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Abstract
We study the identity problem for matrices, i.e., whether the identity matrix is in a semigroup
generated by a given set of generators. In particular we consider the identity problem for the
special linear group following recent NP-completeness result for SL(2,Z) and the undecidability for
SL(4,Z) generated by 48 matrices. First we show that there is no embedding from pairs of words
into 3× 3 integer matrices with determinant one, i.e., into SL(3,Z) extending previously known
result that there is no embedding into C2×2. Apart from theoretical importance of the result
it can be seen as a strong evidence that the computational problems in SL(3,Z) are decidable.
The result excludes the most natural possibility of encoding the Post correspondence problem
into SL(3,Z), where the matrix products extended by the right multiplication correspond to the
Turing machine simulation. Then we show that the identity problem is decidable in polynomial
time for an important subgroup of SL(3,Z), the Heisenberg group H(3,Z). Furthermore, we
extend the decidability result for H(n,Q) in any dimension n. Finally we are tightening the gap
on decidability question for this long standing open problem by improving the undecidability
result for the identity problem in SL(4,Z) substantially reducing the bound on the size of the
generator set from 48 to 8 by developing a novel reduction technique.
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1 Introduction

The dynamics of many systems can be represented by matrices and matrix products. The
analysis of such systems lead to solving reachability questions in matrix semigroups which
is essential part in verification procedures, control theory questions, biological systems’
predictability, security etc. [9, 10,16, 17,20, 21,28, 33,35–37]. Many nontrivial algorithms for
decision problems on matrix semigroups have been developed for matrices under different

EA
T

C
S

© Sang-Ki Ko, Reino Niskanen and Igor Potapov;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Don Sannella; Article No. 260;
pp. 260:1–260:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/159082188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sangkiko@keti.re.kr
mailto:r.niskanen@liverpool.ac.uk
mailto:potapov@liverpool.ac.uk
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.260
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


260:2 On the Identity Problem for the Special Linear Group and the Heisenberg Group

constraints on the dimension, the size of a generating set or for specific subclasses of matrices:
e.g., commutative matrices [2], row-monomial matrices [30] or 2 × 2 matrix semigroups
generated by non-singular integer matrices [41], upper-triangular integer matrices [25],
matrices from the special linear group [4, 15], etc.

Despite visible interest in this research domain, we still see a significant lack of algorithms
and complexity results for answering decision problems in matrix semigroups. Many compu-
tational problems for matrix (semi)groups are computationally hard starting from dimension
two and very often become undecidable from dimensions three or four even in the case of
integer matrices. The central decision problem in matrix semigroups is the membership
problem, which was originally considered by A. Markov in 1947 [32]. Let S = 〈G〉 be a matrix
semigroup finitely generated by a generating set of square matrices G. The membership
problem is to decide whether or not a given matrix M belongs to the matrix semigroup S.
By restricting M to be the identity matrix we call the problem the identity problem.
I Problem 1 (Identity problem). Let S = 〈G〉, where G is a finite set of n-dimensional matrices
over K = Z,Q,R,C, . . .. Is the identity matrix in the semigroup, i.e., does I ∈ S hold?

The identity problem is computationally equivalent to another fundamental problem –
the subgroup problem (i.e., to decide whether a semigroup contains a subgroup) as any subset
of matrices, which can form a product leading to the identity also generate a group [15]1.

The decidability status of the identity problem was unknown for a long time for matrix
semigroups of any dimension, see Problem 10.3 in “Unsolved Problems in Mathematical
Systems and Control Theory” [10], but it was shown in [6] to be undecidable for 48 matrices
from Z4×4 by proving that the identity correspondence problem (a variant of the Post
correspondence problem over a group alphabet) is undecidable, and embedding pairs of
words over free group alphabet into SL(4,Z) as two blocks on the main diagonal and by a
morphism f as follows f(a) = ( 1 2

0 1 ), f(a−1) =
( 1 −2

0 1
)
, f(b) = ( 1 0

2 1 ) and f(b−1) =
( 1 0
−2 1

)
. In

the seminal paper of Paterson in 1970, see [39], an injective morphism from pairs of words in

alphabet Σ = {a, b} into 3× 3 integral matrices, g(u, v) =
(
n|u| 0 0

0 n|v| 0
σ(u) σ(v) 1

)
(where σ represents

each word as an n-adic number), was used to prove undecidability of the mortality problem
(i.e., the membership problem of the zero matrix) and which later led to many undecidability
results of matrix problems in dimension three, e.g., [12,24]. Finding new injective morphisms
is hard, but having them gives an opportunity to prove new undecidability results.

In 1999, Cassaigne, Harju and Karhumäki significantly boosted the research on finding
algorithmic solutions for 2 × 2 matrix semigroups by showing that there is no injective
semigroup morphism from pairs of words over any finite alphabet (with at least two elements)
into complex 2× 2 matrices [12]. This result led to substantial interest in finding algorithmic
solutions for such problems as the identity problem, mortality, membership, vector reachability,
freeness etc. for 2× 2 matrices.

For example, in 2007 Gurevich and Schupp [23] showed that the membership problem is
decidable in polynomial time for the finitely generated subgroups of the modular group and
later in 2017 Bell, Hirvensalo and Potapov proved that the identity problem for a semigroup
generated by matrices from SL(2,Z) is NP-complete by developing a new effective technique to
operate with compressed word representations of matrices and closing the gap on complexity
improving the original EXPSPACE solution proposed in 2005 [15]. The first algorithm for the
membership problem which covers the cases beyond SL(2,Z) and GL(2,Z) has been proposed

1 The product of matrices which is equal to the identity is still the identity element after a cyclic shift, so
every element from this product has the inverse.
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in [41] and provides the solution for a semigroup generated by non-singular 2 × 2 integer
matrices. Later, these techniques have been applied to build another algorithm to solve the
membership problem in GL(2,Z) extended by singular matrices [42]. The current limit of
decidability is standing for 2 × 2 matrices which are defined over hypercomplex numbers
(quaternions) for which most of the problems have been shown to be undecidable in [5] and
correspond to reachability problems for 3-sphere rotation.

