54 research outputs found

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    UAV Connectivity over Cellular Networks:Investigation of Command and Control Link Reliability

    Get PDF

    Allocation of Communication and Computation Resources in Mobile Networks

    Get PDF
    Konvergence komunikačních a výpočetních technologií vedlo k vzniku Multi-Access Edge Computing (MEC). MEC poskytuje výpočetní výkon na tzv. hraně mobilních sítí (základnové stanice, jádro mobilní sítě), který lze využít pro optimalizaci mobilních sítí v reálném čase. Optimalizacev reálném čase je umožněna díky nízkému komunikačnímu zpoždění například v porovnání s Mobile Cloud Computing (MCC). Optimalizace mobilních sítí vyžaduje informace o mobilní síti od uživatelských zařízeních, avšak sběr těchto informací využívá komunikační prostředky, které jsou využívány i pro přenos uživatelských dat. Zvyšující se počet uživatelských zařízení, senzorů a taktéž komunikace vozidel tvoří překážku pro sběr informací o mobilních sítích z důvodu omezeného množství komunikačních prostředků. Tudíž je nutné navrhnout řešení, která umožní sběr těchto informací pro potřeby optimalizace mobilních sítí. V této práci je navrženo řešení pro komunikaci vysokého počtu zařízeních, které je postaveno na využití přímé komunikace mezi zařízeními. Pro motivování uživatelů, pro využití přeposílání dat pomocí přímé komunikace mezi uživateli je navrženo přidělování komunikačních prostředků jenž vede na přirozenou spolupráci uživatelů. Dále je provedena analýza spotřeby energie při využití přeposílání dat pomocí přímé komunikace mezi uživateli pro ukázání jejích výhod z pohledu spotřeby energie. Pro další zvýšení počtu komunikujících zařízení je využito mobilních létajících základových stanic (FlyBS). Pro nasazení FlyBS je navržen algoritmus, který hledá pozici FlyBS a asociaci uživatel k FlyBS pro zvýšení spokojenosti uživatelů s poskytovanými datovými propustnostmi. MEC lze využít nejen pro optimalizaci mobilních sítí z pohledu mobilních operátorů, ale taktéž uživateli mobilních sítí. Tito uživatelé mohou využít MEC pro přenost výpočetně náročných úloh z jejich mobilních zařízeních do MEC. Z důvodu mobility uživatel je nutné nalézt vhodně přidělení komunikačních a výpočetních prostředků pro uspokojení uživatelských požadavků. Tudíž je navržen algorithmus pro výběr komunikační cesty mezi uživatelem a MEC, jenž je posléze rozšířen o přidělování výpočetných prostředků společně s komunikačními prostředky. Navržené řešení vede k snížení komunikačního zpoždění o desítky procent.The convergence of communication and computing in the mobile networks has led to an introduction of the Multi-Access Edge Computing (MEC). The MEC combines communication and computing resources at the edge of the mobile network and provides an option to optimize the mobile network in real-time. This is possible due to close proximity of the computation resources in terms of communication delay, in comparison to the Mobile Cloud Computing (MCC). The optimization of the mobile networks requires information about the mobile network and User Equipment (UE). Such information, however, consumes a significant amount of communication resources. The finite communication resources along with the ever increasing number of the UEs and other devices, such as sensors, vehicles pose an obstacle for collecting the required information. Therefore, it is necessary to provide solutions to enable the collection of the required mobile network information from the UEs for the purposes of the mobile network optimization. In this thesis, a solution to enable communication of a large number of devices, exploiting Device-to-Device (D2D) communication for data relaying, is proposed. To motivate the UEs to relay data of other UEs, we propose a resource allocation algorithm that leads to a natural cooperation of the UEs. To show, that the relaying is not only beneficial from the perspective of an increased number of UEs, we provide an analysis of the energy consumed by the D2D communication. To further increase the number of the UEs we exploit a recent concept of the flying base stations (FlyBSs), and we develop a joint algorithm for a positioning of the FlyBS and an association of the UEs to increase the UEs satisfaction with the provided data rates. The MEC can be exploited not only for processing of the collected data to optimize the mobile networks, but also by the mobile users. The mobile users can exploit the MEC for the computation offloading, i.e., transferring the computation from their UEs to the MEC. However, due to the inherent mobility of the UEs, it is necessary to determine communication and computation resource allocation in order to satisfy the UEs requirements. Therefore, we first propose a solution for a selection of the communication path between the UEs and the MEC (communication resource allocation). Then, we also design an algorithm for joint communication and computation resource allocation. The proposed solution then lead to a reduction in the computation offloading delay by tens of percent

    D4.2 Final report on trade-off investigations

    Full text link
    Research activities in METIS WP4 include several as pects related to the network-level of future wireless communication networks. Thereby, a large variety of scenarios is considered and solutions are proposed to serve the needs envis ioned for the year 2020 and beyond. This document provides vital findings about several trade-offs that need to be leveraged when designing future network-level solutions. In more detail, it elaborates on the following trade- offs: • Complexity vs. Performance improvement • Centralized vs. Decentralized • Long time-scale vs. Short time-scale • Information Interflow vs. Throughput/Mobility enha ncement • Energy Efficiency vs. Network Coverage and Capacity Outlining the advantages and disadvantages in each trade-off, this document serves as a guideline for the application of different network-level solutions in different situations and therefore greatly assists in the design of future communication network architectures.Aydin, O.; Ren, Z.; Bostov, M.; Lakshmana, TR.; Sui, Y.; Svensson, T.; Sun, W.... (2014). D4.2 Final report on trade-off investigations. http://hdl.handle.net/10251/7676
    corecore