic groups generated by a
number field, Hirsch length may not be the best measure of problem hardness with
respect to the group, suggesting that a more appropriate measure is the relator sum
complexity K(G). Conversely, there is a direct linear relationship between the re-
lator sum complexity and Hirsch length for the Heisenberg groups. Finally, it was

24 M. Craven, D. Robertz

shown that the EA attack on the Heisenberg group protocol inspires a deterministic
linear algebra attack (Section 5.3).

The EA approach uses the now commonly-available multicore processor archi-
tectures to work in parallel. It also, being population-based, enables sampling and
search across a large search space, in distinction to the LBA (which may require
a very large number of words in the search space to be sampled in order to find
a solution). This means that the EA reveals an increased amount of structural in-
formation in comparison to an LBA, enabling more detail about the core problem
(the MSCP over the platform group) to be known with comparatively fewer runs.

It is believed that the EA approach is scalable (of which some evidence has been
shown in Tables 3 and 7) and efficient (in terms of numbers of candidate solutions
sampled), the conclusions in the present work strongly suggesting that this attack
may be ported to GPU architectures resulting in large speedups whilst retaining
the flexibility of the approach. The approach is also readily adaptable to other
platform groups, and the approach features innovations such as adaptive parameter
perturbation which effectively adapts the algorithm in real time. In addition, it is
believed the statistics shown may be improved through a more judicious use of
control parameters.

Despite the above, it is acknowledged that the EA approach is not perfect. The
approach struggles where the initial guesses have very high cost (see Section 5.5).
This situation is encountered in cases of high relator sum complexity (for example,
for degrees 9 and 11 in the number field case). Solution of such instances often
proves difficult because relator words with high length are rarely applicable for
cost reduction. A complexity analysis of the EA is also more difficult than for an
LBA, due to the algorithm behaviour more closely resembling a complex system.
Tuning settings suitable for high performance is also non-trivial.

Further work will be performed on approaches to minimise the effects of high
relator sum complexity groups, which may involve hybridising the EA with a local
search algorithm in order to make high initial costs (at the beginning of a run)
less likely. Through experiment it has been observed that high initial cost tends to
result in a larger number of local cost minima encountered by the EA search during
runs; some practical analysis of these local minima (or “peaks” as in [22]) would
be fruitful. In addition, speed improvements are expected by the introduction of a
mechanism which stores the normal forms of the words previously computed.

The above advantages and results of the EA approach show that pursuing evo-
lutionary (and Monte-Carlo) methods in combinatorial group theory and group
theoretic cryptology is a valid concept, and promises much in the way of fast,
robust and effective stochastic methods for solving algebraic problems in general.

Solving systems of equations in polycyclic groups 25

Acknowledgments. The Centre for Mathematical Sciences at Plymouth Univer-
sity is gratefully acknowledged for its generous research support and encourage-
ment. The authors also gratefully acknowledge the kind comments of the anony-
mous referees.

Bibliography

[1] I. Anshel, M. Anshel and D. Goldfeld, An Algebraic Method for Public-Key Cryp-
tography, Math. Res. Lett. 6 (1999), 287-291.

[2] I. Anshel, M. Anshel, B. Fisher and D. Goldfeld, New Key Agreement Protocols,
in: D. Naccache (ed.), Topics in Cryptology, CT-RSA 2001, LNCS 2020, Springer
(2001), 13-27.

[3] R. F. Booth, D. Yu. Bormotov and A. V. Borovik, Genetic Algorithms and Equations
in Free Groups and Semigroups, Contemp. Math. 349 (2004), 63-80.

[4] G. Cooperman, ParGAP, Version 1.4.0, available from
http://www.gap-system.org/Packages/pargap.html (2013).

[5] M. J. Craven, An Evolutionary Algorithm for the Solution of Two-Variable Word
Equations in Partially Commutative Groups, Studies in Comp. Intell. 153, Springer
(2008), 3-19.

[6] M. J. Craven and H. C. Jimbo, An Evolutionary Algorithm Solution of the Multiple
Conjugacy Search Problem in Partially Commutative Groups with Applications,
Groups, Complexity and Cryptology 4 (2012), 135-165.

[7] B. Eick and D. Kahrobaei, Polycyclic Groups: A New Platform for Cryptology?,
Preprint, 2004, (http://arxiv.org/abs/math/0411077).