In our paper, we show that there is no embedding from pairs of words into 3 × 3
integer matrices with determinant one (i.e., into SL(3,Z)), which is a strong evidence that
computational problems in SL(3,Z) are decidable as all known undecidability techniques
for low-dimensional matrices are based on encoding of Turing machine computations via
the Post correspondence problem (PCP) which cannot be applied in SL(3,Z) following our
result. In case of the PCP encoding the matrix products extended by the right multiplication
correspond to the Turing machine simulation and the only known proof alternatives are
recursively enumerable sets and Hilbert’s tenth problem that provide undecidability for
matrix equations, but of very high dimensions [3, 13,26].

So in analogy to 1999 result from [12] on non-existence of embedding into 2× 2 matrix
semigroups over complex numbers, we expand a horizon of decidability area for matrix
semigroups and show that there is no embedding from a set of pairs of words over a
semigroup alphabet to any matrix semigroup in SL(3,Z). It follows almost immediately that
there is no embedding from a set of pairs of group words into Z3×3.2 The matrix semigroup in
SL(3,Z) has attracted a lot of attention recently as it can be represented by a set of generators
and relations [18,19] similar to SL(2,Z) where it was possible to convert numerical problems
into symbolic problems and solve them with novel computational techniques; see [4,15,41,42].
Comparing to the relatively simple representation of SL(2,Z) = 〈S, T | S4 = I2, (ST )6 = I2〉,
where S =

( 0 −1
1 0

)
and T = ( 1 1

0 1 ) the case of SL(3,Z) = 〈X,Y, Z | X3 = Y 3 = Z2 = (XZ)3 =
(Y Z)3 = (X−1ZXY )2 = (Y −1ZY X)2 = (XY )6 = I3〉 looks more challenging containing
both non-commutative and partially commutative elements.

As the decidability status of the identity problem in dimension three is still a long standing
open problem, we look for an important subgroup of SL(3,Z), the Heisenberg group H(3,Z),
for which the identity problem could be decidable following our result on non-existence of
embedding. The Heisenberg group is an important subgroup of SL(3,Z) which is useful in
the description of one-dimensional quantum mechanical systems [11,22,29]. We show that
the identity problem for a matrix semigroup generated by matrices from H(3,Z) and even
H(3,Q) is decidable in polynomial time. Furthermore, we extend the decidability result for
H(n,Q) in any dimension n. Moreover we tighten the gap between (un)decidability results
for the identity problem substantially reducing the bound on the size of the generator set
from 48 (see [6]) to 8 in SL(4,Z) by developing a novel reduction technique.

2 Preliminaries

We say that a semigroup S is generated by a subset G of S if each element of S can be
expressed as a composition of elements of G. In this case, we call G the generating set of S.
Given an alphabet Σ = {a1, . . . , am}, a finite word u is an element of semigroup Σ∗. The

2 The idea that such result may hold was motivated by analogy from combinatorial topology, where the
identity problem is decidable for the braid group B3 which is the universal central extension of the
modular group PSL(2,Z) [40], an embedding for a set of pairs of words into the braid group B5 exists,
see [7], and non-existence of embeddings were proved for B4 in [1]. So SL(3,Z) was somewhere in the
goldilocks zone between B3 and B5.

ICALP 2018
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empty word is denoted by ε. Let Γ = {a1, . . . , a`, a
−1
1 , . . . , a−1

` } be a generating set of a free
group FG(Γ). The elements of FG(Γ) are all reduced words over Γ, i.e., words not containing
aia
−1
i or a−1

i ai as a subword. In this context, we call Γ a finite group alphabet, i.e., an
alphabet with an involution. The multiplication of two elements (reduced words) u, v ∈ FG(Γ)
corresponds to the unique reduced word of the concatenation uv. This multiplication is called
concatenation throughout the paper. Later in the encoding of words over a group alphabet
we denote a−1 by a and the alphabet of inverse letters is denoted as Σ−1 = {a−1 | a ∈ Σ}.

In the next lemma, we present an encoding from an arbitrary group alphabet to a binary
group alphabet used in Section 5. The result is crucial as it allows us to present the results
of the above section over the smallest domain.

I Lemma 2 (Birget, Margolis [8]). Let Γ = {z1, . . . , z`, z1, . . . , z`} be a group alphabet and
Γ2 = {c, d, c, d} be a binary group alphabet. Define the mapping α : Γ → FG(Γ2) by
α(zi) = cidci, and α(zi) = cidci, where 1 ≤ i ≤ `. Then α is a monomorphism, that is, an
injective morphism. Note that α can be extended to domain FG(Γ) in the usual way.

The special linear group is SL(n,K) = {M ∈ Kn×n | det(M) = 1}, where K =
Z,Q,R,C, . . .. The identity matrix is denoted by In and the zero matrix is denoted by
0n. The Heisenberg group H(3,K) is formed by the 3× 3 matrices of the form M =

( 1 a c
0 1 b
0 0 1

)
,

where a, b, c ∈ K. It is easy to see that the Heisenberg group is a non-commutative subgroup
of SL(3,K). We can consider the Heisenberg group as a set of all triples with the following
group law: (a1, b1, c1)⊗ (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + a1b2). By ψ(M) we denote
the triple (a, b, c) ∈ K3 which corresponds to the upper-triangular coordinates of M . Let M
be a matrix in H(3,K) such that ψ(M) = (a, b, c). We define the superdiagonal vector of M
to be ~v(M) = (a, b). Given two vectors u = (u1, u2) and v = (v1, v2), the cross product of u
and v is defined as u× v = u1v2 − u2v1. Two vectors are parallel if the cross product is zero.

