
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2022

A Solder-Defined Computer Architecture for Backdoor and A Solder-Defined Computer Architecture for Backdoor and

Malware Resistance Malware Resistance

Marc W. Abel
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Abel, Marc W., "A Solder-Defined Computer Architecture for Backdoor and Malware Resistance" (2022).
Browse all Theses and Dissertations. 2662.
https://corescholar.libraries.wright.edu/etd_all/2662

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2662?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2662&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A SOLDER-DEFINED COMPUTER ARCHITECTURE FOR

BACKDOOR AND MALWARE RESISTANCE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

By

MARC W. ABEL

B.S., California Institute of Technology, 1991

2022

Wright State University

Copyright © 2020–2022 Marc W. Abel.

This work is licensed under a Creative Commons
Attribution 4.0 International License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Wright State University
GRADUATE SCHOOL

November 30, 2022

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDERMY
SUPERVISION BYMarc W. Abel ENTITLED A Solder-Defined Computer Architec-
ture for Backdoor and Malware Resistance BE ACCEPTED IN PARTIAL FULFILL-
MENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

Travis E. Doom, Ph.D.
Dissertation Director

Thomas Wischgoll, Ph.D.
Director, Computer Science and Engineering Ph.D. Program

Shu Schiller, Ph.D.
Interim Dean of the Graduate School

Committee on
Final Examination

Travis E. Doom, Ph.D.

Jack S. N. Jean, Ph.D.

Michael L. Raymer, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Vincent A. Schmidt, Ph.D.

ABSTRACT

Abel, Marc W. Ph.D. Department of Computer Science and Engineering, Wright
State University, 2022. A Solder-Defined Computer Architecture for Backdoor and
Malware Resistance.

This research is about securing control of those devices we most depend on for

integrity and confidentiality. An emerging concern is that complex integrated cir-

cuits may be subject to exploitable defects or backdoors, and measures for inspection

and audit of these chips are neither supported nor scalable. One approach for pro-

viding a “supply chain firewall” may be to forgo such components, and instead to

build central processing units (CPUs) and other complex logic from simple, generic

parts. This work investigates the capability and speed ceiling when open-source hard-

ware methodologies are fused with maker-scale assembly tools and visible-scale final

inspection.

The author has designed, and demonstrated in simulation, a 36-bit CPU and pro-

tected memory subsystem that use only synchronous static random access memory

(SRAM) and trivial glue logic integrated circuits as components. The design presently

lacks preemptive multitasking, ability to load firmware into the SRAMs used as logic

elements, and input/output. Strategies are presented for adding these missing sub-

systems, again using only SRAM and trivial glue logic. A load-store architecture is

employed with four clock cycles per instruction. Simulations indicate that a clock

speed of at least 64 MHz is probable, corresponding to 16 million instructions per

second (16 MIPS), despite the architecture containing no microprocessors, field pro-

grammable gate arrays, programmable logic devices, application specific integrated

circuits, or other purchased complex logic.

The lower speed, larger size, higher power consumption, and higher cost of an

v

“SRAM minicomputer” compared with traditional microcontrollers may be offset

by the fully open architecture—hardware and firmware—along with more rigorous

user control, reliability, transparency, and auditability of the system. SRAM logic is

also particularly well suited for building arithmetic logic units, and can implement

complex operations such as population count, a hash function for associative arrays,

or a pseudorandom number generator with good statistical properties in as few as

eight clock cycles per 36-bit word processed. 36-bit unsigned multiplication can be

implemented in software in 47 instructions or fewer (188 clock cycles). A general

theory is developed for fast SRAM parallel multipliers should they be needed.

All tools and work product of this research are available online with open-source

licenses.

vi

Contents

1 Overview 1
1.1 Problem statement . 1
1.2 Seeking a solution . 4
1.3 Research questions . 11
1.4 Original results . 18

2 Definitions 21

3 Components 25
3.1 Logic family selection . 25
3.2 SRAMs as electrical components . 29

3.2.1 Asynchronous SRAM . 32
3.2.2 Synchronous SRAM . 35
3.2.3 Dual-ported SRAM . 37

3.3 Traditional logic ICs . 38
3.4 Clock skew with mixed logic families 39
3.5 Derived components . 43

3.5.1 Multiplexers . 43
3.5.2 Shift registers . 43
3.5.3 Counters . 43

3.6 Non-computing component security 47
3.6.1 Firmware reservoir . 47
3.6.2 Oscillators and clock buffers 49
3.6.3 Peripherals . 51
3.6.4 Capacitors . 52

4 Logic blocks for SRAM ALUs 53
4.1 Hierarchy of ALU capabilities . 53
4.2 Simple lookup elements . 55

vii

4.3 Arbitrary geometry adders . 56
4.4 Carry-skip adders . 57
4.5 Swizzlers . 63
4.6 Logarithmic shifters . 64
4.7 Semi-swizzlers . 65
4.8 Substitution-permutation networks 66
4.9 Fast multipliers . 67
4.10 Open question: medium-speed multipliers 71

5 Three-layer ALU structure 73
5.1 Superpositions of SRAM logic blocks 73
5.2 Word sizes for minicomputer architectures 78
5.3 CPU flags . 82
5.4 SRAM bit assignments . 85
5.5 Alternate diagram for ALU . 85

6 Two-layer ALU structure 89
6.1 An elegant two-layer ALU for 36-bit words 89
6.2 A tiny ALU for 18-bit words . 97

7 A three-layer, 36-bit ALU firmware 99
7.1 What is SRAM ALU firmware? . 99
7.2 ALU opcodes and their implementations 101

7.2.1 Additive opcodes . 103
7.2.2 Bitwise boolean opcodes . 106
7.2.3 Compare opcodes . 108
7.2.4 Shift and rotate opcodes . 109
7.2.5 Multiply opcodes . 111
7.2.6 NUDGE instruction . 115
7.2.7 Bit permute opcodes . 117
7.2.8 Mix opcodes . 125
7.2.9 Simple unary instructions . 135
7.2.10 Stacked unary instructions . 137

7.3 ALU operations and their implementations 138
7.3.1 α layer operation . 139
7.3.2 β layer operation . 146
7.3.3 γ layer operation . 149

viii

7.3.4 θ operation . 154
7.3.5 ζ operation . 156
7.3.6 Simple unary operations . 160
7.3.7 Stacked unary operations . 161

7.4 Leading and trailing bit manipulation 167
7.5 A reference implementation . 171
7.6 Future work . 171

8 A solder-defined CPU with protected memory 175
8.1 Physical characteristics of the CPU 179
8.2 Machine word structure . 185
8.3 Register organization . 186

8.3.1 Register splitting and reverse subtraction 187
8.4 Memory organization . 187

8.4.1 Data memory organization . 188
8.4.2 Code memory organization . 191
8.4.3 Stack memory organization 193

8.5 Machine instruction format . 195
8.5.1 Alternative instruction formats 197

8.6 CPU topology and instruction cycle 199
8.6.1 Instruction cycle for ALU opcodes 202
8.6.2 Memory access opcodes and routes 207
8.6.3 Flip-flops not involved in memory accesses 211

8.7 Control unit . 213
8.7.1 Clock driver . 213
8.7.2 Click counter . 213
8.7.3 Control decoder . 215

8.8 Simplicity and scale of the CPU . 218

9 Forthcoming subsystems 221
9.1 Preemptive multitasking . 222
9.2 Firmware loader . 225

9.2.1 Option 1: Purchased complex logic 227
9.2.2 Option 2: Hardwired logic after NOR flash 229
9.2.3 Option 3: Finite state machine after NOR flash 231
9.2.4 Option 4: Parallel NOR flash finite state machine 233

9.3 Input and output . 234

ix

10 Fast parallel multipliers 241
10.1 Background . 242
10.2 Notation and definitions . 246
10.3 Generation of partial products . 247

10.3.1 Unsigned partial products . 248
10.3.2 Signed partial products . 250
10.3.3 Mixed-signage multipliers . 253

10.4 Partial product summation . 255
10.4.1 Carry-save addition . 256
10.4.2 Carry-skip addition . 259
10.4.3 Fast subproduct totals . 264
10.4.4 Multilayer carry-skip addition 269

10.5 Implication and contribution . 275

11 Minicomputer implementation 277
11.1 Firmware implementation . 279
11.2 Assembler . 283

11.2.1 What the assembler includes 283
11.2.2 Future assembler features . 286

11.3 Netlist definition and processing . 288
11.3.1 Off-the-shelf electronic design automation software 288
11.3.2 A typewritten netlist . 291
11.3.3 Component placement . 306
11.3.4 Netlist summary information output 308
11.3.5 Estimating propagation delay between pins 312

11.4 Electrical and timing simulation . 315
11.4.1 Off-the-shelf simulation software 315
11.4.2 Electrical simulator description 317
11.4.3 Simulator test script semantics and example 321
11.4.4 Simulator output example . 327
11.4.5 Hazards, limitations, and next steps of simulation 330

12 Opposing viewpoints 333

13 Findings, motivation, significance 341
13.1 Major findings to date . 341
13.2 Motivation for this work . 344

x

13.3 Security advantages of the architecture 350
13.4 Drawbacks of the architecture . 354
13.5 Significance of this work . 355
13.6 Future work and timeframe for availability 358

A Assembly language conventions 359
A.1 Source code character set . 359
A.2 Comments . 359
A.3 Numbers . 361
A.4 Identifiers . 362
A.5 Abbreviating keywords . 363
A.6 Declaring registers . 363
A.7 Overriding register signedness . 364
A.8 Permutation notations . 364

B Instruction reference 367
A Add . 368
ABS Absolute value . 368
AC Add with carry . 369
AND AND . 369
ASL Arithmetic shift left . 370
ASR Arithmetic shift right . 371
AW Add with wrap . 372
AWC Add with wrap and carry . 373
BO - Brighten ones . 374
BOUND Bound . 374
BZ - Brighten zeros . 375
CALL Call . 376
CLO Count leading ones . 377
CLZ Count leading zeros . 377
CMP Compare . 378
CRF Clear range flag . 378
CTO Count trailing ones . 379
CTZ Count trailing zeros . 379
CX Check and extend . 380
DSL Double shift left . 380
EO - Erase ones . 381

xi

EZ - Erase zeros . 381
FABS Fast absolute value . 382
FO - Find one . 382
FZ - Find zero . 383
GO - Grow one . 383
GZ - Grow zero . 384
HALT Halt . 384
IPSR Instruction pointer shift register 385
JUMP Jump . 386
LANR Left and not right . 387
LAS Logical assignment . 388
LFSR Linear feedback shift register . 389
LO - Light ones . 390
LONR Left or not right . 390
LSL Logical shift left . 391
LSR Logical shift right . 391
LZ - Light zeros . 392
MAX Maximum . 392
MH Multiply high . 393
MHNS Multiply high no shift . 394
MIN Minimum . 394
MIRD Mirrored decrement . 395
MIRI Mirrored increment . 395
MIX Mix . 396
ML Multiply low . 398
NAND NAND . 398
NAS Numeric assignment . 399
NOP No operation . 399
NOR NOR . 400
NOT NOT . 400
NUDGE Nudge . 401
OR OR . 401
PARTY Parity . 402
PAT Permute across tribbles . 402
PAIT Permute across and inside tribbles 404
PIT Permute inside tribbles . 404

xii

POPC Popcount . 405
PRL Prepare to rotate left . 405
PRR Prepare to rotate right . 406
PSL Prepare to shift left . 406
PSR Prepare to shift right . 407
RANL Right and not left . 407
ROL Rotate left . 408
RONL Right or not left . 408
RS Reverse subtract . 409
RSC Reverse subtract with carry . 410
RSW Reverse subtract with wrap . 411
RSWC Reverse subtract with wrap and carry 412
RTGL Rotate T going left . 412
RTGR Rotate T going right . 413
S Subtract . 413
SC Subtract with carry . 414
STGL Shift T going left . 414
STGR Shift T going right . 415
SW Subtract with wrap . 415
SWC Subtract with wrap and carry 416
SWIZ Swizzle . 416
TXOR Transposing XOR . 417
XIM Undo mix . 418
XNOR XNOR . 418
XOR XOR . 419
XPOLY XOR polynomial on T flag . 420

C Advance corrections 421
C.1 Instruction format fields to move . 421
C.2 ALU operation to be deleted . 422
C.3 Physical address format to change . 423

D What’s where in the source tree 425

References 431

xiii

List of Figures

1.1 To increase security, reduce complexity. 3
1.2 Proposed SRAM CPU pipeline, before it was shortened to figure 1.3. 16
1.3 Reworked data paths after shortening the CPU cycle. 17

3.1 BGA layout of a 36-bit ALU using asynchronous SRAMs. 33
3.2 Call stack depth counter using LFSRs. 45
3.3 Instruction pointer incrementer using AUC glue logic. 46

4.1 Simple lookup element. 56
4.2 Arbitrary-geometry addition. 56
4.3 Subword carry decisions for 3-bit addition. 58
4.4 Two-layer carry-skip adder. 58
4.5 Two-layer carry-skip adder with old carry via top. 60
4.6 Two-layer bidirectional carry-skip adder. 60
4.7 Three-layer carry-skip adder. 62
4.8 4× 4 swizzler. 63
4.9 16-bit logarithmic shifter. 65
4.10 4× 4 semi-swizzler or half-shifter. 66
4.11 4-bit S-box. 66
4.12 16-bit substitution-permutation network. 67

5.1 Block diagram of a 36-bit ALU. 75
5.2 Superposition of major components of a three-layer, 36-bit ALU. . . . 76
5.3 Bit transposition as a square matrix reflection. 77
5.4 Bit slice and carry propagation SRAMs for a 36-bit, three-layer ALU. 79
5.5 CPU flag approximate logic. 84
5.6 Block diagram of a 36-bit ALU (landscape). 88

6.1 Data signals for a 36-bit, two-layer ALU. 91

xiv

6.2 Control signals for a 36-bit, two-layer ALU. 92
6.3 Data signals for a 18-bit, two-layer ALU. 98

7.1 Decomposition of a random 36-bit permutation. 119

8.1 CPU floorplan on facing pages. Actual size. 180
8.2 Unbroken CPU floorplan. Actual size. 182
8.3 Virtual address format for data memory. 189
8.4 Page table RAM’s input and output bit assignments. 189
8.5 Physical address format for data memory. 189
8.6 Principal data paths of the CPU. 200
8.7 The clock driver uses eight buffer ICs with stages wired in parallel. . 214

9.1 A single-RAM finite state machine with hardware to load its firmware. 231

10.1 Subproduct summation using carry-save adders. 258
10.2 Two-layer, radix-agnostic, carry-skip adder. 263
10.3 Subproduct summation using carry-save and carry-skip adders. 264
10.4 64-bit either-signage multiplier using six layers. 267
10.5 Three-layer carry-skip adder. 270
10.6 Hierarchical scheme for a five-layer, 28-term carry-skip adder. 272

11.1 Partial KiCad drawing of the ALU datapath. 289
11.2 Partial KiCad drawing of the ALU power connections. 290
11.3 A drawing of the chapter 8 minicomputer’s non-power connections. . 310
11.4 A drawing by KiCad of the chapter 8 minicomputer. 311
11.5 Visual illustration of track length estimates. 314

xv

List of Tables

1.1 Categories of vulnerability-inducing hardware irregularities. 2
1.2 Category II (unplanned and unexpected) hardware irregularities. . . . 2
1.3 Category III (maliciously introduced) hardware irregularities. 4
1.4 Proposed VLSI supply controls for Category III backdoors. 5
1.5 Potential applications for the proposed architecture. 10

5.1 CPU flag meanings. 82
5.2 ALU SRAM input bit assignments. 86
5.3 ALU SRAM output bit assignments. 87

6.1 Suggested operations for a 36-bit, 2-layer ALU. 94

7.1 Principal opcodes and macros for a 36-bit, 3-layer ALU. 102
7.2 Additive instructions and their implementations. 104
7.3 Bitwise boolean instructions and their implementations. 107
7.4 Comparison instructions and their implementations. 108
7.5 Shift and rotate instructions and their implementations. 110
7.6 Other ALU instructions and their implementations. 112
7.7 Frequently-used swizzle operations for β.swz. 114
7.8 Directly-available tribble permutations. 124
7.9 Compact set of tribble permutations for two instructions. 124
7.10 Unary instructions and their implementations. 136
7.11 ALU α layer operations. 140
7.12 ALU β layer operations. 147
7.13 ALU γ layer operations. 150
7.14 ALU θ RAM operations. 154
7.15 ALU ζ RAM operations. 157
7.16 ALU simple unary operations. 161
7.17 ALU stacked unary operations. 162
7.18 Assembler macros that (mainly) use stacked unary operations. 163

xvi

7.19 Leading and trailing bit manipulation macros. 168
7.20 Visual index to the leading and trailing bit manipulation macros. . . 169

8.1 These major subsystems remain for design and test. 177
8.2 Non-ALU instructions. 178
8.3 Bill of materials for a simulated CPU that ran listing 8.1. 179
8.4 Non-ALU RAMs visible in CPU floorplan. 184
8.5 A new CPU instruction starts every fourth clock cycle. 203
8.6 Memory-read opcodes and their circuitous routes. 208
8.7 Memory-write opcodes and their register-to-memory routes. 208
8.8 Control decoder assigned bits. 216

9.1 Data exchange flip-flops from the firmware loader to the CPU. 227

10.1 Number of 256Ki× 18 SRAMs needed for various multipliers. 254
10.2 SRAM multiplier widths as a function of latency and SRAM size. . . 268
10.3 Computation of the 27 carry decisions for figure 10.6. 271
10.4 Metrics of hierarchical carry-skip unsigned multipliers. 274

11.1 Number of instructions required for some common tasks. 278
11.2 Tally of the minicomputer firmware size, measured in rows. 279
11.3 Overcurrent conflicts at the nets of α4’s input pins. 331

A.1 Peculiar uses for various ASCII characters. 360
A.2 Digits for bases up to 64. 362
A.3 Keyword abbreviations. 363

B.1 Tribble permutation operations. 403
B.2 Swizzle operations. 417

D.1 code/ Implementation directory root. 425
D.2 code/asm/ Assembler and virtual machine. 426
D.3 code/consts/ Constants that represent opcodes and operations. . . . 426
D.4 code/firmware/ Modules to compute SRAM firmware. 426
D.5 code/logic-solver/ Synthesize optimal SN74AUC-series glue logic. 427
D.6 code/misc/ Helper functions, constants, and macros. 427
D.7 code/netlist/ “Electrical source code” of the minicomputer. 428
D.8 code/netsim/ “Electrical object code” of the minicomputer. 429
D.9 code/vm/ Testing for assembler and ALU firmware. 430

xvii

List of Listings

7.1 36 subtraction opcodes. 105
7.2 Assembler code for 36-bit multiplication. 47 instructions are executed. 113
7.3 Using the XIM instruction to hash a four-word object. 127
7.4 This two-instruction PRNG withstands all Dieharder tests. 128
7.5 First portion of Dieharder output evaluating the PRNG of listing 7.4. 130
7.6 An explanation of the LFSR and XPOLY polynomials. 132
7.7 Python 3 specification of S-boxes for the MIX and XIM opcodes. . . . 134

8.1 Program to compute the largest 36-bit Fibonacci number. 176
8.2 Four “bookend” instructions for call stack safety. 195

11.1 Command line options for vm tool. 281
11.2 Manual ALU test of a five-bit logical shift left. The bits to be shifted

appear at input L. Input R has the number of positions to shift available
at all subwords. The shifted word appears at output γ. 281

11.3 Virtual machine output running the Fibonacci program of listing 8.1. 285
11.4 Instruction pointer incrementer (figure 3.3) implemented. 304
11.5 Component placement syntax showing four circuit board tiles. 307
11.6 Connectivity syntax example with five signal paths. 312
11.7 Simulator script to start CPU and run Fibonacci program. 322
11.8 Final portion of simulator output with Fibonacci program. 328

xviii

Acknowledgments

Nothing this page can hold could adequately thank everyone I leaned on through

more than ten years at Wright State University. It’s been a deep honor to study at

this school, and I thank and commend our caring and devoted students, staff, faculty,

administration, trustees, sponsors, and anyone I neglected to include on this list.

To my brothers and sister on the signature sheet, your faith in and tolerance of me

has been a great support and pleasure. I hope our capers together will not end soon.

To the Institute of Electrical and Electronics Engineers, the Wikimedia Founda-

tion, and their respective communities, thank you for your curation and publication

of human advancements. I have depended on your work throughout.

To my longtime fans, all of you know who you are, and I owe you each a more

personal salute than the moment it would have taken to add your name to this page.

I am grateful for your long interest in my work as a privacy advocate, and predictably,

I am withholding every one of your names. I love every one of you.

xix

1

Overview

1.1 Problem statement

Irregularities in the behavior of computing hardware are a perennial source of software-

related defects, including exploitable defects that are regarded as security vulnerabil-

ities. I group these irregularities into three loose categories, summarized in table 1.1.

Category I represents ordinary hardware semantics or limits that programmers

tend to overlook. These semantics and limits can lead to assumptions of invariance,

to which attacks supply counterexamples. For instance, arithmetic results may go

out of range. Memory buffers have finite size. Clocks that keep time are not always

monotonic. Shifts and division have peculiar, architecture-dependent semantics for

unusual operands. Suggested workarounds for Category I irregularities have included

increasing the scrutiny done by programmers [Seacord14], and increasing the sep-

aration between the instructions that programmers write and the silicon executing

them [Dannenberg10].

Category II irregularities are anomalies that contradict the documented or un-

derstood operation of computing hardware. These are some of the bugs that appear

in the news, as well as more primary sources like [Bratus12, CTS18, Ermolov17, Er-

molov20, Kocher19, Lipp18, Mutlu19, Rutkowska15a, Tatar18, VanBulck20]. Ta-

ble 1.2 lists a few well-known cases. They have whimsical names like “hidden God

1

Table 1.1: Categories of vulnerability-inducing hardware irregularities.

Category I Category II Category III

Origin purposeful unexpected malicious
Example arithmetic wrap RowHammer hidden backdoor
Software workaround? yes no no
VLSI architect can fix? yes yes no
Supply chain owner can fix? yes yes yes

Table 1.2: Some Category II (unplanned and unexpected) hardware irregularities.

when architecture name synopsis

1985 80386 multiply bug arithmetic error
1994 Pentium FDIV arithmetic error
1998 Pentium F00F lockup
2003 Via C3 God mode privilege escalation
2008 Intel AMT Silent Bob full control of everything
2015 DRAM RowHammer memory corruption
2017 x86 Spectre read others’ memory
2017 x86, POWER, ARM Meltdown read all memory
2020 Intel SGX load value inj. inject data values
2020 Intel CSME [M. Ermolov] broken authentication

mode,” “Meltdown,” and “Silent Bob is Silent.” These pitfalls can sidestep the most

attentive programmer’s precautions, and they can surface years after a hardware,

operating system, or application platform is no longer supported by its original pro-

ducer. To first order, vulnerabilities from Category II irregularities cannot be solved

through software, but require architectural changes to future generations of VLSI by

the supplier.

Category II hardware irregularities are analogous to software defects, and I view

the two as having the same two root causes. First, systems are too complex relative

to the human scrutiny applied to their design and update. I like to mention this in

my talks about cybersecurity, and I often project figure 1.1 during my explanation.

2

COMPLEXITY

S
E
C
U
R
IT
Y

Figure 1.1: To increase security, reduce complexity.

Second, others have pointed out that long practice in both software and hardware

design has presumed use under controlled, non-adversarial conditions. In the 1980s,

the famed network infiltrations by Marcus Hess and Robert Tappan Morris disproved

this presumption [Stoll88, Spafford89].

Category III irregularities are hidden characteristics introduced within a hard-

ware supply chain that do not align with the buyer’s security objectives. They can

either be active logic that provides a backdoor for an unseen adversary to control

a system, a passive mechanism for eavesdropping, or some combination of both

[Becker13, CTS18, Domas18, NSA08, Portnoy17]. Table 1.3 lists some examples.

Such vulnerabilities are of particular urgency when national boundaries are crossed

[Pompeo20]. Another model that falls under Category III is the outright counterfeit-

ing of critical equipment by unknown manufacturers, such as reported in July 2020

for network switches [Janushkevich20], or for many years for integrated circuits for

aviation and military use [Greenemeier17]. Another Category III example would be

a manufacturer shipping genuine semiconductors that are known to not meet specifi-

cations for use in U.S. weapons. I have listened to chilling firsthand accounts from a

longstanding friend who was dismissed for refusing to sign off on such shipments.

Table 1.3 slips in an important point about right to repair. ISO 27000 [ISO18] in-

corporates availability into the scope of information security, so when a manufacturer

3

Table 1.3: Actual and rumored Category III (maliciously introduced) hardware
irregularities.

who architecture synopsis

AMD Platform Security Processor hypothesized backdoor
Apple iPhone 6 + iOS 10.2.1 sabotaged performance
Deere 8520T tractor right to repair infringements
Huawei 5G cellular infrastructure potential for China influence
Intel Management Engine hypothesized backdoor
Intel RDRAND instruction non-randomness suspicions
NSA ANT Catalog implantable surveillance products
VIA C3 (x86 clone) backdoors claimed by C. Domas
ZTE 5G cellular infrastructure potential for China influence

elects to make a deployed tractor unavailable to its owner in order to sell a service

call, a cyberattack has been committed via the supply chain. Likewise, the sale of

digital devices that contain non-user-replaceable batteries constitutes a security af-

front, a brazen act of ecological terrorism, and an amplifier of human suppression in

regions where conflict minerals are mined.

Because Category III irregularities are adversarial in origin, there is incentive

to place them at points where the buyer can neither inspect nor repair the product,

such as within VLSI or inaccessible microcode. In general, these vulnerabilities cannot

be addressed satisfactorily either via software or through hopes that a supplier will

abstain from inserting them. Instead, the buyer needs to extend some form of control

over the manufacturing process and/or the final assembled product.

1.2 Seeking a solution

Various proposals have been made for safeguarding the VLSI supply chain against

intentional defect introduction, including [Pompeo20, Waksman14, Love11, Holler17]

which are summarized in table 1.4. The suggestions range from never trading with

adversaries, to securing a multi-billion dollar supply chain across hundreds or perhaps

4

Table 1.4: Proposed VLSI supply controls for Category III backdoors.

proponent synopsis

Michael Pompeo geopolitical controls
Adam Waksman lock down VLSI supply chain
Eric Love add formal proofs of security to hardware IP
Mirko Holler X-ray ptychographic inspection
this dissertation complex logic to be built by end user

thousands of vendors, to proving mathematically that designs are secure but giving no

evidence that hardware actually sold follows those designs, to using one of the planet’s

most expensive machines to partially see inside ICs, to suggesting that complex ICs

not be used for certain infrastructure. Not one of these proposals is practical, but the

last of these, which I confess is my idea, is perhaps the least impractical and most

immediately realizable within specific settings.

This dissertation’s essential target is hardware irregularity Category III, the case

where a supply chain for complex logic, such as microprocessors and peripheral con-

trollers, may be tainted by an adversary prior to delivery to a buyer. In such cir-

cumstances, computing equipment may contain a backdoor or a data exfiltration

mechanism. A drastic approach is advanced: relocate the supply chain from manu-

facturing technology and processes that an adversary may control to technology and

processes that are under the buyer’s control. There is a straightforward way to do

this: have the buyer manufacture his or her own complex logic. There is also a backup

approach: have the buyer inspect his or her purchased logic.

Neither of these approaches can place a VLSI foundry at the buyer’s disposal.

Semiconductor fabs cost billions to build, and a short-term lease would be financially

and logistically implausible. What may be practical, however, is to look back 50 years

to a time when computers were assembled from simple components by inexpensive

tools at millimeter scale. The labor was costly, the dimensions were large, the con-

5

nections were many, and the unit price and weight were beyond reach for many uses.

But in time since, components and assembly processes have undergone revolutionary

change. What computing machinery can be built now, using basic components, in-

expensive tools, and millimeter dimensions? And what are the security implications

of this machinery?

The central hypothesis of this dissertation is that it is possible to build an easy-

to-reproduce minicomputer1 today that meets the following informally stated supply

chain tamper resistance criteria:

Supply chain tamper resistance criteria

1. The computer’s electronic components are simple and generic enough, that it

would not be practical for an adversary to introduce exploitable defects through

the component supply chain.

2. Each electronic component already exists in the marketplace for other uses, and

at least two manufacturers currently produce any particular component.

3. The computer can be assembled using current surface-mount practices, using

either manual or automated placement and soldering.

4. The assembled computer can be inspected against open-source specifications,

resulting in a modest level of confidence that exploitable defects were not in-

jected into the product.

5. The computer can be warranted by the manufacturer to exactly match identified

open-source specifications.

6. The computer can be warranted by the manufacturer to be assembled from

components supplied by the buyer, or from a specified bill of materials.

1This term is defined on page 22.

6

These tamper resistance criteria, although helpful for excluding Category III

hardware irregularities that are maliciously introduced, cannot directly address ex-

ploitable defects from Category I’s unintended consequences of purposeful design

features or Category II’s unplanned and unexpected behaviors. Without offering

a blueprint for how to address Categories I and II, here are a few of my outcome

expectations for computers and their CPUs:

Behavioral expectations of computers and CPUs

1. Computers must not run operating systems. Instead, operating systems must

run computers.

2. A computer must not facilitate any exploit that can bypass any control of the

operating system that is running it.

3. A computer must run any and all adversary-supplied code without possibility for

privilege escalation,2 never violating operating system permissions or resource

limits.

4. Included or attached hardware, as well as buses, must not facilitate any exploit

that can bypass any control of an operating system that is running a computer.

5. Included or attached hardware, as well as buses, must not exchange data with

any other hardware, bus, or memory without authority from the operating

system to do so.

6. Attaching a computer to a network must be no less secure than keeping the

computer air-gapped.

7. A CPU must unconditionally protect all instruction pointers from tampering,

including branch targets and subroutine return addresses.
2A regrettable exception is needed for software that persuades a human to defeat security mea-

sures. According to Rice’s theorem, such malware cannot dependably be identified by automated
safeguards [Rice53].

7

8. A computer’s security must not be fragile in the presence of malformed input.

9. A CPU must mitigate unanticipated modular arithmetic wrapping without

bloat, inconvenience, slowdown, or incorrect results.

10. A CPU must never give incorrect results merely due to unexpected signedness

or unsignedness of an operand.

11. A CPU must support preemptive multitasking and memory protection, except

for uses so simple that the application running and the operating system are

one and the same.

12. A computer must provide hashing, pseudorandom number generation, and cryp-

tography capabilities consistent with its intended use.

13. A computer must not depend in any manner on microcode or firmware updates

for its continued security or suitability for use.

14. A computer must be repairable by its owner, particularly with regard to on-

site replacement of components or stored data that the owner might forseeably

outlive.

15. A computer must be replaceable by its owner in its as-used form.

16. A computer must be delivered with objective, verifiable evidence of conformity

with these expectations.

Simultaneously satisfying the above expectations is comfortably within human

intellect to accomplish. I have two sorobans in my lab that generally meet the pa-

rameters of this list, even though they don’t use electricity to do arithmetic. Two

TRS-80s here also run fine, and although lacking, conform closer to the above than

the 64-bit machines that this dissertation was written on.

This dissertation’s emergent minicomputer seeks a 36-bit word size, memory pro-

tection, and preemptive multitasking. The target speed is twenty million instructions

8

per second (20 MIPS), and the eventual board footprint is estimated as 20× 30 cm.

There does not appear to be much margin to improve either metric using currently

available components.

In light of the low ceiling on instruction throughput, the design seeks a high yield

of computational work as each CPU instruction is executed. There are two prongs

to this strategy. First, all instructions have a common small number of clock cycles.

For the design advanced, an 80 MHz clock is equivalent to a 20 MIPS computer.

Second, the architecture is designed to minimize the number of instructions needed

to accomplish a task. For example, a context switch from running one program to

running a different program is principally a write to a register, and would take no more

than 20 clock cycles. No registers or flags need to be spilled to RAM in order to switch

programs. Another example is the generation of statistically robust pseudorandom

numbers, which despite only requiring two instructions per 36-bit word generated,

passes all components of a leading suite of random number generator tests [Brown20].

Although buyer control of the assembly process is primarily to suppress Category

III hardware irregularities (that is, malicious abnormalities), it would be an oversight

for the buyer to leave unnecessary exploitable Category I and II irregularities as

residual risks. For this reason, the architecture departs from current norms, and

instead rolls back some of the complexity which has led to Category II surprises,

as well as adopts instruction set semantics that simplify management of Category I

concerns.

As the central hypothesis of this work is the constructability of a computer with

a specified architecture using readily available parts, the best test of this hypothesis

would be to attempt its construction and report the outcome. The distance in effort

between producing a correct simulation and producing a functioning machine is not

a large one, but there is a significant difference in how the two endpoints would be

perceived. Although I hoped to report here that a working model has been built, I

have neither reached that target, nor a full specification and functioning simulation

9

Table 1.5: Potential applications for the proposed architecture.

fast enough for

• hardened desktop applications
• electronic mail
• light- to moderate-use servers
• controlling objects that move
• process controls
• peripheral and device controllers
• telephony
• modest Ethernet switches

too slow for

• contemporary Web surfing
• machine learning
• image and video processing
• fast raster or vector graphics
• fast symmetric cryptography
• fast asymmetric cryptography
• self-driving vehicles
• computational biology

of a complete machine. My work and progress towards these ends in support of soon

manifesting such a machine are the main subject of this dissertation.

Table 1.5 lists potentially compatible and incompatible uses for the emergent

architecture. The minicomputer anticipated would be fast enough to control most

systems that physically move: industrial and commercial devices, factory automa-

tion, electric grids, wells and pumps, heavy machinery, trains, dams, traffic lights,

chemical plants, engines, and turbines. It would also be fast enough for many uses

not involving motion, such as measurement and sensing, peripheral and device con-

trollers, telephony, and even Ethernet switches to medium speeds. It would also per-

mit desktop use writing and editing documents, making spreadsheets, sending and

reading email, and writing and building software, although desktop software would

need to be specifically written for or adapted to the architecture. The architecture is

not small or fast enough for smartphones or video.

For servers, the applicability of the emergent architecture will depend on work-

load and surrounding components, especially software. A web platform intended for

an eight-core CPU and 64 GB of RAM is not within reach of this technology. Even

if an application on this scale could be accommodated, the sheer size of the software

will often present a larger attack surface than the hardware it runs on. On the other

hand, server applications specifically designed to run on and thoughtfully matched to

10

the emergent architecture will run fine. For more than 75 years, engineers have proven

stunningly adept at making systems fit within computing hardware constraints when

sufficient motivation and talent are present.

1.3 Research questions

It is canon that VLSI is the key which during the 1980s unlocked all practical com-

puting. The cost efficiencies of the microprocessor and its descendants teach the field

that practicality and miniaturization cannot be separated, just as one cannot separate

waves from particles or matter from energy. My suggestion to exclude semiconduc-

tor fabrication from certain stages of computer manufacturing in order to increase

transparency and accountability would sacrifice much practicality. But how much

practicality? Orders of magnitude, if practicality is measured by speed. But is speed

the right metric? For video rendering, yes, speed is a critical metric. What about

for treating wastewater? Or for tabulating votes? What kinds of applications are

compatible with the architecture of this dissertation? Which are not? How flexible is

the compatibility boundary, and how easy is it to influence which applications may

be served and which may not? How good can a near-term “high bar” be with re-

spect to optimizing production cost, attack surface, and supportable applications?

My research did not directly tackle these questions, but it did produce performance

estimates—which turned out to be anything but obvious—that inform reasoning as

to what the a solder-defined architecture could be capable of supporting.

What are the economics of installing a solution that may not just run 1 000

times slower, but also cost 1 000 times more? And that’s just the hardware cost. But

consider avoided costs: IBM Security reports in August 2022 that the cost to remedy

data breaches of 50–60 million records averages $387 million [IBM22]. Also, there

are liabilities around the planet that could be even more serious, as evidenced by the

August 4, 2020 explosion of 2 700 tons of ammonium nitrate in Beirut [Gambrell20].

11

The cause of this incident has been described as not relating to computing, but

potential for other atomic weapon-scale explosions which might relate undoubtedly

exists. Air handlers for biosafety level 4 laboratories are another application where a

$1 ARM processor may not be the architecture of choice. My research wasn’t meant

to yield an actuarial model for these questions, but it has shown that the one-off

cost of a solder-defined minicomputer can be around $1 000 for the physical machine,

assuming the builder is donating his or her time. Assembly time can range from less

than an hour to a few days, depending on volume and capital equipment.

