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ABSTRACT

For the past years, the analysts have been predicting a tremendous and continu-
ous increase in mobile traffic, which substantiates the emergence of heterogeneous
multi-radio networks supported by the trend in infrastructure and user densifica-
tion. In the envisioned fifth-generation (5G) heterogeneous deployments, where
each user device may utilize multiple radio access technologies (RATs) for commu-
nicating with the network infrastructure or other proximate devices, the challenge
of intelligent management of such connections arises.

Assuming that cellular network is able to provide assistance in connectivity on
multiple RATs, there potentially exists a variety of management strategies. In order
to analyze them and subsequently optimize the network operation, an appropriate
modeling tool is required, which would account for the specific properties of the in-
volved communication technologies. In the light of this, it is essential to revisit the
mathematical tools available today, augment them, and apply to the selected area.

While queuing theory has remained as one of the key solutions for network mod-
eling for over a half-century, the contemporary wireless systems incorporated geo-
graphical location of a node as a crucial factor in determining the resulting quality of
service. Consequently, shifting from the queuing theory to the area named stochas-
tic geometry delivered useful operational insights for large macrocells. However, the
continuing network densification as the mainstream trend in the development to-
wards future 5G networks suggests focusing attention on the user loading together
with its traffic dynamics. As a result, it is important to revisit the legacy tools of
queuing analysis and combine them with appropriate methods of stochastic geom-
etry in order to efficiently evaluate the ultimate system performance.

This thesis is devoted to developing a novel space-time methodology that flex-
ibly combines spatial approaches of stochastic geometry with the investigation of
network dynamics by queuing theoretic methods. This general approach allows
for building useful first-order performance estimations for a wide range of system
assumptions and constraints, which result from a particular multi-radio network
configuration.

Conveniently offered in the form of a construction set, the proposed methodol-
ogy has significant advantages over the existing methods, and may be successfully
applied to a large number of novel problems in the field of wireless networking anal-
ysis, where each of them finds its own practical application in the emerging 5G
ecosystem.
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Chapter 1
Introduction

1.1 INTRODUCTION AND RESEARCH MOTIVATION

Looking at more than 40 years1 of mobile communications history, from analogue to
LTE and beyond, we confirm that network generations evolve over approximately
20-year intersecting cycles. On average, during around a half of that time, a new
technology develops all the way to its peak, and through the rest of that time –
from its peak to the last subscriber. Given that the beginning of every genera-
tion is based on several years of prior research and development, the emerging fifth
generation (5G) of wireless systems is expected to be deployed sometime around
2020 [1]. However, yet there is no consensus on what comes after the state-of-the-art
networking technologies, and what exactly 5G is.

Historically, every next generation is pushed by the consumer demands and the
weaknesses of the previous generation. To this end, see examples of mobile net-
working evolution in Table 1.1. Hence, we expect that 5G will develop similarly
and thus the associated performance criteria are already being shaped, with some
of them available as [2]:

• ”anytime, anywhere” connectivity

• high data rate in the field (1-10 Gbps)

• extremely low latency (1 ms or less)

• high availability and reliability in some scenarios (99.999%)

• reduced power consumption (up to 90%)

• massive connectivity (10-100 times growth in connected devices)

1The first mobile call was made on April 3, 1973.
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2 INTRODUCTION

Table 1.1 Evolution of technology generations in terms of services and performance. Source:
GSMA Intelligence [2]

Primary services Key differentiator Weakness
1G Analogue phone calls Mobility Poor spectral efficiency,

major security issues
2G Digital phone calls Secure, Limited data rates –

and messaging mass adoption difficult to support
demand for Internet

3G Phone calls, Better Internet Real performance failed
messaging, data experience to match hype, failure of

WAP for Internet access
3.5G Phone calls, messaging, Broadband Internet, Tied to legacy, mobile

broadband data applications specific architecture
and protocols

4G All-IP services (including Faster broadband ...not yet defined
voice, messaging) Internet, lower latency

Some of these technical requirements, such as high rate and low latency, are al-
ready underway as a part of the development by the network operators. The rest
of them are excessively diverse for a single breakthrough technology, and therefore
5G is expected to become different from other past generations (see [3], [4], and [5])
– one radio access technology (RAT) might not be sufficient. Today, many agree
[6], [7] that prospective 5G networks will rather become a blend based on the con-
vergence of several existing RATs (such as 3G, 4G, WiFi, and others), delivering
higher user rates, better connectivity and coverage.

Hence, what emerges as a natural key question and the fundamental challenge
for the 5G design, is the appropriate RAT management strategies [8], which help to
make sure that the network operates in the best possible way. This implies that the
network would need to show a certain system flexibility, or intelligence, to adjust
to the diverse set of requirements, environmental and deployment conditions.

In order to develop and implement the demanded intelligent system, at the re-
search stage we need a powerful methodology, which could focus on the most chal-
lenging 5G targets, such as low latency and high data rates, as well as would be
able to quickly predict the performance of the considered 5G system, depending on
its various conditions. Although the simulation tools may become of a consider-
able help here, the envisioned network densification and connectivity requirements
call for a numerically-simple first-order performance estimator able to deliver fine-
grained operational statistics. We continue by reviewing some methods of applied
mathematics in a search of the appropriate methodology.

Turning back to the history of analysis in the broad area of communications, we
notice that the queuing theory has been a key solution in respective performance
evaluation for over half a century. However, the introduction of wireless technology
brought novel research demand, so that the geographical locations of communica-
tion entities have become a crucial factor in determining the resulting quality of
service (QoS). Accordingly, shifting from the queuing theoretic tools (see e.g., [9],
[10], [11], and [12]) to the area of stochastic geometry [13] suits well for assessing
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large macrocells. However, with further network densification, we need to draw at-
tention to the actual user loading and its uplink traffic dynamics, reiterating the
importance of queuing analysis and thus combining these two crucial methodolo-
gies, queuing theory and stochastic geometry, in order to efficiently estimate the 5G
system performance.

1.2 GENERAL BACKGROUND

Since 1909, when Erlang published his first paper [14], communications systems
have been mostly assessed with the methods of ”classical” queuing theory (see [15],
[16], and [17]), which has been extensively developed driven by the technology evo-
lution. One century later, however, with the emergence of wireless technology, this
well-studied area became insufficient, since wireless networks are fundamentally lim-
ited by the intensity of the signal and interference (see [18], [19], and [20]), which in
a wireless channel heavily depend on the geographical location. Driven further by
wireless networking problems for several past decades, the research community has
been (re)discovering the mathematical methods that allow taking into account the
effects of network geometry – eventually arriving at stochastic geometry formula-
tions, random graphs theory, and their sub-branches, such as point process theory,
geometric probability, and percolation theory.

The term ”stochastic geometry” has appeared already in 1963 [21], when study-
ing the average system behavior over many spatial realizations. However, the un-
derlying point process theory originates from the same year as Erlang publishes his
paper, in the pioneering work [22], where the basic shot-noise process statistics have
been delivered. Additional historical facts on geometric probability date back to
as far as 18th century, and the mentioning of stochastic geometry may be found in
[23] or [24], whereas one may refer to [25] for the comprehensive introduction into
the stochastic geometry.

Therefore, both revived and novel spatial methods have been widely investigated
in their application to ad-hoc and cellular networks, femtocells, cognitive radio, etc.
They have thus provided important insights into characterizing the link budget
(including interference, pathloss, and fading), as well as covered the connectivity
and outage probability, capacity and other fundamental limits of wireless networks.
However, with the current trend for network densification, 5G cellular networks
may become substantially underutilized [26] except for highly congested areas dur-
ing specific times of the day (commuting hours, public events, etc.). Hence, the
performance of the network is increasingly dependent on the user loading, in addi-
tion to their geographical locations. As a result, it becomes evident that capturing
the network dynamics together with its spatial features develops into a pressing
demand.

Inspired by the above, the thesis proposes a flexible and simple approach to
handling network spatiality with the use of stochastic geometry, while explicitly
investigating network dynamics by queuing theoretic methods.
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1.3 SCOPE OF THE THESIS

This thesis concentrates on assessing the cooperative and multi-radio concepts in
the emerging heterogeneous networking architectures for stochastic user loads and
locations, and by considering various degrees of cellular assistance. Along these
lines, both (i) real-time data sessions with fixed bitrate and (ii) elastic traffic with
files of random size are taken into account with the emphasis on the uplink perfor-
mance in terms of the blocking probabilities2, the average numbers of users or the
average transmission times, and the energy consumption.

As a result, we deliver a unified space-time methodology for characterizing the
operation of a heterogeneous network that is capable of cooperative transmission
across multiple RATs. The proposed methodology is broad enough to accommodate
various offloading scenarios, radio selection algorithms, user performance character-
istics, and advanced wireless technologies.

Summarizing, this thesis targets various aspects of cooperative and multi-radio
communications in the context of first-order analysis of next-generation wireless
networks. The ultimate goal of this research is to extend the past, disjoint evalu-
ation methodologies with respect to the requirements of emerging 5G systems. In
order to achieve the objectives of this study, we extensively rely on advanced ana-
lytical techniques and confirm their applicability with supportive simulations. By
that, we address the following challenges:

1. General methodology for network performance evaluation: We formulate a
novel methodology that employs spatial processes and explicitly captures network
dynamics providing distinct classification of emerging wireless systems.

2. Example performance characterization for several types of heterogeneous net-
works: We model an environment, where the conventional, multi-radio, and cooper-
ative networks employ admission control, power control, and scheduling of ongoing
user sessions as well as take advantage of interference coordination.

The output of this work provides useful insights into the integrated methods of
heterogeneous networking analysis, while the accompanying analytical framework
may serve as a useful reference point for ongoing 5G discussions in both academia
and industry (e.g., in the 3GPP community), as well as offer a range of novel 5G-
centric problem formulations.

1.4 THESIS OUTLINE AND MAIN RESULTS

This thesis consists of an introductory part comprising seven chapters and of eight
main publications referred to as [P1]-[P8]. Additionally, the scope of this work is
closely related to several other publications by the author, which are referred to in
the bibliographical section of this manuscript.

2That is, when a user session is not admitted by the network.
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In Chapter 1, we start with the core motivation behind our research and then
continue with the scope of this work by highlighting the key problems addressed in
the thesis.

In Chapter 2, we emphasize the importance of multi-radio and cooperative com-
munications and provide the reader with the related background.

In Chapter 3, we classify the types of cooperative and multi-radio heterogeneous
networks, as well as outline our generic system model assumptions.

In Chapter 4, we conduct analytical performance evaluation of some characteris-
tic types of emerging heterogeneous networks for different structures of traffic arrival
processes.

Chapter 5 offers supplementary system-level simulation results confirming the
validity of the adopted analytical assumptions.

Chapter 6 concludes the introductory part.
Finally, Chapter 7 summarizes the publications constituting the second part of

this thesis and highlights the author’s contribution to them.
In summary, the main contribution of this thesis is a novel space-time mathe-

matical model for traffic arrivals in a heterogeneous network, which includes (i) an
integrated methodology for assisted network selection capturing the spatial random-
ness of cooperative and multi-radio systems together with dynamic uplink traffic;
(ii) an example of in-depth analytical characterization of dynamic interactions be-
tween co-existing heterogeneous network tiers.





Chapter 2
Cooperative and Multi-Radio
Networks

2.1 GENERAL BACKGROUND

Today, existing RATs are seeing high diversity in the data rates and suffering from
excessive time delays, or sometimes even service outage due to poor coverage and
harsh interference conditions. Cellular coverage also remains unsatisfactory in in-
door environments despite aggressive spectrum reuse and very sophisticated tech-
niques for interference coordination [27], [28]. To make matters worse, unprece-
dented numbers of diverse machine-type devices [29] connect to the network forming
what is known as the Internet of Things (IoT) and thus reshape the global networks.
All these imbalances with respect to the aforementioned 5G requirements accentu-
ate the need to explore novel, more efficient technologies [30].

One solution to mitigate the increasing disproportion between the desired user
QoS and the available wireless resources may be found in deploying the higher den-
sity of small cells in current cellular architecture (see e.g., [31], [32], [33], and [34]).
This improves network capacity by increasing the frequency reuse per unit area and
the average data rate per transmission (i.e., smaller cells yield shorter radio links
and thus improve data rates). Moreover, as cell sizes shrink, the footprints of cel-
lular, local, and personal area networks are increasingly overlapping, which creates
an opportunity to simultaneously utilize multiple RATs for improved capacity and
connectivity [35], [36].

Further, in the presence of continuously growing mobile traffic demand (for de-
tailed numbers, see the report in [37]), another solution may be seen in offloading
some user sessions onto direct device-to-device (D2D) radio links, which are gener-
ally shorter and lower-to-the-ground than small cell connections [38]. With D2D,
neighboring wireless devices can communicate without the use of network infras-
tructure, enabling a dramatic improvement in spectral reuse [39]. In addition, the
proximity of user devices promises higher data rates, lower transfer delays, and

7
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reduced power consumption [40]. The potential applications of D2D in cellular net-
works are numerous [41] and include local voice service (offloading calls between
proximate users), multimedia content sharing, gaming, group multicast, context-
aware applications, and public safety.

LTE Pico 
base station

Co-located LTE-WiFi
base station

Outdoor

Outdoor

WiFi
access point

Indoor

Indoor

LTE Femto
base stationDirect D2D

connection

M2M/MTC
connection

Outdoor

Indoor

Figure 2.1 Envisioned 5G heterogeneous network.

Consequently, the incentive to efficiently coordinate between the alternative
RATs is growing stronger [42]. To this end, the distributed unlicensed-band network
(e.g., Wireless Local Area Network, WLAN) may take advantage of the centralized
control function residing in the cellular network to effectively perform dynamic
multi-RAT network association. However, very limited research attention has been
dedicated to the assisted joint use of multiple networks, whereas much effort has
been invested into optimizing the performance of individual radio technologies.

In summary, it is currently expected that the majority of near-term capacity
gains will come from advanced architectures and protocols that would leverage the
unlicensed spectrum and take advantage of the intricate interactions between the
device and the network, as well as between the devices themselves, across the con-
verged heterogeneous deployments (see Figure 2.1). To this end, intelligent coupling
between multiple RATs may leverage several dimensions of diversity, where both
short- and long-range technologies may need to work collaboratively to realize the
desired improvements in capacity and service experience.
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2.2 5G TECHNOLOGY TRENDS: HETEROGENEOUS NETWORKS

A transformation of mobile user experience requires revolutionary changes in both
network infrastructure and device architecture, where the user equipment (UE) is
jointly optimized with the surrounding network context. Consequently, tighter in-
terworking between various RATs has been receiving more momentum over the past
few years [43]. While previously cellular and WLAN technologies were developing
largely independently, today WiFi is becoming an integral part of an operator’s
cellular network. As a result, it becomes crucial to aggregate different radio tech-
nologies as part of a common converged radio network, in a manner transparent to
the end user, and develop techniques that can efficiently utilize the radio resources
available across different spectral bands potentially using various RATs [26], [44].

In light of the above, heterogeneous networks (HetNets) represent advanced net-
working architectures (see Figure 2.1) enabling capacity and coverage improvements
towards future 5G systems [45], [46], [47]. These architectures comprise hierarchical
deployments of wide-area macro cells for basic connectivity and coverage augmented
with (densely deployed [48], [49], [50], [51], [52], [53]) small cells of various footprints
and by different RATs (femto and pico cells [54], [55], [56], WiFi access points [57],
relay nodes [38], integrated WiFi-LTE small cells [P8], etc.) to boost capacity [58].
In particular, unlicensed-band technologies are increasingly managed as part of an
operator’s cellular network to unlock advanced levels of interworking between cel-
lular and WLAN RATs. This is on the one hand due to the fact that contemporary
consumer devices massively support WiFi together with other RATs. On the other
hand, mobile network operators increasingly rely on WLAN-based offloading to re-
lieve congestion on their cellular networks [59] and hence desire more control of how
WLAN is utilized and managed.

Not surprisingly, recent literature has been very rich in addressing the impor-
tant aspects of load balancing and access network selection for multi-RAT Het-
Nets [60], [61], [62], [63], [64], [65]. The existing publications range from considering
simpler user-centric network selection strategies (known as vertical handover [57])
to full multi-tier and multi-radio cooperation [66], [67], e.g., where WiFi becomes
a “virtual carrier” anchored on the cellular network. However, the focus has been
mostly on centrally-managed systems with full control at the base station or totally
distributed solutions, but not so much on network-assisted schemes. Most recently,
the concept of LTE-unlicensed has attracted interest of industry and academia alike
with the goal of allowing LTE systems to utilize bandwidth-rich unlicensed spec-
trum around 5 GHz band to augment their capacity [68]. Another emerging industry
trend considered in latest publications is multi-radio small cells with co-located cel-
lular and WLAN interfaces able to reduce deployment costs and leverage common
infrastructure across heterogeneous cells [69], [70], [71].

Reacting to this recent interest, 3GPP is becoming increasingly active in devel-
oping new interworking solutions between their cellular technologies, such as UMTS
or LTE, and WiFi (IEEE 802.11 [72]) technology. However, given that co-located
cellular/WLAN deployments are presently not common, current standardization
efforts focus more on user-centric interworking architectures, while only assuming
limited degrees of cooperation/assistance across the HetNet [73], [74]. The field
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of investigation spans across (i) schemes for trusted access to 3GPP services with
WLAN devices, (ii) support for Access Network Discovery and Selection functions,
and (iii) seamless mobility between cellular and WLAN technologies.

More recently, several new study/work items have been open targeting the in-
terworking solutions that involve cooperation within the Radio Access Network
(RAN) [75] by contrast to prior schemes that have loosely defined functions within
the 3GPP core network (such as security and inter-RAT mobility) [76]. This shift is
dictated by the need to support improved QoS on WLAN networks as prescribed by
a consortium of network operators with their tighter requirements for carrier-grade
WiFi. The WLAN community has also responded with their new initiatives on
Hot Spot 2.0, as well as an emerging “High Efficiency WLAN” effort by the IEEE
802.11 work group. Therefore, we expect the trend for tighter integration of cel-
lular and WLAN technologies to continue by potentially encompassing other radio
technologies beyond current WiFi (e.g., mmWave-based small cells) and additional
use cases beyond spectrum aggregation.

However, introducing an increasing number of serving stations to bridge the
capacity gap incurs extra complexity due to more cumbersome interference man-
agement [77], [78], higher rental fees, and increased infrastructure maintenance
costs [79]. Even when additional spectrum is allocated, these new frequencies are
likely to remain fragmented and could require diverse transmission technologies.
We, therefore, expect that the majority of near-term gains will be made available
by efficient architectures and protocols leveraging the unlicensed spectrum. For ex-
ample, mobile users with direct D2D communication capability may take advantage
of their unlicensed-band radios and cooperate with other proximate users to locally
improve access in a cost-efficient way [80].

2.3 5G TECHNOLOGY TRENDS: DIRECT COMMUNICATIONS

Currently, a major portion of the expected mobile traffic growth comes from peer-to-
peer (P2P) services that involve clients in close proximity [81]. Hence, we envision
that whenever possible, neighboring client devices will use their direct connectiv-
ity capabilities, instead of their cellular links. Consequently, D2D connections are
believed to become an effective solution that would unlock substantial gains in ca-
pacity [82] and relieve congestion [83] in future 5G networks. For mobile network
operators, D2D connectivity is becoming vital to enable traffic offloading from the
core network [80] as well as realize efficient support of social networking through
localization.

Over the last decade, much research effort has been invested into the charac-
terization of D2D connections as part of LTE cellular technology [84] by 3GPP in
licensed bands, where a license grants a network operator the right to use spectrum
exclusively. Driven by a wealth of potential practical applications, the concept of
D2D communication as an underlay to a cellular network has been developed by the
seminal work in [85] and numerous subsequent papers. As in cognitive radio, D2D
underlay is operating on the same resources as the cellular network and D2D users
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control their transmit power to suppress the resultant interference to the cellular
users [86].

With the increasing number of cellular users, network-assisted D2D communi-
cation is becoming an essential next step to achieve enhanced resource utilization
as the traditional methods to improve the use of licensed spectrum approach their
theoretical limits [87]. Consequently, there has already been some coverage in litera-
ture on direct user connectivity with different levels of network involvement, ranging
from the minimal degrees of assistance (such as in Aura-net/FlashLinQ) [88] to the
fully controlled solutions (such as in cellular underlay) [85]. The latter is definitely
more challenging and generally requires interference control to enable simultaneous
direct connections [89].

For the underlay to work, the network should employ proper admission and power
control on D2D transmitters as well as allocate radio resource to them. As a result,
D2D links may (i) reuse resources reserved for cellular use, (ii) use free resources
not allocated for cellular use, or (iii) relay traffic through the infrastructure net-
work avoiding direct transmissions. The choice between these alternatives is known
as transmission mode selection [90] and has attracted many researchers focusing on
various optimization targets, from signal to interference plus noise ratio (SINR) and
throughput to energy efficiency, data delay, fairness, and outage probability. The
general difference between existing works is in the considered numbers of commu-
nicating entities of each type (base stations, cellular and D2D users), emphasis on
uplink (UL) or downlink (DL) connection and the resulting interference, orthogo-
nal vs. non-orthogonal resource sharing, degree of available network assistance, and
network/D2D duplexing mode.

Given its growing importance, the licensed-bands D2D is becoming an attrac-
tive research area, where many fundamental questions still remain open including
the information-theoretic capacity of the D2D underlay. However, the correspond-
ing standardization efforts are developing slowly, such that the respective products,
which are employing the licensed-band D2D underlay, may not be on the market
until a long time from now.

Alternatively, unlicensed bands can be used freely, which gives opportunity to
leverage D2D benefits almost immediately. Whereas there already exists a plethora
of unlicensed spectrum protocols to technically enable direct connectivity, there is
no centralized control of radio resources to manage QoS on D2D links [91]. Aug-
menting the current technology, we envision that devices be continually associated
with the cellular network and use this connectivity to help manage their D2D con-
nections in unlicensed bands. Therefore, as has been the case for HetNets, in the
near-term we expect that the majority of gains will come from advanced architec-
tures and protocols that would leverage the unlicensed spectrum.

In other words, in conventional WLANs, the access point (AP) has no measures
to control the resources used by ad hoc user connections, which contend for the same
channel. This is where the LTE network can be of much help. If clients are con-
tinuously connected to the LTE network, it knows which cell(s) they are associated
with, which tracking area(s) they are in, and their locations within a few meters (if
location services are enabled). Therefore, the network can quickly and without sig-
nificant overhead determine if/when clients are potentially within D2D range and
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inform them accordingly. Additionally, network assistance can help with mode se-
lection (LTE/WiFi), power control, and selecting transmission format (modulation
and coding rates, MIMO transmission mode, etc.).

2.4 FOCUS AND CONTRIBUTIONS

In what follows, the focus is set on integration between multiple RATs within the en-
visioned 5G-grade HetNet architecture. As our case study, we consider convergence
of WLAN- and D2D-based connections with operator-controlled cellular deploy-
ment, assuming that they belong to an operator deployed and managed multi-RAT
HetNet.

We emphasize that interworking between different RATs has already been con-
sidered in the past, but largely from the perspective of inter-network (vertical)
hand-off [57]. In addition, various specific concepts have been discussed to this
end [92], [93], [94], including UMA/GAN (Unlicensed Mobile Access network later
renamed to Generic Access Network), WWRF (Wireless World Research Forum)
multi-radio considerations, WLAN integration with 3G systems, etc. Regarding
the latter, cellular standards community, represented by the 3GPP, has also been
involved in developing specifications that address cellular/WLAN interworking for
a number of years. Several new study and work items have recently emerged to
develop specifications towards tighter integration of WLAN with cellular networks.

However, we make a step ahead with respect to the current 3GPP and other
efforts and consider intelligent assistance from the cellular network in the RAT se-
lection process, when a new coordinating entity in the cellular RAN is made to
receive relevant information from multi-radio devices (e.g., their position, QoS re-
quirements, how much interference/load they sense on the nearby WLAN networks,
etc.) and then advises the users on the attractive connectivity options.

For consistency with current network deployments, we concentrate on distributed
small cell overlay with standalone WiFi access points as well as pico cell base stations
[95], assuming that there is no direct interface between the cellular and WLAN ra-
dio networks. However, the presented methodology may also characterize co-located
cellular/WLAN deployments as well as more advanced technologies and scenarios
to become appealing in the context of 5G networks [96], [P8]. More specifically, we
focus on uplink performance as it has not been fully addressed in existing literature
due to more challenging interference-related aspects.

To further advance the state-of-the-art research primarily focusing so far on static
(full-buffer) steady-state formulations, we target flow-level performance and con-
sider stochastic traffic loads. In particular, new data flows representing, e.g., real-
time data sessions with the minimum target bitrate are arriving randomly and leave
the system after the service has been received. Consequently, the number of active
flows varies with time, which is often referred to as the flow-level dynamics. Analyz-
ing dynamic setups is important to gain better understanding of real-world systems,
but it also incurs extra complexity. Therefore, dynamic systems had received much
less research attention than their static alternatives, that is, with a fixed set of
backlogged users.
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In what follows, we outline a general methodology for modeling the operation of a
converged multi-radio network that is capable of offloading user sessions onto small-
cell and D2D connections across both licensed and unlicensed spectrum. The pro-
posed methodology is broad enough to accommodate various offloading scenarios,
radio selection algorithms, user performance characteristics, and advanced wireless
technologies (e.g., WiFi and LTE).





Chapter 3
Comprehensive Methodology for
Space-Time Network Analysis

3.1 CAPABILITIES OF THE PROPOSED MATHEMATICAL APPROACH

3.1.1 Capturing System Dynamics

Modern wireless networks are constantly evolving to enable better support for het-
erogeneous multimedia applications [97]. Since the integration of diverse services
within a single radio platform is expected to result in higher operator profits and at
the same time reduce network management expenses, intensive research efforts have
been invested into the design principles of such networks [98]. However, as wireless
resources are limited and shared by clients, service integration may become chal-
lenging [99], especially in HetNets [100], [101]. A key element in these systems is
the packet scheduler, which typically helps ensure that the individual QoS require-
ments of wireless clients are satisfied. Such schedulers may be made opportunistic,
i.e., primarily serving clients, which experience favorable channel conditions. Sev-
eral attempts to investigate efficient opportunistic behavior while meeting diverse
QoS demands of wireless clients have been made in [102], [103], [104], and [105].

More advanced QoS-constrained opportunistic frameworks for wireless cellu-
lar networks focus on flow-level performance [106] and consider stochastic traffic
loads [107]. In particular, new data flows representing either real-time sessions or
file transfer requests are arriving randomly and leave the system after the service
has been received. Consequently, the number of active flows varies with time, which
is referred to as the flow-level dynamics [108]. Analyzing dynamic setups is impor-
tant to gain better understanding of real-world systems, but it also incurs extra
complexity. Therefore, dynamic systems receive much less research attention than
their static alternatives e.g., with a fixed set of backlogged clients.

Every data flow in a dynamic network may generally represent a stream of packets
corresponding to a new file transfer, web-page browsing, or real-time voice/video

15
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session [109]. Originally, flow-level frameworks were helpful investigating flexible
bandwidth allocation mechanisms in the context of wired systems. Extending their
applicability to wireless networks, it was concluded that the throughput experienced
by a dynamic user population can substantially differ from that received by a fixed
number of users [110]. Consequently, studying dynamic wireless systems is becom-
ing increasingly important and we concentrate on characterizing HetNet dynamics
in what follows.

3.1.2 Capturing Topological Randomness

As it has already been mentioned above, another crucial aspect of HetNets is in that
relative locations of the network users highly impact the resulting system perfor-
mance [111]. Indeed, given that users are not regularly spaced, there may be a high
degree of spatial randomness, which needs to be considered explicitly. Coupling such
topological randomness with system dynamics requires a fundamental difference in
characterizing user signal power and interference. Fortunately, the field of stochas-
tic geometry provides us with a rich set of powerful results and analytical tools that
can capture the network-wide performance of a random user deployment [20].

The use of stochastic geometry (that is, statistical modeling of spatial relation-
ships) has become increasingly popular over the last decades to analyze network
performance averaged over multiple spatial realizations. As part of a more recent
surge, it has also been useful in assessing many important aspects of current cellular
technology, from conventional macro cell deployments to hyper-dense heterogeneous
and small cell networks [112], [113]. The application of stochastic geometry typi-
cally features a particular spatial point process to statistically capture, e.g., user
locations yielding insights on the impacts of user density, transmit power, path loss,
and interference.

On the other hand, the application of the queuing theory makes it possible to
model user sessions arriving at random and leaving the system after being served.
A session is a real-time data flow from one user to another; in this work, sessions
are initiated according to a Poisson point process (PPP). This and other spatial
processes have been used extensively to investigate the coexistence of cellular and
mobile ad-hoc networks [101], study device discovery aspects of FlashLinQ [114],
assess the performance of multi-tier heterogeneous cellular systems [115], cognitive
femtocells [46], and even capture the distributions of transmit power and SINR in
D2D networks [116]. However, in most cases, the use of stochastic geometry does
not directly enable system dynamics.

As the overall performance of a converged HetNet depends considerably on the
geographical locations of user devices, studying dynamic wireless systems jointly
with their spatial features is becoming increasingly important. Therefore, the main
target of this thesis is the development of the unified space-time evaluation method-
ology and the associated comprehensive system models that may be used for the
performance assessment of the emerging 5G communication technologies.
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3.2 PRELIMINARY DESCRIPTION

Here, we collect the well-known basic facts in order to advance the understanding
of further discussions, as well as provide some examples, which are currently used
in network modeling.

3.2.1 Point Processes

To capture the spatial diversity in the network under investigation, we exploit the
powerful and well-studied tools of point process theory, which describes the stochas-
tic processes in multidimensional space. The most important baseline example here
is the PPP in two- or three-dimensional space, a particular case of which (in one-
dimensional space) is the conventional Poisson process.

Let us assume that N(A) is a finite random number of isolated points within the
compact set A ⊂ Rn, where n is the space dimension. The definition of the PPP
comprises the following:

• for non-intersecting sets A1 and A2, the numbers of isolated points N(A1)
and N(A2) are independent random variables (RVs),

• the distribution Pr{N(A) = k}, k ≥ 0 of RV N(A) depends only on the area
or volume S(A) of A,

• if the area/volume S(A) of A tends to zero, then Pr{N(A) > 1} = o(S(A)),
where o(S(A)) is infinitesimal with respect to S(A).

As a consequence of these conditions, the number of points for the PPP is dis-
tributed according to a Poisson process with the parameter µ(A) = λS(A), where
λ is the density of PPP, and the expected number of points µ(A) is a measure of
A. The PPP is thus a fundamental process, and for the subsequent network analy-
sis it represents the easiest option in terms of calculation. It is thus often taken as
the first modeling choice – mostly due to the fact that the realizations of the PPP
within any bounded and closed region follow a uniform distribution.

Given the uniform nature of points within an area of interest, the PPP may be
applied wherever the positions of network entities (transmitters and receivers) may
be assumed ”purely” random. Similarly, there also exists a Binomial Point Process
with a difference in that it offers a fixed number of nodes within the given region.
However, in the real networks the positions of the communicating entities might
have a more complex structure and include a certain level of dependence in node
locations. For example, 3GPP specifications suggest that the base stations cannot
be deployed closer to each other than a particular distance threshold, which may
be modeled according to a Hard-Core Point Process, where the minimum distance
between the points is set.

Other highlights from the practical point of view are Matern and Thomas Cluster
Processes, where the points are grouped around the independent cluster centers ac-
cording to some distribution (uniform and Gaussian, correspondingly), which might
be very useful in modeling clustered user deployments around WiFi access points
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(APs). Finally, one example of a fairly tractable point process is Ginibre Process
that models a so-called determinant repulsion between nodes. A variety of other
area-interaction processes and simulation approaches may be found in [117] or more
specific literature on stochastic geometry and point processes (see [118], [119], [120],
[121], and the references therein). A detailed description of spatial point processes
applied exclusively to the area of wireless communications may be found in [20] and
[111].

3.2.2 Signal Propagation and Path Loss Model

The received signal quality significantly depends on the distance between the trans-
mitter and its respective receiver, which in terms of network modeling directly
follows from the corresponding point process. However, the distance is not the only
factor determining the resulting signal quality. In order to simplify the modeling
and omit the details of wave propagation, a range of ”classical” solutions predict-
ing the average signal strength has emerged over the years. Following the goals of
this thesis, that is, to provide a first-order time-averaged performance evaluation,
we only concentrate on considering the large-scale propagation models, by omit-
ting the fading-related details in what follows. To pursue this topic further, the
interested reader is advised to consult with [122].

The simplest propagation model is used in the line-of-sight (LOS) channels un-
der ideal conditions and is given by the Friis free-space equation for the received
power level prx(d):

prx(d) = ptxGtxGrx
1

L
= ptxGtxGrx

(
λ

4πd

)2

, (3.1)

where d is the distance, ptx is the transmit power, Gtx/Grx is the transmit-
ter/receiver gain, L is the path loss on the linear scale, and λ is the wavelength.

The last part of the above constitutes the free-space path loss model L =
(
λ

4πd

)−2
.

However, ideal LOS conditions are seldom the case in evaluating the more ad-
vanced cellular networks. As an example (more complex, but still classical), let us
consider a widely-used Hata model for urban areas, which is applicable in the range
from 150 MHz to 1500 MHz [122]. The equation for the path loss on the decibel
scale is given as follows:

LdB = 69.55 + 26.16 lg fc− 13.82 lg htx−α(hrx) + (44.9− 6.55 lg htx) lg d, (3.2)

where fc is the carrier frequency (in MHz), htx/hrx is the transmitter/receiver an-
tenna height, and α(hrx) is a correction factor:

α(hrx) = (1.1 lg fc − 0.7)hrx − (1.56 lg fc − 0.8), small/medium city,
α(hrx) = 8.29(lg 1.54hrx)2 − 1.1, large city, fc < 300 MHz,
α(hrx) = 3.2(lg 11.75hrx)2 − 4.97, large city, fc ≥ 300 MHz.

(3.3)

Given a large number of related models, and depending on the considered RAT,
any other methodology may be used, including the standardized urban models from
3GPP documentation. We note here that in the MHz band, such models have been
well-investigated in the past and are built on extensive field measurements.
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3.2.3 Data Transfer Rate

The use of an appropriate modulation and coding scheme allows for mitigating chan-
nel errors through adding some redundancy, therefore lowering the transmission
rate. The connection between the channel conditions and the achievable channel
capacity may thus be given by the Shannon’s formula [123]:

c = w log2

(
1 +

p

N

)
, (3.4)

where p is the received signal power based on the path loss between the transmitter
and the receiver, e.g., (3.1) or similar, while w is the bandwidth and N is the noise
power, which in turn may include both noise and interference N = N0 + I, where
interference I is a sum of signals from the interfering transmitters.

3.3 GENERAL DESCRIPTION OF PROPOSED METHODOLOGY

We deliver our methodology in the form of a simple construction set, i.e., a collec-
tion of building blocks, which may be arbitrarily combined to construct the required
system model and produce the corresponding solution. Below, we provide a brief
description of how the proposed construction set works.

The main structure of our methodology, as well as its intermediate and related
outputs are given in Figure 3.1. In particular, we differentiate between the space
unit (SU), which corresponds to the user and infrastructure deployment (left), and
the time unit (TU) related to the user arrivals, service, and departures (right). Both
units consist of several sequential building blocks (e.g., distribution of the infras-
tructure), where for each block we have several alternative options to select from
(e.g., PPP). After choosing exactly one option for each block in our classification,
the outcomes of the SU (such as the distributions of distances, SINR, and the re-
source required for service) could be transferred to the TU in a form of transition
probabilities for the core Markov process.

The general structure of the underlying Markov process is generated based on
the corresponding selection in the TU. Combining the output distributions from the
SU with the structure of the process in the TU, we arrive at the queuing theoretic
problem formulation with known transition probabilities. Depending on the com-
plexity of both components: (i) the expressions for transition probabilities and (ii)
the structure of the Markov process, for the resulting problem formulation we may
obtain a numerical or a closed-form solution. We emphasize here that depending
on the selection of blocks, both components might lead to nontrivial formulations.

In what follows, we illustrate how the proposed construction set may be applied
to analyzing the integrated HetNets, which may imply various density of infras-
tructure as well as different mechanisms for interaction between the communicating
entities. In the absence of prior information about their locations, we exemplify
below based on the PPP, as a simplest solution for both user and infrastructure
deployment.
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Space component characterization

Spatial distribution of infrastructure
- Poisson point process (PPP) 
- Poisson cluster process 
- Hard core point process 
- Determinantal (e.g. Ginibre)

 - ...

Spatial distribution of users
- Poisson point process (PPP) 
- Poisson cluster process 
- Hard core point process 
- Determinantal (e.g. Ginibre)

 - ...

Area of interest
- Circle 
- Voronoi cell 
- Hexagon 
- Triangle

 - ...

Space component outcomes
 - Distribution of the distance between Tx and Rx
 - Distribution of the instantaneous rates 
 - Distribution of the actual transmission rates
 - Distribution of occupied shares of the resource
 - Distribution of the total occupied resource

Time component characterization

User arrival process
- Poisson process 
- Markov-modulated PP 
- D-BMAP arrival process

 - ... 

Type (QoS class)

Session-based traffic 
- Exponential service time 
- Erlang-k service time 
- Hyperexponential

 - ...

File-based traffic 
- Exponential file size 
- Erlang-k file size 
- Heavy-tailed distributions

 - ...

Schedule/admission/power control

Interference model

Channel model

Time component outcomes
- Queueing system A/S/c/K/N/D

 - Stationary distribution of ongoing users
 - Averaged by space and time system characteristics

 - Round robin (RR) 
- Weighted RR

 - ...

 - Check resource 
- Check bitrate

 - ...

 - Fixed power 
- Power control

 - ...

Transition probabilities
for corresponding Markov chain

Averaged by space and time system characteristics
 - Average number of users
 - Average delay/latency
 - Average power/energy consumption
 - Access success probabilities
 - ....

Figure 3.1 Construction set structure and outputs of the proposed methodology.

3.4 PROPOSED TAXONOMY FOR HETNETS

Here, we consider a characteristic HetNet example as well as demonstrate the
methodology discussed above in its application to the generic HetNets. We be-
gin with describing our proposed classification for the distinct types of HetNet
tiers, embracing their distinguishing features from the analytical perspective.

To this end, we consider one tagged macrocell with the base station (BS) located
at the center, which collects all the relevant control information and feedback as
well as performs network assistance by making decisions and employing admission
control mechanisms. Moreover, for every tier in such a HetNet, we differentiate
between three main components (see axes in Figure 3.2) that primarily determine
the corresponding mathematical constructs, namely:

• interference (insignificant, so that it may be neglected, vs. significant, which
is to be accounted for explicitly),

• power control/resource allocation (varies from the fixed power allocation, i.e.,
absence of power control, to round-robin resource allocation, while an optimal
power allocation may be located somewhere between these extremes [108]),
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• resource utilization (dedicated resources per a communication link vs. shared
channel access by several links).

Interference

Resource

Significant

Round robin

Shared

Macro tier, LTE

D2D, WiFi-Direct

D2D, LTE-Direct

WiFi, DCF

Pico tier, LTE

Type I

Maximum power
Insignificant

UWB

wires

WiFi, PCF
Exclusive

Power control/
resource allocation

Type IType III

Type II

Figure 3.2 Proposed taxonomy of various HetNet types.

In Figure 3.2, we illustrate the three-dimensional space formed by the above
three criteria and specify various HetNet types as examples in thus introduced
space. Particularly, we split the provided points (examples) into three groups and
further consider these groups separately as individual models:

• Type I (conditionally termed ’macro’): resource is shared between several
links, impact of interference may be neglected due to the technology-related
features (such as coordination, frequency reuse planning, tight beamforming,
as well as other more recent and advanced techniques).

• Type II (conditionally termed ’D2D’): resource is exclusive for one link, but
interference has to be taken into account.

• Type III (conditionally termed ’small cell’): resource is shared between sev-
eral links, and interference between the neighboring cells has to be taken into
account.

In more detail, we have enumerated the above types according to their increasing
complexity (see Figure 3.3). The simplest, type I (’macro’), is equivalent to one cell
under a macro BS coverage (one entity), where interference from other entities can
be treated as the background noise due to sophisticated interference control pro-
cedures, which constrain the resource at the BS to be shared across all the users
in service. A more complex scenario is named type II (’D2D’), when the resource
is exclusive for a transmitter-receiver pair and thus cannot be shared with others,
but the interference from other connections (entities) is considerable and has to be
taken into account. Finally, the most complicated option, type III (’small cell’), im-
plies significant interference between the communicating entities, as well as sharing
the common resource by several transmitters.
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Shared resource
No interference

Type I Type II

Type III

Exclusive resource
Interference

Shared resource
Interference

Figure 3.3 Illustration of our classification for various HetNet types.

Due to a wide variety of alternative power control mechanisms, we combine all
the power allocation schemes into one group vertically (see Figure 3.2), and here-
inafter refer to the system types as specified above. As an example, the point
WiFi, DCF is based on IEEE 802.11 WLAN standard and corresponds to signif-
icant interference between the WiFi ”cells”, while the resource of a single AP is
shared between several users with fixed transmit power. Another example is the
point WiFi, LTE-Direct, where interference between the neighboring links may be
high enough, but up to the entire uplink resource per link may be allocated to one
transmitter exclusively.

3.5 GENERAL ASSUMPTIONS OF THE MODEL

In what follows, we introduce our integrated system model comprising a number
of cellular macro- and small cells, WLAN, as well as D2D connections, which we
refer to as tiers. Below, we summarize the core assumptions made throughout this
thesis, by reflecting the elements of our construction set (see Figure 3.1).

We study one (typical) cell of a macro network with the radius of R, featuring
a macro BS in its center. We assume that T radio networks (RATs) are available
within the macrocell coverage. Every network is an instance of one of the above
three categories (see, for example, Figure 3.4), that is, belongs to the type I, II,
or III. All the networks are serving uplink data from their wireless users concur-
rently. For the sake of exposition, the considered traffic is characteristic of real-time
sessions with the target bitrate of r0.

Based on the recent specifications in [75], we further assume non-overlapping fre-
quency bands for all tiers. Therefore, user transmissions on one tier do not interfere
with those on the others. However, all links of types II and III (for instance, cellu-
lar small cells, WLAN, or D2D) share the frequency bands of their respective tiers
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and thus interfere, whereas the tier type I is interference-free. Our general system
model is illustrated in Figure 3.4 representing the area of the macrocell as type I
tier, small cell and WLAN coverage as type III tier, and D2D system as type II tier
together with all the corresponding users and infrastructure nodes.
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Figure 3.4 System model of a four-tier HetNet within a macro cell of radius R: the cuts
demonstrate different network tiers.

We assume that the transmitting users (or, sessions) with some uplink traffic
demand arrive into the joint network according to one-dimensional Poisson process
of rate λ in time. We thus associate a newly arrived user with its session and its
location, which is assumed fixed throughout the lifetime of the session. For the
sake of tractability, we also assume that the duration of a user session is distributed
exponentially with the mean of µ−1, which may correspond to, e.g., a real-time
voice/video call. To explicitly model system spatiality, we further make the follow-
ing principal assumption.

Assumption 1. Spatial distribution of users. The locations of arriving users
follow a Poisson point process on the two-dimensional plane. The area of our in-
terest is limited by the considered macro cell (e.g., circle of radius R), resulting in
uniform distribution of users within the circle.

Additionally, we adopt the following assumption about the locations of users and
network infrastructure.

Assumption 2. Spatial distribution of infrastructure. Type II. For every
session i of the tier type II, we differentiate between the transmitting user Ti, which
is the data originator, and the receiving user Ri, which is the respective destination.
We further assume that for the transmitting user Ti, the corresponding receiving
user Ri arrives simultaneously with Ti, such that the location of Ri is distributed
uniformly within the same circle of radius R.
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Type III. The locations of receivers (e.g., APs/BSs) on the tier type III are inde-
pendent and spatially distributed according to a PPP on the two-dimensional plane
with the rates of Li, where i is the sequential number of the corresponding tier
(1 ≤ i <∞).

We note that in practice the constraint of deploying users within a particular
area may be dictated by, e.g., maximum transmit power restrictions and/or chan-
nel degradation factors. Moreover, uniform distribution for the tier type II is only
assumed here as a baseline example. Generally, we may consider any other distri-
bution f(x, y) of user locations, which would somewhat complicate further analysis
technically, but without significant impact on the derivation methodology.

Assumption 3. Signal propagation. For all tiers, we assume for tractability
that for the ongoing session the wireless channel gain γk,j between the user k and
the receiver j depends on the distance dk,j separating them, and therefore it may be
expressed as:

γk,j =
G

dk,j
κ , (3.5)

where dk,j is the distance between the receiver and the transmitting user, κ is the
propagation exponent, and G is the propagation constant determined by a particular
RAT and accounting for the corresponding channel model.

The above expression may directly follow from the selected propagation model
(e.g., offered by 3GPP or as it has been described in Section 3.2.2). We continue
by specifying the power-rate mapping.

Assumption 4. Power-rate mapping. We assume that the data rate is con-
tinuous and that the power/rate mapping is given by the Shannon’s formula [123],
[124]. This consideration has been shown in [P2] to remain very accurate for cur-
rent wireless networks. Hence, the transmit power pi of a user i and its data rate
ri (in [nats/s]) are coupled by the generalized Shannon’s capacity theorem:

ri = min{B log (1 +Api) , rlim}, (3.6)

where pi is the output power of the radio-frequency power amplifier, whereas A and
B are the scaling coefficients that depend on the particular RAT used. For the sake
of an example, these are given as A =

ηγi,i
N0+I , B = w, where γi,i is the path gain be-

tween the user and the receiver for session i, η is the fading margin, w is the channel
bandwidth, N0 is the noise level, and I is the interference level at the receiver.

The constant rlim defines the constraint of the data rate growth based on the
fixed set of modulation and coding schemes. Hence, further increase in the SNR
does not yield the unbounded data rate increase after a certain value of d0 =[

G·p
(N0+I)(erlim/w−1)

]1/κ

.

While random network topology is the primary focus of our model, we also in-
vestigate flow-level system dynamics. This involves an appropriate queuing model,
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where the session arrives and leaves the system after being served (the service time
is determined by the random session length). When a new session arrives or a
served session leaves the system, the centralized assisting entity in the cellular net-
work performs admission and power control on all tiers by deciding whether the
session would be admitted to a particular tier or not (admission control) and/or
advising on the user’s transmit power (power control).

For each of the three considered tier types, the corresponding data link is gov-
erned by applying certain transmission policies. A particular policy generally de-
cides on user admission, scheduling, and transmit power. Whenever admitted, a
transmitting user occupies a fraction of the time-frame resource and sets its power
as commanded by the BS to achieve the data rate given by (3.6). The BS makes a
new decision on scheduling allocations and transmission power for all active users
at every new arrival or when an existing session is served and leaves the system.

Assumption 5. Power control and scheduling. The considered transmission
policies are the following.

1. The Maximum Rate (MR) policy assumes no explicit power control and sets a
fixed transmit power, which is the allowable maximum for a particular RAT. Then,
admission control checks if the target bitrate can be achieved with this maximum
power. Given the relationship in (3.6), the instantaneous data rate for the session
k is determined by the maximum transmit power pmax as:

rmax
k = min{w log (1 + γk,kpmax) , rlim}. (3.7)

2. The Round Robin (RR) or Full Utilization (FU) policy ensures that the sys-
tem resource is always shared between the users equally. Each admitted session out
of n running sessions is allocated an equal portion of the total time resource, i.e.,
r0
rk

= 1
n . Then, the users adjust their transmit power to match their required target

bitrate as long as it does not exceed the maximum allowed power level. Clearly, in
case of n active sessions, rk = r0n, ∀k = 1, ..., n.

In summary, both MR and RR policies offer a flexible choice between more system
capacity (resulting also in higher power consumption) and better network resource
utilization (enabling some transmit power savings). By considering them below, we
ensure that the HetNet may offer a good balance between network- and user-side
performance.

Assumption 6. Admission control.
Types I and III. Since a real-time session requires the bitrate of r0, the system

admits a newly-arrived session if there still remains sufficient resource to serve it.
In other words, each ongoing session k has to occupy exactly r0/rk-fraction of the
system time (where the overhead is accounted for later), while for all the active
sessions it holds the following:

∑

all sessions

(
r0

rmax
k

)
≤ δ, (3.8)

where δ is the resource available for sharing at a particular receiver (AP or BS)
(e.g., excluding resources allocated for fading compensation), rk ≤ rmaxk is the in-
stantaneous data rate depending on the distance between the user and the receiver,
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and rmaxk is the highest achievable data rate at the maximum power level. Admis-
sion control of tier type III also incorporates interference control, which is detailed
below (see Assumption 8).

Type II. Since the resource is exclusive for the link of this tier, admission control
focuses on ensuring that the rate r0 is achievable for the newly-arrived link, so that
the interference is controlled as well.

Figure 3.5 illustrates an example of flow-level dynamics and admission control
mechanism for the tier type I. For the tier types II and III, admission control pro-
cedure has to determine whether the current interference exceeds a particular given
threshold or not.
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Figure 3.5 An example of flow-level dynamics.

Assumption 7. Interference margin. We also assume that the noise plus in-
terference has the form of N0 + I = KN0, where the value of K is a scaling factor
fixed across the network in question. It has the meaning of interference margin per
receiver.

The latter corresponds to the well-known concept of interference-over-thermal,
which has been widely used in analyzing the uplink cellular networks for the open-
loop power control, see [125] or WiFi CSMA/CA mechanisms. We may thus aggre-
gate the individual interferences created by the proximate users of a particular tier
into a cumulative background noise level, which in the practice of network planning
is taken into account as a particular interference margin.

Assumption 8. Interference assessment. Type II. We assume that the noise
plus interference power does not exceed some network-wide threshold, i.e., N0 + I ≤
KN0. Further, it is assumed that the tier type I with n − 1 active users admits a
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new session n if for the set {Tk}nk=1 of transmitters the following conditions hold at
each receiver Rj, j = 1, ..., n, j 6= k:

pkγk,k
KN0

≥ er0/(wδi,k) − 1 and pkγk,j ≤ N0, ∀k, j 6= k, (3.9)

where r0 is the target bitrate, δi,k is the actually available resource for a given link
of the tier of sequential number i (after removing the overheads and signaling), and
the value of K is fixed for this tier.

These conditions imply that the required bitrate r0 can be achieved on each link k
(see the left part of (3.9)) and that the interference on Rj produced by Tk does not
exceed the given threshold N0 (see the right part of (3.9)).

Type III. Further, it is imposed that a tier with n− 1 active users admits a new
session n if for the set {Uk}nk=1 of all users the following condition holds at each
receiver:

pkγk,k
KN0

≥ er0/w − 1 and pkγk,j ≤ N0, ∀j, j 6= k, (3.10)

where γk,j is the path gain between the user k and its receiver j and pk is the cor-
responding allocated power.

By that, the admission control function ensures that the required minimum bi-
trate can be achieved by a user, and that the interference at the receiver Rk pro-
duced by the transmitter Tj does not exceed a given threshold depending on the
technology-related features. We also note here that our interference and rate esti-
mation has predictive character and assists the network in making a guided decision
on whether a user should be admitted or not.