[8] B. Eick, W. Nickel and M. Horn, Polycyclic, Version 2.1.1, available from
http://www.gap-system.org/Packages/polycyclic.html (2013).

[9] N. Franco and J. González-Meneses, Conjugacy Problem for Braid Groups and
Garside groups, J. Algebra 266 (1) (2003), 112-132.

[10] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.7;
2015, (http://www.gap-system.org).

[11] D. Garber, D. Kahrobaei and H. T. Lam, Length-Based Attacks in Polycyclic
Groups, J. Math. Crypt. 9 (1) (2015), 33-43.

[12] D. Garber, S. Kaplan, M. Teicher, B. Tsaban and U. Vishne, Length-Based Con-
jugacy Search in the Braid Group, in: L. Gerritzen, D. Goldfeld, M. Kreuzer,
G. Rosenberger, V. Shpilrain (eds.), Algebraic Methods in Cryptography, Contemp.
Math. 418, American Mathematical Society, Providence (2006), 75-88.

[13] D. Garber, S. Kaplan, M. Teicher, B. Tsaban and U. Vishne, Probabilistic Solutions
of Equations in the Braid Group, Adv. Appl. Math. 35 (2005), 323-334.

26 M. Craven, D. Robertz

[14] F. A. Garside, The Braid Group and Other Groups, Quart. J. Math. Oxford 20 (78)
(1969), 235-254.

[15] V. Gebhardt, Efficient Collection in Infinite Polycyclic Groups, J. Symb. Comp. 34
(2002), 213-228.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison Wesley (1989).

[17] D. F. Holt, B. Eick and E. A. O’Brien, Handbook of computational group theory,
Chapman & Hall CRC (2005).

[18] J. Hughes and A. Tannenbaum, Length-Based Attacks for Certain Group Based
Encryption Rewriting Systems, Workshop SECI02 (2002), Tunis, Tunisia.

[19] D. Kahrobaei and H. T. Lam, Heisenberg Groups as Platform for the AAG Key-
Exchange Protocol, 22nd IEEE Intern. Conf. on Network Protocols (ICNP) (2014),
660-664.

[20] K. Ko, S. Lee, J. Cheon, J. Han, J. Kang and C. Park, New Public-Key Cryptosystem
Using Braid Groups, in: M. Bellare (ed.), CRYPTO 2000, LNCS 1880, Springer
(2000), 166-183.

[21] M. Kotov and A. Ushakov, Analysis of a Certain Polycyclic Group-Based Cryp-
tosystem, J. Math. Crypt. 9 (2015), 161-167.

[22] A. D. Myasnikov and A. Ushakov, Length Based Attack and Braid Groups: Crypt-
analysis of Anshel-Anshel-Goldfeld Key Exchange Protocol, in: T. Okamoto and
X. Wang (eds.), Public Key Cryptography, LNCS 4450, Springer (2007), 76-88.

[23] A. G. Myasnikov and A. Ushakov, Random Subgroups and Analysis of the Length-
Based and Quotient Attacks, J. Math. Crypt 2 (1) (2008), 29-61.

[24] A. Nikolaev and K. R. Blaney, A PTIME Solution to the Restricted Conjugacy
Problem in Generalized Heisenberg Groups, Gr. Complex. Crypt. 8 (1) (2016), 69-
74.

[25] D. Ruinskiy, A. Shamir and B. Tsaban, Length-Based Cryptanalysis: The Case of
Thompson’s Group, J. Math. Crypt. 1 (2007), 359-372.

[26] D. Sudholt, Parallel Evolutionary Algorithms, in: J. Kacprzyk and W. Pedrycz
(eds.), Springer Handbook of Computational Intelligence, Springer (2015), 929-
959.

Received ???.

Author information

Matthew J. Craven, Centre for Mathematical Sciences, Plymouth University,
Drake Circus, Plymouth, PL4 8AA, United Kingdom.
E-mail: matthew.craven@plymouth.ac.uk

mailto:matthew.craven@plymouth.ac.uk

Solving systems of equations in polycyclic groups 27

Daniel Robertz, Centre for Mathematical Sciences, Plymouth University,
Drake Circus, Plymouth, PL4 8AA, United Kingdom.
E-mail: daniel.robertz@plymouth.ac.uk

mailto:daniel.robertz@plymouth.ac.uk