Other questions stem from whether and how a solder-defined architecture is go-

ing to work. What are the essential system blocks just above the RAM level, and how

can they interoperate? What table-based mechanisms exist that can reduce the num-

ber of cycles needed for multiplication, division, single-precision floating arithmetic,

permutations, pseudorandom number generation, hashing for associative arrays, and

other necessary functionality? Is it effective to include special hardware, such as fast

multipliers, for some of this functionality when a significant increase in component

count would result? Can practical encryption be implemented on a network-connected

register machine with a word size much smaller than 128 bits? These questions are

each explored, to different extents, in this document. Also, what special handicaps,

beyond than those imposed by the speed of light, are introduced by decisions I made

about my architecture? How serious are these handicaps, and what can be done to

mitigate them?

What are the limits to cycle time and pipelining on SRAM-based CPUs? My

topic proposal of August 2020 asked if it would be possible to achieve 10 MIPS

throughput on a system if the basic logic gate has a best-case delay of 7 ns, assuming

such features as protected memory and preemptive multitasking are mandatory. I also

asked if 10 MIPS could be achieved, could it all be within the same thread, or would

data hazards necessitate simultaneous multithreading—that is, interleaving instruc-

tions from two independent threads—to achieve that speed? By early 2021, changes

12

were made to the assumptions that underlied these questions. I abandoned using 44-

pin 64Ki× 16 asynchronous RAMs in favor of 100-pin 256Ki× 18 synchronous RAMs.

They cost more than quadruple, but access times fell from 10 ns to 5.5 ns and some

interfacing was simplified. I upgraded the logic family for basic gates to use faster

parts. I changed the components for getting firmware to the points it was needed on

the board. I changed the power supply from 3.3 V to 2.5 V. I gave up on pipelining,

dropped the idea of interleaved instructions, and sacrificed base plus offset address-

ing in exchange for fewer clock cycles per instruction. I simulated large circuits with

known components in known layouts with reasonable track length and capacitance

estimates. These shifts in the landscape more or less devoured my 10 MIPS questions,

because it appears now that 20 MIPS is the current “stretch” goal. More recently, it

occurred to me there may be bubbles in the CPU timing that could fold in a second

thread of execution if they are distributed carefully. This arrangement is sometimes

called a barrel processor, and although I am not ready to investigate it yet, the

possibility is raised for a readily-constructable, 40 MIPS, single-CPU, solder-defined

minicomputer.

Another question in my topic proposal was, if the CPU’s speed were to be drasti-

cally increased by sacrificing security-related features such as overrange checking and

protected memory, can we arrive at the same net usefulness on smaller, cheaper hard-

ware by employing a meticulously scrutinized interpreter for a language reminiscent

of Python, Java, or possibly Lua? On one hand, this document intersperses some in-

formation about design elements of “abridged” solder-defined CPUs, with compacted

circuits like two-layer carry-skip adders instead of three-layer, semi-swizzlers instead

of swizzlers, 18-bit words instead of 36-bit words, asynchronous RAM instead of syn-

chronous, and smaller physical layouts. But the principal focus of my present research

looks at full machines, with the focus toward how fast they may run as opposed to

how easily can they be built. Minimalist solder-defined hardware would be worthy of

its own research and development along the line of “what would MacGyver build?”

13

The parallel question as to minimalist toolchains, I also find exciting and believe that

much remains to be discovered. Multi-million-line compilers such as GCC, CLANG,

and LLVM would be a great challenge to audit for security, and self-hosted compilers

come with ledger-scale traceability problems with respect to ruling out the possibility

of backdoors.

Wandering exploration is one of my favorite research methods. Many scientific

discoveries happen serendipitously before questions can be formalized. Radio astron-

omy is a frequently cited example, born of an engineer who pondered interference to

transatlantic radio conversations [Jansky33]. Likewise, the work of this dissertation

led to several spontaneous findings. When I began, I presumed that a 32-bit mini-

computer would be a good starting point for migrating applications to solder-defined

machines. But after a few iterations of 32-bit ALU designs, it became evident that

SRAM exhibits a natural optimality for a 36-bit word size. Who knew? And by ap-

parent sheer coincidence, other system components such as primary storage turn out

to be as readily obtained in the market for 36 bits as for 32 bits. That 36-bit words

appear to be a preferred implementation is an important result with many practical

consequences and advantages, but no one embarked to make such a discovery. No

questions were ever posed on this subject—and had they been, they would probably

have made biased assumptions and found in favor of 32 bits. What happened instead

is, I set out to do a project, and its outcome was new understanding. The discov-

ery was intentional, no more accidental than when a drift net catches fish, but the

process was not guided by questions. Even the topic of what the best word size is

could not have been anticipated, but what I learned turned out to be important. I set

out on an expedition to catch something unknown, much like simulated annealing,

self-organizing maps, and SAT solvers search meanderingly for optimal configurations

and informative patterns.

The discovery that 36-bit words are a good specification was not an isolated

event. I likewise observed that repeated design cycles of SRAM ALUs tend to “pull”

14

their architecture into very regular, dense networks like that drawn in figure 5.1

(p. 75). These networks offer a high ratio of computational expressivity to component

count, and their proclivities stem from branches of mathematics, network science,

and combinatorics unfamiliar to me and perhaps not widely explored at all. But the

observation is noteworthy and consequential.

Likewise, I believe the SRAM-derived logarithmic shifter and semi-swizzler to

both be novel, and their discovery was accidental. Earlier designs for my ALU in-

volved shifters that used 8-to-1 multiplexer ICs and/or exponentially wasteful SRAM

input configurations. They offered lackluster, but not worrisome, performance. But

elsewhere in the ALU, I sought a mechanism for quickly changing the endianness

(byte order) of a word, because that operation was one of several where I expected

SRAM ALUs to improve speed. The endianness problem’s solution came out iso-

metric to what is now the first layer of the logarithmic shifter of figure 4.9 (p. 65),

and the second layer was already drawn below it as a mechanism for fast permuta-

tions of 4-bit subwords. Seen together, these two provisions explained how to shift

or rotate any number of bit positions in one machine cycle, while employing very few

components. There are more instances like the foregoing, where contributing discov-

eries were made, not only without questions being asked first, but possibly because

carefully targeted questions were never asked.

In my topic proposal, I wondered if similar gains would emerge in the my CPU,

memory subsystem, and I/O subsystem. I had long dreamed of CPUs made from

connected memories where the datapath is not a loop, but computations proceed

instead by allowing data to reciprocate, as if regulated by a system of second-order

differential equations, among a small number of RAMs with their data lines shar-

ing some kind of common bus.3 Alternatively, perhaps a bit-serial architecture can

implement minicomputers with few components and yet somehow be fast enough to

be beneficial.4 No ideas had emerged as to how to implement either vision, so the
3I apparently did not consider that SRAMs do not read via their data lines.
4This idea resembles my present thoughts for the firmware loader and the I/O subsystem.

15

immediate
value insertion

return
addresses

code RAM

ALU

instruction
decoder

register le
right copy

register le
left copy

ALU

ALU

ALU

overrange
detection

page table

data RAM

ag
registers

call depths

†

†

†

†

†

update
register les

memory/register
transfer

update ags

*

*

* *

*

*

* Additional input speci es the program that is running.

† Additional input comes from the instruction decoder.

asynchronous
input & output

program
counter

call depth
counter

Figure 1.2: Proposed SRAM CPU pipeline, before it was shortened to figure 1.3.

16

I/O
subsystem

add one

�rmware load

�rmware load

�rmware
load

return
addresses

code
RAM

left
registers

right
registers

page
table

data
RAM

ALU �

ALU �T

ALU �

t
f r

c

d

b

i

o

a

m

w

j

Address for code reads and writes
Bypass page table
Call (save return address)
Destination register
From incrementer
Input from i/o
Jump and call destinations
iMmediate argument
Output to i/o
Return (restore return address)
To incrementer
Write code

letter codes for �ip-�ops

node 0

node 1

node 2

node 3

node 4

node 5

W

W

W

W

W writes disabled

W

Figure 1.3: Reworked data paths after shortening the CPU cycle.

17

starting point for my design was an SRAM extrapolation of a rather traditional RISC

pipeline, shown as figure 1.2. In the work that followed, my principal departure was

to make the pipeline a little shorter and wider, which can be seen in figure 1.3.

In summary, questions from many directions attach to the work of this disserta-

tion, in part because no recent precedent exists for practical solder-defined architec-

tures. Although I can now report answers to several of these questions, it is too early

to know which answers, if any, might be found useful by others. In the meantime, my

continuing thrust to produce a high-quality, reproducible prototype is likely to spark

insights into questions that have not come to mind yet.

1.4 Original results

Here are some places where my independent, incremental discoveries and writings

may be firsts. I’ll disclaim that computer science and computer engineering literature

is vast, and robust concept indexing within the text of articles does not exist at

this time. Also, seeking out previous art can be more expensive than unintended

replication. The searches I have been able to make have turned up little. I believe

that my original contributions include:

• Adaptation of carry-skip adders to SRAM logic, to include two-layer, three-

layer, hybrids that combine two-layer and three-layer methods, and hierarchical

schemes for carry-skip adders of more than three layers.

• Repurposing of SRAM-based carry propagation to also perform non-addition

computations within existing adder circuits.

• Bidirectional and potentially simultaneous carry operations via SRAM.

• Offset-binary subproduct representations for SRAM multipliers (chapter 10).

18

• Generalization of carry-skip addition to accept more than two addends (chap-

ter 10).

• The first explanation of carry-skip addition from the standpoint of mixed-radix

arithmetic (chapter 10).

• The first measurements for SRAM multipliers to state number of components

or number of gate delays for various word sizes and signages (chapter 10).

• The first software for synthesizing and validating SRAM multipliers [Abel22a].

• SRAM logarithmic shifters and semi-swizzlers (half-shifters).

• Superposed adder/shifter “textbook” three-layer SRAM ALUs [Abel21].

• Superposed adder/semi-swizzler for compact two-layer SRAM ALUs.

• Efficient bit permutation instructions for SRAM ALUs.

• Multidimensional S-box mixers superposed in SRAM ALUs.

• Firmware and code providing SRAM long multiplication and fast SRAM short

multiplication.

• Fast SRAM hash functions for associative arrays.

• Fast SRAM pseudorandom number generators with good statistical behavior.

• A fast SRAM cipher round function.5

• Arithmetic stratification by signedness in hardware with uniform, practical,

sticky arithmetic range checks [Abel22b]. This is at least novel for SRAM, and

at least uncommon in general practice.

5Caveat emptor. I am not a cryptographer, and 36 bits form a worryingly small block.

19

• A pointer NUDGE operation that repurposes left-to-right carry propagation.

• A bar established for functionality and firmware that could be standard for

SRAM RISC instruction sets.

• Proposed approaches to solder-defined preemptive multitasking.

• Proposed approaches to solder-defined firmware loaders.

• Proposed approaches to solder-defined I/O controllers.

• Progress toward a first “gold standard” for transparently functioning, fully au-

ditable, user-constructable controllers, CPUs, and minicomputers for integrity-

and confidentiality-critical missions.

• Open-source tools for design, representation, program assembly, logic simula-

tion, layout, circuit simulation, and drawing of SRAM-based digital circuits.

• A warning of a possibility of exploitable backdoors in MEMS oscillator ICs.

20

2

Definitions

This dissertation uses terms defined in [ISO18], plus the following definitions for

concepts that do not have well-known terms.

Arithmetic shift. Multiplication or division by a power of two, rounding to-

wards −∞ in the case of division. (This is not the customary definition.)

Buyer. An authority responsible for the selection, procurement, installation,

operation, and security of a computing platform on behalf of a risk owner.

Chapter 8 minicomputer. A fully-simulated minicomputer in the architecture

of this dissertation, but still lacking multitasking, firmware loading, and I/O.

Click. The enumerated position of a clock cycle within a CPU cycle. The

architecture of this dissertation uses four clicks, numbered click 0 through click 3.

Clock cycle. The span of time between two consecutive rising edges of the

system clock oscillator.

Code RAM. In the architecture of this dissertation, one or more primary storage

SRAMs that contain instructions that are fetched and executed by the CPU.

Complex logic. Digital electronic parts that, because of their complexity, may

contain unseen exploitable defects.

CPU cycle. The amortized span of clock cycles required to execute a CPU

instruction. In the architecture of this dissertation, a CPU cycle is four clock cycles.

21

Data RAM. In the architecture of this dissertation, one or more primary storage

SRAMs that are read or written by load or store instructions.

Direct memory. Memory where the location being accessed is beyond a pro-

gram’s dynamic control, such as a register specified in a CPU instruction.

Discounted logic. Digital electronic parts that are unlikely to contain ex-

ploitable defects, as evidenced in a written assessment or other approved measure.

Family. In the architecture of this dissertation, a group of opcodes that have

the same purpose but need different control signals due to minor variations.

Firmware loader. Circuit that cold-boots a minicomputer, including logic that

copies firmware from nonvolatile storage to SRAM logic elements and code memory.

Indirect memory. Memory where a program dynamically controls which loca-

tion is accessed, such as data memory accessed via a register-specified address.

Instruction. In the architecture of this dissertation, a 36-bit word in code

memory consisting of an opcode with zero, one, two, or three operands.

Internal firewall. A boundary that isolates a portion of circuitry that is not

solder-defined, such that exploits of defects within that portion cannot escape.

Logical shift. A binary shift without any intent to multiply or divide. Unlike

arithmetic shift, no overflow check is made.

Macro. In the architecture of this dissertation, a sequence of CPU instructions

that to a programmer appears to be written as a single assembler instruction.

Maker-scale assembly tools. Capital equipment for electronics assembly that

can be made available to most technically knowledgeable builders.

Microcomputer. According to custom and [Butterfield16], a “computer system

that utilizes a microprocessor as its central control and arithmetic element.”

Microprocessor. A die that contains at least one complete CPU.

Minicomputer. A computer wherein all hardware logic that may contain ex-

ploitable defects is solder-defined, and all firmware is open-source.

22

Net. An electrically contiguous set of component pins. A net may communicate

one bit at a time among electrical components.

Node. An intentional grouping of related nets. A node may communicate many

bits, such as a word, at a time among electrical components.

Opcode. In the architecture of this dissertation, a nine-bit field in a CPU

instruction that the control decoder uses to define and execute the instruction.

Operand. In the architecture of this dissertation, a field of an instruction con-

taining a 9-bit register number, 18-bit integer constant, or 27-bit code address.

Operation. In the architecture of this dissertation, a computation task executed

by one specific ALU SRAM or layer during the execution of an instruction.

Overrange. A convenient synonym for out-of-range. In this dissertation, this

word does not mean to distinguish between overflow and underflow.

Primary storage. Non-cache memory that is accessible to or contains individ-

ual CPU instructions. Ordinarily termed “RAM” outside this dissertation.

Program loader. Operating system code that copies a program to code mem-

ory, excludes forbidden privileged instructions, and completes link editing.

RAM. Within this dissertation, an informal abbreviation for SRAM.

Reserved. Unallocated. This term appears in table 5.3 (p. 87) and other tables

where a resource is present, but no purpose or implementation is present as yet.

SRAM. Static RAM. Most SRAM in this dissertation implements logic using

read-only lookup tables. A few SRAMs provide read-write storage.

Solder-defined behavior. Intentional operational characteristics of solder-

defined hardware when used with exclusively open-source firmware.

Solder-defined hardware. Digital electronics needing only maker-scale assem-

bly tools to build, in which all complex logic components are discounted.

Supply-chain firewall. A preventive control that protects a buyer from un-

wanted procurement of exploitable defects via the buyer’s supply chain.

23

Support (verb). To be used in something’s implementation. The statement

“γ.pit supports PIT” means that γ.pit is a part of PIT’s implementation.

Tribble. A six-bit subword of a 36-bit word. This word envisions a “tri-nibble,”

a nibble that has been enlarged to the next multiple of three.

Word. A bit vector of a CPU architecture’s natural size. In this dissertation,

the architecture’s natural size is 36 bits for both code and data.

This dissertation employs backticks to indicate numeric radix (section A.3).

24

3

Components

3.1 Logic family selection

The electronic component industry has few patrons who want parts to build CPUs.

The inventory is meant for other purposes, so for right now we have to be creative

and make do with what we can obtain. Like MacGyver on Monday nights, we need

both purposeful intent and an open mind to use what’s available.

Almost all CPUs made out of anything except silicon wafers lately have been

somebody’s avocation, such as the many homebrew CPUs cataloged in [Toomey17].

But the research of this dissertation was not undertaken for hobbyists. Trustworthy

CPUs are needed to control dams, fly planes, protect attorney-client privilege, mix

chemicals, leak secrets, coordinate troops, transfer funds, and retract the five-million-

pound roof of Lucas Oil Stadium at the option of the Colts. All components selected

must be for sale at scale, not scrounged from scrap, and they must remain available

for the expected duration of manufacturing and servicing.

Here is a list of logic families we might be able to procure and use. Neither

practicality nor seriousness was a requirement to appear on this list, because every

choice here has important drawbacks. It is better to start with an overly imaginative

list than to overlook a meritorious possibility. Because I had to select components

early in my work, a few specifics below may no longer be current.

25

Electromagnetic relays have switching times between 0.1 and 20 ms, are large,

costly, and have contacts that wear out. Relays generally have the wrong scale: a

practical word processor will not run on relays. Relays offer certain benefits, such

as resistance to electrostatic damage, and purring sounds when operated in large

numbers [Dovgalyuk19].

Solid-state relays, including optical couplers, can compute, but more cost-

effective solid-state logic families are readily available.

Vacuum tubes have faster switching times than relays, but are large, costly,

and require much energy. Like relays, their scale is wrong in several dimensions.

Commercial production in the volumes needed does not exist today. Power supply

components may also be expensive at scale. Ordinary vacuum tubes wear out quickly,

but special quality tubes have proven lifespans of at least decades of continuous

use [Schwartz08].

Nanoscale vacuum-channel transistorsmay someday work like vacuum tubes

without filaments, but at present are only theoretical.

Transistors in individual packages are barely within scale. The VML0806 pack-

age size is the smallest available, measuring 0.8 x 0.6 x 0.36 mm. An advantage to

using discrete transistors is that no component sees more than one bit position, so

slipping a hardware backdoor into the CPU unnoticed would be particularly difficult.1

Finding transistors with desirable characteristics for CPUs might not be possible now.

For example, the MOnSter 6502 is an 8-bit CPU containing 3 218 transistors, but it

can only operate to 50 kHz due to component constraints [Schlaepfer16].

7400 series and other glue logic have largely been discontinued. NAND gates

and inverters aren’t a problem to find, but the famed 74181 4-bit ALU is gone, the

74150 16:1 multiplexer is gone, etc. Most remaining chips have slow specifications,

obsolete supply voltages, limited temperature ranges, through-hole packages, and/or

single sources. 4-bit adders, for example, are still manufactured, but their specs are so
1One possible backdoor would be to install several RF retro-reflectors like NSA’s RAGEMAS-

TER [NSA08] in parallel, or a single retro-reflector in combination with a software driver.

26

uncompetitive as to be suggestive for use as replacement parts only. Counter and shift

register selection is equally dilapidated. As of 2020, even some leading manufacturers

were distributing datasheets that appeared to be scanned from disco-era catalogs.

The SN74AUC series, however, is very helpful. See section 3.3.

Current-mode logic offers fast, fast stuff with differential inputs and premium

prices. Around $10 for a configurable AND/NAND/OR/NOR/MUX, or $75 for one

XOR/XNOR gate as of early 2020. Propagation delay can be under 0.2 ns. Power

consumption is high. For ordinary use, parallel processing using slower logic families

would be cheaper than using present current-mode devices for sequential processing.

Mask ROM requires large runs to be affordable, and finished product must be

reverse-engineered to assure against backdoors. Propagation delay has typically been

on the order of 100 ns, probably due to lack of market demand for faster products.

If anyone still makes stand-alone mask ROM, they are keeping very quiet about it.

EPROM with a parallel interface apparently comes from only one company

as of 2020. 45 ns access time is available, requiring a 5V supply. Data retention

was 10 years in vendor advertisements, but omitted from datasheets. [Bailleux16a]

and [Bailleux16b] describe a CPU that uses EPROM as its principal logic family.

EEPROM is available to 70 ns with a parallel interface. Data retention is

typically 10 years, but I have seen 100 years claimed for some pieces.

NOR flash with parallel interfaces is suitable for combinational logic, offering

speeds to 55 ns. Storage density is not as extraordinary as NAND flash, but 128Mi× 8

configurations are well represented by two manufacturers as of early 2020. Although

access time is much slower than static RAM, the density offered can make NOR flash

faster than SRAM for uses like finding transcendental functions (logs, sines, etc.) of

single-precision floating-point numbers. Data retention is typically 10 to 20 years,

so these devices must be periodically refreshed by means of additional components

or temporary removal. Few organizations schedule maintenance on this time scale

effectively. Also, because no feedback maintains the data stored in these devices,

27

NOR flash may be comparatively susceptible to soft errors. NOR flash is sufficiently

reliable that error-correcting code is not required for most applications.

One use for parallel NOR flash could be for tiny, low-performance microcon-

trollers that are free of backdoors. We will need exactly such a controller for loading

firmware into SRAM-based CPUs. Here again, a servicing mechanism would need to

exist at the point of use on account of NOR flash’s limited retention time.

NAND flash is available with parallel interfaces, but data and address lines are

shared. These devices aren’t directly usable as combinational logic. Serial NAND

flash with external logic could be used to feed firmware into SRAM-based ALUs.

Periodic rewrites are required as with NOR flash. NAND flash has a high enough

error rate that external error correction is considered mandatory.

Dynamic RAM, or DRAM, does not have an interface suitable for combi-

national logic. This is in part because included refresh circuitry must rewrite the

entire RAM many times per second due to self-discharge. Although standardized,

DRAM interfaces are very complex, and datasheets of several hundred pages are

common. DRAM is susceptible to many security exploits from the RowHammer fam-

ily [Mutlu19], as well as to cosmic ray and package decay soft errors. The sole upside

to DRAM is that an oversupply resulting from strong demand makes it dispropor-

tionately inexpensive compared to better memory.

Static RAM, or SRAM, has the parallel interface we want for combinational

logic once it has been initialized, but is not usable for computing at power-up. It is

necessary to connect temporarily into all of the data lines during system initialization

to load these devices. Facilitating these connections permanently increases component

count and capacitance.

As a logic family, static RAM’s main selling point is its speed, due in part to

its large number of input and output pins relative to basic glue logic. 10 ns access

time is typical for asynchronous SRAM, with 8 and 7 ns obtainable at modest price

increases. For synchronous SRAM, 5.5 ns access time is typical. Price is roughly 600

28

times that of DRAM as of 2020, around $1.50/Mibit. As a sequential logic family

using standalone components, SRAM offers the best combination of cost and com-

putation speed available at present. As main memory, SRAM’s decisive selling point

is natural immunity from RowHammer and other shenanigans. Moreover, SRAM’s

simple parallel interface, separate connections for addresses and data, and predictable

timing make it easily adaptable to use as logic.

SRAM’s ability to provide program, data, and stack memory at the required

scale, abundant registers, and for some designs cache memory, is a characteristic not

afforded by the other logic families. This means that regardless of what components

we select for computation, our design will include SRAM for storage. This storage will

have to be trusted, especially in light of the global view of data that the SRAM would

be given. If our trust of SRAM for storage is not misplaced, then also using SRAM

for computation might not expand the attack surface as much as adding something

else instead.

Programmable logic devices, or PLDs, and field programmable gate

arrays, or FPGAs, can implement CPUs but are not inspectable, not auditable,

not fungible, ship with undocumented firmware and potentially other state, have a

central view of the entire CPU, and have a very small number of suppliers controlling

the market. They are amazing, affordable products with myriad applications, but

they may also be the ultimate delivery vehicle for supply chain backdoors. They are

easily reconfigured without leaving visible evidence of tampering. I would resist using

PLDs and FPGAs in security-critical systems.

3.2 SRAMs as electrical components

Static RAM is confusingly named, as here static means the RAM does not sponta-

neously change state, not that it uses a static charge to hold information. Dynamic

RAM uses a static charge, and therefore spontaneously forgets its stored contents and

29

requires frequent refreshes. SRAM is said to be expensive, but this is only compared

to DRAM. SRAM generally uses four to ten transistors to store each bit, while DRAM

uses one transistor and one capacitor. SRAM is about 600 times as expensive per

bit, so factors beyond transistor count influence price. Even so, the price of SRAM

has fallen more than 100-fold since I first started programming computers in 1981.

The chief drawback of using RAM as a building block is that what we actually

desire is ROM. The contents of function-computing memory only need altered if

the architecture or features change. There are a couple of problems with ROM, to

include EEPROM, write-once EPROM, and related products. Foremost, ROMs are

extremely slow, so much that most models are actually manufactured with serial

interfaces. They aren’t for use when speed counts. The fastest parallel EPROM

I’ve found offers a 45 ns access time, contrasted with 10 ns or better for inexpensive

SRAM.

As SRAM fabrication processes vary considerably, there exists at least a factor-

of-four variance in power consumption among chips rated for the same speed and

supply voltage. Fan-out, capacitances, package type, and other characteristics need

careful consideration. Assuring continual availability will require being ready with

multiple sources. As a manufacturer change often forces a package change, a variety

of board layouts should be prepared in advance of supply chain surprises. SRAM

for data memory can be hard to specify, because availabilities lapse as one tries to

establish and maintain a range of size options from more than one manufacturer.

The parallel interface we need to compute with SRAM is a problem at power-up,

because no facility is included to load the data. The forward-feed nature of SRAM

combinational logic makes it possible to progressively set many address lines to desired

locations as initialization continues, but nothing connects within the layers to access

the data lines—note these are separate from and work differently than the address

lines—and write the memory. Some RAMs come with JTAG pins, which provide a

serial boundary scan capability that might be repurposable for firmware loading, but

30

there are a few concerns.

The first concern is, we’re most likely to find JTAG on synchronous SRAMs

with ball grid array (BGA) packaging, because there is no physical means to reach

the connections after parts are soldered. JTAG in this case replaces the diagnostic

and verification functionality offered by a flying probe. But small-scale buyers and

builders are likely to disfavor BGA components, because connections can’t be visually

or electrically inspected after soldering. Moreover, a pick-and-place machine with a

bottom-facing camera would be needed to position BGAs prior to reflow soldering,

because placement by hand would not be able to see the connections. Hand soldering

BGAs is tedious and requires specialized equipment, while gull-wing and other surface

mount parts that have leads are readily hand-soldered after a little practice. So a

high percentage of minicomputers would be built with SRAMs that don’t offer JTAG.

A second problem with considering JTAG that I have encountered is, datasheets

and standards describe the function of SRAM JTAG pins only minimally and am-

biguously. It is unclear from manufacturer to manufacturer exactly what access is

available and in what direction. I would have had to experiment with some parts for

a while before I could determine whether JTAG would or would not aid with firmware

loading, and I would only be confident of the answer for the specific component lines

that I have tried.

A third concern with JTAG is that its bit-serial interface could make firmware

loading very slow when the minicomputer needs to boot.

A fourth concern is one of perception and acceptance. There may be people who

either perceive a JTAG interface as complex logic who aren’t willing to discount it,

or perceive JTAG’s out-of-band serial connections into a CPU’s parts as an actual or

potential backdoor in its own right.

With JTAG looking unpromising, the approach I have taken is to connect extra

components at every SRAM data pin that can’t otherwise be reached by firmware.

Unfortunately, these pins number in the hundreds. The added components and track

31

length will consume power and board space, as well as add capacitance to the CPU

and slow it down nominally. But even with this bad news, SRAM is still the best logic

family I can point to for building solder-defined computers. Moreover, the overhead

of the firmware loader hardware, although significant, isn’t prohibitive. In figure 1.3

(p. 17), three “firmware load” annotations denote flip-flops that introduce firmware

into the CPU’s main data paths. Although these flip-flops do not attach to the

data lines for all of the RAMs directly, other flip-flops that support specific CPU

instructions are able to relay the firmware to the remaining locations.

3.2.1 Asynchronous SRAM

In my topic proposal, I anticipated using asynchronous SRAM for most of the logic.

These parts have no clock input. Instead, the parts are continuously read, and changes

at the address lines will, after some nanoseconds, cause the data lines to indicate the

contents of the addressed location. As of 2020, sizes are offered to about 32 Mibit,

with access times around 10 ns. For more money, 7 ns is offered. An organization

named JEDEC has standardized pinouts not only between manufacturers, but also

across SRAM sizes. For primary storage RAMs, which are costly in larger sizes,

careful planning enables one to make boards for computers in advance, then wait

for an order before deciding how much to spend on code memory and data memory.

Trends as of 2020 favor 3.3 V power, operating temperatures from −40 to +85 C, and

a certain but imperfect degree of component interchangeability. The JEDEC pinouts

are somewhat undermined by manufacturers ensuring they offer non-overlapping—

although standardized—package geometries.

At least one manufacturer offers error correction code, or ECC, as an optional

feature for its SRAM.2 These RAMs with ECC are plug-in-replacements for ordinary

RAMs, so it’s possible to add ECC to a system design even after circuit boards have

been made and early models have been tested. There isn’t really a price or speed

2This particular SRAM uses four ECC bits per byte stored.

32

Figure 3.1: Ball grid array layout of a 36-bit ALU using 64Ki× 16 asynchronous
SRAMs. Black boxes indicate SRAMs. White boxes are analog switches for firmware
loading. This circuit fits easily in the space of a bank card. The ALU did not have a
ζ RAM when this design was considered. Actual size.

penalty for specifying ECC, but it definitely limits supplier selection and appears to

preclude dual sourcing. Also, as ECC RAM packages are only visually distinguishable

by supplier markings and are not operationally distinguishable, it would be prudent

to verify ECC’s presence (by electron microscopy or comparing error rates in the

presence of noise or radiation) in samples prior to claiming that computing hardware

was built using ECC RAM. Although ECC RAM is interesting and may help win

some orders for parts, SRAM ordinarily is highly dependable without ECC.

The smallest common size for asynchronous SRAM at the time of my topic

proposal was 64Ki× 16, and this size worked very well for what I intended to do.

One of the SRAMs (α5) would have been a more expensive 128Ki× 16 size to support

overflow checking. Space to store ALU firmware was a little tight, so a few infrequent,

less-essential operations were absent relative to today’s design. The compactness of

these parts appealed to me: figure 3.1 shows how a whole ALU fits easily in the space

of a bank card for users who are comfortable with BGA packaging.

Because most of the ALU components produce outputs that are only a few bits

wide, it would have been reasonable to use 64Ki× 8 RAMs instead of 64Ki× 16.

33

There are a few reasons this isn’t practical, but the key one is no one bothers to make

the narrower size. This omission may seem foreign to early microcomputer users

who dreamed of someday upgrading their systems to 64 kilobytes. Although 16-wide

RAM uses double the transistors than we strictly require, there are tangible benefits

to having the extra width. Fan-out gets heavy at various points, and being able to

double up on some outputs may spare the cost and propagation delay of additional

buffers. There is also a point in the datapath where the γ layer output must be

duplicated between two otherwise segregated buses. The redundant outputs already

included in today’s SRAM make this need for isolation easier to accommodate.

A cool feature that JEDEC standardized for asynchronous SRAM, but unfortu-

nately not for synchronous SRAM, is separate output enable pins for the two halves

of their output words. Although this separability is not needed for my emergent

architecture, chapter 6 describes how byte separation can provide for interesting,

minimalist designs for two-layer ALUs.

Had the datapath through the CPU turned out to be long enough to warrant

pipelining, some form of latch would have been needed between pipeline stages. This

could have used latches, flip-flops, or synchronous SRAM with internal flip-flops or

latches.

When I was planning to use asynchronous RAMs, I was not as informed as I am

now about components for injecting firmware at the needed locations. What I had

found at that point were analog switches such as PI3B3253 from Diodes Inc. and

IDT’s QS3VH253.3 They are available with footprints as small as 3× 2 mm in BGA

packages. The capacitance of either of these devices is of similar order to that of

another RAM pin or even two, so there is a penalty. Each package has two copies of

a 1-to-4 pass transistor mux-demux with an all-off option, so reaching the data lines

of a 64Ki× 16 RAM would require roughly two switch ICs on an amortized basis,

plus additional logic farther away from where computations are done.
3Analog switch models and manufacturers mentioned are to facilitate identification only. I have

tested none, and I endorse neither.

34

One benefit of using these analog switches is data can flow in either direction

when they’re in the on state. We can not only write to individual RAMs within a

CPU or ALU, but read back their contents for diagnostic and development purposes.

Of course we can also build a backdoor this way, but we’re not interested. Such a

backdoor would also be plainly visible. Concerns that this extra path to the RAMs

may present a security concern can be mitigated by adding a non-resettable latch

that locks out reads and writes once all tables are loaded and the system is ready to

compute. This same latch could also enable the CPU clock, ensuring that once the

minicomputer is running, these is no way an attacker can modify the loaded firmware.

An LED indicator that indicates when the firmware is frozen may bolster comfort for

some users.

3.2.2 Synchronous SRAM

I had ample reason to avoid synchronous SRAM. To start with, the smallest common

size is 256Ki× 18, which is 41
2 times larger than the already-adequate smallest asyn-

chronous SRAMs. Because SRAM logic functions are implemented at the package

level, denser RAMs don’t translate to fewer components used. Either by coincidence

or market strategy, synchronous RAMs also cost about 41
2 times more, although the

cost per bit does not change much. The synchronous parts have 100 pins, and pitch

tightens from 0.80 mm to 0.65 mm, increasing my nervousness about soldering. The

packages are larger, consuming not just board area, but also precious picofarad and

nanosecond margins. The state complexity of synchronous RAMs is greater, requires

study to understand, and could fuel speculation about backdoors. The system de-

signer would need to know what linear and interleaved burst modes do, the difference

between pipeline mode and flow-through mode, what the numbers 3-1-1-1 and 2-1-1-1

mean, what is meant by zero bus turnaround, and be able to understand state dia-

grams and timing graphs. To use these parts in a design, I would have to not only

assimilate, but also simulate the behavior of these ICs.

35

As I considered how to build a minicomputer using asynchronous RAMs as logic,

there were several points where they would have to communicate with clocked logic

elsewhere, and my ideas for these interconnects didn’t seem very smooth. A time

came to ask what if the design used synchronous RAMs instead, how would that

influence the machine, and would it shorten the time it would take me to produce a

working model? I also felt intuitively that 5.5 ns was faster than 10 ns, so perhaps

synchronous RAMs could allow me a faster CPU speed, provided those burst modes

and 3-1-1-1s and 2-1-1-1s don’t stand in the way somehow.

I started reading datasheets carefully from a few synchronous RAM manufactur-

ers, and I gradually came to feel that I could tame these clocked devices to benefit

the design. I chose flow-through mode, where inputs at the address lines are clocked,

and the calculated result appears at the data lines after about 5.5 ns without another

clock pulse. I estimated that a 7 ns budget could work for wiring delays and setup

time, so a clock period of 12.5 ns (80 MHz) could be a goal.

A burst mode is offered on many synchronous SRAMs that can read or write

up to four words per externally supplied address. In these SRAMs, the flip-flops for

the two least significant address bits are configured as a two-bit presettable counter.

A memory block that is aligned on a four-word boundary can be read or written by

supplying an address from an outside source for the first word, and using the internal

address counter to access the three remaining words. The control decoder described

in section 8.7.3 finds use for this burst mode.

Zero bus turnaround, under various names, is offered by most manufacturers but

not across all product lines. The idea is that if you write data to a RAM on one

clock cycle, you can immediately read from any address on the very same cycle. This

read would happen faster than the RAM can even get its storage array written, and

the method involves a combination of clever innovations. A use for this feature is

described in section 8.6.1. When the result of an instruction is stored to a register

in my CPU, the same rising clock edge can fetch an operand for the next instruction

36

from the same or a different register. This is what enables my design to read from

a register, spend three clock cycles getting through the ALU, then write the result

back in only four cycles. Counting the steps would have it seem as if five cycles were

needed, but the clock pulse that completes a register write is the same pulse that

initiates a read. Part of the process that makes this work is that addresses to write

are clocked to the RAM one cycle before the data, so the address to read is clocked

with the data being written. The data bus direction switches from write to read at

that clock edge. Conveniently, my CPU knows which register a result will be stored

in well before the result is actually computed, so supplying the write address a cycle

early is straightforward. Another innovation that enables zero bus turnaround is that

although the SRAM functionally does the write operation first, it internally does the

read first, or in the event of an address collision, returns a cached copy of the data

before the write can occur.

As with asynchronous SRAM, synchronous SRAM is available with operating

temperature specified as −40 to +85 C. Planning to stay with 3.3 V, I chose parts

advertised for use at either 2.5 V or 3.3 V with the same timing specifications. This

helped me in an unexpected way later, when I learned that my best option for glue

logic can’t be used above 2.7 V.

3.2.3 Dual-ported SRAM

In many architectures including mine, ALU opcodes often require two operands. Ob-

taining them efficiently calls for two simultaneous register fetches. A natural way to

do this is to use dual-ported SRAM, but I have some security concerns. Although

dual-ported SRAM is commercially available, it’s rather esoteric, comes at a higher

price, and has few suppliers. Also, its lack of genericness makes its selection as a

component somewhat conspicuous. A supply chain may be able to infer that that a

particular component shipment is destined for an SRAM minicomputer, as well as

the component’s likely use as a register file. I opted instead to have the architecture

37

keep two identical copies of the registers in separate SRAM ICs.