The Heisenberg group can be also defined in higher dimensions. The Heisenberg group
of dimension n over K is denoted by H(n,K) and is the group of square matrices in Kn×n

of the form
(

1 aT c
0 In−2 b
0 0 1

)
, where a,b ∈ Kn−2, c ∈ K. Similar to the Heisenberg group in

dimension three, we can also consider the Heisenberg group in dimension n for any integer
n ≥ 3 as a set of all triples with the following group law: (a1,b1, c1) ⊗ (a2,b2, c2) =
(a1 + a2,b1 + b2, c1 + c2 + a1 ·b2), where a1,a2,b1,b2 ∈ Kn−2 and a1 ·b2 is the dot product
of vectors a1 and b2.

We extend the function ψ to n-dimensional Heisenberg group: For a matrix M , ψ(M)
is the triple (a,b, c) ∈ (Kn−2)2 ×K which corresponds to the upper-triangular coordinates
of M . The product M1M2 has c1 + c2 + a1 · b2 in the upper-right corner whereas M2M1
has c1 + c2 + a2 · b1. The other coordinates are identical as we add numbers in the same
coordinate. Clearly, the two products are equivalent if and only if a1 · b2 = a2 · b1 holds.

I Lemma 3. Let M1 and M2 be two matrices from the Heisenberg group H(n,K) and
ψ(Mi) = (ai,bi, ci) for i = 1, 2. Then M1M2 = M2M1 holds if and only if a1 ·b2 = a2 ·b1.3

3 On embedding from pairs of words into SL(3,K)

In this section, we show that there is no embedding from a set of pairs of words over
a semigroup alphabet to the special linear group SL(3,Z), which can be seen as a strong

3 Note that, in dimension three, the condition can be stated as superdiagonal vectors of M1 and M2 being
parallel.
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evidence about decidability of computational problems for this class. If the injective morphism
would exist, then we could encode Turing machine computations via the PCP which would
provide undecidability proofs for various membership problems in SL(3,Z).

Let Σ = {0, 1}. The monoid Σ∗ × Σ∗ has a generating set S = {(0, ε), (1, ε), (ε, 0), (ε, 1)},
where ε is the empty word. We simplify the notation by setting a = (0, ε), b = (1, ε), c = (ε, 0)
and d = (ε, 1). It is easy to see that we have the following relations:

ac = ca, bc = cb, ad = da, bd = db. (1)

In other words, a and b commute with c and d. Furthermore, these are the only relations.
That is, a and b do not commute with each other, and neither do c and d. The monoid Σ∗×Σ∗
is a partially commutative monoid or a trace monoid. A necessary and sufficient conditions
for existence of an embedding of trace monoids into N2×2 was given in [14] but, to the authors’
best knowledge, there are no similar results even for N3×3. Let ϕ : Σ∗ × Σ∗ → SL(3,K) be
an injective morphism and denote A = ϕ(a), B = ϕ(b), C = ϕ(c) and D = ϕ(d). Our goal is
to show that ϕ does not exist for K = Z. Additionally, we provide an embedding for K = Q.
Unfortunately, the technique developed in [12], where the contradiction was derived from
simple relations, resulting from matrix multiplication, cannot be used for a case of SL(3,Z)
as it creates a large number of equations which do not directly limit the existence of ϕ. We
found new techniques to show non-existence of ϕ by analysis of eigenvalues and the Jordan
normal forms.

In the next theorem, we show that if we embed the generators of Σ∗ × Σ∗ into SL(3,Z),
then, for each Jordan normal form, the matrices should satisfy additional equations.

I Theorem 4. There is no injective morphism ϕ : Σ∗ × Σ∗ → SL(3,Z) for any |Σ| ≥ 2.

Proof (Sketch). Due to the obvious symmetries, it is enough to show that the claim holds
for A. We conjugate the generators to transform A into Jordan normal form. Note that
Jordan normal form J of an integer matrix A does not have to be integer or even real, but
the contradictions we derive apply also to the original matrices. Also note that matrices J
and A have integer trace and determinants are one. There are six possible Jordan normal
forms for 3 × 3 matrices:

(
λ 0 0
0 µ 0
0 0 ν

)
,
(
λ 0 0
0 µ 0
0 0 µ

)
,
(
λ 0 0
0 µ 1
0 0 µ

)
,
(
λ 0 0
0 λ 0
0 0 λ

)
,
(
λ 1 0
0 λ 0
0 0 λ

)
, or

(
λ 1 0
0 λ 1
0 0 λ

)
. The

first and the fourth normal forms can be ruled out as the matrices commute with diagonal
matrices, and then we prove that C and D commute with each other. In the second form,
it follows from the fact that A has an integer trace and the determinant is one, that the
eigenvalues are λ = 2 and µ = 1

2 . Then, we can rule this form out as also the trace of A2

should be an integer which does not hold for these eigenvalues. The third form is ruled
out as from the relations AC = CA and AD = DA, we can solve C and D, and see that
necessary also CD = DC holds. The final form is similar to the third Jordan normal form
and is ruled out in a similar manner. The fifth form requires additional considerations. We

solve most of the elements of C =
(
a b c
d e f
g h `

)
and D =

(
a′ b′ c′

d′ e′ f ′

g′ h′ `′

)
from equations AC = CA

and AD = DA. To solve the remaining elements, we need to do further case analysis and we
prove that matrices C and D do not commute if and only if ch′ 6= c′h. We further solve B
from BC = CB and BD = DB, and show that necessarily CD = DC, which is not a valid
relation. This is a brief sketch of high-level steps of showing that the injective morphism
does not exist; see the complete proof in [27]. J

Note that some of the Jordan normal forms of the previous theorem can be ruled out
even without assuming that the original matrices were in SL(3,Z). Using these additional
constraints on matrices, we are able to find an embedding into SL(3,Q).

