248 research outputs found

    Cryptographic Interweaving of Messages

    Get PDF
    During the past several decades, the information and communication technology sector has advanced significantly, enabling extensive information interchange over the internet, including message sharing and electronic transactions. These days, the main issue is how to transmit information securely. From ancient times, there has been interest in the field of cryptography research. A masterwork of cryptography is Muni Kumudendu's original work, Siribhoovalaya. His study served as the basis for the method suggested in this publication. Several messages can be sent using different keys utilising a single matrix. Encryption uses a variety of matrix traversal techniques, making it challenging for cryptanalysis to map the plaintext and ciphertext

    Subwavelength Engineering of Silicon Photonic Waveguides

    Get PDF
    The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core building block of modern integrated photonic systems. Subwavelength structuring of silicon waveguides shows immense promise in a variety of field of study, such as, tailoring electromagnetic near fields, enhancing light-matter interactions, engineering anisotropy and effective medium effects, modal and dispersion engineering, nanoscale sensitivity etc. In this work, we are going to exploit the boundary conditions of modern silicon photonics through subwavelength engineering by means of novel ultra-low mode area v-groove waveguide to answer long-lasting challenges, such as, fabrication of such sophisticated structure while ensuring efficient coupling of light between dissimilar modes. Moreover, physical unclonable function derived from our nanoscale sidewall crystalline gratings should give us a fast and reliable optical security solution with improved information density. This research should enable new avenues of subwavelength engineered silicon photonic waveguide and answer to many unsolved questions of silicon photonics foundries

    Wireless sensor data security

    Get PDF
    Wireless Sensor Network (WSNs) is a network of sensors deployed in places unsuitable for human beings and where constant monitoring is required. They work with low power, low cost smart devices having limited computing resources. They have a crucial role to play in battle surveillance, border control and infrastructure protection. Keeping in view the precious data they transmit, their security from active or passive attacks is very crucial. We came to know about LOCK model implementing novel Distributed Key Management Exclusion Basis (EBS) System is very efficient in providing with Network Security. Keeping in view the importance of Data Security we preferred to secure WSN data through Public Key Encryption methods like RSA. We also discussed and implemented Elliptic Curve Cryptography (ECC) and its advantages over RSA. However our novel Spiral Encryption Technique implemented along with ECC algorithm, has shown how it helped in making the transmitted message more secure and less informative for the eavesdropper

    High-dimensional quantum information processing with linear optics

    Full text link
    Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for carrying out quantum walks on arbitrary graph structures, a powerful tool for any quantum computer. It is shown that the novel architecture provides new, efficient capabilities for the optical quantum simulation of Hamiltonians and topologically protected states. Further, these simulations use exponentially fewer resources than feedforward techniques, scale linearly to higher-dimensional systems, and use only linear optics, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems

    Combining Several Substitution Cipher Algorithms using Circular Queue Data Structure

    Get PDF
    مع التوسع الثوري في الإنترنت ، تتزايد المعلومات العالمية في تطبيق تكنولوجيا الاتصالات، ويعزز النمو السريع لحجم البيانات الكبير الحاجة إلى تحقيق تقنيات آمنة وقوية وواثقة باستخدام خوارزميات فعالة مختلفة. تقدم هذه الورقة نظامًا تشفيريًا يجمع بين عدة خوارزميات لشفرة الاستبدال جنبًا إلى جنب مع هيكل بيانات طابور دائري . تقنيات الاستبدال المستخدمة هي: شفرة هوموفونك وشفرة بولي الفابيتك, قد دمجت في طابور دائري واحد مع أربعة مفاتيح مختلفة لكل منهما، والتي تنتج ثمانية مخرجات مختلفة لكل حرف وارد واحد. العمل الحالي ممكن تطبيقه بكفاءة لأمنية المعلومات الشخصية وأمنية اتصالات الشبكة كذلك.With the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security.  This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for every single incoming letter. The present work can be applied efficiently for personal information security and network communication security as well, and the time required for ciphering and deciphering a message is less than 0.1 sec

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    UAVouch : a distributed drone identity and location validation mechanism

    Get PDF
    As aplicações emergentes de vigilância, com equipes de VANTs, dependem de comunicação segura para trocar informações, coordenar seus movimentos e cumprir os objetivos da missão. Proteger a rede identificando o acesso de nós mal-intencionados tentando perturbar o sistema é uma tarefa importante, e particularmente sensível no domínio militar. Observando essa necessidade, este artigo apresenta o design e a avaliação do UAVouch: Um esquema distribuído de validação de localização e identidade de drones que combina uma autenticação baseada em chave pública com uma verificação de plausibilidade de movimento para grupos de VANTs. A ideia principal do UAVouch complementa o mecanismo de autenticação, verificando periodicamente a plausibilidade da localização dos VANTs vizinhos, permitindo a detecção de intrusos que não conseguem seguir as trajetórias esperadas. A solução proposta foi avaliada em simulação através de um cenário de vigilância militar, no qual detectou-se ataques de falsificação de posição de nós mal-intencionados com precisão em média acima de 85%.Emerging surveillance applications of UAV teams rely on secure communication to exchange information, coordinate their movements, and fulfill mission objectives. Protecting the network by identifying malicious nodes access trying to disturb the system is an important task, which is particularly sensitive in the military domain. Observing this need, this paper presents the design and evaluation of UAVouch: an identity and location validation scheme combining a public-key based authentication with a movement plausibility check for groups of UAVs. The key idea of UAVouch supplement the authentication mechanism by periodically checking the plausibility of the location of neighboring UAVs, allowing the detection of intruders that are unable to follow expected trajectories. The proposed solution was evaluated in a simulated military surveillance scenario in which it detects malicious nodes’ position falsification attacks with an accuracy on average above 85%
    corecore