Dual-ported SRAM may also find use in the I/O subsystem, simplifying sharing

of buffer memory between a peripheral and the CPU. But I intend to use a memory

access mechanism that uses ordinary SRAM.

Dual-ported SRAM may also aid in hardware multithreading on CPUs where

alternate clock cycles execute two different programs. This may allow, for example,

a 20 MIPS minicomputer design to be expanded to run two or even four programs at

20 MIPS each without significantly increasing the size of the CPU. The reason dual-

ported SRAM becomes helpful is related to leveraging zero bus turnaround. Here

again, alternatives should be considered that use ordinary SRAM.

3.3 Traditional logic ICs

Few people advocate building CPUs out of soldered components, so no one seems to

mind when a basic gate’s propagation delay is 5, 12, or even 25 ns. Unfortunately,

delays on this scale don’t fit into a machine with a 12.5 ns clock period. But there are a

couple of high-speed logic families for small gates. One is called AVC and purportedly

stands for “advanced very-low-voltage CMOS.” Texas Instruments touted AVC as “the

industry’s first logic family to achieve maximum propagation delays of less than 2 ns

at 2.5 V” [TI98]. An advantage of AVC is that certain components are available from

more than one supplier, but overall, extremely few gates are offered.

There is one more family, called AUC (“advanced ultra-low-voltage CMOS”),

and it’s intended for 1.8 V designs but is operable from 0.8 V to 2.7 V [TI02]. Only

Texas Instruments offers this logic family, so I am uncomfortable about not having

a second source. On the other hand, the AUC logic family has been on the market

for two decades, and nothing has appeared since that threatens to displace it. Most

parts are available with leaded or leadless carriers,4 and more gates are available than

4Pronounced LEED-ed, as in having wires. Not related to Pb (lead) in the periodic table.

38

for AVC.

AUC component specs are funky and may result from two design generations.

For example, an individual NAND gate has a propagation delay of 1.4 ns, but the dual

NAND package offers 1.0 ns. In this family are basic glue logic: AND, NAND, OR,

NOR, XOR, inverters, buffers, tristate buffers, D flip-flops, and some others. A one-

of-two decoder/demultiplexer may be also usefully provide “A implies B,” sometimes

called “B or not A.” Sixteen-bit offerings include a buffer, inverting buffer, latch,

D flip-flop, and bus transceiver. Not seen in the AUC family are counters, adders,

shift registers, or similar conveniences, but the tiny size and appreciable speed of the

items offered are immensely helpful. When compared against the four- and five-input

NAND gates used in the Cray I for all of its combinational logic [Russell78], even the

limited selection offered by TI’s AUC family feels luxurious.

3.4 Clock skew with mixed logic families

SRAM computing is primarily a process of functional composition, where a result

obtained at the data lines of one SRAM (or more likely, a simultaneously-clocked

layer of SRAMs) is delivered to the address lines of another SRAM (or layer), which

is clocked at the same time. Every clock cycle advances a computational process one

layer forward, with all RAMs using the same clock signal in the same phase.

If some RAM X feeds information to RAM Y, with both clocked simultaneously,

then on any rising edge, X and Y are presented with a new computation. The output

of X will change very soon after rising clock edge, and before that time, Y needs to

be done using the former output from X. SRAM datasheets include two parameters

that are essential to success:

• Clock to output invalid, customarily abbreviated tKQX, is how long a

RAM’s previous output will continue to be available after a new clock pulse.

The manufacturer of the RAMs I’ve been using guarantees that tKQX is no less

39

than 2.0 ns.

• Hold time, customarily abbreviated tH, is how long a RAM’s input must

remain stable after a new clock pulse. The manufacturer of the RAMs I’ve

been using guarantees that tKQX is no more than 0.5 ns.

The largest permissible clock skew between RAMs is the difference between these

guaranteed parameters, tKQX− tH, which for the RAMs I’ve been working with is

1.5 ns. Although we may think of skew as a difference in clock arrival times, skew

also includes waveform variations due to noise—and a minicomputer CPU is a high-

noise environment—and component-to-component variations in sensitivity to clock

transitions.

Keeping clock skew to 1.5 ns is going to be a very restrictive timing requirement.

Although this constraint only applies to RAMs that directly connect to each other,

the connectedness between RAMs in a CPU is very high. In my architecture, the

right register file RAM supplies data to 18 other RAMs, and the control decoder

RAM connects to at least 27 other RAMs. So for practical purposes, the 1.5 ns skew

limit must be honored between every pair of clock input pins throughout the whole

minicomputer.

Friends who have listened to me explain this problem have suggested reducing

the clock speed as a temporarily solution, at least until a first prototype is function-

ing. This does not help, because tKQX and tH result from physical properties of

silicon gates that are not affected by clock speed at all. Even if the clock period is

30 days instead of 12.5 ns, the CPU will produce incorrect results once its clock skew

appreciably exceeds 1.5 ns.

Clock skew problems worsen when glue logic is added to SRAM CPU designs.

As a simple example from the real architecture, consider flip-flop d (hereafter, “ff d”)

in figure 1.3 (p. 17) at node 1. Node 1 tells the left and right register files which

registers to read and write, information that comes from the instruction word from

40

the code RAM. The 36-bit instruction has this form:

opcode dest. register left register right register

bits 35–27 bits 26–18 bits 17–9 bits 8–0

During register fetches, the left and right register RAMs read directly from the loca-

tions supplied by the code RAM, and simultaneously, two copies of the destination

register number are clocked from the code RAM into ff d. At the end of the instruc-

tion when its result is written to both registers, the code RAM outputs are disabled,

and ff d’s output is turned on, sending the correct destination register number to the

left and right register RAMs.

The problem in this example is clocking the correct destination into ff d. The

flip-flop’s hold time is 0.4 ns, and the code RAM’s tKQX is still 2.0 ns, so the clock

skew mustn’t exceed 1.6 ns. And for both register files and ff d, the action to take on

the clock pulse is conditional. We don’t always read from or write to the registers, and

we don’t always write a new destination register number into ff d. These things must

happen on exactly the right clock pulses, never on the wrong clock pulses, according

to control signals supplied to the RAMs and ff d.

In the case of synchronous SRAM such as the register files, it’s permissible to

connect the CPU’s master clock directly to the SRAM clock inputs. This is because

the SRAM clock inputs are true clock inputs: they control timing, but they do not

control functionality. Other control signals to the SRAMs determine what happens

when the clock goes high: a write, a read, a deselect, etc. There is even a control pin

that tells the RAM to ignore the next rising clock. But not so with ff d, because on a

flip-flop, the input we erroneously call a clock is actually a strobe. This strobe doesn’t

just determine timing; it also determines functionality. When the strobe goes high,

the data at the flip-flop’s inputs are unconditionally captured, which is the opposite

of what the CPU needs. Instead, the inputs must be captured when the control unit

says to capture them, and at no other time. So the CPU’s master clock may not be

41

connected ff d’s clock pins.

It may be tempting to add logic between the CPU master clock and ff d’s clock

pins, so the flip-flop can know when to capture the destination register number. The

problem with this is that any glue logic we insert is unclocked and has variable delay

that is affected by temperature and other conditions. We may choose, for instance, to

use an AND gate to modulate the system clock coming to ff d under the direction of

the control unit. But we can’t say how long the AND gate will take. The AUC logic

family’s faster AND gate has propagation delay that is guaranteed to be at least 0.5

ns, but no more than 1.0 ns. We would have to design this 0.5 ns uncertainty into the

circuit board somehow, which will erode our already-worrisome skew budget of 1.6 ns

down to 1.1 ns. A further concern is, the AND gate output may not be guaranteed to

transition smoothly, and the datasheet makes no guarantee of that kind. All we know

is that an AND gate won’t change its output for 0.5 ns, but will have the correct

output after 1.0 ns. Theoretically—I know this from designing AND gate cells in my

Wright State coursework—there could be spurious output between 0.5 ns and 1.0 ns

after any transition of the CPU master clock.

What I have done for the interim is, I have conditioned ff d’s clock pins not using

an AND gate, but with a one-bit flip-flop named “ff dflop,” the flip-flop that controls

ff d. The CPU master clock drives the clock pin on ff dflop, and the control unit

feeds its data pin. The added flip-flop may or may not have less output noise than

an AND gate; actual fabrication and testing will be necessary to confirm the design

is suitable. As with the AND gate, ff dflop erodes the CPU’s clock skew budget, so

this remains a problem to work through.

When it comes time to fabricate a first physical model of my architecture, I

estimate that the clock skew problems mentioned in this section are the greatest

single threat to correct operation in early attempts. In section 8.6.1, I present three

ideas for managing this risk.

42

3.5 Derived components

Most logic ICs that I knew of during high school have yielded to VLSI and never

made it into the AUC logic family. Because they cannot be used now, below are AUC

derivations of functions that are useful to the architecture of this dissertation.

3.5.1 Multiplexers

In the SN74AUC series, multiplexers can be assembled from tristate buffers or brute-

force glue logic. A one-of-two decoder/demultiplexer also exists, which combined with

two AND gates can achieve a one-bit multiplexer.

3.5.2 Shift registers

So far as I know, fast shift registers are not available in the form of standard logic

ICs. What can be done is use a SN74AUC16374 16-bit D flip-flop from the ALU

logic family, feeding its outputs back to the inputs with a positional offset of one. I

anticipate this will be useful for the firmware loader as well as the I/O controllers.

3.5.3 Counters

So far as I know, fast counters are not available in the form of standard logic ICs.

There are two places in my design where I improvised a fast counter from other parts.

Figure 1.3 shows a “return addresses” RAM at the top of the drawing. This is

the call stack for the CPU.5 An up/down counter is needed to adjust the call depth,

which is supplied as some of the address bits to this RAM.6 The up/down sequence

needs to be deterministic and non-repeated, but does not need to be in numeric order.

I designed this using the two 8-bit halves of an SN74AUC16374 flip-flop as two 8-bit

shift registers, with one half implementing “successor,” and the other implementing
5The stack frame of this architecture contains only return addresses, never data.
6The remaining address bits indicate which in-memory program is being executed.

43

“predecessor.” This is shown as figure 3.2. The sequence generated is a three-tap

Galois linear feedback shift register (LFSR). Five XOR gates—three for successor,

and two for predecessor—provide the necessary LFSR taps. An OR gate into one of

the successor flip-flop inputs ensures that the LFSR can be initialized to a nonzero

state. Without this initialization, the LFSR could collapse to generating all zeros,

making subroutine calls impossible.

The benefit to using an LFSR in lieu of a counter is that LFSRs do not need

to propagate any carries. Only one gate delay, involving a small number XOR gates

wired in parallel, is required to transition from one state to the next, regardless of

word size. The circuit of figure 3.2 is able to cycle forward or backward through

28−1 = 255 states, allowing any program’s stack to be up to 254 calls deep. I believe

this is sufficient, because the architecture specifically disallows recursion via the stack

in order to guarantee return address integrity. Section 8.4.3 has more information

regarding the stack for my architecture.

The other fast counter in the architecture is the instruction pointer (IP). Before

I found the AUC family for glue logic, I was certain the IP would necessarily be an

LFSR. It would have been a strange arrangement, because instructions that execute

consecutively would not have been consecutive in memory. I believed also that to

simplify memory management, a paged model would be necessary where an LFSR

only controlled the lower 10, 11, or 12 bits (I hadn’t chosen exactly how many yet)

of an address, and a branch instruction would be required to move from one page to

the next. I planned to write the assembler to automatically insert these page-to-page

branches, as well as a mechanism for the programmer to protect tight loops from

containing page changes.

There is precedent for using a paged LFSR instruction pointer. The TMS1000

“one-chip microcomputer” [TI75], which was used in some popular toys of the late

1970s, used a 6-bit LFSR and 4-bit page register together as a program counter for

its 1024× 8 code ROM. It was hard enough in 1975 to make 4-bit CPUs at all, so this

44

CLK

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

OE#

half
SN74AUC16374

CLK

D0

D1

D2

D3

D4

D5

D6

D7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

OE#

D
CLK

Q

D
CLK

Q#

D
CLK

Q#

preset
depth

capture depth

successor

precedessor

8-bit
call

depth

S
N

7
4

A
U

C
1

G
3

2
3 x SN74AUC2G86 (5 gates)

half
SN74AUC16374

CLR#

CLR#
active-low

system reset

3 x SN174AUC1G74

D0

D1

D2

D3

D4

D5

D6

D7

7 6 5 4 3 2 1 0

1 ⊕ 0

2 ⊕ 0

7 ⊕ 0

1 ⊕ 7

6 ⊕ 7

0 ⊕ 7 successor

predecessor

Figure 3.2: A 16-bit D flip-flop and some XOR gates provide a fast “up/down
counter” (actually a successor/predecessor linear feedback shift register) for call stack
depth. The control signal introduction mechanism at the bottom of the drawing is
no longer current, but shows the essential functioning of these signals.

45

in 0

logic 1

in 1

in 2

in 3

out 0

out 1

out 2

out 3

in 4

in 5

in 6

in 7

out 4

out 5

out 6

out 7

carry to 3rd stage

carry to 2nd stage

Figure 3.3: The first two 4-bit stages of the instruction pointer incrementer. Fast-
enough counter ICs are not sold, so SN74AUC-series glue logic is chosen instead.

46

was a good approach for that day. RAM was so expensive that Texas Instruments

hacked the LFSR sequence to generate all 64 elements instead of the 63 that naturally

occurred.7 But for my architecture, a way to use a linear counter appeared.

Figure 3.3 shows the first 8 bits of the 27-bit instruction pointer incrementer.

All this circuit does is add one to a 27-bit binary number near the top of figure 1.3

(p. 17) at the “add one” label. The circuit is a carry-skip adder with a single addend;

a hardwired carry input of logic 1 sets off the increment task. Each stage of the

incrementer tackles four input bits, with a shortcut carry-propagate chain extended

by one AND gate per stage. Although the drawing shows an unnecessary XOR gate

computing the “out 0” bit, it’s there only to aid the reader’s understanding of the

carry chain. The actual netlist uses an inverter. Place values 28 through 226 are five

repetitions of the same 4-bit stage as for place values 24 through 27, so the remaining

three pages of the schematic have been omitted. The final stage is truncated to three

bits and does not require a carry output, so the total bill of materials is 41 AND gates,

26 XOR gates, and an inverter. No path through the incrementer contains more than

one XOR, and the longest path has nine AND gates and one XOR, for a maximum

propagation delay of 10.3 ns plus wiring overhead. Although that does not fit safely

into my 12.5 ns CPU clock period target, increments only occur every fourth clock

cycle. Even with ff f and ff t also in the path, the incrementer is sufficiently fast.

3.6 Non-computing component security

3.6.1 Firmware reservoir

The emergent architecture has approximately 100 Mibit of static RAMs that will need

firmware moved into them at power-up. Because there are times when the power is

off, trustworthy non-volatile storage will be needed for this firmware.

7If the current 6-bit word was abcdef, let g = a XOR b XOR AND5(b, c, d, e, f). The next
6-bit word was bcdefg. I found this by reverse-engineering assembler listings from the manual.

47

Although an offline, traditional computer could be used to bootstrap a solder-

defined minicomputer, a causality dilemma ensues as to whether the traditional ma-

chine’s supply chain is sufficiently free of exploitable defects. I prefer that instead,

a solder-defined minicomputer have its own solder-defined firmware loader, in which

case the remaining question is what kind of non-volatile component will hold its

firmware.

If freedom from remote exploits were the only criterion, probably nothing can

beat punched Mylar tape for holding firmware. If the tape is dependable enough to

not require error correction, no synchronization overhead is needed, and the historic

pitch of 2.54 mm (0.1 in) per byte is retained, 33 km (21 mi) would suffice to boot

the machine. This is within human ability to build, but is not practical for use.

After passing on Mylar tape and a few other technologies, I settled on having

a single NOR flash IC to hold the entire firmware. Part of my reasoning is, most

contemporary computers have many components that retain state when power is not

applied [Rutkowska15b], providing many enclaves for malicious code to lodge in. The

presence, nature, extent, meaning, and alteration of the state these components hold

are seldom disclosed to computer buyers, much to the joy of their adversaries. As

SRAM minicomputers require firmware by their nature, what I have sought to do is

centralize all firmware into one central, generic, well-documented part.

As a starting point, I bought ISSI’s IS25LP128F-JBLE to try out,8 which as of

September 2022 is available new for less than $3 in unit quantities. This is a 128 Mibit

serial NOR flash with an 8-pin package. Its claimed data retention is more than 20

years. As with comparable products from a few manufacturers, this chip can be

configured to serially read the entire device as soon as power and a clock are applied.

This relieves the minicomputer of needing logic to provide read instructions to the

NOR flash chip, increment any addresses, etc. A clocked stream of bits containing

the firmware simply appears after power-up, and all that is needed is to direct that

8Not an endorsement. In fact, I haven’t tried it yet.

48

stream into the appropriate components. My idea as to how I will accomplish that is

in section 9.2.

3.6.2 Oscillators and clock buffers

Solder-defined minicomputers should use passive components such as crystals as clock

sources. This is no longer a trend for other electronics, so care needs to be taken in

terms of what is used. The problem is that the oscillator market has been taken over

by programmable PLL ICs, which are usually stabilized to a fixed internal micro-

electromechanical system (MEMS) oscillator. Because the PLLs can be programmed

long after production by either the supplier or sometimes the consumer, it is unnec-

essary to specify the output frequency at the time of manufacturing. This allows

one part number to cover a very wide frequency output range, instead of the costly

historic practice of producing and stocking a different part number for each frequency

that will be needed. These ICs are also available with multiple outputs that can be

independently programmed; these parts are usually called clock generators.

The problem with these configurable oscillators is, they contain complex logic.

They therefore may contain unseen exploitable defects and particularly backdoors.

Although these devices are assumed to produce a never-ending stream of clock pulses,

and they do not appear to allow input from an adversary, one particular supply chain

backdoor would be very easy to embed. The underlying MEMS resonator’s frequency

is fixed, and the device has nonvolatile storage available for configuration information.

This means that the PLL controller can be designed to keep track of the total amount

of time it has been powered up. After a period of time selected by an adversary, the

device can maliciously degrade its clock output until the surrounding electronics fail

to operate correctly. This degradation can be gradual or sudden, deterministic or

pseudorandom, soft (resettable by turning the power off) or hard (permanent). It

would be very difficult, to the point of being improbable, for a victim of a VCO

oscillator attack to determine what happened.

49

Even if a buyer suspected that an oscillator may be programmed to fail, there is

no way to test that assertion other than to power it up until problems appear. Such

a test could require years, because for some threat scenarios the attacker would be

willing to wait. A nuclear weapon made tomorrow could no longer be an asset in five

years. Or a turbo generator could reverse phase after two years of service.

A frightening aspect of the VCO oscillator problem is that this attack can be

targeted to specific locations, owners, and applications. Not only can a backdoor be

enabled on a per-shipment basis, or by shipment interception, or by a saboteur at the

eventual installation, but it could also be tailored to only appear if programmed for

a frequency needed by a specific device, such as an FGM-148 Javelin. The number

of time power is applied, or the distribution of the durations when power is applied,

could also be used to arm the attack.

Even if programmable VCO oscillators are not subject to malicious influence, I

am concerned as to their longevity. What is the retention time of this programming?

Is there an acceptable retention time? Deployed technology has a way of hanging

around longer than planned. Voyager 1 is about to celebrate its 42nd year since the

end of its planned mission, and the U.S. Air Force only stopped using 8-inch floppy

disks in 2019.

Another component related to programmable VCO oscillators is a specific class

of clock buffers, namely the zero-delay buffer. These devices provide amplification for

clock trees without any propagation delay, and sometimes also offer synchronization

input from a point elsewhere in the circuit. The absence of propagation delay allows

tighter clock tolerances to be achieved, overcoming problems that passive buffers have

with part-to-part and temperature-dependent delay variations.

The problem with zero-delay buffers is, the delay is not zero but an undetectable

multiple of the clock period, as covered up by a digital controller and VCO. With

the addition of a little persistent storage (if not already present), these gadgets can

be manufactured with a backdoor that, after allowing time for deployment, can effect

50

clock failures in critical infrastructure electronics.

To limit concerns about exploitable oscillator vulnerabilities, my design uses an

80 MHz crystal oscillator. It set me back $1.24.

3.6.3 Peripherals

Realistic computers always connect to something, and it would often be the case

that solder-defined computers connect to equipment that is not solder-defined. This

means there will be interconnections between an architecture like mine, which may

be protected to an extent against threats in the supply chain, and architectures that

a buyer will have no control over. In the near term, the best that can be done may

be to ensure that exploitable defects cannot cross these interconnections.

Section 9.3 outlines how I would provide a minimalist I/O subsystem that con-

fines every peripheral its own I/O bus and buffer memory. It also describes the

controllers to manage these buses and buffers, so that the CPU is free for its own

work. In order to minimize components and wiring, bit-serial buses are used with

clocking supplied by the I/O controllers at their convenience, instead of being clocked

by the peripherals or at specific frequencies.

When I looked at specific types of peripherals, such as real-time clocks, GPS

receivers, and mass storage, I found that two serial bus specifications cover a very

large range of available components. These are Serial Peripheral Interface (SPI) and

Inter-Integrated Circuit (I2C). Components and peripherals that support neither of

these usually support another interface, such as a UART or GPIO pins, for which an

SPI or I2C adapter is readily available.

I recommend ordinarily providing both SPI and I2C. Although the two buses have

different relative strengths, much of the same digital circuitry can control either. The

SPI bus is generally faster, due in part to push-pull drivers. On the other hand,

the popular DS3231 temperature-compensated real-time clock (RTC) by Maxim In-

tegrated only supports I2C, and I am not aware of an alternate part with equivalent

51

accuracy and cost.9

Both I2C and SPI were intended to support bus sharing by peripherals. To do so

could permit, at a minimum, peripherals to eavesdrop on each other as well as inject

harmful noise on the line. Considering that I2C and SPI are two- and four-wire buses

respectively, it’s my position that the tiny hardware investment needed to isolate each

peripheral on its own bus is mandatory for all non-discounted peripherals.10

3.6.4 Capacitors

Because ISO 27000 includes availability within its definition of information security,

wear-out failure of electrolytic capacitors is not an option. What should be used

instead of electrolytics is a field of active study. I intend to use multi-layer ceramic

capacitors (MLCCs) on at least the first versions of my circuit boards. I am less

concerned about electrolytic capacitors in commodity power supplies that can be

replaced easily, subject to their use’s sensitivity to outages and servicing.

9By convention, nearly all RTCs come with two regrettable defects that add complexity and
bloat to driver code. First, they count time in years, months, days, hours, minutes, and seconds
instead of a single duration elapsed from some epoch, like sane operating systems do. Translation
is required to set an RTC, and translation with validation is required to read it. Second, although
most RTCs count time at 32768 Hz, they can only be read or written in whole seconds. This requires
a driver to loop around a seconds transition in order to use the clock near its internal precision.

10Discounted logic is defined on page 22.

52

4

Logic blocks for SRAM ALUs

4.1 Hierarchy of ALU capabilities

Very simple ALUs provide addition and a functionally complete set of bitwise boolean

operations. The “complete set” may be as small as one function, meaning it is possi-

ble to build an ALU with, for example, NOR and addition as its only operations. For

practical reasons, more than one boolean operation is usually included, and subtrac-

tion is often also included. But in order to use time and program memory efficiently,

more complex ALUs are preferred.

Rotate and shift operations offer the first progression of ALU upgrades. This pro-

gression starts with shifts of one bit position, then multiple positions using a counter,

and ultimately any number of bit positions in constant time. Doublewords rotations

and shifts appear early on as ALUs mature, especially when a particular register is

designated as “the” accumulator. Although convenient, doubleword rotations and

shifts don’t enhance performance much for most programs. It’s more that they are

very easy to build when it’s always the same two registers that rotate.

The next step up for ALUs is hardware multiplication. Typically two words are

accepted, and a doubleword product is produced. At this step, signed and unsigned

genders of operation are offered, but combinations of signedness are not offered. The

foremost use for multiplication is to locate array elements that aren’t a power of two

53

in size. Serious numeric computing also needs multiplication, but arrays will appear

in a much broader range of applications. The distinction between multiplying for

arrays and multiplying for numeric processing becomes important, because finding

array element locations can usually be done using short multiplication, implying that

many machines will do fine with only a short multiplier.

A lot of software doesn’t require hardware multiplication at all. CP/M, Word-

Star, and Pac-Man are historic examples that appeared between 1974 and 1980, when

the 8-bit CPUs they targeted offered no multiplication opcodes. On the other hand,

multiplication and division instructions had long been standard on computers with

bigger footprints: the IBM 1130 and DEC PDP-10 are examples of mid-1960s systems

with instructions to divide doublewords by words. The hold-up with early 8-bit mi-

croprocessors was they were critically short on die space. Zilog’s Z80 only contained

a 4-bit ALU, which was applied twice in succession to do 8-bit work. As dies came

to support more gates, 16-bit processing, multiplication, and division simultaneously

became practical. As a rule, these three capabilities came as a set.

The next stage of ALU robustness adds word rearrangement. The ability to

whip subwords around outside the linear order of shifts and rotations is combina-

torially difficult to implement, because the number of potential rearrangements is

larger than the word size can represent. Even rearranging an 8-bit word requires

a 24-bit argument if we are to have full selection including bit duplication. If only

8-bit permutations are supported and no bits are duplicated, a 16-bit argument is

still needed, and fancy logic or a big table has to be added to decode it. Yet rear-

rangement within words comes up periodically, often with foreseeable gyrations, and

ALUs that provide common ones in constant time are desirable. In the x86 family,

the 80386 introduced some sign extend instructions, the 80486 added a byte swap

for fast endianness modification, and BMI2 recently brought parallel bit deposit and

extract.1 Word rearrangement is useful for serialization, floating-point routines on

1Bit Manipulation Instruction Set 2 arrived with Haswell in 2013.

54

integer-only CPUs, swizzling for graphics, evaluating chess positions, hash functions,

pseudorandom number generators, and cryptography. Where practical, ALUs should

aid these operations rather than stand in their way.

Another family of ALU operations to consider is cryptography. Today’s comput-

ers connect to networks, most of which are shared, and many of which are wiretapped.

To be suitable for use, a computer must encrypt and decrypt fast enough to keep up

with its own network traffic. Even if a computer will never be attached to a net-

work, it’s still likely to need unbiased pseudorandom number generation, effective

hash functions, and protection (by encryption, information splitting using a random

variable, or otherwise) from storage devices manufactured overseas.

With the above wish list for ALU features, here are some SRAM building blocks

to deliver the goods. All exist in the literature using conventional logic families, but

I have not found any literature to suggest implementation using RAM, ROM, or any

kind of lookup table. Perhaps no one wants credit for giving away three orders of

magnitude for execution speed, let alone an even larger spike in transistor count. But

there are applications for which I would be willing to wait nanoseconds rather than

picoseconds to assure a CPU’s conformance with the expectations on page 7.

4.2 Simple lookup elements

Simple lookup elements are the fundamental building block of all SRAM logic. Re-

member that our decision to use RAM has nothing to do with its mutability: we

actually want ROM, but RAM is much faster and does not require custom masks.

The overall constraining parameter is the number of input bits, which is the base two

logarithm of the number of rows. We need enough inputs bits to select among all

operations the RAM supports, plus these operations’ inputs which are generally one

or two subwords and sometimes a carry bit. Figure 4.1 shows an example with two

logical and two arithmetic functions. Figure 4.2 show a another problem type that

55

L Rsel

result

7 72

8

64k x 8

SRAM

sel result

00 L NAND R
01 L XOR R
10 L + R with wrap
11 L − R with wrap

Figure 4.1: Simple lookup element.

101
0100
001 01001
110 110 00

+ 101 + 0 01010

011010 010001110

Figure 4.2: Arbitrary-geometry addition.

can be solved using simple lookups.

Two frequent design tradeoffs arise when using simple lookup elements. First,

unary operations can offer input widths of twice what binary operations can. Second,

the presence of a carry input tends to halve the number of operations a RAM can

provide for a specific operand configuration.

4.3 Arbitrary geometry adders

Arbitrary geometry adders are a special case of simple lookup elements. Figure 4.2

shows two addition problems with more than two addends and irregular column spac-

ing. In the right example, there’s either a bit missing within an addend or a line with

more than one addend, depending on interpretation. Both examples share a non-

obvious feature of exactly 16 input bits, because each is a one-RAM subtask from

the binary multiplication demonstration in section 4.9. There is nothing tricky, just

56

tedious, about how these two RAMs are programmed: some kind person computes

all 216 possibilities using the place values shown.

Simple RAM lookup elements are all over the computing literature and especially

prevalent in PLDs and FPGAs. The case of arbitrary geometry adders using SRAM

isn’t in widespread use or discussion known to me, but relates to and conceptually de-

rives from the full- and half-adders used in Wallace [Wallace64] and Dadda [Dadda65]

multiplier circuits since the mid-1960s.

An independent introduction to arbitrary geometry adders in the context of fast

SRAM multipliers appears in section 10.4.1.

4.4 Carry-skip adders

Carry-skip adders combine subwords by augmenting not-always-certain carry outputs

with a propagate output that is set whenever the correct carry output is indicated

by the carry output from the immediate right subword. Figure 4.3 shows the carry

outputs that will occur when two 3-bit subwords are added with a possible carry input.

In practice we add wider subwords, and several drawings to come use 4-bit subwords,

but using three bits for this drawing helps keep it legible. The key concept is that at

times, the carry output cannot be computed until the carry input is known, and when

this occurs, the carry output is always exactly the carry input. So if two machine

words are added by means of parallel subword additions, the subword place value

results must be determined later than subword carry results. The circuit responsible

for this is called a carry-skip adder, and a 12-bit example combining 4-bit subword

additions appears as figure 4.4.

As figure 4.4 shows, the number of stages to consider increases as we move

leftward; this is like a spatial transposition of the time sequence of ripple-carry adders.

Traditional carry-skip adders have a time-sequential propagation of carry information

from right to left, but they move by subwords and therefore offer a speed benefit over

57

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

C

0

0

0

0

0

0

C

0

0

0

0

0

C

0

0

0

0

C

0

0

0

C

0

0

C

0

C

C

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

Figure 4.3: Subword carry decisions for 3-bit addition.

L3 R3

4

p c sp c sp c ss

4 44

L2 R2 L1 R1 L0 R0

Y3 Y2 Y1 Y0

4 4

4444

4 4 4 4 4 4

old carry

new carry

add carryadd carry add carry add carry

4-bit add4-bit add 4-bit add 4-bit add

Figure 4.4: Two-layer carry-skip adder.

58

ripple-carry adders. SRAM carry-skip adders go a step further: they don’t exhibit

any right-to-left time behavior at all, but instead use their table lookup power to

simultaneously make all carry decisions. This is unique to table-based carry-skip

adders, about which I have found no reports in the literature.

SRAM carry-skip adders can be categorized into designs that use either two or

three gate delays. A distinguishing characteristic of two-layer adders as pictured in

Figs. 4.4, 4.5, and 4.6 is that their carry deciding and final subword incrementing hap-

pen simultaneously. They don’t determine the carry decision and then apply it, nor

even compute the needed carry decision at all. They merely apply the correct carry

decision as if it had been computed. Here, the magic of table-driven computation

removes a stage.

Although SRAM carry-skip adders are always ripple-free and sometimes skip in-

termediate carry decisions as well, this doesn’t make them universally faster than

familiar carry-skip adders. Their zillion transistors of RAM are far slower than

directly-constructed single-purpose logic like a word adder. So SRAM isn’t going

to revolutionize microprocessor addition circuits. What SRAM can do is build rea-

sonably fast adders for solder-defined minicomputers.

Numerous tradeoffs and alternatives appear in SRAM carry-skip adder designs.

Figure 4.5 moves the old carry input to the first layer, saving much address space

and a RAM in layer two, but crowding the least significant RAM in the first layer

more. This change also reduces potential to reuse this circuit for purposes other than

addition—recall that these devices are merely RAMs, and they only become adders

because of their contents. In fact, potential uses other than addition sometimes

require that carry information propagate not from right to left as for addition, but

from left to right.2

Figure 4.6 shows a “bidirectional” carry-skip adder that can propagate informa-

tion in either direction. Note the choice to introduce the old carry at the second layer,

2Left-to-right examples include NUDGE (section 7.2.6) and FOL (find one left, section 7.4).

59

L3 R3

c sp c sp c ss

4 44

L2 R2 L1 R1 L0 R0

Y3 Y2 Y1 Y0

4 4

4444

4 4 4 4 4 4

old carry

new carry

add carry add carry add carry

4-bit add4-bit add 4-bit add 4-bit add

Figure 4.5: Two-layer carry-skip adder with old carry via top.

4

p c sp c sss

4 44

L3 R3

4 4

Y0

4

Y1

4

Y2

4

Y3

4

L2 R2

4 4

L1 L0

4 4

R1 R0

4 4

old carry

new carry

add carryadd carry add carry add carry

4-bit add4-bit add 4-bit add 4-bit add

p c

new carry

p c

Figure 4.6: Two-layer bidirectional carry-skip adder.

60

and which SRAM the new carry is deemed to appear at depends on the direction of

operation. Although bidirectional operation consumes more inputs at layer 2, their

use flattens out among the RAMs and is in one respect a simplification. Although

this circuit appears to be useful due to its directional flexibility, an ALU that sup-

ports the bit reversal permutation can mirror bits with a preliminary instruction, do

the intended operation with ordinary right-to-left carries, and if need be mirror back

the resulting bits. Considering the scarcity of occasions that a left-to-right carry is

needed, using bit reversals instead—provided they are fast—might be a better design

for memory-constrained ALUs.

Figure 4.7 offers a remedy for the crowded propagate and carry wiring associated

with two-layer carry-skip adders. It isn’t the wiring, of course, but the address space,

memory, and transistor count for the high-place-value subwords which need conser-

vation. Two ends of a candle are burning in two-layer carry-skip adders. First, the

available subword size for computation soon reaches zero in the bottom layer, which

the top layer must also mirror. This sets an upper limit on the total word size that

can be added. Second, the adders in Figs. 4–6 only add, due to the absence of input

bits to select other operations. We need to find more address bits.

Figure 4.7 adds a middle layer to our carry-skip adder. Only one SRAM is needed

for this layer, because it doesn’t touch any of the tentative sums. It simply reckons

the propagate and carry subword outputs into carry decisions that are passed to layer

3. The last layer of SRAM is much cleaner, with each RAM requiring only its own

carry decision alongside its tentative sum. The conserved address bits can be used

for other purposes, notably function selection, and perhaps another operand if a use

for one emerges.

Switching to a three-layer adder adds 50% to its propagation delay, a cost that

requires justification. Here are three points to consider. First, a lot of address space

opens up in the third layer, enabling other computation by these RAMs for non-

additive instructions. Second, a lot of time opens up in the second layer, because

61

L3 R3

p c s

L2 R2 L1 R1 L0 R0

Y3 Y2 Y1 Y0

4

4444

4 4 4 4 4 4

old carry

new carry

add carryadd carry add carry add carry

4-bit add4-bit add 4-bit add 4-bit add

Figure 4.7: Three-layer carry-skip adder.

figure 4.7 has nothing happening to the tentative sums as the carries are being decided.

The second layer can be filled in with more RAMs to do more computation with

no further performance penalty. Third, the large fan-out in two-layer adders for

propagate and carry signals incurs a small speed penalty.

One limitation of the adder circuits we’ve considered is their bandwidth limita-

tion when computing across subwords. At best, the first layer can broadcast at most

two bits per subword to the other subwords, and each of the third layer’s RAMs can

receive at most one bit from other subwords. It would be helpful if we can route a lot

of wires between subwords instead of within them, particularly if we can figure out a

good system for using the extra connectivity.

An independent introduction to carry-skip adders in the context of fast SRAM

multipliers appears in section 10.4.2.

62

function

select

Figure 4.8: 4× 4 swizzler.

4.5 Swizzlers

A swizzler is a layer of RAMs that operate on transposed subwords, meaning that

each RAM gets one address bit from each subword, looks something up, and outputs

one data bit to each subword. Figure 4.8 shows how this transposition is wired for a

16-bit word with 4-bit subwords. From right to left, each of the four RAMs operates

solely on a subword-local place value of 1, 2, 4, or 8. If the four RAMs have the same

contents and same function chosen, subwords will be treated as atomic entities. This

is the case in the illustration: the operation here is copying the leftmost subword to

the rightmost, and copying the inner left subword to the inner right. The four letters

may be interpreted as either literal hexadecimal digits or 4-bit variables.