3.6 CONSIDERED HETNET OPERATION

In the remainder of this work, we begin by studying the individual performance
of tiers belonging to the above main types. Further, for the entire converged Het-
Net, we explore a particular sequential mechanism of user admission and network
selection as a characteristic example of future 5G operation. It is illustrated in Fig-
ure 3.6, where we assume the ”cascade” service for any new session arriving into
the system. Correspondingly, the network selection assistance entity attempts to
offload the newly arrived session onto the initial network according a particular
RAT priority. In case when a RAT operates over a shared resource, the network se-
lection entity attempts to offload the user session to the nearest receiver (i.e., the
closest AP/BS) by performing the corresponding admission control, which is man-
aged centrally. We note that the nearest receiver may also be located outside of the
circle R.

If the session is accepted on the current tier, it is served there without interrup-
tion until when it successfully leaves the system. Otherwise, if this session cannot
be admitted onto the attempted tier, the network admission function attempts the
following RAT in the order of decreasing priority. Hence, either the session is ac-
cepted onto one of the T − 1 tiers and served there, or the macro network T (which
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is always attempted the last) tries to serve this session. Eventually, if the session
cannot be admitted onto the macro network either, it is considered permanently
blocked and leaves the system unserved without any impact on the new arrivals.
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Figure 3.6 Considered operation of a multi-RAT HetNet.

Whenever admitted, a transmitting user exploits a fraction of the system time
resource and sets its power either fixed or as commanded by the power control
function to achieve its required data rate. The system makes a new decision on
scheduling and transmit power allocation for all the active users at every new ar-
rival or when an existing session is served and leaves the system. For each tier, we

introduce the corresponding blocking probability P
(i)
block and acceptance probability

P
(i)
a = 1 − P (i)

block, where i is the index corresponding to one of the tiers, respec-
tively. Moreover, we remind that the session arrival rate on the initial tier is λ (see
Assumption 1).

Assumption 9. Decoupling assumption. To preserve analytical tractability of
our mathematical model, we assume that all types of network tiers serve their users
independently, which results in a random thinning of the arrival process with the
corresponding acceptance probabilities. Therefore, due to the Poisson property of
the thinned flow, the arrivals on the following tier (those not accepted by the current

tier) follow a Poisson process of density λi+1 = λi

(
1− P (i)

a

)
, where P

(i)
a is the tier

i accept probability.

The above assumption is a natural methodological move to decompose the system
into a set of tractable and well-defined components, which may be easily replaced
and/or interchanged.
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Abstracting away the locations of users for analytical tractability, we further as-
sume that the arrivals on the subsequent tiers are also placed uniformly within the
circle of radius R (following from the initial PPP). This latter consideration does
not actually hold in reality. Instead, there is some pattern in which users are taken
for service by the tiers. However, our simulation results (as reported below) re-
veal that the assumption of uniformity is surprisingly accurate. This makes the
analysis of our system under the aforementioned assumptions to be an adequate
approximation for the practical HetNet operation [P5].

Consequently, denoting the macro network (the ”last resort”, final tier) accept

probability as P
(T )
a , we may easily establish the overall system blocking probability

Pblock as follows:

Pblock=1−
T∑

i=1

i−1∏

j=1

(1− P (j)
a )P (i)

a . (3.11)





Chapter 4
Mathematical Characterization of
Emerging HetNets

4.1 ANALYSIS OF RANDOM DYNAMIC HETNETS

Below, we provide a summary of our rigorous analytical efforts to evaluate the
important HetNet-related performance metrics. Hereinafter, we consider different
tiers separately. We underline here that our system analysis is built on the decou-
pling principle as per Assumption 9. This technique is used widely and allows for
evaluating even very complex systems by regarding them as an integrated set of
tractable components. The following mathematical models and associated reason-
ing are divided into two large parts: for the tier types I and II, where the system is
determined by the state of the links, and for the tier type III, where the additional
information on the receivers is needed.

Here, we outline our general stochastic model for the tiers based on the assump-
tions introduced previously. Assume that the arrivals on all tiers follow a Poisson
process with the rates λ1 =λ (to the overall system and thus the initial tier), λi, and
λT (at the final tier). We observe the tier types I and II at the particular moments
t of session (user) arrivals/departures. Since the arrivals follow a Poisson process
and the service (session length) is distributed exponentially, our system behavior
may be represented by a stochastic Markov process S(t), where the future process
evolution is determined by the set of the ongoing sessions that are currently served
on a given tier.

4.1.1 Analyzing Tier Types I and II

For the tier types I and II, the state of the process S(t) is determined by the charac-
teristics of the ongoing sessions within the target circle. For convenience, we denote
these abstract characteristics as ω and note that they depend on the distance be-
tween the transmitter and the receiver. Therefore, the system state is represented

31
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by the vector (ω1, ..., ωn), where n is the number of sessions in service (see Figure 4.1
for details).

...

...

... ...

...

...

...

0

nμ

n

n

N=1 N=n

...

ω1 ...

ω1

ω1

ω1
ωn

...ω1
ωn

...ω1
ωn

...

...ω1
ωn+1

...

N=n+1

μ

μ

μ

μ

μ

...ω1
ωn+1

...ω1
ωn+1

Figure 4.1 State diagram for the tier types I and II.

Let a tier have n running sessions in the state s. We denote the rejection proba-
bility at the state s for the newly-arrived session as Qn+1|s. Then, transitions from
the state s = (ω1, ..., ωn) to the state (ω1, ..., ωn, ωn+1) and backwards have the
rates of λT

(
1−Qn+1|s

)
and (n+ 1)µ, respectively.

4.1.2 Analyzing Tier Type III

The tier of type III having the sequential number i comprises several shared re-
ceivers (APs/BSs), which are all distributed on the plane with the densities of Li.
Moreover, such tier is interference-limited, and, hence, the respective stochastic
processes show state-dependent properties, which are different from those discussed
previously. The state of the stochastic Markov process S(t) may be represented by
the set of sessions with respect to the corresponding receivers. Similarly, we adopt
the notation ω for the session characterization. Then, the state s of the tier type
III is represented by:

(ω1, ..., ωn1
;ωn1+1, ..., ωn1+n2

; ...;ωsn+1, ..., ωsn+nNi
),

where sn =
∑Ni−1
i=1 ni, as well as n1, n2, and nNi are the numbers of users asso-

ciated with the first, second, and last AP/BS, respectively. The random variable
Ni corresponds to the number of receivers in a certain area and follows the Poisson
distribution. The state diagram of the considered system is illustrated in Figure 4.2.

We consider state s, where the tier type III is serving n ongoing sessions with a
random number of Ni receivers. Similarly, we denote the rejection probability for
the newly-arrived session as Qn+1|s. Then, the transitions from the state s to the

state of n + 1 active sessions have the rate of λi
(
1−Qn+1|s

)
. The backward rate

equals (n + 1)µ, since the service does not depend on the state, but rather on the
number of sessions served simultaneously.
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Figure 4.2 State diagram for the tier type III.

4.2 CALCULATING THE STEADY-STATE DISTRIBUTION

Due to the uncountable number of states in the considered system, it may be com-
plicated to deliver the steady-state distribution straightforwardly. However, the
corresponding Markov process may be simplified by employing the state aggrega-
tion technique.

Hence, for the tier types I and II, we aggregate the states {(ω1, ..., ωn)}ω∈Ω by
n (where Ω is the space of all possible vectors (ω1, ..., ωn), n ∈ N). For the more
complex tier type III, we aggregate all possible states of the system (which con-
tain n ongoing sessions) into the state n. The described aggregation process is
demonstrated in Figure 4.2.

Assumption 10. State aggregation.
1. For the tier types I and II, we aggregate all the states containing n sessions

into the unifying state n, regardless of the actual locations of users.
2. For the more complex tier type III, we combine all possible states of the sys-

tem (which contain n ongoing sessions) into the state n, regardless of the locations
of the current users or their connections to a certain receiver.

3. In order to keep our system memoryless, we adopt a simplification, where
the sessions at the state n, while keeping all of their other properties, do not pre-
serve their locations from state to state. For the sake of analytical tractability, these
locations are assumed to be generated anew at every particular state n.

We note, however, that the system still keeps track of the previously admitted
sessions owing to the probabilities Qn+1 to reject the session arrived at the state n
conditioning on the fact that the current n-th session satisfies the admission con-
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trol criteria. As the result of the state aggregation, we arrive at the birth-death
processes for all the tiers with the rates of λi (1−Qn+1) and (n+ 1)µ. We further
denote the arrival rate λi into the system simply as λ and formulate the following
proposition.

Proposition 1. The steady-state distribution {πi}∞i=0 for the considered process
S(t) with the transitions λ (1−Qn+1) and (n+ 1)µ can be closely approximated by:

πn = π0
λn

µn

∏n
i=1 (1−Qn)

n!
, (4.1)

where

π0 =

( ∞∑

i=0

λn

µn

∏n
i=1 (1−Qn)

n!

)−1

,

and Qn+1 is the reject probability on the transition from the state n to the state
n+ 1.

Proof. Proof is straightforward and is thus omitted here.

Based on the steady-state distribution and assuming that it exists, our approach
empowers us to estimate a wide class of stationary characteristics in the consid-
ered system, such as the expected number of ongoing sessions, the probability of
session’s permanent blocking, and even its energy consumption. To this end, the
average number of active sessions and the system blocking probability are defined
as:

E[N ] =

∞∑

n=0

nπn, Pblock =

∞∑

n=0

Qn+1πn. (4.2)

The average number of users may also be used as the system (area) capacity
prediction for sufficiently high arrival rates.

In our analysis, we disregard the history of the system processes from the per-
spective of the ongoing sessions. We thus replace the initial ”stateful” systems with
the memoryless processes, for which we examine the arbitrary set of respective ran-
dom variables at each point t. If the reject probabilities Qn+1 are known for all
tiers, we easily obtain the steady-state distribution by using (4.1). Therefore, in
what follows we concentrate on calculating the values of Qn+1. In order to take
into account the memory property that we have thus omitted, we will refer to the
corresponding conditional probabilities further on.

The described methodology is rather general and can be applied to a wide range
of RATs, provided that they are sufficiently simplified to meet our taxonomy. The
distinctive features determining the selected model behavior are defined by the par-
ticular values of parameters as well as by the calculation of the probabilities Qn+1,
which, in turn, depend on the power allocation policy:

(1−Qn+1) = Pr{new session n+ 1 is admitted | n sessions are already active},
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(4.3)

where by the above conditional probability we account for the previous system his-
tory, while the new system evolution process (n-based) is memoryless. In other
words, we estimate the probability to share the resource between n+ 1 random ses-
sions if n other stochastically different sessions have already been admitted at the
previous state.

We restrict our further exploration to considering one system of each type by
selecting a particular power policy (as it is noted in Figure 4.3). Alternative power
allocation policies may be accounted for similarly.

4.3 CHARACTERIZING TRANSITIONS FOR IMPORTANT HETNET

EXAMPLES

We continue by evaluating the probabilities Qn+1 and the transition rates
λi (1−Qn+1) necessary for deriving the steady-state distribution. The rest of the
text is organized in the following order. First, we illustrate our approach on the
simpler tier types I and II, selecting as examples the RR (round robin) and the MP
(maximum power) policies, correspondingly, which may characterize LTE macro cell
and D2D over WiFi-Direct. Then, we continue with a more complex (due to the
presence of interference) tier type III, represented by the system with the maximum
power policy and corresponding to, e.g., WLAN operation.

4.3.1 Tier Type I Transitions

We begin with tier type I under the RR transmission policy and detail the calcu-
lations, which are necessary for characterizing this policy conditioning on (i) the
absence of interference and (ii) equal sharing of the resource among all the links.
Hence, the transitions from the state n to the state n+ 1 are defined by:

λm (1−Qn+1)=λm

(
Pr

{
r0

rmax
i

≤ δm
n+ 1

,∀i=1,n+1| r0

rmax
i

≤ δm
n
,∀i=1,n

})
. (4.4)

Further, we formulate the following Theorem.
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Theorem 1. For the tier type I under the RR policy, the accept probabilities
Pr{accepted | arrived} = 1−Qn+1 can be obtained by:

1−Qn+1 =Pr
{
rmax
n+1≥ r0(n+1)

δm

}(
Pr{rmax

i ≥ r0
δm

(n+1)}
Pr{rmax

i ≥ r0nδm }

)n
, (4.5)

where

Pr{r≥ x}=1−Pr{r< x}=1−Fr(x), (4.6)

and

Fr(x)= 1− 1
R2

[
Gpmax

N0

]2/κ(
ex/w − 1

)−2/κ
, rR ≤ x < rlim; Fr(x)= 1, x ≥ rlim.

Proof. Proof is based on calculating distribution of the functional transform, similar
discussion may be found in [126]

The latter completes the expression (4.4) and delivers the steady-state distribu-
tion (4.1), as well as other relevant stationary metrics (4.2).

4.3.2 Tier Type II Transitions

We continue by considering the tier type II, for which the resource access is exclu-
sive, the admission control regulates interference, while the transmit power is set
to its maximum. First, let n sessions already exist in the system. Hence, for all
i = 1, ..., n we require the following target data rate condition to hold:

r≤w log

(
1+

pmaxγi,i
KN0

)
⇔pmaxγi,i≥KN0

(
e
r
w −1

)
. (4.7)

Therefore, the following Theorem can be formulated.

Theorem 2. For the tier type II under the MP policy, if admission control is per-
formed according to (3.9) and, in particular, accounting for (4.7), then the reject
probabilities Qn+1 can be closely approximated by:

Qn+1 = 1−Pr{accepted | arrived} =

[
Fγ

(
N0

pmax

)]2n−1 [
1− Fγ

(
θ0

pmax

)]
, (4.8)

where θ0 = KN0

(
e
r
w − 1

)
and the cumulative distribution function (CDF) for the

SNR per a power unit γ is given as:

Fγ(γ) = 1+
G

4
k γ−

4
k

8R4
−G

2
k γ−

2
k

R2
ln 2, if

G

(2R2)
k
2

≤ γ ≤ γmax, γmax =
KN0

pmax

(
e
rmax
w − 1

)

Fγ(γ) = 1− 1

R2

(
G

4
k γ−

4
k

8R2
+G

2
k γ−

2
k ln

4R2γ
2
k

G2k

)
, if

G

(2R)
k
≤ γ ≤ G

(2R2)
k
2

.

Proof. Proof may be found in [126]
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4.3.3 Tier Type III Transitions

We proceed with characterizing the tier type III and detailing the calculations,
which are necessary for capturing the MP transmission policy. The transitions
from the state n to the state n+ 1 are thus defined by:

λw(1−Qn+1)=λwPr
{
A

(n+1)
j , j=1, ..., n+1|A(n)

j , j=1, ...,n
}
, (4.9)

where event A
(n)
j is given as:

A
(n)
j =

{
r0

rmax
j

≤ δw − σn and γj,kpmax ≤ N0,∀k 6= j

}
,

where δw is a share of the available resource at the receiver (without the signaling
overhead and collisions) and σn is a part of the resource given to other sessions at
the same receiver in the current state. We further denote r0/(δw − σn) as r̃0,n.

The calculation of σn is based on the following assumption and the subsequent
Theorem.

Assumption 11. AP link abstraction. Here, to abstract away the session-
receiver details at the state n, we assume that upon its arrival into the system, a
session observes the average (typical) number of users at the nearest receiver (see
Theorem 3). This average number depends on the number of ongoing sessions, i.e.,
on the state index n, as well as on the parameter r̃0,n.

Theorem 3. For the tier type III, the average number of sessions per receiver
(AP/BS) n0 tends to n

Li(πR2) = n
E[Ni]

for large areas, where E[Ni] is the expected

number of receivers of tier i within the circle R.

Proof. Proof may be found in [P5]

Note that Theorem 3 above is similar in its meaning to the research findings ob-
tained previously in [127]. Then, basing on these results, we may reformulate the
following as stated in Assumption 11. A newly-arrived session observes the system,
where on average every receiver already serves n0 = n

Li(πR2) sessions.

Theorem 4. For the tier type III under the MP policy, the corresponding transi-
tion rates may be calculated as Pr{accepted | arrived} = 1 − Qn+1 accounting for
the following:

1−Qn+1 =

(
1−e−πLwd

2
r,n+1

)n+1

(
1−e−πLwd2r,n

)n
(
Lwπd

2
thre
−Lwπd2thr+e−Lwπd

2
thr

)
, (4.10)

where dthr=
[
Gpmax

N0

]
1
κ and the constant value dr,n is defined as

(
pmaxG
KN0

)
1
κ

(
e
r̃0,n
w − 1

)− 1
κ

.

Proof. Proof may be found in [P5]
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In summary, by introducing dr,n we emphasize that it depends on r̃0,n =
r0/(δw − σn). This, in turn, is a function of the number of sessions on the tier
type III via the occupied resource σn representing the average share of the resource
exploited at the state n and is given by:

σn=E

[
r0

rmax
i

∣∣∣∣
r0

rmax
i

≤ δw
]

n

E[Ni]
=E[y|y ≤ δi]

n

E[Ni]
, (4.11)

and E[y|y ≤ δi] may be found as:

E[y|y ≤ δi]=
δi∫
y0

yfy(y|y ≤ δi)dy= 2πLw
C3

δi∫
y0

yd(y)d′(y)e
−πLw

(
pmaxG
KN0

)2
κ

(
e
r0
wy−1

)−2
κ

dy+

+2πLi
C3

y0

y0∫
0

d(y)d′(y)e
−πLw

(
pmaxG
KN0

) 2
κ

(
e
r0
wy−1

)−2
κ

dy,

(4.12)

where C3 = Pr{y ≤ δi} = Fy(δi) and y0 is assumed to be less than δi.
The expression (4.10) finally enables us to derive the key performance metrics of

interest, such as the expected number of ongoing sessions and the overall blocking
probability (4.2).

4.4 DISCUSSION ON POSSIBLE EXTENSIONS

The above system has been constructed entirely for the example of ”session-based”
traffic, but the case of ”file-based” transmission deserves separate attention. Let us
consider the so-called elastic traffic transmission, where upon arrival users generate
files of exponential size with the average of θ, but the actual bitrate is not con-
strained and depends on the location and the current number of users that equally
share the available resource. We note that the exponential size is considered here
for the sake of preserving the memoryless property. However, other alternatives
are possible as well (e.g., r-Erlang or hyperexponential process), but they would
complicate the core Markov process diagram.

The approach described above should thus be modified by taking into account
the varying service rate. Therefore, if the admission control keeps the same forward
transitions and the backward transitions are modified by the average service rate,
the stationary distribution π = {πn}∞n=0 of the aggregated process S(t) could be
obtained as:

πn = π0

n∏

j=1

λi(1−Qj−1)

bj
, (4.13)

where λi is the arrival rate to the considered tier i, 1−Qj−1 is the transition proba-
bility from the state j−1 to the state j upon the user arrival, bj is the transition rate
from the state j to the state j−1, and π0 may be calculated from the normalization
condition.

This statement enables the calculation of all the system metrics of interest, aver-
aged across time and space (such as the average number of users, their transmission
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times, etc.). However, it would also require an additional derivation of the transi-
tion rates bj , which are determined by the distribution of the actual service rate,
i.e., the file size and the instantaneous data rate given by the Shannon’s formula.
For example, if j active users have the same instantaneous data rate of r, as well
as share equally the available resource and hence receive the actual data rate of r

j ,

then the transition (j)→ (j−1) is bj = j 1
θj/r = r

θ . In case of varying instantaneous

rates, ri 6= const, the transitions of the aggregated process are defined by:

bj = j 1
E[service time] = j 1

E[ s
r/j ]

= 1

θE[ 1
r ]
, (4.14)

where s is the random file size, θ is the average file size, and r is the instantaneous
data rate, which may be calculated through the functional transform r(d) and the
probability density function (PDF) fd(d) of the distances between the transmitter
and the receiver, as discussed above.

The corresponding calculations for the example two-tier HetNet (WiFi + LTE
RATs) as well as for the single-tier co-located WiFi/LTE system may be found in
[P8]. These expressions comprehensively describe the steady-state distribution and,
hence, define the average number of active users, their average time spent in service,
and the average effective data rate per a served user:

E[N ] =

∞∑

i=0

nπn, E[T ] =
E[N ]

λ(1− Pbl)
, E[r] = r

∞∑
n=0

1
nπn

1− π0
, (4.15)

where Pbl is the probability of not being accepted to the tier and r is the spatially-
averaged instantaneous rate:

r =
rlim∫
rR

rfd(d(r))|d′r(r)|dr + rlimFd(dlim). (4.16)

We note that here we do not assume any particular distribution fd(d) – it may be
taken as needed by the specified scenario.





Chapter 5
Quantifying Performance with
System-Level Evaluations

5.1 FEATURES OF OUR 5G SYSTEM-LEVEL SIMULATOR

To complement our analytical study, we exploit an advanced system-level simula-
tor (SLS) based on the up-to-date 3GPP LTE evaluation methodology (3GPP LTE
Release-12 FDD) and current IEEE 802.11 specifications (IEEE 802.11-2012 sup-
porting WiFi-Direct features). Presently, neither free nor commercially-available
simulation platforms are readily applicable for evaluating 5G-grade multi-RAT sys-
tems, as they are missing the necessary features, as well as lacking scalability to
adequately capture the dependencies between the studied variables. By contrast,
our SLS is a flexible tool designed to support diverse deployment strategies, traffic
models, channel characteristics, and wireless protocols.

To this end, we construct a multi-RAT simulation model representative of an
urban deployment, where WiFi and D2D small ”cells” are overlaid on top of the
multi-tier 3GPP LTE network. Outdoor deployments are considered and are based
on the recommendations in [128] combining that with varying pico BS and WLAN
AP densities (as per [129]). Hence, our scenario represents a harmonized 3GPP vi-
sion of a characteristic HetNet deployment. A part of it concentrates on an area
of interest, in which co-located cellular and D2D/WLAN networks cover a lim-
ited region with many users requiring service (e.g., shopping mall, business center,
etc.). For the D2D/WLAN systems, the simulation is largely based on IEEE 802.11
medium access control procedure with carrier sensing. We also assume that all APs
and their respective users run the same version of the technology as WiFi-Direct
clients, namely, IEEE 802.11-2012. For calibration purposes, we employ reliable
results from publications on ad-hoc WLAN deployments.

For the LTE system, the simulation captures the following practical features
(as opposed to the above analytical methodology): data frame structure, band-
width requests, and scheduling by the BS. Here, our example scenario comprises 19
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hexagonal cells supporting 3GPP LTE Release-10 technology, and a wrap-around
technique is used to improve precision of the simulation at the edges of the deploy-
ment area. The system works over two 10-MHz bands for FDD operation (for both
UL and DL), shared by all cells with 3 sectors in each, resulting in a 1x3x1 reuse
pattern. For more details on the configuration of the reference LTE network, the
interested reader is directed to the relevant standardization documents (e.g., 3GPP
TR 36.814-900 and ITU-R M.2135-1). For performance verification purposes, we
also implemented a calibration scenario from 3GPP TR 36.814-900, Table A-2.1,
and ran the corresponding tests. Our simulation results fall well within the required
limits for both cell-center and cell-edge spectral efficiency targets.

5.2 DISCUSSING REPRESENTATIVE NUMERICAL RESULTS

5.2.1 Three-Tier and Two-Tier HetNet Study

We begin our evaluations with Figure 5.1, where we detail the blocking probabilities
(or the proportion of service requests that cannot be served by the network) for the
integrated HetNet as well as for the three tiers individually: macrocell, picocell, and
WLAN tier. Our observation is that with two additional overlay tiers, the HetNet
performance improves significantly over what can be achieved in the macro-only
networks (cellular baseline). Even though this conclusion is generally not unex-
pected, we note that our results here are fundamentally different from most past
work, as they consider user dynamics based on stochastic traffic loads. We continue
with a more detailed analysis.
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Figure 5.1 Blocking probabilities in three-tier (left) and two-tier (right) HetNets.

By employing our advanced SLS tool, we are able to demonstrate in detail how
the components of the blocking probability Pblock evolve with increasing load on
the network (see Figure 5.2, left). The session is blocked if it cannot fit into the
schedule at the time of arrival, and for the D2D network we differentiate between
session rejections due to (i) prohibitive interference from the existing transmissions
and (ii) excessive link length to support the required bitrate (given that the inter-
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ference constraint has been satisfied). It is important to analyze the structure of the
blocking processes for both systems. For the D2D system, at low loads the block-
ing is primarily caused by excessive link length, whereas as the load increases the
probability of blocking due to high interference becomes dominant.
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Figure 5.2 Session blocking/reject probabilities, simulations (left); and system capacity, sim-
ulation vs. analysis (right).

In addition, Figure 5.2, right contrasts the simulation results against our above
analysis for LTE, WiFi, and integrated LTE+D2D network to confirm good con-
vergence between the analytical approximations and the SLS-based results. Here,
continuous lines indicate analytical data, whereas symbols correspond to the sim-
ulated values. Clearly, the overall trend is the increase in the expected number
of running links, up to the saturation point, which depends on the deployment,
scheduling, and multiplexing methods used.
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Figure 5.3 Link quality for D2D (left) and LTE (right) tiers.

In order to understand more subtle effects associated with the HetNet operation,
let us examine the quality of the links in our system of interest (see Figure 5.3).
When the cellular network is empty, it can afford accepting all links, no matter the
quality. Under such conditions, the link quality for arrivals and accepted links is
similar, and there are almost no discards (see Figure 5.3, left). As the cellular sys-
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tem becomes loaded, however, we see that it takes only shorter links in – as those
have significantly better chances to fit into the schedule (refer to Figure 5.3, right).

5.2.2 Two-Tier HetNet Study of Densification Limits

We further illustrate the operation of an ultra-dense two-tier LTE+WiFi network,
where the network selection is assumed to be managed according to the WiFi-
preferred logic. The parameters of the considered scenario are similar to our above
SLS study and are deemed typical for future ultra-dense small cell deployments in
light of ongoing 3GPP discussions. In particular, when characterizing the system
geometry, we introduce a new measure (termed network’s specific density) and de-
fine it as the number of coverage areas that are encountered within a coverage area
of an ”average” cell. For example, in the conventional cellular network, the Ds = 7
is a typical specific density, which results in the hexagonal grid of cells, and each
cell thus has exactly 6 neighbors. Consequently, we name a particular deployment
ultra-dense, if Ds > 7, as this results in a system that is no longer conventional
cellular, and cannot be represented by a regular grid on a plane.
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Figure 5.4 Average transmission time (left) and number of users per m2 (right).

Let us first investigate how our considered ultra-dense HetNet system reacts to
various user loads. In Figure 5.4, left, circle markers correspond to our simulation
results, which selectively verify the obtained analytical dependencies. As Figure 5.4
generally suggests, the network has a very notable response to overloads. Essen-
tially, the moment we reach the overload intensities, the transmission times grow
exponentially, along with the number of backlogged users. Interestingly enough,
the point where the system hits overload is sometimes inversely proportional to the
deployment density. In essence, providing more access points than necessary may
have a negative effect on network capacity.

To illustrate this important effect better, let us study what happens when each
user has a small cell of its own. With a fixed coverage area of a small BS, the ma-
jority of the resources will become allocated to protect from excessive interference,
thus decreasing the amount of resource actually available to a particular ”tagged”
user. On the other hand, this user’s SINR will be exceptionally high. The practi-
cal limitation, however, is that the UE can only make use of around 25 dB SINR;
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anything above that is essentially useless due to the limitation in the modulation
and coding schemes. Hence, unless the power of a small BS is reduced appropri-
ately, over-densification may have a visible negative impact on the system capacity,
which calls for further research in this area.

In Figure 5.5, we reiterate the discussed effect, but under a different angle. One
can clearly see that for higher user densities, an advanced transmission scheme (uti-
lization of both LTE and WiFi networks simultaneously) with the specific density
of 7 enjoys the best performance (which effectively corresponds to ”almost” regu-
lar lattice layout). On the other hand, when system remains essentially idle, it is
still beneficial to have more small cells. As this makes the UE-BS links shorter, the
effect is the greater attainable data rates at lower loads.
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Figure 5.5 Average data rate per user.

Contrarily to how the more advanced simultaneous transmission scheme oper-
ates, the baseline WiFi-preferred system typically benefits from densification much
less: at some point all of the UEs are forced to use WiFi by their RAT selection pol-
icy. This indicates, in turn, that whenever a choice of multiple alternative RATs is
available, the UE should not be restricted to using either one of those, irrespective
of its position relative to the small BS.





Chapter 6
Conclusions and Future Directions

In this thesis, we provided a unified mathematical methodology allowing for cap-
turing traffic dynamics together with the geometrical randomness of realistic user
deployments for various complex scenarios, as well as delivered a first-order eval-
uation of important HetNet-related metrics. To this end, we proposed a compre-
hensive classification of practical HetNet scenarios embracing the envisioned 5G
network types in a systematic way. Abstracting away less impactful system prop-
erties, we thus focused on the generic HetNet examples of access technology groups
within the proposed classification. Further, we thoroughly described the analytical
methods required to calculate important performance-related parameters. By do-
ing that, we rigorously covered a broad range of attractive HetNet configurations by
providing relatively simple and accurate approximations for the stationary metrics
of interest, and selectively verified these with advanced system-level simulations.

More generally, studying the ultimate capacity of 5G multi-radio HetNets re-
mains an open problem in the field of information theory, and our methodology
has the potential to shed light on it given that it can explicitly capture new inter-
ference situations and hence the achievable data rates. This challenging objective
may require novel advanced analytical tools to interconnect and apply techniques
and methods coming from the area of point processes, probability theory, queuing
theory, and percolation theory, as well as modern engineering insights. Correspond-
ingly, the framework developed in this thesis is not restricted to the network types
considered for the discussion of results, but has flexibility to be extended for other
systems of interest that may emerge in the future. Possible further applications of
the proposed methodology embrace, e.g., novel UL/DL decoupling schemes [130],
[131] and emerging ”HetHetNet” concepts (focusing on the spatially-heterogeneous
traffic in HetNets) [132]. Another interesting possible avenue is the consideration
of mmWave tier within the next-generation HetNets. However, due to the complex
nature of the mmWave signal propagation and much ongoing research on the appro-
priate channel models, respective modeling work might require careful verification
through extensive practical measurements.
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Chapter 7
Summary of Publications

7.1 DESCRIPTION OF PUBLICATIONS

The second part of this thesis includes eight publications referred to as [P1]-[P8].
None of these publications have been used as part of any other thesis. Works [P5],
[P6], [P7], and [P8] are articles published in scientific journals and the rest are con-
ference papers. The major contribution of each of the main publications is clarified
below.

• [P1] O. Galinina, S. Andreev, and Y. Koucheryavy, ”Performance Analysis of
Client Relay Cloud in Wireless Cellular Networks”, in Proc. of the 10th Inter-
national Conference on Wired/Wireless Internet Communications (WWIC),
2012.

Description

In [P1], we build an originator-centric model and study the performance of a
relay cloud with respect to the main performance metrics: throughput, packet
delay, and energy efficiency. We obtain closed-form analytical expressions for
the sought metrics and verify our results via extensive simulations. In par-
ticular, we considered a wireless cellular network that enables the distributed
control over cooperative communication via a client relay cloud to enhance
system performance through the support of cell-edge mobile clients with poor
communication links. The main performance metrics were studied, including
throughput, mean packet delay, and energy efficiency. Accurate closed-form
analytical expressions have been derived and verified by extensive system-level
simulations. The results indicate significant promise of the relay cloud, which
is able to recover the performance of the mobile clients with degraded wireless
links.

This paper is a collaborative work of the author and her supervisor with Dr.
Sergey Andreev from the same research group at Tampere University of Tech-
nology (Finland).
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• [P2] O. Galinina, A. Trushanin, V. Shumilov, R. Maslennikov, Z. Saffer, S.
Andreev, and Y. Koucheryavy, ”Energy-Efficient Operation of a Mobile User
in a Multi-Tier Cellular Network”, in Proc. of the 20th International Con-
ference on Analytical and Stochastic Modelling Techniques and Applications
(ASMTA), 2013.

Description

In [P2], we have considered the problem of energy efficient power control
when the mobile user may communicate on several uplink wireless channels
at the same time. We propose a new power control scheme suitable for a
multi-tier wireless network, which maximizes the energy-efficiency of a mo-
bile device transmitting on several communication channels while at the same
time ensures the required minimum quality of service. As the result, a good
compromise between improving the data rate and extending the battery life-
time is provided. In order to enable energy-efficiency maximization, we for-
mulate an optimization problem basing on the Shannon’s capacity formula.
The optimal transmit power is thus obtained from the direct solution of this
optimization problem under several practical constraints, such as minimum
bitrate and maximum transmit power. In the second part of the paper, we ap-
ply extensive simulations to calibrate the key parameters of our optimization
framework. We have also calibrated our analytical solution with the detailed
link-level LTE-A simulations. The numerical results suggest the benefit of
the proposed analytical solution by comparing it against intuitive (heuristic)
power control strategies.

This paper is a collaborative work of the author and her supervisor with
Alexey Trushanin, Vyacheslav Shumilov, Dr. Roman Maslennikov from
Lobachevsky State University of Nizhny Novgorod (Russia) and Dr. Sergey
Andreev from the same research group at Tampere University of Technology
(Finland), as well as with Dr. Zsolt Saffer from (formerly) Budapest Univer-
sity of Technology and Economics (Hungary).

• [P3] O. Galinina, A. Anisimov, S. Andreev, and Y. Koucheryavy, ”Perfor-
mance Analysis of Uplink Coordinated Multi-Point Reception in Heteroge-
neous LTE Deployment”, in Proc. of the 11th International Conference on
Wired/Wireless Internet Communications (WWIC), 2013.

Description

In [P3], we consider a heterogeneous 3GPP LTE deployment where neigh-
boring low power (pico) nodes may assist the macro-associated user (UE) by
independently receiving its UL data packets and forwarding the successful
outcomes to the serving base station. However, at the cell edges, a macro-
associated user may still suffer from poor performance due to low uplink chan-
nel quality. This is when the neighboring low power nodes can help by in-
dependently trying to receive data packets from the macro user and share
the result with the base station if successful. Such CoMP scheme is known
as selection combining and is believed to considerably improve user cell-edge
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performance. With our evaluation methodology, we combine analysis and sim-
ulations to account for the UE mobility, power control, and dynamic traffic
load and depending on the user proximity to the serving base station. We
confirm that the expected energy efficiency and packet delay gains remain
significant and consistent even for the low number of available LPNs.

This paper is a collaborative work of the author and her supervisor with
Dr. Alexey Anismov from (formerly) Nokia Siemens Networks, MBB LTE
(Russia) and Dr. Sergey Andreev from the same research group at Tampere
University of Technology (Finland).

• [P4] O. Galinina, A. Turlikov, S. Andreev, and Y. Koucheryavy, ”Stabilizing
Multi-Channel Slotted Aloha for Machine-Type Communications,” in Proc.
of the IEEE International Symposium on Information Theory (ISIT), 2013.

Description

In [P4], we consider a wireless cellular system with an unbounded popula-
tion of contending machine-type users. The system provides a number of
non-interfering slotted-time channels which users contend for when sending
their uplink data packets subject to a common channel access probability
advertised by the base station. Whereas we demonstrate that the optimal
control of such probability is not feasible, we also detail a practical adap-
tive procedure that provably maintains a finite number of unserviced users
in the system. With the increasing number of channels, the proposed pro-
cedure quickly converges to the optimal solution. We, therefore, conclude
that our stabilized multi-channel slotted Aloha algorithm is naturally suitable
for future machine-type systems with large user population and our solution
demonstrates near-optimum performance.

This paper is a collaborative work of the author and her supervisor with Prof.
Andrey Turlikov from St. Petersburg State University of Aerospace Instru-
mentation (Russia) and Dr. Sergey Andreev from the same research group at
Tampere University of Technology (Finland).

• [P5] O. Galinina, S. Andreev, M. Gerasimenko, Y. Koucheryavy, N. Himayat,
S. Yeh, and S. Talwar, ”Capturing Spatial Randomness of Heterogeneous Cel-
lular/WLAN Deployments With Dynamic Traffic”, IEEE Journal on Selected
Areas in Communications vol. 32, pp. 1083-1099, 2014.

Description

In [P5], we provide an emerging vision of heterogeneous networks, which ex-
ploits the potential of a diverse range of devices requiring connectivity at
different scales to augment available system capacity and improves the user
connectivity experience. We proposed our novel integrated methodology for
assisted (managed) radio network selection capturing spatial randomness of
converged cellular/WLAN deployments together with dynamic uplink traffic
from their users. To this end, we employ tools coming from stochastic ge-
ometry to characterize performance of macro and pico cellular networks, as
well as WLAN, mindful of user experience and targeting intelligent network
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selection/assignment. We complement our analysis with system-level simu-
lations providing deeper insights into the behavior of future heterogeneous
deployments.

This paper is a collaborative work of the author and her supervisor with Dr.
Sergey Andreev and Mikhail Gerasimenko from the same research group at
Tampere University of Technology (Finland), as well as Dr. Nageen Himayat,
Dr. Shu-ping Yeh, and Dr. Shilpa Talwar from Wireless Communications
Laboratory, Intel Corporation (USA).

• [P6] O. Galinina, S. Andreev, A. Turlikov, and Y. Koucheryavy, ”Optimizing
Energy Efficiency of a Multi-Radio Mobile Device in Heterogeneous Beyond-
4G Networks”, Performance Evaluation, vol. 78, pp. 18-41, 2014.

Description

In [P6], we address energy efficient power control for a wireless deployment
with multiple available radio access technologies. The problem of strict energy
efficiency maximization at a mobile user device has been solved analytically
for an arbitrary number of RATs and under several practical restrictions, such
as minimum target bit-rate and maximum allowed transmit power. Our illus-
trative numerical examples for two and three RATs confirm that the proposed
power control scheme reduces mobile device’s power expenditure, while at the
same time maintaining the required level of user data rate. By contrast to
the previous work, the use of our approach establishes support regions where
two or more RATs work collaboratively to result in more energy efficient de-
vice operation when compared against simpler power control techniques. Our
results suggest that the proposed power control strategy might become an at-
tractive choice for the future integrated beyond-4G wireless systems and thus
contribute to the related research.

This paper is a collaborative work of the author and her supervisor with
Dr. Sergey Andreev from the same research group at Tampere University of
Technology (Finland) and Prof. Andrey Turlikov from St. Petersburg State
University of Aerospace Instrumentation (Russia).

• [P7] S. Andreev, M. Gerasimenko, O. Galinina, Y. Koucheryavy, N. Hi-
mayat, S. Yeh, and S. Talwar, ”Intelligent Access Network Selection in Con-
verged Multi-Radio Heterogeneous Networks”, IEEE Wireless Communica-
tions, vol. 21, pp. 86-96, 2014.

Description

In [P7], we consider heterogeneous multi-radio network deployments, where
each user device may employ multiple radio access technologies to commu-
nicate with network infrastructure. We review major challenges in deliv-
ering uniform connectivity and service experience to converged multi-radio
heterogeneous deployments. We envision that multiple radios and associ-
ated device/infrastructure intelligence for their efficient use will become a
fundamental characteristic of future 5G technologies, where the distributed
unlicensed-band network (e.g., WiFi) may take advantage of the centralized
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control function residing in the cellular network (e.g., 3GPP LTE). Illustrating
several available architectural choices for integrating WiFi and LTE networks,
we specifically focus on interworking within the radio access network and de-
tail feasible options for intelligent access network selection. Both network-
and user-centric approaches are considered, wherein the control rests with
the network or the user. In particular, our system-level simulation results
indicate that load-aware user-centric schemes, which augment SNR measure-
ments with additional information about network loading, could improve the
performance of conventional WiFi-preferred solutions based on minimum SNR
threshold. Comparison with more advanced network-controlled schemes has
also been completed to confirm attractive practical benefits of distributed
user-centric algorithms. Building on extensive system-wide simulation data,
we also propose novel analytical space-time methodology for assisted network
selection capturing user traffic dynamics together with spatial randomness of
multi-radio heterogeneous networks.

This paper is a collaborative work of the author and her supervisor with Dr.
Sergey Andreev and Mikhail Gerasimenko from the same research group at
Tampere University of Technology (Finland), as well as Dr. Nageen Himayat,
Dr. Shu-ping Yeh, and Dr. Shilpa Talwar from Wireless Communications
Laboratory, Intel Corporation (USA).

• [P8] O. Galinina, A. Pyattaev, S. Andreev, M. Dohler, and Y. Koucheryavy,
”5G Multi-RAT LTE-WiFi Ultra-Dense Small Cells: Performance Dynamics,
Architecture, and Trends”, IEEE Journal on Selected Areas in Communica-
tions, vol. 33, pp. 1224-1240, 2015.

In [P8], we address the ongoing densification of small cells integrating both cel-
lular and WiFi technology families, since users in future 5G systems will most
likely be able to use 3GPP, IEEE, and other technologies simultaneously to
maximize their quality of experience. We perform a novel performance analy-
sis specifically taking the system-level dynamics into account and thus giving
a true account on the uplink performance gains of an integrated multi ra-
dio access technology (RAT) solution versus legacy approaches. In terms of
the mathematical framework, we were able to capture the spatial randomness
of the users’ distribution jointly with their uplink data dynamics. For LTE,
we proposed a novel concept of phantom users, which makes interference co-
ordination and scheduling analytically tractable. Consequently, this allowed
us to obtain the stationary distribution and transition rate of the aggregated
service process, as well as the resulting resource slicings in WiFi, LTE, and
joint deployments. We also analyzed the important practical case of mixed
PPP-cluster user distributions. The obtained equations are mostly in closed
form, and thus easy to apply. Also, the mathematical model has then been
verified by means of a 3GPP-compliant simulator, where we contrasted the
baseline scenario to the truly integrated HetNet approach with flow splitting.
The baseline refers to the case where offload to WiFi is always preferred to
LTE service. The performance parameters considered were the average num-
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ber of users per unit area, the average transmission time of the uplink file
transmission, and the rate per user under loaded system conditions.

This paper is a collaborative work of the author and her supervisor with Dr.
Sergey Andreev and Alexander Pyattaev from the same research group at
Tampere University of Technology (Finland), as well as Prof. Mischa Dohler
from Kings College London (UK).

7.2 AUTHOR’S CONTRIBUTION

The research work summarized in this thesis has been carried out in the Department
of Electronics and Communications Engineering, Tampere University of Technol-
ogy, Finland. The author of this thesis is the main contributor to [P1]-[P6], [P8].
The reported research has been done by the author, supervised and guided by her
supervisor Prof. Yevgeni Koucheryavy and by her instructor Dr. Sergey Andreev,
as well as deeply supported by her colleagues from the same research group in Tam-
pere. Numerous discussions with the supervisor, instructor, and co-authors helped
the author shape the ideas presented in this thesis, as well as improve the quality
and the style of her writing. Further, many particular features published in [P1]-
[P8] have been developed in tight collaboration between the author, the research
team, and the international colleagues. Below we detail the author’s contribution
to each one of the referred main publications.

In [P1], the author has been responsible for the system-level simulations as well
as for developing the analytical part. In [P2], the author has formulated the gen-
eral problem, introduced the system model, and derived all the resulting analytical
findings. In [P3], the author has contributed the system model, derived the un-
derlying mathematical expressions for system performance metrics, and developed
system-level simulation to verify the results. In [P4], the author has formulated
the research hypothesis and provided the necessary mathematical proofs as well as
built the numerical solution. In [P5], the author has developed the novel analyt-
ical framework, as well as implemented the system level simulation. In [P6], the
author has extended the system model from [P2] and provided an algorithm-based
analytical solution for the extended model. In [P7], the author has formulated the
analytical space-time methodology and has contributed in outlining the overall vi-
sion of the paper. In [P8], the author has formulated the system model and general
analytical framework, stated and proved the main and underlying mathematical re-
sults, and provided part of numerical results, which is based on analysis/simplified
simulation.
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[124] P. Mogensen, W. Na, I. Z. Kovács, F. Frederiksen, A. Pokhariyal, K. Ped-
ersen, T. Kolding, K. Hugl, and M. Kuusela, “LTE capacity compared to
the Shannon bound,” in Vehicular Technology Conference (VTC2007-Spring),
pp. 1234–1238, IEEE, 2007.

[125] N. Himyat, S. Talwar, A. Rao, and R. Soni, “Interference management for 4G
cellular standards,” IEEE Communications Magazine, pp. 86–94, 2010.

[126] S. Andreev, O. Galinina, A. Pyattaev, K. Johnsson, and Y. Koucheryavy,
“Analyzing assisted offloading of cellular user sessions onto D2D links in unli-
censed bands,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 1, pp. 67–80, 2015.

[127] S. Foss and S. Zuyev, “On a Voronoi Aggregative Process related to a Bivari-
ate Poisson Process,” Advances in Applied Probability, vol. 28, pp. 965–981,
1996.



BIBLIOGRAPHY 65

[128] 3GPP TR 36.814, Further advancements for E-UTRA physical layer aspects,
2010.

[129] 3GPP TR 36.819. Coordinated multi-point operation for LTE physical layer
aspects, September 2013.

[130] K. Smiljkovikj, H. Elshaer, P. Popovski, F. Boccardi, M. Dohler,
L. Gavrilovska, and R. Irmer, “Capacity analysis of decoupled downlink and
uplink access in 5G heterogeneous systems,” arXiv preprint arXiv:1410.7270,
2014.

[131] H. Elshaer, F. Boccardi, M. Dohler, and R. Irmer, “Downlink and uplink de-
coupling: a disruptive architectural design for 5g networks,” in Global Com-
munications Conference (GLOBECOM), pp. 1798–1803, IEEE, 2014.

[132] M. Mirahsan, R. Schoenen, and H. Yanikomeroglu, “HetHetNets: Hetero-
geneous Traffic Distribution in Heterogeneous Wireless Cellular Networks,”
IEEE Journal on Selected Areas in Communications, 2015.





Publications





Publication 1

c© 2012 Springer Science + Business Media. Reprinted, with permission, from

O. Galinina, S. Andreev, and Y. Koucheryavy, ”Performance Analysis of Client
Relay Cloud in Wireless Cellular Networks”, in Proc. of the 10th International
Conference on Wired/Wireless Internet Communications (WWIC), 2012.



Performance Analysis of Client Relay Cloud

in Wireless Cellular Networks

Olga Galinina, Sergey Andreev, and Yevgeni Koucheryavy

Tampere University of Technology (TUT), Finland
{olga.galinina,sergey.andreev}@tut.fi,

yk@cs.tut.fi

Abstract. Cooperative communication is a promising concept to mit-
igate the effect of fading in a wireless channel and is expected to im-
prove performance of next-generation cellular networks in terms of client
throughput and energy efficiency. With recent proliferation of smart
phones and machine-to-machine communication, so-called ’client relay’
cooperative techniques are becoming more important. As such, a mobile
client with poor channel quality may take advantage of other neighboring
clients, who would relay data on its behalf. In the extreme, the aggregate
set of available client relays may form a relay cloud, and members of the
cloud may opportunistically cooperate with the data originator to im-
prove its uplink channel quality. The key idea behind the relay cloud is to
provide flexible and distributed control over cooperative communication
by the wireless clients themselves. By contrast to centralized control,
this will minimize extra protocol signaling involved and ensure simpler
implementation. In this work, we build an originator-centric model and
study the performance of a relay cloud with respect to the main per-
formance metrics: throughput, packet delay, and energy efficiency. We
obtain closed-form analytical expressions for the sought metrics and ver-
ify our results via extensive simulations.

Keywords: client relay cloud, cellular networks, performance analysis,
throughput, energy efficiency.

1 Introduction and Related Work

Various diversity techniques aim at mitigating the negative effects of multipath
channel fading in order to improve the reliability of wireless communication link.
In particular, one of the most promising techniques for next-generation mobile
systems (3GPP LTE-Advanced, IEEE 802.16m) is spatial transmit diversity ex-
ploiting two or more transmit antennas to enhance the link quality [1]. However,
mobile terminals with multiple transmit antennas may be costly due to their
size or hardware limitations. For that reason, a concept of cooperative commu-
nication has been introduced allowing single-antenna mobiles to take advantage
of spatial diversity gain and provide so-called cooperative diversity.

Y. Koucheryavy et al. (Eds.): WWIC 2012, LNCS 7277, pp. 40–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Historically, the core ideas behind cooperative communication were firstly
introduced in the fundamental work [2], where a simplified three-terminal system
model containing a sender, a receiver, and a relay was studied within the context
of mutual information. More thorough capacity analysis of the relay channel
was conducted later in [3]. These pioneering efforts focused on the similar three-
node case and suggested a number of relaying strategies. They also established
achievable regions and upper bounds on the capacity of what we now call the
’classical’ relay channel.

With recent proliferation of smart phones and machine-to-machine commu-
nication, wireless technology is rapidly evolving toward 4G mobile systems. As
such, a renewed surge of interest has come with rapidly expanding literature
on cooperation. For example, [4] addressed some further information-theoretic
aspects of the relay channel bringing new important insights.

More specifically, cooperative diversity was described in [5] as a relatively new
class of spatial diversity techniques that is enabled by relaying and cooperative
communication. In [6], authors proposed an efficient cooperation strategy and
also explored the concept of cooperation together with some practical issues
of its implementation. A good tutorial on cooperative communication may be
found in [7].

Some recent works have also addressed a more complicated usage model with
multiple wireless clients that may be selected as relays. The problem of relay
selection (when data originator may practically have more than one relay to
partner with) has been elaborated upon in [8], where the availability of a cen-
tralized cooperation-aware controller was assumed. Thus, it brings the concept
of cooperation into the scope of wireless cellular networks with a base station
controlling the activity of its clients.

Further, in [9] several efficient protocols for the relay selection were proposed
to recover the multiplexing loss in relay networks, while requiring additional
feedback. Evidently, most recent works study cooperation from the perspective
of centralized control, which increases extra protocol signaling involved and re-
sults in more difficult implementation for the existing systems. By contrast, we
concentrate on a more practical scenario with flexible and distributed control
over cooperative communication by the wireless clients themselves.

In our previous work [10], we tailored the ’classical’ three-node cooperative
model to contemporary wireless networks and analyzed primary QoS parame-
ters together with the most important energy-related metrics. In this paper, we
continue our efforts by considering a system with multiple clients. The data orig-
inator may opportunistically partner with some of those to improve its uplink
channel quality. In the extreme, the aggregate set of available relays may form
a relay cloud. Thus, the goal of our research is to investigate the benefits of the
relay cloud and to develop and assess algorithms that will maximize the impact
of cooperative communication.

The rest of the paper is organized as follows. Section 2 describes the system
model, while giving the main notations and assumptions. In Section 3, we provide
theoretical analysis of the client relay cloud and establish the expressions for the
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main performance metrics. In Section 4, we consider some numerical results
verified by simulation. Finally, Section 5 concludes the paper.

2 System Model

In this section, we model a wireless cellular network consisting of the base station
B and several mobile clients (see Figure 1 for the topology and the Table 1 for
the notations).

Node R

Relay Cloud

PCB(m)

M nodes

Base Station1 Tx attempt

N Tx
attemptsMemory

Node A
(tagged)

PAR
PAR

PAR

PABA

Unlim. queue

Fig. 1. Illustration of the relay cloud system topology

We define the cooperative system as follows. The wireless clients acting as relay
nodes are allowed to eavesdrop on the data packets from the originator. As men-
tioned previously, the aggregate set of available client relays forms a relay cloud.
After successful eavesdropping, the members of the cloud may opportunistically
transmit on behalf of the data originator to improve its uplink performance. The
base station only provides time resources (slots) for such cooperative transmis-
sion, whereas opportunistic control resides at the client side. If cooperation is
not possible, we term the system non-cooperative.

