70 research outputs found

    Fault tolerant programmable digital attitude control electronics study

    Get PDF
    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation

    Ein flexibles, heterogenes Bildverarbeitungs-Framework für weltraumbasierte, rekonfigurierbare Datenverarbeitungsmodule

    Get PDF
    Scientific instruments as payload of current space missions are often equipped with high-resolution sensors. Thereby, especially camera-based instruments produce a vast amount of data. To obtain the desired scientific information, this data usually is processed on ground. Due to the high distance of missions within the solar system, the data rate for downlink to the ground station is strictly limited. The volume of scientific relevant data is usually less compared to the obtained raw data. Therefore, processing already has to be carried out on-board the spacecraft. An example of such an instrument is the Polarimetric and Helioseismic Imager (PHI) on-board Solar Orbiter. For acquisition, storage and processing of images, the instrument is equipped with a Data Processing Module (DPM). It makes use of heterogeneous computing based on a dedicated LEON3 processor in combination with two reconfigurable Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs). The thesis will provide an overview of the available space-grade processing components (processors and FPGAs) which fulfill the requirements of deepspace missions. It also presents existing processing platforms which are based upon a heterogeneous system combining processors and FPGAs. This also includes the DPM of the PHI instrument, whose architecture will be introduced in detail. As core contribution of this thesis, a framework will be presented which enables high-performance image processing on such hardware-based systems while retaining software-like flexibility. This framework mainly consists of a variety of modules for hardware acceleration which are integrated seamlessly into the data flow of the on-board software. Supplementary, it makes extensive use of the dynamic in-flight reconfigurability of the used Virtex-4 FPGAs. The flexibility of the presented framework is proven by means of multiple examples from within the image processing of the PHI instrument. The framework is analyzed with respect to processing performance as well as power consumption.Wissenschaftliche Instrumente auf aktuellen Raumfahrtmissionen sind oft mit hochauflösenden Sensoren ausgestattet. Insbesondere kamerabasierte Instrumente produzieren dabei eine große Menge an Daten. Diese werden üblicherweise nach dem Empfang auf der Erde weiterverarbeitet, um daraus wissenschaftlich relevante Informationen zu gewinnen. Aufgrund der großen Entfernung von Missionen innerhalb unseres Sonnensystems ist die Datenrate zur Übertragung an die Bodenstation oft sehr begrenzt. Das Volumen der wissenschaftlich relevanten Daten ist meist deutlich kleiner als die aufgenommenen Rohdaten. Daher ist es vorteilhaft, diese bereits an Board der Sonde zu verarbeiten. Ein Beispiel für solch ein Instrument ist der Polarimetric and Helioseismic Imager (PHI) an Bord von Solar Orbiter. Um die Daten aufzunehmen, zu speichern und zu verarbeiten, ist das Instrument mit einem Data Processing Module (DPM) ausgestattet. Dieses nutzt ein heterogenes Rechnersystem aus einem dedizierten LEON3 Prozessor, zusammen mit zwei rekonfigurierbaren Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs). Die folgende Arbeit gibt einen Überblick über verfügbare Komponenten zur Datenverarbeitung (Prozessoren und FPGAs), die den Anforderungen von Raumfahrtmissionen gerecht werden, und stellt einige existierende Plattformen vor, die auf einem heterogenen System aus Prozessor und FPGA basieren. Hierzu gehört auch das Data Processing Module des PHI Instrumentes, dessen Architektur im Verlauf dieser Arbeit beschrieben wird. Als Kernelement der Dissertation wird ein Framework vorgestellt, das sowohl eine performante, als auch eine flexible Bilddatenverarbeitung auf einem solchen System ermöglicht. Dieses Framework besteht aus verschiedenen Modulen zur Hardwarebeschleunigung und bindet diese nahtlos in den Datenfluss der On-Board Software ein. Dabei wird außerdem die Möglichkeit genutzt, die eingesetzten Virtex-4 FPGAs dynamisch zur Laufzeit zu rekonfigurieren. Die Flexibilität des vorgestellten Frameworks wird anhand mehrerer Fallbeispiele aus der Bildverarbeitung von PHI dargestellt. Das Framework wird bezüglich der Verarbeitungsgeschwindigkeit und Energieeffizienz analysiert

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz

    THE APPLICATION OF REAL-TIME SOFTWARE IN THE IMPLEMENTATION OF LOW-COST SATELLITE RETURN LINKS

    Get PDF
    Digital Signal Processors (DSPs) have evolved to a level where it is feasible for digital modems with relatively low data rates to be implemented entirely with software algorithms. With current technology it is still necessary for analogue processing between the RF input and a low frequency IF but, as DSP technology advances, it will become possible to shift the interface between analogue and digital domains ever closer towards the RF input. The software radio concept is a long-term goal which aims to realise software-based digital modems which are completely flexible in terms of operating frequency, bandwidth, modulation format and source coding. The ideal software radio cannot be realised until DSP, Analogue to Digital (A/D) and Digital to Analogue (D/A) technology has advanced sufficiently. Until these advances have been made, it is often necessary to sacrifice optimum performance in order to achieve real-time operation. This Thesis investigates practical real-time algorithms for carrier frequency synchronisation, symbol timing synchronisation, modulation, demodulation and FEC. Included in this work are novel software-based transceivers for continuous-mode transmission, burst-mode transmission, frequency modulation, phase modulation and orthogonal frequency division multiplexing (OFDM). Ideal applications for this work combine the requirement for flexible baseband signal processing and a relatively low data rate. Suitable applications for this work were identified in low-cost satellite return links, and specifically in asymmetric satellite Internet delivery systems. These systems employ a high-speed (>>2Mbps) DVB channel from service provider to customer and a low-cost, low-speed (32-128 kbps) return channel. This Thesis also discusses asymmetric satellite Internet delivery systems, practical considerations for their implementation and the techniques that are required to map TCP/IP traffic to low-cost satellite return links