Some magic needs to happen in terms of advance planning, because the number

of functions these RAMs can hold (and therefore execute) is a tiny sliver of the number

of functions possible. Additionally, we need to consider that the RAMs might require

unequal contents to achieve certain objectives. It’s also possible that the function

select bits applied might not be the same across all of the RAMs. It’s even possible

63

that there isn’t an input bit that corresponds directly to each output bit: some

outputs might be fixed ones, zeros, or some function of multiple inputs. It turns out

that all three of these “mights” turn out to be very advantageous, although none are

suggested by figure 4.8.

4.6 Logarithmic shifters

A logarithmic shifter overcomes a key limitation of swizzlers, which are perfect for

fast rotation of subwords, but not of bits. If we assign one bit each to letters a–

p, we can swizzle mnop abcd efgh ijkl to become abcd efgh ijkl mnop. But when

we try to rotate just one bit position from here instead of four, the result will be

ebcd ifgh mjkl anop, because place values remain fixed. In fact, only the leftmost

RAM would move anything, because the remaining transposed subwords are already

correct. To finish our one-bit rotation, we have to clean up the subwords individually

to yield bcde fghi jklm nopa, which is what we want. This requires a second layer

of RAM that can operate within subwords rather than across them. Figure 4.9 shows

this combination, which permits rotation of any number of bits in a single pass.

Masking is easily added to the values in the RAMs to supply left and right shifts of

any number of bits.

Three important properties pertain to logarithmic shifters. First, sign extension

works out to support right arithmetic shifts: every RAM that needs a copy of the

leftmost bit will receive it in time. Second, the RAMs within a layer need to all

process the same number of bits. Third, the bits leaving the RAMs of layer one must

be evenly distributed to the RAMs of layer two. Thus when the two layers do use

the same number of RAMs, the subword size will be a multiple of the number of

subwords. Equivalently, the word size will be a multiple of the square of the number

of subwords.

64

rotation

amount

Figure 4.9: 16-bit logarithmic shifter.

4.7 Semi-swizzlers

A semi-swizzler or half-shifter is a contiguous half of a logarithmic shifter; that is,

a transposition preceding or following a layer of swizzle RAMs, but no transposition

going the other direction. An example appears at figure 4.10, using the same input

data and SRAM contents as figure 4.8. The computed output looks like gibberish,

because it is still transposed. A semi-swizzler can be applied twice by a program,

using two consecutive instructions, to achieve ordinary shifts and rotations. Chapter 6

discusses the mechanism and tradeoffs of superposing a two-layer adder with a semi-

swizzler to build a compact ALU.

Because the RAMs of a semi-swizzler comprise both the first and second layer

of a logarithmic shifter, the CPU word size must be a multiple of the square of the

number of RAMs in the semi-swizzler.

65

function

select

16-bit input

16-bit output

transpose

A B C D

Figure 4.10: 4× 4 semi-swizzler or half-shifter. Two passes through this circuit can
emulate a logarithmic shifter.

in out in out
0 2 8 a
1 e 9 f
2 b a 7
3 c b 4
4 9 c 6
5 1 d 0
6 8 e d
7 3 f 5

Figure 4.11: 4-bit S-box.

4.8 Substitution-permutation networks

An S-box is an invertible substitution that can operate on subwords. Its purpose

is to help progressively alter words in a key-dependent manner, until the alteration

sequence is impractical to reverse without knowledge of the key that was used. Fig-

ure 4.11 a simple 4-bit S-box expressed in hex. Due to our requirement for invertibility,

no value appears more than once in an S-box or its inverse.

A logarithmic shifter with its SRAM contents replaced by S-boxes is an instance

of a substitution-permutation network, or SPN. Its intent is to scramble and un-

66

S-boxes

Figure 4.12: 16-bit substitution-permutation network.

scramble bits by mixing data as it passes through layers of cross-connected S-boxes.

SPNs are used for constructing hash functions, pseudorandom number generators,

and ciphers. Desirable topologies for SPNs, as well as properties of cryptographically

“strong” S-boxes, have been topics of secret research for half a century. Figure 4.12

shows a small SPN built using the S-box of figure 4.11.

There is nothing novel about SRAM SPNs, but their mixing capability is very

useful for ALUs to incorporate. They are best used under non-adversarial circum-

stances; e.g., to implement hash functions and pseudorandom number generators

(PRNGs). Suitability for cryptography is considered in section 7.2.8.

4.9 Fast multipliers

Fast SRAMmultipliers are nearly as fast as adders in practice; however, the number of

RAMs needed grows a little faster than the square of the word size. The process itself

is primarily one of summing partial products quickly. As schematics of multipliers are

67

tedious to draw and not particularly legible, here is a walkthrough of the process for

32-bit unsigned factors. The 64-bit product will be ready after only five gate delays.

Layer 1

The four bytes of each word are multiplied pairwise to form 16 results of 16 bits each.

This requires 16 RAMs.

In the diagram here, bytes within a product are separated with colons to indicate

they arrive from the same RAM. The colors used for each product matches the colors

of the factors involved. The place values of each product are consistently aligned

with the factors and each other. The diamond arrangement of these intermediate

results might be unfamiliar: it accommodates the necessary width of the products

and clearly indicates the distribution of bit positions that require summation.

11100100 00100100 01101100 10100111
11111100 01001000 11111000 00011001×

00010110:01000100
11011100:11100000 00000011:10000100

01000000:00100000 00100010:11100000 00001010:10001100
11100000:01110000 00001010:00100000 01101000:10100000 00010000:01001111

00100011:01110000 00011110:01100000 10100001:11001000
01101010:01010000 00101110:11111000

10100100:01100100

Layer 2

256 bits of partial products are to be reduced to a 64-bit final product. This doesn’t

take many iterations if the width considered by each RAM is kept as narrow as pos-

sible. Addition with carries is put off for as long as possible.

68

00010110 01000100
11011100 11100000 00000011 10000100

01000000 00100000 00100010 11100000 00001010 10001100
11100000 01110000 00001010 00100000 01101000 10100000 00010000 01001111

00100011 01110000 00011110 01100000 10100001 11001000
01101010 01010000 00101110 11111000

10100100 01100100+

00100 00 001 101 0010 11 01001 0100 010
11100000 010000 001000 000110 0001010 0100100 01001111

00 110100 0 11010 0 10011 01 1010 010 1011

In this picture, the bits above the line are an exact repetition of the previous

layer’s output, but their colors now indicate which RAMs they are grouped into for

addition. The rightmost place value of each color group can be observed to be the

same before and after this operation. Each band can group as many as 16 input bits.

The process used is the arbitrary geometry addition from section 4.3, and is a simple

table lookup. The black digits on the left and right are not being added, but are

passed forward for later addition (left) or for direct use in the final product (right).

The reduction in bits is considerably faster than one finds in Wallace [Wallace64] or

Dadda [Dadda65] multipliers, because the SRAMs offer fuller capability than full- and

half-adders. As this step starts, 8 bits are finished and 248 remain to add. Afterward,

13 bits are finished and only 99 remain to add. 15 RAMs are used.

Layer 3

The process of layer 2 repeats with 6 RAMs and further gains.

00100 00 001 101 0010 11 01001 0100 010
11100000 010000 001000 000110 0001010 0100100 01001111

00 110100 0 11010 0 10011 01 1010 010 1011+

1110 00 1110000 00100 011 1001000 01100100 01001111
00000 1101010 010 01001 0100011 10

69

Layer 4

If arbitrary geometry addition as in layers 2 and 3 is continued here, the final prod-

uct will be available after layer 6. But the remaining terms are simple enough to use

carry-skip addition to finish in just five layers. The fourth layer is the first of the

carry-skip adder. The carry and propagate outputs are drawn as colored in this

text. We omit adding the seven leftmost bits so that only three RAMs are used by

this layer.

1110 00 1110000 00100 011 1001000 01100100 01001111
00000 1101010 010 01001 0100011 10+

11100000 11010100 1 0100 10000011 11001000 01100100 01001111
000 0 01100010 01001

Layer 5

The final multiplier layer finishes the carry-skip addition. Propagate and carry sig-

nals replicate leftward so that all RAMs involved in this stage have what they need to

determine their sums. The leftmost RAM would have been lightly used, so it’s able

to pick up the seven bits that were skipped at layer 4. This layer uses three RAMs,

and the complete multiplier uses 43.

0
00 0

111000 0 0 0
00000 11010100 11100010 01001100 10000011 11001000 01100100 01001111+

11100000 11010100 11100010 01001100 10000011 11001000 01100100 01001111

To multiply signed numbers, the sign bit(s) of any signed factor(s) has a negative

place value; e.g., bit position 7 of an 8-bit signed number has place value −128.

The partial products and addition reductions thereafter will consume and generate

a smattering of bits with negative place values. This won’t cause the SRAM logic

elements any hardship: the only change will be to assure enough output bits for each

70

RAM, group inputs in the correct address widths, and precompute its addition table

correctly.

To multiply numbers with any signedness, build a signed multiplier with an extra

bit position; e.g., build a 33-bit multiplier for 32-bit words, using the extra bits in layer

1 as a signedness bit instead of as a sign bit. This approach is better than applying

the grade-school “a negative times a positive” rule to the entire problem. Although

conceptually simple, the school method would either add many RAMs and almost

double the gate delay, or use additional CPU instructions for testing and branching.

The division of the original factors into subwords does not need to be symmetric,

as long as all product and sum place values are grouped correctly. For example, an

any-signedness multiplier for 32 bits using 64Ki× 16 SRAMs does not need to spill

from 16 partial products into 25 in order to fit the signedness bits. One factor can

have four subwords of [7 bits + signedness, 8 bits, 8 bits, 9 bits], and the other five

subwords of [5 bits + signedness, 6 bits, 7 bits, 7 bits, 7 bits], for 20 partial products

calculated by 20 SRAMs.3 Another configuration would be to maintain 16 devices in

layer 1 by enlarging some of the RAMs.

Chapter 10 develops a more general theory of fast SRAM multipliers and intro-

duces an open-source tool to automate and optimize their design.

4.10 Open question: medium-speed multipliers

The fast multipliers in section 4.9 and chapter 10 add significantly to component

count, board space, and cost. But without such added hardware, multiplication

takes significantly longer. I looked for compromises that could offer modest speed

improvement for modest added hardware. One problem I had in this search was that

3This configuration could use mainly 32Ki× 16 and 16Ki× 16 RAMs, but the former sell for
more money than 64Ki× 16, and the latter aren’t offered for sale. There is, at least, a slight
reliability benefit in leaving much of a 64Ki× 16 RAM unused, as the opportunity for soft errors is
proportionately reduced. There may also be some energy saved, depending on the cell design of the
chips selected.

71

in section 7.2.5, the firmware already does well at adapting long multiplication to the

peculiar capabilities of SRAM ALUs. I found it hard to improve on the speed that

an ALU and its firmware can achieve on their own.

By partitioning 36-bit words in half, a 36-bit multiplication can be divided into

four 18-bit multiplications that could be accelerated via table lookups in a mod-

est auxiliary memory. The method of quarter squares and a few variations are de-

scribed in [Glaisher1889], [TienLin73], [Johnson80], and [Ling90]. I estimate that

the half-word extractions and various subtractions and additions that surround the

table lookups would make this “medium-speed” method little if at all faster than

the firmware-only acceleration used in listing 7.2. I have not tried to experimentally

confirm this estimate by writing medium-speed multiplication code.

Another approach to medium-speed multiplication would be to consider a small

hardware addition for multiplying numbers that are not the full word size. With

parallel 128Mi× 8 NOR flash available, it may be possible to do 27-bit multiplication

with just two table lookups, plus a handful of instructions before and after. There

are downsides to this proposition, such as NOR flash access time that may exceed the

duration of a CPU cycle, as well as a large expansion in the number of nonvolatile

memory ICs in the machine. I suspect that if a niche use case is identified for a NOR

flash approach, its customer would instead prefer a fast SRAM multiplier using the

methods of chapter 10.

72

5

Three-layer ALU structure

This chapter introduces an elegant design for three-layer ALUs in terms of their

physical organization. A description of its programmable functionality will wait for

chapter 7 where firmware is discussed. Readers who would like a quick look at the

capabilities are directed to table 7.1 (p. 102). Timing information for common tasks,

including multiplication schemes that don’t need more components, appear in ta-

ble 11.1 (p. 278).

5.1 Superpositions of SRAM logic blocks

The SRAM logic blocks of chapter 4 complement each other like pieces in a puzzle, as

if there are circuits they are meant to assemble into. Most strikingly, the three-layer

carry-skip adder of figure 4.7 (p. 62) shows a void in its second layer while and where

carry decisions are made. There is space to insert four more RAMs within the sum

datapaths, with each processing four bits. The swizzler of figure 4.8 (p. 63) matches

this description exactly. Figure 5.1 shows the superposition of these two circuits with

only minor changes:

• The circuit is enlarged from four 4-bit subwords to six 6-bit subwords, and thus

contemplates a word size of 36 bits instead of 16.

• To keep figure 5.1 legible, the transpose and untranspose wiring is no longer

73

shown, but indicated using *s.

• Because no wires crossings need to be drawn, color has been omitted.

• To keep the drawing on the page without using landscape, the datapath is drawn

from left to right instead of top to bottom.

• The RAM operations are indicated by Greek letters instead of text.

The reason for the Greek letters is one of generalization: figure 5.1 is neither an

adder nor a swizzler, but is something more akin to an FPGA. Any RAM IC in the

circuit can do whatever it’s programmed to, or do nothing and pass its input along

unchanged or even zeroed. So why these particular symbols?

• α, β, and γ, being the first, second, and third letters (alpha, beta, and gamma)

of the Greek alphabet, indicate the first, second, and third layers of the circuit.

They don’t indicate what they do, because the RAMs’ contents can change that.

Instead, they indicate where the RAMs are, because the RAMs aren’t capable

of unsoldering themselves and moving to other places.

• θ (theta) was chosen for it canonical use in trigonometry instruction, because

relative to the other RAMs drawn, θ is “off at an angle.”

• One more RAM denoted ζ (zeta) will come into the discussion later for handling

CPU flags such as Z(ero).

What’s transformational about the circuit of figure 5.1 is that its subsets include

all of the logic blocks from chapter 4 except for fast multipliers. Figure 5.2 uses gold

fill to indicate the RAMs of figure 5.1 that can do 36-bit carry-skip addition, shifts

and rotations, swizzles, and S-box operations. The significance of this circuit is that a

36-bit ALU can be assembled using very few soldered components—19 SRAMs—that

its operation is very fast (3 gate delays), and that its functionality is very robust.

74

θ
rry flag outcarry flag in

cp d

6

6

6

1 1

2 × 36 bits in 36 bits out

0L0

R0

0 0

cp
d

6

6

66 6 6 6

1

1

1

Y0* *

1L1

R1

1 1

cp
d

6

6

66 6 6 6

1

1

1

Y1* *

2L2

R2

2 2

cp
d

6

6

66 6 6 6

1

1

1

Y2* *

3L3

R3

3 3

cp
d

6

6

66 6 6 6

1

1

1

Y3* *

4L4

R4

4 4

cp
d

6

6

66 6 6 6

1

1

1

Y4* *

5L5

R5

5 5

cp
d

6

6

66 6 6 6

1

1

1

Y5* *
most

significant

least

significant

Figure 5.1: Block diagram of a 36-bit ALU. Each square corresponds to one SRAM
IC. The two 36-bit transpose operations, shown as *, are self-inverse. Both connect
output i of tribble j to input j of tribble i. Small digits that are not subscripts
indicate number of wires. Figure 5.6 offers a landscape version of this drawing.

75

Same circuit

Same chips

Same board space

i

i
T

i

c
p

d

L R

result

Carry-skip

adder

i
T

i

c
p

d

L R

result

i

Logarithmic

shifter

i

i
T

i

c
p

d

L R

result

Swizzler
i

i
T

i

c
p

d

L R

result

Substitution-

permutation

network

Figure 5.2: Superposition of major components of a three-layer, 36-bit ALU.

76

w
z y x w v u
t s r q p o
n m l k j i
h g f e d c
b a 9 8 7 6
5 4 3 2 1 0

w>

z t n h b 5
y s m g a 4
x r l f 9 3
w q k e 8 2
v p j d 7 1
u o i c 6 0

Figure 5.3: The bit positions of 36-bit word w can be written as a 6 × 6 square
matrix using base 36. Transposition is simply reflection through the main diagonal.

The flow of data through the ALU can be thought of as beginning with the

left operand L, which undergoes a transformation at the α, β, and γ layers. Each

transformation “loses” its previous input, in the sense that only α receives the left

operand, only β receives α’s output, etc. In contrast, the right operand R is available

unmodified to all three layers, as figure 5.1 shows. This imbalance between how L

and R feed through the ALU causes asymmetry with respect to how the operands

can be used. For instance, if a word is to be rotated five bits left, the rotation amount

(five bits) needs to be available at every RAM that participates in the rotation. Right

operand R can achieve this, because all 18 RAMs of the α, β, and γ layers connect

directly to it. With the right operand thus spent, the word to be rotated can only

be supplied via left operand L. So the asymmetry in the wiring is comparable to the

asymmetry of binary operations such as C’s << operator for left shifts. But there are

also many symmetric binary operators used for programming, such as C’s ^ operator

for exclusive OR, and the ALU “suppresses” its asymmetry to achieve it. How?

By having the α and β layers pass left operand L unchanged to γ, which in turn

computes L ^ R.

In figure 5.2, a superscript > appears in the β layer to remind the reader of its

transposition relative to α and γ. One way of looking at the transposition is to think

of a 36-bit word as a 36-bit square array instead. The individual RAMs of the α and

77

γ layers operate on the rows of the array, and the RAMs of the β layer operate on the

columns. With suitable firmware, the ALU can therefore operate on a word’s “rows,”

then its “columns,” and then its “rows” again in a single pass. All this work is done

in only three gate delays. Figure 5.3 shows a word’s bit positions in array form, with

0 and z indicating the least and most significant bits respectively. The relocation of

the original bits following a transposition are also shown.

It’s appropriate to select vocabulary to mean “six-bit subword,” because this is

the basic amount of computation handled by nearly all of the ALU RAMs. Byte

or nibble would be confusing as a six-bit quantity, so I have chosen tribble. The

derivation could be viewed as a “tri-nibble” that has been increased in size to the

nearest multiple of three. The word may also be a good companion for tetrade, an

archaic term for a four-bit quantity—except the architecture doesn’t use tetrades.

A question arises as to how the ALU RAMs know what they are to do from

one instruction to the next. A “function select” is shown in the swizzler example of

figure 4.8 (p. 63), but there hasn’t been room to draw such inputs in Figs. 5.1 or 5.2.

Figure 5.4 shows a “zoom in” of a single bit slice along with θ, where a few of each

RAM’s input bits, marked “fn sel,” are supplied from a control unit. The number

of function select bits, and therefore the number of possible operations, depends on

how many address bits are left over for an SRAM after its other inputs have been

assigned.

5.2 Word sizes for minicomputer architectures

The smallest common asynchronous SRAM ICs are 64Ki× 16, so they will have

log2 65 536 = 16 input bits. If the left and right operands to each SRAM are six

bits each, there will be four bits left, identifying 16 “slots,” to determine α and β’s

operation. γ would only support 8 slots on account of needing a carry decision bit to

each γi from θ; however, for those operations that do not consider any carry decision

78

Li Ri

i

i

i

θ

ose

ose

fn sel

fn sel

fn sel

fn sel θ

new carry ag

old carry ag ci
pi

di

c
p

d

6 6

6

6

5

5

6

6

6

6

6

6

6

61

1

1

1

1

.

6 parallel copies

Carry logic
only one is needed

Figure 5.4: Bit slice and carry propagation SRAMs for a 36-bit, three-layer ALU.
The small digits indicate number of wires.

input, a slot can be shared between two operations, with a forced 0 or 1 carry decision

from θ selecting between the two. Like γ, θ only has three function select input bits

due to requiring a bit for an incoming CPU carry flag,1 and therefore only has 8 slots

available for operations.

The smallest common synchronous SRAM ICs are 256Ki× 18. These devices

have log2 262 144 = 18 input bits, so an ALU built with these components will offer

four times as many slots compared to using the smallest asynchronous ICs. Because

my architecture uses synchronous SRAM for the reasons given in section 3.2.2, fig-

ure 5.4’s wire counts reflect this 256Ki× 18 component size.

1The carry flag’s name in my architecture is T(emporal) flag. It is described in section 5.3.

79

The simple, regular structure of three-layer ALUs, as well as the convenience

of keeping the number of subwords and subword sizes consistent across α, β, and

γ, strongly influence choice of word size for an architecture. Rather than choose a

convenient power of two such as 16, 32, or 64 bits, a convenient square such as 16,

25, 36, 49, or 64 bits is more natural. The sizes of commercially available SRAMs

further influence the word size selection. Here are some ideas to keep in mind.

• 16 bits will not build much of a computer, but may be adequate for small

controllers that are not networked, etc. If bit slices operate on four-bit subwords,

many SRAM input bits—and therefore most of the SRAM—will go unused,

although this drawback is somewhat beneficial from a firmware size standpoint.

16-wide SRAM ICs are available for primary storage.

• 25 bits is not a standard memory width for primary storage. There may be

acceptance issues with an odd word size, because most programmers have never

dealt with one. As with four-bit subwords, five-bit subwords may not optimally

fill bit slice SRAMs.

• 36 bits is a common SRAM memory width and is suitable for primary stor-

age. Six-bit subword operations will consume 12 input bits of the bit slice

SRAMs, leaving four bits (with asynchronous SRAM) or six bits (with syn-

chronous SRAM) available for function selection and carry information. 36 bits

is larger than the physical address space of most machines that use SRAM

for primary storage, so this word size will not impose need for memory seg-

mentation or a limit on installed memory size.2 36 bits offers a wider range for

integers than the 32-bit architectures that were already adequate in many cases.

36 bits is also much better than 32 bits for packing CPU instruction words: in

my architecture, 36-bit instructions double the number of possible opcodes and

2This was a problem for 32-bit machines that offered byte addressability and thus had a 4 Gibyte
memory limit. For many users, this was the only benefit of upgrading to 64-bit computers.

80

registers relative to what 32 bits would have afforded.

• 49 bits is not a standard memory width for primary storage. There may

be acceptance issues with an odd word size, because most programmers have

never dealt with one. The bit slice SRAMs for minimum-size asynchronous

SRAMs will likely be too full to support the desired number of operations, but

synchronous SRAMs may be mostly okay. Some people may consider 49-bit

floating-point formats to be disappointing relative to 64 bits.

• 64 bits may be too many, although 64 bits is a multiple of common SRAM

memory widths and works well for primary storage. The need for bit slice

SRAMs to accept eight bits each for their left and right operands will leave very

little selection of operations that can be supported. There is also no reason this

word size is needed to hold pointers, considering that commercial SRAM ICs

are only available to about 32 Mibit as of 2020, which for 64-bit words implies

19-bit addresses (22-bit addresses if byte addressability is offered).

Taking these ideas into account, my architecture uses 36-bit words. There are

a few drawbacks in terms of relating to existing technology. The IEEE 751 floating-

point specification, intended to make floating-point computations reproducible across

architectures, does not define any 36-bit storage format or arithmetic. The Rust

programming language specifically defines power-of-two integer sizes and no others.

Bytes do not pack evenly, nor do IP addresses, nor standard cryptographic hashes, nor

Unicode, nor Unicode’s transformation formats such as UTF-8. But for languages like

C that try to be word-size-agnostic, or Python with automatic support for integers

larger than the machine architecture, 36 bits is not going to be a problem. Nor for

ordinary users who aren’t sure what a bit does, nor for infrastructure that may be

controlled by a 36-bit solder-defined minicomputer.

81

Table 5.1: CPU flag meanings.

flag name purpose

I Interrupt array bound check failed
N Negative arithmetic: result < 0; logic: bit 35 set
R Range previous result did not fit destination
T Temporal range most recent result did not fit destination
Z Zero true result is all zeros

5.3 CPU flags

A summary of CPU flags appears in table 5.1. Here is a quick introduction to their

intent and implementation:

• The Z(ero) flag is true if the output of an arithmetic or logical operation is

zero. Zero detection involves each of the six γ RAMs providing a bit indicating

that each RAM’s output is zero. AND gates over those six bits are used to

indicate a fully-zero 36-bit word. But there is a catch: the Z(ero) flag must

only be set if the true result of a computation is zero, and never if a nonzero,

overrange result happens to be zero modulo 236. ζ’s output bits 3 and 6 are

used to ensure the Z(ero) flag will not be set falsely.

• The N(egative) flag has out-of-range concerns similar to the Z(ero) flag. It

must only be set if the true result of a computation is negative. ζ output bits 0

and 5, as well as γ5 bit 13, aid in N(egative) flag determination. Also, unsigned

bitwise boolean operations are permitted to change the N(egative) bit as a

convenience for branching according to the 235 place value of a result, because

bitwise operations self-evidently cannot overflow.

• The T(emporal overrange), usually abbreviated T(emporal), flag combines

and replaces the “carry” and “overflow” flags found on other architectures. This

82

flag correctly indicates when an out-of-range addition, subtraction, or shift in-

struction produces an out-of-range result. This flag is also changed by more

esoteric uses such as the RTGR (rotate through T going right) macro.

• The R(ange) flag is a “sticky” version of the T(emporal) flag. The R(ange)

flag, which can only be cleared by the CRF (clear range flag) instruction, is

set whenever an out-of-range arithmetic operation sets the T(emporal) flag.

This sticky flag enables a programmer to execute long sequences of arithmetic

without checking for overrange conditions until a tentative result is available,

thereby simplifying programming and increasing execution speed.

• The I(nterrupt) flag is proposed as something the CPU may use for pre-

emptive multitasking. Little is known yet about how this flag may work, al-

though the BOUND instruction for array index checking contemplates setting

the I(nterrupt) flag to raise an exception.

The Z(ero), N(egative), T(emporal), and R(ange) flags in the architecture are

branchable, in that they determine whether conditional JUMP instructions are taken.

At present there is a timing bottleneck in this branch decision, as well as an as-

yet-undesigned flag save and restore mechanism to support preemptive multitasking.

Figure 5.5 is a rough sketch of how the flags should work. Some information paths

in this figure have significant operational and firmware consequences. On the input

side:

• θ’s view of the T(emporal) flag can be altered by the control decoder. It can

be received unchanged, inverted, forced to logic 0, or forced to logic 1. For

example, the A (add) instruction forces the incoming T to be zero, while AC

(add with carry) receives T unmodified in order to include it in the sum.

• ζ receives an “encoded range” that can be used for several purposes. Most

often, it is α5’s warning that an add or subtract overflowed or underflowed, or

83

θ

ζ

α
5

γ
5

p
re

v
 T

n
ew

 N

n
ew

 Z

n
ew

 R

n
ew

 T

n
ew

 I

p
re

v
 R

p
re

v
 Z

p
re

v
 N

co
n

tr
o

l

co
n

tr
o

l

ζ
 o

p
 s

el

Z
 a

ll
o

w
ed

γ
i i

s
ze

ro

w
h

ic
h

 N
?

α
5

id
ea

o
f

Nγ
5

id
ea

o
f

N

6
5

en
co

d
ed

 r
an

g
e

5
fl

ip
 Z

?

θ
 o

p
 s

el
5 F
ig
ur
e
5.
5:

C
PU

fla
g
ap

pr
ox
im

at
e
lo
gi
c.

Sm
al
ld

ig
its

th
at

ar
e
no

t
su
bs
cr
ip
ts

in
di
ca
te

m
or
e
th
an

on
e
w
ire

.

84

may overflow or underflow depending on the effective carry or borrow at the 230

place value.

• θ is able to offer ζ a two-bit synopsis of θ’s 13 input bits.

On the output side:

• ζ cannot directly generate the Z(ero) flag, because it operates at the same time

γ is computing the ALU’s output word. Instead, ζ offers an output bit that can

prevent the Z(ero) flag from being set in the event of arithmetic wraparound.

• ζ cannot directly generate the N(egative) flag, because γ is still computing the

ALU’s output word that determines the N(egative) flag after bitwise boolean

operations. Instead, ζ offers an output bit that selects between γ5’s idea of the

N(egative) flag for bitwise boolean, and α5’s idea of the N(egative) flag after

adjustment by final carry or borrow information.

5.4 SRAM bit assignments

This chapter introduced the essential topology of a family of three-layer SRAM ALU

designs, as incorporated in my 36-bit architecture. There remain a few choices to

be made in the topology’s surrounding logic, in part due to the branch decision

timing bottleneck that I have not resolved yet. Accordingly, some of this chapter’s

descriptions may be challenging to follow. To assist the reader in clarifying doubts,

tables 5.2 and 5.3 present all of the input and output bits for the SRAMs of my ALU.

5.5 Alternate diagram for ALU

Figure 5.6 is a landscape redrawing of figure 5.1. It may be useful to someone who is

writing about SRAM ALUs or documenting a specific SRAM ALU desires a drawing

with a top-to-bottom information flow.

85

Table 5.2: ALU SRAM input bit assignments.

RAM bit description

α0 –α5 0–5 L input
α0 –α5 6–11 R input
α0 –α5 12–17 α operation

β0 –β5 0–5 transposed input from α

β0 –β5 6–11 R input
β0 –β5 12–17 β operation

γ0 –γ5 0–5 untransposed input from β

γ0 –γ5 6–11 R input
γ0 –γ5 12 tribble carry decision from θ

γ0 –γ5 13–17 γ operation

θ 0–5 carry flags from α

θ 6–11 propagate flags from α

θ 12 modified previous T(emporal) flag
θ 13–17 θ operation

ζ 0 previous N(egative) flag
ζ 1 previous R(ange) flag
ζ 2 previous T(emporal) flag
ζ 3 previous Z(ero) flag
ζ 4–8 encoded range from α5
ζ 9 advice from θ, such as ∨(ci) from αi

ζ 10 advice from θ, such as ∨(pi) from αi

ζ 11–15 ζ operation
ζ 16–17 logic 0

86

Table 5.3: ALU SRAM output bit assignments.

layer tribble bit description

α all 0–5 transposed output to β layer
α all 6 carry to θ

α all 7 propagate to θ

α 5 8–12 encoded range to ζ

α 0–4 8–17 reserved
α 5 13–17 reserved

β all 0–5 untransposed output to γ layer
β all 6–17 reserved

γ all 0–5 ALU output, left copy (node 2)
γ all 6–11 ALU output, right copy (node 5)
γ all 12 zero flag for tribble
γ 5 13 copy of Y35 (γ’s idea of N(egative) flag)
γ 0–4 13–17 reserved
γ 5 14–17 reserved

θ n/a 0–5 carry decisions to γ layer
θ n/a 6 advice to ζ, such as ∨(ci) from αi

θ n/a 7 advice to ζ, such as ∨(pi) from αi

ζ n/a 0 ζ’s idea of new N(egative) flag or 0
ζ n/a 1 new R(ange) flag
ζ n/a 2 new T(emporal) flag
ζ n/a 3 logic 1 iff Z(ero) flag is allowed
ζ n/a 4 new I(nterrupt) flag
ζ n/a 5 new N(egative) flag comes from ζ (if 0) or γ (if 1)
ζ n/a 6 invert new Z(ero) flag
ζ n/a 7–17 reserved

87

θ

n
ew

 c
ar

ry

o
ld

 c
ar

ry
cp d

6

6

6

1 1

L
3

R
3

α β γ

tr
an

sp
o
se

tr
an

sp
o
se

cp d

6
6

66 6 6 6
1

1

1

L
2

R
2

α β γ

tr
an

sp
o
se

tr
an

sp
o
se

cp d

6
6

66 6 6 6
1

1

1

L
5

R
5

α β γ

tr
an

sp
o
se

tr
an

sp
o
se

cp d

6
6

66 6 6 6
1

1

1

L
4

R
4

α β γ

tr
an

sp
o
se

tr
an

sp
o
se

cp d

6
6

66 6 6 6
1

1

1

L
1

R
1

α β γ

tr
an

sp
o
se

tr
an

sp
o
se

cp d

6
6

66 6 6 6
1

1

1

L
0

R
0

α β γ

tr
an

sp
o
se

tr
an

sp
o
se

cp d

6
6

66 6 6 6
1

1

1

Y
5

Y
4

Y
3

Y
2

Y
1

Y
0

In
p
u
ts

O
u
tp
u
ts

F
ig
ur
e
5.
6:

Bl
oc
k
di
ag
ra
m

of
a
36
-b
it

A
LU

.E
ac
h
sq
ua

re
co
rr
es
po

nd
s
to

on
e
SR

A
M

IC
.T

he
tw

o
36
-b
it

tr
an

sp
os
e
op

er
at
io
ns

ar
e
se
lf-
in
ve
rs
e.

Bo
th

co
nn

ec
t
ou

tp
ut

i
of

tr
ib
bl
e

j
to

in
pu

t
j
of

tr
ib
bl
e

i.
Sm

al
ld

ig
its

th
at

ar
e
no

t
su
bs
cr
ip
ts

in
di
ca
te

nu
m
be

r
of

w
ire

s.
T
hi
s
is

a
la
nd

sc
ap

e
re
dr
aw

in
g
of

fig
ur
e
5.
1.

88

6

Two-layer ALU structure

My research to introduce solder-defined minicomputers required a commitment from

me to show either how capable and fast such machines could be, or how small and

inexpensive. I chose capable and fast in order to develop a general theory as fully as

I could, and have that theory apply to as many potential uses as possible. But in

the course of this work, I discovered some non-obvious shortcuts that could lead to

machines that use fewer components and less labor to build. These abbreviated ma-

chines, if developed, may appeal to hobbyists, students, and makers who are building

their first minicomputers.

This chapter describes a possible shortcut for ALUs that use commercially avail-

able asynchronous SRAMs. This is far short of a functioning machine specification,

but it might spark some creative designs.

6.1 An elegant two-layer ALU for 36-bit words

Common asynchronous SRAMs offer a capability that is not available in their syn-

chronous counterparts: either half of their data lines can be disabled for input and

output. Common synchronous SRAMs can disable half of their data lines for input,

but not for output. Although the architecture of this dissertation does not use asyn-

chronous SRAMs, this chapter has been included to show a novel ALU that can be

89

built using asynchronous SRAMs.

A standard asynchronous 64Ki× 16 RAM is functionally a dual byte-wide device

with shared address inputs. The two output bytes have separate enable lines and can

be independently put into a high-impedance state. We can leverage this to build

ALUs with very few components, by superposing a semi-swizzler onto the first layer

of a carry-skip adder.

Figure 6.1 shows a 36-bit ALU made from just ten RAMs in two layers. These

RAMs operate on 6-bit subwords to do all the work, and this illustration only shows

the wiring for the subwords themselves. The various control signals are drawn sep-

arately for legibility as figure 6.2, but note that the ten boxes refer to the same ten

RAMs in both figures.

The top layer of the ALU does almost all of the work. Sixteen functions accepting

two inputs of six bits are stored in the upper bytes of the top-layer RAMs. The

functions are selected via a 4-bit control input, while the byte select lines force the

lower bytes to high impedance. This mode provides a traditional mix of additive and

logical functions, as well as subword multiplications. There is no hardware support

for 36-bit× 36-bit multiplication.

By enabling the lower bytes of the top-layer RAMs, and forcing the upper bytes

to high impedance, the outputs are transposed in the manner of a semi-swizzler.

These lower bytes provide 16 functions for swizzling, rotations, shifts, permutations,

S-boxes, and other operations that benefit from transposition. The performance

penalty is that the transposition only goes in one direction per instruction executed,

so in nearly all cases it takes two CPU instructions to do anything with these lower

bytes.

A second factor derates the speed of this ALU: the fan-out for propagate and

carry signals peaks at seven, including firmware-loading hardware and a yet-unmentioned

overrange output. This speed penalty is small enough that buffering would make the

delay worse, yet may be large enough to increase the appeal of a three-layer design.

90

L
5

R
5

L
4

R
4

L
3

R
3

L
2

R
2

L
1

R
1

L
0

R
0

F
ig
ur
e
6.
1:

D
at
a
sig

na
ls

fo
r
a
36
-b
it,

tw
o-
la
ye
r
A
LU

.

91

fu
n
c
ti
o
n

se
le
c
t

z
z

z
z

z

b
y
te

se
le
c
t

F
ig
ur
e
6.
2:

C
on

tr
ol

sig
na

ls
fo
r
a
36
-b
it,

tw
o-
la
ye
r
A
LU

.

92

The bottom layer does nothing other than add whatever carries are required dur-

ing addition and subtraction. All other functions, including the lower byte functions

with transposed outputs, must force their propagate and carry outputs low so that

the bottom layer does not spuriously change results. Also, although the bottom layer

conceptually has five RAMs, the carry decision task for subwords Y1 and Y2 takes so

few inputs that one RAM can settle both subwords.

This ALU does not quite finish all calculations in two layers. Because the subword

outputs are not known until the bottom layer has finished processing, a zero flag is not

yet computed for the whole 36-bit result. For this reason, five subword zero signals

are shown emerging from the ALU. An external five-input NAND circuit combines

these signals into an aggregate zero flag.