Further on, for the sake of simplicity and without loss of generality we consider
the performance of the tagged node A (the data originator). It is assumed, for
example, that A is a cell-edge mobile user and thus suffers from the low quality
of its uplink channel to the base station. The rest of M neighboring wireless
clients (the relay cloud) may potentially perform cooperation acting as relays.

While the originator transmits its initial data packet, each relay node in the
cloud may eavesdrop on this packet and store it for subsequent retransmission.
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Table 1. Analytical model notations

Notation Parameter description

λA Mean arrival rate of packets to node A
N Maximum number of attempts provided by B for cloud transmissions
M Number of relay nodes in the relay cloud
m Number of relay nodes in the relay group
pAB Probability of successful reception at B when A transmits
pAR Probability of successful reception at R when A transmits
ptx Opportunistic cooperation probability
pCB(m) Probability of successful reception at B when cloud cooperates
τA Mean service time of a packet from the node A
ρA Queue load coefficient
PlossA Loss probability of the packet from A
δA Mean packet delay of the packet from A
ηA Mean throughput of node A
εA Mean energy expenditure of node A
εR Mean energy expenditure of relay group
φ Mean energy efficiency of the system
PTX Power level for the transmitting node
PRX Power level for the eavesdropping node
PI Power level for the idle node

The size of extra memory location at each relay is assumed to equal one for every
relay session, whereas the size of the outgoing originator buffer is unlimited. In
case the originator fails its initial transmission and if eavesdropping is successful,
the relay node R decides probabilistically whether to cooperate or not.

The successful relay nodes which decide to cooperate form a so-called relay
group. We emphasize that the proposed scheme does not require explicit cen-
tralized control by the base station and thus minimizes the necessary signaling.
The base station may be completely unaware of which nodes belong to the relay
group at a particular time instant. Below we detail the system model.

Traffic assumptions. We consider a simple stochastic traffic model to assess
the performance of the system and preserve the analytical tractability. As the
first step of this research, we assume i.i.d. exponentially-distributed inter-arrival
times at the originator (node A). We concentrate on the originator traffic only
and abstract out the analysis of own traffic in the relay cloud, which may be
more complex. Base station also has no outgoing traffic.

Scheduler assumptions. The system time is slotted. We assume that the packet
size equals one and that the transmission of each packet takes exactly one time
slot. Scheduling information is immediately available to all the clients (e.g., via
a dedicated downlink control channel).

We consider the scheduler operation as follows. As the channel between the
node A and the destination is poor, it is very likely that several packet re-
transmissions may not lead to success. As such, we assume only one attempt to
transmit a packet by the originator to save some of its power. If the originator A
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has packets, the next time slot is given to A. Upon the transmission, a potential
relay may intercept the packet from the originator and store it.

In case node A fails its initial packet transmission, the base station assigns
the following slot to the relay cloud so that it could assist the originator. Such
assignment repeats until successful delivery or until the number of consecutive
cloud retransmission attempts exceeds some maximum number N (a parameter
controlled by the base station). In the latter case, all the members of the cloud
may empty their memory location and the system considers the current packet
as lost.

Channel assumptions. Throughout this paper, we assume immediate feedback
over a reliable separate channel (e.g., in the downlink). We also account for the
following probabilities of successful delivery pAB, pCB(m) and the symmetric
probability for each relay node pAR:

– pAB = Pr{packet from A is received at B|only A transmits},
– pCB(m) = Pr{packet from A is received at B|exactly m relays transmit},
– pAR = Pr{packet from A is received at a given relay|only A transmits}.

Let us now illustrate the discussed scheduler operation by an example for N = 2
as shown in Figure 2. Firstly, the transmission of packet no. 0 is successful
and the system becomes idle. Then, the originator acquires a new packet no.
1 and attempts its uplink transmission, which fails with probability 1 − pAB.
The members of the relay cloud eavesdrop on this transmission and each of
them is successful with probability pAR independently. In the following slot,
the successful relays make a decision whether or not to help with probability
ptx. Those who have decided positively form a relay group that retransmits
the eavesdropped packet to the base station simultaneously. As such, a ’virtual
MIMO’ link with better quality is created due to spatial transmit diversity [11]
and the packet is transmitted successfully with probability pCB(m).

0 ...
Success

C lo u d
in te rce p ts

Idle 1 1 2 2 2 3 Idle Idle

Success Los t
1 2 3 4

C lo u d
h e lp s

C lo u d
in te rce p ts

C lo u d  h e lp s
a t m o st N  tim e s

C lo u d
fa ils

S yste m  fo rce d
id le  fo r N  s lo ts

Fig. 2. Example time diagram for the relay cloud system

We generally note that due to the diversity gain the probability pCB(m) is
expected to be a nondecreasing function of the relay group size m. Here, m
depends on the probabilities pAR and ptx. We implicitly assume that the quality
of the ”originator-to-base station” channel is low, whereas the quality of the
”originator-to-relay cloud” channel is quite good due to many neighboring clients
available.
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The following slot is given back to the originator A (packet no. 2) and during
its unsuccessful transmission the relays intercept the packet again. However,
this time the relay cloud is unsuccessful to transmit the packet for N = 2 times
consecutively. As such, the base station considers the current packet as lost and
assigns the next slot to the originator. Further, if the interception fails (packet
no. 3) or all the successful relays decide not to transmit twice, N = 2 slots are
assigned to the relay cloud anyway, but the system stays idle. This is a negative
consequence of the distributed control over client relays.

In what follows, we study the mean packet delay, the throughput, and the
packet loss probability. In particular, we are interested in the derivation of simple
and exact closed-form expressions.

3 Performance Evaluation

This section presents analysis of the relay cloud system with respect to the
main performance metrics, such as the mean number of retransmissions, the
throughput, the packet loss probability, and the mean packet delay.

Firstly, we introduce the following definitions:

Definition 1. The service time is defined as the period of time between the
beginning of the first transmission attempt and the moment packet reaches its
destination. In case of packet loss, the service time is assumed to be equal N , so
that the mean service time could account for the lost packets.

Definition 2. The saturation throughput is defined as the limit reached by the
system throughput as the offered load increases [12].

Definition 3. The delay of a packet is defined as the time it takes the packet
to reach the destination after it arrives in the system (includes both queueing
time and service time).

Definition 4. The energy efficiency is defined as the amount of energy required
to successfully transmit one data packet.

Our analytical approach is based on the notion of the service time. We define
a stochastic variable TA, which is the service time of a packet from A. We
treat the considered system as an M/G/1 system due to the properties of the
incoming traffic. Initially, we establish the service discipline and then continue
by obtaining the closed-form expressions for the first and the second moments.
It should be noted that the first moment is the mean number of the packet
transmission attempts.

Knowing both moments, we derive the mean packet delay using the Pollacek-
Khinchin formula and the Little’s law. The other metrics of interest, such as the
throughput, the packet loss probability, the energy expenditure, and the energy
efficiency can also be derived from the obtained expressions.

After thorough analysis of all the possibilities for a packet transmission, we
formulate the service discipline for the node A as follows:
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Pr{TA = 1} = pAB,

P r{TA = n} = (1 − pAB)

M∑

m=1

(
M
m

)
pmAR(1 − pAR)(M−m)×

×

⎧
⎨
⎩

m∑

j=1

(
m
j

)
pjtx(1 − ptx)

(m−j) (1 − pCB(j))(n−1) pCB(j)

⎫
⎬
⎭ , n ≤ N,

Pr{TA = N + 1} = (1 − pAB)

M∑

m=1

(
M
m

)
pmAR(1 − pAR)(M−m)(1 − ptx)m+

+ (1 − pAB)
M∑

m=1

(
M
m

)
pmAR(1 − pAR)(M−m)×

×

⎧
⎨
⎩

m∑

j=1

(
m
j

)
pjtx(1 − ptx)

(m−j) (1 − pCB(j))
N

⎫
⎬
⎭+

+ (1 − pAB) (1 − pAR)M .

Further, we omit massive transformations and give only the expressions for
the first and the second moments of the stochastic variable TA:

τA = E[TA] = pAB + (N + 1)(1 − pAB)(1 − pAR)M + (1)

+(N + 1)(1 − pAB) · S1 + (1 − pAB) · S2,

E[T 2
A] = pAB + (N + 1)2(1 − pAB)((1 − pAR)M + S1) + (1 − pAB) · S3, (2)

where components S1, S2 and S3 are given in the Appendix.
The mean load for the queue of the considered tagged node A can be estab-

lished as:

ρA = λAτA. (3)

The mean throughput of A may thus be calculated as:

ηA = λA(pAB + (1 − pAB)S4), (4)

where component S4 is also given in the Appendix.
Given the first and second moments, we use the Pollacek-Khinchin formula

to obtain the accurate value for the mean packet delay:

δA = τA +
E[T 2

A]λA

2(1 − ρA)
. (5)

With the basic formulae for the two moments, we can also find other important
metrics. In particular, the packet loss probability is given by:

PlossA = 1 − ηAτA. (6)
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Furthermore, let us establish the expressions for the energy consumption. If
power level Pi corresponds to a particular power state i, then the normalized
energy expenditure per time slot equals Piπi. Here, π is the stationary distribu-
tion over power states and i ⊂ G, where G is the set of possible states. In the
considered model, the three states are accounted for from the power perspective:

– the node is transmitting data with the power PTX ;
– the node is receiving data with the power PRX ;
– the node is idle with the power PI .

Thus, energy expenditures of the tagged node A and of the relay group are
calculated as:

εA = PTXλA + PI(1 − λAτA), (7)

εR = PRXMλA + PTXpARptxλA(τA − 1)M + (8)

+PiM(1 − pARptxλA(τA − 1) − λA),

Therefore, the total system energy expenditure is given by:

ε = εA + εR. (9)

As mentioned above, we define energy efficiency as:

φ =
ηA
ε

. (10)

4 Numerical Results

In this section, we use the extended system-level simulator described in our
previous works [10] and [11] in order to verify the obtained analytical results. We
borrow power consumption values from [13] as: PTX = 1.65 W, PRX = 1.40 W,
and PI = 1.15 W. We also assume that the size of the each slot equals 5 ms.

The main simulation parameters are set as pAB = 0.3, pAR = 0.7. For the
vector of successful delivery probabilities pCB, as an example, we consider a
random nondecreasing linear function. However, in reality this function might
be much more complicated and surely has a nonlinear structure. Note that solid
curves stand for the analytical results, whereas symbols represent simulated data.

In Figure 3, we explore the behavior of the saturation throughput for different
number of relay nodes in the cloud. As expected, we observe a monotonically
increasing function of M . It is easy to see that beyond the point of M = 5 the
curve becomes almost linear. Therefore, we set M = 5 in what follows.

Further, we explore the mean packet delay at the originator for different num-
bers relay of nodes available. For this purpose, we vary the arrival rate λA. In
Figure 4, different curves for the various values of M (with appropriate asymp-
totes) are compared. Naturally, the delay drops significantly as the number of
available relays grows.
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Fig. 3. Saturation throughput vs. number of nodes in relay cloud
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Fig. 5. Energy efficiency vs. probability of successful packet transmission

Also we study the energy efficiency dependence on e.g. the probability pAB in
Figure 5. Here, we contrast the non-cooperative mode (when there are no relay
nodes) against the systems with M = 1 and M = 5. Evidently, the assistance of
the relay cloud results in slightly higher energy expenditure, which is the cost of
the increased originator performance.

5 Conclusion

In this paper, we considered a wireless cellular network that enables the
distributed control over cooperative communication via a client relay cloud.
The primary aim of such cloud is to enhance system performance through
the support of cell-edge mobile clients with poor communication links. The
main performance metrics were studied, including throughput, mean packet
delay, and energy efficiency. Accurate closed-form analytical expressions have
been derived and verified by extensive system-level simulations. The results
indicate significant promise of the relay cloud, which is able to recover the
performance of the mobile clients with degraded wireless links. As a future
extension of this model, it would be reasonable to examine a more realistic
arrival process and propose efficient decision-making algorithms on when to co-
operate. Also it is important to establish practical scenarios where client relay
cloud operation is benefiting the wireless system performance and where it is
not.
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Appendix 1: Auxiliary Variables

We introduce the following auxiliary variables in order to simplify the expressions
above.

S1 =
M∑

m=0

(
M
m

)
pmAR(1 − pAR)(M−m)× (11)

×

⎧
⎨
⎩

m∑

j=0

(
m
j

)
pjtx(1 − ptx)(m−j)(1 − pCB(j)) + (1 − ptx)

m

⎫
⎬
⎭

N

.

S2 =
M∑

m=0

(
M
m

)
pmAR(1 − pAR)(M−m) · X · b, (12)

where

X = aN − a(N+1)

(1 − a)2
− (a − 2)

(1 − a)2
− aN (N + 2)

(1 − a)
. (13)

S3 =

M∑

m=0

(
M
m

)
pmAR(1 − pAR)(M−m) · Z · b, (14)

where

Z = X +
2(2a − a(N+1)(N + 2))

(1 − a)2
+

2(a2 − a(N+2))

(1 − a)3
+

2 − aN (N + 1)(N + 2)

(1 − a)
.

(15)

The following variable is the probability of the successful transmission by the
relays:

S4 =

M∑

m=0

(
M
m

)
pmAR(1 − pAR)(M−m) · Y · b, (16)

where

Y =
(1 − aN )

(1 − a)
. (17)

Here, also for the sake of brevity the enlarged variables a and b are defined
as:

a =

m∑

j=0

(
m
j

)
pjtx(1 − ptx)(m−j)(1 − pCB(j)) + (1 − ptx)m, (18)

b =

m∑

j=0

(
m
j

)
pjtx(1 − ptx)(m−j)pCB(j). (19)
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Abstract. In this paper1, we propose a new power control scheme suit-
able for a multi-tier wireless network. It maximizes the energy-efficiency
of a mobile device transmitting on several communication channels while
at the same time ensures the required minimum quality of service. As
the result, a good compromise between improving the data rate and
extending the battery lifetime is provided. In order to enable energy-
efficiency maximization, we formulate an optimization problem basing on
the Shannon’s capacity formula. The optimal transmit power is thus ob-
tained from the direct solution of this optimization problem under several
practical constraints, such as minimum bitrate and maximum transmit
power. In the second part of the paper, we apply extensive simulations
to calibrate the key parameters of our optimization framework. The nu-
merical results suggest the benefit of the proposed analytical solution by
comparing it against intuitive (heuristic) power control strategies.

1 Introduction and Background

Wireless cellular networks have experienced essential growth over the last
decades, eventually becoming an integrated part of our daily lives [1]. As market
analysts predict, this steady development is expected to continue over the fol-
lowing years [2]. Hence, it comes as no surprise that users are increasingly inter-
ested in extending functionality of their mobile devices to run more demanding
applications. The resulting advent of the high-rate fourth generation (4G) com-
munication technologies combined with a wide variety of new mobile devices and
services brings substantial increase in the amounts of user-generated data [3].
This, in turn, implies higher power consumption when transmitting this data,
which may be harmful for the battery-powered mobile devices [4]. As a result,

1 Part of this work had been completed when Alexey Trushanin and Vyacheslav Shu-
milov were on a research visit at Tampere University of Technology, Finland.

A. Dudin and K. De Turck (Eds.): ASMTA 2013, LNCS 7984, pp. 198–213, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the gap between the user’s need for higher data rates and the battery lifetime
restrictions of small-scale user equipment grows considerably [5].

To address this gap, wireless industry reacts with a selection of solutions
ranging from device battery innovation to advanced network architecture [6].
The latter suggests the use of small cells to augment the conventional cellular
layout. Such integrated multi-tier deployments offer decisive benefits to the in-
door user’s connectivity, as well as in the areas with limited cellular coverage [7].
For example, a user in a two-tier in-building network (see Figure 1), e.g. in a
shopping mall or in an office building, may receive improved service from the
infrastructure low-power nodes (LPNs). However, when traveling from a small
cell to a small cell, this user may also suffer from extra signaling when select-
ing the best LPN to transmit to. Furthermore, frequent cell re-selections may
lead to excessive power consumption and drain the device battery. This problem
receives increasing attention from wireless community [8], which recognizes the
need for improved device power management mechanisms that would explicitly
target small cell deployments.

LPN

LPN
LPN LPN

Mobile
device

LPN
MacroBS

Fig. 1. Example topology of a multi-tier network

Whereas there has been much work on power control schemes for conventional
cellular networks [9], it becomes crucial to address and account for the specific
features ofmulti-tier networks.We believe that by intelligently allocating power on
the available communication channels, a mobile user may considerably reduce its
power consumption, while not compromising its desired quality of service. In this
work,we propose a candidate power control strategy suitable formulti-tier wireless
networks. We seek to maximize the energy efficiency of a user device to reach good
balance between the required data rate and the resulting energy consumption.

More specifically, we consider a single user device which may simultaneously
transmit its data to several neighboring LPNs centered at the surrounding small
cells (as may be possible in future beyond-4G networks). Our goal is to advise
this device on the optimal transmit power levels for each of the available LPN
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connections (which we term channels). We choose energy-efficiency as the opti-
mization criterion, which is given as the relation between the data rate and the
corresponding power expenses. Furthermore, we account for several important
practical constraints of mobile user operation, such as the minimum required
bitrate and the maximum allowed transmit power, which directly leads to an
inequality-constrained optimization problem.

The energy-efficiency optimization at hand is based on the relationship be-
tween the transmit power and the resulting data rate. Instead of the actually
achievable data rate, we study its theoretical maximum, that is, the capacity
of a communication system. Here, the Shannon’s capacity formula [10] for the
channel with additive white Gaussian noise is the most widely used and popular
approach. It helps abstract away the specific transmitter and receiver structures
and, therefore, can be applied to most contemporary wireless networks, such
as UMTS HSPA/HSPA+, WiMAX, 3GPP LTE/LTE-A, etc. In what follows,
we choose 3GPP LTE-A (Long Term Evolution Advanced) as our example 4G
technology [11] and demonstrate that its performance is reasonably close to the
Shannon’s limit, so that our capacity approximation is very precise. However,
our solution is also applicable for alternative power-rate functions.

Furthermore, our approximation may be improved by generalizing the Shan-
non’s formula through introducing several empirical factors. Then, these addi-
tional factors have to be calibrated, i.e. determined from the simulation results.
Hence, in the second part of this paper, a detailed LTE-A link-level simulator
is described and then used for adjusting the empirical parameters. Finally, nu-
merical results are provided to conclude on the benefits of our energy-efficiency
centric power control scheme by comparing its performance against two intuitive
(heuristic) power control disciplines.

Our system model and the analytical solution to the constrained energy-
efficiency optimization problem are presented in Section 2. We then augment
this solution with extensive link-level simulation results. The used simulator
mimics a realistic LTE-A Release-10 deployment and is detailed in Section 3.
Further, the numerical results for the proposed power control scheme and the
competitor heuristic strategies are given in Section 4. Finally, Section 5 concludes
this paper.

2 Energy-Efficiency Optimization Problem

2.1 System Model and Assumptions

We consider an uplink data transmission of a single user device in a multi-tier
wireless cellular network and study its achievable data rate, power, and energy-
efficiency. This device may simultaneously use up to K available communication
channels to the neighboring LPNs. In our model, every channel i = 1, K may
have different properties, and we only assume that the channels are mutually
non-interfering. This may correspond to the practical scenario when the adjacent
small cells are allocated non-overlapping radio frequencies, which is often the case
in real-world deployments.
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We also assume that the application-layer traffic of the considered user is sat-
urated. The achievable data rate on the channel i is determined by the properties
of the channel and by how much power is allocated by the user to transmit on it.
The total user data rate can thus be obtained by aggregating the individual rates
r =

∑K
i=1 ri, where ri is the data rate on the channel i. We impose a constraint

on the total data rate r such that it must not drop below the minimum bitrate
requirement r0 given by e.g. a particular mobile application.

The total power consumption of the user device equals p = ptx(r) + pc =

ptx(r) +
∑K

i=1 pci , where ptx(r) is the transmit power which is determined by a
particular vector r = (r1, ..., rK) and pci is the constant circuit power component
(incurred by the active electronic circuitry) for the channel i. Further, we assume
that the transmit power ptx(r) can also be aggregated over the individual powers

ptx(r) =
∑K

i=1 ptxi (ri).
We introduce a variation of the Shannon’s capacity formula, which would give

us relationship between the transmit power and the maximum achievable data
rate as:

ptxi = Ai(2
Bici − 1), (1)

where ptxi is the transmit power on the channel i, ci is the theoretical ca-
pacity, while Ai and Bi are the additional parameters depending on wireless
system implementation and configuration (including signal transmission mode,
implementation-specific parameters, etc.). These can be given as:

Bi =
1

wi
, Ai =

Ni

gi
, (2)

where wi is the channel bandwidth, gi = ρi/PL is the corresponding power gain,
PL is path loss, ρi is the antenna gain and Ni is the total noise power over the
given bandwidth. The coefficient Bi can also account for the overhead of the
pilot signals, cyclic prefixes, and control channels occupying a portion of the
system resources: Bi = Ttotal

wiTdata
, where Ttotal is the total amount of orthogonal

(time-frequency) resources and Tdata is the amount of resources allocated for
the data transmission, wi is the pure data channel (so-called PUSCH channel in
LTE-A) bandwidth without guard bands and control channels.

The Shannon’s formula relates the transmit power to the theoretical capacity,
which may in reality differ from the actually achievable data rates. This may
be due to the limited user knowledge about the wireless environment and thus
non-optimal selection of modulation and coding schemes. In order to bring the
relation (1) closer to the actual LTE-A system performance, we also introduce
additional empirical factors α and β as:

Bi = β
Ttotal

wiTdata
, Ai = α

Ni

gi
. (3)

Accounting for the above factors, we formally replace ci by ri, ptxi by pi in (1)
to summarize the considered relationship between the transmit power and the
achievable data rate as:

pi = Ai(2
Biri − 1). (4)
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We name expression (4) the generalized Shannon’s formula and give it as:

ri =
1

Bi
log2

(
1 + pi

1

Ai

)
. (5)

We also note that the considered power-rate function (5) is bijective and mono-
tonic with a continuous derivative, which will be used by the further analysis.

2.2 Optimization Problem

Our goal of energy-efficiency maximization can be achieved with the appropri-
ate power control. Below, we formulate the constrained optimization problem
where the argument is the achievable data rate on each available communication
channel (which is equivalent to the corresponding transmit power).

We define and further optimize the energy efficiency of a user as the ratio
between the total data rate r and the total power p:

η(r) =
r

p
=

∑K
i=1 ri∑K

i=1 pi(ri) +
∑K

i=1 pci
. (6)

Further, we formulate our energy efficiency η(r) optimization problem:

max
{ri}K

i=1

η(r) = max
{ri}K

i=1

∑K
i=1 ri∑K

i=1 pi(ri) +
∑K

i=1 pci
, subject to: (7)

r =

K∑

i=1

ri ≥ r0, (8)

where r0 is the minimum required bitrate. We also impose a reasonable constraint
on the achievable data rate ri (and hence, pi), so that it cannot be negative:

ri ≥ 0, i = 1, K, (9)

and, finally, account for the maximum allowed transmit power limit as:

pi(ri) ≤ pmax
i , i = 1, K.

Note that since the function pi(ri) is bijective, the above can be written as:

ri ≤ rmax
i , i = 1, K, (10)

where rmax
i = ri(p

max
i ) can be calculated from (5).

For LTE-A system, the maximum throughput value can be expressed as:

r̃max
i = wi

Tdata

Ttotal
Nbits, (11)

where Nbits is number of bits per symbol for the highest supported modulation.
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Therefore, the maximum data rate should actually be calculated as rmax
i =

min(r̃max
i , ri(p

max
i )). We also take into account that η(r1, ..., rK) is a non-zero

function bounded on the interval [0, ∞), where 0 is a zero vector (0, ..., 0). Now
considering an equivalent form of (7) and rearranging the above inequalities (8),
(9), as well as (10), our optimization problem can be summarized as:

min
{ri}K

i=1

U(r) = min
{ri}K

i=1

1

η(r)
= min

{ri}K
i=1

∑K
i=1 pi +

∑K
i=1 pci∑K

i=1 ri
(12)

subject to the constraints:

φ(r) = r0 −
K∑

i=0

ri ≤ 0, (13)

fi(ri) = −ri ≤ 0, i = 1, K, (14)

gi(ri) = ri − rmax
i ≤ 0, i = 1, K. (15)

2.3 General Way of Solving the Optimization Problem

The objective function given by (12)–(15) constitutes an inequality-constrained
optimization problem. The general way of solving such optimization problem
may be described by applying the Karush-Kuhn-Tucker (KKT) approach [12].
Accordingly, a system of equations and inequalities can be set up, known as
regularity KKT conditions. For our optimization problem, the regularity KKT
conditions are given as:

∂U(r)

∂ri
+

K∑

i=1

λi
dgi(ri)

dri
+

K∑

i=1

μi
dfi(ri)

dri
+ γ

dφ(r)

dri
= 0 ⇔

⇔
dpi

dri
· r − (

∑K
i=1 pi +

∑K
i=1 pci)

r2
+ λi − μi − γ = 0, i = 1, K

λi(ri − rmax
i ) = 0, ri − rmax

i ≤ 0, λi ≥ 0, i = 1, K, (16)

γ

(
K∑

i=1

ri − r0

)
= 0,

K∑

i=1

ri − r0 > 0, γ ≥ 0,

μiri = 0, ri ≥ 0, μi ≥ 0, i = 1, K,

where λi, μi and γ are KKT multipliers.
Thus, in order to establish the optimal solution to the considered constrained

optimization problem, the system of 3K +1 equations under 4K +2 inequalities
has to be solved. We note that the search domain bounded by these inequalities
has to be non-empty. Otherwise, the entire problem does not have a solution.
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Noteworthy, the KKT conditions by themselves do not provide a method of
finding the maximum/minimum points. Instead, they only determine the sta-
tionary points (where the gradient is zero) among which the minimum point can
be found. In general, solving the system of equations and inequalities is known
to be difficult. Therefore, instead of doing that, we apply a particular approach
to solve the target optimization problem.

2.4 Particular Solution to the Optimization Problem

The solution to the system of equations:

∂U(r)

∂ri
= 0, i = 1, K (17)

determines the optimum according to (12) without any inequality constraints.
We begin with finding the stationary points for this unconstrained optimization
problem in the domain (−∞,0)∪(0, ∞). We then use this solution when dealing
with the constrained optimization problem later.

Hence, we solve the target optimization problem in two steps

1. Solving the unconstrained optimization problem (12).
2. Updating the optimum by taking into account the constraints (13), (14), and

(15) for each component of r step by step.

Optimal Solution without Constraints. In order to determine the station-
ary points of U(r), we substitute the derivative dpi

dri
= AiBi2

Biri ln 2 of function
pi (4) into (17). This results in:

∂U(r)

∂ri
=

AiBi2
Biri ln 2

∑K
i=1 ri −

[∑K
i=1 Ai(2

Biri − 1) + pc

]

(∑K
i=1 ri

)2 = 0, i = 1, K.

(18)
Therefore, we establish the following condition for the stationary points:

AiBi2
Biri ln 2

K∑

i=1

ri −
K∑

i=1

Ai2
Biri +

[
K∑

i=1

Ai − pc

]
= 0, i = 1, K. (19)

Rearranging (19) indicates that the term AiBi2
Biri ln 2 does not depend on i:

AiBi2
Biri ln 2 =

∑K
i=1 Ai2

Biri −
[∑K

i=1 Ai − pc

]

∑K
i=1 ri

. (20)

Further, we introduce the notation:

D =

∑K
i=1 Ai2

Biri −
[∑K

i=1 Ai − pc

]

∑K
i=1 ri

. (21)
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Applying (20) and (21), the terms in (19) including the unknown values ri can
be expressed as:

Ai2
Biri =

D

Bi ln 2
, i = 1, K. (22)

ri =
1

Bi
log2

D

AiBi ln 2
=

1

Bi
[log2 D − log2(AiBi ln 2)], i = 1, K (23)

Applying (22) and (23) in (19) and rearranging leads to:

D

ln 2

K∑

i=1

1

Bi
− D

K∑

i=1

1

Bi
log2 D + D

K∑

i=1

1

Bi
log2(AiBi ln 2) =

[
K∑

i=1

Ai − pc

]
.

We denote
∑K

i=1
1
Bi

and
∑K

i=1
1
Bi

log2(AiBi ln 2) as B and G respectively. Ap-
plying these notations, we obtain:

DB
1

ln 2
− DB log2 D + DG =

[
K∑

i=1

Ai − pc

]
. (24)

Rearranging (24) yields:

DB
(
ln
[
D · 2−( 1

ln 2+G
B )
])

= ln 2

[
pc −

K∑

i=1

Ai

]
.

Let us also denote D · 2−( 1
ln 2+G

B ) as X :

X (ln X) = ln 2

[
pc −∑K

i=1 Ai

]

B
2−( 1

ln 2+G
B ). (25)

From equation (25), we may obtain the value of X and, consequently, the ex-
pression for D:

D = 2( 1
ln 2+G

B ) · exp

⎛
⎝W

⎛
⎝ln 2

[
pc −∑K

i=1 Ai

]

B
2−( 1

ln 2+G
B )

⎞
⎠
⎞
⎠ , (26)

where W (x) is the Lambert’s function [13].
Applying (26) together with the definitions of G and B in (23) leads to the

stationary point:

r∗i =
1

Bi

[
1

ln 2
+

∑K
i=1

1
Bi

log2(AiBi ln 2)
∑K

i=1
1
Bi

− log2(AiBi ln 2)

]
+

+
1

Bi ln 2
W

⎛
⎝ln 2

[
pc −∑K

i=1 Ai

]

∑K
i=1

1
Bi

2
−
(

1
ln 2+

∑K
i=1

1
Bi

log2(AiBi ln 2)

∑K
i=1

1
Bi

)⎞
⎠, (27)

where Ai and Bi are given by (3). The power level to operate on a particular
channel can finally be obtained by (4).
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Optimization Under Constraints. Here we employ the solution r∗ ∈ RK

of the unconstrained optimization problem (27) to the respective constrained
problem in (12)–(15).

Several alternative cases are possible:

1. The argument of the function W (x) in (26) is less than −e−1, which means
that the objective function of the unconstrained problem does not have a
stationary point. Hence, we need to search the optimal point on the border
of the domain by choosing the component ri with the minimum contribution
and setting this component to zero.

2. If r∗i ≤ 0 or r∗i ≥ rmax
i , then the stationary point lies outside the search

domain and should be instead found on the respective plane r∗i = 0 or
r∗i = rmax

i . If either of these conditions holds for several indexes, we need to
choose the component ri with the minimum contribution and set r∗i = 0 or
r∗i = rmax

i .

3. If
∑K

i=1 r∗i < r0, then the optimal point lies on the plane
∑K

i=1 r∗i = r0 and
we need to follow the above steps again.

Having fixed one of the components, we proceed by solving the respective opti-
mization problem of dimension K − 1. It can be done in a similar way as solving
the original problem r∗ (we omit the details here due to the space constraints).
The above steps are to be repeated until the set of components r∗ is obtained
which satisfy the given constraints.

3 Simulation Methodology

3.1 Description of the Simulator

After our energy-efficient power control scheme has been introduced, we aim
to augment our solution with simulation results derived from a detailed model
of 3GPP LTE-A system. Below we shortly describe the considered link-level
simulator (LLS). In particular, we seek to apply the LLS tool for calibrating
the empirical coefficients α and β in (3). Our approach is realistic modeling
of (i) all the necessary transmitter operations of LTE-A Release-10 uplink, (ii)
the radio channel with additive white Gaussian noise (AWGN), and (iii) all the
corresponding receiver operations. The general structure of the LLS is presented
in Figure 2.

A fragment of data in the form of a transport block (TB) is generated of ran-
dom bits. It is then fed to the input of the transmitter part and passed through
the stages of turbo encoding, rate matching [14], scrambling, and QAM map-
ping [15]. Turbo encoding with a fixed code rate of 1/3 is performed according
to the LTE-A standard. The rate matching stage performs bit puncturing or
repetition coding to match the original code rate of 1/3 to an arbitrary code
rate. Puncturing and repetition patterns are implemented in full compliance
with the LTE-A specifications. The scrambler performs modulus two addition of
rate-matched bits with a random sequence specified by the standard, whereas
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Fig. 2. Structure of the LTE-A link-level simulator

the mapper generates QPSK, 16-QAM, or 64-QAM constellations. An arbitrary
modulation and coding scheme (MCS), specifying a pair of code rate and mod-
ulation type, is set as a simulation parameter and is fixed during a particular
simulation run.

The AWGN channel performs addition of constellations (QAM symbols) at
the output of the transmitter with randomly generated AWGN. The target is to
reach the required signal-to-noise ratio (SNR) set as a simulation parameter.

Noisy constellations are fed to the input of the receiver part and pass through
the soft demapping, descrambling, rate dematching, and turbo decoding stages.
The soft demapper calculates logarithms of likelihood ratio using the max-log
approximation. The descrambler performs the inverse transform as opposed to
the scrambler, while rate dematcher performs addition of likelihood ratios cor-
responding to the repeated bits and/or taking the ratios corresponding to the
punctured bits equal to zero. Turbo decoder realizes max-log maximum a poste-
riori decoding algorithm to derive a received TB with, possibly, some erroneous
bits. Then, this TB is compared with the transmitted TB to detect errors and
to determine the correctness of TB reception.

3.2 Experiment Plan and Results

The transmission of a particular TB is repeated multiple times for a fixed set
of parameters to perform statistical averaging over the random realizations of a
TB and AWGN. After the simulation is completed, the collected statistics shows
the dependence of transport block error probability (BLER) versus SNR for a
fixed MCS. Then, similar simulation is repeated for a set of available MCSs.

Each of the MCSs determines a possible data rate in the LTE-A system. It
can be calculated as a transport block size (TBS) divided by the subframe length
and multiplied by the probability of successful TB transmission:

rk = (1 − BLERtarget)
TBSk

Tsubframe
, SNRk = SNR(k) (BLERtarget) , (28)
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where rk is the data rate corresponding to the k-th MCS, k is the MCS index,
TBSk is the TBS of the k-th MCS, BLERtarget is the target BLER, Tsubframe

is the subframe length (equal to 1 ms in LTE-A), SNRk is the SNR required for
the k-th MCS, SNR(k)(BLER) is the inverted dependency of BLER on SNR
for the k-th MCS.

As the result of our LTE-A simulations, in Figure 3 we demonstrate the depen-
dency of the achievable data rate on the SNR level for different MCSs. We also
compare the simulation values with the Shannon’s capacity formula to conclude
that it serves as a reasonable approximation of the practical data rate.
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Fig. 3. Comparison of the Shannon’s formula (α = 1, β = 1) against simulation results
for QPSK, 16-QAM, and 64-QAM

3.3 Calibrating the Generalized Shannon’s Formula

Here we use our simulation results to calibrate the coefficients of the generalized
Shannon’s formula (4). Figure 3 provides dependencies corresponding to the
conventional Shannon’s formula (α = 1 and β = 1), the generalized Shannon’s
formula (fitted coefficients α = 1.2456 and β = 1.3463), and the simulated
data rates for QPSK, 16-QAM, and 64-QAM modulation schemes. In order to
properly adjust the coefficients α and β, the three sets of points corresponding
to different modulations may first be converted into a single curve.
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Our calibration procedure consists in the optimal selection (by e.g. least-
squares technique) of the coefficients α and β in order to minimize the discrep-
ancy between the available simulation results and the formula:

ri = w
Tdata

Ttotal

1

β
log2

(
1 +

SNRi

α

)
, (29)

where SNR = pigi
Ni

.

4 Numerical Results

4.1 Setup Details and Parameters

In this section, we concentrate on an illustrative numerical example to evaluate
the performance of the proposed power control scheme. We assume that there are
K = 2 communication channels available to the mobile user. Correspondingly,
the first recipient LPN is located at the point x1 = 0, whereas the second one is
at the point x2 = R (see Figure 4). The user is assumed to move all along the
x-axis between the two LPNs, and its current coordinate is x ∈ [0, R].

d1 d2Mobile 
device

LPN 2
(R)

LPN 1
(0)

R

Fig. 4. Topology of our numerical setup

In order to compare our energy-efficient power control with alternative power
management techniques, we introduce two simple and intuitive strategies.

1. The user transmits on both channels simultaneously by allocating a fixed
amount of power to every channel.

2. The user transmits on one channel by selecting it basing on the channel
quality and allocating a fixed amount of power to the best channel only.

In both cases, for the sake of simplicity, we assume that the allocated power level
is equal the maximum allowed power (see Table 1). We also assume that the
channels are symmetric, i.e. employ similar parameters, including the following
propagation model [16]:

PL = 22.0 log10 d + 28.0 + 20 log10 fc, 10 < d < dBP , (30)
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PL = 40 log10 d+7.8−18 log10 h′
LPN−18 log10 h′

user+2 log10 fc, dBP < d < 5000,

where PL is the path loss (dB), h′
LPN and h′

user are effective antenna heights
(m), d and dBP are the distance to the LPN and the break point distance (m)
respectively, and fc is the center frequency (GHz). See Table 1 for more details.

Table 1. Summary of simulation assumptions

Parameter Value

Simulation approach Link level simulations of LTE-A Release 10
Radio channel model AWGN
Channel estimation and synchronization Ideal
PUSCH bandwidth 5.4 MHz (30 resource blocks per slot)
Cyclic prefix Normal
Turbo decoder Max-log turbo decoder with 8 iterations
Target block error rate (BLER) 10%
Thermal noise power -103 dB
Carrier frequency 2 GHz
User antenna height 1.5 m
LPN antenna height 10 m
Environment Micro cell in urban area
Maximum transmit power 23 dBm
Circuit power 0.1 W
Idle power 0.01 W
Antenna gain 3 dB
Minimum data rate 1.19 Mbps
Number of bits per QAM symbol 6
for the maximum modulation order

4.2 Discussion of the Results

In Figure 5, we overlay the results for the total achievable data rate, energy
efficiency, and power consumption depending on the user location x. With our
optimal power control, the user begins with transmitting on one channel (A). As
it moves toward the center (B), the user adjusts its transmit power to compensate
for the varying pathloss value [16]. The shape of the transmit power function
here is determined solely by the pathloss alterations in (30).

Moving further, the user does not yet need to apply the maximum power to
reach the highest energy efficiency until the point (C), when the constraint r0

takes effect. Because of this bitrate constraint, the power rises dramatically up
to the point (D), when the use of the second channel becomes reasonable. Then
power gradually grows up to the maximum transmit power level (E) to stay
there until (F). Further, this behavior mirrors symmetrically (as both channels
are equivalent).
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Table 2. Energy efficiency and total data rate comparison for base schemes, K = 2

Distance, r∗, r1, r2, η∗, η1, η2, Δη1, Δη2,
m Mbps Mbps Mbps MbpJ MbpJ MbpJ % %

0 1.54 1.58 1.54 3.54 2.49 3.54 30 0
10 1.54 1.61 1.54 3.93 2.71 3.93 31 0
20 1.54 1.65 1.54 3.47 2.57 3.47 26 0
30 1.23 1.57 1.36 2.41 2.01 2.35 17 2

40 1.19 1.29 0.93 1.7 1.65 1.61 3 5
50 1.19 1.19 0.6 1.53 1.53 1.03 0 33
60 1.19 1.29 0.93 1.7 1.65 1.61 3 5

70 1.23 1.57 1.36 2.41 2.01 2.35 17 2
80 1.54 1.65 1.54 3.47 2.57 3.47 26 0
90 1.54 1.61 1.54 3.93 2.71 3.93 31 0
100 1.54 1.58 1.54 3.54 2.49 3.54 30 0

The data rate plot clearly demonstrates the upper and the lower regions of
better and worse channel quality, respectively. Consequently, the lowest energy
efficiency is reached in the central point, where the quality of both channels is
the poorest, whereas the maximum is reached at the distance of obstruction,
when channel quality is the best according to (30).
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Note that our power control scheme can be implemented basing on a simple
lookup table of the Lambert’s function thus requiring negligible time/energy
expenses when solving the discussed optimization problem.

In Table 2, the energy efficiency η∗ and data rate r∗ of our scheme are com-
pared against those of two intuitive (heuristic) strategies (η1, r1 for the first and
η2, r2 for the second, respectively). Clearly, the one-channel (second) strategy
fails to satisfy the minimum bitrate requirement in the central region. Further-
more, our approach allows to reach the performance of the two-channel (first)
strategy, but results in lower power consumption when the target bitrate r0 is
already met. The relative increase in energy efficiency with our power control
(Δη1, Δη2) is also given in Table 2.

5 Conclusion

In this work, we have considered the problem of energy efficient power control
when the mobile user may communicate on several uplink wireless channels at
the same time. We have also calibrated our analytical solution with the detailed
link-level LTE-A simulations. Our numerical example for two symmetric chan-
nels suggests the gain of up to 30 % when prefering our power management
strategy to simpler heuristic mechanisms. Our current work is the comparison of
the proposed energy efficient approach against more sophisticated power control
strategies and the consideration of more practical device power models.
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Abstract. In this work, we study a heterogeneous 3GPP LTE network
where macro base station deployment is coupled with underlay low power
(pico) nodes to augment system capacity. However, at the cell edges, a
macro-associated user may still suffer from poor performance due to low
uplink channel quality. This is when the neighboring low power nodes
can help by independently trying to receive data packets from the macro
user and share the result with the base station if successful. Known as
coordinated multi-point (CoMP) reception, this scheme is expected to
dramatically improve uplink cell-edge performance. To predict the actual
gains, we conduct our analysis of a typical CoMP setup for dynamic
traffic load and depending on the user proximity to the serving base
station.

1 Introduction and Background

Recent advances in wireless communications introduce fundamental changes to
mobile Internet access, as well as challenge the researchers with increasingly
demanding problems. As long as the proportion of mobile traffic is expected
to grow [1], the currently deployed cellular technologies are very likely to face
dramatic overloads resulting in shortage of available capacity and general degra-
dation of the user service experience. Reacting to this pressing demand, the
fourth generation (4G) broadband communication standard [2] offers decisive
improvements to the levels of achievable spectral and energy efficiency as well
as quality of service. However, user performance may still remain unsatisfactory
at the cell edges, where the connection to the serving base station is weak and
the transmission is further limited by interference from the neighboring cells.

Conventionally, user service uniformity has been achieved with appropriate net-
work planning, when specific frequency reuse patterns were employed to combat
the inter-cell interference. This, however, often resulted in low spatial reuse factors
and poor resource utilization [3]. A more advanced solution may be to enable col-
laborative transmission or reception by multiple network entities. Such approach

V. Tsaoussidis et al. (Eds.): WWIC 2013, LNCS 7889, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is expected to naturally leverage the diversity gains between geographically sepa-
rated points. In 3GPP Long Term Evolution (LTE) cellular technology, this tech-
nique is known as Coordinated Multi-Point (CoMP) and is believed to boost the
system performance dramatically, especially at the edges of a cell.

The performance of CoMP in both uplink (UL) and downlink (DL) of conven-
tional macro deployment has been thoroughly studied in the literature. Notewor-
thy, UL CoMP schemes tend to receive more research attention as they have less
impact on the LTE specification [4]. Therefore, already in [5] the cell-edge bene-
fits promised by UL CoMP have been quantified with system-level simulations.
Whereas the first evaluation attempts focused on static full-buffer environments,
more recent works [6], [7] employ dynamic processes and rigorously analyze the
network design aspects of CoMP in terms of the required density of the serv-
ing base stations. In particular, the research in [6] suggests the use of selection
combining CoMP scheme, when upon a reception failure the serving base sta-
tion chooses the decoding outcome with the highest channel quality among the
available alternative receivers of a particular data packet. Since only successful
outcomes are exchanged, this approach is attractive due to moderate amounts
of data transferred between the collaborating points.

Whereas much work has been dedicated to evaluating UL CoMP in the neigh-
borhood of (macro) base stations of the same type and power class, the selection
combining technique is expected to yield even higher gains across heterogeneous
deployments. Heterogeneous networks are characterized by a mixture of macro
base stations and low power (pico) nodes, which may generate excessive inter-
cell interference. As interference coordination in such harsh environments can be
complex, UL CoMP may prove to be very useful in the metropolitan areas with
dense network deployment [8].

Offering a general classification of CoMP techniques, the work in [4] suggests
an important use case when a macro-cell collaborates with several low power
receive points within its coverage to better serve UL traffic by a macro user.
By concentrating on its design principles and choices, the research in [8] also
confirms that UL CoMP may render user experience more uniform in a similar
heterogeneous scenario. Moreover, the outdoor measurements reported in [3]
showcase the attractiveness of CoMP-based approaches while at the same time
indicating several technical challenges, such as the need for high-capacity and
low-latency interface (backhaul connection) between the serving points.

In particular, the performance of selection combining technique in a heteroge-
neous deployment has been investigated by [9] and [10] with full-buffer system-
level simulations to exploit the pico-node proximity to the macro-associated
users. Further, [11] considers a similar CoMP setup and takes advantage of the
asymmetry between the UL and the DL with appropriate cooperation-aware
power control to mitigate the near-far effect. Complementing prior simulation
data, [12] reports field trial results of selection combining CoMP in dense het-
erogeneous networks to leverage the macro diversity gain around the cell edge.

By taking the idea of UL/DL asymmetry of CoMP further on, it is also possi-
ble to tailor the conventional handover procedures specifically to heterogeneous
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networks. With a suitable scheduling discipline, macro-cell traffic may be dynami-
cally offloaded onto small cells [13] to provide seamless handover-like user
experience. More broadly, handover procedure in cellular networks is an impor-
tant aspect and may actually be improved by properly accounting for CoMP [14].
Last but not least, energy efficiency is becoming increasingly important for small-
scale battery-poweredmobile devices. Consequently, catering for the best trade-off
between spectral- and energy-efficiency (such as bits-per-Joule capacity) is a cru-
cial and timely problem [15]. The related analysis implies that UL CoMP results
in higher cell-edge energy efficiency than a non-cooperative system. Finally, the
practical aspects of DL CoMP design, including the impact of imperfect backhaul
connections, have recently been addressed in [16].

Base station
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device
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+

Fig. 1. Selection combining UL CoMP in a heterogeneous LTE network

Summarizing, the various aspects of the UL CoMP operation have indeed been
addressed by the existing work, but the majority of the findings are disjoint due
to the difference in adopted system models, assumptions, and methodologies.
Furthermore, most papers evaluate CoMP performance with simulation, while
analytical attempts are singular and only loosely connected with respective sim-
ulation assumptions. Therefore, we are motivated to propose a comprehensive
CoMP-centric evaluation methodology by coupling both analytical and simu-
lation components. While remaining simple, our closed-form analysis captures
many important CoMP features, such as heterogeneous environment, user mo-
bility, impact of power control and handover decisions, energy efficiency, as well
as imperfect UL channel to the serving base station (see Figure 1). In particular,
we evaluate the selection combining UL CoMP scheme, where the cooperating
low power nodes are independently trying to receive data packets from a macro
user and share their successful outcomes with the serving base station.

The rest of this text is organized as follows. Section 2 details our system model
and the main assumptions. In Section 3, we introduce our analytical approach
to calculate the key performance metrics, such as data packet service time (9),
mean packet delay (14), packet drop probability (15), and the corresponding
energy consumption (19). Section 4 contains some important numerical results,
while Section 5 concludes the paper.
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2 System Model

In this section, we summarize the assumptions of our system model. We consider
a heterogeneous 3GPP LTE deployment consisting of one macro base station
(BS) and N − 1 neighboring low power nodes (LPNs). The user equipment
(UE) is assumed to be constantly associated with the macro BS. Technically, it
measures the quality of the DL signal from the serving base station and sets its
transmit power as given by e.g. [9]:

PTX = min{Pmax, PTX,0 + 10 log10 Nr + αL}, (1)

where Pmax is the maximum transmit power, PTX,0 is the target receive power,
Nr is the number of resources assigned to the UE, L is the pathloss between the
UE and its serving BS, and 0 ≤ α ≤ 1 is the pathloss compensation factor.

It is also assumed that the user is mobile, that is, it may change its location
with respect to the serving BS. Whenever approaching any of the LPNs, the UE
is supposed to make a handover decision. Accordingly, the effective macro-cell
border is determined as:

ΦBS − LBS = ΦLPN − LLPN , (2)

where Φ[·] is the transmit power of the BS/LPN (on the logarithmic scale), L[·]
is the pathloss between the BS/LPN and the UE.

Hence, we are interested in the UE performance at the macro cell-edges and
before the macro-associated user has actually made its LPN handover decision.
In these areas, the user channel quality to the BS is typically poor (see Figure 1).
We thus analyze the benefits of UL CoMP selection combining scheme when the
UE data packets are independently received by the proximal LPNs. All the
collaborating LPNs are synchronized and connected to the macro BS via a high-
capacity and low-latency interface (assumed to be instantaneous and error-free
without the loss of generality), so that the successful packet reception outcomes
by the LPNs can be immediately shared with the BS.

Further, we consider a Single-Carrier Frequency Division Multiple Access (SC-
FDMA) system with Multi-level Quadrature Amplitude Modulation (M-QAM)
in the presence of Additive White Gaussian Noise (AWGN). In the UL of every
subframe, a certain number of resource blocks is provided for the target user by
the BS where the user may transmit its equal-size packets.

The numbers of new data packets arriving at the UE during the consecutive
subframes are i.i.d. random variables. For simplicity of further analysis, we as-
sume Poisson arrival flow. Hence, the UE generates new data packets with the
average arrival rate of λ packets per slot.

We further assume that the UE is equipped with K independent (virtual)
buffers according to the LTE specification [2]. Upon its arrival at the UE, a
packet is being placed into one of the K buffers with the constant probability
q = 1/K. The data packets in a particular buffer i may only be attempted for
transmission (served) in every ith subframe (slot) and the transmission of every
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packet takes exactly one slot (see Figure 2). All the buffers are assumed to have
unlimited size.

A data packet may be received by the macro BS or an LPN with some constant
probability. This probability depends on the UL Signal-to-Noise Ratio (SNR) and
thus varies for different receive points. A data packet transmission is considered
successful if the BS or at least one of the LPNs receives this packet. The chance
of success therefore depends on the corresponding events at BS/LPNs.

Following Hybrid Automatic Repeat Request (HARQ) procedure, the BS for-
wards the per-packet positive (ACK) and negative (NACK) acknowledgments to
the user after the fixed delay of τ subframes. In case of failure, the UE may re-
transmit its packet after exactly K subframes. The maximum number of allowed
transmission attempts per packet equals nmax. If the last transmission attempt
has been unsuccessful, the packet is dropped (discarded) by the user.

As we are also interested in the user energy consumption, we differentiate
between the following UE power states (see Figure 3):

– Idle state. In this state, the UE’s buffer is empty and the minimum power
P0 is consumed.

– Active state. The device is active and has at least one packet in any of the
buffers. However, it does not transmit in the current subframe and the power
P1 is spent.

– Transmit (Tx) state. The device is transmitting its data with the power of
P2 = PTX as defined by (1). In this state, the maximum power P1 + P2 is
consumed.