    Applications for FPGA's on Nanosatellites

    Get PDF
    This thesis examines the feasibility of using a Field Programmable Gate Array (FPGA) based design on-board a CubeSat-sized nanosatellite. FPGAs are programmable logic devices that allow for the implementation of custom digital hardware on a single Integrated Circuit (IC). By using these FPGAs in spacecraft, more efficient processing can be done by moving the design onto hardware. A variety of different FPGA-based designs are looked at, including a Watchdog Timer (WDT), a Global Positioning System (GPS) receiver, and a camera interface

    A scalable packetised radio astronomy imager

    Get PDF
    Includes bibliographical referencesModern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, including the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based processing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very different, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams

    On the design and implementation of a control system processor

    Get PDF
    In general digital control algorithms are multi-input multi-output (MIMO) recursive digital filters, but there are particular numerical requirements in control system processing for which standard processor devices are not well suited, in particular arising in systems with high sample rates. There is therefore a clear need to understand the numerical requirements properly, to identity optimised forms for implementing control laws, and to translate these into efficient processor architectures. By taking a considered view of the numerical and calculation requirements of control algorithms, it is possible to consider special purpose processors that provide well-targeted support of control laws. This thesis describes a compact, high-speed, special-purpose processor which offers a low-cost solution to implementing linear time invariant controllers. [Continues.

    A Solder-Defined Computer Architecture for Backdoor and Malware Resistance

    Get PDF
    This research is about securing control of those devices we most depend on for integrity and confidentiality. An emerging concern is that complex integrated circuits may be subject to exploitable defects or backdoors, and measures for inspection and audit of these chips are neither supported nor scalable. One approach for providing a “supply chain firewall” may be to forgo such components, and instead to build central processing units (CPUs) and other complex logic from simple, generic parts. This work investigates the capability and speed ceiling when open-source hardware methodologies are fused with maker-scale assembly tools and visible-scale final inspection. The author has designed, and demonstrated in simulation, a 36-bit CPU and protected memory subsystem that use only synchronous static random access memory (SRAM) and trivial glue logic integrated circuits as components. The design presently lacks preemptive multitasking, ability to load firmware into the SRAMs used as logic elements, and input/output. Strategies are presented for adding these missing subsystems, again using only SRAM and trivial glue logic. A load-store architecture is employed with four clock cycles per instruction. Simulations indicate that a clock speed of at least 64 MHz is probable, corresponding to 16 million instructions per second (16 MIPS), despite the architecture containing no microprocessors, field programmable gate arrays, programmable logic devices, application specific integrated circuits, or other purchased complex logic. The lower speed, larger size, higher power consumption, and higher cost of an “SRAM minicomputer,” compared to traditional microcontrollers, may be offset by the fully open architecture—hardware and firmware—along with more rigorous user control, reliability, transparency, and auditability of the system. SRAM logic is also particularly well suited for building arithmetic logic units, and can implement complex operations such as population count, a hash function for associative arrays, or a pseudorandom number generator with good statistical properties in as few as eight clock cycles per 36-bit word processed. 36-bit unsigned multiplication can be implemented in software in 47 instructions or fewer (188 clock cycles). A general theory is developed for fast SRAM parallel multipliers should they be needed

    Spectrum Optimisation in Wireless Communication Systems: Technology Evaluation, System Design and Practical Implementation

    Get PDF
    Two key technology enablers for next generation networks are examined in this thesis, namely Cognitive Radio (CR) and Spectrally Efficient Frequency Division Multiplexing (SEFDM). The first part proposes the use of traffic prediction in CR systems to improve the Quality of Service (QoS) for CR users. A framework is presented which allows CR users to capture a frequency slot in an idle licensed channel occupied by primary users. This is achieved by using CR to sense and select target spectrum bands combined with traffic prediction to determine the optimum channel-sensing order. The latter part of this thesis considers the design, practical implementation and performance evaluation of SEFDM. The key challenge that arises in SEFDM is the self-created interference which complicates the design of receiver architectures. Previous work has focused on the development of sophisticated detection algorithms, however, these suffer from an impractical computational complexity. Consequently, the aim of this work is two-fold; first, to reduce the complexity of existing algorithms to make them better-suited for application in the real world; second, to develop hardware prototypes to assess the feasibility of employing SEFDM in practical systems. The impact of oversampling and fixed-point effects on the performance of SEFDM is initially determined, followed by the design and implementation of linear detection techniques using Field Programmable Gate Arrays (FPGAs). The performance of these FPGA based linear receivers is evaluated in terms of throughput, resource utilisation and Bit Error Rate (BER). Finally, variants of the Sphere Decoding (SD) algorithm are investigated to ameliorate the error performance of SEFDM systems with targeted reduction in complexity. The Fixed SD (FSD) algorithm is implemented on a Digital Signal Processor (DSP) to measure its computational complexity. Modified sorting and decomposition strategies are then applied to this FSD algorithm offering trade-offs between execution speed and BER

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs
    corecore