ICALP 2018
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I Theorem 5. Let Σ = {0, 1}. The morphism ϕ : Σ∗ × Σ∗ → SL(3,Q), defined by

ϕ((0, ε)) =
( 4 0 0

0 1
2 0

0 0 1
2

)
, ϕ((1, ε)) =

(
9 1

3 0
0 1

3 0
0 0 1

3

)
, ϕ((ε, 0)) =

( 1
2 0 0
0 1

2 0
0 0 4

)
and ϕ((ε, 1)) =

(
1
3 0 0
0 1

3 0
0 1

3 9

)
is an embedding.

We can further extend the non-existence result to words over group alphabets. The only
known results for undecidability of the identity problem rely on embedding of pairs of group
words into matrices (Theorem 13 and [6]) suggesting that the problem might be decidable in
dimension three over integers.

I Corollary 6. There is no injective morphism ϕ : FG(Γ)× FG(Γ)→ Z3×3 for any binary
group alphabet Γ.

Proof. We proceed by contradiction. Assume that there exists such an injective morphism ϕ

from the set of pairs of words over a group alphabet to the set of matrices in Z3×3. Suppose
that A = ϕ((a, ε)), where a ∈ Γ. Then the inverse matrix A−1 corresponding to (a, ε) must
be in Z3×3. This implies that the determinant of A is ±1 because otherwise the determinant
of A−1 becomes a non-integer. Consider then a morphism ψ such that ψ(x) = ϕ(x)ϕ(x) for
each x ∈ FG(Γ)× FG(Γ). It is clear that also ψ is injective and that the determinant of the
image is 1. By Theorem 4, such injective morphism ψ does not exist even from semigroup
alphabets and hence neither does ϕ. J

4 Decidability of the identity problem in the Heisenberg group

In this section, we prove that the identity problem is decidable for the Heisenberg group
which is an important subgroup of the special linear group. First, we provide more intuitive
solution for dimension three, i.e., H(3,Q), which still requires a number of techniques to
estimate possible values of elements under permutations in matrix products. In the end of
the section, we generalize the result for H(n,Q) using analogies in the solution for H(3,Q).

We prove that the identity problem for the Heisenberg group over rationals is decidable
by analysing the behaviour of multiplications especially in the upper-right coordinate of
matrices. From Lemma 3, it follows that the matrix multiplication is commutative in the
Heisenberg group if and only if matrices have pairwise parallel superdiagonal vectors. So we
analyse two cases of products for matrices with pairwise parallel and none pairwise parallel
superdiagonal vectors and then provide algorithms that solve the problem in polynomial
time. The most difficult part is showing that only limited number of conditions must be
checked to guarantee the existence of a product that results in the identity.

I Lemma 7. Let G = {M1, . . . ,Mr} ⊆ H(3,Q) be a set of matrices from the Heisenberg group
such that superdiagonal vectors of matrices are pairwise parallel. If there exists a sequence of
matrices M = Mi1 · · ·Mik , where ij ∈ [1, r] for all 1 ≤ j ≤ k, such that ψ(M) = (0, 0, c) for
some c ∈ Q, then, c =

∑k
j=1(cij −

q
2a

2
ij

) for some q ∈ Q dependent only on G.

Proof. Consider the sequence Mi1 · · ·Mik and let Mi =
( 1 ai ci

0 1 bi
0 0 1

)
for each i ∈ [1, r]. Since

the superdiagonal vectors are parallel, i.e., aibj = biaj for any i, j ∈ [1, r], we have q = bi

ai
∈ Q

and thus aiq = bi for all i ∈ [1, r]. Let us consider the product of the matrices. Then the
value c is equal to

c =
k∑

j=1

cij +
k−1∑
`=1

(
`∑

j=1

aij

)
ai`+1 q =

k∑
j=1

cij + q

2

(
k∑

`=1

k∑
j=1

ai` aij −
k∑

j=1

a2
ij

)
=

k∑
j=1

(cij − q

2a2
ij

).
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Note that if aij = 0 for some ij ∈ [1, r], then due to superdiagonal vectors being parallel,
aij = 0 for all ij and the value c is equal to

∑k
j=1 cij . J

Note that the previous lemma also holds for H(3,R). From the previous lemma we further
see that the value c is preserved if the matrices are reordered due to their commutativity.

It is worth mentioning that the identity problem in the Heisenberg group is decidable if
any two matrices have pairwise parallel superdiagonal vectors since now the problem reduces
to solving a system of two linear homogeneous Diophantine equations. Hence, it remains
to consider the case when there exist two matrices with non-parallel superdiagonal vectors
in the sequence generating the identity matrix. In the following, we prove that the identity
matrix is always constructible if we can construct any matrix with the zero superdiagonal
vector by using matrices with non-parallel superdiagonal vectors.

I Lemma 8. Let S = 〈M1, . . . ,Mr〉 ⊆ H(3,Q) be a finitely generated matrix semigroup.
Then the identity matrix exists in S if there exists a sequence of matrices Mi1 · · ·Mik , where
ij ∈ [1, r] for all 1 ≤ j ≤ k, satisfying the following properties:

(i) ψ(Mi1 · · ·Mik ) = (0, 0, c) for some c ∈ Q, and
(ii) ~v(Mij1

) and ~v(Mij2
) are not parallel for some j1, j2 ∈ [1, k].