In what follows, we concentrate on the analytical modeling of the above system
in order to investigate its primary performance metrics, such as packet success
and drop probabilities, energy efficiency, and the expected packet delay.

3 Performance Evaluation

Given a particular BS/LPN deployment (e.g., by [17]), the system parameters
of interest are primarily determined by the probability of successful data packet
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transmission. With UL CoMP based on selection combining, this probability
depends on respective individual probabilities to receive this data packet at the
macro BS or a particular LPN. Below we detail our approach to the calculation
of the sought probability basing on the UL SNR values at the receiving points.

3.1 Probability of Success

The Case of One Receiver. Consider the system with a single receiver (i.e.,
macro BS) of UE data. The corresponding value of Bit Error Rate (BER) can be
determined from the UL SNR value, which depends on the transmit power and
radio conditions at the BS. We employ the approximation from [18] for uncoded
M-QAM and replace the Q-function by elementary functions, which makes our
interpretation more tractable analytically.

Hence, for a particular UE-BS distance, the actual modulation order in M-
QAM may vary to mimic the process of user rate adaptation. Assuming an ideal
coherent phase detection in the AWGN channel n, the value of BER is well
approximated by (see [18]):

pn =
4

log2 M
Q

(√
3γn

M − 1

)
, (3)

where γn is the SNR in the channel n, Q(x) = 1√
2π

∫∞
x e−

1
2 t2dt = 1−Φ(x), Φ(x)

is an error function which is the integral of the standard normal distribution [19].
For the sake of analytical tractability, we propose to modify the above approx-

imation by using solely elementary functions. We note that Q(x) = 1
2erfc

(
1√
2x

)
,

x ≥ 0. Here, erfc = 1−erf is the complementary error function and erf is the error
function. Further, we borrow the approximation for the error function from [20]:

erf(x) ≈ sgn(x)

√
1 − exp

(
−x2

4/π + ax2

1 + ax2

)
. (4)

where a = 8(π−3)
3π(4−π) ≈ 0.14.
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Eliminating the unnecessary components by simple transformation, we arrive
at the following:

erf(x) ≈ sgn(x)

√
1 − exp

(
−x2

2

)
. (5)

Finally, in Figure 4 we compare our proposed BER approximation against its
alternatives from [18] (based on Q-function and other elementary functions) and
intend to use it in what follows.
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Fig. 4. Example BER approximation for 32-QAM

Therefore, the probability of successful packet reception at the BS follows as:

pn =
2

log2(M)

[
1 − (1 − e−

3γn
2(M−1) )0.5

]
. (6)

The Case of Multiple Receivers. Consider the system with several receivers
(i.e., macro BS and LPNs) of UE data. The total probability of successful recep-
tion by at least one receiving point can be easily calculated accounting for the
independence of individual success events with the probabilities pn, n = 1, N :

p = Pr{at least one receiver succeeds} =

=
N∏

n=1

pn −
N∑

i=1

N∏

n=1,n�=i

pn +
N∑

i=1

N∑

j=1

N∏

n=1,n�=i,j

pn + ... − (−1)N
N∑

i=1

pn. (7)

Hence, we derive an expression for the packet success probability p, agnostic
to a particular BS/LPN deployment, which scales with the actual number of
neighboring LPNs. We proceed further with our queuing model.
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3.2 Proposed Queuing Model

We note that for the adopted system model (see Section 2), all K virtual buffers
are served independently. Therefore, we decouple system operation into K inde-
pendent First-Come-First-Served (FCFS) queues. The arrival process at a par-
ticular queue i is the result of splitting (thinning) the initial Poisson process.
Hence, it also constitutes a Poisson process with the arrival rate of λi = λ/K.

Consequently, we formulate an M/G/1 model (see Figure 5), i.e. consider a
stochastic process Ni(t) on the state space {0, 1, 2, ...}, where Ni(t) is the number
of packets in the queue i at the end of a subframe. Arrivals happen according to
a Poisson process with the arrival rate λi = λ/K. Service times are i.i.d. random
variables which will be addressed below. The queue size is unbounded.

t

K

Δt’=1

λ1
∞ 

∞ 

...

λK

Service

Ploss

...

Fig. 5. Aggregated queuing system

We denote the random variable representing the packet service time as Xi,
which is the time interval between the first attempt to serve this packet and
the packet departure time (success or drop). Further, the total time interval
between the arrival of a packet and the time its service begins is denoted as
Wi = Vi+Xi, where Vi is the waiting time in the queue. Importantly, Vi includes
(i) the time of waiting between the arrival and the moment when the queue i

obtains opportunity to be served (V
(1)

i ) and (ii) waiting time as long as the

preceding packets in the queue i are being served (V
(2)

i ).
Finally, we denote the queue load as ρi = λiE[Xi] and assume that ρi < 1, so

that the steady-state distribution exists. Below, we concentrate on the expected
time E[Wi] that a packet spends in our system. For the sake of simplicity, we
scale our system up and aggregate K subframes into one time unit Δt′ = 1 to
calculate some auxiliary variables with respect to the aggregate time.
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3.3 Service Time Distribution and Packet Drop Probability

The random variable representing service time Xi is distributed according to the
truncated geometric distribution:

Pr{Xi = 1} = p,

Pr{Xi = 2} = p(1 − p), ...,

Pr{Xi = nmax} = p(1 − p)nmax−1 + (1 − p)nmax ,

where p is the (integral) probability of successful packet transmission, i.e. when
at least one receiver acquires the packet, see (7). We note that here we have
already taken into account the effect of time aggregation.

The expected service time is defined as:

E[Xi] =

∞∑

i=1

i Pr{X = i} =

nmax∑

i=1

ip(1 − p)i−1 + nmax(1 − p)nmax .

Therefore, the expectation E[Xi] may readily be calculated as:

E[Xi] =
1

p
[1 − (1 − p)

nmax (nmaxp + 1)] + nmax(1 − p)nmax . (8)

Due to the fact that the queues are identical and independent, the expected
service time E[X ] = E[Xi] + τ can also be derived in terms of the original
system time as:

E[X ] =
K

p
[1 − (1 − p)

nmax (nmaxp + 1) + nmax(1 − p)nmax ] − (K − 1) + τ, (9)

where τ is the additional time of waiting for the BS response.
For our further calculations, we need to obtain the respective coefficient of

variation, which is defined as the ratio between the standard deviation and the
mean. Substituting expressions (8) and (11), we derive the sought formula as:

ci =

√
D[Xi]

E[Xi]
=

√
E[X2

i ] − (E[X2
i ])2

E[Xi]
, (10)

where E[X2
i ] is the second moment of the random variable Xi calculated as:

E[X2
i ] =

∞∑

i=1

i2 Pr{X = i} =

nmax∑

i=1

i2p(1 − p)i−1 + n2
max(1 − p)nmax .

By the same calculations as above, it can be easily established that:

E[X2
i ] =

1

p
[1 − (1 − p)nmax (nmaxp + 1)] + n2

max(1 − p)nmax . (11)
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3.4 System Delay

The packet delay component of while the preceding packets in a particular queue
i are being served (that is, waiting time in our M/G/1 system) can be given by
the Pollaczek-Khinchine formula [21] as follows:

V
(2)
i =

ρiE[Xi]
(
1 + c2

i

)

2(1 − ρi)
, (12)

where ci and E[Xi] are given above, and ρi = λiE[Xi] is the load of the queue i.
When a packet arrives, it can join the queue which is the next one to be

served (with the probability q), as well as any other queue uniformly. Hence, the
period of waiting between the arrival and the moment when the queue i obtains
opportunity to be served is:

V
(1)
i = q ((K − 1) + (K − 2) + ... + (0)) =

K(K − 1)

2K
=

K − 1

2
. (13)

Then, the total data packet delay δ in terms of the original system time may be
given as the sum of the sojourn time W and the feedback time τ :

δ = E[Wi] + τ = E[V
(1)
i ] + E[V

(1)
i ] + E[Xi] + τ =

=
K − 1

2
+

ρE[Xi]
(
1 + c2

i

)

2(1 − ρ)
+ KE[Xi] − (K − 1) + τ, (14)

where E[Xi] and ci are given by expressions (9) and (10) respectively, while
ρ = KλiE[Xi] = λE[Xi] is the system load and E[Xi] is given by (8).

From the distribution of the service time, we derive the packet drop probability
as the probability that a packet exhausts the maximum number of transmission
attempts and would be discarded by the user:

Ploss = Pr{packet is dropped | packet has been attempted} = (1−p)nmax . (15)

3.5 User Energy Efficiency

The user energy consumption per subframe may be established as the sum of the
fractions of time spent in every UE power state weighted by the actual power
consumption in the respective state. We note that with respect to the original
system time, the proportion of time that the UE spends in the transmit state
exactly equals the system load [21]:

q2 = λE[Xi]. (16)

Some additional energy expenditures come from the fact that the UE has to wait
for the BS response/feedback for τ subframes after its successful transmission.
We note that if the system is empty, that is, all the queues have no packets at
the same subframe, then the UE would spend the idle power. However, due to
the period τ of waiting after the successful transmission, the UE has to change
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its idle power level to active. The expected number of subframes per packet,
when the UE thus spends P1 instead of P0 may be obtained as:

E[τ0] =

τ−1∑

i=1

ipi
0(1 − p0) + τp0

τ =

[
p0

1 − p0

(
1 − τpτ−1

0 + τpτ
0 − pτ

0

)
+ τpτ

0

]
,

where p0 = (1 − ρi)
K

is the probability that all the queues are empty at the
same time and the individual queue load is given by:

ρi = ρ

[
1−λia

(
a(1−(K−2)aK−3+(K−3)aK−2)

1−a
+(K−1)aK−1 − 1

)]
, (17)

where a = e−λi . Hence, the proportion of the idle subframes, which have switched
to the active subframes, can be calculated as:

q0→1 = λ

[
p0

1 − p0

(
1 − τpτ−1

0 + τpτ
0 − pτ

0

)
+ τpτ

0

]
. (18)

Further, we evaluate the remaining time fractions that the user spends in other
states:

q0 = p0 − λ

[
p0

1 − p0

(
1 − τpτ−1

0 + τpτ
0 − pτ

0

)
+ τpτ

0

]
,

where p0 is the probability that all the queues are empty. Obviously,

q1 = 1 −
[
(1 − ρi)

K + ρ
]

+ λ

[
p0

1 − p0

(
1 − τpτ−1

0 + τpτ
0 − pτ

0

)
+ τpτ

0

]
.

Accounting for the parameters q0, q1, q2, we may obtain the exact value of
the mean user energy expenditure as:

ε = P0q0 + P1q1 + (P2 + P1) q2 =

= P0p0 + P1 [1 − p0 − ρ] + (P2 + P1)λE[Xi] + (P1 − P0) q0→1, (19)

where p0 = (1 − ρi)
K , and q0→1 and E[Xi] are given by expressions (18) and (8)

respectively. Finally, the mean user energy efficiency, which is defined as the ef-
fective stable arrival rate λ normalized by the corresponding energy consumption
ε, follows from:

φ =
λ

ε
. (20)

4 Numerical Results

In this section, we validate our analytical model with some simulation results.
As the baseline case, we consider one LPN and a single UE moving between
the macro BS and this LPN (see Figure 1). Note that the proposed approach
can technically be applied to an arbitrary LPN deployment, as only the packet
success probability is affected. Table 1 summarizes the main system parameters.

In Figure 6, energy efficiency as a function of the distance between the macro
BS and the LPN is given. The UE cell-edge mobility is limited by the handover
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Table 1. Primary system parameters

Notation Parameter description Value
– Inter-cell distance 500 m [9]
Δt Subframe size 1 ms
λ Mean arrival rate of packets at the UE 0.5
N Number of CoMP points per cell 2
Pmax Maximum UE transmit power 23 dBm
PT x,0 Target transmit power -82 dBm [9]
α Pathloss compensation factor 0.8 [9]
ΦBS Macro BS transmit power 46 dBm [9]
ΦLPN LPN transmit power 30 dBm [9]
P1 UE active power 100 mW
P0 UE idle power 10 mW
K Number of buffers at the UE 8
τ BS response/feedback time 4 ms
nmax Max. number of packet transmissions 4
D Distance between macro BS and LPN 250 m
N0 Thermal noise power -103 dB
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Fig. 6. User energy efficiency w.r.t. the distance between macro BS and LPN

threshold as defined in Section 2. Two alternatives are compared for the user in
the UL: (i) its transmission to the serving macro BS exclusively (red curves) and
(ii) improved macro given by CoMP selection combining scheme (blue curves).
As expected, UL CoMP demonstrates consistent energy gains, which increase as
long as the UE is moving toward the cell-edge. Hence, we conclude that already
with one LPN the system may recover up to 17% of user energy efficiency.

We also investigate the behavior of user data packet delay. Figure 7 demon-
strates the mean UE delay again depending on the distance between the macro
BS and the LPN. Clearly, the use of UL CoMP enables significant delay reduc-
tions which become more pronounced at the edge of the cell. This is due to the
improved values of packet success probability.
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Fig. 7. User data packet delay w.r.t. the distance between macro BS and LPN

5 Conclusion

In this paper, we consider a heterogeneous 3GPP LTE deployment where neigh-
boring LPNs may assist the macro-associated UE by independently receiving
its UL data packets and forwarding the successful outcomes to the serving BS.
Such CoMP scheme is known as selection combining and is believed to consider-
ably improve user cell-edge performance. With our evaluation methodology, we
combine analysis and simulations to account for the UE mobility, power control,
and dynamic traffic load. We confirm that the expected energy efficiency and
packet delay gains remain significant and consistent even for the low number of
available LPNs.
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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. In this paper, we consider a wireless cellular
system with an unbounded population of machine-type users.
The system provides a number of non-interfering slotted-time
channels which users contend for when sending their uplink data
packets. We propose a provably stable control procedure for the
channel access probability in the sense that it maintains a finite
number of unserviced users in the system. We also compare
the proposed algorithm against the optimal multi-channel slotted
Aloha to conclude that our solution demonstrates near-optimum
performance.

I. INTRODUCTION

In wireless communications, Medium Access Control
(MAC) algorithms are applied to arbitrate access of the user
population to the shared channel. Currently, Aloha [1], slotted
Aloha [2], and their numerous variations are the most deployed
and studied solutions. The main idea of Aloha-based channel
access is to defer the packet retransmission probabilistically
whenever two or more users collide.

However, it is commonly known that the original (un-
controlled) slotted Aloha protocol may be unstable [3] in
some scenarios. Addressing such instability, several dynamic
control procedures have been proposed by [4] to prevent
channel saturation. One such heuristic retransmission control
algorithm, named later the Binary Exponential Backoff (BEB),
allows a user to adjust its channel access probability basing
on history of its own transmission attempts. As such, the use
of BEB has been increasingly attractive due to little feedback
required from the channel. Not surprisingly, over the years the
BEB algorithm has become a part of most wireless systems.

Currently, BEB is widely used in cellular networks (such as
3GPP LTE and IEEE 802.16), when user requests resources
from the network, as well as in local area networks (such as
IEEE 802.11), for actual data transmissions. Whereas these
systems were performing well in practice, the community has
been cautioned about the poor asymptotic behavior of the
BEB algorithm. For instance, in [5] the BEB algorithm was
shown to be unstable in the infinite population model. By
contrast, in [6] the BEB algorithm was demonstrated to be
stable for sufficiently small arrival rates and finite population
model. This seeming contradiction has been due to different
assumptions and definitions of stability.

We reiterate the fact that infinite population model (where
every new data packet is typically treated as a separate con-
tending user) is known to highlight the limiting performance
metrics of an algorithm, whereas finite population model
(typically, with unbounded queues for newly arrived packets)
provides insight into the practical applicability of an algorithm.
Since in conventional human-oriented networks the number
of users remained relatively small, the results for infinite
population model have often been treated by most practitioners
as a merely theoretical exercise.

This has been true until recently, when a huge number of
unattended devices became integrated into the wireless infras-
tructure. Industry predicts that up to 30 thousand devices can
connect to a single cellular base station [7] while infrequently
transmitting very small data packets. Consequently, cellular
technologies are now developing enhancements to support
emerging machine-type communications (MTC) [8].

This evolved vision suggests a decisive step back toward
the infinite population model. In such extreme conditions, the
conventional BEB-based control schemes become overloaded
and fail to guarantee an acceptable quality of service [9].
Hence, the incentive is growing high to seek for alternative
stabilizing solutions by e.g. looking back to the classical
works, such as [10], [11], or [12].

Another characteristic feature of MTC is that the sys-
tem (e.g., 3GPP LTE) naturally provides a number of non-
interfering channels (in time, frequency, or code) for MTC
users to send their small data packets [13]. Whereas the
original slotted Aloha is unstable for multiple channels [14],
there are some practical works [15], [16] that propose feasible
modifications. In particular, [16] and its extended version [17]
build upon the control procedure from [11]. However, as no
strict stability proof for infinite population model has been
provided, it remains unclear whether these and many other
algorithms will be stable for growing user population in MTC.

To the best of our knowledge, there has been no multi-
channel algorithm that is provably stable for infinite population
model in the sense that it can maintain a finite number of
unserviced users in the system. We, therefore, propose our own
variation of controlled slotted Aloha basing on the technique
from [12] and rigorously prove its stability.



In the remainder of this paper, we first summarize the
assumptions of our system model. Further, we formulate an
optimal channel access algorithm, which however cannot be
implemented in practical systems, and then our proposed al-
gorithm. We show that our algorithm is stable for infinite user
population and that its performance is close to the optimum.

II. SYSTEM MODEL

We consider a centralized wireless system, where an un-
bounded number of users contend when sending their uplink
data packets to a common base station. In our infinite pop-
ulation slotted-time model, we assume that A(t) new users
arrive in slot t (e.g., according to a homogeneous Poisson
point process). The random variables A(t) are independent
and identically distributed, the arrival rate is E[A(t)] = λ,
and E[A2(t)] <∞.

A newly arrived user acquires exactly one packet to be
transmitted and competes with other backlogged users retrans-
mitting their packets. Once a user has transmitted its packet
successfully, it permanently leaves the system. Therefore, we
may employ the terms user and packet interchangeably.

The system comprises K synchronous and non-interfering
channels. Once a user decides to transmit, it randomly chooses
one such channel following the uniform distribution. Packet
transmissions may begin only at the start of a fixed-length
slot and every user is synchronized to the slotted time. Data
packets from all users have equal size and last the entire slot.

When a user has a packet to send, it may attempt to transmit
it in any slot. Typically, a newly arrived user will send its
packet in the next available slot, whereas backlogged users
retransmit probabilistically. However, following e.g. [18] we
assume that the newly arrived packets are treated identically
to the backlogged ones.

At the end of a slot, the base station reliably determines the
event in the channel, i.e. whether the channel was idle in this
time slot or that it had successful or failed transmission. The
transmission is considered successful if and only if exactly
one user transmits on a given channel. If two or more users
attempt to transmit on the same channel, all such transmissions
are considered failed and the users remain backlogged. The
maximum number of retransmission attempts is unbounded.
The total number of unserviced users at the slot t forms the
system backlog N(t).

Every backlogged user decides whether to transmit in a
particular slot with a given probability. We assume that such
channel access probability is identical for all the backlogged
users in the current slot and that it has been made available
by the base station instantaneously and reliably at the end of
the previous slot. The value of the channel access probability
is determined by the base station basing on the history of the
system. Various dynamic control procedures to manage this
probability are considered in the rest of this paper.

III. CHANNEL ACCESS ALGORITHMS

A. Optimal Control Procedure
Below we formulate the optimal procedure to control the

channel access probability in our system.

We denote the channel access probability as p(λ,w), where
λ is the arrival rate and w denotes the complete history of the
system up to the slot t (including information about individual
transmission history, channel events, new user arrivals, system
backlog, etc.) We are interested in formulating the optimal
control procedure p∗(λ,w) that minimizes the mean number
of backlogged users in the system n(t) = E[N(t)]:

p∗(λ,w) = p∗(λ,N(t)) =
K

N(t)
, (1)

where K is the number of channels and N(t) is the system
backlog at the time slot t.

In [19], the optimality of a similar control procedure in a
single-channel system (that is, for K = 1) has been rigorously
proved. Here, we generalize the result from [19] for K > 1 and
formulate it as a theorem. In existing literature (see e.g., [17]),
this optimal procedure is mentioned as folklore knowledge, but
the authors of this work are unaware of any strict proof of this
important fact.
Theorem 1. For any arrival flow such that the random
variables A(t) are i.i.d., E[A(t)] = λ, and E[A2(t)] <∞, the
control procedure p∗ = K

N(t) maintains the minimum number
of backlogged users in the system, i.e., E[N(t;λ, p∗)] ≤
E[N(t;λ, p)] for all t = 0, 1, 2, ... and any p ∈ S, where
S is the set of all possible control procedures.
Proof is given in the Appendix.

In practical systems, however, the implementation of such
optimal control procedure is not possible. This is due to
the fact that the number of backlogged users in the system
N(t) cannot be known even at the base station without
prohibitive levels of additional coordination between the users.
The question we seek to answer in the rest of this text is
whether there is a feasible control procedure based solely on
the history of channel events.
B. Proposed Control Procedure

Since the optimal control of channel access probability
is impractical, we propose an alternative control procedure
p(λ,w) based only on the channel history and not requiring
any information about the system backlog. We would like it
to have the highest value of the maximum stable throughput
λc, which is defined as the least upper bound of arrival rates
λ for which the system is stable [20].

In [12], an adaptive control procedure for the single-channel
slotted Aloha has been formulated and its stability conditions
have been established. Motivated by [12], we propose our own
control procedure suitable for a multi-channel system.

We introduce the following random process Z(t), Z(1) = 1
with the evolution given as:

Z(t+1)=max{1, Z(t)+ ∆Z(t)} , (2)

∆Z(t) =
K∑
i=1

(aI{vi(t)=0}+bI{vi(t)=1}+cI{vi(t)≥2}) ,

where vi(t) is the number of users attempting to access the
channel i at the slot t; I{vi(t) = 0}, I{vi(t) = 1}, I{vi(t) ≥
2} are the indicator functions of channel events, when 0, 1, or
more users attempt to access the channel, respectively; and a,
b, and c are some constant values which we discuss in more
detail in the next section.



Summarizing, we propose the following channel access
probability control procedure for multi-channel slotted Aloha,
which is based on the channel events in the slot t− 1:

p(λ,w) = p(λ, Z(t)) =
K

Z(t)
, (3)

where the process Z(t) has been described above.
IV. PROOF OF STABILITY

In this section, we establish stability conditions for the
proposed control procedure. There is a variety of alternative
definitions of stability with one of the first strict interpretations
given by [21]. Most of the time, it is equivalent to stating that
a stable algorithm can maintain a finite number of backlogged
unserviced users with probability one [22].

We note that a random process X(t) = (N(t), Z(t))
constitutes a two-dimensional Markov chain. Therefore, the
ergodicity of the process X(t) would ensure the stability of
our algorithm in terms of [22] and [21]. As such, below we
determine a combination of coefficients a, b, and c of the
process Z(t), such that the process X(t) is ergodic and the
corresponding maximum stable throughput λc is the highest.

In order to establish the ergodicity conditions, we will
further use the stability theorems for two-dimensional process
formulated by [12]. We begin by obtaining the average drifts
for the two-dimensional process X(t) and then calculate the
boundary vectors for the average drifts of X(t).
A. Average Drifts

The average drifts for the process X(t) are given as:
E[N(t+ 1)−N(t)|N(t) = n,Z(t) = z], (4)
E[Z(t+ 1)− Z(t)|N(t) = n,Z(t) = z]. (5)

Proposition 1. Let Y (t) represent the number of users leaving
the system in the slot t; N(t) = n, Z(t) = z. Then, for a multi-
channel slotted Aloha algorithm with K channels it holds:

E[Y (t)|n, z] =
nK

z

(
1− 1

z

)n−1

.

Proof. By definition,

E[Y (t)|n, z] = E

[
K∑
i=1

Yi(t)|n, z

]
=

K∑
i=1

E[Yi(t)|n, z],

where Yi(t) denotes the number of users that select the channel
number i and successfully leave the system in the slot t. We
note that E[Y (t)|n, z] = K · E[Yi(t)|n, z], i = 1,K, where
E[Yi(t)|n, z] can easily be calculated as:

E[Yi(t)|n, z]=
np(t)

K

(
1− p(t)

K

)n−1

=
n

z

(
1− 1

z

)n−1

,

Therefore,

E[Y (t)|n, z] =
nK

z

(
1− 1

z

)n−1

.

Lemma 1. The drift (4) of the process X(t) is established as:

E[N(t+1)−N(t)|N(t)=n,Z(t)=z]=λ−nK
z

(
1− 1

z

)n−1

. (6)

Proof. We denote by A(t) the number of newly arrived users
and by Y (t) the number of users that successfully leave the
system in the slot t.

E[N(t+ 1)−N(t)|n, z] = E[A(t)− Y (t)|n, z] =

= E[A(t)]− E[Y (t)|n, z] = λ− E[Y (t)|n, z]. (7)

We substitute the results of Proposition 1 into (7) to obtain:

E[N(t+ 1)−N(t)|N(t)=n,Z(t)=z]=λ− nK
z

(
1− 1

z

)n−1

.

Lemma 2. The drift (5) of the process X(t) is established as:
E[Z(t+ 1)− Z(t)|N(t) = n,Z(t) = z] =

= Kc+K(a−c)
(

1− 1

z

)n

+K(b−c)n
z

(
1− 1

z

)n−1

. (8)

Proof. We consider the average increment of the process Z(t):

E[∆Z(t)]=

K∑
i=1

E[aI{vi(t)=0}+bI{vi(t)=1}+cI{vi(t)≥2}]=

=
K∑
i=1

(aE[I{vi(t)=0}]+bE[I{vi(t)=1}]+cE[I{vi(t)≥2}]),

(9)and find the sought expectation by using Proposition 1.
Further, we consider a particular channel. The probability

that it has been chosen (i) by zero users is π0 = (1−p(t) 1
K )n,

(ii) by exactly one user is π1 = np(t) 1
K (1− p(t) 1

K )n−1, and
(iii) by two or more users is π2 = 1−π0−π1, where p(t) = K

z .
Then, we can establish the expressions for the components of
the equation (9) as:

E

[
K∑
i=1

I{vi(t) = 0}

]
=

K∑
k=1

k ·
(
K

k

)
πk

0 (1− π0)K−k =

= Kπ0 = K(1− 1

z
)n,

E

[
K∑
i=1

I{vi(t) = 1}

]
=

K∑
k=1

k ·
(
K

k

)
πk

1 (1− π1)K−k =

= Kπ1 = Kn
1

z
(1− 1

z
)n−1,

E

[
K∑
i=1

I{vi(t) ≥ 2}

]
=

K∑
k=1

k ·
(
K

k

)
πk

2 (1− π2)K−k =

= Kπ2 = K

(
1− (1− 1

z
)n − n1

z
(1− 1

z
)n−1

)
,

We now substitute the obtained results into the expression (9):
E [Z(t+ 1)− Z(t)|N(t) = n,Z(t) = z] = K×

×

[
a

(
1− 1

z

)n

+ b
n

z

(
1− 1

z

)n−1

+c

(
1−
(
1− 1

z

)n
−n
z

(
1− 1

z

)n−1
)]

=

=Kc+K(a−c)
(

1− 1

z

)n

+K(b−c)n
z

(
1− 1

z

)n−1

.

B. Boundary Vectors and Stability

In what follows, we continue by establishing the boundary
vectors of the average drift. By a limit argument

√
n2 + z2 →

∞, n/z = k, we obtain the following boundary vector function
µ = (µn(k), µz(k)) of the process X(t):
µz(k) = lim√

n2+z2→∞,n/z=k
E[Z(t+1)−Z(t)|N(t)=n,Z(t)=z],

µz(k) = Kc+K(a− c)e−k +K(b− c)ke−k, (10)
µn(k) = lim√

n2+z2→∞,n/z=k
E[N(t+1)−N(t)|N(t)=n,Z(t)=z],

µn(k) = λ−Kke−k. (11)
We now investigate the stability by solving the vector

equation µ(k)||k, which is equivalent to an equation:
µn(k) = kµz(k). (12)



Substituting the expressions (10) and (11) into (12), we derive:
λ−Kke−k = Kk̇(c+(a−c)e−k+(b−c)ke−k), k > 0. (13)

Here, we refer to the stability theorems in [12] for two-
dimensional process and claim that the considered Markov
chain is ergodic if µn(k) < 0 for all roots of (13). Next, we
establish the maximum stable throughput λc.
Lemma 3. For a multi-channel slotted Aloha algorithm with
K channels, the maximum stable throughput λc ≤ Ke−1.
Proof. Here, we refer to the results of [12] and [19]. The
considered Markov chain X(t) is ergodic only if the condition
µn(k) < 0 holds. Hence, λ−Kke−k < 0. We also note that
ke−k < e−1. Therefore, if λ > Ke−1 then the chain is not
ergodic, and, consequently, any stable throughput is always
bounded by Ke−1. As such, λc ≤ Ke−1.

We finally establish the parameters of the process Z(t), such
that λc is the highest, that is, λc = Ke−1.
Theorem 2. If for the coefficients a, b, and c of the process
Z(t), where c > 0 and a < 0, it holds the following:

c · (e− 2) + a+ b = 0, (14)
then the Markov chain X(t) is ergodic and λc = Ke−1.
Proof. We seek to find such values of a, b, and c that λc =
Ke−1. We also remind that for λ < λc it holds that µn(k) <
0. Firstly, we consider the maximum stable throughput λc =
Ke−1 > λ. Therefore,

K(−ki)e−ki = −K
e
, ki = 1, (15)

We now substitute (15) into (13):
0 = Kk

(
c+ (a− c)e−k + (b− c)ke−k

)
,

c+ (a− c)1

e
+ (b− c)1

e
= 0.

Hence, satisfying the following equation provides ergodicity
for any λ < λc = Ke−1: c · (e − 2) + a + b = 0. It can
also be proved that the Markov chain X(t) is not recurrent if
a > 0 or c < 0. For that reason, we only consider such sets
of coefficients, when a < 0 and c > 0.
Theorem 3. If the coefficients a, b, and c satisfy the conditions
of Theorem 2, then the proposed control procedure converges
to the optimal control procedure in the sense that n(t) →
n∗(t) for K →∞, where n(t) is the system backlog under
the proposed control and n∗(t) is the respective value under
the optimal control.
Proof of this theorem employs the same technique as the proof
of Theorem 1. But it is also using an auxiliary proposition
that the random process N(t) converges to Z(t) for K →∞,
and, particularly, δ(t) = (1/N(t) − 1/Z(t)) →K→∞ 0. This
proposition can be proved analyzing the system behavior for
K and K + 1, accounting for the definition of a limit, and
at the same time studying the convergence rate. We omit the
proof here due to space limitations.

V. NUMERICAL RESULTS
In this section, we compare the proposed multi-channel

control procedure against the optimal multi-channel control.
To give more insight, we also consider a single-channel
procedure in the equivalent conditions, that is, when a newly
arrived user is uniformly assigned a particular channel to
transmit on and no channel reselection is allowed by users.

Such independent use of channels allows accounting for
only one channel i with the optimal channel access probability
pi(t) = 1/Ni(t), where Ni(t) is the number of users sharing
this channel. The performance metrics for the single-channel
case may be obtained numerically according to [19]. For other
procedures, we present simulation data of 106 slots. For the
proposed control procedure, we set the parameters of the
process Z(t) (see eq. (3)) as a = −1, b = −1, and c = 1

e−2 .
These values satisfy the conditions of Theorem 2.
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Fig. 1. System backlog per channel for arrival rate λ = 0.3 ·K.

In Figure 1, we fix the arrival rate per channel to be suffi-
ciently high (i.e., λ = 0.3 ·K) and study the average number
of users in the system for all the three procedures by varying
the number of available channels. From the figure, we learn
that the proposed multi-channel procedure rapidly approaches
optimum with the increase in K, whereas the single-channel
procedure maintains independent constant performance.
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Fig. 2. System backlog per channel for K = 5 channels.

Contemporary practical single-channel multiple access
schemes (typically, BEB-based) are, therefore, expected to
perform not better than the optimal single-channel procedure.
Therefore, already for K = 3 we conclude that the proposed
procedure benefits over existing solutions owing to the joint
use of channels.

In Figure 2, we fix the number of available channels to be
K = 5 and again study the average system backlog by varying
the arrival rate per channel. The use of the proposed control
procedure results in the lower system backlog than that for
the optimal control over a single channel, and remains close
to the multi-channel optimum in the entire range of feasible
arrival rates.



VI. CONCLUSION
This work considers a wireless cellular system with an

unbounded population of contending users. These users share
a number of non-interfering uplink channels subject to a
common channel access probability advertised by the base
station. Whereas we demonstrate that the optimal control of
such probability is not feasible, we also detail a practical
adaptive procedure that provably maintains a finite number of
unserviced users in the system. With the increasing number
of channels, the proposed procedure quickly converges to the
optimal solution. We, therefore, conclude that our stabilized
multi-channel slotted Aloha algorithm is naturally suitable for
future machine-type systems with large user population.

APPENDIX
In this appendix, we prove Theorem 1 by application of the

mathematical induction.
Proof. The basis of the mathematical induction follows from
the fact that the number of users in the first slot does not
depend on the control procedure:

E[N(0;λ, p∗)] = E[N(0;λ, p)].
We note that N(t+ 1) = N(t) +A(t)− Y (t), where A(t) is
the number of newly arrived users in the slot t and Y (t) is
the number of users which successfully leave the system.

Let the induction hypothesis state for some t > 0 that
E[N(t;λ,p)]≥E[N∗(t;λ, p∗)]. Therefore,

E[N(t+ 1;λ, p)]− E[N∗(t+ 1;λ, p∗)] =

=(E[N(t;λ,p)]−E[N∗(t;λ,p∗)])−(E[Y (t;λ,p)]−E[Y (t;λ,p∗))≥
≥ E[Y (t;λ, p∗)]− E[Y (t;λ, p)] =

= E

[
K∑
i=1

Y i
0 (t;λ, p∗)

]
− E

[
K∑
i=1

Y i
0 (t;λ, p)

]
,

where Y i
0 (t;λ, p∗) is the number of users which leave the

system while using the channel i. We note that Y i
0 (t;λ, p∗)

does not depend on the number of the channel. Hence,
E[N(t+ 1;λ, p)]− E[N∗(t+ 1;λ, p∗)] ≥
≥ K · E[Y0(t;λ, p∗)]−K · E[Y0(t;λ, p)].

Let ξ(t) denote the complete (system) history of the contention
process up to the moment t and Ω is the space of a random
variable ξ(t). Ωi(t) is the set of ω ∈ Ω, such that n(t) =
i. Decomposing the expectation of Y0(t;λ, p) and then the
probability Pr{Y0(t;λ, p) = j}, we obtain:

E[Y0(t;λ, p)] =

∞∑
j=0

jPr{Y0(t;λ, p) = j} =

=
∞∑
j=0

j
∞∑
i=0

∑
ω∈Ωi(t)

Pr{Y0(t;λ, p) = j|ξ(t;λ, p) = ω}×

×Pr{ξ(t;λ, p) = ω} =

=

∞∑
i=0

∑
ω∈Ωi(t)

Pr{Y0(t;λ, p) = 1|ξ(t;λ, p) = ω}×

×Pr{ξ(t;λ, f) = ω} =

=
∞∑
i=0

∑
ω∈Ωi(t)

ip(λ, ω)

K

(
1− p(λ, ω)

K

)i−1

Pr{ξ(t;λ, p) = ω}.

Since the function ix(1− x)i−1 achieves its maximum at the
point x = 1

i , i.e., p(λ, ω) = K
i , we establish the following:

E[Y0(t;λ, p)] ≥
∞∑
i=0

∑
ω∈Ωi(t)

(1− 1

i
)i−1Pr{ξ(t;λ, p) = ω} =

=
∞∑
i=0

(
1− 1

i

)i−1 ∑
ω∈Ωi(t)

Pr{ξ(t;λ, p) = ω} =

=

∞∑
i=0

(
1− 1

i

)i−1

Pr{N(t;λ, p) = i}.

Finally, we derive:
E[N(t+ 1);λ, p]− E[N∗(t+ 1);λ, p∗] ≥

≥K
∞∑
i=0

(
1− 1

i

)i−1

Pr{N(t;λ,f)= i}−K · E[Y0(t;λ,p)]=0.
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Capturing Spatial Randomness of Heterogeneous
Cellular/WLAN Deployments with Dynamic Traffic

Olga Galinina†, Sergey Andreev, Mikhail Gerasimenko, Yevgeni Koucheryavy,
Nageen Himayat, Shu-ping Yeh, and Shilpa Talwar

Abstract—As fourth generation communications technology is
already being deployed, the attention of the recent research ef-
forts is shifting to what comes beyond the state-of-the-art wireless
systems. Driven by the anticipated acceleration in mobile traffic
demand, wireless industry is specifically focused on improving
capacity and coverage of current networks through aggressive
reuse of cellular spectrum. Together with deploying an increas-
ingly dense overlay tier of smaller cells, mobile network operators
are beginning to rely on unlicensed-band WLAN technologies
to leverage additional spectrum and relieve congestion on their
networks. Consequently, the emerging vision of heterogeneous
networks exploits the potential of a diverse range of devices
requiring connectivity at different scales to augment available
system capacity and improve user connectivity experience.

In this paper, we seek to meet this important trend with
our novel integrated methodology for assisted (managed) radio
network selection capturing spatial randomness of converged
cellular/WLAN deployments together with dynamic uplink traffic
from their users. To this end, we employ tools coming from
stochastic geometry to characterize performance of macro and
pico cellular networks, as well as WLAN, mindful of user
experience and targeting intelligent network selection/assignment.
We complement our analysis with system-level simulations pro-
viding deeper insights into the behavior of future heterogeneous
deployments.

I. INTRODUCTION AND MOTIVATION

WHEREAS decisive improvements in many aspects of
wireless system design have indeed been offered by

the recently completed fourth generation mobile broadband
standards [1], it is widely believed that current technology
will still be unable to face the projected growth of traffic
demand [2]. According to the recent predictions in [3], the
offered volumes of mobile data will increase at least 13-
fold over the following 5 years, aggravated by the rapid
proliferation in types and numbers of wireless devices. As a
consequence, the available network capacity and coverage may
become insufficient [4] thus severely degrading the resulting
quality of service (QoS) for end users [5].

With a historical 10-year cycle for every existing generation,
it is expected that novel fifth generation (5G) wireless systems
will be deployed sometime around 2020 [6]. While there
is currently no complete definition of what comes after the
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state-of-the-art networking technologies, many agree in that
the only comprehensive solution to mitigate the increasing
disproportion between the user QoS and the available wireless
resources is by deploying the higher density of femto and pico
cells in current cellular architecture. Due to shorter radio links,
network densification generally promises higher bit rates and
reduced energy for uplink transmission, especially in urban
cellular environments [7].

However, licensed spectrum continues to be scarce and
expensive, whereas the traditional methods to improve its
efficient use approach their theoretical limits [8]. Therefore, it
is expected that the majority of near-term capacity gains will
come from advanced architectures and protocols that would
leverage the unlicensed spectrum and take advantage of the
intricate interactions between the device and the network, as
well as between the devices themselves, across the converged
heterogeneous deployments. Consequently, the incentive to
efficiently coordinate between the alternative radio access
technologies (RATs) is growing stronger [9]. Here, the dis-
tributed unlicensed-band networks (e.g., WLAN technologies)
may take advantage of the centralized control function residing
in the cellular network to effectively perform dynamic multi-
RAT network association.

In summary, as cell-sizes shrink, the footprints of cellular,
local, and personal area networks are increasingly overlapping.
This creates an opportunity to simultaneously utilize multiple
RATs for improved capacity and connectivity [10], [11].
However, very limited research attention has been dedicated
to the assisted joint use of multiple networks, whereas much
effort has been invested into optimizing the performance of
individual radio technologies. We firmly believe that intelli-
gent coupling between multiple RATs may leverage several
dimensions of diversity (including spatial, temporal, frequency,
interference, load, etc.) and that both short- and long-range
technologies may need to work cooperatively [12] to realize
the desired improvements in capacity and service experience.

II. GENERAL BACKGROUND AND OUR CONTRIBUTIONS

A. Current Trends in Heterogeneous Networking

Over the past few years, tighter interworking between
various RATs has been receiving more momentum [13]. While
previously cellular and WLAN technologies were developing
largely independently, today WiFi is becoming an integral part
of an operator’s cellular network [14]. This is on the one hand
due to the fact that contemporary consumer devices massively
support WiFi together with other RATs. On the other hand,
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mobile network operators increasingly rely on WLAN-based
offloading to relieve congestion on their cellular networks [15]
and hence desire more control of how WLAN is utilized and
managed.

In light of the above, Heterogeneous Networks (HetNets)
have recently emerged as advanced networking architecture
(see Figure 1) enabling aggressive capacity and coverage
improvements towards future 5G networks [16]. This archi-
tecture comprises hierarchical deployment of wide-area macro
cells for basic connectivity and coverage augmented with
(densely deployed [17]) small cells of various footprints and
by different RATs (femto and pico cells, WiFi access points,
relay nodes, integrated WiFi-LTE small cells, etc.) to boost
capacity [18]. In particular, when WLAN is managed as
part of an operator’s cellular network, more advanced levels
of interworking between cellular and WLAN RATs become
available.

LTE Macro
base station

LTE Pico 
base station

Co-located LTE-WiFi
base station

LTE Femto
base station

WiFi
access point

Outdoor

Indoor

Outdoor

Indoor

Fig. 1. Our vision of a heterogeneous network.

Not surprisingly, recent literature has been very rich in
addressing the important aspects of load balancing and access
network selection for multi-RAT HetNets [19]. The existing
publications range from considering simpler user-centric net-
work selection strategies (known as vertical handover) to full
multi-tier and multi-radio cooperation [20], [21], e.g., where
WiFi becomes a “virtual carrier” anchored on the cellular
network. However, the focus has been mostly on centrally-
managed systems with full control at the base station or totally
distributed solutions, but not so much on network-assisted
schemes. Most recently, the concept of LTE-unlicensed has
attracted interest of industry and academia alike with the goal
of allowing LTE systems to utilize bandwidth-rich unlicensed
spectrum around 5 GHz band to augment their capacity [22].
Another emerging industry trend considered in latest publica-
tions is multi-radio small cells with co-located cellular and
WLAN interfaces able to reduce deployment costs and lever-
age common infrastructure across heterogeneous cells [23].

Reacting to this recent interest, the Third Generation Part-
nership Project (3GPP) is becoming increasingly active in

developing new interworking solutions between 3GPP cel-
lular technologies, such as UMTS or LTE, and WiFi (IEEE
802.11 [24]) technology. However, given that co-located cel-
lular/WLAN deployments are presently not common, current
standardization efforts focus more on user-centric interwork-
ing architectures while only assuming limited degrees of
cooperation/assistance across the HetNet [25]. The field of
investigation spans across (i) schemes for trusted access to
3GPP services with WLAN devices, (ii) support for Access
Network Discovery and Selection functions, and (iii) seamless
mobility between cellular and WLAN technologies.

More recently, several new study/work items have been open
targeting the interworking solutions that involve cooperation
within the Radio Access Network (RAN) [26] by contrast
to prior schemes that have loosely defined functions within
the 3GPP core network (such as security and inter-RAT
mobility) [27], [28], [29]. This shift is dictated by the need
to support improved QoS on WLAN networks as prescribed
by a consortium of network operators with their tighter re-
quirements for carrier grade WiFi. The WLAN community
has also responded with their new initiatives on Hot Spot 2.0,
as well as an emerging “High Efficiency WLAN” effort by
the IEEE 802.11 work group. Therefore, we expect the trend
for tighter integration of cellular and WLAN technologies to
continue by potentially encompassing other radio technologies
beyond current WiFi and additional use cases beyond spectrum
aggregation.

B. Characterizing Uplink Traffic Dynamics
In this work, we specifically focus on the important problem

of network selection between multi-tier cellular and WLAN
RATs [30] assuming that WLAN belongs to an operator
deployed and managed multi-RAT HetNet. Further, we make
a step ahead with respect to the current 3GPP efforts and
consider intelligent assistance from the cellular network in the
RAT selection process, when a new coordinating entity in the
cellular RAN is made to receive relevant information from
multi-radio devices (e.g., their position, QoS requirements,
how much interference/load they sense on the nearby WLAN
networks, etc.) and then advises the users on the attractive
connectivity options. We intend to thoroughly investigate a
particular assisted network admission and selection scheme,
as well as demonstrate that it may provide considerable im-
provements in overall system performance while guaranteeing
the required user QoS.

For consistency with current network deployments, we
concentrate on distributed small cell overlay with standalone
WiFi access points as well as pico cell base stations, as-
suming that there is no direct interface between the cellular
and WLAN radio networks. However, our methodology may
also characterize co-located cellular/WLAN deployments as
well as more advanced technologies and scenarios to become
appealing in the context of 5G networks [31]. In particular,
the network selection mechanisms considered are operating
at the RAN layer, which resides below the IP layer. More
specifically, we focus on uplink performance as it has not been
fully addressed in existing literature due to more challenging
interference-related aspects [32].
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To further advance the state-of-the-art research on HetNets
primarily focusing so far on static (full-buffer) steady-state
formulations, we target flow-level performance and consider
stochastic traffic loads. In particular, new data flows repre-
senting, e.g., real-time data sessions with the minimum target
bitrate are arriving randomly and leave the system after the
service has been received [33]. Consequently, the number of
active flows varies with time, which is often referred to as the
flow-level dynamics. Analyzing dynamic setups is important
to gain better understanding of real-world systems, but it also
incurs extra complexity. Therefore, dynamic systems receive
much less research attention than their static alternatives, that
is, with a fixed set of backlogged users.

Every data flow in a dynamic network may generally
represent a stream of packets corresponding to a new file
transfer, web-page browsing, or real-time voice/video ses-
sion. To mimic the flows produced by a large population of
independent users, Poisson processes have extensively been
applied in the past. Originally, flow-level frameworks were
helpful investigating flexible bandwidth allocation mechanisms
in the context of wired systems. Extending their applicability
to wireless networks, it was concluded that the throughput
experienced by a dynamic user population can substantially
differ from that received by a fixed number of users [34].
As such, studying dynamic wireless systems is becoming
increasingly important and we concentrate on characterizing
HetNet dynamics in what follows.

C. Coupling with Spatial Randomness

Another important aspect of HetNets is that locations of
the network users relative to each other highly impact the
resulting system performance [35]. Indeed, given that users
are not regularly spaced, there may be a high degree of
spatial randomness which needs to be considered explicitly.
We thus adopt an appropriate random spatial model where user
locations are drawn from a particular realization of a random
process. Coupling such topological randomness with system
dynamics requires a fundamental difference in characterizing
user signal power and interference. Fortunately, the field of
stochastic geometry provides us with a rich set of powerful
results and analytical tools that can capture the network-wide
performance of a random user deployment [36].

The use of stochastic geometry (that is, statistical modeling
of spatial relationships) has become increasingly popular over
the last decades to analyze network performance averaged over
multiple spatial realizations. As part of a more recent surge, it
has also been useful in characterizing many important aspects
of current cellular technology, from conventional macro cell
deployments to hyper-dense heterogeneous and small cell
networks [37]. The application of stochastic geometry typi-
cally features a particular spatial point process to statistically
capture, e.g., user locations yielding insights on the impacts
of user density, transmit power, path loss, and interference.

In the absence of prior information about user locations,
the simplest statistical tool to model user deployment is a
uniform distribution within a finite area in the two-dimensional
plane. Such uniformity constitutes a direct result of applying

a homogeneous Poisson point process, which in turn assumes
that, conditioned on the number of points of the process lying
in an arbitrary finite region, the points are independently and
uniformly distributed over that region.

Other more realistic, but also significantly more complex
point processes are binomial process spawning a fixed number
of users in a given area and Poisson cluster process allowing
users to cluster in certain locations. Finally, there is also
hard core point process which is a thinning of the Poisson
point process such that the users have a guaranteed minimum
separation.

In summary, the main contributions of this paper are
(i) a novel space-time analytical HetNet model that couples
spatial randomness of user locations with their uplink flow-
level traffic dynamics by contrast to full-buffer (saturated) con-
siderations; (ii) a particular (heuristic) policy of assisted user
admission and intelligent RAT selection/assignment, which
results in an adequate compromise between fully-distributed
(uncoordinated) and centrally-controlled solutions; (iii) a de-
tailed system-level evaluation of the respective network and
user performance used to verify our analysis as well as to
provide deeper insights into the behavior of future HetNet
deployments.

III. PROPOSED HETNET-CENTRIC METHODOLOGY

In this section, we introduce our integrated system model
comprising WLAN, macro, and pico cellular networks, which
we hereinafter refer to as tiers. We summarize the core
assumptions of the model below.

A. General Assumptions

We study one (typical) cell of a macro network with the
radius R featuring a macro base station (BS) in its center
together with several pico BSs and WLAN access points
(APs), as depicted in Figure 2. In what follows, the macro
cell is termed the Macro tier, while the pico cell and the
WLAN are referred to as the Pico tier and the WLAN tier,
respectively. All the BSs/APs are capable of serving uplink
data from their wireless users concurrently. The considered
traffic is characteristic of real-time sessions with the target
bitrate of r0.

Basing on the recent specifications [26], we further assume
non-overlapping frequency bands for all three tiers. Therefore,
user transmissions on one tier do not interfere with those on the
other. However, all WLAN/Pico tier links share the frequency
bands of their respective tiers and thus interfere, whereas the
Macro tier is interference-free. Our general system model is
illustrated in Figure 2 representing areas of the Macro, Pico,
and WLAN tiers together with the corresponding users and
infrastructure nodes.

We assume that the transmitting users (or, sessions) with
some uplink data traffic demand arrive on the joint network ac-
cording to one-dimensional Poisson process of rate λ in time.
We thus associate a newly arrived user with its session and
its location, which is assumed fixed throughout the session’s
lifetime. For the sake of tractability, we also assume that the
duration of a user session is exponentially distributed with
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Fig. 2. System model of a HetNet with three tiers within macro BS coverage
range of radius R: the cuts demonstrate different network tiers.

the mean of µ−1, which may correspond to, e.g., a real-time
voice/video call.

To explicitly model topological randomness in our network,
we employ several stochastic processes and, to this end,
formulate the following principal assumptions.

Assumption 1. Spatial distribution of infrastructure. The
locations of APs (on the WLAN tier) and BSs (on the Pico
tier) are independent and spatially distributed according to
a Poisson point process (PPP) on the two-dimensional plane
with the rates of Lw and Lp, respectively.

We note that the densities Lw and Lp may be thought of as
the average numbers of APs/BSs per a unit of area, while their
positions may be located outside the circle of macro coverage
(potentially, serving other-cell users).

To further account for traffic dynamics, we adopt the
following assumption on the user locations.

Assumption 2. Spatial distribution of users. The locations
of arriving users are distributed according to the PPP on the
two-dimensional plane. The area of our interest is limited by
the considered macro cell (e.g., circle B of radius R), which
results in uniform distribution of users within B.

We note that in practice the restriction of deploying users
within a particular area may be dictated by, e.g., maximum
transmit power constraints and/or channel degradation factors.
Moreover, uniform distribution is only assumed here as a base-
line example. Generally, we may consider an arbitrary joint
distribution f(x, y) of user locations, which would somewhat
complicate further analysis technically, but without significant
impact on the derivation methodology.