This ALU has no carry input, because all address lines on the top right RAM

are tasked for other uses. As the word size is already 36 bits, an occasional branch

on the carry flag’s value is typically enough support for adding and subtracting wider

integers.

Table 6.1 maps out space in the first RAM layer for suggested operations of

this ALU. This table’s purpose is to show (i) an appropriate set of operations to

implement, and (ii) that the complete set can be implemented within the address

space available. Several provisions made in this table aren’t immediately obvious, so

here is some explanation.

This ALU always produces a 37-bit signed result when adding or subtracting

irrespective of operand signedness, but the −(236) bit, inaccurately termed the “sign

bit,” does not fit within a word and is not retained after the result is inspected for

overflow. The inspection is fairly simple. If the −(236) bit does not match the 235 bit

and the result is signed, overflow will occur upon truncation. If the result is unsigned

and the −(236) bit is set, overflow has already occurred. Overflow will not occur If

neither situation applies. For signed results, the−(235) bit then becomes known as the

−(235) bit. All this would work out fine with 37-bit signed inputs, but what come from

93

Table 6.1: Suggested operations for a 36-bit, 2-layer ALU.

slot normal operation transposing operation

0 unsigned add unsigned shift left I
1 signed add unsigned shift left II
2 mixed add unsigned shift right I
3 unsigned subtract unsigned shift right II
4 signed subtract signed shift left I
5 mixed subtract signed shift left II
6 reverse mixed subtract signed shift right I
7 XOR signed shift right II
8 AND rotate left I
9 OR rotate left II
a short multiply I short multiply II
b permutations permutations
c unary subword ops S-box
d (NAND) inverse S-box
e (AND NOT) swizzles
f (OR NOT) (transposing XOR)

the registers are the customary 36-bit overloaded-signedness inputs. Our workaround

is to have separate ALU operations for the several operand type combinations; this

is why table 6.1 requires three add and four subtract operations. The surrounding

CPU will test for wrap-around and latch a R(ange) flag when needed.

There aren’t obvious identity, clear, or bitwise NOT operations for this ALU, but

all three can by synthesized from XOR and constants. Short multiplication works

across matching subwords and is always unsigned. Two instructions are needed,

because six 12-bit results are produced. The low-order subwords are produced by

the normal operation. The high-order subwords appear in the same place values as

their operands, because that’s where the RAMs are. This means that prior to adding

subwords of a product together, the high subwords must be shifted six bits left. In

anticipation of this, the high subword multiplication operation supplies the initial

transposition for the shift, reducing by one the number of instructions needed.

The reader might wonder how overflow is avoided for short multiplication, as

94

the result is potentially 42 bits. Usually nothing needs to happen, because the main

use for short multiplication is to compute memory addresses of array elements. It’s

reasonable to expect the main memory to be SRAM, not DRAM. For a multiplication

result to exceed 36 bits at 2020 prices, more than $400,000 in SRAM needs to be in

the system.

Permutations, swizzles, and S-box operations usually require word transposition

and are specified accordingly. Plain permutations within subwords also are supported.

A set of 64 unary operations, selectable at the subword level, are included. One of

these operations computes the fixed-point reciprocal b(236−1)÷max(n, 1)c, the largest

unsigned word one can multiply by n without overflow. Most of the remaining 63 are

simpler; table 7.16 (p. 161) can be used as a starting list of candidate operations.

Shifts are rotations are implemented in two CPU instructions, because these

require two permutation stages and two transpositions. The number of positions to

move by must be replicated beforehand into each subword. Thus a rotation may take

four instructions if the number of positions cannot be expressed as a constant: two to

transpose, replicate, and transpose back the rotation amount, and two to accomplish

the rotation itself. Negative shifts and rotations are unavailable, because the range

−35 . . . 35 is too large to express within a 6-bit subword (64 slots will not hold 71

possible values). Because right rotations are expressible as left rotations, having a

separate function for right rotation is not helpful. When rotating right by a variable

amount, no subtraction from 36 is required prior to replication into subwords, because

one of the 64 available swizzle operations can combine the needed subtraction and

permutation. No speed is lost by leaving out right rotation.

Figure 6.2 purposely omits some control logic that would easily confuse readers

who are trying to understand this ALU for the first time. In addition to what is

drawn, the propagate signals from the five RAMs which offer them are combined in

a five-input NAND gate. The output of that gate is used only for left shifts, and

indicates that signed or unsigned overflow resulted from a multiplication by a power

95

of two. There are more subtleties. The rightmost RAM doesn’t have an output bit

left for overflow detection; it got used for zero detection. Here we are helped by a

kludge. Instruction two of a left shift operates on transposed words, meaning that

five of the six bits not checked during instruction one can be tested by other RAMs

on instruction two. This leaves only the 20 bit not tested, a bit which can only

overflow during shifts of more than 34 or 35 bit positions depending on signedness.

Smaller fixed shifts needn’t check the 20 bit at all. Of the remaining cases, the only

shift amounts that can overflow always do when shifting a nonzero word.1 The few

programs that can’t be written to preclude all possibility of such unorthodox shifts

must assume responsibility for checking the 20 bit. But for most software, this ALU

detects left shift overflow as perfectly as it detects additive wrap-around. Masking for

left shift can’t happen until instruction two, or overflow from the rightmost subword

will go undetected.

The overrange conditions for addition, subtraction, and left shift are not routine

events comparable with the carry flag that other ALUs set. These conditions almost

always involve processing errors, meaning that the indicating flag must only be cleared

by an opcode exclusive to that purpose. A latching flag precludes the need to check

after every arithmetic operation whether or not something bad happened. Instead, a

long sequence of perhaps thousands of instructions can be run, followed by a single

flag check prior to committing the result to a database or other observable outcome.

The four parenthesized operations in table 6.1 might be useful, but they can be

synthesized using small combinations of the other operations. They may be displaced

in the event that more important operations are identified.

This ALU is not the most capable one a user can build on her own for high-

confidence applications, but it already towers over prior CPUs made from discrete

components. For uses where its speed and operations are suitable, anyone with the

1The surrounding instruction set implements logical left shifts as unsigned left shifts with the
overflow signal suppressed. This is the ordinary case when the rightmost bit might shift more than
35 positions.

96

motivation can build or have built a practical, robust, inspectable, and tamper-evident

ALU for 36 bits using ten small, fungible RAMs. I believe that for the total com-

ponent count, as well as the limited availability of parts that might be regarded as

trustworthy, it would be difficult to improve on the overall design of this ALU.2 This

device is conceptually mature, and the design frontier has moved to the CPU which

surrounds it.

6.2 A tiny ALU for 18-bit words

The ALU of Figs. 6.1 and 6.2 can’t be cut down to build a 24-bit or 30-bit version,

because 24 and 30 are not multiples of 16 or 25 (the squares of the number of subwords

in the semi-swizzler) respectively. This means we cannot meet the requirement to

have a self-inverse transposition and a single subword size at the same time. But we

can build 12- and 18-bit versions, and these ALUs require only three or four RAMs

respectively. The transpose wiring, shown for 18 bits on figure 6.3, is rearranged to

minimize loss of left shift overflow detection. Only the 20 and 21 bits are unchecked,

so arithmetic shifts of up to 15 bits signed and 16 bits unsigned come with range

checking. The right half of figure 6.2 shows the control signals, where the worst fan-

out (including two sinks not shown) is five. The instruction set can be as stated in

table 6.1, although the S-box outcomes will not agree with the results of their 36-bit

counterparts.

2A few faster but very expensive and power-hungry computers, such as the CRAY-1, were built
from discrete current-mode logic components.

97

Figure 6.3: Data signals for a 18-bit, two-layer ALU.

98

7

A three-layer, 36-bit ALU firmware

7.1 What is SRAM ALU firmware?

Chapter 5 described the physical organization of a 36-bit, three-layer SRAM ALU,

explaining why the ALU is arranged as it is, and (at least at a high level) how to

solder it together. But the chapter stopped short of showing how the circuit functions

as an ALU, or any real-world capabilities in terms of ability to be programmed. These

characteristics depend on the information contained in the RAMs, which I have chosen

to call firmware. So if we think of an ALU as having a body and soul, chapter 5

described its body, or physical structure, and this chapter bares its soul, or firmware.

I chose to use the term firmware over microcode. The distinctions between these

two words are blurry, and usage varies. I have long thought of microcode as being like

little subroutine calls within a CPU’s programmer-inaccessible realm, where a simple

instruction is expanded into a sequence of smaller instructions in a lower-level machine

language. This is my personal interpretation, molded from reading [Patterson83]

before I reached high school. My firmware does not contain any “sequences” to speak

of, and it never loops. For any instruction, the α, β, and γ layer RAMs are read at

most once, and all instructions take exactly the same number of cycles. These to me

are more suggestive of the word firmware than microcode. It’s the case that the α,

β, and γ layers are read one at a time, suggestive of microcoding, but their order of

99

use is always the same, suggesting firmware.

In my architecture, CPU instructions are always 36 bits, and the nine most

significant bits are always the opcode, a unique identification of the instruction to

execute. In the case of ALU instructions, which read from two registers and write a

result to one register, this instruction format is:

opcode dest. register left register right register

bits 35–27 bits 26–18 bits 17–9 bits 8–0

This format is stated for the reader’s understanding only. The ALU doesn’t care about

the instruction format or the size of its fields, nor does it ever know what opcode it

is executing. Instead, the ALU needs to know the function select inputs that decide

the operation each of its SRAMs needs to compute. Figure 5.4 (p. 79) may help the

reader recall this relationship. Each opcode is translated—via SRAM, of course—to

a few dozen control bits, certain of which specify the operations for the participating

SRAMs. For example, the AW “add with wrap” opcode is expanded by the control

decoder SRAMs to operations named α.add.uu (add pairs of unsigned tribbles in

the α layer), β.id (do nothing in the β layer), γ.add (apply carry decisions in the γ

layer), θ.add (compute carry decisions in the θ RAM based on propagate and carry

information from α), and ζ.wrap (set flags as appropriate for the AW instruction). The

incoming T(emporal) flag is forcibly zeroed, because AW must not include a previous

carry in its sum.

Programming languages include a few operators and functions that my ALU can

do quickly, but not as a single instruction. Counting the number of 1s in a 36-bit word

requires two instructions, for example. Assemblers for this architecture should not

require the programmer to remember these esoteric instructions, when the step they

are trying to program is a simple popcount. So in addition to describing operations

that individual SRAMs do, and opcodes that are made of operations, this chapter

defines names and behavior for more than 60 macros that are made of instructions.

100

Although the core of every instruction is an opcode, most macro definitions require

additional information, such as temporary registers or specific left or right operands,

in order to execute correctly. So although it would be easier to remember that macros

are made of opcodes made of operations, it is more precise to say that macros are

made of instructions that each contain exactly one opcode made of operations.

A macro may be as short as one instruction. Single-instruction macros can

improve the legibility of an assembly language. For example, a programmer who

wishes to reverse the order of bits in a word can do so, using the PAIT opcode with the

“reflected identity” permutation from table 7.8 for the rows and columns of figure 5.3

(p. 77) simultaneously. This requires a right operand of 131313131313‘o. Simply

using the MIR “mirror bits” macro from table 7.18, which can work as if it is just

another opcode, is more convenient for the programmer.

My assembler as of October 2022 implements almost none of the macros described

in this dissertation, due only to limits on my available time. The mechanism by

which this may work, as well as whether the mechanism will be extensible to support

traditional assembler macros written for ordinary programs, remains to be decided.

The next two sections are corequisites. The section describing available opcodes

and their implementations is placed first, because assembly-language programmers

will likely rely more on this section. The section on SRAM operations appears second,

and is useful for understanding the opcode implementations.

7.2 ALU opcodes and their implementations

Table 7.1 summarizes opcodes and macros this ALU implements by category. Many

opportunities exist to grow this list, such as single-instruction macros for increment,

decrement, and negate, as well as opcodes to support division, floating-point arith-

metic, and faster long multiplication. Tables 7.2, 7.3, 7.4, 7.5, 7.6, and 7.10 provide

additional detail and implementation specifics. The columns of these tables are:

101

Table 7.1: Principal opcodes and macros for a 36-bit, 3-layer ALU.

Additive

A add
S, RS subtract, reverse subtract
. . . C with carry
. . . W with wrap
. . . WC with wrap and carry

Compare

CMP compare and set flags
MAX maximum
MIN minimum
BOUND trap if R < 0 or R ≥ L

Shift and rotate

ASL arithmetic shift left
ASR arithmetic shift right
LSL logical shift left
LSR logical shift right
ROL rotate left

Multiply

ML tribble multiply, low result
MH tribble multiply, high result
MHNS MH without left shift
DSL double-register left shift
SWIZ copy tribble to all positions

Bit permute

PAT permute across tribbles
PIT permute inside tribbles
PAIT simultaneous PIT and PAT

Mix

MIX key-dependent S-box mix
XIM key-dependent S-box unmix

Miscellany

CRF clear R(ange) flag
HAM2 2nd instr. of popcount macro
NUDGE substitute rightmost bits
TXOR transposing XOR

Bitwise boolean

IGF ignorant false
IGT ignorant true
XL exactly L
XR exactly R
NL not L
NR not R
AND and
NAND nand
OR or
NOR nor
XOR exclusive or
XNOR exclusive nor
LANR L and not R
RANL R and not L
LONR L or not R
RONL R or not L

Leading and trailing bit macros

BO, BZ . . . brighten ones/zeros
EO, EZ . . . erase ones/zeros
FO, FZ . . . find one/zero
GO, GZ . . . grow one/zero
LO, LZ . . . light ones/zeros

More macros
ABS absolute value
CLO count leading ones
CLZ count trailing ones
CTO count trailing ones
CTZ count trailing zeros
CX check and extend
FABS fast absolute value
LFSR linear feedback shift register
MIR. . . mirrored increment/decrement
PARTY parity
POPC popcount
PR. . . prepare to rotate by non-const.
PS. . . prepare to shift by non-const.
RTG. . . rotate through T(emporal) flag
STG. . . shift into T(emporal) flag
XPOLY XOR polynomial if T set

102

family The assembler mnemonic for the instruction. A given
mnemonic can generate several different opcodes, de-
pending on the signedness of its arguments and results.
For example, the mnemonic A (add) in table 7.2 includes
overflow checking that requires awareness of the signed-
ness of both arguments and the result, and this awareness
is supplied by using eight different opcodes for A.

of The total number of opcodes corresponding to the
mnemonic in the family column. The assembler auto-
matically selects the correct opcode based on the declared
signages of the registers involved. A mechanism exists for
the programmer to override this automatic selection.

α The operation specified in the function select input to
the α RAMs. See table 7.11.

β The operation specified in the function select input to
the β RAMs. See table 7.12.

γ The operation specified in the function select input to
the γ RAMs. See table 7.13.

θ The operation specified in the function select input to
the θ RAM. See table 7.14.

ζ The operation specified in the function select input to
the ζ RAM. See table 7.15.

T Handling of the incoming temporal flag. T means pass
unchanged. !T means pass inverted. 0 means force to
logic 0. 1 means force to logic 1.

description A brief explanation of what the mnemonic does.

7.2.1 Additive opcodes

Table 7.2 shows the basic addition and subtraction opcodes. The α and γ layers

provide carry-skip addition, with β not participating. Carry decisions based on α’s

propagate and carry outputs are made by θ and distributed to γ. If “with carry”

is specified in the opcode, the incoming T(emporal) flag is also reflected in carry

decisions.

103

Table 7.2: Additive instructions and their implementations.

family #of α β γ θ ζ T description

A 8 [+] id add add [+us] 0 add
S 8 [−] id add add [+us] 1 subtract
RS 8 [r−] id add add [+us] 1 reverse subtract
AC 8 [+] id add add [+us] T add with carry
SC 8 [−] id add add [+us] !T subtract with carry
RSC 8 [r−] id add add [+us] !T reverse subtract with carry
AW 1 add.uu id add add wrap 0 add with wrap
SW 1 sub.uu id add add wrap 1 subtract with wrap
RSW 1 rev.uu id add add wrap 1 reverse subtract with wrap
AWC 1 add.uu id add add wrap T add with wrap, carry
SWC 1 sub.uu id add add wrap !T subtract with wrap, carry
RSWC 1 rev.uu id add add wrap !T rev. subtr. w. wrap, carry

signedness choices for α and ζ:

[+] one of: add.uu add.us add.su add.ss
[−] one of: sub.uu sub.us sub.su sub.ss
[r−] one of: rev.uu rev.us rev.su rev.ss
[+us] one of: add.u add.s

Addition and subtraction are stratified by signedness, causing the 12 mnemonics

to assemble to 54 distinct opcodes, depending on the signedness of the arguments

and result. Listing 7.1 shows how the 36 subtraction instructions look in assembly

language; addition works comparably. This stratification permits not only mixed-sign

arithmetic; e.g., add a signed register to an unsigned register, but also alerts the CPU

as to the signedness of the destination register so that overflow is detected correctly.

Section 7.3.1 offers more specifics as to how these checks work. The “with wrap”

opcodes suppress overflow detection, which may be useful when the R(ange) flag is

being monitored for a surrounding computation.

104

unsigned au bu cu
signed as bs cs

; ordinary ; subtract ; reverse ; reverse subtract
; subtract ; with carry ; subtract ; with carry

cu = au - bu cu = au -- bu cu = au ~- bu cu = au ~-- bu
cu = au - bs cu = au -- bs cu = au ~- bs cu = au ~-- bs
cu = as - bu cu = as -- bu cu = as ~- bu cu = as ~-- bu
cu = as - bs cu = as -- bs cu = as ~- bs cu = as ~-- bs
cs = au - bu cs = au -- bu cs = au ~- bu cs = au ~-- bu
cs = au - bs cs = au -- bs cs = au ~- bs cs = au ~-- bs
cs = as - bu cs = as -- bu cs = as ~- bu cs = as ~-- bu
cs = as - bs cs = as -- bs cs = as ~- bs cs = as ~-- bs

; Signedness is ignored for the following:

<wrap> cs = au - bs ; subtract with wrap
<wrap> cu = as -- bu ; subtract with wrap and carry
<wrap> cs = au ~- bs ; reverse subtract with wrap
<wrap> cu = as ~-- bs ; reverse subtract with wrap and carry

Listing 7.1: 36 subtraction opcodes. (Some tildes may look like minus signs.)

Reverse subtraction

An extra subtract operation is offered with the arguments reversed, a special provision

for CPUs with fast hardware multipliers. The reason is that fast multiplication breaks

an important register file invariant. In ordinary subtraction,

−L + R = R− L,

allowing a simple reversal of the left and right operands in an instruction word to

perform a reverse subtraction. But because the physical architecture needs to obtain

the left and operands simultaneously, separate left and right copies of the register

file are kept. The copies are ordinarily identical, as must be the case for the above

identity to hold.

105

On a machine with a hardware multiplier, the 72-bit result of a multiplication

needs to be split between the 36-bit register copies in order to be written to a register

in one clock cycle. This will cause a register to evidence different values, depending

on its position in subsequent instruction words. Because addition is commutative,

a subsequent addition can involve either the high or low word of a result based on

whether it comes via the left or right operand. But subtraction is not commutative,

and therefore would force use of the left or right operand to obtain the high or low

word as required. If that operand is misplaced for the subtraction desired, the sign

of the result will be incorrect, necessitating an extra negation instruction that eats

at the speed that was sought in building a hardware multiplier in the first place. By

offering an explicit reverse subtraction operation, the architecture is able to preclude

wasting an instruction on negation between multiplication and subtraction.

Section 8.3.1 will return to the topic of reverse subtraction.

Smaller SRAMs

An earlier version of the firmware for 64Ki× 16 asynchronous SRAMs used a 128Ki× 16

SRAM for α5 only for signedness stratification. The α0–α4 SRAMs in the present

implementation have four identical slots for the four left and right operand signedness

cases for A, S, RS, AC, SC, and RSC, because only α5 needs to change with signedness.

A lot of firmware memory can be conserved if a design is needed for smaller SRAMs.

7.2.2 Bitwise boolean opcodes

There exist sixteen bitwise boolean functions with two inputs, and as table 7.3 shows,

this ALU implements all of them. Interestingly, the individual layers only implement

a handful of these. α supplies the common AND and OR operations. β is very limited

in its flexibility to assist, because it’s operating on a transposed word. The only

change it can safely make is to invert all bits, thereby extending what α can do to

include NL, NAND, and NOR. γ doesn’t have enough space to offer many operations,

106

Table 7.3: Bitwise boolean instructions and their implementations.

opcode α β γ θ ζ T description

IGF boo id kil t logic 1 ignorant false
IGT boo id mux t logic 1 ignorant true (1)
XL boo id mux t logic 0 exactly left
XR boo id mux t logic 1 exactly right
NL boo not add t logic 0 not left
NR boo id xor t logic 1 not right (2)
AND and id add t logic 0 AND
NAND and not add t logic 0 NAND
OR or id add t logic 0 OR
NOR or not add t logic 0 NOR
XOR boo id xor t logic 1 XOR
XNOR boo not xor t logic 1 XNOR
LANR or id xor t logic 1 left and not right
RANL and id xor t logic 1 right and not left
LONR and not xor t logic 1 left or not right
RONL or not xor t logic 1 right or not left

(1) The assembler supplies an all-ones right argument for IGT.
(2) The assembler supplies an all-ones left argument for NR.

because its carry input cuts in half the available space for their implementation.1

But by XORing what arrives from β with the original right operand, γ adds another

five operations. γ’s multiplex and kill operations manage to fill out the remaining

constants and identities.

Although the opcodes of table 7.3 technically implement the boolean functions

listed, not all do so semantically. For instance, the boolean function NR (“not R,”

or bitwise invert) function theoretically ignores its left input, but this ALU cannot

both ignore its left input and invert its right input due to SRAM space conservation.

Instead, the assembler has to substitute all ones in place of the left input register

1At the time these opcodes were decided, 64Ki× 16 asynchronous SRAMs were anticipated.
There is more space today, but the implementation is left in a manner to support the smaller
RAMs.

107

Table 7.4: Comparison instructions and their implementations.

family # of α β γ θ ζ T description

MAX 8 [cmp] id mux lt [+us] 0 maximum
MIN 8 [cmp] id mux gt [+us] 0 minimum
CMP 4 [sub4] id add add cmp 1 compare (1)
BOUND 2 [sub2] id add add bound 1 check array index (2)

signedness alternatives for α and ζ:

[cmp] one of: cmp.uu cmp.us cmp.su cmp.ss
[+us] one of: add.u add.s
[sub2] one of: sub.uu sub.us
[sub4] one of: sub.uu sub.us sub.su sub.ss

(1) CMP causes the N and Z flags to reflect the sign of L−R.
(2) BOUND does nothing if 0≤L<R. Otherwise, an exception is raised.

specified in the source code. This doesn’t present a problem for users, compilers,

or assembly language programmers, but it departs from feng shui. It also ties up a

register in order to provide an all-ones immediate value.

7.2.3 Compare opcodes

Table 7.4 contains opcodes that do comparisons. The maximum and minimum op-

erations are unusual in CPUs: traditionally a compare and branch is used, but we

accomplish these in one instruction. Not only this, but the two operands and results

can be of any signedness. MAX and MIN are implemented by having α and β pass the

left argument unchanged, and γ select between the output of β and the right operand

depending on whether the carry decision bits are all ones or all zeros. θ is able to

compute which argument is larger on the basis of tribble comparisons made by the α

RAMs and delivered via the propagate and carry wires.

The BOUND operation is intended for array subscripts. Although BOUND’s im-

108

plementation is almost the same as for ordinary subtraction, separate opcodes are

assigned for BOUND so that the link editor can locate and optionally remove array

boundary checking. Additionally, BOUND does not write any result to a register. The

index tested is supplied in the right operand, which may be unsigned or signed but is

evaluated as if unsigned. The left operand is the bound. Hypothetically the bound is

always at least zero, but signed bounds are permitted to be passed (thus two opcodes)

in order to accept whatever data type the register is declared to be. The operation

performed is simply subtraction: the I(nterrupt) flag will be set if the index is less

than zero or at least as large as the bound. The logic that monitors this flag and

interrupts the CPU will be external to the ALU. BOUND will not work correctly for

bounds of 235 or higher, because indices that high will be interpreted as less than

zero and therefore not within bounds. But there won’t be enough memory for this

problem to appear.2 BOUND will never set the T(emporal) or R(ange) flags; instead,

the CPU is interrupted.

The CMP instruction does a simple comparison and is identical to subtraction,

except the control unit skips the step where the result is written to a register. It

likewise does not check to see if the difference fits in any particular format, and will

never set the T(emporal) or R(ange) flags.

7.2.4 Shift and rotate opcodes

The shift opcodes in table 7.5 have unconventional definitions. Arithmetic shift means

multiplication or division by a power of two, rounding towards −∞ in the case of

division. In traditional forums, arithmetic shift means that a signed number is being

shifted. But my position is that it’s moot whether the number is unsigned or unsigned;

what is important is whether the intent is to perform arithmetic, and if this is the

intent, the result must be tested for overrange irrespective of signedness. A shift in

2Anyone who can afford a 236-word SRAM data memory would likely also want a 64-bit, 3-layer
ALU built from 1Mi× 18 SRAMs. BOUND would then give correct results up to 263 − 1.

109

Table 7.5: Shift and rotate instructions and their implementations.

opcode signedness α β γ θ ζ T description

ASL u→ u e36 shl rol t asl.uu 0 arithmetic shift left
ASL u→ s e35 shl rol t asl.us 0 arithmetic shift left
ASL s→ u e36 shl rol t asl.su 0 arithmetic shift left
ASL s→ s e35 shl rol t asl.ss 0 arithmetic shift left
ASR u→ u asr shr rol t asr.uu 0 arithmetic shift right
ASR u→ s asr shr rol t asr.us 0 arithmetic shift right
ASR s→ u asr shr rol c5 asr.su 0 arithmetic shift right
ASR s→ s asr shr rol c5 asr.ss 0 arithmetic shift right
LSL any boo shl rol t logic 0 logical shift left
LSR any boo shl rol t logic 0 logical shift right
ROL any boo rol rol t logic 0 rotate left (1)

(1) Right rotations are implemented as their left complements.

the absence of any intent to multiply or divide is called in this dissertation a logical

shift. Logical shifts are not tested for overflow, because the bits involved do not

represent quantities.

The logarithmic shifter is implemented by the β and γ layers. The shift and

rotate operations require the number of bit positions to be encoded into every tribble

of the right argument. These identical copies can be provided by the compiler, as-

sembler, or programmer if the shift amount is fixed. Otherwise, one of the following

macros may be used to check range and replicate the shift amount into each tribble:

stacked
macro unary description
PRL su.rlprep prepare to rotate left
PRR su.rrprep prepare to rotate right
PSL su.slprep prepare to shift left
PSR su.srprep prepare to shift right

The γ layer’s participation in the logarithmic shifter is expressed in terms of

leftward rotation only, because RAM in that layer may be scarce. This means that

110

all shift and rotation operations are normalized to a left perspective, so to shift right

one position, the argument supplied must indicate a left rotation of 35 positions. The

stacked unary operations that prepare shift and rotate arguments account for this

and do range checking on the shift or rotate amount. Rotations in excess of 63 bits

require extra instructions due to the modulo-36 division needed.

Negative shift amounts aren’t directly supported by this ALU, because a signed

tribble can only represent numbers in the range −32 . . . 31, while the range of possible

shifts is at least −35 . . . 35. If a program needs to shift by a signed variable amount,

a branch is required to perform negative shifts correctly.

Range checking for left arithmetic shifts is done in the α layer, which encodes

the signed and unsigned overflow result for each tribble onto the propagate and carry

wires. Two of θ’s output bits are the logical OR of its propagate and carry inputs;

these outputs proceed to ζ so that overrange can be flagged.

7.2.5 Multiply opcodes

Although this ALU isn’t specified with a hardware multiplier, the ML, MH, MHNS, DSL,

and SWIZ opcodes significantly accelerate unsigned multiplication in software. Their

implementation is included in table 7.6. For short multiplication, the right operand

must be a factor in the range of 0 to 63, and replicated across all six tribbles. ML

(multiply low) and MH (multiply high) multiply across the tribbles of the left and right

operands pairwise, with ML returning the low six bits of each tribble’s result, and MH

returning the high six bits. MH throws in a six-bit left shift to align with ML, so the

results can be directly added for the final product. So if a, b, c, and t are unsigned

registers, 0 ≤ b ≤ 63, and a× b < 236, we compute c = a× b in four instructions:

t = b swiz 0 ; replicate tribble 0 of b across t
c = a mh t ; short multiply high tribble
t = a ml t ; short multiply low tribble; replaces t
c = c + t ; final product

Short multiplication correctly detects the overrange condition, in which case the

111

Table 7.6: Other ALU instructions and their implementations.

opcode α β γ θ ζ T description

ML ml id add t asr.uu 0 multiply low (1)
MH mh rtl add t asr.us 0 multiply high
MHNS mh id add t asr.uu 0 multiply high no shift
DSL dsl rtl add dsl logic T double shift left (2)
PIT boo id pit t logic 0 permute inside tribbles
PAT boo pat add t logic 0 permute across tribbles
PAIT boo pat pit t logic 0 permute across, inside tribbles
MIX mix mix mix t logic 0 mix (3)
XIM xim xim xim t logic 1 undo mix
CRF boo id kil 1 clear.r 1 clear R(ange) flag
HAM2 boo ham ham t logic 1 second instr. of popcount macro
NUDGE nud id mux 2r logic 1 nudge (4)
SWIZ boo swz add t logic 0 swizzle
TXOR boo txo add t logic 0 transposing XOR

(1) ML, MH, and MHNS do short multiplication across 6-bit tribbles.
(2) Reduces the number of instructions needed for 36-bit multiplication.
(3) Substitution-permutation network derived from

√
2.

(4) Replaces 0 to 35 rightmost bits of L with the same number of bits from R.

result is of little value and might best be considered undefined. Short multiplication

when b is constant only needs three instructions, because the compiler, assembler, or

programmer can provide the initial replication.

Long multiplication can be emulated in software. For 36-bit unsigned integers

with 72-bit results, 47 instructions are needed, not including two probable CALL and

RETURN instructions for code reuse. An assembly subroutine showing long multiplica-

tion appears as listing 7.2. Unfamiliar language elements to the reader may include

registers named by the programmer and declared to be unsigned, infix notation of

alphabetic opcodes such as SWIZ and MHNS, an ‘o suffix for octal constants, and a ++

operator for the AC (add with carry) instruction.

Two opcodes in listing 7.2 that are not used for short multiplication are MHNS

112

; Multiply d:c = a * b

unsigned a b ; inputs
unsigned c d ; outputs
unsigned m t ; scratch

t = b swiz 050505050505‘o
c = a mhns t
d = 0 dsl c
c = c lsl 060606060606‘o
m = a ml t
c = c + m
d = d ++ 0

t = b swiz 040404040404‘o
m = a mhns t
c = c + m
d = d dsl c
c = c lsl 060606060606‘o
m = a ml t
c = c + m
d = d ++ 0 ; continued after column 1

t = b swiz 030303030303‘o t = b swiz 010101010101‘o
m = a mhns t m = a mhns t
c = c + m c = c + m
d = d dsl c d = d dsl c
c = c lsl 060606060606‘o c = c lsl 060606060606‘o
m = a ml t m = a ml t
c = c + m c = c + m
d = d ++ 0 d = d ++ 0

t = b swiz 020202020202‘o t = b swiz 000000000000‘o
m = a mhns t m = a mhns t
c = c + m c = c + m
d = d dsl c d = d dsl c
c = c lsl 060606060606‘o c = c lsl 060606060606‘o
m = a ml t m = a ml t
c = c + m c = c + m
d = d ++ 0 d = d ++ 0

Listing 7.2: Assembler code for 36-bit multiplication. 47 instructions are executed.

113

Table 7.7: Frequently-used swizzle operations for β.swz.

octal description

00 6 copies of tribble 0
01 6 copies of tribble 1
02 6 copies of tribble 2
03 6 copies of tribble 3
04 6 copies of tribble 4
05 6 copies of tribble 5

06–63 reserved

(“multiply high no shift”), which multiplies tribbles pairwise but without shifting

the result 6 bits to the left, and DSL (“double shift left”). The DSL instruction is

complex, because it effectively adds the T(emporal) flag to the left operand before

shifting left six bits. The six least significant bits of the result are copied from the high

tribble of the right operand. This instruction was designed specifically to combine two

operations from an older multiplication subroutine that took 53 instructions instead

of 47. One intricacy of DSL is that the shift is completed by β before γ can finish

adding the T(emporal) flag, so θ offers a special rotated output to align the increment

to the 26 place value.

Also in the listing is SWIZ, which selects a tribble from the left operand and

replicates it six times. The SWIZ opcode is a general call to any of the swizzles of

table 7.7, where the first six operations happen to copy the six tribbles by position.

Except that we might not have CPU microcode that executes multiplication as a

single instruction, this performance is not far out of line from the original Intel 80486,

which took between 18 and 42 cycles at 16 MHz to multiply 32 bits depending on

the operands. This minimum-speed i486 could do 32-bit multiplications at 380 952

to 888 889 per second. If my architecture can sustain 16 MIPS, it can do 36-bit

multiplications at 326 530 per second, including overhead for CALL and RETURN.3 For

3I here compared an i486 with a 16 MHz clock to my architecture with an 80 MHz clock. The
illustration is to compare my architecture’s throughput to the top of the line as of 1989.

114

short multiplication, my architecture beats the minimum-speed i486 with four million

per second rather than 888 889. (At the time of its discontinuation in 2007, the i486

could be clocked at 100 MHz and do 5 555 556 short multiplications per second.)

7.2.6 NUDGE instruction

The NUDGE instruction of table 7.6 adjusts the rightmost portion of the left operand,

which could be a pointer, to conform to a supplied template in the right operand.

This template consists of a start bit, indicating the number of bits to replace, and

the replacement bits themselves. For example, 0111010 NUDGE 0010110 replaces the

rightmost four bits to give the result 0110110 in one instruction. Without NUDGE, this

process would require two instructions and would happen as (0111010 AND 0001111)

OR 0000110.

NUDGE is useful in part because many languages allocate memory using small

powers of two. Reportedly, GNU malloc always returns a pointer aligned to a multiple

of eight, or on 64-bit machines, sixteen. To the extent a developer is informed of the

alignment and can rule out unexpected change, fast access to various members of a

structure can be available from close-enough pointers. As an example, a node for a

binary tree might have this form in C:

struct j {
struct j *left;
struct j *right;
struct j *parent;
...

};

If we wish to disconnect some node n from its parent, we need to dereference the

parent member, then examine the left and right fields on the parent to see which

matches n, and set the appropriate one to NULL. That’s a lot of work. If struct j

is aligned to a multiple of four and NUDGE is available, there is a faster arrangement:

115

struct j {
struct j *left;
struct j *right;
struct j **parent;
...

};

With this format, *parent can directly access the left or right field of the parent

node instead of the parent node as a whole, allowing us to null the dereferenced word

within the parent without investigating which child n used to be. The difficulty is

that parent is only useful for deletions, because it doesn’t know where within the

parent node it’s pointing. The NUDGE opcode eliminates this problem for structures

with power-of-two sizes. If this C program can access the NUDGE opcode, we can

in one instruction locate any member of the parent by nudging the parent pointer’s

alignment within its known power of two. More generally, we can compute the address

of a structure member in one instruction from the address of another member—even

if we haven’t kept track of which member the address calculation will start from.

NUDGE isn’t new, in the sense the same operation can already be done at half the

speed by using AND and OR. Moreover, the alignment behavior an implementer chooses

for memory allocation on an SRAM CPU may differ from conventional processors.

GNU malloc’s alignments to multiples of 8 or 16 are in fact just multiples of two

machine words, because many traditional CPUs address individual bytes. But byte

addressing and need for aligned memory boundaries might not apply to an SRAM-

based CPU. Similarly, the cache lines we ordinarily try to consider are unlikely to be

present on SRAM machines. So NUDGE might not become a big trend, but it does

serve as an example of overloading a carry decision mechanism for other uses. It’s

also a rare example of left-to-right carry propagation, where α and θ need to scan

the template from left to right to locate the leading 1 bit.

116

7.2.7 Bit permute opcodes

Table 7.6 shows how bit permutation opcodes PIT, PAT, and PAIT are provided in

the β and γ layers.4 Most software doesn’t need to permute bits, except for ordinary

shifts and occasional endianness changes, and only newer instruction sets offer much

beyond these. So when an arbitrary rearrangement of a word is needed, historically a

lot of code and clock cycles are expended doing this rearrangement. A swap of even

two arbitrary bits requires at least five instructions: isolate the bits to swap, mirror

all bits in that word,5 shift to realign correctly, AND the bits out of the original word,

and OR the replacements in. An arbitrary permutation of a 36-bit word would take

up to 108 instructions, most of which are repetitions of (shift, AND, OR).