To prove Lemma 8, we show that from a matrix M = Mi1 · · ·Mik , such that ψ(M) =
(0, 0, c), satisfying the conditions of the lemma, we can construct a matrix M ′ such that
ψ(M ′) = (0, 0, c′) and cc′ < 0. Given that Mi is the ith generator and ψ(Mi) = (ai, bi, ci),
we have

∑k
j=1 aij = 0 and

∑k
j=1 bij = 0. Without loss of generality, c > 0, and the following

also holds:

c =
k−1∑
`=1

∑̀
j=1

aij bi`+1 +
k∑
j=1

cij > 0. (2)

If the matrix semigroup S ⊆ H(3,Q) has two different matrices N1 and N2 such that
ψ(N1) = (0, 0, c1) and ψ(N2) = (0, 0, c2) and c1c2 < 0, then the identity matrix exists in S.
Indeed, let ψ(N1) = (0, 0, p1

q1
) and ψ(N2) = (0, 0, p2

q2
), where p1, q1, q2 ∈ Z are positive and

p2 ∈ Z is negative. Then it is easy to see that the matrix N−q1p2
1 Nq2p1

2 exists in S and that
ψ(N−q1p2

1 Nq2p1
2 ) = (0, 0, 0).

To construct the matrix M ′, we first classify the matrices into four types as follows. A
matrix with a superdiagonal vector (a, b) is classified as

1) the (+,+)-type if a, b > 0, 2) the (+,−)-type if a ≥ 0 and b ≤ 0,
3) the (−,−)-type if a, b < 0, and 4) the (−,+)-type if a < 0 and b > 0.

Let G = {M1, . . . ,Mr} be the generating set of the matrix semigroup S. Then G =
G(+,+) tG(+,−) tG(−,−) tG(−,+) such that G(ξ1,ξ2) is the set of matrices of the (ξ1, ξ2)-type,
where ξ1, ξ2 ∈ {+,−}.

Recall that we assume M = Mi1 · · ·Mik and ψ(M) = (0, 0, c) for some c > 0. The
main idea of the proof is to generate a matrix M ′ such that ψ(M ′) = (0, 0, c′) for some
c′ < 0 by duplicating the matrices in the sequence M = Mi1 · · ·Mik multiple times and
reshuffling. Note that any permutation of the sequence generating the matrix M such
that ψ(M) = (0, 0, c) still generates matrices M ′ such that ψ(M ′) = (0, 0, c′) since the
multiplication of matrices exchanges the first two coordinates in a commutative way. Also
note that there exists a permutation such that c 6= c′ as we assumed that at least two matrices
in the sequence do not commute. Moreover, we can still obtain matrices M ′′ such that

ICALP 2018
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b1 b2 b3 b4 |b5| |b6| |b7| |b8| |b9| b10 b11 b12 b13

a6

a5

a4

a3

a2

a1

|a7|

|a8|

|a9|
|a10|
|a11|
|a12|
|a13|

: positive
: negative

: positive
: negative

b(+,+)m |b(+,−)|m |b(−,−)|m b(−,+)m

|a(−,+)|m

|a(−,−)|m

a(+,+)m

a(+,−)m

Figure 1 The histogram on the left describes how the upper-right corner of M1 · · · M13 is
computed by multiplications. The blue dotted (red lined) area implies the value which will be
added to (subtracted from) the upper-right corner of the final matrix after multiplications of
matrices in the sequence. The histogram on the right describes how the upper-right corner of
Mm

(+,+)M
m
(+,−)M

m
(−,−)M

m
(−,+) is computed by multiplications. Here m = 8.

ψ(M ′′) = (0, 0, c′′) for some c′′ ∈ Q if we shuffle two different permutations of the sequence
Mi1 · · ·Mik by the same reason.

Let us illustrate the idea with the following example. See Figure 1 for pictorial descriptions
of the idea. Let {Mi | 1 ≤ i ≤ 4} ⊆ G(+,+), {Mi | 5 ≤ i ≤ 7} ⊆ G(+,−), {Mi | 8 ≤ i ≤
9} ⊆ G(−,−), and {Mi | 10 ≤ i ≤ 13} ⊆ G(−,+). Then assume that M1 · · ·M13 =

(
1 0 x
0 1 0
0 0 1

)
,

where x is computed by (2). As we mentioned above, x changes if we change the order
of multiplicands. In this example, we first multiply (+,+)-type matrices and accumulate
the values in the superdiagonal coordinates since these matrices have positive values in
the coordinates. Indeed, the blue dotted area implies the value we add to the upper-right
corner by multiplying such matrices. Then we multiply (+,−)-type matrices and still increase
the ‘a’-value. The ‘b’-values in (+,−)-type matrices are negative thus, the red lined area is
subtracted from the upper-right corner. We still subtract by multiplying (−,−)-type matrices
since the accumulated ‘a’-value is still positive and ‘b’-values are negative. We finish the
multiplication by adding exactly the last blue dotted area to the upper-right corner. It is
easy to see that the total subtracted value is larger than the total added value.

However, we cannot guarantee that x is negative since
∑13
i=1 ci could be larger than the

contribution from the superdiagonal coordinates. This is why we need to copy the sequence
of matrices generating the matrix corresponding to the triple (0, 0, c) for some c ∈ Q. In
Figure 1, we describe an example where we duplicate the sequence eight times and shuffle
and permute it in order to minimize the value in the upper-right corner. Now the lengths of
both axes are m (m = 8 in this example) times larger than before and it follows that the
area also grows quadratically in m. Since the summation m ·

∑13
i=1 ci grows linearly in m,

we have x < 0 for large enough m. In [27], we formally prove this by bounding contributions
of each matrix type and showing that the coefficient of the highest power of m is negative.