The user arrival pattern together with the spatial distribution
of their locations constitute a space-time process with the
generalized rate function Λ(x, t), where x ∈ R2 is the spatial
component and t ∈ R+ is the time component, and

Λ(x, t) =
λ

SR
, if x ∈ B, (1)

where SR = πR2 is the area of the macro cell. The function
Λ(x, t) has the meaning of the frequency with which the events
are expected to occur in the unit of R2 × R+.

Assumption 3. Signal propagation. The wireless channel
gain γi,j between the user Ui and the AP/BS j depends on the
distance di,j separating them. Therefore, following, e.g., [38],
we assume that for the session i the channel gain (path gain)
γi,j is expressed as a power function of distance:

γi,j =
G

di,j
κ , (2)

where di,j is the distance between the AP/BS and the trans-
mitting user, κ is the propagation exponent, and G is the
propagation constant. The parameters κ and G are determined
by the particular radio access technology and account for the
corresponding channel model.

To clarify the above assumption, we emphasize that the
models in [38] contain the line-of-sight (LOS) and non-line-of-
sight (NLOS) components triggered by a Bernoulli-distributed
random variable corresponding to the LOS case. Typically,
those models may be easily fitted into our power model (2),
where the constants G and κ would correspond to the target
scenario- and technology-related parameters.

Since our model is primarily intended for characterizing
the long-term average system operation without excessive user
mobility, the impact of fast fading is averaged out by the use
of forward error correction, and therefore has minimal (and,
nearly constant) effect on performance. The effects of slow
fading have most of their influence on the link budget, rather
than the variability in the link quality, and in our methodology
these are captured by the appropriate propagation model.
Additional considerations on fading are given in Appendix A
by introducing a random component into the link budget.
Along these lines, to accommodate both types of fading in
our analysis, we introduce the corresponding fading margin η,
which is then added to the link budget.

In terms of the achievable accuracy, it might have been ben-
eficial to include the fading effects into the model explicitly.
On the other hand, this would require significant complication
of the analysis at hand, primarily to accommodate such func-
tions as HARQ, MCS selection, and closed-loop power con-
trol. All this would make strict analysis not feasible, leading
to even more approximations and assumptions. Therefore, the
channel gain γ remains the most determining factor in defining
the relation between the transmit power and the achievable
data rate for the considered link between the user and the
AP/BS.

Without the loss of generality, we further assume that the
data rate is continuous and that the power-rate mapping is
defined by the Shannon’s formula. This consideration has
recently been shown in [39] to remain very accurate for current
wireless networks.

Assumption 4. Power-rate mapping. The transmit power pi
of a user and its corresponding data rate ri (in [nats/s]) are
coupled by the generalized Shannon’s formula:

ri = B log (1 +Api) , (3)

where pi is the output power of the radio frequency power
amplifier, whereas A and B are the scaling coefficients de-
pendent on the particular wireless technology used. For the
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sake of an example, these are given as:

A =
ηγi,i
N0 + I

, B = w, (4)

where γi,i is the path gain between the user and the AP/BS for
session i, η is the fading margin, w is the channel bandwidth,
N0 is the noise level, and I is the interference level at the
receiver.

In order to constrain the growth of the data rate due to
the fixed set of modulation and coding schemes, we assume
that the rate remains constant rlim when d < d0. The latter
effectively means that further increase in the SNR does not
yield the unbounded data rate growth after a certain value of
d0. The parameter d0 may be written as:

d0 =

[
G · p

(N0 + I)
(
erlim/w − 1

)]1/κ . (5)

While random network topology is the primary focus of
our model, we also investigate flow-level system dynamics.
This involves an appropriate queuing model, where the session
arrives and leaves the system after being served (the service
time is determined by the random session length). When a
new session arrives or a served session leaves the system, the
centralized assisting entity in the cellular network performs
admission and power control on all tiers by deciding whether
the session would be admitted to a particular tier or not
(admission control) and/or advising on the user’s transmit
power (power control).

Assumption 5. Admission control. Every real-time session
requires the target bitrate of r0. Therefore, the system admits
a newly arrived session if there is still sufficient resource to
serve it. In other words, each ongoing session i has to occupy
exactly r0/ri-fraction of the system time (where the overhead
is accounted for later), while for all the active sessions it holds
the following: ∑

all sessions

(
r0
ri

)
≤ δ, (6)

where δ is the available resource at a particular AP/BS (e.g.,
excluding resources allocated for fading compensation), ri ≤
rmaxi is the instantaneous data rate depending on the distance
between the user and the receiving AP/BS, and rmaxi is the
maximum achievable data rate at the maximum power level.

Additionally, admission control policy may determine
whether current interference exceeds a given threshold or not.

Assumption 6. Interference assessment. Further, it is im-
posed that a tier with n − 1 active users admits a new
session/user n if for the set {Ui}ni=1 of all users the following
condition holds at each BS/AP Aj:

ri ≥ r0 and piγi,j ≤ N0, ∀j, i 6= j, (7)

where γi,j is the path gain between the user and the AP/BS j
and pi is the corresponding allocated power.

By examining the expression piγi,j , we ensure that the user
does not cause interference higher than the (modified) noise
level for the considered radio technology (see [40] for further

discussions). Rephrasing the above, admission control ensures
that the required minimum bitrate can be achieved by a user,
and that the interference at the AP/BS Ai produced by the
user Uj does not exceed a given threshold. This threshold is
highly dependent on the technology features and is discussed
below separately for the WLAN and the Pico tiers, whereas
no interference is assumed on the Macro tier.

Assumption 7. Interference boundary. We also assume that
the noise plus interference has the form of N0 + I = KN0,
where the value of K is a scaling parameter fixed across the
network, which has the meaning of the interference margin
per AP/BS.

In reality, the pico BSs attempt to limit the interference of
their admitted users onto the neighboring BSs by means of var-
ious control mechanisms (dynamic scheduling, link adaptation,
etc.). Therefore, the following engineering technique might be
feasible. We may aggregate the individual interferences created
by the proximate users of a particular tier into a cumulative
background noise level, which in the practice of network
planning is taken into account as a particular interference
margin.

We note here that our interference and rate estimation
has predictive character and assists the network in making
a decision on whether a user should be admitted or not.
Alternatively, if a session cannot be admitted on a particular
tier, it is considered blocked with the probability P (1/2/3)

block .
Further, we differentiate between two alternative joint strate-

gies for power control and scheduling, which are termed the
maximum power policy and the round robin policy.

Assumption 8. Power control and scheduling. The consid-
ered policies are the following.

1. The maximum power policy sets a fixed transmit power
which is the allowable maximum for a particular radio tech-
nology. Then, admission control checks if the target bitrate
can be achieved with this maximum power.

2. The round robin policy ensures that the system resource
is always shared between the users equally and, therefore,
employs another power and admission control. Each admitted
session out of n running sessions is allocated an equal portion
of the total time resource, i.e., r0ri = 1

n . Then, the users adjust
their transmit power to match their required target bitrate as
long as it does not exceed the maximum allowed power level.

B. System Operation and Metrics

In this work, we concentrate on a particular (heuristic)
mechanism for user admission and network selection. The
example of system operation is illustrated in Figure 3. We
consider the following cascade service when a new session
arrives into the system. First, the network selection assistance
entity residing on the cellular network attempts to offload
the newly arrived session onto the nearest WLAN AP by
performing the WLAN admission control managed centrally.
We note that the nearest AP may also be located outside of
the circle R.

If the session is accepted on the WLAN tier, it is served
there without interruption until when it successfully leaves the



6

system. Otherwise, if this session cannot be admitted onto
the WLAN, the pico network admission control is executed.
Hence, either the session is accepted on the Pico tier and
served by the nearest pico BS or the macro network itself
attempts to serve this session. Eventually, if the session
cannot be admitted onto the Macro tier either, it is considered
permanently blocked and leaves the system unserved without
any impact on the new arrivals.

Session 
arrives

Pico layer Macro layerWLAN layer

Session blocked

Session served

PblockP(2)
blockP(1)

block

λ

Transmission link
Possible link

served

served

Fig. 3. Consecutive system operation: WLAN, Pico, and Macro tiers.

The proposed sequential network-assisted admission results
in a good compromise between fully-distributed (uncoordi-
nated) and centrally-controlled solutions. Whereas the former
may be substantially sub-optimal, the latter may result in
excessive computational complexity and associated signaling
overheads. By contrast, our cascade model is capable of
packing network capacity sequentially and thus becomes an
attractive candidate for future HetNet deployments. We thus
leave the consideration of other (network-optimal) policies out
of scope of the paper, focusing in what follows only on some
methodological aspects to evaluate such.

In addition, the choice of the cascade service in Figure 3 is
desirable in terms of the associated user/operator costs. Due
to the fact that WiFi connectivity is often available free of
charge, it is always beneficial to offload as many sessions as
possible onto the WLAN tier as long as user QoS remains
acceptable (which in our model is ensured by the respective
network-assisted admission control). When the WLAN tier
is enough loaded and is not able to accept more users, the
second preferable candidate is the Pico tier. This is due to the
operator’s desire to balance the load across small cells for users
with low mobility. The conventional macro network service
would then be left by the operators as a fall-back option for
their users (or for highly-mobile users not considered here).

Whenever admitted, a transmitting user exploits a fraction of
the system time resource and sets its power as commanded by
the power control module to achieve its required data rate. The
system makes a new decision on scheduling and transmission
power allocations for all the active users at every new arrival
or when an existing session is served and leaves the system.

For each tier, we introduce the corresponding blocking prob-
ability P

(i)
block and acceptance probability P

(i)
a = 1 − P (i)

block,
where i = 1, 2, 3 are the indexes of the WLAN, Pico,
and Macro tiers, respectively. Moreover, we remind that the
session arrival rate on the (first) WLAN tier is λw = λ (see
Assumption 2).

Assumption 9. Decoupling assumption. To preserve analyt-
ical tractability of our mathematical model, we assume that
all three network tiers serve their users independently, which
results in a random thinning of the arrival process with the
corresponding acceptance probabilities.

The above assumption is a natural methodological move
to decompose the system into a set of tractable and well-
defined components, which may be easily replaced and/or
interchanged (e.g., should one ever decide to modify the
priority of tiers in the admission control procedure).

Proposition 1. Due to Poisson property of the thinned flow,
the arrivals on the (second) Pico tier (those not accepted by
the WLAN tier) follow a Poisson process of density λp =

λ
(

1− P (1)
a

)
, where P (1)

a is the WLAN tier accept probability.
Similarly, the arrivals on the (third) Macro tier adhere to a
Poisson process of density λm = λ

(
1− P (1)

a

)(
1− P (2)

a

)
,

where P (2)
a is the Pico tier accept probability.

Abstracting away the locations of users for analytical
tractability, we assume that the arrivals on the Pico and the
Macro tiers are also placed uniformly within the circle of
radius R. In contrast to Proposition 1, the latter consideration
does not hold in reality. Instead, there is some pattern in which
users are taken for service by the WLAN and the Pico tiers.
However, our simulation results (as reported in Section V)
reveal that the assumption of uniformity is surprisingly accu-
rate. This makes the analysis of our system under the above
mentioned assumptions to be an adequate approximation for
the practical HetNet operation.

Consequently, the overall system blocking probability Pblock
may be established as follows:

Pblock=1−
[
P (1)
a +

(
1−P (1)

a

)
P (2)
a +

(
1−P (2)

a

)(
1−P (1)

a

)
P (3)
a

]
,

(8)
where P (3)

a is the macro cell accept probability.
Below we detail the distinguishing features of each of the

three tiers in the order of system operation: WLAN, Pico, and
Macro tiers, respectively.

C. WLAN Tier Model

Here we consider the WLAN tier comprising a random
number Nw of WiFi APs Aj , j = 1, Nw placed according
to Assumption 1, i.e., uniformly on the plane.

WLAN tier follows the maximum power policy as discussed
in Assumption 8, which means that a user sends its data at
the maximum allowed transmit power level. Due to the fact
that the WLAN system is inherently interference-limited, we
employ the Shannon’s capacity theorem (3) as the power-rate
mapping and take into account the current number of users
associated with an AP. Then, the instantaneous data rate for
the session i is determined by the maximum transmit power
pmax as:

ri = rmaxi = w log (1 + SINRi) = w log

(
1 +

ηpmaxγi,i
KN0

)
,
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Fig. 4. WLAN tier operation.

where N0 is the fixed noise power level and K is interference-
related parameter as described above.

Therefore, the system admits a newly arrived user and
associates it with a particular AP if the following condition
holds: ∑

all AP sessions

(
r0
rmaxi

)
≤ δw,

where δw is the actually available resource for the AP-centered
cluster after removing the overheads of the random-access
based MAC (associated with signaling and contention, see
details in [41]) and rmax is the highest achievable data rate at
the maximum power level.

In addition, and specifically for the WLAN interference
control, we note that due to the Clear Channel Assessment
(CCA) function we may refer to the noise level as to the CCA
threshold. Therefore, the WLAN admission control policy
examines whether the interference at each neighboring AP
(produced by the extra power pmax from a newly arrived
user) does not exceed the given noise threshold N0, and the
respective K = 1.

D. Pico Tier Model

Further, we consider the Pico tier comprising a random
number Np of pico BSs Pj , j = 1, Np placed uniformly
according to Assumption 1.

We remind that all the pico cell connections operate on
the same frequency, which is assumed here without loss of
generality since a new frequency may be added to our system
as an additional Pico tier. Therefore, similarly to the WLAN
tier, we take into account the interference from admitted users
at the neighboring pico BSs.

The transmit power pi of a user and its data rate ri are also
coupled by the Shannon’s capacity theorem for interference-
limited environment:

ri = w log (1 + SINRi) = w log

(
1 +

ηpiγi,i
KN0

)
.

On the Pico tier, we mimic the operation of the Open Loop
Power Control (OLPC) procedure (see [42], Section 5.4.1.3)
by assuming that the centralized entity estimates the system
parameters and advises on the appropriate transmit power

Pico user

Pico
base station

Pico
base station

Transmission
Interference

Pico user

Pico
base station

Arrived user

Fig. 5. Pico tier operation.

values pi accordingly. The estimation is based on both power
and interference control as follows.

The Pico tier employs the following interference model. As
an upper bound on the interference level at the pico BS, we
assume the maximum average interference level of a highly-
loaded pico BS, thus parameterizing our model. Being a func-
tion of the number of neighboring pico BSs, the interference
level in question is considered to be independent of the number
of users. This relaxes the interference check at the admission
control stage and yields the worst-case interference estimate.

By contrast to the WLAN tier, the Pico tier employs the
round robin power control/scheduling policy. Therefore, in
order to admit a new session number n0, the pico BS has to
increase the power of the already running transmissions, such
that they would still fit into their smaller time allocations. If
it is not possible for at least one of the n0 active sessions
(including the new session) at any particular pico BS, that is,
rmaxi = w log

(
1 + γiηpmax

KN0

)
< n0r0, then a newly arrived

user cannot be admitted onto the Pico tier. Otherwise, the
system time is re-allocated for n sessions and users employ
other (higher) transmit power levels:

pi =
1

ηγi

(
en0r0/w − 1

)
(KN0),

where pi ≤ pmax and KN0 is the power of noise plus
interference from the neighboring pico BSs.

Therefore, the Pico tier only admits a newly arrived session
if there are still sufficient resources to serve it. In other words,
each ongoing session at a particular pico BS has to occupy
exactly 1/n0-fraction of time frame duration, while for all the
sessions the following holds:∑

all BS sessions

(
r0
rmax
i

)
= δp,

where δp is the total available resource for the pico BS-
centered cluster.

E. Macro Tier Model

Finally, we consider the Macro tier with a single serving
BS which is exempt from the inter-cell interference (which
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is similar to treating the interference coming from the neigh-
boring macro cells as the increased background noise). This
formulation implies interference-free communication as long
as uplink user transmissions are orthogonal by network design.

Hence, by contrast to the WLAN and the Pico tiers, As-
sumption 4 transforms into the following (simplified) power-
rate mapping:

ri = w log (1 + SNRi) = w log

(
1 +

ηγi
KN0

pi

)
,

where SNR is the signal-to-noise ratio, γi is the channel gain
between the user and the macro BS, and N0 is the noise level.

Transmission

Macro user

Macro user

Macro user

Macro 
base station

Arrived user

Macro user

Macro user

Fig. 6. Macro tier operation.

Following the operation of the OLPC scheme, the admission
and power control on the Macro tier are performed similarly to
those on the Pico tier where each admitted session is allocated
an equal portion of the total system time:

r0
ri

=
δm
n
, ri = r0n, ∀i = 1, n,

where δm is the actually available resource at the macro BS.
However, due to the absence of interference, the Macro tier

admission control should disregard any interference-related
considerations. Therefore, a newly arrived session can only
be admitted by the Macro tier iff :

rmaxi = w log

(
1 +

ηγipmax

KN0

)
≥ n r0

δm
.

If the above condition holds, the system time is again re-
allocated for n running sessions and the users’ transmit powers
are set as pi = KN0

ηγi

(
enr0/(wδm) − 1

)
≥ pmax. Otherwise, the

candidate session is considered to be permanently blocked and
leaves the system unserved.

IV. ANALYSIS OF RANDOM DYNAMIC HETNETS

In this section, we provide a summary of our analytical
efforts to evaluate the important HetNet performance metrics.
Hereinafter, we consider three different tiers separately. We
underline here that our system analysis is built on the decou-
pling principle as per Assumption 9. This technique is used
widely and allows evaluating even very complex systems by
regarding them as an integrated set of tractable problems.

A. Stochastic Model

Here, we outline our general stochastic model for the
WLAN, Pico, and Macro tiers based on the assumptions
of Section III. Assume that the arrivals on the three tiers
follow a Poisson process with the rates λw = λ, λp, and
λm, respectively. We observe the Macro tier at the particular
moments t of session (user) arrivals/departures. Since the
arrivals follow a Poisson process and the service (session
length) is distributed exponentially, our system behavior may
be represented as a stochastic Markov process S(t), where
the future process evolution is determined by the set of the
ongoing sessions that are currently served on a given tier.

1) Macro Tier Analysis: For the Macro tier, the state of
the process S(t) is determined by the characteristics of the
ongoing sessions on the macro cell. For convenience, we
denote these abstract characteristics as ω and note that they
depend on the location of the user. Therefore, the system
state is represented by the vector (ω1, ..., ωn), where n is the
number of sessions in service (see Figure 7).

...
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... ...

...

...

...

0

nμ

n

n

N=1 N=n

...

ω1 ...

ω1

ω1

ω1
ωn

...ω1
ωn

...ω1
ωn

...

...ω1
ωn+1

...

N=n+1

μ

μ

μ

μ

μ

...ω1
ωn+1

...ω1
ωn+1

Fig. 7. State diagram for the Macro tier.

Let the Macro tier have n running sessions in the state s. We
denote the probability of rejection at the state s for the newly
arrived session as Qn+1|s. Then, transitions from the state
s = (ω1, ..., ωn) to the state (ω1, ..., ωn, ωn+1) and backwards
have the rates of λm

(
1−Qn+1|s

)
and (n+1)µ, respectively.

2) WLAN and Pico Tiers Analysis: Since the WLAN and
the Pico tiers are both interference-limited, we provide the
following reasoning for the two of them jointly. This is because
the respective stochastic processes have identical state-related
properties.

The WLAN/Pico tier comprises several APs/BSs which are
distributed on the plane with the densities of Lw and Lp.
Therefore, the state of the stochastic Markov process S(t)
may be represented by the set of sessions with respect to the
corresponding APs/BSs. Similarly, we adopt notation ω for the
session characterization. Then, the state s of the WLAN/Pico
tier is represented by:

(ω1, ..., ωn1
;ωn1+1, ..., ωn1+n2

; ...;ωsn+1, ..., ωsn+nNw/f),

where sn =
∑Nw/f−1
i=1 ni, as well as n1, n2, and nNw/p are

the numbers of users associated with the first, the second,
and the last AP/BS, respectively. The random variable Nw/p
corresponds to the number of APs/BSs in a certain area
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and follows a Poisson distribution. The state diagram of the
considered system is illustrated in Figure 8.

ω1 0; ;...;0 ω10; ;...;0 ω10; ;...;0

n1

ω ω ω
ω
ω

ω
... ... ...

AP1

...

μμ μ
λ(1-Q1)

 

λ(1-Q1)

 

n1+1

n1+n2

1

ω
n1+n2-1

AP2

APNw

...
Σni+nNw

 

Σni+1

 

...AP1 APNw

μ(Σni+nNw)
μ(Σni+nNw)

0

N=(Σni+nNw)

N=1

N=0

=n

Fig. 8. State diagram for the WLAN/Pico tier.

We consider state s, where the WLAN/Pico tier is serv-
ing n ongoing sessions with a random number of Nw/Np
APs/BSs. We denote the probability of rejection for the newly
arrived session as Qn+1|s. Then, the transitions from the
state s to the state of n + 1 active sessions have the rate of
Lw/p

(
1−Qn+1|s

)
. The backward rate equals (n+ 1)µ since

the service does not depend on the state, but rather on the
number of simultaneously served sessions.

B. Steady-State Distribution

Due to the uncountable number of states in the considered
system, it may be complicated to attack the steady-state distri-
bution straightforwardly. However, the corresponding Markov
process may be simplified by employing the state aggregation
technique.

Assumption 10. State aggregation.
1. For the Macro tier, we aggregate all the states containing

n sessions into the unifying state n, regardless of the actual
locations of users.

2. For the more complex WLAN and Pico tiers, we combine
all possible states of the system (which contain n ongoing
sessions) into the state n, regardless of the locations of the
current users or their connections to a certain AP/BS. The
described combining process is illustrated in Figure 8.

3. In order to keep our system memoryless, we adopt a
simplification, where the sessions at the state n, while keeping
all of their other properties, do not preserve their locations
from state to state. For the sake of analytical tractability,
these locations are assumed to be generated anew at every
particular state n.

We note, however, that the system still keeps track of the
previously admitted sessions owing to the probabilities Qn+1

to reject the session arrived at the state n conditioning on the
fact that the current nth session satisfies the admission control
criteria.

As the result of the state aggregation, we arrive at the
birth-death processes for all the three tiers with the rates of

λm/w/p (1−Qn+1) and (n+1)µ. We further denote the arrival
rate λm/w/p into the system simply as λ and formulate the
following proposition.

Proposition 2. The steady-state distribution {πi}∞i=0 for the
considered process S(t) with the transitions λ (1−Qn+1) and
(n+ 1)µ can be closely approximated by:

πn = π0
λnm/w/p

µn

∏n
i=1 (1−Qn)

n!
, (9)

where

π0 =

( ∞∑
i=0

λnm/w/p

µn

∏n
i=1 (1−Qn)

n!

)−1
,

and Qn+1 is the reject probability on the transition from the
state n to the state n+ 1.

Proof. With the above expressions, we refer to the steady-state
distribution for the well-known M/M/c system, the derivation
of which may be found in the corresponding literature. �

Basing on the steady-state distribution and assuming that
it exists, our approach empowers us to estimate a wide class
of stationary characteristics in the considered system, such as
the expected number of ongoing sessions, the probability of
session’s permanent blocking, or even its energy consumption.
However, the latter is left out of scope of this paper due to
space limitations. The average number of active sessions and
the system blocking probability are defined as:

E[N ] =

∞∑
n=0

nπn, Pblock =

∞∑
n=0

Qn+1πn. (10)

In our analysis, we disregard the history of the system
processes from the perspective of the ongoing sessions. We
thus replace the initial stateful systems with memoryless
processes for which we examine the arbitrary set of respective
random variables at each point t. If the reject probabilities
Qn+1 are known for all tiers, we easily obtain the steady-
state distribution by using (9). Therefore, in what follows we
concentrate on calculating the values of Qn+1. In order to take
into account the memory property that we have thus omitted,
we will refer to the corresponding conditional probabilities
further on.

C. Characterizing Transitions

We continue by evaluating the probabilities Qn+1 and the
transition rates λm/w/p (1−Qn+1) necessary for estimating
the steady-state distribution. This would enable us to calculate
the important stationary characteristics, such as the overall
session blocking probability and the average number of si-
multaneously running sessions. The latter metric may also be
used as the system (area) capacity prediction for sufficiently
high arrival rate.

The rest of the text is organized in the following order.
First, we illustrate our approach on the simplest Macro tier
operation. Then, we continue with the more complex (due to
the presence of interference) WLAN tier. Finally, we discuss
the Pico tier which inherits some properties of both Macro
and WLAN tiers.
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1) Macro Tier Transitions: We begin with the Macro tier
and detail the calculations which are necessary for character-
izing the round robin policy. Hence, the transitions from the
state n to the state n+ 1 are defined by:

λm (1−Qn+1) =

=λm

(
Pr

{
r0
rmaxi
≤ δm
n+ 1

,∀i=1,n+1| r0
rmaxi

≤ δm
n
,∀i=1,n

})
,

(11)
where by the above conditional probability we account for
the previous system history, while the new system evolution
process (n-based) is memoryless. In other words, we estimate
the probability to share the resource between n+1 random ses-
sions if n other stochastically different sessions have already
been admitted at the previous state.

Next, we calculate this important probability basing on the
expression above:

Pr
{

r0
rmax
i
≤ δm
n+1 ,∀i=1,(n+1)| r0rmax

i
≤ δm

n ,∀i=1,n
}

=

=Pr
{
rmax
i ≥ r0

δm
(n+ 1),∀i=1,(n+1)|rmax

i ≥ r0
δm
n,∀i=1,n

}
.

We may further decompose this expression into parts by
separating new and ongoing sessions:

Pr
{
rmax
n+1≥

r0(n+1)
δm

}∏n
i=1Pr

{
rmax
i ≥ r0(n+1)

δm
|rmax
i ≥ r0n

δm

}
=

=Pr
{
rmax
n+1≥

r0(n+1)
δm

}(
Pr{rmax

i ≥ r0
δm

(n+1)}
Pr{rmax

i ≥ r0nδm }

)n
.

(12)
The probabilities Pr

{
rmax
i ≥ r0

δm
(n+1)

}
, Pr

{
rmax
i ≥ r0

δm
n
}

are based on the distribution Fr(r) of the random variable
rmax
i and are described in Appendix. Given these probabilities,

we may easily calculate the transition rate and, therefore, the
steady-state distribution (9) as well as the relevant stationary
metrics (10).

2) WLAN Tier Transitions: We continue by considering the
WLAN tier and detail the calculations which are necessary for
characterizing the maximum power policy. We remind that
for the WLAN tier, the system admits a new session if both
conditions hold: the bitrate is not less than the target r0 and
the interference to other APs is not greater than the given
threshold N0. Therefore, the transitions from the state n to
the state n+ 1 are defined by:

λw(1−Qn+1)=λwPr
{
A

(n+1)
j , j=1, n+1|A(n)

j , j=1,n
}
, (13)

where event A(n)
j is given as:

A
(n)
j =

{
r0
rmax
j

≤ δw − σn and γj,kpmax ≤ N0,∀k 6= j

}
,

where δw is a share of the available resource at the AP (without
the signaling overhead and collisions) and σn is a part of the
resource given to other sessions at the same AP in the current
state. We further denote r0/(δw−σn) as r̃0,n. The calculation
of σn is given in Appendix separately for the WLAN and the
Pico tiers and is based on the following assumption.

Assumption 11. AP link abstraction. Here, to abstract away
the session-AP details at the state n, we assume that upon

its arrival into the system, a session observes the average
(typical) number of users at the nearest AP (see Theorem 1).
This average number depends on the number of ongoing
sessions, i.e., on the state index n as well as on the parameter
r̃0.

We also emphasize that the APs are distributed on the plane
according to the PPP. Therefore, the number k of other than the
nearest APs can be any large. For any session, we enumerate
the APs in the order of increasing distance, so that k = 1
denotes the closest one. We remind that the rate condition
has to hold for the nearest AP and the interference condition
should hold for the others. Hence, the transition rates may be
calculated as:

(1−Qn+1) =
Pr
{
A

(n+1)
j ,j=1,n+1

}
Pr
{
A

(n)
j ,j=1,n

} ,

where we denote
{
A

(n)
j , j = 1, n

}
as {An}.

Therefore, the probability Pr {An} may be expressed as:

Pr
{
rmax
i ≥ r̃0,n and γi,kpmax≤N0, i = 1, n, k>1

}
.

We also assume that the values of γi,j are independent.
Then, we may continue as:

Pr{An}=
n∏
i=1

Pr {rmax
i ≥r0,n}

n∏
i=1

Pr{γi,kpmax≤N0,k>1}=

=
n∏
i=1

Pr
{
γi,i≥ KN0

ηpmax

(
e
r̃0,n
w −1

)} n∏
i=1

Pr {γi,kpmax≤N0,k>1}.

Further, we denote the corresponding γi,k as γk, such that
γ1 is the path gain to the nearest AP over the distance d1.
We assume an identical distribution of γ1 for all sessions i, as
well as any γk. Hence, we establish:

Pr{An}=[Pr{d1≤dr,n}]n
[
Pr

{
γk≤

N0

pmax
, k > 1

}]n
,

where the constant value dr,n is
(
pmaxηG
KN0

)
1
κ

(
e
r̃0,n
w − 1

)− 1
κ

.
We note that the sought probability can be obtained via the

relationship between the path loss γ and the distance d which
is:

d = (G/γ)1/κ, (14)

and, therefore, we have the following:

Pr

{
γk≤

N0

pmax
, k>1

}
=Pr{dk≥dthr, k>1}=Pr{d2≥dthr} ,

where dthr=
[
Gpmax

N0

]
1
κ . Then, after substitution, we arrive at:

Pr {An} = [Fd1 (dr,n)]
n

[Pr {d2 < dthr}]n .

We emphasize that the expression d2 > dthr holds iff zero
or one AP is located within the circle of radius dthr around
the tagged user. Then, the probability Pr {d2 ≥ dthr} can be
established through the Poisson distribution. Therefore, basing
on the distributions of d1 and d2 (see (24), (25) in Appendix
for details), we obtain the following:

Pr{An}=
[
1−e−πLwd2r

]n[
Lwπd

2
thre

−Lwπd2thr+e−Lwπd
2
thr

]n
.
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Fig. 9. Comparing simulation and analysis for the Macro tier with fading: expected number of sessions (left) and blocking probabilities (right).

Finally, we calculate rate transitions (13) as the ratio
Pr {An+1} /Pr {An} and hence:

1−Qn+1 =

(
1−e−πLwd

2
r,n+1

)n+1

(
1−e−πLwd

2
r,n
)n (Lwπd2thre−Lwπd2thr+e−Lwπd

2
thr

)
.

(15)
In summary, by introducing dr,n, we emphasize that it

depends on r̃0,n = r0/(δw − σn), which in turn is a function
of the number of sessions on the WLAN tier via the occupied
resource σn. The calculation of σn (33) as well as other
necessary parameters is given in Appendix. The expression
(15) enables us to derive the key metrics of interest, such as
the expected number of ongoing sessions and overall blocking
probability (10).

3) Pico Tier Transitions: We conclude by considering the
Pico tier and providing the necessary calculations. Similarly
to the Macro tier with the round robin policy, the transitions
from the state n to the state n+ 1 on the Pico tier are given
by:

λp(1−Qn+1)=λpPr
{
A

(n+1)
j , j=1, n+1|A(n)

j , j=1,n
}
. (16)

The event A(n)
j is a combination of two events, i.e., the rate

condition has to hold for the nearest BS and the interference
condition has to be satisfied for all others. Therefore, if the
pico BSs are enumerated in the order of increasing distance
to the transmitting user j, then:

A
(n)
j =

{
rmax
j ≥ r0n0

δp
and γj,kpj ≤ N0, k > 1

}
,

where n0 is the number of users associated with the nearest
BS, δp is a share of the available resource at the BS, and σn is
a part of the resource given to other sessions at the same BS
in the current state (as above). The allocated power pj may
be calculated as:

pj =
KN0

ηγj,j

(
e
r0n0
wδp − 1

)
. (17)

Similarly to what happens on the WLAN tier, the BSs are
distributed on the plane according to the PPP and the number
k of other than the nearest BSs can be any large for k = 1,∞.

Denoting
{
A

(n)
j , j = 1, n

}
as {An}, we establish:

Pr {An} = Pr

{
rmax
i ≥ r0

δp
n0, γi,kpi ≤ N0, i = 1, n, k > 1

}
.

We assume that the values of γi,j are independent. Then,
we may write:

Pr {An}=
n∏
i=1

Pr
{
rmax
i ≥ r0

δp
n0

} n∏
i=1

Pr {γi,kpi≤N0, k > 1}=

=
n∏
i=1

Pr
{
γi,i≥ KN0

ηpmax

(
e
r0n0
wδp −1

)} n∏
i=1

Pr{γi,kpi≤N0, k > 1}.

Again, we denote the corresponding γi,k as γk, such that γ1
is the path gain to the nearest BS over the distance d1. Hence,
we obtain:

Pr {An} = [Pr {d1 ≤ dr,n}]n
[
Pr
{
γk ≤ N0

pi
,∀k > 1

}]n
,

where dr,n =
(
pmaxηG
KN0

) 1
κ
(
e
r0n0
w − 1

)− 1
κ

. Finally, we have:

Pr {An} = [Fd1 (dr,n)]
n

Pr

γ2 ≤ ηγ1(
e
r0n0
wδp − 1

)

n .

The details regarding the components of the expression
above are given in Appendix. Based on them, the transition
rates may be obtained as follows:

λp (1−Qn+1) = λp
Pr {An+1,An}

Pr {An}
= λp

Pr {An+1}
Pr {An}

.

Given these, we may now easily establish the stationary
distribution (9) and, hence, the expected number of sessions
and the system blocking probability (10).
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Fig. 10. Dependence on the density of BSs/APs for the Pico (left) and the WLAN (right) tiers: expected number of users/sessions.

V. EXAMPLE NUMERICAL RESULTS AND CONCLUSIONS

In order to verify the accuracy of our analytical model and
its main assumptions, we construct a series of test scenarios.
Our simulation implements explicitly all of the stochastic
processes considered in Section III, inclusive of the associated
system memory, whereas analysis corresponds to the proposed
mathematical approximations. In particular, we recreate the
urban environment defined by ITU/3GPP and combine that
with varying pico BS and WLAN AP densities (as per [43]).
We are specifically interested in dense deployments to analyze
conditions where intelligent network selection would be most
needed, i.e., when the cellular network would have difficulty
supporting the offered traffic load on its own.

A. Scenario-related Considerations and Fading Effects

For the sake of an illustrative example, we consider the
cell radius R of 288 meters (following the recommendations
in [38]) with the varying user arrival rate λ. Every user upon its
arrival generates a session of random duration with the mean
µ−1 equal to 3 seconds and the target bitrate r0 of 500 kbps.
Naturally, the available spectral bandwidth for the WLAN,
Pico, and Macro tiers is 20, 10, and 10 MHz, respectively.
Further, the maximum allowed transmit power for a user is
limited by 23 dBm on the WLAN and the Macro tiers, as well
as by 20 dBm on the Pico tier. The remaining parameters are
set in accordance with the available specifications and other
standardization documents.

Our first example in Figure 9 compares macro cell per-
formance with and without the effects of slow fading, which
may introduce similar degradation on either of three tiers. Slow
fading is typically modeled as the log-normal distribution with
parameters µ = 0 and σ = 6 dB as corresponds to macro
urban scenario from [38]. The respective auxiliary distributions
may be derived as explained in Appendix A. However, we
leave this technical exercise out of scope of this paper. We
generally observe that despite several simplifying assumptions
our analysis remains exceptionally accurate across the entire
range of session arrival rates.

B. Analyzing Metrics of Interest

Further, in Figure 10 we investigate the dependence of the
expected number of sessions on the number of BSs/APs on
the Pico/WLAN tier, respectively. We confirm that with the
growing number of infrastructure nodes (i.e., network densifi-
cation), the performance of both tiers improves dramatically.
Finally, in Figure 11 we deeper detail the respective blocking
probabilities for the integrated HetNet as well as for the three
tiers individually: Macro, Pico, and WLAN. Our observation is
that with two additional overlay tiers, the HetNet performance
improves significantly over what can be achieved in the macro-
only networks (cellular baseline). Remarkably, we actually
witness visible performance improvement even with only a
few additional infrastructure nodes, such as 4 WLAN APs
and 4 Pico BSs in this example.
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Fig. 11. Integrated HetNet with three tiers: blocking probabilities.

Therefore, we believe that multiple radio access technolo-
gies and the associated network selection intelligence for
their efficient use will become a fundamental characteristic
of future heterogeneous networks. In particular, we expect
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that the joint use of multiple RATs can leverage the rich
multi-dimensional diversity across multiple radio networks to
provide beyond-additive gains in network capacity and user
connectivity experience.

APPENDIX

Here we provide details on calculation of several distribu-
tions necessary for the derivations described in the body of
this paper.

A. Important distributions for the Macro tier

Using the transformation for rmax, we can obtain the
probability density function for the maximum instantaneous
rate. For the simplification, we denote rmax

i as r and further
study the random variable r.

Additionally, we note that the solution of the overall prob-
lem is heavily based on the distribution of the rate r and
implicitly on the distribution of the channel gain γ. In case
of different spatial point process the only part to change is
both distributions due to different f(x, y), which may become
a good technical exercise to solve or to find an appropriate
approximation.

Also we would like to emphasize that fading can be ac-
counted for explicitly by introducing the attenuation random
variable h, such that γ̃ = hGd−κ. In case of slow or
shadow fading, h may result in log-normal distribution with
the average of 1, whereas for the fast fading we may consider
Rayleigh or Ricean distributions. In particular, new distribution
of γ̃ may be found straightforwardly. That is, since fading
process and location process are independent, we have:

fγ̃(y) =

γlim∫
γmin

1

x
fγ(x)fh(

y

x
)dx, (18)

where fγ is a baseline channel gain distribution due to spa-
tialness of users and it is addressed below. In order to address
the complex problems with dependency of the processes, one
may use a joint probability density function.

Given the uniform distribution of locations within the circle,
the distribution of distances between the user and the macro
BS is fd(d) = 2d/R2, 0 ≤ d ≤ R. Then, basing on the
relation between the path loss γ and the distance d given by
(14), we obtain the distribution for the channel gain γ:

fγ(γ)=
1

κ

[
G

γ

] 1−κ
κ

· 2G
1
κ

γ
1
κR2

=
2

κR2

[
G

γ

] 2
κ−1

, γR≤γ≤γlim, (19)

where γR and γlim correspond to the lowest signal at the edge
d = R and the maximum level at d = d0.

In order to obtain distribution of the random variable r(d),
we exploit the following expression for d:

d=

[
ηGpmax

KN0

]1/κ(
er/w − 1

)−1/κ
, (20)

and, hence, we establish the distribution for the random
variable r without any constraints:

Fr(r)=1− 1

R2

[
ηGpmax

KN0

]2/κ(
er/w − 1

)−2/κ
, r ≥ rR, (21)

where rR is the maximum possible rate at the border R (the
lower border for possible values of maximum rate):

rR=min

{
rlim, w · log

(
1 +

ηGpmax

RκKN0

)}
≥ ri,∀i. (22)

Then, applying restrictions rlim above the formula (21), we
arrive at the following cumulative distribution function:

Fr(r)= 1− 1
R2

[
ηGp
N0

]2/κ(
er/w − 1

)−2/κ
, rR ≤ r < rlim,

Fr(rlim)= 1.

Therefore, the necessary probabilities in (12) may be easily
obtained as:

Pr
{
r≥ r0n

δm

}
=1−Pr

{
r< r0n

δm

}
=1−Fr

(
r0n
δm

)
, (23)

and Pr
{
r ≥ r0

δm
(n+ 1)

}
is calculated similarly. The latter

completes the formula (11) and delivers the steady-state dis-
tribution (9).

B. Important distributions for the WLAN tier

Let us establish auxiliary probabilities and distributions
for the WLAN tier. First, we derive the distribution of user
distances d1 to the nearest AP:

Fd1(d) = 1− Pr {d1 ≥ d} = 1− Pr {Nw(d) = 0} , d ≥ 0,

where Nw(d) is the random number of APs in the circle of
radius d around the user. By analogy, we derive the distribution
of distances to the second nearest AP:

Fd2(d) = 1−Pr {d2 ≥ dthr} = 1−Pr {0 ≤ Nw(dthr) ≤ 1} ,

where Pr {0 ≤ Nw(dthr) ≤ 1} is probability to have zero or
one WLAN AP in the circle of radius d around the given user.
Accounting for the fact that APs are distributed according to
the Poisson process, we obtain for distances d ≥ 0:

Fd1(d) = 1− e−πLwd
2

, fd1(d) = 2πLwde
−πLwd2 . (24)

Then, we find the probability for the second distance:

Pr{d2≥dthr}=Pr{Nw(dthr)≤1}=

=Lwπd
2
thre
−πd2thr+e−Lwπd

2
thr.

(25)

For simplicity of notation, when accounting for the upper
rate limit, we assume that d-distribution is strictly coupled
with channel gain γ- and maximum rate r-distributions. Let
us now find the distribution of random variable:

y=
r0
rmax
i

=
r0
w

[
log

(
1+pmax

ηG

KN0
d−κ
)]−1

, d ≥ d0. (26)

Expressing the distance from the equation above, we arrive at:

d =

(
pmaxηG

KN0

) 1
κ (

e
r0
wy − 1

)− 1
κ

, y ≥ y0, (27)

where y0 = y(d0), and the derivative of d(y):

d′y =
1

κ

(
pmaxηG

KN0

) 1
κ (

e
r0
wy − 1

)− 1
κ−1

e
r0
wy

r0
wy2

. (28)
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We may write the following distribution functions:

Fy(y)=1−e
−πLw

(
pmaxηG
KN0

) 2
κ

(
e
r0
wy −1

)− 2
κ

, y ≥ y0. (29)

Hence, the probability distribution function is given as:

fy(y) = 2πLwd(y)d′(y)e
−πLw

(
pmaxηG
KN0

) 2
κ

(
e
r0
wy −1

)− 2
κ

. (30)

Therefore, the expected value of random variable E[y|y ≤ δw]
may be found as:

E[y|y ≤ δw]=
δw∫
y0

yfy(y|y ≤ δw)dy=

= 2πLw
C3

δw∫
y0

yd(y)d′(y)e
−πLw

(
pmaxηG
KN0

)2
κ

(
e
r0
wy−1

)−2
κ

dy+

+2πLw
C3

y0
y0∫
0

d(y)d′(y)e
−πLw

(
pmaxηG
KN0

) 2
κ

(
e
r0
wy−1

)−2
κ

dy,

(31)

where C3 = Pr{y ≤ δw} = Fy(δw) and y0 is assumed to be
less than δw.

Let us now consider the state of the system when there are n
users in service. The density of users equals λN = n/

(
πR2

)
.

We continue filling the plane up to this density so that every
AP may receive sessions to serve.

Theorem 1. The average number of sessions per AP n0 tends
to n

Lw(πR2) = n
E[Nw] for large areas, where E[Nw] is the

expected number of APs within the circle R.

Proof. For a large area S >> πR2, we estimate the average
number of users per AP Nn(S)/Nw(S), where Nn and Nw
are random numbers of users and APs in the area S. The
expected value of Nn(S)/Nw(S) may be found by definition
as follows:

E

[
Nn(S)

Nw(S)

]
=

∞∑
n=1

∞∑
k=0

k

n
Pr{Nn(S) = k,Nw(S) = n}] =

=
∞∑
n=1

∞∑
k=0

k

n

(LwS)
n

n!
e−LwS

(λNS)
k

k!
e−λNS

=λNS

∞∑
n=1

1

neLwS
(LwS)

n

n!
→S→∞

λN
Lw

=
n

Lw (πR2)
, (32)

where λN = n
(πR2) is the density of users (per a unit of area),

Lw is the system parameter of the AP density on the plane,
and S is the area of interest.

Reformulating the above, the average number of users per
AP in the marginal cases tends to the ratio between the
changing density of users and fixed density of APs. �

Note that Theorem 1 above is similar in its flavor to the
research findings obtained previously in [44]. Then, basing on
these results, we may reformulate the following as stated in
Assumption 11. A newly arrived session observes the system
where, on average, every AP already serves n0 = n

Lw(πR2)
sessions.

In that case, σ is representing the average part of the
resource exploited at the state n and is given by:

σ=E

[
r0
rmax
i

∣∣∣∣ r0rmax
i

≤ δw
]

n

E[Nw]
=E[y|y ≤ δw]

n

E[Nw]
,

(33)

where E[y|y ≤ δw] is obtained via the numerical integral (31).

C. Important distributions for the Pico tier

The distribution of user distances to the nearest BS may be
obtained similarly to that on the WLAN tier:

Fd1(d) = 1− e−πLpd
2

, fd1(d) = 2πLpde
−πLpd2 , d ≥ 0.

Then, we find the sought probability using the expression
(17) and following the same reasoning as for the WLAN tier:

Pr
{
γ2 ≤ N0

pi

}
= Pr

γ2 ≤ ηγ1N0

KN0

(
e
r0n0
wδp −1

)
 =

= Pr {γ2 + y ≤ 0} = Pr {z ≤ 0} ,

(34)

where we replace the following variables y =
− ηγ1

K

(
e
r0n0
wδp −1

) = − ηG

K

(
e
r0n0
wδp −1

)d−κ1 and z = γ2 + y.

In order to calculate the distribution of z, we firstly aim to
find the distribution of random variable y. For that purpose,
we exploit the following transform:

d1 =

 ηG

K
(
e
r0n0
wδp − 1

)
 1

κ

(−y)
− 1
κ , (35)

and its first derivative:

d′1 =
1

κ

 ηG

K
(
e
r0n0
wδp − 1

)
 1

κ

(−y)
− 1
κ−1 . (36)

Using the expressions above, we can easily obtain the
distribution function:

Fy(y) = 1− e−πLpd(y)
2

, ymin < y < 0, (37)

where ymin corresponds to the rate limit and d0. Hence, the
sought function has the following form:

fy(y) = 2πLpd(y)d′(y)e−πLpd
2(y), ymin ≤ y < 0. (38)

Basing on the relation between path loss γ and distance d
(14), we continue by calculating the distribution of random
variable 0 < γ2 ≤ γmax, which is one of the components in
z:

Fγ2(γ) = Pr {γ2 < γ}= Pr {d2 > d(γ)} =

=Pr{Np(d(γ)) ≤ 1}=Lpπd
2(γ)e−Lpπd

2(γ)+e−Lpπd
2(γ),

(39)
where d(γ) = G

1
κ γ−

1
κ , d′(γ) = − 1

κG
1
κ γ−

1
κ−1, and γmax

corresponds to the distance d0.
Given the expression Fd2(d) = 1 − Pr {d2 ≥ d2(γ)}, we

obtain the probability density function for the distance to the
second near BS d2 as:

fd2(d) = 2Lp
2π2d3e−Lpπd

2

, 0 ≤ d <∞.

For the probability density function of channel gain γ2 (if it
is bounded by d0) we may write:

fγ2(γ)= 2
κLp

2π2G
4
κ γ−

4
κ−1e−Lpπd

2(γ), 0<γ<γmax

fγ2(γmax)= 1− Fγ2(γmax).
(40)
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Taking into account the limits ymin ≤ y < 0 and 0 < γ ≤
γmax, we may derive the expression for Fz(z):

Fz(z) =
γmax∫
0

fγ(γ)
min(0,z−γ)∫
ymin

fy(y)dydγ =

=
γmax∫
0

fγ(γ)Fy (min(0, z − γ)) dγ,

(41)

where γmax corresponds to d0.
Therefore, we may substitute z = 0 into the expression

above and find the unknown probability Pr {z < 0}:

Pr {z < 0} = Fz(0) =
γmax∫
0

fγ(γ)Fy (−γ) dγ =

= 2
κLp

2π2G
4
κ

γmax∫
0

γ−
4
κ−1e−LpπG

2
κ γ− 2

κ

(
1− eC1γ

− 2
κ

)
dγ,

(42)where

C1 = −πLp

 ηG

K
(
e
r0n0
wδp − 1

)
 2

κ

.

Hence, the probability to fulfill the interference condition
Pr{γ2pi≤N0}= Fz(0) equals:

1− 2
κLf

2π2G
4
κ

γmax∫
0

γ−
4
κ−1e−LpπG

2
κ γ−

2
κ eC1γ

−2
κdγ=

=1− 2
κLp

2π2G
4
κ

γmax∫
0

γ−
4
κ−1e

(
−LpπG

2
κ+C1

)
γ− 2

κ

dγ.
(43)

Here, let us calculate the integral
γmax∫
0

γ−
4
κ−1e−Cγ

− 2
κ dγ for

C > 0 by substituting u=γ−
2
κ , γ=u−

κ
2 , dγ=−κ2u

−κ2−1du:

−
γmax∫
0

κ
2u
−κ2−1u−

κ
2 (−

4
κ−1)e−Cudγ = −κ2

γmax∫
0

ue−Cudu =

=−κ2

(
−1
Cue

−Cu|γmax

0 + 1
C

γmax∫
0

e−Cudu

)
=

= κγmax

2C e−Cγmax + κ
2C2 e

−Cu|γmax

0 = κγmax

2C e−Cγmax + κ
2C2.

(44)Then, we may continue by:

Pr{γ2pi≤N0}= 1− Lp2π2G
4
κ

(
γmax

C e−Cγmax− 1
C2

)
,
(45)

where C = LpπG
2
κ − C1. We note that the above is fair for

the case when multiplier b = η

K
(
e
r0n0
w −1

) < 1. Otherwise, if

b = 1, then in (34) γ2 < γ1 by definition and increasing b ≥ 1
leads to Pr{γ2pi≤N0}= 1.

Let us now consider the state of the system when there are n
users in service. The density of users equals λN = n/

(
πR2

)
similarly to the WLAN tier. The same density is kept all over
the plane.

Theorem 2. The average number of users per pico BS n0
tends to n

Lp(πR2) = n
E[Np]

for large areas, where E[Np] is the
expected number of pico BSs per cell.

Proof. The proof is similar to the one for the WLAN tier. �

With n0 = max
(

1, n
E[Np]

)
known for each state n, we

may estimate the expression (45) and, therefore, establish the
transition rates for the Pico tier.
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a b s t r a c t

In this paper, we address the operation of a multi-radio mobile device in heterogeneous
wireless deployments. We assume that such a device may efficiently control its radio
interfaces when using the available radio access technologies. In particular, we investigate
the potential of flexible transmit power allocation and develop a provably optimal power
control scheme that strictly maximizes the energy efficiency of the mobile device, while at
the same time satisfies the minimum required level of the user data rate. When compared
against simpler (heuristic) power control strategies, our solution always demonstrates
the best energy efficiency of the multi-radio device by enabling collaborative operation
between several radio technologies, which makes it a useful benchmark for the future
integrated beyond-4G wireless networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. General motivation

Wireless networks demonstrate worldwide proliferation, which has further advanced recently with the introduction
of novel fourth generation (4G) communication technologies [1,2]. Adoption of these 4G technologies is becoming
increasingly widespread, allowing for improved access to services and applications previously only supported through fixed
broadband systems [3]. However, existingwireless deployments are still unable to deliver their users the desired ubiquitous
connectivity experience due to the shortage of available capacity and lack of service uniformity [4].