SRAM ALUs offer fast permutations, although how they are specified has to

respect subword boundaries. Thus Intel’s PDEP and PEXT instructions for parallel

bit deposit and extract, available since 2013, can’t be mapped onto the architecture

of my research. Instead, we offer one instruction for permutations inside tribble

boundaries, PIT, and another which permutes across these boundaries within the

same bit positions, PAT.

The more bits we need to move, the faster my ALU is compared to not having

bit permutation support. If we need to swap two randomly chosen bits, the likelihood

they are in the same subword or same position within two subwords is about 30%.

This lucky case requires just one instruction. The rest of the time, three instructions

are needed. But if we need a random permutation of a 36-bit word, the kind that

might need 108 instructions had we not planed for this need, we can “always” do this

in five instructions. This is a big leap: it takes an average of 2.39 instructions to swap

two bits, but we only need five instructions to arbitrarily arrange 36 bits.

At present, I offer a hierarchy of claims about how many instructions are needed

4A reviewer who found this section interesting asked me to clarify how much of it is original. I
am not knowledgeable enough in combinatorics to claim that any new mathematical knowledge is
offered. What I can say is that I derived everything in this section independently.

5Many architectures do not offer a MIR instruction or macro, although mine does.

117

for 36-bit permutations. The operands to the instructions that produce these permu-

tations are tedious and ordinarily not suitable for manual computation. Instead, an

algorithm converts the desired permutation into the sequence of instructions which

accomplishes it. I can offer you algorithms that succeed in:

• 6 instructions, with proof, or

• 5 instructions, tested on 100 million random permutations, or

• 4 instructions, may fail, takes quadrillions of instructions to find out.

PIT is implemented in the γ layer. PAT uses the β layer and is simply a transpo-

sition of PIT. It’s helpful to regard a 36-bit word as not a row of bits, but as a 6× 6

matrix as shown in figure 5.3 (p. 77). Any corner may be used as the origin; the point

is that each row of the matrix represents one tribble of the machine word. Figure 7.1

shows how such a matrix can be operated on. The matrix is the left argument to PIT,

which operates on the rows of the matrix, or PAT, which operates on the columns.

The operation wanted for each row or each column is taken from the tribbles of the

right argument, meaning we can invoke six different permutations on the six rows in

one PIT, or six different permutations on the six columns in one PAT. So the good

news is: a lot of things can happen at once simultaneously. The first part of the bad

news is: we can only move within rows or within columns during one instruction.

The second part of the bad news is: we aren’t afforded all the possible permuta-

tions within the rows or columns in one instruction. It takes two instructions to fully

manipulate the rows or columns, because although the tribbles in the right argument

can only distinguish between 64 operations, there are 6 ! = 720 permutations possible

for any tribble. By composing two PITs or two PATs, and selecting twice from 64

carefully chosen permutations the architecture does offer, we can reach any of the 720

possible permutations in all of the rows or columns.

Figure 7.1 shows how six bit permutation instructions combine to produce arbi-

trary permutations of full words. The three steps are indicated by horizontal arrows

118

 1

 3

 2

 5

 6

 7

 4

 8

 9 0

11

13

12

15

16

17

14

18

19

10

21

23

22

25

26

27

24

28 29

20

31

33

32

35

30

34  1

 3

 2

 5

 6

 7

 4

 8

 9  0

11

13

12

15

16

17

14

18

19

10

21

23

22

25

26

27

24

28 29

20

31

33

32

35

30

34

 1 3 2  5

 6  7

 4

 8 9

 0

11

1312 151617 14

1819

10

2123 22

25 2627 24 28 29

20

313332 3530 34

 1  3 2  5

 6  7

 4

 8  9

 0

11

1312 15 16 1714

18 19

10

21 2322

25 26 2724 28 29

20

31 3332 3530 34

start

�nish

Figure 7.1: Decomposition of a random 36-bit permutation.

(two PITs), and vertical arrows (two PATs), with the colored matrices showing the

states before and after each step. A randomly-selected permutation appears in the

upper left “start” matrix. The numbers in each box show that box’s eventual desti-

nation as its content—a zero or one—moves through each step. Every six consecutive

numbers is given a different background color, allowing visual differentiation of the

subword each bit will end within.

In the first transition, drawn as four arrows, each row is rearranged such that

no color appears in the same column twice, or equivalently, every column contains

every color. This guarantees that the second transition, drawn with vertical arrows,

will be able to move every bit to its destination row (tribble) without conflict. The

algorithm for the first transition works one row at a time without backtracking. The

first row never requires adjustment. The second row of this example had no color

119

conflict with the first row. The third row contained three color conflicts, requiring

relocation of the 16, 19, and 24 bits. The relocation algorithm is simply to try all 720

permutations, and use the first permutation that does not conflict with any preceding

row. Eventually all six rows are decided, and the six permutations chosen are encoded

into two PIT instructions.

A question appears as to how we know, for each tribble, which two permutations

selected from the 64 implemented are needed for any of the 720 possible permutations.

We know either by trial and error, with a maximum of 4 096 trials for each tribble,

or from a 720× 12-bit table in the compiler or assembler.

The second transition is represented with six vertical arrows, because every col-

umn requires some adjustment for its bits to arrive in the correct rows. The permuta-

tions needed for each column are found by iterating through all 720: one and only one

permutation will produce the correct result for each column. Two PAT instructions

cause the desired migration.

The third transition, drawn with six leftwards arrows, uses two last PIT instruc-

tions to finish the word permutation. Here again, each tribble has one and only one

correct permutation of the 720, although there will often be more than one composi-

tion of two PIT operands that can produce it.

So that’s how arbitrary 36-bit permutations work in six instructions. What about

five instructions? The second and third transitions don’t offer any budget we can cut,

because we need all 720 permutations available for each subword—two PATs and two

PITs. The odds of being able to cover the second transition with a single instruction

appear to be (720÷ 64)6 against us, over two million to one. The third transition has

the same prospects. But the first transition is flexible: any set of row permutations

that result in no color conflicts within columns is acceptable. There are many such

sets, so we can try the first transition experimentally on a whole bunch of random

36-bit permutations, and see if we can succeed with just the 64 permutations the

ALU has on hand. Of 100 million cases I tried, all 100 million succeeded. So not only

120

do we have a five-instruction method (although I have not proven that it will always

succeed), but it even has a simpler algorithm to determine the instructions needed.

Now we consider the existence of a four-instruction, general permutation for

36 bits. Observe that two consecutive PIT instructions can yield 7206 possible out-

comes at most, because there are only 720 orders that six objects can be arranged

in. But a PIT followed by PAT or vice versa does not encounter this bound; each

of these has 646 possibilities, and their combination is 6412. So if a four-instruction

permutation sequence contains PITs next to PITs or PATs next to PATs, the total

number of outcomes is at most 3× 7206 × 6412 ≈ 2× 1039. This isn’t enough to offer

the 36 ! ≈ 4× 1041 permutations of 36 bits, so the odds of making this work with

immediately repeated PITs or PATs are 188 to 1 against.

If we can find 4-instruction random permutations of 36 bits, we must strictly

alternate PITs with PATs, where we are bounded by 2× 6424 ≈ 4.5× 1043. This is

sufficiently above the number of 36-object permutations to offer, on average, 120

different ways of finding each. But this does not guarantee that every permutation is

reachable, let alone offer a fast algorithm for producing the four instructions.

We do have an algorithm to try to find four instructions. It’s applied twice for

completeness: PIT PAT PIT PAT and PAT PIT PAT PIT in either order. There is one

transition for each instruction, so if figure 7.1 were redrawn for this operation, five

matrices would be shown. The first transition is carte blanche: arbitrarily select any

of the 646 = 236 PIT or PAT arguments. In practice, we would loop through all of them

until the algorithm succeeds. The second, third, and fourth transitions are identical to

the three transitions on figure 7.1, except we strictly limit to 64 alternatives per tribble

at each step. Time complexity goes like this: the first transition always succeeds for

its 236 variants, and the second transition succeeds an average of 820 times for each

of the first transitions. This estimate comes from simulation with 10 000 trials. So

this algorithm enters the third transition a total of 2 × 236 × 820 times, which is

good because the combined odds of success in the third and fourth transitions are

121

presumably (720 ÷ 64)12 to one against us, less than one in four trillion. So if we

run the entire experiment to completion for many random permutations, on average

we would expect to find around 27 sequences of four instructions that can produce

each permutation.6 This isn’t a guarantee there aren’t permutations which no series

of four instructions can reach, but the chances of succeeding often at least appear

pretty good. But the problem is CPU time: if you tell an assembler or compiler “I

want the permutation , figure it out and do it in four instructions,” it has

to come out of the second transition successfully to try the third and fourth about

four trillion times. This computation would take decades of CPU time on average

to find the first working sequence of four instructions. Although the search is easily

parallelized, we will ordinarily settle for five instructions.

The PAIT opcode combines PAT followed by PIT with the same right operand. Its

most foreseeable use is to reverse the order of a 36-bit word (the MIR macro, which is

PAIT with a right operand of 131313131313‘o). There may be other uses.

Which 64 of the 720 permutations of six bits should be included?

Implementing my bit permute instructions requires selecting 64 permutations of six

objects for the ALU to support out of the 720 possible. There are three criteria that

this subset of 64 should satisfy:

1. All 720 permutations must be available by composing at most two from the

chosen subset.

2. All permutations of 36 bits must be available in five instructions via the chosen

subset. This will be true if the first transition always succeeds in one instruction.

3. The subset’s permutations should not be too “esoteric,” to give the best chance

of accomplishing “common” permutations in just one instruction. For instance,

the identity permutation should be among the 64 chosen.
6This expected value of 27, which relies on multiple assumptions of uniformity, is within an order

of magnitude of the preceding paragraph’s expected value of 120, which is more dependable.

122

The permutations chosen for this ALU appear in table 7.8. From the above list,

only criteria 1 and 3 were used when these permutations were selected. The middle

requirement was left to chance, although there is more to say about that shortly. The

order of items in the table is roughly the order I dreamed them up. Bit ordering in this

table is not the conventional 543210 that would be used for arithmetic, but 012345 in

order to make these permutations more spatially understandable by programmers. So

the identity permutation is 012345, and exactly reversing the bits is 543210. Table 7.8

was produced iteratively: I would think of permutations to add to the set, and then I

would use a greedy algorithm to add as few permutations as it could to make the set

“720 complete.” The minimum size needed for this completeness grew slowly. The

more permutations I added to the subset, the fewer the algorithm needed to add to

reach 720 by composing two permutations that were already in the set. So I might

find I had 20 left to choose, and after choosing 10, I’d find there were still 15 left to

choose. In the end I was able to choose 58 of the permutations by the seat of my

pants, and the algorithm only needed to choose six. But I couldn’t have chosen these

last six without automation.

If someone had to design an unusually crowded ALU, possibly using the same

function select inputs for permutations and swizzles, perhaps there wouldn’t be room

to include 64 permutations. How small a subset would still work? As 26 + 262 = 702

and will not cover 720 permutations of six bits, it’s clear that a minimal set will have

at least 27 elements. I haven’t succeeded at computing a set as small as 27 elements,

although I spent more than 18 months of CPU time trying. But there wasn’t a lot of

human effort expended. The algorithm I wrote had a fast implementation in C, but

a better-considered algorithm might have a faster implementation.

During the search, I found four subsets of 30 permutations that can reach all 720

within two instructions. The first of these appeared in just hours, before I was even

looking at the program output consistently before clearing the screen. I was stunned

when I saw it, because I knew by that time that a set that small is very difficult

123

Table 7.8: Directly-available tribble permutations.

oct. perm. derivation oct. perm. derivation

00 012345 identity 40 031524 count out of circle by 3s
01 123450 rotated identity 41 142035 count out of circle by 3s
02 234501 rotated identity 42 253140 count out of circle by 3s
03 345012 rotated identity 43 304251 count out of circle by 3s
04 450123 rotated identity 44 415302 count out of circle by 3s
05 501234 rotated identity 45 520413 count out of circle by 3s
06 432105 reflected 05 46 035124 count out by 3s backward
07 321054 reflected 04 47 140253 count out by 3s backward
10 210543 reflected 03 50 251304 count out by 3s backward
11 105432 reflected 02 51 302415 count out by 3s backward
12 054321 reflected 01 52 413520 count out by 3s backward
13 543210 reflected identity 53 524031 count out by 3s backward
14 102345 pair swap 54 102354 2-pair rotation
15 210345 pair swap 55 315042 2-pair rotation
16 312045 pair swap 56 542310 2-pair rotation
17 412305 pair swap 57 513240 2-pair rotation
20 512340 pair swap 60 021435 3-pair rotation
21 021345 pair swap 61 034125 3-pair rotation
22 032145 pair swap 62 043215 3-pair rotation
23 042315 pair swap 63 103254 3-pair rotation
24 052341 pair swap 64 240513 3-pair rotation
25 013245 pair swap 65 453201 3-pair rotation
26 014325 pair swap 66 521430 3-pair rotation
27 015342 pair swap 67 534120 3-pair rotation
30 012435 pair swap 70 120534 symmetric half rotation
31 012543 pair swap 71 201453 symmetric half rotation
32 012354 pair swap 72 034512 algorithmically selected
33 452301 movement in pairs 73 035421 algorithmically selected
34 014523 movement in pairs 74 105243 algorithmically selected
35 230145 movement in pairs 75 130542 algorithmically selected
36 024135 2× 3, 3× 2 transposes 76 254310 algorithmically selected
37 031425 2× 3, 3× 2 transposes 77 510432 algorithmically selected

Table 7.9: Compact set of tribble permutations for two instructions.

023541 031542 032451 045231 054132
054321 103245 120453 140325 204531
235041 240351 253401 305421 324051
341205 342501 350241 403125 403251
423015 425301 430521 435102 452031
502341 520431 534120 534201 543021

124

to compute, and the search of that time ran 275 times slower than it would after I

ported it from Python to C. Table 7.9 shows this set of 30 permutations.

Importantly, the subset of 30 permutations cannot always implement 36-bit per-

mutations in five instructions. Sometimes there isn’t a one-instruction solution for

the first transition: in 100 million trials, nearly 1.80% of the cases did not succeed.

When this happens, the next thing to try is swapping PIT and PAT, which will usu-

ally resolve the issue. So the set of 30 works in five instructions most of the time,

but needs six instructions about one time out of every 3000 permutations needed.

This very high success rate with just 30 permutations in the subset gives me a lot of

confidence that the much larger set of 64 permutations, having exponentially larger

opportunities to find solutions, will always be able to permute 36-bit words in five in-

structions. Certainly in the absence of proof, compilers and assemblers need a tested

fallback to generate six instructions for word permutations. This fallback is trivially

implemented by ordering the 64-subset with the identity first, only writing code for

for the 720-permutation searches (not bothering to try 64 first), and suppressing out-

put of identity permutations. This scheme has the added benefit of exploiting any

one-instruction or identity transitions when only a few bits are being moved.

7.2.8 Mix opcodes

Table 7.6 (p. 112) also includes the MIX and XIM opcodes for S-box operations. MIX

maximizes the ALU’s capacity to use S-boxes quickly for hashing and pseudorandom

number generation. This ALU contains 64× 18 = 1, 152 different S-boxes; that is, 64

S-boxes for each RAM in the α, β, and γ layers. They are applied to the left operand

by the MIX or XIM instruction, and selected by the tribbles of the right operand.

This implements a key-dependent mixing or unmixing operation for 36 bits in one

instruction. The mixing may be iterated for a number of instructions with different

key material supplied as the right argument.

125

MIX is invertible for the left operand only. For any key k and inputs a and b,

a = b ⇐⇒ a MIX k = b MIX k. (7.1)

The inverse of the MIX opcode is XIM . I pronounce this as zim, because ksim has

awkward phonemes. XIM has the property

(a MIX k) XIM k = (a XIM k) MIX k = a. (7.2)

The S-boxes for XIM derive easily by inverting the MIX S-boxes, and swapping

between the α and γ layers. If a multiple-word key is used for a sequence of MIX

instructions, these words must be provided correctly in reverse order to XIM to recover

the original input.

Every bit of the 36-bit output from MIX and XIM depends on every input bit.

When exactly one input bit changes to the left operand and the key is held constant,

an average of 15.375 out of 36 bits change in the output. When exactly one input

bit changes to the key and the left operand is held constant, an average of 16.474

bits out of 36 change in the output. These figures come from 14 300 000 trials of

the MIX instruction for the two cases using /dev/urandom as source material. No

measurements were made with the unmix instruction XIM .

When two MIX instructions are used sequentially with the same right operand, the

average number of bits changed as a result of a single input bit changing improves to

approximately 17.9997 bits out of 36, which is very near to the desired measurement

of 18 bits. This figure comes from 398 000 000 trials of the MIX instruction. No

measurements were made with the unmix instruction XIM .

Application: Hash function for associative arrays

Either MIX or XIM can be used as a very fast keyed hash function for associative

arrays, using just one instruction per word hashed. Listing 7.3 shows a code snippet

126

state = secret.key xim word.0
state = state xim word.1
state = state xim word.2
output = state xim word.3

Listing 7.3: Using the XIM instruction to hash a four-word object.

to hash a block of four words. The xim token here is the XIM opcode, which is written

infix. There would be no problem using mix instead, although the computed hashes

would differ from xim. The period in the register name secret.key is legal syntax.

Because the assembly language does not have any structures at this time, periods are

permitted in identifiers so that variables can be named into structure-like groups.

To evade hash flooding attacks on machines that may encounter an adversary,

the key should be secret and certainly not hardcoded. I did not further assess the

security of this hash function, and I do not warrant that it is free of possible exploits.

I did not evaluate this function’s speed against popular contemporary hash func-

tions such as SipHash [Aumasson12] or xxHash [Collet21]. Such evaluations are com-

plex on account of differences in target architectures. For example, one of the proces-

sors discussed in the SipHash paper has three ALUs, and benchmark results are given

in terms of CPU cycles rather than instructions. Although the xxHash family is not

specified for 36 bits at this time, its inner loop apparently uses two multiplications,

an add, and a rotation for each word hashed. This seems to me like four instructions,7

in contrast with one instruction for a MIX or XIM hash.

I did not evaluate the function of listing 7.3’s collision or distribution properties,

although I am curious as to how they would measure against other hash functions.

The SMHasher test suite [Appleby16], supported by comparative data from other

functions, may be helpful for such an evaluation.

7Most hash functions that are written for speed avoid multiplication. Here also is an archi-
tectural difference making comparative assessments more difficult: my ALU does not offer 36-bit
multiplication as a standard instruction.

127

counter = seed1 ; must be nonzero
output = seed2 ; can be anything

loop:
counter = lfsr counter
output = output mix counter
...
jump loop

Listing 7.4: This two-instruction PRNG withstands all Dieharder tests.

Application: Pseudorandom number generator

History has shown there are many wrong ways to design pseudorandom number gen-

erators (PRNGs). Warning was given forty years ago in [Knuth81]. The GNU Scien-

tific Library (GSL) contains a large collection of historic PRNGs, of which many are

poor [Galassi21]. A simple way for someone who has computing skills but perhaps not

mathematical skills to weed out defective PRNGs is to use a statistical testing pack-

age for PRNGs such as Dieharder [Brown20]. One of the Dieharder’s best features is

that all of the GSL PRNGs are compiled into it. Not only can the user evaluate the

PRNGs using the Dieharder tests, but the user can also evaluate the Dieharder tests

using the GSL PRNGs. I ran a full set back in 2008, and I thought the results were

very interesting.

Using just Dieharder to test even a few PRNGs that use my ALU’s MIX and XIM

instructions would make for a lengthy paper. Instead, I present a single PRNG in

listing 7.4 that Dieharder gives a clean bill of health. I do not have the mathematical

knowledge to begin to consider the suitability of this PRNG, but I will mention a

couple of points.

Listing 7.4 shows a PRNG that uses just two instructions per 36-bit word output.

The PRNG has 72 bits of state that can be initialized via seed1 and seed2. 36 bits

of this state is directly observable in the output stream, so if someone, perhaps an

adversary, wanted to predict this generator’s future output on the basis of output that

128

has already appeared, at most 236 − 1 trials would be needed to fully “crack” this

generator. So although this generator may be adequate for simulations and casual

use, it is not cryptographically secure.

An eight-tap linear feedback shift register (LFSR) is implemented by a single-

instruction assembler macro that expands to stacked unary operation su.lfsr (sec-

tion 7.3.7). This LFSR has two cycles: the trivial cycle of all zeros with period 1,

and another cycle with all the other integers and period 236 − 1. For the PRNG to

work, it’s critical that the LFSR’s seed be nonzero. If this condition is met, the right

operand to MIX will have period 236 − 1, and the left operand to MIX will have the

same period as the PRNG as a whole. Because every output bit of MIX depends on

every input bit to both the left and right operands, the period of this generator will

be 236 − 1 at worst. The exact period will be a function of the two seeds, and will

not exceed 272 − 236 on account of the number of possible internal states.

The left operand to the MIX instruction is fed by the PRNG’s own output. Had

the left operand been a constant, the PRNG’s period would have been fixed at 236−1,

and there would be no duplicates in the output words within a period. Absence of

duplicates is not random behavior. By using the output stream to give the MIX

instruction more input than the counter alone, output words will tend to repeat more

in the manner of a random variable.

Listing 7.5 shows the initial output of an October 2022 test, where the virtual

machine of [Abel22b] simulates the PRNG of listing 7.4 and pipes the output to

Dieharder. The PRNG seed values were taken from /dev/urandom. The Bash com-

mand line was:

$./vm -s u | dieharder -g 200 -a

The Dieharder documentation and virtual machine source code can explain the com-

mand line options.

Although Dieharder catches many known bad PRNGs, its capabilities are in-

finitesimal compared to the variety of ways a PRNG may differ from a true random

129

#==#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown
#==#

rng_name |rands/second| Seed |
stdin_input_raw| 2.45e+06 |1455060622|
#==#

test_name |ntup| tsamples |psamples| p-value |Assessment
#==#

diehard_birthdays| 0| 100| 100|0.06637487| PASSED
diehard_operm5| 0| 1000000| 100|0.66165512| PASSED

diehard_rank_32x32| 0| 40000| 100|0.09510301| PASSED
diehard_rank_6x8| 0| 100000| 100|0.97071373| PASSED
diehard_bitstream| 0| 2097152| 100|0.30879029| PASSED

diehard_opso| 0| 2097152| 100|0.44448456| PASSED
diehard_oqso| 0| 2097152| 100|0.84436191| PASSED
diehard_dna| 0| 2097152| 100|0.54635854| PASSED

diehard_count_1s_str| 0| 256000| 100|0.06723551| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.59711400| PASSED
diehard_parking_lot| 0| 12000| 100|0.56023159| PASSED

diehard_2dsphere| 2| 8000| 100|0.61233368| PASSED
diehard_3dsphere| 3| 4000| 100|0.16715580| PASSED
diehard_squeeze| 0| 100000| 100|0.62235389| PASSED

diehard_sums| 0| 100| 100|0.18303812| PASSED
diehard_runs| 0| 100000| 100|0.77239037| PASSED
diehard_runs| 0| 100000| 100|0.94154880| PASSED
diehard_craps| 0| 200000| 100|0.56317191| PASSED
diehard_craps| 0| 200000| 100|0.46969494| PASSED

marsaglia_tsang_gcd| 0| 10000000| 100|0.78545646| PASSED
marsaglia_tsang_gcd| 0| 10000000| 100|0.36912472| PASSED

sts_monobit| 1| 100000| 100|0.71230580| PASSED
sts_runs| 2| 100000| 100|0.98030602| PASSED

sts_serial| 1| 100000| 100|0.33726371| PASSED
sts_serial| 2| 100000| 100|0.54329962| PASSED
sts_serial| 3| 100000| 100|0.59017244| PASSED
sts_serial| 3| 100000| 100|0.50313766| PASSED
sts_serial| 4| 100000| 100|0.25174796| PASSED
sts_serial| 4| 100000| 100|0.59153234| PASSED
sts_serial| 5| 100000| 100|0.03029913| PASSED
sts_serial| 5| 100000| 100|0.66420369| PASSED
sts_serial| 6| 100000| 100|0.04175049| PASSED
sts_serial| 6| 100000| 100|0.19005336| PASSED

Listing 7.5: First portion of Dieharder output evaluating the PRNG of listing 7.4.

130

variable. If Dieharder were perfect, its tests would fail all PRNGs (identify them as

non-random), and pass all true random number generators. At best, the pseudoran-

dom number generator of listing 7.4 strikes an impressive ratio, compared with other

PRNGs, of output quality to number of instructions per output word, and does so

in a completely transparent hardware implementation. But more study by qualified

investigators should be done to further validate or if necessary deprecate this PRNG.

The eight taps used by the LFSR instruction are special, in that identical taps

can implement 72-, 108-, and 104-bit LFSRs using the XPOLY instruction. Listing 7.6

contains background as to how the taps were selected.

Application: Round function for a 36-bit cipher

MIX and XIM have potential for use in cryptography, provided that experts specify

and validate the ciphers. This is a specialization I am not qualified in, but here are

a couple of problems with these operations. First, I have specified S-blocks that are

not optimized in any manner against differential cryptanalysis. This is somewhat on

purpose: optimizing for a specific attack could break a cryptosystem with respect

to some other, unanticipated attack. Most efforts to design attacks against block

ciphers and S-blocks are done in secret. So although the S-blocks specified are possibly

terrible—no one has checked—with respect to differential cryptanalysis, I can’t charge

forward as if differential cryptanalysis is the only concern. In any event, more work

is called for, because differential cryptanalysis safeguards are considered mandatory

for new cipher submissions to standards bodies.

The other problem with MIX and XIM for secrecy is the 36-bit block size is too

small and cannot be enlarged easily. The key would need to be changed with just

about every packet sent or received due to the potential for birthday attacks, and

collisions in real-world protocols have been demonstrated for considerably larger block

ciphers [Bhargavan16]. Although special cipher modes have been designed to expand

the birthday bound [Iwata06], 36-bit blocks are still too small for these new modes

131

/*
The minicomputer firmware offers fast, well-mixed pseudorandom
number generation via a fast linear feedback shift register (LFSR)
followed by a substitution-permutation network (SPN). If a period
of 2**36 is long enough, it takes just two instructions to
generate a "good" random number. But we need a polynomial to
define the LFSR taps, and here it is.

The following polynomials are all primitive and use the same taps
in the 36 most sig. bits. Therefore, we conceivably can use the
same 8 tap positions for LFSRs of 36, 72, 108, 144. This is the
ONLY tap set suitable for all four sizes that has 8 or fewer taps.
It cannot support 180, 216, 252, or 288 bits.

There is no penalty for using more than 8 taps, but this requires
CPU time and potentially a Mathematica license over that time to
search. Finding this 8-tap solution already took 90 minutes of CPU
time, and further solutions may require far more time.

x^ 36 + x^ 31 + x^ 13 + x^ 7 + x^ 6 + x^ 5 + x^ 3 + x^ 2 + 1
x^ 72 + x^ 67 + x^ 49 + x^ 43 + x^ 42 + x^ 41 + x^ 39 + x^ 38 + 1
x^108 + x^103 + x^ 85 + x^ 79 + x^ 78 + x^ 77 + x^ 75 + x^ 74 + 1
x^144 + x^139 + x^121 + x^115 + x^114 + x^113 + x^111 + x^110 + 1

const long lfsr_taps =
1L << 35 | 1L << 30 | 1L << 12 | 1L << 6

| 1L << 5 | 1L << 4 | 1L << 2 | 1L << 1;
*/
#define lfsr_taps 0x840001076L

Listing 7.6: An explanation of the LFSR and XPOLY polynomials.

132

to be useful. But implementing a cipher for larger blocks requires that we choose

between many more instructions per word encrypted, or a much larger number of

RAMs in the ALU.

The block size threat, infelicities of S-box selection, and other problems to be

identified do not preclude efficient use of MIX and XIM for secure communication and

authentication. But they do put the problem above my pay grade, so I have to recuse

myself with respect to cryptography.

How S-boxes for MIX were selected

Listing 7.7 shows a Python 3 specification for the MIX opcode’s suggested S-boxes.

The boxes are filled from a so-called “nothing up my sleeve number,” giving a sim-

ple, transparent process for computing S-boxes. The rationale is that by using an

algorithm that takes almost no input from me, I would have great difficulty trying

to build a backdoor into the S-boxes produced by this algorithm. I opted to use an

easy-to-compute irrational number, rather than requiring storage for a long number,

or having people look up a number online or compute it with some utility.

The square root of one half ≈ 0.7071 is possibly the easiest irrational of all to

write code to compute, and it converges quickly using Newton’s method. Listing 7.7

does this using Python’s built-in arithmetic for large integers. The program takes

only a few moments to compute a 341 000-bit approximation of
√

2 ÷ 2. This turns

out to be enough bits to fill all of the S-boxes without reusing any data.

The
√

2 ÷ 2 bits are regarded as a fixed-point real number, where bit 341 000

would have place value 1. Initially, there is a 0 in place value 1, because only the

bits through 340 999 are filled, representing a real number r such that 0 ≤ r < 1.

Information is extracted from these bits by presuming r is a uniformly-distributed

random variable. If a random integer between (for example) 0 and 4 inclusive is

needed, the integer representation of r can be multiplied by 5. The integer part of

the product will be in bits 341 000–341 002, and will be 0, 1, 2, 3, or 4. The fractional

133

#!/usr/bin/python3

def perm(): # obtain a permutation of 64 objects
avail = list(range(64))
done = []
while avail:

perm.fract *= len(avail)
rand = perm.fract >> root_bits
perm.fract &= root_mask
done.append(avail[rand])
del avail[rand]

return tuple(done)

def boxes(): # obtain 64 permutations for 1 RAM
return tuple(perm() for i in range(64))

def row(): # obtain perms for a row of 6 RAMs
return tuple(boxes() for i in range(6))

def run(): # obtain perms for 3 rows of RAMs
return row(), row(), row()

root_bits = 341000 # needed = 18 * 64 * (64!).bit_length()
root_mask = (1 << root_bits) - 1
half_bits = 2 * root_bits # must be even
half = 1 << half_bits - 1 # 1/2 in this radix
root = 3 << root_bits - 2 # initial estimate for (1/2)**(1/2)

print("Computing %s bits of sqrt(2)/2 " % root_bits, end="")
while abs(half - root * root) > 2 * root:

root = (root + half // root) >> 1
print(end = ".", flush = True)

print(" done!")
perm.fract = root # initial irrational to extract from

v = run() # v is the output of this run
print(v[2][5][63]) # show last permutation as a check

Listing 7.7: Python 3 specification of S-boxes for the MIX and XIM opcodes.

134

part, still in bits 0–340 999, becomes the uniformly-distributed value of r for the next

random integer extraction.

The program generates 6-bit S-boxes by shuffling the numbers 0 through 63

inclusive, using successive multiplications to pick from 64 remaining numbers, 63

remaining numbers, all the way down to the last remaining number. The precision

of the arithmetic on r, 341 000 bits, needs to be adequate to uniquely describe any

contents of the S-boxes that must be filled. Each α, β, and γ SRAM contains 64 S-

boxes, and there are a total of 18 of these RAMs, so 1 152 S-boxes are needed. For each

S-box, there are 64! different contents possible, so a minimum of d1 152× log2 64!e =

340 987 bits is sufficient to fill all of them. The hardcoded 341 000 bits in listing 7.7

exceeds this computed minimum. If there are enough bits, the same set of S-boxes

will be output regardless of how many bits were used for the computation. If there

are not enough bits, the S-boxes obtained will change according to the number of bits

supplied.

For the benefit of anyone who may try to implement the same S-boxes indepen-

dently, the final S-box computed is for the leftmost γ tribble with right operand 63,

and is [2 52 22 7 17 63 12 56 38 48 44 4 29 10 30 8 21 54 28 25 62 15 49 32 11 18 42 43

36 19 24 61 3 35 6 39 16 31 53 40 46 34 27 9 58 5 37 20 50 14 57 33 59 51 55 1 0 45 47

41 13 60 23 26]. Experiments show that the output is the same if more than 341,000

bits of the irrational are computed, but when fewer than 340,987 bits are given, the

output destabilizes due to premature exhaustion of numeric precision.

7.2.9 Simple unary instructions

The ALU opcodes of sections 7.2.1–7.2.8 all implement binary operators, meaning

functions with two inputs. For opcodes that return a result, the assembler syntax

places either the opcode or operator symbol between the left and right arguments.

Unsurprisingly, the ALU also has opcodes for implementing unary operators, single-

input functions that depend solely on the left operand.

135

Table 7.10: Unary instructions and their implementations.

opcode α β γ θ ζ T description

UN.A uny id add t logic 0 simple unary, alpha layer
UN.B boo uny add t logic 0 simple unary, beta layer
UN.G boo id uny t logic 0 simple unary, gamma layer
STUN.A stu stu stu add add.u 1 stacked unary support
STUN.B stu stu stu gt logic 1 stacked unary support
STUN.C stu stu stu t asl.uu 0 stacked unary support
STUN.D stu stu stu 2r logic 1 stacked unary support
STUN.E stu stu stu 2l logic 0 stacked unary support
STUN.F stu stu stu rev t.adj 1 stacked unary support
STUN.G stu stu stu t t.adj 0 stacked unary support
STUN.H stu stu stu t t.adj T stacked unary support
STUN.I stu stu stu add t.adj 1 stacked unary support

Rather than ignore the right operand for unary operators, my architecture uses

the right operand to select the unary function being implemented. Any “slot,” or

combination of function select bits, offers enough SRAM address space to implement

either one binary operator or 64 unary operators (figure 5.4).8

In a simple unary instruction, sometimes shortened to unary instruction, only

one layer—α, β, or γ—participates in the computation. The non-participating layers

pass their inputs through unchanged. Because whichever of the three layers is active

operates on disjoint tribbles (transposed in β’s case), the computation is very simple

and is threaded across the tribbles. The simple unary instructions are implemented

by the first three opcodes of table 7.10: UN.A, UN.B, and U.G for the α, β, and γ

versions respectively.

The available operations are in table 7.16 (p. 161), which still has room for ex-

pansion. The right operand’s six-bit specifier as to which unary function to implement

must be replicated across the right operand. For example, to reverse the bits within

each tribble of a word, operation 22‘o from table 7.16 is applied to all six tribbles:

8Another interpretation is that a binary operator may use its right operand to select among and
emulate 64 unary operators.

136

word = 111100_010101_000010_111111_011001_011111‘b
word’ = word un.a 222222222222‘o
; word’ is now
; 001111_101010_010000_111111_100110_111110‘b

Because the right operand’s tribbles are isolated to one participating SRAM each,

it is possible to mix-and-match unary operations among the tribbles. For instance,

the following code counts the number of zeros in the three most significant tribbles

using operation 11‘o, but counts the number of ones in the three least significant

tribbles using operation 14‘o:

word = 111100_010101_000010_111111_011001_011111‘b
word’’ = word un.a 111111141414‘o
; word’’ is now
; 000010_000011_000101_000110_000011_000101‘b

With respect to real-program usefulness, simple unary operations are something

of a solution looking for a problem. Rarely do programmers ever think about six-bit

subwords, let alone seek to thread unary operations across them. Rather than being

a design feature, simple unary operations are more like an architectural oddity that

may find infrequent application as a result of being supported.

7.2.10 Stacked unary instructions

A stacked unary instruction employs the entire ALU to compute a function of the

left operand, with the function itself selected by the right operand. Because of β’s

transpositions, θ’s summarizing capability, and other interconnections, stacked unary

operations are not constrained to operate within tribbles. The result is that stacked

unary instructions are much more capable than their simple unary counterparts, and

would find use in many programs.

Stacked unary instructions engage the α, β, and γ layer simultaneously, with

each layer having the ability to offer a different operation during the instruction.

But there is one catch: the three layers share the same right operand, so if α is

137

doing whatever it does for operation 25‘o, β and γ must be doing their versions of

operation 25‘o. The ALU does not support α doing operation 25‘o while β does

operation 07‘o. Therefore, any stacked unary operation is actually written as a set

of three unary operations, one each for the α, β, and γ layers.

Table 7.10 lists nine stacked unary instructions, presently named STUN.A–STUN.I.

Their names and implementations are likely not stable yet. Although the right

operand supplies all information to α, β, and γ as to how they are to function for a

particular operation, the incoming T(emporal) flag, flags RAM ζ, and carry decision

RAM θ need their functioning to match the instruction’s objective. In practice, the

assembler’s macro feature will generate stacked unary instructions with specific STUN

opcodes (controlling θ, ζ, and the incoming T(emporal) flag) and matching right

operands (controlling α, β, and γ). Nearly all of the macros in table 7.1 will expand

to one or more stacked unary instructions.

Table 7.17 (p. 162) lists the stacked unary operations themselves—that is, their

purposes and right operands. As is ordinarily done with simple unary operations, the

octal code for the operation must be replicated to all six tribbles of its right operand.