It should be noted that there are some subcases where some matrix types are not present
in the product. In each case we need to show that the same idea can be used to construct a
matrix M ′ such that ψ(M ′) = (0, 0, c′), where c′ < 0. The full analysis of all cases can be
found in [27].

I Theorem 9. The identity problem for a semigroup generated by matrices from H(3,Q) is
in polynomial time.

Proof. Let S be the matrix semigroup in H(3,Q) generated by the set G = {M1, . . . ,Mr}.
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There are two possible cases of having the identity matrix in the matrix semigroup in H(3,Q).
Either the identity matrix is generated by a product of matrices where all superdiagonal
vectors are parallel or there are at least two matrices with non-parallel superdiagonal vectors.

Consider the first case. Lemma 7 provides a formula to compute the value in the top
corner regardless of the order of the multiplications. That is, we need to solve a system of
linear homogeneous Diophantine equations with solutions over non-negative integers. We
partition the set G into several disjoint subsets G1, . . . , Gs, where s is at most r, and each
subset contains matrices with parallel superdiagonal vectors. Since superdiagonal vectors
being parallel is a transitive and symmetric property, each matrix needs to be compared
to a representative of each subset. If there are no matrices with parallel superdiagonal
vectors, then there are r subsets Gi containing exactly one matrix and O(r2) tests were done.
Let us consider Gi = {Mk1 , . . . ,Mksi

}, i.e., one of the subsets containing si matrices and
ψ(Mkj ) = (akj , bkj , ckj ). By Lemma 7, the value ckj −

qi

2 a
2
kj
, for a fixed qi ∈ Q, is added to

the top corner when matrix Mkj
is multiplied.

We solve the system of two linear homogeneous Diophantine equations Ay = 0, where

A =
(

ak1 ak2 · · · aksi

ck1 −
qi

2 a
2
k1

ck2 −
qi

2 a
2
k2
· · · cksi

− qi

2 a
2
ksi

)
and yT ∈ Nsi . The first row is the constraint that guarantees that the first component
of the superdiagonal is zero in the matrix product constructed from a solution. Since the
superdiagonal vectors are parallel, it also implies that the whole vector is zero. The second
row guarantees that the upper corner is zero.

It is obvious that the identity matrix is in the semigroup if we have a solution in the
system of two linear homogeneous Diophantine equations for any subset Gi. That is, we
need to solve at most r systems of two linear homogeneous Diophantine equations.

Next, we consider the second case, where by Lemma 8, it is enough to check whether
there exists a sequence of matrices generating a matrix with zero superdiagonal vector
and containing two matrices with non-parallel superdiagonal vectors. Let us say that
Mi1 ,Mi2 ∈ G, where 1 ≤ i1, i2 ≤ r are the two matrices. Recall that G = {M1, . . . ,Mr} is a
generating set of the matrix semigroup and let ψ(Mi) = (ai, bi, ci) for all 1 ≤ i ≤ r. We can
see that there exists such a product containing the two matrices by solving a system of two
linear homogeneous Diophantine equations of the form By = 0, where B =

( a1 a2 ··· ar

b1 b2 ··· br

)
,

with an additional constraint that the numbers in the solution y that correspond to Mi1

and Mi2 are non-zero since we must use these two matrices in the product. We repeat this
process at most r(r− 1) times until we find a solution. Therefore, the problem reduces again
to solving at most O(r2) systems of two linear homogeneous Diophantine equations.

Finally, we conclude the proof by mentioning that the identity problem for matrix semig-
roups in the Heisenberg group over rationals H(3,Q) can be decided in polynomial time as
the problem of existence of a positive integer solution to a system of linear homogeneous Dio-
phantine equations is in polynomial time. Note that if the system is non-homogeneous, then
solvability of a system of linear Diophantine equations with solutions over positive integers
is an NP-complete problem; see for example [38]. Indeed, a system of linear homogeneous
Diophantine equations with solutions over non-negative integers can be converted to a linear
programming problem with a solution over rationals which is known to be solvable in poly-
nomial time; see e.g., [43]. It is easy to add additional constraints to the linear programming
that ensure that solutions are positive and non-zero. As the system is homogeneous, any
solution can be converted to an integer solution by multiplying by the denominators. J

Next, we generalize the above algorithm for the identity problem in the Heisenberg
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group H(3,Q) to the domain of the Heisenberg groups for any dimension over the rational
numbers. Similarly to the case of dimension three, we establish the following result for the
case of matrices where multiplication is commutative.

I Lemma 10. Let G = {M1, . . . ,Mr} ⊆ H(n,Q) be a set of matrices from the Heisenberg
group such that ψ(Mi) = (ai,bi, ci) and ψ(Mj) = (aj ,bj , cj) and ai · bj = aj · bi for any
1 ≤ i 6= j ≤ r. If there exists a sequence of matrices M = Mi1 · · ·Mik , where ij ∈ [1, r] for
all 1 ≤ j ≤ k, such that ψ(M) = (0,0, c) for some c ∈ Q, then c =

∑k
j=1(cij − 1

2 aij · bij ).

Lemma 8 does not generalize to H(n,Q) in the same way as we cannot classify matrices
according to types to control the value in upper-right corner, so we use a different technique
to prove that the value in the upper corner will be diverging to both positive and negative
infinity quadratically as we repeat the same sequence generating any matrix M such that
ψ(M) = (0,0, c).