Whereas there is currently no technical definition ofwhat comes after the state-of-the-art 4G technologies, experts agree
on that future beyond-4G wireless communications will probably be a converged set of co-existing radio access networks,
rather than one single technology [5]. As wireless spectrum continues to be scarce and expensive, the success of future
beyond-4G systems requires effective solutions to overcome the divide between the demanded quality-of-service (QoS)
and the limited network resources.

Over the years, wireless spectrum has become one of the most valuable natural resources, which accentuates the
importance of its efficient use (i.e., spectral efficiency). However, energy efficiency is also becoming increasingly important
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primarily for small form-factor mobile devices, where wireless power consumption dominates the total device power
budget. This is due to the increasing disproportion between the available and the required battery capacity, which is
demanded by the ubiquitous multimedia applications [6]. To compensate for this growing gap, aggressive improvements in
all aspects of wireless system design are necessary [7].

Whereas energy efficiency is accentuated by the need of extending client device operation time without recharging, the
need for improved service continuity is dictated by the ubiquitous wireless multimedia applications. Currently, wireless
cellular, local, and personal area networking technologies as well as supportive network architectures are evolving towards
more advanced and complex converged networks. On the other hand, consumer electronics is spawning a huge explosion
in the number and variety of multi-radio devices [8], driven by the user demand for ‘‘anytime, anywhere’’ connectivity.

The problem of energy efficient interworking between the available wireless technologies in a user multi-radio device
is therefore addressed in this work in order to develop provably efficient techniques that allow for significant energy
performance improvement in heterogeneous wireless environments.

1.2. Research background

Conventional wireless devices are typically communicating their data by choosing one of the fixed set of modulation
and coding schemes, which sacrifices flexible power adaptation for design simplicity [9]. This often causes excessive energy
consumption or pessimistic data rates selected for peak channel conditions [10]. Hence, physical layer parameters should
be flexibly adjusted to actually account for the client QoS requirements as well as for the state of the wireless channel
to reach a compromise between energy and spectral efficiencies [11]. In this regard, throughput optimization has long
been an attractive research direction [12,13]. However, as wireless clients become increasingly mobile, the focus of recent
efforts tends to shift towards energy consumption at all layers of communication systems, from architectures [14] to
algorithms [15].

Energy efficiency is becoming increasingly important for wireless networks due to the limited battery lifetime of mobile
clients. For maximizing energy efficiency, so-called ‘‘bits-per-Joule’’ [16] or ‘‘throughput-per-Joule’’ [17] metrics are often
considered. Several approaches are known to focus on energy efficiency. These include water-filling power allocation
techniques that optimize throughput with respect to the fixed total transmit power limitation [18,19], as well as adaptation
of both the total transmit power and its allocation according to the channel state information [10,20].

However, the vast majority of existing information-theoretic approaches (see, e.g., [21,22]) account only for the transmit
power when investigating energy consumption. Typically, a client device will also consume extra circuit power, which
is independent of its data rate [23,24] and can actually be on the same order (and even comparable) with the maximum
allowed transmit power. As such, the circuit power consumption should be considered explicitly when optimizing energy
efficiency [25]. With the emphasis on circuit power, recent work suggests the use of optimization theory for establishing
energy-optimal communication settings [10,26] to balance transmit and circuit power consumption. These findings indicate
that the conventional water-filling approach to simply extend the transmission time of the device may not be attractive
anymore since circuit energy consumption grows with transmission duration.

With the growing use of smaller cells to improve the capacity of 4G systems, the coverage ranges of cellular, local,
and personal area networks are increasingly overlapping. In the extreme, contemporary urban wireless deployments often
include areas where different communication networks are co-located [27,28]. As long as these technologies occupy non-
overlapping frequency bands [28], they may coexist simultaneously without any significant performance degradation.
This creates an attractive opportunity to cooperatively utilize several radio access networks for improved wireless
connectivity [29].

Over the last few years, much literature has accumulated [30] exploring the interworking solutions within the core
network and above, including seamless mobility between 3GPP and WLAN technologies, trusted access to 3GPP ser-
vices with WLAN devices, and support for Access Network Discovery and Selection functions [31]. In particular, the
network selection problem in heterogeneous wireless environment using IEEE 802.21 and IEEE 1900.4 frameworks has
recently been studied [32]. We emphasize that our focus in this paper is, however, on the joint use of multiple net-
works that requires cooperation on the Radio Access Network (RAN) layer, which enables more flexible control of the
transmission parameters [33]. We expect this work to be useful in the ongoing 3GPP discussions on WLAN/3GPP radio
interworking [34].

We expect that intelligent coupling between multiple radio access technologies (such as LTE-Advanced, HSPA, WiMAX,
WiFi, Bluetooth, ZigBee, etc.) will enable efficient operation of a multi-radio device and thus realize the desired uniform
user experience. To achieve this, both short- and long-range technologies (e.g., WiFi and LTE-Advanced) may need to
work cooperatively to augment system capacity and improve service continuity [35] in a beyond-4G network (see Fig. 1).
Consequently, we seek to explore the potential of adaptive power control to improve the energy efficiency of a multi-radio
device using heterogeneous connectivity at different scales.

The rest of this text is organized as follows. In Section 2, we introduce our system model with its main assumptions.
Section 3 formulates a practical constrained optimization problem, where the energy efficiency of a multi-radio mobile
device needs to bemaximized subject to some realistic restrictions.We then solve this problem directly and obtain the exact
solution. In Section 4, we provide several important numerical examples to conclude on the feasibility of our approach.
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Fig. 1. Example topology of a heterogeneous network.

Fig. 2. Structure of a multi-radio mobile device.

Table 1
Notations of the analytical model.

Notation Parameter description

r0 Target bit-rate by the user
K Number of available channels (radio interfaces)
r Total data rate of the user device
ptx Total transmit power of the user device

ptxi Transmit power on the channel i
pmax
i Maximum transmit power on the channel i

pci Circuit power on the channel i
ri Data rate on the channel i

2. System model

In this section, we introduce our system model and its main assumptions. We consider the uplink communication of a
single user device transmitting its traffic to the Internet infrastructure (see Fig. 1). In a heterogeneous environment, such a
multi-radio devicemay efficiently use the available radio access technologies by controlling its radio interfaces.We therefore
concentrate on exploring the achievable data rate, power, and energy efficiency associated with such operation.

2.1. Main assumptions and notation

Our analyticalmodel is based on the following assumptions and its core parameters are summarized by Table 1.We study
the operation of a single user device (see Fig. 2), which needs to achieve a particular target bit-rate r0 (specified by, e.g., an
active mobile application). In other words, a data rate of at least r0 must be guaranteed for this device to ensure that the QoS
requirements are satisfied.

To abstract away a particular traffic model, the upper-layer traffic is assumed to be saturated, which often corresponds
to the case of maximum available gains. We also assume that K alternative radio access technologies (RATs) are available
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for the device to use in a particular heterogeneous deployment. The device can send data on any or all of these RATs while
attempting to meet its target bit-rate requirement.

The device power consumption when a particular RAT is used (that is, on a given communication channel) includes
two components: ptxi and pci , where ptxi ≤ pmax

i is the instantaneous transmit power not exceeding the maximum power
constraint, and pci is the associated circuit power incurred regardless of howmuch transmit power is used in the respective
channel. Following, e.g., [10], we further assume that the value of pci is constant (we do not account for additional power
consumption by the device itself). However, with the approach of this paper, this assumption could actually be relaxed
without loss of generality.

On a given channel i, the relationship between the instantaneous transmit power ptxi and the achievable data rate ri could
be determined by a particular function ptxi (ri). For the sake of exposition, in this work we consider the important example,
when this relationship is given by the Shannon–Hartley theorem for a point-to-point channel and ri(ptxi ) = wi ln(1+ γiptxi )
or, alternatively:

ptxi (ri) =
1
γi


e

ri
wi − 1


, (1)

where ptxi is the device transmit power (measured in W); γi is the signal-to-noise ratio, when the transmit power is 1 W;
wi is the allocated channel bandwidth (Hz); and ri is the achievable data rate on the channel i (bps). Importantly, the main
results of this paper would also apply in case of any rate function of the form ri = Ai ln(1+ Bipi) for all positive parameters
Ai and Bi, which may reflect additional realistic channel properties.

All K channels in our model are assumed to be non-interfering, which may be, for instance, due to the use of non-
overlapping frequencies by the co-located RATs. Finally, we assume that the device can adaptively control its transmit power
per channel {ptxi }

K
i=1 by utilizing the information about the available RATs, such as {wi, γi, pci , p

max
i }

K
i=1.

The total data rate of the device is thus the sum of individual data rates on all channels: r =
K

i=1 ri. Respectively, the
total transmit power is the sum of transmit powers allocated on every channel: ptx(r) = ptx(r1, . . . , rK ) =

K
i=1 p

tx
i (ri),

where r = (r1, . . . , rK ) ∈ RK is the vector of transmit powers. The overall device power consumption is, therefore,
p(r) = ptx(r)+ pc , where pc =

K
i=1 p

c
i . To this end, and for the sake of simplicity, we assume that pci > 0 for any interface

i, whether it is active or not.
Alternative formulations are also possible (see, e.g., [36]) and the case when pci = 0 if ptxi = 0 will be briefly discussed in

Section 3.2.2. In what follows, we seek to establish the optimal power control discipline by accounting for both device data
rate and its power consumption.

2.2. Discussion of the assumptions

Generally, the channel capacity is known to be themaximumdata rate at which reliable communication is possible in the
system. It is determined by the signal-to-noise ratio which reflects the characteristics of the signal propagation. In practice,
it depends on numerous factors, such as the properties of the wireless medium, antenna heights, distance to the receiver,
etc.

Conveniently, the Shannon–Hartley theorem (1) provides a comprehensive abstraction which makes performance
evaluation of a practicalwireless system analytically tractable. Itmodels the fact that the user devicemay reduce its transmit
power consumption by sacrificing some of its data rate, which is often preferred for small-scale battery powered mobile
devices [37]. However, when doing so, the user device shall also ensure that its target bit-rate requirement r0 > 0 is satisfied.
Therefore, we expect that the transmit power may be allocated by the device intelligently to extend its battery life.

Whereas the use of the Shannon–Hartley theorem as the power–rate mapping function may provide intuition on the
possible techniques for transmit power reduction, the approach of this paper is not restricted to it and can be replicated for
a broader class of functions, which satisfy the following criteria:

1. The relationship between the transmit power and the data rate on the channel i is represented by a bijective function
ptxi (ri), such that ptxi (0) = 0.

2. The derivative dptxi
dri

> 0 over the interval [0,∞), i.e., the function ptxi (ri) is continuously differentiable andmonotonically

increasing. Further, d2ptxi
dr2i

> 0, i.e., the function dptxi
dri

is also monotonically increasing with ri.

3. Energy efficiency optimization problem

In this section, we focus on maximizing the energy efficiency of a multi-radio mobile device. We begin with the general
problem formulation not restricted to a particular power–rate mapping function. We consider as a variable the achievable
data rate on each available communication channel (which corresponds to the respective transmit power).We then list some
realistic restrictions and introduce the constrained energy efficiency optimization problem based on the Shannon–Hartley
theorem. Further, we aim to solve this optimization problem directly by employing the Karush–Kuhn–Tucker approach [38]
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and formulating a system of equations and inequalities. To obtain the optimal solution, we establish the stationary points
of the objective function without any restrictions and solve the unconstrained problem to finally deal with the original task
under given constraints.

3.1. General statements

3.1.1. Practical constraints
We start by introducing important realistic restrictions on the energy efficient operation of a multi-radio mobile device.

According to the assumptions of Section 2.1, we consider the minimum total data rate on all channels (it implies, in turn,
that at least one of K available channels is used):

r =
K

i=1

ri ≥ r0 > 0.

We also set a natural restriction on the achievable data rate ri (and, hence, on ptxi ), such that it cannot be negative:

ri ≥ 0, i = 1, K ,

where the expression 1, K denotes the set of indexes 1, 2, . . . , K − 1, K . Finally, we take into consideration the maximum
allowed transmit power:

ptxi (ri) ≤ pmax
i , i = 1, K .

In what follows, we will refer to ptxi as pi for the sake of brevity. Also, since the function pi(ri) is bijective, we can use the
equivalent formulation:

ri ≤ rmax
i , i = 1, K ,

where rmax
i = ri(pmax

i ) can be given by the function inverse to (1).

3.1.2. Objective function
We concentrate on maximizing the user device energy efficiency represented by the ratio of the total data rate r to the

total power p spent by the user device:

η(r) = η(r1, . . . , rK ) =
r
p
=

K
i=1

ri

K
i=1

pi(ri)+ pc

,

where ri and pi are the data rate and power allocation on the channel i, and pc =
K

i=1 p
c
i . We thus formulate the original

optimization problem in terms of the user device energy efficiency as follows.
Original Constrained Problem (OCP):

max
{ri}Ki=1

η(r) = max
{ri}Ki=1

K
i=1

ri

K
i=1

pi(ri)+ pc

,

which is subject to the constraints described in Section 3.1.1. Hence, the total energy efficient data rate follows from the
optimal vector of individual data rates on each channel:

r∗ = arg max
{ri}Ki=1

η(r).

As the OCP may be complex to solve in its current form, we notice that it might actually be easier to instead consider the
minimization of a function U(r), which is reciprocal to η(r). Such a transformation is possible if

K
i=1 ri ≠ 0, and we will

be addressing this equivalent optimization problem further on. We note here that η(r) > 0 for any vector r, such that its
components are non-negative, i.e., ri ≥ 0, i = 1, K .

Equivalent Constrained Problem (ECP):

min
{ri}Ki=1

1
η(r)
= min
{ri}Ki=1

U(r) = min
{ri}Ki=1

K
i=1

pi(ri)+ pc

K
i=1

ri

, (2)

which is also subject to the constraints described in Section 3.1.1.
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Finally, we reformulate the ECP as:

min
{ri}Ki=1

U(r) = min
{ri}Ki=1

K
i=1

pi(ri)+ pc

K
i=1

ri

,

subject to

φ(r) = r0 −
K

i=0

ri ≤ 0,

fi(ri) = −ri ≤ 0, i = 1, K ,

gi(ri) = ri − rmax
i ≤ 0, i = 1, K .

(3)

3.1.3. Karush–Kuhn–Tucker conditions
In order to tackle the ECP under the given inequality constraints, we employ the Karush–Kuhn–Tucker (KKT) approach.

Below, we list the regularity KKT conditions and obtain a system to solve in order to find the optimal solution of the ECP:

∂U(r)
∂ri
+

K
i=1

λi
dgi(ri)
dri
+

K
i=1

µi
dfi(ri)
dri
+ β

dφ(r)
dri
= 0

⇔

dpi
dri
· r −


K

i=1
pi + pc


r2

+ λi − µi − β = 0.

The primal feasibility conditions may be given as:

ri − rmax
i ≤ 0, i = 1, K ,

ri ≥ 0, i = 1, K ,

K
i=1

ri − r0 ≥ 0.

(4)

Further, the dual feasibility conditions are represented by the following inequalities:
λi ≥ 0, i = 1, K ,

µi ≥ 0, i = 1, K ,

β ≥ 0,
where λi, µi, and β are the KKT multipliers.

Finally, the complementary slackness conditions are as follows:
λi(ri − rmax

i ) = 0, i = 1, K ,

µiri = 0, i = 1, K ,

β


K

i=1

ri − r0


= 0.

Summarizing, in order to obtain the optimal solution for the ECP under the above constraints, a systemof 3K+1 equations
and 4K + 2 inequalities has to be solved. Importantly, the domain bounded by the given inequalities has to be non-empty.
Otherwise, the entire problem does not have a solution.

Noteworthy, the KKT conditions by themselves do not provide a method for finding the maximum/minimum points.
Instead, they only determine the stationary points (where the gradient is zero) among which the minimum point can be
located. In general, solving the system of many equations and inequalities is known to be difficult and in what follows we
detail our approach to tackle the target optimization problem.

3.2. Solving the constrained problem

The Equivalent Constrained Problem (ECP) detailed in Section 3.1.2 can generally be formulated for an arbitrary
power–rate mapping function which satisfies the conditions in Section 2.2. For the purposes of illustration, we further
consider an example, where the relationship between the achievable data rate and the required transmit power is given by
the Shannon–Hartley theorem (1). However, extended formulations are also possible,whichmay account formore advanced
features of practical wireless systems.
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Fig. 3. A plot of the Lambert’s function.

3.2.1. Considering the unconstrained problem
To locate the stationary points lying both in the considered domain and outside of it, we fall back to the simpler

optimization problem with the same objective function (2) for r ≠ 0, but without any constraints. We will further on
apply this solution to the target ECP (3).

Equivalent Unconstrained Problem (EUP)

min
{ri}Ki=1

U(r) = min
{ri}Ki=1

K
i=1

pi + pc

K
i=1

ri

. (5)

Theorem 1. The optimal solution of EUP (5)may exist only if the transcendental equation XeX = α has real roots:

α =

−

K
j=1

1
γj
+

K
j=1

pcj

e
K

k=1
wk

K
j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

j .

The optimal vector of the required transmit powers p = (p1, . . . , pK ) is then delivered by:

pi = −
1
γi
+ wie

K
j=1


wjγj

 −wj
K

k=1
wk

expW (α) , i = 1, K , (6)

where W (α) is a root of the transcendental equation (see Fig. 3 for illustration) and is known as the Lambert’s function [39]. The
procedure of selecting a particular root appropriately depends on the value of α. For the sake of exposition, it is detailed separately
in Proposition 1 below.

Proof. Proof is given in Appendix A. �

The transcendental equation XeX = α has real roots if α ≥ −1/e. In this case, there might be either one or two real
root(s) depending on the branches of the function W (α) [39]. Let us now discuss how to choose the appropriate branch of
the Lambert’s function W (α). We denote the root obtained via the upper branch as X0 = W0(α) and the one obtained via
the lower branch as X1 = W1(α) for all α ∈ [− 1

e , 0).

Proposition 1. For the given system parameters, four different cases are possible:
1. If α < − 1

e , the equation XeX = α does not have real roots, and no stationary point of the function U(r) exists.
2. If α = − 1

e , the equation XeX = α has one real root X = −1 and, therefore, no more than one stationary point of the function
U(r) may exist.
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3. If − 1
e < α < 0, there exist exactly two different stationary points p(0) and p(1) corresponding to X0 and X1 respectively.

Furthermore, for all i = 1, K: p(0)
i > p(1)

i , and at least one of the components of the vector p(1) is negative, i.e., there is an
index i0 ∈ {i}Ki=1, such that p(1)

i0
< 0.

4. If α ∈ (0,∞), there exists exactly one optimal solution, i.e., the optimal vector of powers p has only one value.
Proof. The first, second, and fourth cases are rather trivial and follow from the properties of the Lambert’s function.
However, all these cases do not provide us with stationary points. For that reason, the third case is addressed in more detail
in Proposition 2 below.

We proceed with the meaningful third case to solve the EUP. The equation XeX = α has two real roots iff − 1
e <

α < 0. Hence, there exist exactly two different stationary points p(0) and p(1) related to the roots of the equation. If
α ∈ {− 1

e } ∪ (0,∞), the vector p has only one value also due to the properties of the Lambert’s function. Now we consider
the interval− 1

e < α < 0 and we will show that p(0)
i > p(1)

i for all i = 1, K .
We rewrite the expression (6) for the allocated power:

p(0)
i =

wieW0(α)+1

K
k=1

(wkγk)

wk
K

j=1
wj

−
1
γi

, p(1)
i =

wieW1(α)+1

K
k=1

(wkγk)

wk
K

j=1
wj

−
1
γi

.

SinceW0(α) > W1(α), we conclude that p(0)
i > p(1)

i .
Further, we consider the greater value p(1)

i within the domain− 1
e ≤ α < 0 and account for the fact thatW1(α) < −1:

p(1)
i =

wieW1(α)+1

K
k=1

(wkγk)

wk
K

j=1
wj

−
1
γi

<

wiγi −
K

k=1
(wkγk)

wk
K

j=1
wj

K
k=1

(wkγk)

wk
K

j=1
wj

γi

. (7)

We take the index i0, such that i0 = argmini (wiγi). Hence, wi0γi0 ≤ wiγi for any i = 1, K and:

K
k=1

(wkγk)

wk
K

j=1
wj
≥

K
k=1


wi0γi0

 wk
K

j=1
wj
= wi0γi0 . (8)

This means that p(1)
i < 0 and at least one negative component of vector p(1) exists, which completes the proof. �

Based on this property, we omit the consideration of the lower branch of the function W (α). Further, we consider
separately the two possible ranges of α, i.e., α ≥ −1/e, when there is at least one stationary point, and α < −1/e, when
there is none.
Case α ≥ −1/e (a stationary point exists). Here, by using Proposition 1, we formulate the condition, when a stationary point
is the sought maximum.

Proposition 2. If the vector p satisfies the condition of Theorem 1 and α > −1/e, then:
1. The corresponding optimal vector r obtained via the upper branch of the Lambert’s function is a local minimum of the function

U(r) and, respectively, a local maximum of the function η(r).
2. The corresponding optimal vector r obtained via the lower branch of the Lambert’s function (−1/e < α < 0) is a local

maximum of the function U(r) and, respectively, a local minimum of the function η(r).
Proof. Let us consider the cases 2, 3, and 4 of Proposition 1 (α ≥ −1/e in all of them). We start with the general reasoning
for the case α > −1/e and then split the combined cases 3 and 4 of Proposition 1 into the following possibilities: (1) α > 0
or −1/e < α < 0, when we consider the upper branch of the Lambert’s function and (2) −1/e < α < 0, when the lower
branch of the Lambert’s function is considered.

In order to prove the statement of the proposition,weneed to calculate theHessianmatrix of the functionU(r). Therefore,
we begin by calculating the term ∂2U(r)

∂rj∂rk
, k ≠ j and then proceed with ∂2U(r)

∂r2j
. For both calculations we exploit the expression

for the first derivative (see the proof of Theorem 1 in Appendix A):

∂U(r)
∂rj
=

1
γjwj

e
rj
wj

K
i=1

ri −


K
i=1

1
γi


e

ri
wi − 1


+ pc




K
i=1

ri

2 , j = 1, K .
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Hence, the non-diagonal element of the Hessian matrix, i.e., the second derivative with respect to rj, rk, k ≠ j, follows
as:

∂2U(r)
∂rj∂rk

=

1
γjwj

e
rj
wj −

1
γkwk

e
rk
wk

K
i=1

ri

2 = −
∂2U(r)
∂rj∂rk

= 0, j, k = 1, K ,

since U(r)
∂rj∂rk
=

U(r)
∂rk∂rj

. Therefore, the Hessianmatrix is diagonal for both the cases andwemay further discuss them separately.
Let us find the diagonal element of the Hessian matrix, that is, the second derivative with respect to rj:

∂2U(r)
∂r2j


r
=

1
γjwj

1
wj
e

rj
wj

K
i=1

ri + 2


K
i=1

ri

−1
· 0

K
i=1

ri

2 , j = 1, K ,

where we take into account the fact that the optimal vector satisfies the equality ∂U(r)
∂rj
= 0 for all j = 1, K .

Using the expression (A.12) in the proof of Theorem 1, we may calculate
K

i=1 ri:

K
i=1

ri =
K

i=1

wi ln (γiwi)+

K
i=1

wi

1−

K
j=1

wj ln

wjγj


K

k=1
wk

+W (α)


= [1+W (α)]

K
i=1

wi,

where α is given by Theorem 1. Let us consider two different cases described in the formulation of this theorem.
1. It is known that for the upper branch of the Lambert’s function W (α) ≥ −1 if α ≥ −1/e. Furthermore, W (α) = −1

only at the point α = −1/e. Hence, the expression
K

i=1 ri, and, consequently,
∂2U(r)

∂r2j
are always greater than zero at the

stationary point r as long as α > −1/e and we take the upper branch of the Lambert’s function.
If α > −1/e and the upper branch of the Lambert’s function is considered, then ∂2U(r)

∂r2j
> 0 and the Hessian matrix is

positive definite at the point r, which implies the local minimum of the function U(r).
2. If −1/e < α < 0 and the lower branch of the Lambert’s function is considered, we have W (α) < −1 and, hence,

negative eigenvalues of the diagonal Hessian matrix ∂2U(r)
∂r2j

< 0. This, in turn, makes the Hessian matrix negative definite

and the point r is then a local maximum of the function U(r).

Finally, we note that if α = −1/e then W (α) = −1 and ∂2U(r)
∂r2j

equals zero, which leads to a singular Hessian matrix.

However, in this case
K

i=1 ri = 0 as well and the obtained point clearly does not lie within the domain of the function
U(r). Moreover, this point is also out of our interest in terms of the initial optimization problem, since the conditionK

i=1 ri = r0 > 0 has been given in advance. �

According to Proposition 1 in case when α > −1/e, there is one and only one local minimum of the function U(r) (that
is, local maximum of η(r)).

Corollary 1. If α > −1/e and the upper branch of the Lambert’s function is taken, the stationary point r > 0 constitutes the
global maximum of the function η(r).

We note that in case α = −1/e, we obtain
K

i=1 ri = 0, that does not belong to the considered domain of the function
U(r) and is not in the area of our interest due to the target bit-rate requirement r0 > 0.

The above approachwill locate themaximum, if the stationary point exists. However, itmay also be the case thatα < − 1
e

and the Lambert’s function does not have real roots. Then the stationary points do not exist and there is no local minimum
for the considered function.
Caseα < −1/e (a stationary point does not exist). The systemof inequalities (3) induces the domain for the objective function,
which is compact due to boundedness and closedness in RK . Since we consider a compact set in RK as the domain within
which the objective function is bounded and continuous, the maximum/minimum can be reached only at the border of this
domain when no stationary point exists (α < − 1

e ).
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Proposition 3. If α < − 1
e , then there is no local maximum of the function η(r) (or, local minimum of U(r)). Assuming that all

the components of the rate vector are naturally not less than zero, i.e., r ≥ 0, the solution to the problem at hand (constrained
only by r ≥ 0) can then be found on the plane given by the equality ri = 0, 1 ≤ i ≤ K. The selection of the component i is
detailed below.

Proof. Let us fix the index i and the values rj, j ≠ i, and consider the function η̃(ri) =
ri+

K
j=1,i≠j rj

pi(ri)+
K

j=1,i≠j pj(rj)
. We demonstrate

below that η̃(ri)→ 0 in case of ri →+∞ and η̃(0) tends to a positive constant, if ri →+0, which (due to monotonic η̃(ri))
implies that the maximum should be sought on one of the planes defined at ri = 0. Due to the assumption that the function
dpi
dri

is continuously differentiable and monotonically increasing within (0,∞), and accounting for L’Hospital’s rule:

lim
ri→+∞

ri +
K

j=1,i≠j
rj

pi(ri)+
K

j=1,i≠j
pj(rj)

= lim
ri→+∞

1
dp(ri)
dri

= 0. (9)

Similar reasoning may be repeated for the function η̃(r) =
K

i=1 riK
i=1 pi+pc

, where a set {r (0)
i }

k1
i=1, k1 = 0, K − 1 is fixed and for all

i = k1 + 1, K let ri →∞. Then, it delivers us:

lim
ri→∞,i=k1+1,K

k1
i=1

r (0)
i +

K
i=k1+1

r (0)
i

k1
i=1

1
γi
e

r(0)i
wi +

K
i=k1+1

1
γi
e

ri
wi + pc

= lim
ri→∞,i=k1+1,K

K
i=k1+1

r (0)
i

K
i=k1+1

1
γi
e

ri
wi

= +0. (10)

The expression above implies that when all or several components of vector r tend to infinity, the value of the function η(r)
is infinitesimal.

If the system parameters do not satisfy the condition α > −1/e, then the gradient ∇η ≠ 0. This means that the non-
negative function η(r) achieves its maximum at the border of any compact subset r̃ = {r|ri ∈ [0, C1]}, where C1 ∈ R+ is
any number large enough. We note that for at least one of the non-negative functions pi(ri):

dp(ri)
dri

> 0. We derive the limit
of the function η(r) if ri → 0:

lim
ri→+0

ri +
K

j=1,i≠j
rj

pi(ri)+
K

j=1,i≠j
pj(rj)

= lim
ri→+0

1
dp(ri)
dri

= const > 0. (11)

From the expression for the derivative of U(r), we can conclude that ∂U(r)
∂rj

< 0 for the domain rj > r∗j , j = 1, K ,
where r∗ is a stationary point of the function U(r). Hence, the function U(r) is monotonically decreasing within the domain
rj > r∗j , j = 1, K .

From the statements (9) and (11), we also conclude that the maximum value for the function η lies on one of the borders
ri = 0, which completes the proof. �

Therefore, we establish that the point of the global maximum for the target energy efficiency function has at least one
zero component. Hence, we need to decrease the dimension of the problem on hand and for that matter we exclude the
component with the least contribution to the growth of the function η(r), i.e., find:

i = argmax
j=1,K


dpj(rj)
drj


rj=0


.

Then we set ri = 0 and thus decrease the dimension of the optimization task to K − 1, while considering the following:

min
{rj}Kj=1,j≠i

U(r) = min
{rj}Kj=1,j≠i

K
j=1,j≠i

pj(rj)+ pi +
K

j=1
prj

K
j=1,j≠i

rj + ri

,

subject to the same conditions. Here, ri and pi = pi(ri) are the fixed values for the dimension i, whereas ri can either be equal
to zero or follow from another border condition (more details are given below). We proceed by solving the optimization
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problem of the dimension K − 1 or by decreasing the dimension further if necessary, as long as K ≥ 1. If K = 1, then
we arrive at the one-dimensional problem with a particular solution r∗j , which has to be again checked for the border
restrictions.

3.2.2. Considering the constrained problem
Using the obtained solution r∗ of the unconstrained problem EUP, we now describe our approach to solving the system of

inequalities (4) step by step. First, we assume that the argument of the Lambert’s function exceeds− 1
e , so that the objective

function U(r) of the constrained problem ECP (3) has a local minimum in the corresponding point r∗. Naturally, r∗ may not
meet the conditions of the system (4).

In order to find the solution of the ECP, we need to check that the local minimum r∗ satisfies all the inequalities:

ri ≥ 0, i = 1, K ,

ri − rmax
i ≤ 0, i = 1, K ,

K
i=1

ri − r0 ≥ 0.

If the point r∗ satisfies the relations above, it is the solution of the system (4) and, consequently, the optimal solution of
the problem (3). Otherwise, if at least one of the inequalities fails, the local minimum of the function U(r) is located outside
of the domain specified by the given constraints, and the optimal solution belongs to the border of this domain. The general
scheme of our solution is detailed by Algorithm 1.

In particular, if we consider effective constraints ri− rmax
i = 0, decreasing the dimension of the ECP can be done similarly

until K = 1. The difference with the EUP is in the fact that when moving to the problem of dimension K − 1, we fix the
components at non-zero values rK = rmax

K if the constraint of index K fails (without loss of generality, we can rearrange the
vector). Hence, we arrive at slightly different expressions as given by Theorem 2 below.

Theorem 2. If the ECP has a solution r∗ ∈ RK and there is at least one index i, such that ri > rmax
i , then the optimal solution

should be located among:

pi = e1−
rK
wK

K−1
k=1

(wkγk)

−wk
K−1
j=1

wj
· eW (α)

−
1
γi

, i = 1, K − 1,

pK =
1
γK


e

rmax
k
wK − 1


.

Proof. Proof is given in Appendix B. �

For the casewhen the constraint
K

i=1 ri−r0 = 0 does not hold,we apply the similar procedure and set rK = r0−
K−1

i=1 ri.
The final expressions are given in Theorem 3.

Theorem 3. If the ECP has a solution r∗ ∈ RK and
K

i=1 ri − r0 < 0, then the optimal solution should be located among:

pi =
1
γi


e

ri
wi − 1


, i = 1, K ,

where the vector {ri}Ki=1 is given as follows:

ri = wi

r0 −
K

j=1
wj ln(γjwj)

K
j=1

wj

+ wi ln(γiwi), i = 1, K − 1,

rK = r0 −
K−1
j=1

rj.

Proof. Proof is given in Appendix C. �

Finally, let us also discuss the situation when pci = 0, if a particular channel (radio technology) is not exploited (i.e.,
pi = 0). In Section 2, we assume that pci = qi > 0, where qi is a fixed constant. However, due to the recursion in calculations,
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Algorithm 1 Solving the constrained problem ECP

r∗ ← FindSolution(K , {i}Ki=1)

function FindSolution(K , {ij}Kj=1)
while K ≥ 1 do

Solve the EUP (unconstrained problem) as per Section 3.2.1
r∗ ← stationary point
if r∗ ∈ RK then

if r∗i <0 then
i0 ← max

{i}Ki=1|r
∗
i <0

dpi
dri

r∗i0 ← 0
{r∗i }

K
i=1,i≠i0

←FindSolution(K − 1, {i}Ki=1,i≠i0 )
end if

if r∗i >rmax
i then

i0 ← max
{i}Ki=1|r

∗
i >rmax

i

dpi
dri

r∗i0 ← rmax
i

{r∗i }
K
i=1,i≠i0

←FindSolutionMax(K − 1, {i}Ki=1,i≠i0 )
end if

if
K

i=1 r
∗

i <r0 then
r∗K = r0 −

K
i=1 r

∗

i
{r∗i }

K−1
i=1 ← FindSolutionSum(K − 1, {i}K−1i=1 )

end if
return r∗ // r∗ is the point of interest

else
// r∗ /∈ RK , there is no local maximum
r∗ is on the border r∗i = 0
i0 ← max

{i}Ki=1
dpi
dri

r∗i0 ← 0
{r∗i }

K
i=1,i≠i0

← FindSolution(K − 1, {i}Ki=1,i≠i0 )
end if

end while

end function

function FindSolutionMax(K , {ij}Kj=1)
Solve according to Theorem 2
return r∗

end function

function FindSolutionSum(K , {ij}Kj=1)
Solve according to Theorem 3
return r∗

end function

we may relax this condition and consider the function pci = qi · I{pi = 0}, where I{pi = 0} is the indicator function of an
event. Therefore, after obtaining pi = 0, we would continue with the optimization at the next iteration using p̃c = pc − pci ,
so that the considered radio interface is inactive.

4. Numerical results

In this section, we provide three illustrative scenarios to investigate the achievable data rate, as well as the associated
transmit power, and energy efficiency of the mobile user device. These are intended to exemplify the energy efficient
operation achievedwith our approach and compare it against simpler heuristic power control schemes. Belowwe introduce
several (abstract and realistic) network geometries to study the user device behavior.
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Fig. 4. Network geometry for the case of two RATs.

Table 2
System parameters.

Parameter description LTE WiFi

r0 Target user bit-rate 2.5 Mbps 2.5 Mbps

pmax
i Maximum device Tx power 23 dBm 20 dBm

rmax
i Maximum user data rate 5.7 Mbps 5.0 Mbps
pci Circuit power 0.20 W 0.10 W
wi Channel bandwidth (excluding overheads) 10 MHz 10.8 MHz
N0 Noise power −90 dB −90 dB
fc Carrier frequency 2.0 GHz 2.4 GHz
hs Base station antenna height 25 m 10 m
hu Device antenna height 1.5 m 1.5 m

Number of users (sector/AP) 10 10

4.1. Symmetric case. Two radio access technologies

Here we assume that there are two RATs (K = 2) available for a mobile device to use at any given moment of time (see
Fig. 4). In the figure, the base station of the first RAT is located at the point x1 = 0, while the second one is placed at the
point x2 = R. The user device is moving along the x-axis between the base stations and its current location is x ∈ (0, R).

We employ the standard propagation model for micro cells in urban areas [40], where the path loss (dB) is determined
as:

θ = 40 log10 d+ 7.8− 18 log10 hshu + 2 log10 fc, if 10 < d < dBP ,

θ = 22 log10 d+ 28+ 20 log10 fc, if dBP < d < 5000, (12)

where hs and hu are the effective heights of the base station (or access point, AP) and the device (m); d and dBP are the
distances to the base station (access point) and the break point distance (m); and fc is the center frequency (GHz). Then,
taking into account noise power, we may calculate the SNR per unit of power as γi =

1/θ
N0

.
We study our optimization problem under realistic parameters partly borrowed from [41]. All corresponding parameters

are given in Table 2.
For the sake of intuitive illustration, we first provide results for a simplistic scenario without any maximum power and

minimum bit-rate restrictions. In Fig. 5, the dependence of the achievable data rate, transmit power, and energy efficiency
on the current user device coordinate x is demonstrated. The user device begins by exploiting one RAT as it moves from
one base station to another (left to right). We clearly see that our proposed power control increases the transmit power
to compensate for the growing path loss (according to the model in (12)). Starting from a certain point (x = 31 m in the
figure), the user device enables the second RAT by allocating some transmit power on the respective channel. Consequently,
it allows decreasing the power on the first channel, while still maintaining the highest energy efficiency.

In themiddle point, the transmit power levels on the two channelsmatch due to the symmetry of this example. Generally,
the user data rate decreases as the channel quality deteriorates. However, we also observe an interesting effect of some
increase in the data rate due to the combined operation by the two RATs. This data rate growth is achieved for the cost of
additional transmit power. Hence, at the end, this does not affect the optimal energy efficiency level, which monotonically
decreases, as the user device moves form zero to the middle point, and then increases symmetrically.

4.2. Symmetric case. Three radio access technologies

Here, we illustrate the behavior of the proposed optimal device operation on the plane by again using the considered
propagation model (12). Now we assume the coexistence of three RATs (K = 3) available for use at any given moment of
time. As a result, the considered system comprises three similar (e.g., 3GPP LTE) base stations on different channels: at the
points x1 = (0, R) and x2 = (R, 0), and at the center of coordinates x3 = (0, 0). The user device is allowed to move across
the plane in between all these base stations (see Fig. 6), while its power control is defined by Algorithm 1.
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Fig. 5. Performance for K = 2, no restrictions.

Fig. 6. Network geometry for the case of three RATs.

Fig. 7. Areas of user device transmission on different channels.

In Fig. 7, we highlight the areas of combined RAT operation, which are defined by the optimal power levels established
with the proposed analysis. We observe several types of regions: three regions where the user device transmits on a single
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Fig. 8. Data rate for K = 3.

Fig. 9. Transmit power for K = 3.

Fig. 10. Energy efficiency for K = 3.

channel, three support regions between the pairs of base stations (with more than one radio interface activated to support
the target bit-rate), and one support region where all the three radio interfaces are active.

Figs. 8–10 demonstrate the dependences of the achievable data rate, transmit power, and energy efficiency on the user
device coordinates respectively. The situation is generally similar to the above two-dimensional case (K = 2): the data
rate decreases as the user device moves away from a base station. We can also clearly see the effect of boosted data rate in
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Fig. 11. Performance for K = 2 with max power and min bit-rate restrictions.

the areas of collaborative operation by several RATs, which is associated with the decreased transmit power given by our
optimal power control.

4.3. Asymmetric case. Two radio access technologies

In what follows, we consider two different radio technologies: 3GPP LTE and WiFi, assuming that a particular user is
moving between the LTE base station and the (outdoor) WiFi access point. For simplicity, we assume that WiFi operation
(as per IEEE 802.11-2012 technology) is controlled by the Point Coordination Function (PCF) and, therefore, a round-robin
scheduler (e.g., in commercial WiFi deployments on traffic lights or lamp posts). All corresponding technology-specific
parameters are summarized in Table 2. For both LTE and outdoor WiFi, we employ the propagation model for micro cells in
urban areas [40] as before.

Fig. 11 concentrates on the case when the maximum power and the minimum bit-rate restrictions take effect. In the
region up to the point A⃝, only the LTE interface is sending data, and the transmit power increases due to the growing path
loss; from the point A⃝ to the point B⃝ the transmit power of WiFi rapidly grows towards its maximum level (due to how
WiFi PHY operates). Both the radio interfaces keep the maximum power level up to the point C⃝, after which the usage of
LTE reduces due to lower channel quality. At the point D⃝, the data rate approaches the minimum level, and, therefore, the
decrease in LTE transmit power slows down slightly to sustain the target bit-rate. WhenWiFi becomes more effective at the
point E⃝, LTE is not sending anymore. Then, energy efficiency and total data rate increase due toWiFi radio link improvement
up to the point F⃝, and our scheme arrives at the maximum level of the data rate, when further SNR growth does not lead
to the data rate improvement.

Further, in order to compare our energy efficiency optimal power control with possible (simpler) alternatives, we
continue by defining two primitive power control policies, where the transmit power is fixed. Specifically, we set the
allocated power level equal to the maximum allowed power. Additionally, as a more intelligent power control strategy,
below we introduce an intuitive heuristic transmission policy.

• Simple policy 1. The user device transmits on one channel with the maximum quality by allocating a fixed amount of
power to it. We determine the best channel by choosing the highest value γiwi, which takes into account both SNR and
channel bandwidth.
• Simple policy 2. The user device transmits on all channels simultaneously by allocating a fixed amount of power to each

channel.
• Intuitive heuristic policy. The user device follows a heuristic power allocation strategy by using firstly the best-quality

channel and then, if necessary, leveraging the rest of the required bit-rate (up to the target value r0) on other channels in
the order of channel quality reduction (see Algorithm 2 for details). The available channels may be compared using the
same criterion as above, i.e., the channel with higher γiwi value would be preferred.

In Fig. 12, the user device energy efficiency and the data rate achieved with the proposed optimal power control are
compared against the performance of the three simpler power control strategies detailed above. The data rate with the first
strategy is the lowest in themiddle region, where the quality of both the channels is poor, leading to QoS violation when the
target bit-rate cannot be satisfied even with the maximum transmit power. The second strategy generally provides higher
data rates at the cost of excessive power consumption. Our energy efficiency optimal approach allows improving user data
rate almost up to the level of the second strategy performance, while guaranteeing the target bit-rate r0. By cutting down
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Algorithm 2 Heuristic power allocation strategy

rrest ← r0
I = {i}Ki=1
while rrest > 0 or K > 0 do

Find a channel with the best quality i0 ← maxi∈I γi

if rrest > wi0 log

1+ pmax

i0
γi0


then

pi0 ← pmax
i0

ri0 ← wi0 log

1+ pmax

i0
γi0


else

ri0 ← rrest
pi0 ← 1/γi0


eri0 /wi0 − 1


end if
rrest ← rrest − ri0
K ← K − 1
I ← I\{i0}

end while

Fig. 12. Performance comparison of power control policies: optimal vs. simpler approaches.

on the unnecessary power consumption, our scheme clearly results in the maximum energy efficiency. Most interestingly,
the third (intuitive heuristic) policy delivers close to the optimal energy efficiency. However, at certain distances, it fails to
approach the energy efficient optimum.

Finally, in Fig. 13 we quantify the relative decrease in the energy efficiency when using one of the three alternative
policies. We conclude that whenever the target bit-rate is supported, the proposed optimal scheme achieves much higher
energy efficiency than the two primitive power allocation schemes. The third (heuristic) strategy approaches our optimal
solution in many regions, but also leaves some room for improvement.

5. Conclusion

In this work, we have addressed energy efficient power control for a wireless deployment with multiple available
radio access technologies. The problem of strict energy efficiency maximization at a mobile user device has been solved
analytically for an arbitrary number of RATs and under several practical restrictions, such as minimum target bit-rate and
maximum allowed transmit power. Our illustrative numerical examples for two and three RATs confirm that the proposed
power control scheme reduces mobile device’s power expenditure, while at the same time maintaining the required level
of user data rate.

By contrast to the previous work, the use of our approach establishes support regions where two or more RATs work
collaboratively to result inmore energy efficient device operationwhen compared against simpler power control techniques.
Our results suggest that the proposed power control strategy might become an attractive choice for the future integrated
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Fig. 13. Relative energy efficiency loss: optimal power control scheme vs. simpler approaches.

beyond-4G wireless systems and thus contribute to the related research. The choice of more adequate heuristic power
allocation schemes that would achieve near-optimal performance at all times together with the characterization of dynamic
traffic models better suited for multimedia mobile traffic are the directions of our current work.
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Appendix A

In this appendix, we prove Theorem 1.

Proof. To establish the optimal solution for the optimization problemwithout constraints (EUP), we need to locate it among
the stationary points satisfying the following condition:

∂U(r)
∂rj

= 0⇔

dpj
drj

K
i=1

ri −


K
i=1

pi + pc




K
i=1

ri

2 = 0

⇔

dpj
drj
· c −


K

i=1
pi + pc


r2

= 0. (A.1)

Further on, we demonstrate how to define the sought points. First, we calculate the derivatives for the individual
power–rate mapping functions:

dpj
drj
=

1
γjwj

e
rj
wj , j = 1, K . (A.2)

We substitute the expression (A.2) for the derivative of the function pj into the condition for the stationary points (A.1):

∂U(r)
∂rj
=

1
γjwj

e
rj
wj

K
i=1

ri −


K
i=1

1
γi


e

ri
wi − 1


+ pc




K
i=1

ri

2 = 0, j = 1, K . (A.3)
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Hence, from (A.3) we obtain the sufficient condition for the stationary points:

1
γjwj

e
rj
wj

K
i=1

ri −
K

i=1

1
γi
e

ri
wi +


K

i=1

1
γi
− pc


= 0, j = 1, K .

Collecting the elements that depend and do not depend on j separately, we obtain for every j = 1, K :

1
γjwj

e
rj
wj =

K
i=1

1
γi
e

ri
wi −


K

i=1

1
γi
− pc


K

i=1
ri

, j = 1, K . (A.4)

We denote the right part of Eq. (A.4), which is constant with respect to the index j, as D:

K
i=1

1
γi
e

ri
wi −


K

i=1

1
γi
− pc


K

i=1
ri

= D. (A.5)

Therefore, for the left part, it holds the following:

1
γjwj

e
rj
wj = D, j = 1, K . (A.6)

Here, rj is expressed via D as follows:

rj = wj ln(wjD)+ wj ln γj, j = 1, K . (A.7)

We note that 1
γj
e

rj
w = wjD, j = 1, K and then the substitution of (A.7) into (A.5) gives us:

D
K

j=1

wj −


K

j=1

1
γj
−

K
j=1

pcj


= D


K

j=1

wj ln(wjD)+

K
j=1

wj ln γj


.

Simplifying the above equation, we obtain the following:

D
K

j=1

wj ln(wjD)+ D
K

j=1

wj ln γj −

K
j=1

wjD = −


K

j=1

1
γj
−

K
j=1

pcj


.

Rearranging the above expression, we establish that:

D ln


K

j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

j
D
e

 =
−

K
j=1

1
γj
+

K
j=1

pcj

K
j=1

wj

. (A.8)

We also introduce a new variable:

X = ln

 K
j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

j
D
e

 .

Then, for the value of D, it holds:

D = e(X+1)
K

j=1

w

−wi
K

k=1
wk

j

K
j=1

γ

−wj
K

k=1
wk

j .
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By changing the variables, we rewrite Eq. (A.8) as:

XeX =

−

K
j=1

1
γj
+

K
j=1

pcj

e
K

j=1
wj

K
i=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

j . (A.9)

From Eq. (A.9), we can obtain the value of X and, accordingly, the expression for D:

X = W


−

K
j=1

1
γj
+

K
j=1

pcj

e
K

j=1
wj

K
j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

i

 ,

D = e

 K
j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wi
K

k=1
wk

i


−1

× exp

W


−

K
j=1

1
γj
+

K
j=1

pcj

e
K

j=1
wj

K
j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

j


 , (A.10)

where W (x) is the Lambert’sW -function [39] representing the solution to the following equation:

XeX = α. (A.11)

We note that the transcendental equation (A.11) has exactly one real root x = W (α) in the domain {− 1
e } ∪ [0,∞), and

also has two real roots when α ∈ (− 1
e , 0) (it follows from the shape of the Lambert’s function, which has several branches,

see Fig. 3). Here, we consider the value from the main (upper) branch, which is explained by Proposition 1. In case when
α < − 1

e , we conclude that there is no optimal solution in RK for our optimization problem. If a real value W (α) exists, we
substitute the expression for D (A.10) into (A.7):

ri = wi ln(wiD)+ wi ln γi = wi ln γi + wi lnwi + wi lnD

= wi ln γi + wi lnwi + wi

1−
K

j=1

wj
K

k=1
wk

ln

wjγj


×W


−

K
j=1

1
γj
+

K
j=1

pcj

e
K

k=1
wk

K
j=1

w

wj
K

k=1
wk

j

K
j=1

γ

wj
K

k=1
wk

i

 .

The final expression for the achievable data rate ri is given as:

ri = wi ln (γiwi)+ wi

1−

K
j=1

wj ln

wjγj


K

k=1
wk

+ wiW


−

K
j=1

1
γj
+

K
j=1

pcj

e
K

k=1
wk

K
j=1


wjγj

 wj
K

k=1
wk

 . (A.12)

Here, we have obtained the stationary point r = {ri}Ki=1 for our optimization problem. The optimal power level to operate
on a single channel can be indicated by formula (1), and the final formula for pi = wiD− 1

γi
is:

pi = −
1
γi
+ wie

K
j=1


wjγj

 −wj
K

k=1
wk
× exp

W


−

K
j=1

1
γj
+

K
j=1

pcj

e
K

k=1
wk

K
j=1


wjγj

 wj
K

k=1
wk


 , (A.13)

which completes the proof. �

Appendix B

Solving the constrained problem (ECP), if we establish that the optimal solution does not belong to the required domain,
weproceed by considering all the possible options for border location of themaximumof energy efficiency. First,we consider
the casewhen ri > rmax

i . Thismeans that the ith component should be set on the border, i.e., ri = rmax
i . If several components
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do not satisfy the inequalities (4), we select the component with the least contribution to the energy efficiency growth,
i.e., find:

i = arg min
j=1,K


dpj(rj)
drj

rj > rmax
i


.

Then, we set ri = rmax
i and thus decrease the dimension of the optimization task to K − 1, considering the following:

min
{rj}Kj=1,j≠i

U(r) = min
{rj}Kj=1,j≠i

K
j=1,j≠i

pj(rj)+ pi(rmax
i )+

K
j=1

prj

K
j=1,j≠i

rj + rmax
i

,

subject to the same conditions. We rearrange the order of variables ri without loss of generality, so that rmax
i becomes the

last in a series under the index K , when rK = rmax
i .

Below we suggest the proof of Theorem 2, which delivers an optimal vector p, if for the solution r∗ ∈ RK of ECP there is
at least one index i, such that ri > rmax

i .

Proof. Letting pi(rmax
K ) = pK and rmax

K = rK , we find that for any j = 1, K , i ≠ j:

∂U(r)
∂rj
=

1
γjwj

e
rj
wj

K
j=1

rj −


K

j=1

1
γj


e

rj
wj − 1


+

K
j=1

pcj


K−1
j=1

rj + rK

.

Thus, we obtain the necessary condition of the stationary points:

1
γjwj

e
rj
wj

K
j=1

rj −
K−1
j=1

1
γj
e

rj
wj +


K

j=1

1
γj
−

K
j=1

pcj − pK


= 0,

which holds for all i = 1, K − 1. Following the same logic as before, we can obtain the expression for the index j = 1, K − 1:

1
γjwj

e
rj
wj =

K−1
j=1

1
γj
e

rj
wj +

1
γK

e
rK
wK −


K

j=1

1
γj
−

K
j=1

pcj


K−1
j=1

rj + rK

= D.