7.3 ALU operations and their implementations

Section 7.2 described the ALU’s principal opcodes, and in six tables specified the

operations and other control signals that implement each opcode. This section is

about the operations themselves. As a reminder, the difference between an ALU

opcode and an ALU operation is that opcodes are implemented by the ALU as a

whole, but operations are implemented by individual SRAMs. Assembly language

programs specify the sequence of opcodes a program uses, but it is the firmware that

determines the operations that implement each opcode.

None of the ALU operation tables are near full at this time, assuming the ALU

is constructed from 256Ki× 18 SRAMs. For example, only 29 out of 64 available α

138

slots are specified, so space remains available to add more operations to the α layer.

Although the ALU operations of this section are described in terms of calculations

and steps, their SRAM implementations are simple table lookups. The complex

operations described below aren’t accomplished by manipulating a RAM to perform

them, but using a C program to compute tables to distribute as firmware.

7.3.1 α layer operation

An alphabetical list of the α (alpha) layer operations appears as table 7.11. Each

of the six α RAMs accepts a six-bit left operand L and six-bit right operand R,

so the operations themselves are small and simple. Which operation to perform is

determined by six operation select input bits. The α layer portion of table 5.2 shows

how these inputs map to SRAM address bits.

Each α RAM sends a six-bit result to the transposed β layer. Each αi also sends

two bits, nominally named pi and ci (propagate and carry), to the RAM θ. The use

of these two bits depends on the operation and is not always propagate and carry

information. The most significant α RAM, α5, sends five bits to RAM ζ, nominally

named encoded range. The use of these five bits depends on the operation, but

ordinarily supports detection of arithmetic overflow. The α layer portion of table 5.3

(p. 87) shows how these outputs map to SRAM address bits.

Additive operations: α.add, α.sub, α.rev

The additive operations do base-64 addition, subtraction, and reverse subtraction.

The α.add variants add in the customary manner. In addition, the propagate bit is

set if the result is exactly 63, and the carry bit is set if the result is more than 63.

The α.sub variants do a complement-and-add rather than a true subtract. After

the right operand is replaced with its bitwise NOT, everything is exactly the same as

for α.add. Because this is a one’s complement rather than a two’s complement, the

computed difference is off by one. The ALU corrects this by setting or inverting the

139

Table 7.11: ALU α layer operations.

name description

α.add.uu add tribbles unsigned/unsigned
α.add.us add tribbles unsigned/signed
α.add.su add tribbles signed/unsigned
α.add.ss add tribbles signed/signed
α.and bitwise AND
α.asr sign extension and zero detection for arithmetic shift right
α.cmp.uu magnitude compare tribbles unsigned/unsigned
α.cmp.us magnitude compare tribbles unsigned/signed
α.cmp.su magnitude compare tribbles signed/unsigned
α.cmp.ss magnitude compare tribbles signed/signed
α.dsl replace 6 most significant bits of L with those of R
α.e35 check encroachment of bit 35 or 36 for arithmetic shift left
α.e36 check encroachment of bit 36 for arithmetic shift left
α.mh multiply tribbles unsigned, high tribble of products
α.mix α’s forward S-boxes
α.ml multiply tribbles unsigned, low tribble of products
α.nud help locate leftmost 1 bit for NUDGE instruction
α.or bitwise OR
α.rev.uu reverse subtract tribbles unsigned/unsigned
α.rev.us reverse subtract tribbles unsigned/signed
α.rev.su reverse subtract tribbles signed/unsigned
α.rev.ss reverse subtract tribbles signed/signed
α.stu “stacked unary” functions that engage α, β, and γ together
α.sub.uu subtract tribbles unsigned/unsigned
α.sub.us subtract tribbles unsigned/signed
α.sub.su subtract tribbles signed/unsigned
α.sub.ss subtract tribbles signed/signed
α.uny R selects simple unary functions on 6-bit tribbles of L
α.xim inverses of γ’s forward S-boxes

140

incoming T(emporal) flag, which causes RAM θ and the γ layer to correct the result.

This T(emporal) flag specification can be seen in table 7.2 (p. 104).

The α.rev variants work exactly like α.sub, except that the left and right operands

are swapped first.

RAM α5 participates in overrange checking, but in order to do this, it needs to

know whether its inputs are signed or unsigned. If L is signed, its most significant bit

has place value −(235). Otherwise L is unsigned, and its most significant bit has place

value 235. The same is true for R. From the perspective of α5, which only sees the

most significant tribble of L and R, the place values are −(25) and 25. α5 knows the

signage of L and R, because the control decoder stratifies their operation by signage.

These are indicated by .uu, .us, .su, and .ss suffixes in table 7.11 for α.add, α.sub,

and α.rev—there are a total of twelve operations. The first u or s indicates that L is

unsigned or signed respectively, and the second u or s does the same for R.

How does the control decoder know which signage to request for an α operation

as a program is running? The answer is, the A, S, RS, AC, SC, or RSC opcodes are also

stratified by signage, not only for the left and right operands, but for the result also.

This can be seen in table 7.2.

How does the assembler know what signage to attach to additive opcodes? The

answer is, the assembly language declares all registers names with their signage. Here

is an example:

; Allocate and name two unsigned and one signed registers.
unsigned a c
signed b

; Below generates opcode A.usu, which the control decoder
; expands at runtime to alpha.add.us and zeta.add.u.
c = a + b

α5 participates in range checking, but it can’t make the final decision as to

whether overflow has occurred. It’s missing two pieces of information. First, it’s not

known whether an incoming carry will arrive in the 230 place value, in which case α5’s

141

result would be one less than the true result. Second, in order to limit the number of

operations the α layer must implement (that is, in order to conserve memory), the α

layer does not know whether the destination register is unsigned or signed. Instead,

RAM ζ will determine if overflow occurred, using carry summary information from

RAM θ and an overflow estimate called encoded range from α5.

Although RAM α5 truncates the sum it calculates to six bits, it also categorizes

where the true sum lies prior to truncation. Assuming that no carry will arrive in

the 230 place value, five scenarios exist that can be numbered from 0 through 4:

0 sum < −32 always underflows
1 −32 ≤ sum < 0 underflows if result is unsigned
2 0 ≤ sum < 32 never overflows or underflows
3 32 ≤ sum < 64 overflows if result is signed
4 64 ≤ sum always overflows

The same information is needed under the assumption that a carry will arrive in

the 230 place value. This causes the boundaries to move for the five scenarios, which

are now numbered in increments of five:

0 sum < −33 always underflows
5 −33 ≤ sum < −1 underflows if result is unsigned
10 −1 ≤ sum < 31 never overflows or underflows
15 31 ≤ sum < 63 overflows if result is signed
20 63 ≤ sum always overflows

By having α5 evaluate both scenarios and add their representations together,

this information RAM ζ will need to determine if an addition or subtraction result

does not fit in a particular destination register is encoded in a number between 0 and

24, which fits in five bits. This is the encoded range output of RAM α5.

An astute reader may note that the two range scenarios can be compressed from

25 cases to 9 cases by evaluating the sum relative to −32, −32, −1, 0, 32, 33, 63, and

64. This would seem to allow the encoded range to fit in four bits instead of five. It

turns out that the MAX and MIN instructions need five bits anyway, because the two

scenarios to encode are not whether or not a carry occurred, but which operand is

larger or smaller. Because the operands to MAX and MIN are independent, there will

142

be 25 cases to encode that cannot be reduced in number. So the encoded range field

is kept at five bits, and the encoding mechanism is harmonized as much as possible

between the additive opcodes and MAX and MIN.

Bitwise boolean operations: α.and, α.or

The operations α.and and α.or respectively compute the bitwise AND and OR of the

left and right operands. The result is sent to the transposed β layer. The propagate,

carry, and encoded range outputs are not used.

Compare operation: α.cmp

The α.cmp operation is used by the MIN and MAX opcodes, but not by the CMP opcodes.

The six-bit left and right operands are compared for each RAM. If the right operand

is greater, the carry bit is set. If the left operand is greater, the propagate bit is set.

If the operands are equal, neither bit is set.

α.cmp requires stratification by signage for the α5 RAM only, where the encoded

range must anticipate that either operand may become the result:

0 L < −32 always underflows
1 −32 ≤ L < 0 underflows if result is unsigned
2 0 ≤ L < 32 never overflows or underflows
3 32 ≤ L < 64 overflows if result is signed
4 64 ≤ L always overflows

0 R < −32 always underflows
5 −32 ≤ R < 0 underflows if result is unsigned
10 0 ≤ R < 32 never overflows or underflows
15 32 ≤ R < 64 overflows if result is signed
20 64 ≤ R always overflows

α.cmp passes its left operand unchanged to the transposed β layer.

Shift and rotate operations: α.asr, α.e35, α.e36

The α.asr operation is used by the ASR (arithmetic shift right) instructions, passing its

left operand unchanged to the transposed β layer. α5’s most significant bit is copied

143

to its carry output. If the left operand is signed, RAM θ will replicate that to all carry

decision bits to γ so that sign extension for the right shift can occur during the γ layer.

The same bit is copied to RAM ζ using one of the encoded range bits, because the

left operand’s sign is relevant to overflow decisions. Another encoded range bit alerts

ζ when the right operand is zero, information that also affects overflow outcomes.

The α.e35 operation is used by the ASL (arithmetic shift left) instructions for

range checking when the left operand is signed. The information required is whether

or not a given shift amount, indicated by the right operand at all αi, would cause a

1 to be shifted into or through the sign bit, which is the −(235) place value of the

eventual output for a given Li (left operand tribble), in which case propagate output

bit pi is set. If any pi is set but the sign bit was initially clear, negative overflow has

occurred. Also, if the shift amount would cause a 0 to be shifted into or through the

sign bit, carry output bit ci is set. If any ci is set but the sign bit was initially set,

positive overflow has occurred. RAM α5 transmits the initial sign bit to RAM ζ via

one of the encoded range bits.

The α.e36 operation is used by the ASL (arithmetic shift left) instructions for

range checking when the left operand is unsigned. Its implementation is identical to

α.e35, except that 236 place value is monitored instead of −(235). Unlike α.e35, the

downstream logic after α.e36 in RAMs θ and ζ only looks for positive overflow.

Multiply operations: α.dsl, α.mh, α.ml

α.dsl passes the left operand unchanged except for the most significant tribble, which

is replaced with the right operand’s most significant tribble. The propagate, carry,

and encoded range outputs are not used.

α.mh multiplies the tribbles pairwise and passes the most significant tribble (bits

6–11) of each result to the transposed β layer. If α5’s result is nonzero, two encoded

range bits are set to advise RAM ζ that a MH instruction may be in the process of

overflowing a short multiplication. The propagate and carry outputs are not used.

144

α.ml multiplies the tribbles pairwise and passes the least significant tribble (bits

0–5) of each result to the transposed β layer. The propagate, carry, and encoded

range outputs are not used.

Nudge operation: α.nud

The NUDGE operation from section 7.2.6 begins with α.nud, which presumes that for

every tribble, the leftmost 1 bit of the right operand indicates the start bit for the

NUDGE. That tribble’s output bits are the right operand’s least significant bits up to

but not including the start bit, and the left operand’s most significant bits from the

start bit upward. The carry output is set. If the right operand is all zeros, the carry

output is not set, and the output is the left operand without changes. θ and γ will

assure that only the actual start bit is treated as such; all tribbles right of the tribble

that contains the actual start bit will be overwritten by the γ layer with the right

operand.

Mixing operations: α.mix, α.xim

The α.mix and α.xim operations implement the α layer’s S-boxes for the MIX and

XIM instructions. The left operand is the input word, and the right operand contains

the key material (which S-box to apply) for each tribble. The forward mix is α.mix

and has inverse γ.xim; α.xim is the inverse of γ.mix.

α.mix and α.xim only supply output to the transposed β layer. The propagate,

carry, and encoded range outputs are not used.

Unary operations: α.uny, α.stu

Up to 64 unary operations, selected by the right operand, are provided by α.uny.

These operations can be mixed and matched across tribbles, so up to six different

unary functions can be applied simultaneously during one instruction. Table 7.16

(p. 161) lists some anticipated operations which, depending on the ALU function

145

select lines, might or might not be used in combination with the other layers. Some

might be given assembler macros in the future. The propagate, carry, and encoded

range outputs are not used. See also section 7.2.9.

The α.stu operation implements the α layer of the stacked unary operations of

section 7.2.10 and table 7.17 (p. 162). Output will be to the transposed β layer, prop-

agate and carry output to RAM θ, and/or encoded range to RAM ζ as the operation

requires. Some implementation descriptions for the stacked unary operations appear

in section 7.3.7. For greater detail, the file unary.c in the firmware implementation

is the best source of information.

7.3.2 β layer operation

An alphabetical list of the β (beta) layer operations appears as table 7.12. Each of

the six β RAMs accepts a six-bit left operand transposed from the α layer and a six-

bit untransposed right operand R. The operations themselves are small and simple.

Which operation to perform is determined by six operation select input bits. The β

layer portion of table 5.2 (p. 86) shows how these inputs map to SRAM address bits.

The β RAMs each send a six-bit result to the untransposed γ layer. The β layer

portion of table 5.3 (p. 87) shows how these outputs map to SRAM address bits.

Bitwise boolean operations: β.id, β.not, β.txo

The β.id operation passes the left operand to the output unchanged. It is used for

opcodes that the β layer does not participate in, such as AND, MAX, PIT, and NUDGE.

The β.not operation is a bitwise NOT of the left operand, with the right operand

ignored. It is used alone and in combination with bitwise boolean operations from

other layers to product opcodes such as NOT, NAND, NOR, XNOR, LONR, and RONL.

The β.txo operation is a bitwise XOR of the left operand, which is transposed,

with the right operand, which is not transposed. It forms the basis of the TXOR

opcode, which is interesting but would probably find rare use. TXOR can be used with

146

Table 7.12: ALU β layer operations.

name description

β.ham swizzle for HAM2 instruction
β.id identity (pass all tribbles unchanged)
β.imm swizzle immediate argument out of CPU instruction
β.mix β’s forward S-boxes
β.not bitwise NOT
β.pat R selects permutations of transposed tribbles
β.rol rotate transposed tribbles left
β.rtl rotate one tribble (6 bits of untransposed word) left
β.shl shift transposed tribbles left
β.shr shift transposed tribbles right
β.stu “stacked unary” functions that engage α, β, and γ together
β.swz frequently-used transposed tribble swizzle operations
β.txo bitwise XOR of transposed tribbles with non-transposed R
β.uny R selects simple unary functions on transposed tribbles
β.xim inverses of β’s forward S-boxes

a zero left operand to compute the transposition of its 36-bit right operand.

Shift and rotate operations: β.rol, β.rtl, β.shl, β.shr

The β.rol operation provides the first stage of a logarithmic shifter, supporting full-

word rotations by the number of bits in each tribble of the right operand. Because

the β layer’s input and output are transposed, β.rol moves bits between tribbles,

retaining the same position within any particular tribble. See also figure 4.9 (p. 65)

and section 4.6. The γ.rol operation will complete this rotation.

The β.rtl (rotate tribble left) operation ignores the right operand and rotates

the left operand one bit position left. Because the β layer is transposed, the effect

of this is to rotate the entire 36-bit word six bit positions to the left. This operation

supports the multiplication opcodes MH and DSL.

The β.shl operation is an augmented version of β.rol, in that the most significant

n bits, where n is the rotation amount, are zeroed prior to the rotation. The net effect

147

is a left shift, which is completed by the γ.rol operation.

The β.shr operation is an augmented version of β.rol, in that the least significant

n bits, where n is the rotation amount had it been expressed as a right rotation, are

zeroed prior to the rotation. The net effect is a right shift, which is completed by the

γ.rol operation.

Bit permute operation: β.pat

The β.pat operation implements permutations on the transposed tribbles of the β

layer. The bits to permute come from the left operand, and the permutation is

selected by the right operand according to table 7.8 (p. 124). β.pat supports the PAT

and PAIT opcodes.

Mixing operations: β.mix, β.xim

The β.mix and β.xim operations implement the β layer’s S-boxes for the MIX and XIM

instructions. The left operand is the transposed input word, and the right operand

contains the key material (which S-box to apply) for each tribble. β.mix and β.xim

are inverses of each other.

Unary operations: β.uny, β.stu

Up to 64 unary operations, selected by the right operand, are provided by β.uny.

These operations can be mixed and matched across tribbles, so up to six different

unary functions can be applied simultaneously during one instruction. Table 7.16

(p. 161) lists some anticipated operations which, depending on the ALU function

select lines, might or might not be used in combination with the other layers. Some

might be given assembler macros in the future. The propagate, carry, and encoded

range outputs are not used. See also section 7.2.9.

The β.stu operation implements the β layer of the stacked unary operations of

section 7.2.10 and table 7.17 (p. 162). Output is to the untransposed γ layer. More in-

148

formation about stacked unary operations appears in section 7.3.7. For greater detail,

the file unary.c in the firmware implementation is the best source of information.

Swizzle operations: β.swz, β.imm, β.ham

The β.swz operation enables the transposed β layer to replicate and/or relocate

among the six subwords of a CPU word. Table 7.7 (p. 114) gives a list of the currently

defined swizzles.

The β.imm operation is used in conjunction with ff m (the immediate argument

flip-flop of figure 8.6 on p. 200) to transfer the immediate argument field from the

current CPU instruction word to the γ layer. This swizzle is from the CPU word:

opcode dest. register immediate value

bits 35–27 bits 26–18 bits 17–0

to two copies of the immediate value:

immediate value immediate value

bits 35–18 bits 17–0

The γ layer will either retain both immediate values, replace the right copy with

zeros, replace the left copy with zeros, or replace the left copy with ones (sign extend

a negative immediate value).

The β.ham operation moves bits from (untransposed) positions 6, 7, 8, 12, 13,

14 to (untransposed) positions 0–5 respectively. The remaining positions 6–35 are

cleared. β.ham’s use for population counting via the HAM2 instruction is discussed

in section 7.3.7.

7.3.3 γ layer operation

An alphabetical list of the γ (gamma) layer operations appears as table 7.13. Rather

than having six function select input bits as the α and β layers do, the γ RAMs have

149

Table 7.13: ALU γ layer operations.

name T description

γ.add add carry decisions from θ to tribbles
γ.ham 1 shift tribble 2 left 3 bits for HAM2 instruction
γ.imh 1 place 18-bit immediate value in upper half of 36-bit word
γ.imn 1 sign-extend 18-bit negative immediate value to 36 bits
γ.imp 0 sign-extend 18-bit positive immediate value to 36 bits
γ.kil kill (set to zero) tribbles identified by θ

γ.mix 0 γ’s forward S-boxes
γ.mux replace tribbles identified by θ with tribbles from R
γ.pit 0 R selects permutations of tribbles
γ.rol rearrange partially-rotated tribbles into correct order
γ.stu “stacked unary” functions that engage α, β, and γ together
γ.uny 0 R selects simple unary functions on tribbles
γ.xim 1 inverses of α’s forward S-boxes
γ.xor 1 bitwise XOR

Many of these require θ.t and the indicated T(emporal) flag input.

five function select input bits that are common to all six RAMs. Each RAM γi also

has its own carry decision bit di from the θ RAM. So rather than having 64 memory

“slots” to support different operations, the γ layer has 32 slots that are twice as large,

because of their carry decision input. Each of the 32 slots can hold one operation that

uses the di bits, or two operations that do not use the di bits, but are differentiated

by them.

Table 7.13 lists the γ layer operations. Column T indicates those operations

that use only one-half slot, in which case the di must be set as marked in column T.

The di are set to 0 or 1 by forcing the incoming T(emporal) flag to 0 or 1, and using

the θ.t operation to distribute it to the six γ RAMs. Where column T is blank, the

operation uses the di decisions in its computation and requires a full slot.

The γ sections of tables 5.2 and 5.3 (pp. 86 and 87) specifically list the input

and output bits of the γ RAMs. Each γ RAM delivers two six-bit copies of its result,

in order that the result can be written to the left and right register file SRAMs

150

simultaneously. Because the data wiring at the register file is bidirectional and both

copies must be read simultaneously, separate wiring is needed for the two register

copies. This is why γ cannot use the same output bits for both copies.

Certain of the γ layer’s output bits work identically across all operations. These

are the tribble zero bits, one per γ RAM, which are set when the six principal outputs

are all zero. Supplying these bits from γ rather than computing them outside speeds

and simplifies the eventual zero computation for the 36-bit word. There is also a

third copy of the Y35 bit. Although two copies are already available in the output to

the two register files, those circuit board tracks are heavily loaded. The third copy,

needed for N(egative) flag computation, is separated in order to not further increase

capacitance and delay on the other two.

Additive operation: γ.add

The γ.add operation ignores the right operand, and adds the carry decision di to the

left operand. The output is allowed to wrap modulo 26.

Bitwise boolean operation: γ.xor

The γ.xor operation computes the bitwise XOR of the left and right operands.

Tribble boolean operations: γ.imh, γ.imn, γ.imp, γ.kil, γ.mux

The tribble boolean operations provide many-to-one bitwise boolean logic. The

“many” here are the six bits of the left operand, and in the case of γ.mux only,

the right operand also. The “to-one” either comes from a constant 0 or 1 depending

on the tribble position, or comes from the di carry decisions.

The γ.imh (immediate high) operation passes the 18 most significant bits un-

changed, but zeros the 18 least significant bits. This supports the IMH (load immediate

high) CPU opcode of section 8.6.3. Because the di inputs are not used, this operation

fits in a half slot.

151

The γ.imn (immediate negative) operation sets the 18 most significant bits to

1s, but passes the 18 least significant bits unchanged. This supports the IMN (load

immediate negative) CPU opcode of section 8.6.3. Because the di inputs are not used,

this operation fits in a half slot.

The γ.imp (immediate positive) operation clears the 18 most significant bits, but

passes the 18 least significant bits unchanged. This supports the IMP (load immediate

positive) CPU opcode of section 8.6.3. Because the di inputs are not used, this

operation fits in a half slot.

The IMB (load immediate both) CPU opcode does not have γ layer operation

of its own, because the β layer has already replicated the 18-bit constant from the

instruction into both halves of the 36-bit word.

The γ.kil (kill) operation passes the left operand unchanged for those tribbles

where di = 0, and returns all zeros for those tribbles where di = 1. This supports

opcodes such as IGF. Because the di inputs are used, this operation requires a full

slot.

The γ.mux (mux, or multiplex) operation passes the left operand unchanged for

those tribbles where di = 0, and passes the right operand unchanged for those tribbles

where di = 1. This supports opcodes such as MIN and MAX. Because the di inputs are

used, this operation requires a full slot.

Shift and rotate operations: γ.rol

The γ.rol completes a right rotation by providing the second stage of a logarithmic

shifter. The β layer has already rotated all bits into their correct tribbles, but their

position within the tribbles requires correction. γ.rol applies this correction. Al-

though this operation is a left rotation, a right rotation can be accomplished using

36− (rotation amount) as the right operand.

For the ASR (arithmetic shift right) opcodes, γ.rol provides sign extension in

addition to completing the rotation. The α.asr and θ.c5 operations copy the most

152

significant bit of the original left operand—its so-called sign bit—to all of the di bits.

Upon finding di set, the γ RAMs will OR in 1 bits at the correct place values based

on the right operand to achieve the sign extension. Because the di inputs are used to

support the ASR opcode, γ.rol requires a full slot.

Bit permute operations: γ.pit, γ.ham

The γ.pit operation implements permutations within tribbles in the γ layer. The bits

to permute come from the left operand, and the permutation is selected by the right

operand according to table 7.8. γ.pit supports the PIT and PAIT opcodes. Because

the di inputs are not used, this operation fits in a half slot.

The γ.ham operation moves three bits from positions 12, 13, 14 to positions 15,

16, 17. The positions moved from are replaced with zeros, and bits overwritten are

lost. γ.ham’s use for population counting via the HAM2 instruction is discussed in

section 7.3.7. Because the di inputs are not used, this operation fits in a half slot.

Mixing operations: γ.mix, γ.xim

The γ.mix and γ.xim operations implement the γ layer’s S-boxes for the MIX and XIM

instructions. The left operand is the input word, and the right operand contains the

key material (which S-box to apply) for each tribble. The forward mix is γ.mix and

has inverse α.xim; γ.xim is the inverse of α.mix. Because the di inputs are not used,

these operations each fit in a half slot.

Unary operations: γ.uny, γ.stu

Up to 64 unary operations, selected by the right operand, are provided by γ.uny.

These operations can be mixed and matched across tribbles, so up to six different

unary functions can be applied simultaneously during one instruction. Table 7.16

(p. 161) lists some anticipated operations which, depending on the ALU function

select lines, might or might not be used in combination with the other layers. Some

153

Table 7.14: ALU θ RAM operations.

name description

θ.2l di ⇐⇒ ∃j > i : cj = 1
θ.2r di ⇐⇒ ∃j < i : cj = 1
θ.add di = carry-skip decisions based on α’s propagates and carries
θ.dsl causes the T(emporal) flag to be added at place value 26 (1)
θ.gt d = 111111‘b if L > R, else d = 000000‘b
θ.lt d = 111111‘b if L < R, else d = 000000‘b
θ.rev supports addition of bit-reversed words (2)
θ.t di = T(emporal) flag

(1) The DSL instruction effectively adds any previous carry prior to shifting,
but β completes the shift before γ can increment the tribbles. θ.dsl
computes rotated carry decisions in their correct place values for γ.

(2) This is the same as θ.add, except propagating carries from left to right.

might be given assembler macros in the future. See also Section 7.2.9. Because the

di inputs are not used, the γ.uny operation fits in a half slot.

The γ.stu operation implements the γ layer of the stacked unary operations

of section 7.2.10 and table 7.17 (p. 162). More information about stacked unary

operations appears in section 7.3.7. For greater detail, the file unary.c in the firmware

implementation is the best source of information. Because the di inputs are available

to support some of the stacked unary operations, γ.stu requires a full slot.

7.3.4 θ operation

The θ (theta) RAM operates while the β layer is active, accepting one propagate bit

pi and one carry bit ci from each RAM αi. Able to see all 12 of these bits as well as

the modified incoming T(emporal) flag, θ computes one carry decision bit di for each

of the six γi RAMs. This computation usually implements carry propagation, but

on occasions implements some other kind of information propagation to or between

subwords. θ can also compute a two-bit carry summary for RAM ζ to use when

154

determining flags. The θ sections of tables 5.2 and 5.3 (pp. 86 and 87) list all of

RAM θ’s input and output bits.

Additive operations: θ.add, θ.rev

The θ.add operation is the ordinary (right-to-left) carry propagation mechanism:

di =


incoming T(emporal) flag when i = 0,

ci−1 ∨ pi−1 ∧ di−1 when i > 0.

The θ.rev operation offers reverse (left-to-right) carry propagation for weird

macros like IBRI (increment bit-reversed integer):

di =


incoming T(emporal) flag when i = 5,

ci+1 ∨ pi+1 ∧ di+1 when i < 5.

Compare operations: θ.gt, θ.lt

The θ.gt and θ.lt operations support the MAX and MIN opcodes. θ.gt sets all di to 1s

if the right operand is greater than the left operand. Otherwise, all di are 0s. θ can

determine this, because for each subword, α.cmp sets ci where Ri > Li, and sets pi

where Li > Ri.

θ.lt sets all di to 1s if the left operand is greater than the right operand. Other-

wise, all di are 0s.

Both θ.gt and θ.lt provide RAM ζ a copy of what the di are set to.

Multiply operation: θ.dsl

The θ.dsl operation supports the DSL (double shift left) opcode. This operation

actually happens has nothing to do with a left shift, but implements an ADC instruction

within DSL in order to speed long multiplication.

θ.dsl effectively adds the T(emporal) flag to the left operand prior to the left

155

shift. This addition is as if the right operand were zero—in practice, the right operand

provides bits to the double shift. What’s tricky here is that before γ can apply the

carry decisions, β has already shifted the left addend. So the implementation of θ.dsl

is to first to θ.add, and then shift all di one tribble left. This causes the γ layer to

add the T(emporal) flag at place value 26 instead of 20.

Tribble scan operations: θ.2l, θ.2r

The tribble scan operation θ.2l (to left) is not presently in use. It finds the minimum

k such that ck is set. If no ci is set, then k = 5. Then

di =


0 when i ≤ k,

1 when i > k.

The tribble scan operation θ.2r (to right) supports the NUDGE opcode by finding

the maximum k such that ck is set. If no ci is set, then k = 0. Then

di =


0 when i ≥ k,

1 when i < k.

Temporal flag replication: θ.t

The θ.t operation copies the incoming modified T(emporal) flag to all di. It is most

often used to select either of two γ operations that only require a half slot, such as

between γ.mix and γ.xim.

7.3.5 ζ operation

The ζ (zeta) RAM operates while the γ layer is active and updates the CPU flags

N(egative), Z(ero), T(emporal overrange), R(ange), and I(nterrupt). Its inputs are

the previous flags, the two-bit carry summary from RAM θ, and the five-bit encoded

range from α5. Hardware for the flags is described in section 5.3. Input and output

156

Table 7.15: ALU ζ RAM operations.

name description

ζ.add.s addition with signed result
ζ.add.u addition with unsigned result
ζ.asl.uu overflow check after unsigned to unsigned left shift
ζ.asl.us overflow check after unsigned to signed left shift
ζ.asl.su overflow check after signed to unsigned left shift
ζ.asl.ss overflow check after signed to signed left shift
ζ.asr.uu flags after unsigned to unsigned right shift
ζ.asr.us overflow check after unsigned to signed right shift
ζ.asr.su overflow check after signed to unsigned right shift
ζ.asr.ss flags after signed to signed left shift
ζ.bound set I(nterrupt) flag if array index out of bounds
ζ.clear.r clear R(ange) flag after copying it to T(emporal) flag
ζ.cmp update N(egative) and Z(ero) flags without changing T(emporal)
ζ.logic update N(egative) and Z(ero) flags for non-numeric instruction
ζ.t.adj support shifts and rotates through T(emporal) flag (1)
ζ.wrap addition with wrapping allowed

(1) Shift or rotate through T is achieved in one stacked unary instruction.

bits for ζ appear in the ζ sections of tables 5.2 and 5.3 (pp. 86 and 87).

Additive operations: ζ.add.s, ζ.add.u, ζ.wrap

The ζ.wrap operation supports the AW, AWC, SW, SWC, RSW, and RSWC opcode families.

Flags are set as if the result and both operands are unsigned. The T(emporal) flag

will indicate whether or not wrapping has occurred, but the R(ange) flag will be left

unchanged. In other words, the AW opcode and its ilk can detect overflow, but it is not

considered an error. The Z(ero) flag will be set if the true result, but not a wrapped

result, is zero.9 The N(egative) flag will be cleared.

The ζ.add.u operation supports the 24 non-wrapping additive opcodes of table 7.2

that have an unsigned result. If the true result does not fit in an unsigned word, the

T(emporal) and R(ange) flags will both be set. Otherwise the T(emporal) flag will

9I question whether or not this reflects correct semantics. This behavior may have to change.

157

be cleared, and the R(ange) flag will not change. The N(egative) flag will be set if

the true result is negative; note that because this is an out-of-range condition, the

T(emporal) and R(ange) flags will also be set. If the true result is not negative, the

N(egative) flag will be cleared. The Z(ero) flag will be set if the true result is zero

and cleared otherwise.

The ζ.add.s operation supports the 24 non-wrapping additive opcodes of ta-

ble 7.2 that have a signed result. If the true result does not fit in a signed word, the

T(emporal) and R(ange) flags will both be set. Otherwise the T(emporal) flag will

be cleared, and the R(ange) flag will not change. The N(egative) flag will be set if

the true result is negative, otherwise the N(egative) flag will be cleared. The Z(ero)

flag will be set if the true result is zero and cleared otherwise.

Bitwise boolean operations: ζ.logic

The ζ.logic operation supports opcodes don’t involve out-of-range conditions. The

T(emporal) and R(ange) flags do not change. The N(egative) flag is a copy of the

leftmost bit, irrespective of the destination register’s signage. The reason for this

preventable semantic faux pas is to allow an immediate conditional branch to be

decided by the leftmost bit from a non-arithmetic instruction. The Z(ero) flag is set

if all 36 result bits are zero, and cleared otherwise.

Compare operations: ζ.cmp, ζ.bound

The ζ.cmp operation supports the CMP family of opcodes. Because none of these

opcodes store a result to a register, it is impossible for them to produce out-of-

range results. The T(emporal) and R(ange) flags are not changed by ζ.cmp, but the

N(egative) and Z(ero) flags are set or cleared in relation to the true ordering of the

left and right operands.

The ζ.bound operation supports the BOUND family of opcodes. The N(egative),

Z(ero), T(emporal), and R(ange) flags do not change. If the index is out of range, the

158

I(nterrupt) flag will be set. Further semantics and implementation for the I(nterrupt)

flag remain to be determined.

Shift and rotate operations: ζ.asl, ζ.asr, ζ.t.adj

Four ζ.asl operations are stratified by signedness and support the four ASL opcodes.

The ASL right operand is always between 0 and 63 and is replicated across every

tribble, but the left operand (the word to shift) may be unsigned or signed, and the

destination may also be unsigned or signed. The ζ.asl family sets the N(egative),

Z(ero), T(emporal), and R(ange) flags to reflect the true result and any overrange

situation. The logic to accomplish this is intricate, and the file zeta.c from the

firmware source code is its best documentation.

Four ζ.asr operations are stratified by signedness and support the four ASR op-

codes. The ASR right operand is always between 0 and 63 and is replicated across

every tribble, but the left operand (the word to shift) may be unsigned or signed, and

the destination may also be unsigned or signed. The ζ.asr family sets the N(egative),

Z(ero), T(emporal), and R(ange) flags to reflect the true result and any overrange

situation.10 The logic to accomplish this is intricate, and the file zeta.c from the

firmware source code is its best documentation.

The ζ.t.adj operation uses the α layer’s pi and ci outputs to adjust the T(emporal)

flag. This operation supports shifts into and rotates through the T(emporal) flag

via the RTGL, RTGR, STGL, and STGR opcodes and their corresponding stacked unary

operations su.rcl and su.rcr. The adjustment to the T(emporal) flag is as follows:

• If no pi and no ci are set, T is unchanged.

• If no pi is set and any ci is set, T is set.

• If any pi is set and no ci is set, T is cleared.

• If any pi is set and any ci is set, T is inverted.

10ASR results may not fit if the left operand and destination registers differ in signedness.

159

Flag operation: ζ.clear.r

The ζ.clear.r operation implements the CRF (clear range flag) instruction by copying

the present value of the R(ange) flag to the T(emporal) flag, and then clearing the

R(ange) flag.

7.3.6 Simple unary operations

Computations with only one input generally use the left argument, leaving the right

argument free to specify which of 64 operations to compute. This affords SRAM

ALUs a lot of freebies we wouldn’t otherwise enjoy. The simplest cases occur when

everything is done within 6-bit subwords, and the tribbles are completely independent

of each other. These are merely lookup tables that are available in the α, β, and γ

layers using the UN.A, UN.B, and UN.G opcodes.

Table 7.16 provides a list of the simple unary operations that are specified to

date. Note that the right operand is specified on a per-tribble basis, meaning that up

to six operations from table 7.16 may be applied across a word during one instruction.

Slots 00‘o–10‘o provide constants 0, 1, and all ones, pass-through and bit inversion,

and tests for zero and nonzero with output alternatives. 11‘o–16‘o offer counts

of zeros and ones with total, leading, and trailing options. Slots 17‘o–20‘o allow

tribbles to be individually incremented and decremented. Slot 22‘o reverses the bits

of the tribbles.

Slot 21‘o is currently the sole operation where the tribble outputs are not iden-

tical when given the same input. The left input is a number between 0 and 63, and

must be provided across all six tribbles. The right input is 21‘o (the operation to

perform) in all tribbles. The result is the largest 36-bit word the left input can be

multiplied by without overflow, assuming the product is unsigned. Another way to

view this operation is as a fixed-point reciprocal of the input value, with all ones

output when dividing by zero.

160

Table 7.16: ALU simple unary operations.

name octal description (1)
un.zt 00 000000‘b
un.ot 01 000001‘b
un.oxt 02 111111‘b
un.idt 03 identity
un.nott 04 bitwise NOT
un.iszt 05 000001‘b if tribble = 0 else 000000‘b
un.isnzt 06 000001‘b if tribble 6= 0 else 000000‘b
un.iszxt 07 111111‘b if tribble = 0 else 000000‘b
un.isnzxt 10 111111‘b if tribble 6= 0 else 000000‘b
un.czt 11 count zeros
un.clzt 12 count leading zeros
un.ctzt 13 count trailing zeros
un.cot 14 count ones
un.clot 15 count leading ones
un.ctot 16 count trailing ones
un.inct 17 increment with wrap
un.dect 20 decrement with wrap
un.recip 21 b(236 − 1)÷max(tribble, 1)c (2)
un.revt 22 reverse bits

23–77 reserved

(1) Throughout this table, six unary operations, selected by the tribbles
of R, are done simultaneously on the six input tribbles.

(2) Reciprocal: Given t : 0 ≤ t < 64, return largest m : mt < 236.
t must be in all six tribbles of L. Result m is a whole word.