I Lemma 11. Let S = 〈M1, . . . ,Mr〉 ⊆ H(n,Q) be a finitely generated matrix semigroup.
Then the identity matrix exists in S if there exists a sequence of matrices Mi1 · · ·Mik , where
ij ∈ [1, r] for all 1 ≤ j ≤ k, satisfying the following properties:

(i) ψ(Mi1 · · ·Mik ) = (0,0, c) for some c ∈ Q, and
(ii) aij1

· bij2
6= aij2

· bij1
for some j1, j2 ∈ [1, k], where ψ(Mi) = (ai,bi, ci) for 1 ≤ i ≤ r.

Proof. From the first property claimed in the lemma, we know that any permutation of
the sequence of matrix multiplications of Mi1 · · ·Mik results in matrices M ′ such that
ψ(M ′) = (0,0, y) for some y ∈ Q since the multiplication of matrices in the H(n,Q) performs
additions of vectors which is commutative in the top row and the rightmost column excluding
the upper-right corner. From the commutative behaviour in the horizontal and vertical
vectors of matrices in the Heisenberg group, we also know that if we duplicate the matrices
in the sequence Mi1 · · ·Mik and multiply the matrices in any order, then the resulting matrix
has a non-zero coordinate in the upper triangular coordinates only in the upper right corner.

Now let j1, j2 ∈ [1, k] be two indices such that aij1
·bij2

6= aij2
·bij1

as claimed in the lemma.
Then consider the following matrix Md that can be obtained by duplicating the sequence
Mi1 · · ·Mik of matrices into ` copies and shuffling the order as follows: Md = M `

ij1
M `
ij2
M `
x,

where Mx is a matrix that is obtained by multiplying the matrices in Mi1 · · ·Mik except
the two matrices Mj1 and Mj2 . Then it is clear that ψ(Md) = (0,0, d) for some d. Let
ψ(Mx) = (ax,bx, cx). Then it is easy to see that aij1

+aij2
+ax = 0 and bij1

+bij2
+bx = 0.

Consider then a product, where order ofMj1 andMj2 is swapped. That is,Me = M `
ij2
M `
ij1
M `
x

and let us denote ψ(Me) = (0,0, e) for some e ∈ Q. By solving values d and e, we notice
that the coefficient of `2 in d is aij1

· bij2
− aij2

· bij1
and in e is aij2

· bij1
− aij1

· bij2
. As

we assumed that aij1
· bij2

6= aij2
· bij1

, the coefficients are of different sign. Hence, for
sufficiently large `, the values d and e have opposite signs. Then, as in the proof Lemma 8,
the identity matrix always exists in the semigroup as we can multiply these two matrices
correct number of times to have zero in the upper right coordinate as well. J

Next, we prove that the identity problem is decidable for n-dimensional Heisenberg
matrices. In contrast to Theorem 9, we do not claim that the problem is decidable in
polynomial time since one of the steps of the proof is to partition matrices according to dot
products which cannot be extended to higher dimensions than three. For higher dimensions,
partitioning matrices according to dot products takes an exponential time in the number of
matrices in the generating set. Note that if the size of the generating set is fixed, i.e., only
the matrices are part of the input, then the problem remains in P.
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I Theorem 12. The identity problem for a semigroup generated by matrices from H(n,Q)
is decidable.

Proof. Similarly to the proof of Theorem 9, there are two ways the identity matrix can be
generated. Either all the matrices commute or there are at least two matrices that do not
commute. Let S be the matrix semigroup in H(n,Q) generated by the set G = {M1, . . . ,Mr}.
Consider matrices N1, N2 and N3, such that ψ(N1) = (a1,b1, c1), ψ(N2) = (a2,b2, c2) and
ψ(N3) = (a3,b3, c3). If a1 · b2 = a2 · b1 and a2 · b3 = a3 · b2, it does not imply that
a1 ·b3 = a3 ·b1. Therefore, the number of subsets of G, where each subset contains matrices
that commute with other matrices in the same subset, is exponential in r as two subsets
are not necessarily disjoint. Now we examine whether it is possible to generate the identity
matrix by multiplying matrices in each subset by Lemma 10. If it is not possible, we need
to consider the case of having two matrices that do not commute with each other in the
product with zero values in the upper-triangular coordinates except the corner. Let us say
that Mi1 ,Mi2 ∈ G, where 1 ≤ i1, i2 ≤ r are the two matrices. Recall that G = {M1, . . . ,Mr}
is a generating set of the matrix semigroup and let ψ(Mi) = (ai,bi, ci) for all 1 ≤ i ≤ r.

Then we can see that there exists such a product by solving a system of 2(n− 2) linear
homogeneous Diophantine equations of the form By = 0, where B =

(
aT

1 ···a
T
r

bT
1 ···b

T
r

)
, with an

additional constraint that the values in the solution y that correspond to Mi1 and Mi2 are
non-zero since we must use these two matrices in the product. We repeat this process at most
r(r−1) times until we find a solution. Hence, we can view the identity problem in H(n,Q) as
the problem of solving systems of 2(n− 2) linear homogeneous Diophantine equations with
some constraints on the solution. As we can solve systems of linear homogeneous Diophantine
equations, we conclude that the identity problem in H(n,Q) is also decidable. J

5 The identity problem in matrix semigroups in dimension four

Now we tighten the decidability gap proving undecidability for 4 × 4 matrices, when the
generating set has eight matrices (reducing from 48), with a new technique exploiting the
anti-diagonal entries.

I Theorem 13. Given a semigroup S generated by eight 4× 4 integer matrices with determ-
inant one, determining whether the identity matrix belongs to S is undecidable.

Proof. We prove the claim by reducing from the PCP. We shall use an encoding to embed
an instance of the PCP into a set of 4× 4 integer matrices. An instance of the PCP consists
of two morphisms g, h : Σ∗ → B∗, where Σ and B are alphabets. A nonempty word u ∈ Σ∗
is a solution of an instance (g, h) if it satisfies g(u) = h(u).