Letting, for the sake of tractability, that:

α =

1
γK

e
rK
wK −

K
i=1

1
γi
+ pc

e
K−1
i=1

wi

K−1
i=1

w

wi
K−1
j=1

wj

i

K−1
i=1

γ

wi
K−1
j=1

wj

i · e
rK
wK , (B.1)

we derive the expression for D:

D = e

K−1
i=1

w

wi
K−1
j=1

wj

i

K−1
i=1

γ

wi
K−1
j=1

wj

i · e
rK
wK


−1

· eW (α).

Substituting the above into the expression for the achievable data rate (A.7), delivers us:

ri = wi ln(wiD)+ wi ln γi = wi ln γi + wi lnwi + wi lnD

= wi ln γi + wi lnwi + wi

1−
rK
wK
−

K−1
k=1

wk
K−1
j=1

wj

ln (wkγk)

 ·W (α) .
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The final expressions for the achievable data rate ri and transmit power pi for any i = 1, K − 1 are given as follows:

ri = wi ln (γiwi)+ wi

1−
rK
wK
−

K
j=1

wj ln

wjγj


K

j=1
wj

W (α) , (B.2)

pi = e1−
rK
wK

K−1
k=1

(wkγk)

−wk
K−1
j=1

wj
· eW (α)

−
1
γi

, i = 1, K − 1, (B.3)

which completes the proof. �

Appendix C

Nowwe consider the case
K

i=1 ri−r0 < 0.We established that the optimal solution is located on the plane
K

j=1 rj = r0.
Therefore, the following constrained problem should be considered:

min
{rj}Kj=1

U(r) = min
{rj}Kj=1

K
j=1

pj +
K

j=1
prj

K
j=1

rj

,

subject to

K
j=1

rj = r0. (C.1)

Theorem3 asserts the expression for optimal power vector p and vector r if ECP has a solution r∗ ∈ RK and
K

i=1 r
∗

i −r0 <
0. Below we provide the proof of Theorem 3.

Proof. We express rK from Eq. (C.1) as follows:

rK = r0 −
K−1
j=1

rj. (C.2)

This allows decreasing the dimension of the optimization task. Our system thus transforms to:

min
{rj}

K−1
j=1

U(r) = min
{rj}

K−1
j=1

K−1
j=1

1
γi
e

ri
wi +

1
γK

e

r0−
K−1
j=1

rj

wK + pc

r0
,

which is equivalent to the following problem:

min
{rj}

K−1
j=1

U1(r) = min
{rj}

K−1
j=1


K−1
j=1

1
γi
e

ri
wi +

1
γK

e

r0−
K−1
j=1

rj

wK

 . (C.3)

The stationary point’s condition for the problem (C.3) is:

∂U1(r)
∂ri

=
1

γiwi
e

ri
wi −

1
γKwK

e

r0−
K−1
j=1

rj

wK = 0, i = 1, K − 1.

Further, we follow the same logic as before, denoting the constant part as D:

1
γiwi

e
ri
wi =

1
γKwK

e

r0−
K−1
j=1

rj

wK = D, i = 1, K − 1.
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Then, we express the individual data rates ri via D:

ri = wi ln(Dγiwi) = wi ln(D)+ wi ln(γiwi), i = 1, K − 1,

and substitute them all into the expression for rK (C.2):

r0 −
K−1
j=1

wj ln(D)−

K−1
j=1

wj ln(γjwj) = wK ln(DγKwK ).

Simplifying the expression above, we obtain:

r0 −
K

j=1

wj ln(γjwj) =

K
j=1

wj ln(D).

Next, we express lnD from the above equation:

ln(D) =

r0 −
K

j=1
wj ln(γjwj)

K
j=1

wj

.

Finally, we derive an expression for the individual data rate ri:

ri = wi

r0 −
K

j=1
wj ln(γjwj)

K
j=1

wj

+ wi ln(γiwi), i = 1, K − 1,

which completes the proof. �
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Intelligent Access Network Selection in
Converged Multi-Radio Heterogeneous Networks

Sergey Andreev†, Mikhail Gerasimenko, Olga Galinina, Yevgeni Koucheryavy,
Nageen Himayat, Shu-ping Yeh, and Shilpa Talwar

Abstract—Heterogeneous multi-radio networks are emerging
network architectures, which comprise hierarchical deployments
of increasingly smaller cells. In these deployments, each user
device may employ multiple radio access technologies to commu-
nicate with network infrastructure. With the growing numbers
of such multi-radio consumer devices, mobile network operators
seek to leverage spectrum across diverse radio technologies
thus boosting capacity and enhancing quality of service. In
this article, we review major challenges in delivering uniform
connectivity and service experience to converged multi-radio
heterogeneous deployments. We envision that multiple radios
and associated device/infrastructure intelligence for their efficient
use will become a fundamental characteristic of future 5G
technologies, where the distributed unlicensed-band network
(e.g., WiFi) may take advantage of the centralized control
function residing in the cellular network (e.g., 3GPP LTE).
Illustrating several available architectural choices for integrating
WiFi and LTE networks, we specifically focus on interworking
within the radio access network and detail feasible options for
intelligent access network selection. Both network- and user-
centric approaches are considered, wherein the control rests with
the network or the user. In particular, our system-level simulation
results indicate that load-aware user-centric schemes, which
augment SNR measurements with additional information about
network loading, could improve the performance of conventional
WiFi-preferred solutions based on minimum SNR threshold.
Comparison with more advanced network-controlled schemes has
also been completed to confirm attractive practical benefits of
distributed user-centric algorithms. Building on extensive system-
wide simulation data, we also propose novel analytical space-
time methodology for assisted network selection capturing user
traffic dynamics together with spatial randomness of multi-radio
heterogeneous networks.

Index Terms—Heterogeneous networks, multiple radio access
technologies, LTE/WiFi integration, intelligent access network
selection, load-awareness.

I. RECENT ADVANCES IN MULTI-RADIO NETWORKING

The rapid expansion of wireless communications over the
last decades has introduced fundamental changes to “anytime,
anywhere” mobile Internet access, as well as posed new
challenges for the research community. In 2011, the fourth
generation of broadband communication standards has been
completed to offer aggressive improvements in all aspects
of wireless system design, including system capacity, energy
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efficiency, and user quality of service (QoS). As the respective
technologies are being deployed today, the focus of recent
research efforts is shifting to what may be referred to as fifth
generation (5G) wireless networks.

Given a historical 10-year cycle for every existing gen-
eration, it is expected that 5G systems will be deployed
sometime around year 2020. Whereas there is currently no
complete technical definition of what comes after the state-
of-the-art networking technology, the anticipated communica-
tion requirements may already be understood from the user
perspective. Regardless of their current location, human users
would like to be connected at all times taking advantage of the
rich set of services provided by the contemporary multimedia-
over-wireless networks. This creates significant challenges
for 5G technology design, as user’s connectivity experience
should match data rate requirements and be uniform no matter
where the user is, who the user connects to, and what the user
service needs are [1].

Unfortunately, contemporary wireless networks are cur-
rently unable to deliver the desired ubiquitous connectivity
experience. In the first place, they are lacking uniformity in
the data rates, suffer from excessive time delays, or sometimes
even service outage due to poor coverage and severe inter-
ference conditions. Whereas current technologies have indeed
been helpful to cope with some of those challenges, it is
commonly believed that they will still be insufficient to meet
the anticipated growth in traffic demand (nearly 11-fold over
the following 5 years [2]) aggravated by rapid proliferation
in types and numbers of wireless devices. To make matters
worse, billions of diverse machine-type devices connect to the
network thus reshaping the Internet as we know it today. All
these technological challenges accentuate the need to explore
novel solutions within the context of 5G networks.

A. Major trends behind 5G technology

A transformation of mobile user experience requires rev-
olutionary changes in both network infrastructure and de-
vice architecture, where the user equipment (UE) is jointly
optimized with the surrounding network context [3]. Many
believe that the only feasible solution to mitigate the increas-
ing disproportion between the desired QoS and the limited
wireless resources is by deploying the higher density of
femto- and pico-cells in current cellular architecture. Owing
to shorter radio links, smaller cells provide higher data rates
and require less energy for uplink transmission, especially in
urban environments.
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However, introducing an increasing number of serving
stations to bridge the capacity gap incurs extra complexity
due to more cumbersome interference management, higher
rental fees, and increased infrastructure maintenance costs [4].
More importantly, licensed spectrum continues to be scarce
and expensive, whereas the traditional methods to improve
its efficient use approach their theoretical limits. Even when
additional spectrum is allocated, these new frequencies are
likely to remain fragmented and could require diverse trans-
mission technologies. Consequently, there is a pressing de-
mand to leverage additional capacity across multiple radio
access technologies (RATs).

As the result, it becomes crucial to aggregate different radio
technologies as part of a common converged radio network, in
a manner transparent to the end user, and develop techniques
that can efficiently utilize the radio resources available across
different spectral bands potentially using various RATs [5]. In
particular, we expect that the majority of immediate gains will
come from advanced architectures and protocols that would
leverage the unlicensed spectrum. For example, mobile users
with direct device-to-device communication capability may
take advantage of their unlicensed-band radios and cooperate
with other proximate users to locally improve access in a cost-
efficient way [6].

Further, as cell sizes shrink, the footprints of cellular,
local, and personal area networks are increasingly overlapping.
This creates an attractive opportunity to simultaneously utilize
multiple RATs for improved wireless connectivity. We thus
believe that intelligent multi-RAT coupling will efficiently
leverage performance benefits across several dimensions of
diversity, including spatial, temporal, frequency, interference,
load, and others. In future 5G networks, both short- and long-
range technologies may need to work cooperatively and exploit
the intricate interactions between the device and the network,
as well as between the devices themselves, to realize the
desired uniform user experience [7].

Consequently, the incentive to efficiently coordinate be-
tween the alternative RATs is growing stronger and we
envision that multiple radios together with the associated
device/system intelligence for their efficient use will become
a fundamental characteristic of next-generation networks [8].
More specifically, the distributed unlicensed-band network
(e.g., Wireless Local Area Network, WLAN) may take ad-
vantage of the centralized control function residing in the
cellular network to effectively perform dynamic multi-RAT
network association and hence provide beyond-additive gains
in network capacity and user connectivity experience.

B. Scope and core novelty of current research

According to the above, there is currently an increasing
shift towards tighter interworking between different RATs. To
this end, our research campaign is targeting joint RAT as-
signment, selection, and scheduling algorithms, which provide
significant improvement in overall system performance. In
what follows, our focus is set on integration between multiple
RATs within heterogeneous network architecture. As our case
study, we consider convergence of WLAN-based small cells

with operator-managed cellular deployment to illustrate fea-
sible architectural options for integration and their associated
performance benefits. Consequently, we seek to explore the
potential of a diverse range of devices requiring connectivity
at different scales to augment system capacity and improve
user connectivity experience.

We emphasize that interworking between WLAN and cel-
lular networks has already been considered in the past, but
largely from the perspective of inter-network (vertical) hand-
off [9]. Cellular standards community, represented by the Third
Generation Partnership Project (3GPP), has also been involved
in developing specifications that address cellular/WLAN inter-
working for a number of years. Several new study and work
items have recently emerged to develop specifications towards
tighter integration of WLAN with cellular networks. The
areas of investigation range from solutions for trusted access
to 3GPP services with WLAN devices, seamless mobility
between 3GPP and WLAN technologies, and support for
Access Network Discovery and Selection Function (ANDSF).
While much of this effort has focused on loose interworking
solutions only requiring changes within the core network,
there has been a recent shift in 3GPP Release 12 to address
interworking within the Radio Access Network (RAN) [10].

This emerging trend is driven by the need to support better
QoS on unlicensed spectrum as demanded by a consortium
of network operators who have introduced stringent require-
ments for carrier-grade WiFi. The WLAN community has
also responded with new initiatives such as Hot Spot 2.0,
as well as a novel “High Efficiency WLAN” standardization
effort by IEEE 802.11 working group. Hence, it is timely
to investigate RAN-based integration solutions, which assume
increased cooperation between 3GPP Long Term Evolution
(LTE) and WiFi radio technologies. Along these lines, our
work details several intelligent network selection mechanisms,
which deliver significant gains in overall system performance
and user QoS. We address both network-centric and user-
centric approaches, wherein the control of how different radio
technologies are utilized rests with the network or the user
respectively.

II. ENABLING ARCHITECTURES AND ALGORITHMS FOR
CONVERGED HETEROGENEOUS NETWORKS

As argued previously, the capacity and connectivity lim-
itations faced by the future 5G networks will continue to
drive the need for closer integration across different RATs.
To this end, Fig. 1(a) illustrates our vision of an operator’s
multi-RAT heterogeneous network (HetNet). It features a hi-
erarchical deployment of wide-area macro cells for ubiquitous
coverage, connectivity, and seamless mobility augmented with
the overlay tier of inexpensive low-power smaller cells (picos,
femtos, WiFi access points, integrated WiFi-LTE modules,
etc.) to enhance capacity by moving infrastructure closer to
the users in areas with higher traffic demand.

Whereas the trend towards the use of WLAN in conjunction
with cellular networks has emerged from the near-term need
of operators to relieve congestion on cellular networks, the use
of WiFi is expected to remain an integral part of operators’
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Fig. 1: Topology and architecture of a converged heterogeneous network

long-term strategy to address future capacity needs. In the
simplest case, no cooperation between WiFi and cellular RAN
is available and the users are left to determine how the two
RATs are utilized. However, when WiFi is managed as part
of an operator’s RAN, increased level of cooperation between
WLAN and 3GPP infrastructure may become feasible.

For instance, one may envisage an architecture where inte-
grated WiFi-LTE small cells enable full cooperation between
the two RATs, allowing for WiFi to simply become a “virtual
carrier” anchored on the 3GPP radio network. We note that
multi-RAT small cells with collocated WiFi and 3GPP inter-
faces are an emerging industry trend for lowering deployment
costs by leveraging common infrastructure across multiple
RATs. However, given that such deployments are presently not
common, current standardization efforts aim to improve UE-
centric interworking architectures while assuming only limited
cooperation or assistance across a multi-RAT network.

A. Options for integrating WiFi with 3GPP LTE

We continue by illustrating various architectural choices
for integrating WiFi and LTE networks in Fig. 1(b). These

generally deliver different mechanisms to implement important
operations required for multi-RAT integration, including RAT
discovery, RAT selection or assignment, control of multi-RAT
radio resource management (RRM), protocols for inter-RAT
mobility or session transfers, etc.

1) Application Layer Integration: In Fig. 1(b), Case A
corresponds to the application or higher-layer integration ar-
chitecture. Accordingly, there is a proprietary or higher layer
interface allowing the UE and the content server to communi-
cate directly by exchanging information over multiple RATs.
As no coordination at the network layer is involved, such
solutions are typically simple and have already been explored
in the context of improving over-the-top applications. This
choice of architecture is beneficial for boosting user quality of
experience (QoE), but it remains largely application-dependent
and may not fully account for underlying network conditions,
especially when such conditions vary dynamically.

2) Core Network Based Integration: Further, Case B
summarizes recent solutions proposed by 3GPP for cellu-
lar/WLAN integration basing on interworking within the core
network. Accordingly, ANDSF assists in discovery of WiFi
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access points and may also specify policies for network
selection, but the overall network selection decision remains
in control of the UE. Therefore, it can combine the local radio
link state information, operator policies, and user preferences
to make a decision that improves user QoE.

There are a number of benefits with this integration op-
tion, as it can more adequately account for both operator
policies and user preferences. However, the performance of
corresponding control procedures may still be rather limited.
This is due to the fact that the UE may only have local
knowledge of the network conditions and is thus likely to
make greedy decisions ultimately hurting overall system per-
formance. Whereas the UE can be made to report its perceived
radio link state to the core network, such information exchange
cannot be updated dynamically due to prohibitive levels of
associated signaling overhead. Hence, when wireless channel
conditions change dynamically, local RRM directly on the
RAN layer may deliver higher QoS. Therefore, advanced
architectures allowing for multi-RAT integration within the
RAN are of increasing interest today, as they employ network-
wide knowledge of radio link conditions.

3) RAN Based Integration: Finally, Case C details the
emerging RAN-based 3GPP/WLAN integration architecture.
Here, UE assistance may facilitate information exchange
between cellular and WLAN infrastructure or a dedicated
interface may be introduced for that matter. The available
levels of cooperation within the RAN are constrained by
the capacity of the inter-cell/inter-RAT backhaul links. When
high-capacity backhaul is available or in case of integrated
multi-RAT small cells, full cooperation across multiple RATs
may become available, thus enabling more dynamic RRM for
improved system and user performance.

In addition, the cellular RAT may be employed as a mobility
and control anchor: a user thus utilizes 3GPP protocols for
transferring sessions to multi-radio small cells and then uses
local switching to steer sessions to/from WLAN with low
latency. The benefits of this solution are obvious, as adap-
tations to dynamic variations in interference conditions can
easily be performed without undesired session interruptions
and packet drops. Further, user and operator preferences may
be accounted for through appropriate feedback by the UE or
via a suitable configuration of the RAN by the operators.

In summary, the degrees of cooperation within the RAN
can range from exploiting simple assistance information (such
as network loading) by the radio network to tight coupling
and joint/centralized RAN-based RRM. In what follows, we
describe the various levels of cross-RAT cooperation options
across a multi-RAT HetNet and then characterize the associ-
ated performance benefits. We pay particular attention to the
more practical case when only limited assistance across multi-
RAT network is available to users, by contrast to significantly
more complex network-controlled approaches requiring higher
signaling and computation overheads.

B. Algorithms for radio resource management

In what follows, we detail various options for utilizing and
managing multi-RAT radio resources available in the network.

Both user- and network-controlled (or assisted) RRM may
be considered for the range of architectural options described
above. For application or core network based integration (op-
tions A and B), only UE-based RRM schemes may be feasible.
A richer set of choices is available for RAN-based multi-RAT
integration (option C), which depend on the degree of inter-
RAT cooperation achieved with different RAN topologies.

Generally, RAN can play a major role in multi-RAT re-
source management across the HetNet. Even if RAN does not
directly control the RRM decisions, it may provide optimized
network assistance to enable better decisions by the UE. In
virtual RAN architectures, where the mobility and control
anchor is moved from the core network to the RAN, more
dynamic RRM with fast session transfers between RATs (dy-
namic switching) may become feasible. For integrated multi-
RAT small cells or where the delay between the interfaces is
negligible, tighter cooperation involving joint RAT scheduling
may also be enabled.

We continue by introducing specific RRM schemes that
are investigated in our research. They range from typical
implementations used by UEs today, where the UE always
prefers to connect to the less expensive WiFi network if it
is available (WiFi-preferred), to more intelligent cross-RAT
access network selection for converged HetNets.

1) User-centric approaches: The simplest threshold-based
algorithm serves as our baseline user-centric network selection
scheme. With this solution, a UE is continuously monitoring
the signaling messages from the neighboring WiFi access
points (APs) to obtain timely signal-to-noise ratio (SNR) in-
formation. When a particular SNR value exceeds a predefined
threshold (which we set equal to 40 dB as discussed in 3GPP),
the user starts steering its traffic to the respective WiFi AP.
Otherwise, it keeps transmitting on LTE network (see Fig. 2(a)
for details).

Naturally, such behavior is an automatized version of what
a human user would do: whenever a hot-spot with reliable
signal is available, UEs switch to WiFi to enjoy higher data
rates and reduce expenses associated with paid cellular traffic.
Alternative user-centric algorithms include schemes based on
preferring WiFi if certain minimum performance (coverage,
QoS, etc.) is available, as well as solutions where the UE
is able to transmit on both RATs, without any intelligent
coordination across them.

2) RAN-assisted approaches: Due to its simplicity, the
baseline WiFi-preferred (SNR-threshold) scheme may experi-
ence limitations in dense interference-limited scenarios which
are typical for modern urban deployments. For instance, a
hot-spot AP may experience overload conditions when a
significant number of users try to steer their traffic through
it. Moreover, nomadic WiFi users, such as those with laptops,
could consume most of WLAN capacity. To make matters
worse, the WiFi medium access is contention-based which re-
sults in non-linear degradation of the throughput performance
with increasing number of users.

Therefore, the load-agnostic SNR-threshold scheme is not
expected to remain effective in environments with varying
load. In such situations, UEs may attempt to combine SNR
knowledge with additional knowledge of the loading in-
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Fig. 2: Alternative network selection algorithms for HetNets

formation from the network infrastructure (cellular/WLAN).
While accounting for WiFi load would certainly improve
performance beyond the SNR-threshold scheme, it is easy to
envision scenarios where accounting for WiFi load only will
not be sufficient. Hence, we focus our further investigation
on schemes that account for both LTE and WiFi loading and
compare them with existing network-based schemes which
have been standardized in 3GPP for small cell offload. Our
proposed load-aware scheme works as follows (see simplified
time diagram in Fig. 2(b)).

Throughput estimation: User attempts to listen on both
interfaces in order to monitor the SNR information in its
neighborhood and estimates its expected throughput. For WiFi,
such estimation is conducted based on predicted network
capacity divided by number of UEs connected to a particular
AP (as advertised by AP through the load indicators in the
beacon frames) as well as accounting for several weighting
factors (SNR, contention, etc.). The motivation behind the
SNR weighting is to exclude APs with low signal quality.
Another coefficient may account for the contention-based
nature of WiFi channel access and include signaling overheads
as well as collision losses. For LTE, throughput prediction may
be simply built on the scheduler advertisements by base station
(BS or eNodeB) and the used power control.

Randomization: User may select the network with the high-
est expected throughput value probabilistically rand(0..1) <
pmi+1, where mi is the number of recent connections to this
AP/BS and p is the number in (0, 1), which is representing
the re-connection probability. The proper use of p reduces
the number of concurrent re-connections to the same AP/BS,
which will prevent uncontrollable hopping from one interface
to another. If a network re-selection occurs, mi is incremented
for AP/BS i. Other users are taking into account this infor-
mation by dividing their expected throughput value for this
AP/BS by mi+1. This allows to control dynamic re-selections
on both networks.

Hysteresis: To additionally decrease the number of cell-border

switchings, an appropriate hysteresis value should be added to
the current expected throughput value.
Filtering throughput estimations: Further improvement in
throughput estimates is obtained through averaging. After each
measurement window, the actual throughput obtained over
this period may be filtered with a moving average filter.
The resultant value, which combines the measured and the
predicted throughput, is then used as the expected throughput
value for this AP/BS. This averaging is made to achieve more
reliability, which could suffer due to contention-based channel
access.

In summary, RAN-assisted approaches employ network
assistance from the RAN to improve UE-based RAT selection
decisions. Network assistance can be very simple in that RAN
may transmit certain assistance parameters (e.g., network load,
utilization, expected resource allocation), but with increased
cross-RAT cooperation RAN assistance may also be improved.

3) RAN-controlled approaches: The above two network
selection schemes are user-centric in nature. Hence, they may
still result in sub-optimal system-wide performance, which
may otherwise be improved through network-based centralized
mechanisms. Consequently, RAN-controlled approaches place
the control of the RRM in the radio network so that the
BS could assign the UEs to use certain RATs. Such network
control may be distributed across base stations, or may utilize a
central RRM entity that manages radio resources across several
cells/RATs.

Below we consider the conventional cell-range extension
schemes applied in cellular networks to steer users to small
cells employing a network-optimized RSSI (Received Signal
Strength Indication) bias value. We use the RSSI bias to in-
crease/decrease the effective WiFi AP coverage area depending
on the network capacity expectations. One limitation of this
method is that the optimal bias value needs to be adapted
based on network-wide knowledge of user distribution. For
example, our results show that the optimal bias depends on
user deployment model as well as the interference levels in
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the network, which may not always be available as typically
WiFi cells may not have a direct interface to cellular BS.
In what follows, we evaluate RSSI-based cell-range extension
with bias values optimized for the target scenario. We also use
hysteresis for the RSSI-based algorithm. The time-diagram of
this method is shown in Fig. 2(c).

More generally, network-controlled schemes may utilize
proprietary or standardized interfaces between cells/RATs.
Distributed network-controlled schemes have recently been
discussed as part of the 3GPP study on WLAN/3GPP RAN
interworking. Here, the network establishes certain triggers for
UE to report measurement on their local radio environment.
The final RAT selection decisions are then made by the 3GPP
BS based on UE measurement reports. Other examples of
centralized RAN-controlled architecture is the emerging dual
connectivity, or “anchor/booster” architecture, where the UE
always maintains a control link to the macro cell tier and the
macro cell centrally manages the user offload to smaller cells.
Hence, the macro cell can centrally determine the optimal
offload mechanisms.

III. ANALYZING INTELLIGENT ACCESS NETWORK
SELECTION

In what follows, we concentrate on the important problem of
network selection between LTE and WiFi RATs [11], assuming
that WLAN is a part of an operator deployed and managed
multi-RAT HetNet. We target feasible practical extensions
to improve performance of UE-centric network selection
schemes. To be consistent with current network deployments,
we consider distributed small cell overlay with standalone
WiFi APs, assuming that there is no interface between the
WiFi and the 3GPP radio networks [10]. Additionally, we
discuss benefits of deploying integrated WiFi-LTE small cells
and quantify the respective performance gains.

In particular, we investigate distributed RAT selection
schemes that account for network loading information across
the LTE and the WiFi technologies and compare them with
solutions that only rely on signal strength measurements. We
also benchmark the performance of UE-centric RAT selection
with optimized network-based load balancing mechanisms.
Intuitively, network-centric solutions may seem to offer better
performance compared to UE-based approaches as network-
wide radio link information across users can be employed
to develop optimum RAT assignment algorithms. However,
with distributed architectures assuming no direct cooperation
between LTE and WiFi RATs, such solutions may only be
implemented through extensive UE feedback which could
result in significant overheads. UE-centric RAT selection may
also be preferred as the UE can better account for user
preferences and application QoE.

A. System-level evaluation scenario and results

In the course of this study, we have developed an advanced
system-level simulator (SLS) that mimics a complete LTE-
WiFi system deployment compatible with 3GPP LTE Release-
10 and IEEE 802.11-2012 specifications. Presently, neither
free nor commercially-available simulation tools are readily

TABLE I: Important simulation parameters

Parameter Value
LTE/WiFi configuration 10 MHz FDD / 20 MHz

Macro cell layout 7 cells, 3 sectors each

LTE signaling mode 2 out of 20 special subframes,
short CP, 10 ms frame

Inter-site distance (ISD) 500 m

LTE macro Antenna configuration 1x2 (diversity reception)

UE to eNodeB/pico/AP pathloss ITU UMa/UMi

eNodeB antenna gain 14 dB

eNodeB/AP/UE maximum power 43/20/(23/20 LTE/WiFi) dBm

LTE power control Fractional (α=1.0) [12]

WiFi power/rate control Max-power/ARQ

UE/eNodeB/AP antenna height 1.5/25/10 m

UE noise figure/feeder loss 9 dB/0 dB

Feedback/control channel errors None

Traffic model Full-buffer

Number of UEs/APs 30/4 per macro cell (3 sectors)

AP/UE deployment type Uniform/clustered (4b in [12])

AP/UE-eNodeB, AP/UE-UE distance > 75/35 m, 40/10 m

WiFi MPDU 1500 bytes

Modeling time 3 s

Number of trials per experiment 30

applicable for evaluating heterogeneous multi-RAT systems,
as they are missing the necessary features, as well as lacking
scalability to adequately capture the dependencies between
the studied variables. By contrast, our SLS is a flexible
tool designed to support diverse deployment strategies, traffic
models, channel characteristics, and wireless protocols. It com-
prises several software modules modeling the deployment of
wireless infrastructure and user devices, control events related
to transmission of signals between several distinct types of
transmitters and receivers, abstractions for wireless channels,
mechanisms for collecting measurements and statistics for
quantifying system performance, etc.

Below we construct a multi-RAT simulation model repre-
sentative of an urban deployment, where WiFi small cells are
overlaid on top of the 3GPP cellular network. Outdoor de-
ployments are considered and are based on recommendations
in [12]. A brief summary of the parameters is provided in
Table I. Specifically, we consider a loaded (full-buffer) WiFi
network with WLAN APs uniformly distributed across the
cellular coverage area. Most UEs cluster around the APs,
which recreates a hot-spot area (airport, restaurant, shopping
mall, or university campus) with many bandwidth-hungry
users loading the WiFi network. Moreover, around one third of
UEs are still deployed uniformly across the cellular network
mimicking regular mobile users. Whereas this scenario may
not be characteristic of all practical urban conditions, it rep-
resents a harmonized 3GPP vision of a characteristic HetNet
deployment.

The major expected outcome of leveraging WiFi small
cells is efficient offloading of cellular user traffic resulting
in significant user benefits. For that reason, our primary
metric of interest is the uplink UE throughput (by contrast to
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Fig. 3: Comparing SNR-threshold (WiFi-preferred) and our load-aware (RAN-assisted) network selection schemes

many existing studies concentrating on downlink performance)
which, in turn, determines the overall system capacity. The
cumulative distribution function (CDF) of individual user
throughput comparing performance between SNR-threshold
(WiFi-preferred) and our proposed load-aware (RAN-assisted)
scheme is shown in Fig. 3(a). The results indicate that the load-
aware scheme gives visible benefits at the cell edge (e.g., over
75% of improvement is observed in 5% quantile), as well as
some improvement in the average throughput for integrated
deployments (i.e. with colocated WiFi-LTE interfaces).

Energy efficiency (EE) is also becoming increasingly im-
portant for 5G wireless systems due to the limited battery
resources of mobile clients [13] and we confirm significant
gains in bits-per-Joule metric for both distributed (19%) and
integrated (29%) scenarios in Fig. 3(b). Further, as QoS may
be equally important, we also account for fairness between the
users which indicates how large is the deviation between actual
user throughput and the cell-average performance. In terms of
fairness, the Jain’s index (see table in Fig. 3(b)) of the load-
aware scheme (0.72/0.63) is also higher than that for the SNR-
threshold scheme (0.65/0.54). Stability of UE-centric schemes
is another very important aspect of UE-centric RAT selection,
as excessive ping-ponging between RATs is undesirable due to
the overhead and latency of mobility protocols as well as due
to EE considerations. In Fig. 3(b) (see table), we additionally
report the number of cellular/WLAN reconnections (in no. of
reconnections per second) and employ hysteresis mechanisms
(optimized 3 dB value has been used in our experiments) to
improve performance.

We also account for the performance of optimized cell-
range extension (RAN-controlled) scheme based on RSSI bias,
where the network-wide optimization is expected to result in
improved performance. The main feature of the considered
cell-range extension scheme is that it increases the effective
WiFi/LTE small cell radius with respect to the bias level. This
could work well in the scenario with uniformly-deployed UEs,
but in the clustered case the interference between WiFi users

needs to be considered as well, which is what our load-aware
scheme does explicitly. To this end, we perform optimization
of small cell offloading bias based on network-wide knowledge
of user distribution in Fig. 4(a).

However, from Fig. 4(b) we learn that even with a network
controlled bias value (the optimal value of 14 dB is chosen),
the individual user throughput is very close to that in the
load-aware case (and even smaller at the cell edge). In more
detail, Fig. 4(b) (see bar chart) also highlights the average
percentage of time spent by users on each interface. It may be
seen from our results that the load-aware scheme is effective
in utilizing the available WLAN capacity, while efficiently
balancing capacities across LTE macro and pico tiers.

B. Analytical space-time methodology for converged HetNets

The above performance results addressed loaded multi-
RAT HetNets, but such networks may also be substantially
underutilized during the off-peak hours. Hence, the load
on a heterogeneous deployment can vary significantly and
it is crucial to capture network dynamics explicitly when
modeling HetNet performance. However, given the associated
complexity, dynamic systems have not been studied as broadly
as their static counterparts with a fixed set of active users.
Consequently, our proposed analytical methodology suggests
assessing flow-level network performance enabling user, traf-
fic, and environment dynamics.

Recently, we have made progress along these lines and
have results that demonstrate that the locations of the network
users relative to each other highly impact the overall system
performance [14]. Indeed, given that users are not regularly
spaced, there may be a high degree of spatial randomness
which needs to be captured explicitly. We thus adopt a range
of random spatial models where user locations are drawn
from a particular realization of a random process. Coupling
such topological randomness with system dynamics requires
a fundamental difference in characterizing user signal power
and interference. Fortunately, the field of stochastic geometry
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provides us with a rich set of powerful results and analytical
tools that can capture the network-wide performance of a
random user deployment [15].

More specifically, every data flow in a dynamic network
may generally represent a stream of packets corresponding to a
new file transfer, web-page browsing, or real-time voice/video
session. As an example, consider an isolated cell of a macro
network with radius R encompassing a macro BS together
with several distributed pico base stations and WLAN APs.
All the BSs/APs are capable of serving uplink data from
their wireless users concurrently. The considered traffic is
characteristic of real-time sessions with some target bitrate.
Basing on the recent 3GPP specifications, we further assume
non-overlapping frequency bands for all three tiers. However,
all WLAN/pico links share the frequency bands of their
respective tiers and thus interfere, whereas the macro tier
may be considered interference-free (with appropriate inter-
cell power control).

To explicitly model topological randomness in our network
(see Fig. 5(a)), we employ several stochastic processes and, to
this end, adopt a number of simplifications basing on a Poisson
point process (PPP). The key novelty of this approach is that
we consider a space-time PPP with the rate function Λ(x, t),
where x ∈ R2 is the spatial component and t ∈ R+ is the time
component. While random network topology is the primary
focus of our model, we also couple it with flow-level system
dynamics. This involves an appropriate queuing model, where
the session arrives and leaves the system after being served
(the service time is determined by the random session length).
When a new session arrives or a served session leaves the
system, the centralized assisting entity in the RAN performs
admission and power control on all tiers by deciding whether
the session would be admitted to a particular tier or not and/or
advising on the users’ transmit powers.

Our general system model is illustrated in Fig. 5(b) repre-
senting areas of the macro, pico, and WLAN tiers together
with the corresponding users and infrastructure nodes. We

consider the following cascade network selection when a new
session arrives into the system. First, the RAN-based network
selection assistance entity attempts to offload the newly arrived
session onto the nearest WLAN AP by performing the WLAN
admission control managed centrally. If the session is accepted
on the WLAN tier, it is served there without interruption
until when it successfully leaves the system. Otherwise, if
this session cannot be admitted onto the WLAN, the pico
network admission control is executed and either the session
is accepted on the pico tier and served by the nearest pico
BS or the macro network itself attempts to serve this session.
Eventually, if the session cannot be admitted onto the macro
tier either, it is considered permanently blocked and leaves the
system unserved.

In Fig. 5(c), we detail the overall blocking probabilities for
the converged HetNet as well as for the three tiers individually:
macro, pico, and WLAN. Our main observation is that with
two additional overlay tiers, the HetNet performance improves
significantly over what can be achieved in the macro-only
networks (cellular baseline). Remarkably, we actually witness
visible performance improvement even with only a few ad-
ditional infrastructure nodes, such as 2 WLAN APs and 2
pico BSs in this example. Therefore, we believe that multiple
RATs and the associated network selection intelligence for
their efficient use will become a characterizing feature of
future 5G HetNets.

IV. MAIN TAKEAWAYS AND WAY FORWARD

In summary, this article reviews major challenges in deliv-
ering uniform connectivity and service experience to future
heterogeneous 5G networks. It discusses several architec-
ture choices and associated algorithms for intelligent access
network selection in multi-RAT HetNet deployments, both
when the control of how radios are utilized rests with the
network and the user. In particular, it compares simulated
performance of RAN-assisted load-aware network selection
schemes with conventional/existing UE- and network-based
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Fig. 5: Illustration of proposed space-time methodology for multi-RAT networks

solutions employed in current systems. We primarily focus
on uplink performance as it has not been fully addressed in
the past literature.

The main advantages of load-aware schemes stem from
the fact that the SNR-threshold (WiFi-preferred) scheme, as
well as the network-centric cell-range extension scheme, do
not explicitly account for the loading and interference on the
WiFi APs typically encountered in clustered UE deployments.
Our results show that the load-aware user-centric scheme,
which augments SNR measurements with additional informa-
tion about network load, could improve the performance of
WiFi-preferred scheme based on minimum SNR threshold. We
observed over 75% improvement in 5% cell-edge throughput
as well as significant gains in energy efficiency for both
distributed and integrated deployment scenarios.

Comparison with more advanced network-controlled
schemes has also been completed across various heterogeneous
deployments to confirm attractive practical benefits of
distributed user-centric solutions. Next steps include further
investigation of UE-based algorithms while explicitly
considering load variation in the network and accounting for
application-layer statistics. System behavior in the presence
of uncoordinated (rogue) WiFi interference must also be
accounted for and hysteresis mechanism may further be

improved to combat the uncertainty in estimating user
throughput.

Building on the system-wide simulation data, we also pro-
pose a novel dynamic methodology for RAN-assisted network
selection capturing the spatial randomness of HetNets together
with unsaturated uplink traffic from its users. Our stochastic
geometry based analysis enables in-depth characterization of
dynamic interactions between macro and pico cellular net-
works, as well as WLAN, mindful of user QoS and based on
intelligent RAT selection/assignment. Going further, we expect
our space-time methodology to be capable of encompassing
other technologies beyond LTE and WiFi, as well as addi-
tional use cases beyond simple aggregation of capacity across
unlicensed bands.

More generally, studying the ultimate capacity of multi-
radio wireless networks remains an open problem in the field
of information theory and stochastic geometry has the potential
to shed light on it given that it can explicitly capture new
interference situations and hence the achievable data rates.
This challenging objective may require novel advanced ana-
lytical tools to interconnect and apply techniques and methods
coming from the area of point processes, probability theory,
queuing theory, and percolation theory, as well as modern
engineering insights.
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Abstract—The ongoing densification of small cells yields an
unprecedented paradigm shift in user experience and network
design. The most notable change comes from cellular rates
being comparable to next-generation WiFi systems. Cellular-to-
WiFi offloading, the standard modus operandi of recent years, is
therefore shifting towards a true integration of both technology
families. Users in future 5G systems will thus likely be able to
use 3GPP, IEEE, and other technologies simultaneously, so as
to maximize their quality of experience. To advance this high-
level vision, we perform a novel performance analysis specifically
taking the system-level dynamics into account and thus giving a
true account on the uplink performance gains of an integrated
multi radio access technology (RAT) solution versus legacy
approaches. Further, we advocate for an enabling architecture
that embodies the tight interaction between the different RATs,
as we lay out a standardization roadmap able to materialize the
envisaged design. 3GPP-compliant simulations have also been
carried out to corroborate the rigorous mathematical analysis
and the superiority of the proposed approach.

I. INTRODUCTION

Fueled by the increasing popularity of handheld mobile
devices with powerful data processing capabilities, the wireless
industry is witnessing an avalanche of mobile traffic. Indeed,
the amount of data produced by smartphones, tablets, PDAs,
and new types of mobile computing devices has recently been
doubling every year with this trend very likely to continue
over the following decade. This unprecedented escalation
has imposed significant challenges on the design of existing
wireless networks. Subsequently, we outline the state of the
art in cellular design, which clearly shows that these trends
cannot be met with legacy approaches. We then explain the
rationale of integrating WiFi with legacy cellular systems,
before discussing trends beyond state of the art, along with
our specific contributions in the field.

A. Densification in cellular technologies

Over the first decade of this century, we have already seen
a 1000-fold growth in capacity of wireline communication
systems with another 1000-fold increase targeted by the year
2020. Consequently, mobile network operators have been
taking steps to improve performance of their deployments
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as part of the fourth generation (4G) Long-Term Evolution
(LTE) communications technology. However, whereas cellular
coverage is now nearly ubiquitous, 4G will not suffice to
provide the needed capacity. A large factor here is the shortage
of a suitable network-side infrastructure.

Today, the macro cell network capacity cannot continue
to scale any further. The expensive tower-mounted macro
cells generally demand high installation, maintenance, and
backhauling costs as well as elaborate site planning, and
thus suffer from the lack of available sites. Therefore, it is
cumbersome for operators to further optimize their macro
cell deployments. Furthermore, the conventional wireless link
throughputs are very close to their theoretical limits, whereas
adding more bandwidth often has prohibitively high costs [1].

It has therefore been recognized that an increase in capacity
per unit area may be achieved by shrinking the cell [2].
Correspondingly, LTE networks have evolved to include nu-
merous nested small nodes, such as pico cells (with the
coverage of under 100 meters) [3] and femto cells with a
WiFi-like range [4], as well as a multitude of relay nodes
and distributed antenna systems. With this trend, known as
network densification, the massive numbers of network radio
units are brought closer to the user equipment (UE) [5].

While many of today’s pico cells are still installed by
the mobile network operators in a (semi-) planned manner,
the deployment of femto cells remains mostly unplanned [6].
This is due to the presence of other parties (building owners,
as well as the end-users), who install additional femto cells
in homes, small offices, and enterprises. It is obvious that
improved traffic capacity may be required in home and office
environments, as well as in public places (shopping malls,
subway stations, etc.) or other dense urban environments,
where large numbers of users are located within a limited
geographic area [7]. Whereas increasing densities of such
residential, enterprise, and hotspot small cells are providing a
more cost-efficient approach to spatial densification [8], there
may soon be more base stations than there are users [9].
This extreme network densification – being a combination
of spatial densification (with distances between access nodes
in tens of meters) and spectral aggregation (across licensed
and unlicensed spectrum) – is a major paradigm shift which
has recently been named one of the ”big three” in the fifth
generation (5G) technology ecosystem (see [10] and references
therein).

As 5G-centric research is taking shape, it becomes apparent
that a single (new) radio technology will not be able to satisfy
all the associated performance requirements and character-
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istics [11]. However, ultra-dense HetNets, enabling efficient
reuse of spectrum across a certain area of interest [12], [13],
are very likely to become the only viable solution on the road
to 1000x capacity in a less than ten year time frame [14].

B. Integration with WiFi networks

Owing to their more compact form factor, LTE small cells
are preferred due to deployment flexibility, lower capital and
operational costs, as well as reduced energy usage [15]. As
a result, they become similar to WiFi access points that have
historically been a de-facto solution for local-area connectiv-
ity [16]. This creates an attractive opportunity for an increasing
cooperation between LTE and WiFi radio access technologies
(RATs) to realize effective offloading and/or balancing of user
data traffic, and thus leverage resources available in both
systems [17].

The latest standardization work by 3GPP pays lots of
attention to the integration of WiFi, with an array of options
discussed. This includes trusted access to cellular services for
WiFi-only devices, seamless WiFi/LTE mobility, as well as the
Access Network Discovery and Selection Function (ANDSF),
among others. More recently, in 3GPP Release-12 of LTE,
solutions for tighter coupling between cellular and local-area
communication at radio access network (RAN) level have
been investigated. The degrees in which RAN-level integration
may improve LTE/WiFi cooperation are numerous, ranging
from providing simple assistance information (such as network
loading [18]) to full-scale joint (centralized) radio resource
management [19]. In general, the consensus today is that if
there is an opportunity to install WiFi in co-location with an
LTE deployment, it should be preferred, primarily due to a
marginal increase in associated costs [20] for a significant
added value of harnessing license-exempt spectrum that WiFi
systems can utilize. With advanced multi-RAT integration
options, a mobile device could potentially transmit data on
both radio interfaces at the same time, which is expected to
improve its performance [21]. However, novel multi-RAT and
multi-tier solutions require additional infrastructure enablers,
such as new network management interfaces [22], able to
deliver flexible core network connectivity for the envisioned
system architecture of next-generation 5G systems [23].

In summary, diverse types of low-power and low-cost small
cells that operate in both licensed (e.g., LTE) and unlicensed
(e.g., WiFi) frequency bands and connected to the core net-
work(s) with various types of backhaul links, comprise the
emerging vision of a heterogeneous network (HetNet) [24].

C. Scientific contribution

The consideration of ultra-dense small cell networks with
co-located LTE and WiFi radio interfaces requires a fun-
damental change in system characterization, including re-
spective modeling (analysis, simulation) and visualization. In
this paper, we offer the following contributions to conduct
a thorough performance investigation of future ultra-dense
HetNets.

1) Architecture. We provide a comprehensive review of
the available options to provide flexible and intelligent

LTE/WiFi integration over the current 3GPP architec-
ture. In particular, our proposed architecture enables
dynamic data flow splitting across integrated dual-RAT
infrastructure, as well as stand-alone deployments with
arbitrary composition of LTE/WiFi small cells.

2) Analytical Framework. We introduce a novel analytical
methodology for ultra-dense LTE/WiFi HetNets, cou-
pling spatial randomness of user distribution [25] with
their uplink data dynamics [26]. Given that the load
of each small cell varies significantly over time and
space [27], we consider an area of interest where a small
cell with co-located LTE/WiFi interfaces is deployed ”on
each lamppost”, and deliver a comprehensive analytical
model.

3) Corroborating Simulations. We detail empirical results
produced with our 3GPP-compatible system-level sim-
ulator, which is calibrated with real-world deployments
and accurately mimics the behavior of a practical ultra-
dense HetNet. The quantitative evidence obtained with
this tool is then used to substantiate the core assumptions
of our analytical methodology as well as make important
conclusions on the degrees of its accuracy.

4) Comparative Case-Study. A rigorous analytical eval-
uation and comparison of two distinct RAT selection
mechanisms: one is characteristic of how users employ
their multi-radio devices today (based on preferential use
of one RAT), while another scheme is made available
by our proposed integrated multi-RAT architecture (si-
multaneous use of LTE and WiFi radios).

The paper is structured as follows. In Section II, we outline
the working architecture to enable the simultaneous use of
cellular and WiFi technologies. In Section III, we outline the
system assumptions which underpin the subsequent mathe-
matical analysis. The rigorous analytical framework, explicitly
taking system dynamics into account, is outlined in Section IV.
The simulation framework and respective results are presented
and discussed in Section V. Finally, in Section VI, conclusions
are drawn and future trends are outlined.

II. INTEGRATED MULTI-RADIO ARCHITECTURE

Instrumental to the cause of tight integration is a viable sys-
tem architecture. In this section, we briefly outline operational
challenges along with current integration approaches, before
suggesting some improvements to the architecture as well as
several new building blocks.

A. Current operator vision and challenges

Mobile network operators today control more than just the
wireless last mile. In fact, a typical portfolio of a contemporary
network operator includes (i) a multi-tier cellular network
featuring both legacy and LTE infrastructure nodes; (ii) an IP
access network, including city-wide local-area WiFi deploy-
ments; (iii) a notable set of IMS services (e.g., mobile TV
and radio) facilitating delivery of bandwidth-hungry content
to the users; and (iv) an abundance of unlimited data users
in the service area given the popularity of smartphones and
tablets.
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The drastic increase of unlimited data users poses a sig-
nificant challenge to the RAN capacity; all possible forms of
mobile traffic offloading are thus becoming vital for mobile
network operators [28]. Therefore, a truly converged multi-
RAT HetNet (with several alien RATs, such as WiFi, operating
seamlessly with the 3GPP mobile architecture) is an important
enabler for cost savings. However, integration of other RATs
has to be done intelligently; notably, UEs ought to operate
efficiently without violating quality-of-service (QoS) require-
ments.

However, current 3GPP integration options are not nearly as
flexible to enable efficient multi-radio connectivity [29] as one
may think. For instance, any non-3GPP access technology is
to have a termination point at the packet data network gateway
(PDN GW). Therefore, any UE that wishes to use a non-3GPP
(alien) RAT together with cellular access must route its traffic
to the operator’s PDN GW, from where the packets will be
forwarded to the destination following the logic of mobile IP.
Since mobile IP traffic is blocked by most network address
translation (NAT) devices, which are abundant in today’s IPv4
infrastructure, the mobile IP session needs to be tunneled to
the PDN GW through a VPN tunnel. The resulting solution
is extremely fragile and bulky, yet it presently constitutes the
only available option. Naturally, if IPv6 is available, a VPN
tunnel is not needed anymore, which makes the architecture
somewhat more elegant. However, it does not resolve the key
challenge – all of the traffic has to reach the PDN GW before
it is routed anywhere – to the Internet or another device.

This, unfortunately, may result in unnecessary detours for
the traffic, increasing delays and causing excessive congestion.
Most importantly, while the use of mobile IP does make
WiFi mobility somewhat similar to the cellular mobility, it
is nowhere near the same: non-3GPP access cannot be used
without interruptions due to lags between RAT switching and
Mobile IP reactions. As a result, the existing 3GPP architecture
for alien access does not solve the problem of efficient multi-
radio networking, since every time the data path is switched
from LTE to WiFi and back, some packets are lost, while
simultaneous usage is not possible. Below we further detail
the existing 3GPP architecture and offer our proposed solution
to mitigate this situation.

B. Existing integration choices for LTE and WiFi systems

By convention, all user data in LTE is represented as IP
packets, and all IP packets are hauled with a fixed QoS
level through their respective evolved packet system (EPS)
bearers, which act like virtual circuits. As a result, the LTE
network internally operates as a circuit-switched system, while
externally appearing to be packet-switched. This allows the
flows of data to be routed and prioritized in the operator’s
network in any way desired, such that QoS can be maintained
as the users move around. Whereas this indeed provides
flexibility the cellular systems require, it is very different from
how IP works. As a result, no plain IP traffic from the users
is actually allowed inside the LTE network.

Above has a profound implication on a LTE-WiFi inte-
gration, notably when considering mobility. If user mobility

occurs inside the LTE network, handovers can be reliably
hidden with the help of the mobility management entity
(MME) which facilitates the tunnel switching. If, however,
the mobility handover happens towards or from a non-3GPP
RAT, such as WiFi or WiGig, then even if the access point
(AP) is co-located with one of LTE base stations (eNodeBs),
Mobile IP needs to be used to do the flow switching which
yields packet losses. In addition, the PDN GW has to act as
the home agent. Finally, if IPv6 is not supported at some point
along the path between the WiFi AP and the PDN GW, a VPN
tunnel ought to be used to connect to the PDN GW prior to
engaging with mobile IP procedures.

Similar engineering difficulties arise when developing a
multi-RAT, co-located WiFi/LTE HetNet solution. One would
need, at the very least, to have LTE or WiFi available for
Internet access at any time; preferably, one would also need
to be able to switch between the two RATs transparently. To
achieve this, the WiFi AP needs to be connected to the Internet,
such that the UE is able to reach the PDN GW (or Trusted
Wireless Access Gateway, TWAG) with its tunnel, and then
rely on that Mobile IP works sufficiently fast during handovers.
Therefore, every co-located LTE-WiFi small cell must be
connected to the operator’s internal network (where S1, S3,
S4, and X2 interfaces operate), but also to the Internet/TWAG,
complicating deployments. And the only reason it needs to be
connected there is to allow the UE to reach the PDN GW from
the outside of the evolved packet core (EPC).

It would, however, be simpler, more efficient, and elegant to
make a WiFi AP “pretend” to the EPC that it is an eNodeB,
and its physical-layer technology is LTE. This would allow
to run all of the IP adaptation protocols on top of the WiFi
MAC. Based on this idea, we continue with our alternative
view on how technologies like WiFi ought to be integrated
into a viable 3GPP architecture.

C. Proposed changes to the 3GPP architecture

The aim of the envisioned HetNet system improvements
are to better manage alien, i.e. non-3GPP, flows with the
EPC infrastructure. Whilst going beyond the Release-10 HeNB
(femto) Local IP Access (LIPA) as well as Trusted-WiFi
functionalities, one would need a new entity on the interface
between WiFi and EPC which masks the differences between
a WiFi AP and an actual eNodeB towards the UE and the core
network, and supports signaling on all appropriate interfaces.
We term this new entity alien access gateway (AAGW) and
advocate its deployment as part of the small cells or WiFi
segments towards truly integrated LTE-WiFi systems, along
with phasing out of the existing TWAG and PDG entities.