Let α be the mapping of Lemma 2. We also define a monomorphism f : FG(Γ2)→ Z2×2 as
f(a) = ( 1 2

0 1 ), f(a) =
( 1 −2

0 1
)
, f(b) = ( 1 0

2 1 ) and f(b) =
( 1 0
−2 1

)
. Recall that the matrices ( 1 2

0 1 )
and ( 1 0

2 1 ) generate a free subgroup of SL(2,Z) [31]. The composition of two monomorphisms α
and f gives us the embedding from an arbitrary group alphabet into SL(2,Z). We use the
composition of two monomorphisms α and f to encode a set of pairs of words over an
arbitrary group alphabet into a set of 4× 4 integer matrices in SL(4,Z) and denote it by β.

Let (g, h) be an instance of the PCP, where g, h : {a1, . . . , an}∗ → Σ∗2, where Σ2 =
{a, b}. Without loss of generality, we can assume that the solution starts with the letter
a1. Moreover, we assume that this is the only occurence of a1. We define the alphabet
Γ = Σ2 ∪ Σ−1

2 ∪ ΣB ∪ Σ−1
B , where ΣB = {q0, q1, p0, p1} is the alphabet for the border letters

that enforce the form of a solution.
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Let us define the following sets of words W1 ∪W2 ⊆ FG(Γ)× FG(Γ), where

W1 = {(q0aq0, p0ap0), (q0bq0, p0bp0) | a, b ∈ Σ2, q0, p0 ∈ ΣB} and

W2 =
{

(q0g(a1)q1, p0h(a1)p1), (q1g(ai)q1, p1h(ai)p1) | 1 < i ≤ n, q0, q1, p0, p1 ∈ ΣB
}
.

Intuitively, the words from set W1 are used to construct words over Σ2 and the words from
set W2 to cancel them according to the instance of the PCP.

Let us prove that (q0q1, p0p1) ∈ FG(W1 ∪W2) if and only if the PCP has a solution. It is
easy to see that any pair of non-empty words in FG(W1) is of the form (q0wq0, p0wp0) for
w ∈ Σ+

2 . Then there exists a pair of words in FG(W2) of the form (q0wq1, p0wp1) for some
word w ∈ Σ+

2 if and only if the PCP has a solution. Thus, (q0q1, p0p1) can be constructed
by concatenating pairs of words in W1 and W2 if and only if the PCP has a solution.

For each pair of words (u, v) ∈ FG(W1∪W2), we define a matrix Au,v to be
(
β(u) 02
02 β(v)

)
∈

SL(4,Z), where 02 is the zero matrix in Z2×2. Moreover, we define the following matrix

Bq1q0,p1p0 =
(

02 β(q1q0)
β(p1p0) 02

)
∈ SL(4,Z).

Let S be a matrix semigroup generated by the set {Au,v, Bq1q0,p1p0 | (u, v) ∈W1 ∪W2}.
We already know that the pair (q0q1, p0p1) of words can be generated by concatenating
words in W1 and W2 if and only if the PCP has a solution. The matrix semigroup S has the
corresponding matrix Aq0q1,p0p1 and thus,

(
β(q0q1) 02

02 β(p0p1)

)(
02 β(q1q0)

β(p1p0) 02

)
=
(

02 β(ε)
β(ε) 02

)
∈

S. Now, the identity matrix I4 exists in the semigroup S by repeating this product twice.
Now we prove that the identity matrix does not exist in S if the PCP has no solution. It

is easy to see that we cannot obtain the identity matrix only by multiplying ‘A’ matrices
since there is no possibility of cancelling every border letter. We need to multiply the
matrix Bq1q0,p1p0 with a product of ‘A’ matrices at some point to reach the identity matrix.
Note that the matrix Bq1q0,p1p0 cannot be the first matrix of the product, followed by the ‘A’
matrices, because the upper right block of Bq1q0,p1p0 , which corresponds to the first word of
the pair, should be multiplied with the lower right block of ‘A’ matrix, which corresponds to
the second word of the pair.

Suppose that the ‘A’ matrix is of form
(
β(q0uq1) 02

02 β(p0vp1)

)
. Since the PCP instance has

no solution, either u or v is not the empty word. We multiply Bq1q0,p1p0 to the matrix and
then obtain the following matrix

(
β(q0uq1) 02

02 β(p0vp1)

)(
02 β(q1q0)

β(p1p0) 02

)
=
(

02 β(q0uq0)
β(p0vp0) 02

)
.

We can see that either the upper right part or the lower left part cannot be β(ε), which
actually corresponds to the identity matrix in Z2×2. Now the only possibility of reaching the
identity matrix is to multiply matrices which have SL(2,Z) matrices in the anti-diagonal
coordinates like Bq1q0,p1p0 . However, we cannot cancel the parts because the upper right
block (the lower left block) of the left matrix is multiplied with the lower left block (the
upper right block) of the right matrix as follows

( 02 A
B 02

)( 02 C
D 02

)
=
(
AD 02
02 BC

)
, where A,B,C

and D are matrices in Z2×2. As the first word of the pair is encoded in the upper right block
of the matrix and the second word is encoded in the lower left block, it is not difficult to see
that we cannot cancel the remaining blocks.

Currently, the undecidability bound for the PCP is five [34] and thus the semigroup S
is generated by eight matrices. Recall that in the beginning of the proof, we assumed that
letter a1 of the PCP is used exacly once and is the first letter of a solution. This property is
in fact present in [34]. J

Theorem 13 implies smaller undecidability bounds for the special diagonal membership
problem from 14 [24] to eight and for the identity problem in H(Q)2×2 from 48 to eight [6].
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