The AAGW acts as a transparent link-layer proxy, where the
cellular side runs all the characteristic protocols (such as SCTP
to communicate with other base stations and the MME), while
the non-3GPP access side uses WiFi directly to transfer all the
packets that would normally go over the U-interface between
the eNodeB and the UE (most importantly, RRC packets would
be necessary to set up the bearers). On the UE side, both WiFi
and the tunnel interfaces are linked with the upper layers of
the cellular stack, which is now able to open a fully functional
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EPS bearer to the PDN GW over the WiFi’s PHY and MAC.
Surprisingly, beyond AAGW, no other changes to the 3GPP
architecture are necessary, as the rest of the network can safely
assume that the new entity is yet another cell or eNodeB.
As a purely software solution, AAGW comes with maximal
flexibility and minimal capital costs.

As a result of AAGW deployment in small cells and on
WiFi APs, all non-3GPP traffic is injected before the serving
gateway, by masking the injection point as yet another cell.
In effect, a co-located LTE-WiFi base station would now
behave as if it serves two cells; and all it needs to operate
is the ISP’s internal network (such that S1 and X2 interfaces
with serving gateways and other eNodeBs can be activated).
The deployment of co-located stations would thus be greatly
simplified, as they will no longer need separate access to the
Internet/TWAG (see Figure 1 for details). Lastly, with AAGW
all sorts of cellular mobility scenarios between LTE and WiFi
are as easy as if they were the same technology.

Fig. 1. Proposed high-level architecture and resulting data flow for 5G multi-
RAT LTE/WiFi networks.

We continue by considering the case when a WiFi AP is not
directly connectable to the S1/X2 interfacs. An operator may
want it for security reasons; or when AP is deployed by a third
party (shopping mall, building owner, train station, etc.) [30].
Such situations were likely the main reason driving the 3GPP
to employ access via VPN and PDN GW in the current
architecture. However, unless an operator installs a PDN GW
in every neighborhood, the path utilizing such topology will
always remain suboptimal. In contrast, to enable cost-efficient
operation without stretching the presence of EPC all over the
coverage area, one could further extend the features of our
proposed AAGW as we outline below. Since AAGW is a cheap
software entity, and does not have direct core access, it could
be deployed in large quantities.

With a suitable tunneling protocol (such as L2TP), one can
securely and efficiently tunnel L2 messages from the alien
side of the AAGW to the UE. All what is required is to
replace the WiFi integration with a VPN server – and the
packets from the UE could be streamed to the AAGW from
any access point. To differentiate between the users, EAP/SIM-
based authentication could be used. Once the UE packets reach
it, the AAGW can use all of the flow management tools that
LTE network provides, including transparent handovers from
one AP to another. Apparently, to use the proposed AAGW
(co-located or over VPN), the UE will need special drivers
installed. We believe this to be the main hindrance in the

deployment process, yet similar problems are encountered
when using existing 3GPP architecture (as mobile IP is not
deployed today on the UEs). Finally, the UE needs to know
the IP address of its nearest AAGW through an appropriate
mechanism, such as ANDSF, anycast or DNS. When all of
the above is put together, the usage of operator’s WiFi would
be transparent for the network layer, which enables all of the
cellular benefits, such as transparent mobility.

Finally, as all of the WiFi APs are essentially mimicked
as eNodeBs/cells with our proposed HetNet architecture, it
is possible to dynamically split the packet flows between
several LTE cells and WiFi AP’s by utilizing the existing
CoMP signaling procedures. CoMP essentially serving an UE
over different cells, thus enabling true multi-path operation
without the need for transport-layer solutions, such as
multi-path TCP. In what follows, this new capability of flexible
data flow splitting is evaluated with our mathematical and
simulation tools.

III. ENVISIONED NETWORK MODEL AND ASSUMPTIONS

Relying on the above HetNet architecture enhancements,
we proceed with the description of networking and modeling
assumptions.

A. Scenario description

We focus on the area of interest, which is represented as a
square of side D as illustrated in Figure 2. We further consider
a set of integrated small cells, where every small base station
(SBS) is equipped with LTE and WiFi radio interfaces. As
recent discussions in 3GPP recommend band-separated small-
cell deployment [31], which is complementing the macro cell
band, all of our SBSs share the same LTE frequency. In
our scenario, the macro cell uses orthogonal set of resources
and handles all of the signaling and scheduling, but does not
participate in the data transfers, acting as “anchor”. WiFi con-
ventionally operates in unlicensed spectrum. In practice, such
scenarios are envisioned to efficiently serve, shopping centers
and other locations with exceptionally high user density. A
centralized entity (e.g., residing at the MME) is assumed
to have full knowledge of all relevant system information,
including positions of the SBSs and the associated users.

In what follows, we analyze the uplink traffic demand from
the users located within the area of interest, whose multi-
radio terminals may utilize both LTE and WiFi connections
simultaneously [32] with the technology that we have outlined
in the previous section. In future HetNets, downlink and uplink
are two different networks [21], and our focus on the uplink
transmission here is justified by a significantly higher degree
of topological randomness in the resulting system as com-
pared to the downlink operation [33]. To model topological
and temporal randomness jointly, we introduce the following
assumptions.

1) Spatial distribution of users and infrastructure: The
locations of SBSs are modeled as a homogeneous Poisson
point process (PPP) SBS with intensity µ, thus the number of
SBSs in a certain area is a Poisson-distributed random variable,
and the numbers of SBSs in disjoint areas are independent. We
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Fig. 2. Envisaged system topology with the area of interest.

further assume ultra-dense SBS deployment, which is denser
than the conventional grid layout, and is formally defined here
as µπ(2R)2 > 7, where R is the the coverage radius of an
individual SBS, such that the probability of not having small
cell coverage at a given point of space is thus negligibly small.

From the practical side, such densities of cellular deploy-
ment would be justified in cases when it is preferred to
install multiple cheaper, low-capacity stations due to capacity
constraints or deployment limitations (e.g., absence of suitable
sites). Examples include transit hubs, shopping malls, etc.
Numerous SBS could prove to be much easier and cheaper
in such settings due to stringent constraints on the radiation
power when antennas are very close to the people. Even with
additional WiFi radios, such devices could be much safer and
cheaper to operate than conventional solutions based on leaky
cables and other similar RF solutions.

The locations of arriving users are distributed according
to a mixture of PPP and cluster processes. While a certain
proportion ε of users are distributed according to a PPP, the
rest of the users concentrate around the respective SBSs,
resulting in a cluster point process based on the process
SBS . The overall distribution of the mixed user distances is
fd(d) = εfu(d) + (1 − ε)fc(d), d ≥ R, where fc(d) is the
distribution of distances for clustered users.

More specifically, the locations of the clustered nodes follow
a Matern cluster process, where user positions are uniformly
distributed within the circle of radius r around the points of a
PPP realization. In our case, the locations are grouped around
the SBSs and we assume r to be small enough, such that
the users with the corresponding distances would always be
associated with their central SBS. The above considerations
are reflective of the current 3GPP documentation, discussing
a weighted mixture of uniform and cluster distributions as
a realistic model for user locations [20], as well as of the
practical use cases when small cells are targeted to serve shops,
restaurants, bars, and other populated areas.

2) Traffic dynamics: Data transmission requests from users
in the area of interest arrive in time according to a stationary
homogeneous Poisson process of intensity λ. We associate
a newly arrived request with a new user appearing on the

TABLE I
SYSTEM EVALUATION PARAMETERS

Name Description/definition WiFi LTE
D Size of area of interest 2000m
R Coverage radius 100m 100m
µ SBS density 100 per km2

ε Share of unclustered users 0.7
r Cluster radius 10 m
λ Tx requests’ arrival rate var
θ Average size of data file 1.5Mbit
w Channel bandwidth 20 10
N0 Noise level -106dBm -106dBm
rlim Rate upper bound 160Mbps 80Mbps
G Propagation constant 300 250
κ Propagation exponent 6 6
σ Available resource per SBS 0.7 1
η Target SNR 20dB 15dB

pmax Maximum Tx power 23dBm 20dBm
ν Resource reuse coefficient 0.4 0.4
η0 SNR threshold for selection 20dBm N/A

plane, and term it a connection. One may also consider
connection to match some existing user changing its location
while continuing data session. Due to the memoryless user
location model, such interpretation implicitly captures mobility
of the users.

In our model, a transmission request corresponds to a data
file of exponential size with the average of θ bits. After the
data transmission is completed, the user leaves the system.
The location of the user i acquiring a new data file to transmit
determines the quality of its channel to the SBS. Hence, the
corresponding data rate ri is bounded by the Shannon’s limit:

ri = min{rlim, w log (1 + SINRi)}, (1)

where SINRi = γi
N0+I

pi, pi is the output power, γi is the path
gain between the transmitter and the receiver of the connection
i, w is the effective channel bandwidth, N0 is the noise level,
I is the interference level at the receiver, and rlim is the upper
bound on the achievable data rate. The path gain γi between
the transmitter and the receiver of a particular connection
obeys the dependence of transmit power on the distance di
between them, i.e., γi = G

diκ
, κ is the propagation exponent,

and G is the propagation constant. This path gain model can
be adjusted to most COST/Hata based isotropic environment
models, including 3GPP micro cell models.

The described channel model is a simple yet powerful tool
to characterize the limits of system densification without the
complexity of small-scale power fluctuations caused by such
processes as random fading, thus leading to simpler analysis.
We omit the consideration of the fading effects, however
they may be taken into account by introducing an appropriate
fading margin or an additional random variable directly into
the path gain function [34].

3) Resource allocation: Within our LTE model, the re-
source allocation corresponds to the round-robin scheduling
discipline and implies equal resource sharing between all
supported connections at a particular SBS, whereas WiFi users
share resources equally by design of the randomized channel-
access protocol. Therefore, each of n running connections
of a certain SBS is allocated an equal portion of the total
time-frequency resource, and the achievable data rate is thus



6

r̃i =
δw/l
n ri, where ri is the instantaneous data rate as well

as δw and δl are the resources available at this SBS for WiFi
and LTE, respectively. A connection admitted with the rate
r̃i is served without interruption until when it successfully
leaves the system.Our choice is dictated by the absence of
preliminary knowledge on the user priority, since the appro-
priate selection of weights constitutes a standalone research
problem, which is left out of scope of this paper. Nonetheless,
the following mathematical abstraction may be easily extended
to the case of another scheduler.

In turn, WiFi operation assumes probabilistic time-division
access between all of the users, which, over longer periods
of time, is equivalent to ”stochastic” round robin. Based on
the above considerations, we employ round-robin scheduling
in the below analysis for both LTE and WiFi systems.

B. Power control and interference coordination

Due to the cornerstone importance of accurate interference
characterization in ultra-dense HetNets [35], we discuss our
related assumptions separately in what follows.

1) We assume that the power control function for all LTE
transmissions is locked to a common target SINR η [36],
which is fixed across the network. If the target SINR
cannot be achieved, the user transmits at its maximum
allowed power pmax, as to provide the closest possible
approximation to its QoS requirement. The alternative
would be to not serve the user at all, which we consider
more harmful.

2) The interference for the cellular communication is main-
tained at a fixed level in the network by means of
coordinated inter-cell scheduling [37], such that if a
transmission scheduled on a certain resource at the
required power would cause noticeable interference to
another cell, appropriate scheduling is employed to
remove the affected physical resources from usage there
(see Figure 3).

3) The transmit power for WiFi communication is fixed at
its maximum level pmax, which, however, is different
from what is used for LTE.

4) The interference for the WiFi transmissions is con-
strained by the DCF function with RTS/CTS handshake.
Accordingly, each WiFi link reserves areas around both
endpoints (for data and acknowledgments) and may be
activated if neither transmitter nor receiver falls into
thus reserved areas of other active WiFi transmissions.
As a result, no transmissions interfering above a certain
threshold may occur.

As mentioned above, to mitigate inter-cell interference in an
ultra-dense deployment, the LTE SBSs may exploit advanced
scheduling mechanisms [38]. However, as the size of the
deployment grows, the simpler options become more practical
due to better scalability. In the simplest case, if a user is located
at the intersection of two SBS coverage areas and transmits
to its nearest station using a set of resources X , then the
neighboring SBS excludes the same set of resources X from
its own pool, as illustrated in Figure 3, and the other-cell users
do not cause harmful interference. Naturally, if some of the

resources in X have already been excluded previously due to
interaction with another small cell, no further actions will be
applied to them. The share of the excluded resource is assumed
to be equal 1 − ν, where ν is the resource reuse coefficient
depending on the deployment, i.e., on the SBS density and
coverage radius. Such coordination is, in nature, suboptimal,
but guarantees that no harmful interference is caused with
minimal complexity, and thus may be a very practical option.

A somewhat similar procedure happens in WiFi, except
that fixed-size areas are excluded irrespective of the required
power, thus resulting in a random non-interfering set of links
at any given moment of time. Hence, WiFi does not benefit
from densification in the same way as cellular systems do.

Fig. 3. Interference coordination in LTE small cells.

C. Network selection schemes

We benchmark two alternative schemes of integrated small
cell operation, which are based on different considerations
behind LTE/WiFi network selection. Our baseline mechanism
assumes that the HetNet attempts to offload a newly arrived
user onto unlicensed WiFi spectrum first, and only if SNR is
less than some threshold η0 it establishes an LTE connection.
Such behavior is an automated version of what a human user
would do today due to the connectivity costs and corresponds
to the current WiFi-preferred RAT selection schemes discussed
in the standards [19]. Notably, the choice of network selection
scheme is not necessarily restricted to the one above, i.e.
any similar algorithm may be incorporated into our model
similarly.

A more advanced simultaneous operation scheme assumes
concurrent use of both LTE and WiFi radios, whenever ap-
propriate. It is important to note that simultaneous operation
does not necessarily result in the best performance overall,
but is instead provided here as an example of what future 5G
architecture could do. Both schemes are rigorously analyzed
below, and we offer tight approximations for the stationary
distribution of users in the system and, therefore, the number
of users averaged across time and space, as well as the
blocking probability and the mean transmission time.

IV. ANALYZING DYNAMICS OF INTEGRATED HETNETS

A. Section structure and general statements

In this section, we focus on one typical (tagged) small cell
in the area of interest. We analytically model the performance
dynamics of the associated users by means of applying queu-
ing theory across a number of operational scenarios. To this
end, and for the sake of better readability, we begin with
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a preliminary discussion on the two considered underlying
technologies (LTE and WiFi) and describe the corresponding
system processes in terms of our mathematical abstraction.
We then first outline our analysis by example of a classical
PPP user distribution, whereas an important extension to the
more practical case of mixed uniform and clustered users is
accomplished towards the end of the section.

Our below analysis implements the following structure,
where important technical derivations are detailed in the
Appendix:

1) Preliminary derivations describing the evolution of the
number of active users on each radio technology indi-
vidually:
• description of system abstraction and of our general

mathematical approach based on aggregation of
Markov processes,

• underlying computations for individual WiFi and
LTE features (including our proposed concept of
”phantom” users).

Preliminary analysis is then used to produce solutions
for different RAT selection approaches.

2) The baseline model of WiFi-preferred network selection
(leading to separable data transmission processes).

3) The advanced model based on simultaneous use of LTE
and WiFi RATs by a user.

4) Practical extension for mixed user deployments (both
PPP and clustered arrival processes).

In what follows, we introduce our mathematical model
based on the above assumptions in order to derive the steady-
state distribution of the number of users in service. This
stationary distribution, in turn, allows us to calculate stationary
metrics of interest, averaged by the considered spatial distri-
butions.

The user-SBS association is distance-based, when UE com-
municates to its closest SBS, which in homogeneous environ-
ment is equivalent to SBS preference basing on the perceived
RSSI level [39]. The geometric locus of points corresponding
to the location of users, which are associated with the same
SBS, constitutes a convex polygon (or, a Voronoi cell [40]),
that is further referred to as the SBS service area. In other
words, service area defines a set of points on the plane that are
located closer to the considered SBS than to any other. Below,
our tagged SBS is assumed to have a circular coverage area
with radius R, the effective service area of which is a polygon
inside the coverage area as described above.

B. Moldeling key system dynamics

Here, for both underlying technologies, we design analytical
expressions for the stationary state distribution for N(t) and
its derivatives. In our tagged small cell, the evolution of active
users may be described by a Markov processes as follows. Let
us consider this typical cell at the embedded points of user
arrivals and departures. We characterize the system state by a
set of users in service together with their individual parameters
(such as rate, distance, etc.) defined by the distribution of
user locations. Hence, the future process evolution is entirely
determined by the current set of distances.

Therefore, we may write the system state S̃(t) at the
moment t as:

S̃(t) = (n; ξ1, ..., ξn) ,

where ξi is a distance to the user i, and n is the current number
of users associated with the SBS. The system state thus
includes information on the total number of users currently
in service, as well as their exact locations.
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Fig. 4. Simplification of the Markov chain.

The process S(t) (see the upper part of Figure 4) is rather
complex to analyze. Therefore, we apply the state aggregation
technique [41], which allows us to provide an elegant approx-
imation for the ”average” system behavior. In particular, we
aggregate the states S̃(t) into the new state S(t) = N(t) (see
the lower part of Figure 4), where N(t) is the current total
number of active users, which abstracts away user locations
and associations. That means that the state N(t) incorporates
all the possible states of the initial process (N(t); ξ1, ..., ξn).
The simplified system constitutes a birth-death process with
the transition rates ai and bi from the state N(t) = i to the
states N(t) = i + 1 and N(t) = i − 1, respectively. The
transitions from a state to a state themselves should include
the implicit information on the locations’ distribution and
constitute a conditional probability. Importantly, in Section V
we conduct thorough verification of the feasibility of such
aggregation and demonstrate very tight convergence between
our analytical and simulation results.

In summary, the process N(t) has been averaged spatially to
preserve the memoryless property and hence may be analyzed
now by employing methods from queuing theory.

Proposition 1. The stationary distribution π = {πn}∞i=0 of
the aggregated process N(t) may be obtained as:

πn = π0

n∏
i=1

ai−1
bi

, (2)

where π0 may be calculated from the normalization condition.

The above proposition enables calculation of the relevant
system metrics in the stationary state, such as the average
number of users in the system or their transmission times.
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However, the expression (2), in turn, requires calculation of
the transitions ai and bi between the neighboring states. The
transition rates ai for the aggregated system are determined by
the average number of users per a time unit and per service
area, which may be described as:

ai = λ
Ss
D2

, (3)

where λ is the arrival rate per the area of interest D2 and Ss
is the area, whereto the users of the tagged SBS arrive.

Far less obvious are the transition probabilities from the
state i to state i−1, which are determined by the distribution of
the actual service rate, i.e., the file size and the instantaneous
data rate given by the Shannon’s formula. For example, if
i active users would have equal data rate of r

n , then the
transition (i)→ (i− 1) would be bi = i 1

θi/r = r
θ . In case of

different instantaneous rates, ri 6= const, the transitions of the
aggregated process are defined by the following proposition.

Proposition 2. The transition rate bi for the aggregated
process N(t) does not depend on state for an equal resource
allocation procedure and may be obtained as:

bi= δ̃w/l

[
∞∫
0

x

(
rlim∫
rR

r
θ e
− rθ xfr(r)dr−C rlim

θ e−
rlimx

θ

)
dx

]−1
, (4)

where C =
rlim∫
rR

fr(r)dr and δ̃w/l ≤ δw/l ≤ 1 is a parameter

corresponding to the available resource share which is cal-
culated later, θ is the average file size, fr(r), r ∈ [rR, rlim]
is the instantaneous rate distribution, rR is the minimum
instantaneous rate (i.e., that at the border of the coverage
area, w log(1 + pG

N0Rk
)), and rlim is an upper bound on the

achievable rate.

Proof. The proof is given in the Appendix. �

The distribution of rates fr(r) for both communication
technologies may further be derived using Shannon’s formula
as:

fr(r) = fd (d(r)) |d′r|,

where fd is the distribution of distances between the SBS and
its users; d(r) and its derivative d′r are given by:

d=

(
pG(

e
r
w − 1

)
N0

)1
κ

, |d′r|=
1

κw
e
r
w

(
pG

N0

)
1
κ

(
e
r
w −1

)− 1
κ−1,

where pmax is replaced by p for the sake of brevity, SINR
may be replaced by SNR due to the assumed interference
coordination process (see previous section). For the sake of
clarity, we closely connect the rate limitation rlim with the
corresponding distance dlim and virtually place users for which
w log(1 + SNR) ≥ rlim at the same distance dlim = d(rlim).
Further, we refer to the distribution fd(d), d ∈ [dlim, R] as to
that describing area or rate limitations.

The above expressions comprehensively describe the steady-
state distribution and, hence, define the average number of
active users, their average time spent in service, and the
average effective rate per a served user:

Et[n]=
∞∑
i=0

iπi, Et[T ]=
E[n]D2

λSs
, Et[r]=Es[r]

∞∑
i=0

1
i πi

1−π0
, (5)

where Et/Es denote averaging across time and space, respec-
tively, and the spatially-averaged instantaneous rate may be
obtained as:

Es[r] =
rlim∫
rR

rfd(d(r))|d′r(r)|dr + rlimFd(dlim).

It implies, in turn, that for the state-independent ai and bi,
we may rearrange the above expressions as:

Et[n] =
ai/bi

1− ai/bi
, Et[r] = Es[r]

log 1
1−ai/bi
ai/bi

, (6)

where ai/bi < 1 is the system load.
The rest of this text provides additional information regard-

ing the calculation of coefficients ai and bi, continued by
considering a tagged random small cell polygon.

C. Underlying WiFi-related derivations

Below, we concentrate on WiFi operations, with specific
features illustrated in Figure 5 at first within the area interest
to determine the available resource per cell, and then in the
tagged small cell. We argue that the behavior of WiFi can be
expressed exactly in the form of the above-described general
process, if the available WiFi resources in the tagged cell are
known. To model WiFi DCF, we assume that every active WiFi
link spawns two intercepting circles, defined by the individual
coverage areas of the transmitter and the receiver (as both data
and acknowledgments are sent).

During the operation of such WiFi link, no other user or SBS
can transmit within thus excluded area. Geometrically, this
translates into two overlapping circles of smaller radius R/2
composing the link coverage area, such that the distinctive
link coverages cannot intersect. Further, we characterize the
average distance to the serving SBS as the forming parameter.
For the sake of tractability, we then approximate the link
coverage area by the circle of area S (calculated in Appendix).

Due to our assumption that all the SBSs are controlled
by the operator, the respective WiFi transmissions can be
coordinated according to a particular scheduling (puncturing)
procedure in addition to purely random access [42]. The latter
implies that the link coverage areas, in the limit, correspond to
the dense packing within the area of interest. Then, the number
of simultaneously activated links may be derived basing on the
dense packing with the coefficient π

2
√
3

.

Proposition 3. The share of available resource per a single
SBS in the ultra-dense deployment may be obtained as:

δ̃w = δw
π

2
√
3µS

, (7)

where δw is the actually available resource, excluding all
overheads and signaling, and the area of link coverage S may
be calculated using (33) from Appendix as 1

2πR
2
2 − 2s.

Proof. The average number of SBSs per one simultaneously
available resource is naturally the product of their total number
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Fig. 5. Voronoi diagram and illustration of WiFi operation: area of interest (left) and separated small cell with the link and SBS coverage area (right).

in the area of interest µD2 and the number of link coverage
circles as:

µD2

π
2
√
3
D2/S

=
2
√
3µ

π
S, (8)

which are sharing the total WiFi resource in time. The share
of the available resource per an SBS is reciprocal to the
expression (8) multiplied by the given parameter δw. �

The distribution of the distances between the SBS and the
uniformly-distributed users in its service area (polygon) leads
to the well-known distribution, which we additionally restrict
by the coverage radius R and the rate-limiting distance dlim:

fd(d) =

{
C1 · 2πµde−πµd

2

, d ∈ (dlim, R],

C1 · (1− e−πµd
2
lim), d = dlim,

(9)

where C1 =
(
1− e−πµR2

)−1
is the normalization coefficient.

Basing on (9), the rate distribution may then be produced by
the expression:

fr(r) = fd (d(r)) |d′r|, (10)

where d(r) and d′(r) have been given above.
In summary, the transitions bi may be obtained from the rate

distribution fr(r). The parameters ai depend on Ss, which
here is the service area with the average relative area 1/µ.
Therefore, for the average area, we have:

ai =
λ

µD2
. (11)

D. Underlying LTE-related derivations

Below, we focus on LTE operation as illustrated in Figure 6
and calculate the stationary distribution for N(t). It defines the
state transitions of the underlying Markov chain by focusing
on the tagged Voronoi cell by analogy to the previous WiFi-
related discussion. In addition, all of the SBS users, which
belong to the coverage area, but have associations with other
(neighboring) SBS, may cause interference. We assume that
these users are known to the tagged SBS and it excludes their
occupied resources from its own resource pool.

We treat such a foreign-cell user equivalently to admitting
a new phantom user on our tagged cell. The phantom user
has normal traffic pattern, zero effective throughput, and the
data rate corresponding to the distance to its serving SBS.
Geometrically, it means that the users located within the
coverage, but outside the service polygon, are ”mirrored”
inside the polygon against its edge. Further, and by contrast
to WiFi operation, there is no need to explicitly split system

resource between several SBSs. In fact, one unit of resource is
divided between the users served by this SBS and its phantom
users. The following proposition quantifies the share of the
available resource per an SBS.

Proposition 4. The share of the available resource per a
single SBS is determined by the value of δ̃l = δl. However, this
resource is shared by the served users as well as the phantom
users.

Further, let us obtain the distribution of user distances inside
the coverage area within the average polygon and outside of
it. The distribution of distances between the SBS and all the
users, for which this SBS is the closest, is identical to that
for WiFi operation above, see equation (9). We note that due
to our assumed SNR-target power control, the maximum data
rate rtar ≤ rlim is defined by the target SNR η and remains
fixed. We also emphasize that rtar as well as the distance
dtar correspond to the target SNR η and for simplicity all
of the users with the target SNR match the distance dtar.
Consequently, the distribution of distances for both groups
within the average polygon and outside of it is given as:

fu(d)=

{
C1 · 2πµde−πµd

2

, d ∈ (dtar, R],

C1 · (1− e−πµd
2
tar ), d = dtar,

(12)

where C1 =
(
1− e−πµR2

)−1
.

The data rate distribution fr(r) obtained with the expression
(10) delivers the transitions bi, whereas the transitions ai
depend on the area Ss. Due to the presence of phantom users,
Ss is characterized by the area of coverage πR2:

ai = λ
πR2

D2
. (13)

In sharp contrast to WiFi-related derivations, the LTE sys-
tem evolution has to be represented as a two-dimensional
process with the state space {nl, np, nl = 0,∞, np = 0,∞},
where nl and np are the numbers of served and phantom users,
respectively. This process (see Figure 7) can be described by
a system of Kolmogorov’s balance equations. For an arbitrary
state (i, j), such that 0 < i <∞, 0 < j <∞, we have;

pi,j

(
aq1 + a(1− q1)(1− ν) + i

i+jx+ j
i+jx

)
= pi−1,jaq1 + pi,j−1a(1− q1)(1− ν)

+pi+1,j
i+1
i+j+1 + pi,j+1

j+1
i+j+1 , (14)

where ν is a share of the resource, which is not yet excluded.
In other words, this is a share of proximate neighboring users,
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which do not become additional phantom users by occupying
already blank SBS resource. The data rate for both served and
phantom users is proportional to the share 1

nl+np
, since they

consume a common resource.

Fig. 7. A particular state of the two-dimensional Markov chain for LTE.

In light of the above, our sought solution may be obtained
in the following form:

pi,j = p0,0
aiqi1
xi

∏i+j
m=1m∏i

m=1m
∏i
k=1 k

aj(1−q1)j(1−ν)j
xj

= p0,0
(i+j)!
i!j!

aiqi1
xi

aj(1−q1)j(1−ν)j
xj ,

(15)

where p0,0 is given by appropriate normalization
∑
pi,j = 1

and q1 is the probability to land within the coverage area, but
outside the service area. The parameter a corresponds to the
total arrival rate ai and is determined by the expression (13),
whereas x delivers the LTE service rate of i users sharing
a unit resource only between themselves. It is given by the
equation (30) in Appendix as x = δ̃l

E
[
sj
rj

] .

Therefore, the average number of served users may be
obtained as:

∞∑
i=1

∞∑
j=0

ipi,j = p0,0
∞∑
i=1

i
aiqi1
xi

∞∑
j=0

(i+j)!
i!j!

aj(1−q1)j(1−ν)j
xj

= p0,0
aq1
x

∞∑
n=0

n (1−q1)n(1−ν)nan
xn

n∑
i=0

n!
i!(n−i)!

qi1
(1−q1)i(1−ν)i

= p0,0
aq1
x

∞∑
n=0

n (1−q1)n(1−ν)nan
xn

((1−q1)(1−ν)+q1)n
(1−q1)n(1−ν)n

=
p0,0·aq1

x

∞∑
n=0

na
n((1−q1)(1−ν)+q1)n

xn =
p0,0·aq1

x(1−a 1−ν+q1ν
x )

. (16)

The average number of phantom users as well as the total
number of users in the system may be derived in a similar way.
However, when LTE and WiFi operations are not independent
(as is in the case of simultaneous transmission on both radio
interfaces), we could further simplify the process and replace

the operation within the coverage area by that within the
service area for LTE. By that, we unify both schemes and
can always refer to the service area.

Theorem 1. The two-dimensional process accounting for
the served and the phantom users is equivalent to a one-
dimensional process with the modified transitions aq1 and
x− a(1− q1)(1− ν).

Proof. Let us consider a one-dimensional birth-death process
with the state space {nl, nl = 0,∞} denoting the number of
LTE users served by the tagged SBS. The arrival rate of the
served users is proportional to the average service area and
hence equals aq1, which constitutes the transitions from the
state i− 1 to the state i. Then, the steady-state distribution of
the considered process may be obtained as:

πn = π0

n∏
i=1

aq1
bi
, (17)

where bi are the transitions between the states i and i−1, while
π0 may be obtained through the normalization condition.

In order to derive the transitions bi, we recalculate
the steady-state distribution basing on the original two-
dimensional process:

πi =
(
1− a

x

)∑∞
j=0

(i+j)!
i!j!

aiqi1
xi

aj(1−q1)j(1−ν)j
xj

=
(
1− a

x

)∑∞
n=i

(
q1

(1−q1)(1−ν)

)i
n!

i!(n−i)!

(
an(1−q1)n(1−ν)n

xn

)
=
(
1− a

x

) (
q1

(1−q1)(1−ν)

)i (
a(1−q1)(1−ν)

x

)i(
1− a(1−q1)(1−ν)

x

)i+1

= x−a
x−a(1−q1)(1−ν)

(aq1)
i

(x−a(1−q1)(1−ν))i
. (18)

Comparing the expressions (17) and (18), we conclude that
bi may be chosen as x− a(1− q1)(1− ν) to replace the two-
dimensional process with the simpler one, which completes
the proof. �

In summary, we confirm that in terms of averages the
above joint process is equivalent to the process with the
proportionally-reduced arrival and service rates. It leads, for
example, to the expression for E[nl] that has been obtained
previously in (16). In the following, we investigate the evolu-
tion of users within one service area.
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E. Baseline scheme: preferential use of WiFi technology

Here, we collect the above underlying results so as to
study a baseline integrated LTE-WiFi system. As a simple
representative of the class of existing multi-radio network
selection algorithms, we adopt the method of preferential
use of one particular RAT. Without loss of generality, we
concentrate on the WiFi-preferred scheme, which implies that
a user switches to WiFi whenever the perceived SNR exceeds
a particular threshold η0, or otherwise transmits on LTE [19].
This approach corresponds to the operator’s desire to automate
the conventional network selection routine already performed
by most users today, as well as reasonably balance the loading
across both unlicensed and licensed bands.

The offloading threshold η0 defines an internal zone of
radius d0=min

[(
pwG
η0Nw

)
1/κw , Rw

]
of the service area, where

WiFi users are served exclusively. In what follows, the notation
”.w” refers to the use of WiFi technology, with the correspond-
ing maximum transmit power denoted, for convenience, as pw.
The probability for a user to land into WiFi service area may
be calculated as:

q = Pr{d < d0} = C1(1− e−πµd
2
0), C1 = 1

1−e−πµR2 . (19)

The process of our baseline system evolution within one
tagged small cell incorporates the states (nw, nl, np), where
nw, nl, and np are the numbers of WiFi users, LTE users, as
well as phantom LTE users from the neighboring small cells.
We note that in this case, WiFi and LTE evolutions constitute
independent processes. Therefore, we decompose the overall
system operation into WiFi and LTE dynamics, respectively.

On the one hand, the performance dynamics of WiFi is char-
acterized by the state space {n, n = 0,∞}. The corresponding
distribution of distances should then evolve according to the
maximum link length d0, such that this distance distribution is
defined as in (9). However, R is replaced here with d0, while
C1 = (1−e−πµd20). On the other hand, the distance distribution
fd(d) modifies the average area of the communication link:

S = 2π
(
d0
2

)2 − 2
d0
2∫

0

s(x)fd(x)dx

= 1
2πd

2
0 − C1

d0∫
0

s(x) · 2πµxe−πµx2

dx,

(20)

where s(x) is given in Appendix by the equation (32). Ac-
counting for thus thinned Poisson arrivals, the parameter ai
transforms into:

ai = q
λ

µD2
. (21)

Similarly, LTE performance dynamics is characterized by
the distance distribution, which is restricted by d0 as:

fd(d) =

{
C1 · 2πµde−πµd

2

, d ∈ (dm, R],

max
(
C1(e

−πµd20−e−πµd2tar ), 0
)
, d = dm,

(22)

where dm = max(dtar, d0), C1 =
(
e−πµd

2
0 − e−πµR2

)−1
.

According to Theorem above, we may substitute the two-
dimensional process with the equivalent one-dimensional pro-
cess having the transitions ai = q1a, where a is the overall
arrival rate on the LTE system:

a = (1− q)λπR
2

D2
, ai = (1− q)λ1/µ

D2
. (23)

The transitions bi have to be chosen such that x − a(1 −
q1)(1 − ν) to replace the two-dimensional process with a
simpler one. Importantly, the parameter q1 has to also be
recalculated according to the distance distribution, as well as
the expression E

[
sj
rj

]
depending on the rate distribution. The

latter, in turn, depends on the distance distribution, which is
restricted by d > d0.

F. Advanced scheme: simultaneous LTE and WiFi operation

Here, we arrive at a more advanced multi-radio commu-
nication scheme, which assumes simultaneous use of both
LTE and WiFi radios as enabled by the proposed architecture.
This scheme is made available by the recent progress in
co-located small cell technology and the rationale behind it
has been outlined in Section II. Based on the underlying
derivations summarized previously in this section, we may
now mathematically characterize the system in question and
obtain the average parameters of interest.

We further assume that the evolution of all neighboring
small cells is stochastically equivalent to the performance
dynamics of the tagged cell. Correspondingly, the phantom
users leave the system at the same rate as the served users.
This rate is defined by the aggregate of the corresponding WiFi
and LTE rates.

In order to mathematically describe our system of interest,
we need to analyze the two-dimensional process detailed
in Figure 7, while redefining its underlying parameters. To
this end, we adopt our proposed move with the process
replacement. In other words, we replace the process with the
states {n, np, n = 0,∞, np = 0,∞}, where n is the number
of the served users and np is the number of the phantom
users, by the process {n, n = 0,∞}. Therefore, the transition
parameters corresponding to the service area may be obtained
as:

ai = λ
1/µ

D2
, bi = x− a(1− q1)(1− ν), (24)

where x is given by:

x =
i

E

[
sj

δ̃wrw
i +

δ̃lrl
i

] =
1

E
[

sj
δ̃wrw+δ̃lrl

] . (25)

The latter expression is recalculated basing on the distance
distribution defined by:

fd(d) =

{
C1 · 2πµde−πµd

2

, d ∈ (dlim, R],

max
(
C1 · (1− e−πµd

2
lim), 0

)
, d = dlim,

(26)

where C1 =
(
1− e−πµR2

)−1
.

Due to the operation of the WiFi-preferred scheme for all
SBSs in our network, the averaging approach to recalculating
the share q1 leads to the same value as discussed previously:

q1 = Slte
Sall

=
1/µ−Swifi

πR2
lte−(µπR

2
lte)Swifi

= 1
µπR2

lte
. (27)

G. Important practical extension

As our final step, we comment on how it is possible to
incorporate a mixture of PPP and cluster processes of user ar-
rivals into our methodology. We remind that the users clustered
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in the circle r are added to the distribution fd(d) considered
above with the density fc(d) = 2d

r2 and the coefficient (1− ε).

Proposition 5. Considering the mixture of PPP/cluster pro-
cesses, the resulting distribution of distances is defined as a
piecewise function below:

fd(d)=


C1ε · 2πµde−πµd

2

, r<d< R,

C1ε · 2πµde−πµd
2

+ (1− ε) 2dr2 , dlim<d≤r,
C1ε · (1− e−πµd

2
lim) + (1− ε)d

2
lim

r2 , d = dlim,

(28)

where the distance dlim of the maximum rate limitation rlim
is taken into consideration, while C1 = (1 − e−πµR2

)−1 is
a term constraining the distances according to the coverage
radius R.

Additionally, our proposed methodology allows derivation
of, e.g., blocking probabilities when moving from the state
i−1 to the state i for both baseline and advanced transmission
schemes. This may also easily incorporate the consideration
of several extra special cases when transitions depend on both
state indexes i and j. This extension might be useful, should
an operator decide to deny user admission if its predicted data
rate would be below a certain threshold reflecting the minimum
desired QoS [43].

V. PERFORMANCE CHARACTERIZATION AND DISCUSSION

A. Supportive simulations for HetNet density limits study

While studying ultra-dense networks analytically, it is cru-
cial to keep track of the complex scheduling algorithms
employed by modern HetNets [44]. As those are largely based
on engineering intuition rather than mathematical abstraction,
they are not always directly tractable, except for simpler cases.
To this end, below we assess with simulations how interference
coordination affects the degrees of spatial reuse and thus
provide comprehensive support for the analytical framework
outlined above.

To illustrate the operation of the ultra-dense LTE network,
we utilize our WINTERsim simulation framework [45], which
has been verified in our past publications [42], [19] and allows
to model multi-RAT networks on all levels of abstraction. For
the purposes of this study, we have constructed a scenario that
assumes presence of a UE in each 5x5 m square within the
area of interest. The UEs are all scheduled in a round-robin
fashion, with a practical interference coordination algorithm
employed by all SBSs serving this area. The SBSs have been
setup with the ideal receivers operating at the Shannon’s limit,
while all the UEs follow the SINR-target power control. The
SBSs are deployed uniformly within the square area of interest
with wrap-around enabled on all edges of the square.

An example of resource allocation for uniformly-deployed
users and SBSs is shown in Figure 8. One can clearly see that
the surface area is indeed partitioned similarly to a Voronoi
diagram, except for the regions where there happens to be
no coverage. What is important to note here is that even
in the areas where there is a large over-population of cells,
we can still provide reliable levels of service. Further, let us
observe how system performance in terms of spatial reuse
is connected with the network topology. Motivated by our

scenario in Figure 8, we propose to connect the system’s
geometry with the probability ν of re-using a unit of resource
that was previously blocked by other cell when performing
interference coordination (see Section III above for details).

Characterizing the system geometry, we introduce a new
measure, which we term network’s specific density. It is
defined as Ds = 4·Ncells·Scell

Sarea
and can be understood as

the number of coverage areas that are encountered within a
coverage area of an ”average” cell (including its own). For
example, in the conventional cellular network, the Ds = 7
is a typical specific density, which results in the hexagonal
grid of cells, and each cell thus having exactly 6 neighbors.
Consequently, we name a particular deployment ultra-dense
if Ds > 7, as this results in a system that is no longer
conventional cellular.

We have established that the network’s specific density is
highly correlated with the reuse probability η, which has been
introduced in the course of the above analysis. The corre-
sponding dependence is shown in Figure 9. In our scenario, a
reasonable fit has been obtained by a function ν = a · xb + c
for realistic ultra-dense deployments (7 < Ds < 100). Outside
of the ultra-dense deployments, the considered parameter Ds

may still be useful, as it continues to be tightly connected with
the resource reuse probability across all the observed cases.
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Fig. 9. Reuse probability ν as function of specific density Ds.

We continue with characterizing the performance of WiFi,
which drastically differs from that of LTE due to different in-
terference coordination. Unlike LTE, which is centered around
an individual SBS, WiFi is a completely flat network with
no hierarchy as far as medium access control is concerned.
As a result, all links are fairly contending for the channel
access, and those experiencing most contention are blocked by
backoff (through DCF) and carrier sensing (CCA) functions.
As a result, in a dense WiFi network, one can typically observe
a limited number of simultaneous transmissions irrespective of
the number of active users in the network.

Assessing WiFi operation, we again utilize the WINTERsim
simulation framework, but this time to construct a series of
most likely matchings (i.e., non-interfering sets of links) for
all desired AP densities. The matchings represent potential
combinations of UEs that could be active at the same time,
and are generated naturally as snapshots of regular WiFi
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Fig. 11. Average number of users per m2 (left) and transmission time (right).

operation. An example of how such matching looks like is
offered in Figure 10 (left). What we are most interested in for
the purposes of further analysis is the maximum number of
links that could be activated simultaneously within the area of

interest.

Our results confirm that as long as we have significantly
more users than the maximum number of supported links, it
does not really matter how many users there are – the system



14

dynamics will not be affected. Conversely, having more SBSs
does help, as the links end up being shorter and thus block
other links less. Even though WiFi operates at the full power
during admission, shorter links are still preferred as confirmed
by Figure 10(right).

B. Analytical results of comparative case-study
Here, we rigorously compare the two HetNet operation

schemes: the preferential use of WiFi investigated in Sec-
tion IV.E and the proposed simultaneous use of LTE and WiFi
analyzed in Section IV.F. The parameters of the considered
scenario are similar to our simulation-based study above and
are deemed typical for future ultra-dense small cell deploy-
ments in light of ongoing 3GPP discussions.

Let us first consider how our considered integrated HetNet
system reacts to various user loads. In Figure 11 (right), circle
markers correspond to our simulation results, which selectively
verify the obtained analytical dependencies (solid curves). The
figure suggests a set of dependencies corresponding to both
the baseline algorithm (dotted) and the proposed simultaneous
operation scheme (solid), which shift according to the arrows
with increasing network densification. As Figure 11 suggests,
the network has a very notable response to overloads. Es-
sentially, the moment we reach the overload intensities, the
transmission times grow exponentially, along with the number
of backlogged users. Interestingly enough, the point where the
system hits overload is sometimes inversely proportional to the
deployment density. In essence, providing more access points
than necessary may have a negative effect on network capacity.

To illustrate this important effect better, let us study what
happens when each user has a small cell of its own. With
a fixed SBS coverage area, the lion’s share of the resources
will become allocated to phantom users, thus decreasing the
amount of resource actually available to a particular tagged
user. On the other hand, this user’s SINR will be exceptionally
high. The practical limitation, however, is that the UE can
only make use of around 25 dB SINR; anything above that
is essentially useless. Hence, unless SBS power is reduced
appropriately, over-densification may have a visible negative
impact on system capacity, which calls for further research in
this area.

In Figure 12, we illustrate the discussed effect once again,
but under a different angle. One can clearly see that for
higher user densities, the proposed transmission scheme with
the specific density of 7 enjoys the best performance (which
effectively corresponds to ”almost” regular lattice layout). On
the other hand, when system remains essentially idle, it is still
beneficial to have more small cells. As this makes the UE-SBS
links shorter, the effect is the greater attainable data rates at
lower loads.

Contrarily to how the proposed simultaneous transmission
scheme operates, the baseline WiFi-preferred system typically
benefits from densification much less: at some point all of the
UEs are forced to use WiFi by their RAT selection policy.
This indicates, in turn, that whenever a choice of multiple
alternative RATs is available, the UE should not be restricted
to using either one of those, irrespective of its position relative
to the SBS.

VI. CONCLUSIONS AND PROSPECTIVE TRENDS

Leveraging on the strengths of 3GPP cellular (mobility
support, billing of wireless edges, authentication, etc.) and
WiFi (local, cost-efficient, and generally available broadband
access) technologies, as well as the recent trend of cellular
being able to provide rates at par of WiFi systems, tightly
integrated WiFi-LTE systems will proliferate in the emerging
5G RAT ecosystem. To aid the design, optimization, and
deployment of said dense heterogeneous networks, this paper
has significantly advanced the state of the art in the field by
proposing vital architectural enablers and providing a rigorous
and unprecedented analytical framework.

In more detail, going beyond currently stipulated local IP
access, HeNB-GW, and Trusted-WiFi access approaches in
3GPP, we have introduced an Alien Access Gateway (AAGW),
which mirrors 3GPP functionalities into a WLAN RAT (such
as WiFi) and vice-versa. This, in turn, allows a UE to make
maximum use of the available air interfaces without the need
for separate mobility solutions for non-3GPP access. This
brings along significant operational advantages, such as (i)
enabling the truly integrated WiFi-LTE HetNet deployment
with flexible flow splitting analyzed throughout the paper;
(ii) significantly shortening end-to-end delays by removing
detours to a very likely remote PDN GW; and (iii) dramatically
lowering small cell deployment by removing requirement for
direct Internet access to be provided along with operator
backhaul.

In terms of the mathematical framework, we were able to
capture the spatial randomness of the users’ distribution jointly
with their uplink data dynamics. To this end, we formulated
the problem as a Markov process and then introduced suitable
mathematical abstractions via state aggregation. For LTE, we
proposed a novel concept of phantom users, which makes
interference coordination and scheduling analytically tractable.
Consequently, this allowed us to obtain the stationary distri-
bution and transition rate of the aggregated service process, as
well as the resulting resource slicings in WiFi, LTE, and joint
deployments. We also analyzed the important practical case of
mixed PPP-cluster user distributions. The obtained equations
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are mostly in closed form, and thus easy to apply.
The mathematical model has then been verified by means of

a 3GPP-compliant simulator, where we contrasted the baseline
scenario to the truly integrated HetNet approach with flow
splitting. The baseline refers to the case where offload to WiFi
is always preferred to LTE service. The performance parame-
ters considered were the average number of users per unit area,
the average transmission time of the uplink file transmission,
and the rate per user under loaded system conditions. For
instance, for a fixed normalized SBS density Ds = 20, analysis
and simulations proved performance gains of 42%, 300%, and
50% along the above parameters. Improvements were shown
to be dependent on the SBS density.

We thus conclude that truly integrated WiFi-LTE HetNets
will become the de facto mode of usage within the 5G
technology landscape. Further paradigm changes, however,
will likely be the norm in the upcoming 3GPP releases:
• Decoupled Data & Control Channels. A further enabler

of multi-RAT HetNets is the decoupling of data and
control channels. This enables an eNodeB to provide
control channel coverage to handle data transfer via
3GPP and non-3GPP RATs in a completely equal and
transparent fashion.

• Decoupled Uplink & Downlink. A trend likely to persist
is to completely decouple up and downlinks which was
shown to yield significant capacity gains. Again, properly
designed HetNets will be core to such developments
since the downlink can be provided by a 3GPP-compliant
RAT whereas the uplink via a non-3GPP RAT. This
enormously increases the flexibility and thus performance
of the network.

• Decoupled Addressing & Forwarding. Finally, above
will be supported by recent developments in decoupling
of addressing and forwarding. Notably, flow splits – such
as occurring in integrated HetNets – will be key enablers
for efficient spectrum use.

We hope that the architecture vision and mathematical tools
outlined in this paper will be of substantial use in the discus-
sion and design of emerging 5G systems.

APPENDIX

A. Transition rate bi for the aggregated process N(t)

Proof. Due to assumed equal resource sharing, when the
actual data rate is r̃j = δ

i rj , the transition rate bi may be
obtained as:

bi =
i

E
[
sj
r̃j

] =
1

E
[
sj
δrj

] =
δ

E
[
sj
rj

] .
Further, we calculate the distribution of the random variable

x = sj/rj , where rj is the maximum data rate and sj
is the exponentially-distributed random file size. Hence, the
distribution of x, x > 0 may be established as:

Fx(x) = Pr{sj
rj
< x} = Pr{sj < xrj}.

Therefore, given the independence between r and s and the
borders r ∈ [0, rlim], s ∈ [0,∞], we may derive the probability
Pr{s < xr} as:

Pr{s < xr} =
∞∫
0

1
θ e
− 1
θ s

(
rlim∫

max( sx ,rR)

fr(r)dr + Fr(rlim)

)
ds

=
∞∫
0

1
θ e
− 1
θ s

(
1−

max( sx ,rR)∫
rR

fr(r)dr

)
ds

= 1−
xrlim∫
0

1
θ e
− 1
θ s
max( sx ,rR)∫

rR

fr(r)drds

= 1−
xrlim∫
0

1
θ e
− 1
θ sFr(max( sx , rR))ds

= 1−
xrlim∫
xrR

1
θ e
− 1
θ sFr(

s
x )ds = 1−

rlim∫
rR

x
θ e
− xθ rFr(r)dr

= 1+e−
x
θ rlim

rlim∫
rR

fr(r)dr −
rlim∫
rR

e−
x
θ rfr(r)dr,

where rR = w log
(
1 + pmax

(N0+I)
G
Rκ

)
is the effective minimum

level of the maximum data rate corresponding to the user at
the distance R, and the rate distribution function is constructed
such that Fr(rR) = 0 and max r = rlim.

Hence, basing on the probability Pr{s < xr}, the probabil-
ity density function of the random variable x may be described
as:

fx(x) =
dF (x)
dx =

rlim∫
rR

r
θ e
− rθ xfr(r)dr−C rlim

θ e−
rlimx

θ , (29)

where C =
rlim∫
rR

fr(r)dr.

From the expression (29), we derive the expectation of the
random variable sj/rj and, hence,:

E
[
sk
rk

]
=
rlim∫
0

x

(
rlim∫
rR

r
θ e
− rθ xfr(r)dr−C rlim

θ e−
rlimx

θ

)
dx, (30)

which is fully determined by the rate distribution fr(r). �

B. Transition rate bi for the advanced scheme

The transition parameters corresponding to the service area
may be established as:

bi =
i

E

[
sj

δ̃wrw
i +

δ̃lrl
i

] =
1

E
[

sj
δ̃wrw+δ̃lrl

] . (31)

C. Average union of overlapping coverage areas

Consider two overlapping circles (coverage areas) of radius
R2. The area of half of their intersection, which corresponds
to the excluded system resources, is defined as:

s(x) = R2
2 arccos

x

2R2
− 1

2
xr

√
1− x2

4R2
2

, (32)

where x is the distance between the centers. Integrating the
above by the distribution of distances fd(d), we obtain:

s = 1
2

2R2∫
0

s(x)fd(x)dx. (33)

The average common area of the two overlapping circular
coverage areas may thus be calculated as:

2πR2
2 − 2s = 2πR2

2 −
2R2∫
0

S(x)fd(x)dx, (34)

where R2 is the coverage radius.
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