7.3.7 Stacked unary operations

Table 7.17 lists more complex unary operations. These require participation of mul-

tiple layers and sometimes need θ to support operations across subwords. For this

reason, the slots specified by the right operand are numerically consistent from layer to

layer. The name “stacked unary” arises from the involvement of these lock-stepped

layers. Table 7.18 shows how the stacked unary instructions would combine into

easy-to-use assembler macros. Their reverse Polish notation (RPN) implementation

161

Table 7.17: ALU stacked unary operations (1).

name octal description

su.abs2s 00 assume x < 0, return −x, result is signed (2)
su.abs2i 01 assume x ≥ 0, return x (identity) (2)
su.abs2u 02 assume x < 0, return −x, result is unsigned (2)
su.abs1s 03 if x < 0 then 000000‘t else 111111‘t (3)
su.abs1u 04 if x < 0 then 222222‘t else 111111‘t (3)
su.fabs 05 |x|, only works when |x| < 230, range checked
su.signum 06 −1, 0, or +1 based on x < 0, x = 0, or x > 0
su.slprep 07 convert x to left shift control word, range checked
su.srprep 10 convert x to right shift control word, range checked
su.rlprep 11 convert x to left rotate control word, range checked
su.rrprep 12 convert x to right rotate control word, range checked
su.ham0 13 2-instruction popcount, count 0s, first instruction
su.ham1 14 2-instruction popcount, count 1s, first instruction
su.llz 15 light leading 0s for CLZ
su.llo 16 light leading 1s for CLO
su.ltz 17 light trailing 0s for CTZ
su.lto 20 light trailing 1s for CTO
su.parity 21 parity, result in 20 position only
su.increv 22 increment bit-reversed word mod 236 (4)
su.decrev 23 decrement bit-reversed word mod 236 (4)
su.lfsr 24 36-bit LFSR
su.xpoly 25 XOR 410000 010166‘o if T is set
su.rcl 26 shift/rotate one place left into/through T
su.rcr 27 shift/rotate one place right into/through T
su.cx 30 6 copies of tribble 0 with range check

32–77 reserved

(1) The α, β, and γ layers operate simultaneously to do these operations.
The selected operation must be copied to all six tribbles of R.

(2) Encoding must be consistent with su.abs1s and su.abs1u results.
(3) Almost self-modifying code, but safely in a register. The result is the

stacked-unary encoding that completes an absolute value computation.
(4) The T(emporal) flag is not changed.

162

Table 7.18: Assembler macros that (mainly) use stacked unary operations.
The firmware supports these as of September 2022, but not the assembler yet.

name length description RPN implementation

ABS 2 absolute value x x su.abs1 su (1)
CLO 3 count leading ones x su.llo su.ham1 HAM2
CLZ 3 count leading zeros x su.llz su.ham1 HAM2
CTO 3 count trailing ones x su.lto su.ham1 HAM2
CTZ 3 count trailing zeros x su.ltz su.ham1 HAM2
CX 1 check and extend x su.cx
FABS 1 fast absolute value x su.fabs
LFSR 1 linear feedback shift register x su.lfsr
MIR 1 mirror the bits of a word x 131313131313‘o PAIT
MIRD 1 mirrored decrement x su.decrev
MIRI 1 mirrored increment x su.increv
PARTY 1 parity x su.parity
POPC 2 popcount x su.ham1 HAM2
PRL 1 prepare to rotate left x su.rlprep
PRR 1 prepare to rotate right x su.rrprep
PSL 1 prepare to shift left x su.slprep
PSR 1 prepare to shift right x su.srprep
RTGL 1 rotate through T going left x su.rcl (Tin intact)
RTGR 1 rotate through T going right x su.rcr (Tin intact)
STGL 1 shift into T going left x su.rcl (Tin = 0)
STGR 1 shift into T going right x su.rcr (Tin = 0)
XPOLY 1 XOR polynomial if T is set x su.xpoly

25–63 reserved

(1) The first stacked unary operation determines the second.

163

is shown; however, their corresponding STUN-series opcodes remain to be finalized.

The best documentation for the stacked unary operations is their source code,

which is the file unary.c in [Abel22b]. Unfortunately, that code too would benefit

from lengthier explanations. Although running the firmware in the virtual machine

can show that the stated operations work, it’s not obvious how in some instances.

Below are short descriptions of the three most complex operations thus far.

Absolute value in two instructions

According to table 7.17, a stacked unary instruction with a right operand of 000000‘t

will negate its left operand. But if the right operand is 111111‘t, it will return the left

operand unchanged. There happens to be another stacked unary operation, 333333‘t,

that examines checks the most significant bit of the left operand and returns 000000‘t

if it is set and 111111‘t if it is not set. So in two instructions, it’s possible to find

the absolute value of a number:

signed input output
unsigned either_or

input = ...
either_or = input stun.a 333333‘t
output = input stun.a either_or

Limited-domain absolute value in one instruction

There is also a “fast” absolute value that uses just one instruction, and only works

if the absolute value is less than 230. Under this constraint, the rightmost six bits

of the input are either all ones (the input is negative) or all zeros (the input is

not negative). When the input is transposed for the β layer, each of the β RAMs

receives one of these sign bit copies, allowing each of the β RAMs to invert their

transposed subwords if the left operand was negative, or not invert if the left operand

was positive. In the meantime, α, θ, γ, and the modified incoming T(emporal) flag

are configured to increment the left argument by one, which with β’s bitwise NOT

164

would complete a two’s complement negation. The NOT had a “kill switch” via

the transposed sign bit copies in the event the left argument wasn’t negative. The

increment also needs a kill switch, and it’s accomplished by α5 and θ. In the event α5

doesn’t find the most significant bit set, it sets both its propagate and carry output

to 1s. In ordinary addition, either propagate or carry may be set, but never both by

the same bitslice. When θ sees a propagate and carry arrive from the same RAM, it

interprets this as a “secret message” to leave all carry decisions zero, which prevents

γ from doing the increment. So absolute value is implemented in a single instruction,

on the precondition that the result will be less than 230.

Population count in two instructions

For many years, it was uncommon for traditional CPUs to include an instruction that

counts the number of one bits in a word. Intel’s POPCOUNT instruction did not

appear until several years after x86 became available with 64 bits. Without such an

instruction, a simple count of set bits in a word was cumbersome and inspired many

creatively-written subroutines to avoid expensive loops.

My ALU can count the ones or zeros within a word in two instructions. Here’s

a code example, and an explanation follows.

unsigned word ; will count 1s in this
unsigned t ; temporary register
unsigned ones ; output

word = ...
t = word stun.c 141414141414‘o
ones = t ham2 t

The first instruction is the stacked unary operation su.ham1, so named because

another term for popcount is Hamming weight. The α layer counts the ones in each

of the tribbles, leaving a count between 0 and 6 in the three low bits of each tribble.

To obtain the total popcount, it suffices to somehow add these post-α bits together,

assigning the following place values to each bit:

165

000421 000421 000421 000421 000421 000421

As these bits flow to the β layer, they are transposed. The weights are now:

000000 000000 000000 444444 222222 111111

The β layer counts the bits in the above tribbles, leaving a count between 0

and 6 in the three low bits of the three least significant tribbles. To obtain the

total popcount, it suffices to somehow add these post-β bits together, assigning the

following place values to each bit, where G = 16:

000000 000000 000000 000G84 000842 000421

As these bits flow to the γ layer, they are untransposed. The weights are now:

000000 000000 000000 000G84 000842 000421

Six bits of interest did actually move, but their untransposed locations turn out

to have the same weights after the move. What happened may be easier to see if the

weights are given in matrix form—recall that the α-β and β-γ wiring transpositions

are simply reflections through the main diagonal:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 G 8 4
0 0 0 8 4 2
0 0 0 4 2 1

The γ layer now adjusts tribble 2 only, shifting left three bits in order to find lanes

for a swizzle:

000000 000000 000000 G84000 000842 000421

This is the end of the first instruction. All the second instruction needs to

do is sum the above bits with the given place values. A stacked unary instruction

will not suffice: the task calls for an instruction that supports a right operand. This

166

instruction is called HAM2, so-named because it is the second of two steps to compute

a Hamming weight. HAM2’s α layer does nothing. The β layer does a quick swizzle,

taking three bits each from subwords 2 and 1, and moving them to subword 0. Coming

into the γ layer, the bit positions to sum are now these:

000000 000000 000000 000000 000000 G84842

Of the nine weighted bits that need to be added, six are available at γ0 via its

left operand. The three missing bits are lost from the left side, but are present at γ0’s

right operand with weights 000421 as required. It comes down to this single RAM to

add these nine bits with the correct weights, and like all single-RAM computations,

the task is a mere table lookup. The result will be in the range 0 through 36, which

fits properly in the RAM’s six-bit output and indicates the correct population count.

This tested successfully in October 2022 using [Abel22b] with one million words from

/dev/urandom.

7.4 Leading and trailing bit manipulation

Several CPUs, including recent x86s, have instructions for trailing bit manipulation.

These instructions scan from the right for the first zero or one, and upon finding

can invert that bit, isolate the bit by masking out all others, fill up to the bit from

the right, mask with ones up to the bit and zero bits to the left, or mask with ones

through the bit and zero the bits to the left. Some of these instructions are available

with complemented output. Not all cases are covered by these CPUs, and at least

x86 doesn’t support leading bit manipulation; that is, scanning from the left.

The full set of these manipulations could be implemented by my ALU as stacked

unary operations for leading and trailing use, making them accessible via one instruc-

tion. But there are 40 of these: search for 0 vs. 1 × invert output or not × leading

vs. trailing × five “what to do.” This would be a lot of address space to set aside

for these rarely-used operations, so I didn’t. Instead, all 40 can be accomplished in

167

Table 7.19: Leading and trailing bit manipulation macros.
The firmware supports these as of October 2022, but not the assembler yet.

name length description RPN implementation

BOL 2 brighten ones left x su.decrev x XOR
BOLI 2 brighten ones left invert x su.decrev x XNOR
BOR 2 brighten ones right x 1 SW x XOR
BORI 2 brighten ones right invert x 1 SW x XNOR
BZL 2 brighten zeros left x x su.increv XOR
BZLI 2 brighten zeros left invert x x su.increv XNOR
BZR 2 brighten zeros right x x 1 AW XOR
BZRI 2 brighten zeros right invert x x 1 AW XNOR
EOL 2 erase ones left x x su.increv AND
EOLI 2 erase ones left invert x x su.increv NAND
EOR 2 erase ones right x x 1 AW AND
EORI 2 erase ones right invert x x 1 AW NAND
EZL 2 erase zeros left x su.decrev x OR
EZLI 2 erase zeros left invert x su.decrev x NOR
EZR 2 erase zeros right x 1 SW x OR
EZRI 2 erase zeros right invert x 1 SW x NOR
FOL 2 find one left x su.decrev x RANL
FOLI 2 find one left invert x su.decrev x LONR
FOR 2 find one right x 1 SW x RANL
FORI 2 find one right invert x 1 SW x LONR
FZL 2 find zero left x su.decrev x RANL
FZLI 2 find zero left invert x su.decrev x LONR
FZR 2 find zero right x 1 SW x RANL
FZRI 2 find zero right invert x 1 SW x LONR
GOL 2 grow one left x x su.increv OR
GOLI 2 grow one left invert x x su.increv NOR
GOR 2 grow one right x x 1 AW OR
GORI 2 grow one right invert x x 1 AW NOR
GZL 2 grow zero left x su.decrev x AND
GZLI 2 grow zero left invert x su.decrev x NAND
GZR 2 grow zero right x 1 SW x AND
GZRI 2 grow zero right invert x 1 SW x NAND
LOL 1 light ones left x su.llo
LOLI 2 light ones left invert x su.llo NOT
LOR 1 light ones right x su.lto
LORI 2 light ones right invert x su.lto NOT
LZL 1 light zeros left x su.llz
LZLI 2 light zeros left invert x su.llz NOT
LZR 1 light zeros right x su.ltz
LZRI 2 light zeros right invert x su.ltz NOT

168

Table 7.20: Visual index to the leading and trailing bit manipulation macros.

name from to category

BOL 11100010 → 11110000 brighten ones
BOLI 11100010 → 00001111
BOR 01000111 → 00001111
BORI 01000111 → 11110000
BZL 00011101 → 11110000 brighten zeros
BZLI 00011101 → 00001111
BZR 10111000 → 00001111
BZRI 10111000 → 11110000
EOL 11100010 → 00000010 erase ones
EOLI 11100010 → 11111101
EOR 01000111 → 01000000
EORI 01000111 → 10111111
EZL 00011101 → 11111101 erase zeros
EZLI 00011101 → 00000010
EZR 10111000 → 10111111
EZRI 10111000 → 01000000
FOL 00011011 → 00010000 find one
FOLI 00011011 → 11101111
FOR 11101110 → 00000010
FORI 11101110 → 11111101
FZL 11100100 → 00010000 find zero
FZLI 11100100 → 11101111
FZR 00010001 → 00000010
FZRI 00010001 → 11111101
GOL 11101110 → 11111110 grow one
GOLI 11101110 → 00000001
GOR 00011011 → 00011111
GORI 00011011 → 11100000
GZL 00010001 → 00000001 grow zero
GZLI 00010001 → 11111110
GZR 11100100 → 11100000
GZRI 11100100 → 00011111
LOL 11100010 → 11100000 light ones
LOLI 11100010 → 00011111
LOR 01000111 → 00000111
LORI 01000111 → 11111000
LZL 00011101 → 11100000 light zeros
LZLI 00011101 → 00011111
LZR 10111000 → 00000111
LZRI 10111000 → 11111000

169

two instructions by composing a bitwise boolean opcode from table 7.3 (p. 107) with

an increment or decrement. For leading bit manipulation (on a word’s left side),

the increment or decrement operates on a bit-reversed word and carries from left

to right. The su.increv and su.decrev stacked unary operations of table 7.17 supply

these. For trailing bit manipulation (on a word’s right side), an ordinary AW or SW

(add or subtract with wrap) instruction provides the increment or decrement.

Table 7.19 shows the names, lengths, descriptions, and implementations of the 40

leading and trailing bit manipulation macros. The implementation is given in Reverse

Polish Notation (RPN), where x denotes the input word, capital letters indicate

opcodes, and stacked unary operations are given in lowercase. The terms used in the

description follow.

• Brighten. Mark the leading or trailing run, plus one additional bit, with 1s.

The remaining output is 0s.

• Erase. Invert the leading or trailing run. Remaining output copies the input.

• Find. Mark the first matching bit with a 1. The remaining output is 0s.

• Grow. Invert the first bit after the leading or trailing run. The remaining

output copies the input.

• Light. Mark the leading or trailing run with 1s. The remaining output is 0s.

• Left. Leading bit manipulation: scan from most to least significant bit.

• Right. Trailing bit manipulation: scan from least to most significant bit.

• Invert. At the very end of the operation, invert all bits.

Table 7.20 is a visual index to the 40 bit manipulation macros.

170

7.5 A reference implementation

The firmware described in this chapter is available in [Abel22b], and comes with an

assembler and virtual machine for evaluation. Regression tests are supplied for the

additive, bitwise boolean, compare, shift and rotate, multiply, bit permute, and mix

opcodes, as well as the CRF and NUDGE instructions. Everything is written in the

C programming language, except for short test programs written in the assembly

language of my architecture.

7.6 Future work

The entire operation of an SRAM ALU depends on its firmware, and a minicom-

puter architecture cannot be stable until its firmware revision process is placed under

strong controls. A tiny change in flag semantics, renumbering of an available feature,

re-implementation of a macro, or other disruption can invalidate the architecture’s

operating systems, toolchains, and applications all at once. In order to minimize such

disruptions, I have done my best within the bounds of my time and ability to make

the first edition of the firmware as complete and correct as possible. Here is a list of

remaining firmware development work:

• The stacked unary operations of table 7.17 fully determine what happens in the

α, β, and γ layers, but a published specification is still needed that states the

θ and ζ RAM operations and incoming T(emporal) flag modification needed

for each stacked unary operation. This will stabilization, cross-indexing, and

possible renaming of the STUN family of opcodes of table 7.10 (p. 136).

• The virtual machine software includes regression tests for almost all binary (two-

input) ALU operations. But almost all of the simple unary and stacked unary

operations need regression tests written and their implementations validated.

171

• A small number of ALU regression tests use C language code to compose mul-

tiple ALU instructions. Now that an assembler has been written, these tests

should be rewritten in assembly language for better legibility and serviceabil-

ity. An example is the PRNG of listing 7.4 (p. 128), which was tested with

hopefully-equivalent C calls into the ALU, but was not tested as written in the

listing.

• The stacked unary operations need examined for consistency, completeness,

and semantic usefulness. For example, I am coming to believe that su.abs2s

and su.abs2u operations (table 7.17) can be consolidated into one operation,

and that signage should be handled by θ, ζ, and/or the incoming T(emporal)

flag. The su.abs1s and su.abs1u would be similarly consolidated. The assembler

should adapt the ABSmacro to the signage of the destination register, and forbid

ABS when the source register is unsigned. ABS overflow can only occur when its

input is −(235) and the result is signed. Such overflow should set the T(emporal)

and R(ange) flags.

• The 36-bit multiplication routine of listing 7.2 uses 47 instructions. My notes

contain ideas for multiplying in 41 or even 35 instructions. If they turn out to

be workable, they will depend on additional firmware opcodes and operations.

• 36-bit signed and mixed-signage multiplication routines should be written. This

work may identify opportunities for more firmware support.

• Integer quotient and remainder need semantics, planning, and implementations.

I have not started at all on these. These will surely find opportunity for new

firmware opcodes and operations.

• Subroutines for floating-point arithmetic are needed early on. No one should

have to upgrade firmware later because early firmware does not support floating-

point math well. This work is intricate due to the need to ensure floating-point

172

interoperability and consistency between architectures, with aid from prevail-

ing standardization [IEEE19]. Unfortunately, IEEE’s Microprocessor Standards

Committee did not accommodate basic formats that are not 32, 64, or 128 bits

or interchange formats that are not a power-of-two number of bits. Decisions

will be needed as to when the extended range and precision of 36-, 72-, and

144-bit formats merit breaking interoperability. Multiple implementations may

eventually emerge, wherein some use SRAM architectures at their maximum

capabilities, while others round identically to non-SRAM architectures.

• Several nontrivial assembler programming projects should be undertaken, in

order to identify desirable opcodes and operations for future inclusion.

173

8

A solder-defined CPU
with protected memory

In design maturity, my architecture’s central processing unit lags far behind its arith-

metic logic unit. The ALU is fully operational not only in logical simulations of the

computations it performs, but also computes correctly in discrete event simulations of

its electrical signals using an actual netlist and circuit board component placement.

Track lengths, load capacitances, and signal timings are taken into account. The

principal obstacle to building a physical ALU immediately is, the external circuits

that it requires do not yet have functioning designs.

One external circuit on which the ALU will depend is the central processing unit,

the subject of this chapter. In electrical timing simulations, the CPU can presently

increment an instruction pointer, fetch instructions from the code RAM, decode those

instructions, fetch operands from the twin register files, use the operands in ALU

calculations, write the correct result back to the register files, and continue with

the next instruction. It can also transfer immediate values from CPU instructions

into registers. Conditional and unconditional branches not only enable loops, but

also allow the CPU detect and respond to overrange arithmetic. Listing 8.1 shows a

program that does all of these things in the simulator.

All this is promising, but it is not enough. I had hoped to name this chapter

175

; Compute xth Fibonacci number, 0 <= x <= 53

unsigned x ; input to fib subroutine
imm x 53 ; seeking 53rd Fibonacci number
jump fib ; go compute it

back: ; call and return don’t work yet
halt ; answer in last stored register

fib:
unsigned answer ; output from fib subroutine
unsigned i ; highest computed x
unsigned next ; temporary new answer
unsigned one ; constant 1
unsigned prev ; previous answer

imm i 1 ; special case when x <= 1
cmp x - i
jump <= small

imm one 1 ; constant 1
imm prev 0 ; fib(0)
imm answer 1 ; fib(1)

loop:
next = prev + answer ; fib(x+1) = fib(x) + fib(x-1)
jump +t toobig ; arithmetic overflow?
i = i + one ; computed one more term
prev = answer ; keep previous two terms
answer = next
cmp x - i ; have xth term yet?
jump != loop ; no, keep going
jump back ; yes, done

small:
answer = x ; fib(x) = x when x <= 1
jump back ; done

toobig:
imm answer 68719476735 ; out of range indication for test
jump back ; done

Listing 8.1: The 53rd Fibonacci number is 53 316 291 173. Larger inputs would
exceed 36 bits and return 236 − 1. This code ran correctly in circuit-level simulation
with a 15.514 ns clock period, which in the present design is 16.11 MIPS.

176

Table 8.1: These major subsystems remain for design and test.

• preemptive multitasking
• input and output
• firmware loader

“A solder-defined CPU with memory protection and preemptive multitasking.” But

three major subsystems of the architecture are missing, and multitasking is one of

them. The other two are a firmware loader and an I/O subsystem. These subsystems

are called out in table 8.1, and chapter 9 describes my plan to include them.

In addition to the three missing subsystems, there are a few smaller gaps in

functionality that is nearly complete. Little more than cross-referencing, typing, and

testing is needed to close these gaps, which are best identified in terms of opcodes

that firmware hasn’t been written for yet. Although hardware is already present

to support these opcodes, it can’t be finalized until firmware is written and tested

successfully. These gaps are CALI, CALL, and RETURN, nonprivileged load and store

instructions LD and STO for data memory, and privileged load and store instructions

RCM1, RCM2, and WCM for code memory, RDM and WDM for data memory, and RPT and

WPT for page table memory.

This chapter describes the portions of the minicomputer that are designed to

such an extent that an electrical (not just logical) simulation for testing is available

now. Table 8.2 shows a list of the opcodes described in this chapter.

The chapters ahead describe the missing subsystems in chapter 9, and a descrip-

tion of the design and test environment along with test results in chapter 11.

177

Table 8.2: Non-ALU instructions.

opcode nonprivileged instruction

CALL call subroutine
IMB load immediate both (18 bits high, same 18 bits low)
IMH load immediate high (18 bits high, 18 zeros low)
IMN load immediate negative (18 ones high, 18 bits low)
IMP load immediate positive (18 zeros high, 18 bits low)
JUMP jump unconditionally
JUMP.EQ jump if equal
JUMP.GE jump if greater than or equal
JUMP.GT jump if greater than
JUMP.LE jump if less than or equal
JUMP.LT jump if less than
JUMP.NE jump if not equal
JUMP.NR jump if R(ange) flag clear
JUMP.NT jump if T(emporal) flag clear
JUMP.R jump if R(ange) flag set
JUMP.T jump if T(emporal) flag set
LD load (read word from data memory via page table)
ORLD OR and load (future instruction)
RETURN return from subroutine
STO store (write word to data memory via page table)

opcode privileged instruction

CALI faux call and initialize call stack
ORDM OR and read data memory (future instruction)
RCM1 read code memory (first portion)
RCM2 read code memory (second portion)
RDM read data memory, bypass page table
RPT read page table
WCM write code memory
WDM write data memory, bypass page table
WPT write page table

178

Table 8.3: Bill of materials for a simulated CPU that ran listing 8.1.

count description mfr. part number

21 256 Ki× 18 sync. SRAM GSI GS840Z18CGT-250I
5 128 Ki× 36 sync. SRAM GSI GS840Z36CGT-250I
3 1 Mi× 36 sync. SRAM GSI GS8320Z36AGT-250I
1 512 Ki× 18 sync. SRAM GSI GS880Z18CGT-250I
43 16-bit D flip-flop TI SN74AUC16374DGGR
10 16-bit buffer TI SN74AUC16244DGGR
39 dual 2-input AND TI SN74AUC2G08DCUR
23 D flip-flop TI SN74AUC1G74DCUR
12 dual 2-input NAND TI SN74AUC2G00DCUR
20 dual 2-input XOR TI SN74AUC2G86DCUR
7 dual 2-input OR TI SN74AUC2G32DCUR
4 dual 2-input NOR TI SN74AUC2G02DCUR
3 dual buffer TI SN74AUC2G34DCKR
2 dual inverter TI SN74AUC2G04DCKR
1 80 MHz crystal osc. Kyocera KC7050K80.0000C1GE00
26 8-resistor array, 10 kΩ Bourns CAY17-103JALF

8.1 Physical characteristics of the CPU

It may help early on to understand the scale of what I propose can be built. The

CPU this chapter describes fits on a 220× 220 mm single-sided circuit board that

holds 220 other components. Table 8.3 shows a list of these parts, which cost $414.73

plus shipping when I bought them in early 2021. The circuit has 6 678 pins to solder

in 1 645 distinct nets. If only two flying probes were available for a full continuity

test, 1 358 868 touches would be needed.

A circuit board floorplan appears as figure 8.1. The drawing is split into two

facing sheets and appears at 1:1 scale. To show exactly where the cut was made,

the parts marked 374.28 and 374.3 appear on both sheets. Pin numbering proceeds

counterclockwise on all components, with pin 1 shown enlarged in red. An unsplit

floorplan for PDF viewing is in figure 8.2.

All components used are surface-mount and have leads, and although the task

179

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

M0

M1

LR

P

alpha0 alpha1 alpha2

alpha3 alpha4 alpha5

beta0

beta1

beta2

beta3

beta4

beta5

gamma0 gamma1 gamma2

gamma3 gamma4 gamma5

theta

zeta

conctrl

374.0

374.1

374.2

374.3

374.4374.7

374.8

374.13

374.14

374.19

374.20

374.21374.22

374.23

374.24

374.28

374.30

374.31

374.32

374.33

374.34

374.41

giant6

giant7

flop

flop

flop flop

flop

flop flop

flop flopflop

Figure 8.1: Left half of CPU floorplan. Actual size.

180

r10k r10k r10k

r10k r10k r10k

r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k

C

D0

D1S

E

374.3

374.5

374.6

374.9

374.10

374.11

374.12

374.15

374.16

374.17

374.18

374.25

374.26

374.27

374.28

374.29

374.35

374.36

374.37

374.38

374.39

374.40

aod0

aod1

giant0

giant1

giant2

giant3giant4

giant5

flop flopflop

flopflop

flop flop

flop

flop

flop

flop flop

flop

80mhz

buf

buf

xoror xor

xor

xor

and

nand

or and and

nand nor and

nand and and

nor and nand

and xor or

nand nand and

buf nandor

nand nand

nand

nor

inv and and

nand nand

inv xor

and

xor

and

and

xor

and

xor

and

and

xor

and

xor

and and and

xor

and

xor

and and

xor

and

xor

and and

and

xor

and

xor

and

and

xor

and

and orand and

and xor xor

and and

ornor

and

or

Figure 8.1: Right half of CPU floorplan. Actual size.

181

r10k r10k r10k

r10k r10k r10k

r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k

CM0

M1

D0

D1

LR

S

P

alpha0 alpha1 alpha2

alpha3 alpha4 alpha5

beta0

beta1

beta2

beta3

beta4

beta5

gamma0 gamma1 gamma2

gamma3 gamma4 gamma5

theta

zeta

E

conctrl

374.0

374.1

374.2

374.3

374.4

374.5

374.6

374.7

374.8

374.9

374.10

374.11

374.12

374.13

374.14

374.15

374.16

374.17

374.18

374.19

374.20

374.21374.22

374.23

374.24

374.25

374.26

374.27

374.28

374.29

374.30

374.31

374.32

374.33

374.34

374.35

374.36

374.37

374.38

374.39

374.40

374.41

aod0

aod1

giant0

giant1

giant2

giant3giant4

giant5

giant6

giant7

flop flopflop

flop

flop

flop

flop flop

flop

flop

flop flop

flop

flop

flop

flopflop flop

flop

flop

flop

flopflop

80mhz

buf

buf

xoror xor

xor

xor

and

nand

or and and

nand nor and

nand and and

nor and nand

and xor or

nand nand and

buf nandor

nand nand

nand

nor

inv and and

nand nand

inv xor

and

xor

and

and

xor

and

xor

and

and

xor

and

xor

and and and

xor

and

xor

and and

xor

and

xor

and and

and

xor

and

xor

and

and

xor

and

and orand and

and xor xor

and and

ornor

and

or

Figure 8.2: Unbroken CPU floorplan. Actual size.

182

may look impossible to someone who has only soldered through-hole components in

the past, everything can be soldered by hand. This is why there are no ball grid array

components, and one of several reasons for the generous separation between ICs. The

extra space also makes room for the hundreds of bypass capacitors to be added later,

as well as increases the realism or difficulty of the timing simulations.

Three component sizes are prominent in the floorplan. The large ICs are syn-

chronous SRAMs, with 30 pins on each long side and 20 on each short side, for a total

of 100 pins each. The medium ICs have 48 pins with tighter spacing than the SRAM

pins. These are 16-bit flip-flops and 16-bit buffers. All of these large and medium

ICs have three-state outputs, a capability that is essential to the CPU’s design. The

small parts are resistor arrays, glue logic ICs, and a crystal oscillator. None of the

small ICs have three-state outputs.

The crystal oscillator is near the center of the board. Next to it are eight buffer

ICs that double the oscillator signal six times to attain 64 parallel outputs. The

outputs at each level of the tree are shorted together, with the goal of having a

single high-current net clock the entire minicomputer. As mentioned in section 3.4,

I am more nervous about this clock than any other part of the computer. I am only

somewhat knowledgeable in RF design, and the skew tolerances are very tight.

The resistor arrays are used to pull unused RAM data lines to a power rail.

The RAM datasheets do not indicate that these pins can float, but because they are

sometimes outputs, they must not be soldered directly to VDD or ground.

The ICs marked 374. . . are 16-bit D flip-flops with output enable. Most of these

are used to occasionally bypass the usual instruction datapath, either to support

non-ALU instructions such as WCM (write code memory), or for loading firmware

at power-up. Although the present design does not include a firmware loader that

initiates and coordinates transfer of firmware into the ALU, control decoder, and so

on, the flip-flops that electrically transfer the firmware into their destination RAMs

are already in the netlist and on the board as drawn. This means that the capacitance

183

Table 8.4: Non-ALU RAMs visible in CPU floorplan.

legend purpose

C Code memory
D0 control Decoder bits 0–35
D1 control Decoder bits 36–71
E call stack dEpth
L Left register file
M0 data Memory
M1 data Memory (optional)
P Page table
R Right register file
S return address Stack

and track length overhead of requiring parts to load firmware into the CPU is already

accounted for in the design, and is already measured in electrical simulations.

The floorplan has two “nests” of glue logic ICs on the right page. AND gates

are common to both nests, but the remaining glue logic clusters somewhat accord-

ing to nest. The bottom nest is characterized by having many XOR gates. It is

the instruction pointer incrementer described in section 3.5.3 and partially drawn in

figure 3.3.

The top nest has NOR, NAND, and OR gates that are not found in the incre-

menter. Many of these gates combine to make node lockouts, physical logic controls

that prevent SRAMs and 16-bit D flip-flops from exceeding their maximum output

current ratings by oppositely driving the same nets (section 8.7.3). Although short

circuits can be avoided by using carefully-written firmware without further protection,

I wanted safeguards to assure makers and maintainers that a misunderstood table en-

try in their firmware won’t permanently disable their machine. These lockouts are

also intended to lessen opportunities for maliciously-written firmware to inflict hidden

or delayed harm on soldered components.

In the floorplan, 20 SRAM ICs have Romanized Greek letter legends and are

184

easily recognized as the 36-bit ALU of chapter 5. The ten remaining SRAM ICs are

introduced in later sections of this chapter. Table 8.4 offers a succinct list of what

their legends in the drawing mean.

8.2 Machine word structure

The CPU word size is 36 bits. The rightmost bit is bit 0 and has place value 20.

The leftmost is bit 35 with place value 235 or −(235) for unsigned or signed words

respectively. Bit positions may also be written as base-36 characters, with z and 0 as

the left and right extrema.

Individual arithmetic logic unit components are too small for 36-bit operands.

Instead, they operate on 6-bit subwords called tribbles. For this reason, many assem-

bler instructions process their left and right operands in pairs of tribbles. Tribble 5

is leftmost, and tribble 0 is rightmost.

As words pass through the ALU, they undergo a self-inverse transposition two

times. These transpositions are simply a matter of wiring and do not use any active

components. A word is transposed by feeding the ith bit of tribble j to the jth bit of

tribble i for all i, j ∈ {0...5}. The written notation uses the top superscript: if w is a

word, then w> is its transpose, and w>> is w transposed twice, which is simply w.

The bit positions of w and w> can also be written as 6× 6 square matrices. The

transpose operation is the ordinary reflection through the main diagonal:

w
z y x w v u
t s r q p o
n m l k j i
h g f e d c
b a 9 8 7 6
5 4 3 2 1 0

w>

z t n h b 5
y s m g a 4
x r l f 9 3
w q k e 8 2
v p j d 7 1
u o i c 6 0

A linear notation for the transpose operation is this: If

zyxwvu tsrqpo nmlkji hgfedc ba9876 543210 are the bits of some word b, then

ztnhb5 ysmga4 xrlf93 wqke82 vpjd71 uoic60 are the bits of b>.

185

8.3 Register organization

To lessen bottlenecks in the CPU, two copies of the register file are maintained in

separate RAMs: one supplies the left argument of an operation, and one supplies the

right. When writing a result to a register, the CPU updates both copies simulta-

neously. For almost all of this document, any reference to a register (or a number

of available registers) ignores fact that there are two electrical copies, as that fact is

simply an implementation detail.

The smallest widely-available, 36-wide synchronous SRAMs have 17 address bits,

allowing a single IC to hold 131 072 registers. Of the 17 bits, 9 are taken from the

CPU instruction word, meaning that a program can use up to 512 registers without

spilling. The other 8 bits specify one of 256 programs that are ready to run. I call

these ready-to-run programs users instead of tasks, programs, processes, or threads.

I will reserve these other words to be defined by the operating system design. In

order to switch from one user to another, the CPU has almost no work to do, because

no registers need to be saved or restored. To switch from using 512 registers to 512

different registers, all that is needed is to clock the new user into an 8-bit D flip-flop.

The registers in this CPU are fully orthogonal, meaning that all registers have

identical capabilities. In an instruction where any register can be used, truly any

register owned by that program can be used. If you remember the distinct functions

of the Intel 8086’s registers, which have an accumulator, a counter, an extended

accumulator, index registers, base pointer, stack pointer, several segment registers,

and more, they can all be forgotten here. My CPU has one kind of register, and 512

are available at a time.

Users cannot share registers in this architecture. One consequence is that a user

that is part of the operating system, notwithstanding privileges, cannot directly read

or write any registers of another user that is running. But the operating system can—

indirectly—access another user’s registers by storing instructions that would access

186

those registers in the code RAM, and then branching to that location as that user.

This indirect capability is the mechanism by which an operating system can initialize

a user’s 512 registers to zeros before invoking a program.

8.3.1 Register splitting and reverse subtraction

The left and right copies of a register are identical in the current architecture. If fast

hardware multiplication is added to a future architecture, the 72-bit product will be

stored simultaneously with the 36 most and least significant bits in the left and right

register files respectively. Operations that follow hardware multiplication will need to

write their code to retrieve the 36-bit halves of the product via the correct operand.

For addition this is easy: the operation product + 0 retrieves the most significant

half, and 0 + product retrieves the least significant half.

Subtraction works differently, because 5 - product retrieves the least signifi-

cant half and subtracts it from 5, but how to subtract 5 from the register instead?

product - 5 doesn’t work, because that’s five fewer than the most significant 36 bits.

There are easy workarounds that use require two instructions per subtraction, but

one instruction per subtraction would be preferable.

The solution is a reverse subtract arithmetic operation, earlier described in sec-

tion 7.2.1. The syntax 5 ~- product takes the right copy of the register file and then

subtracts 5 from it. The tilde symbol ~ expresses that the arguments “reverse” before

the operation. Although hardware multiplication is not available as an option yet, I

included reverse subtraction at the outset for the benefit of future continuity.

8.4 Memory organization

The CPU’s program, data, and stack memory are stored on physically separate SRAM

chips and have distinct address spaces. This separation is very helpful to speed,

simplicity, and security. The only drawback is that when the system has unused

187

memory for one of these three purposes, it cannot be repurposed for the other two.

The CPU has no cache memory for three compelling reasons. Most importantly,

there are no stalls or wait states within the CPU or its memory subsystem, so there

is no speed to gain using a cache. Second, a cache will not help alleviate the slow

access times of DRAM, because there is no DRAM anywhere in the machine. Third,

a cache will not speed the CPU’s access to memory by putting a cache on the same

die as the CPU, because this architecture is soldered together from separate ICs.

8.4.1 Data memory organization

Data memory is indirect memory that programs can read from and write to for

temporary storage as they run. Data memory is 36 bits wide and is addressable

only as words, so location n + 1 is 36 bits past location n, and both locations are

word-aligned.

Data memory is allocated in pages of 4 096 words and managed via a page table.

This page table resolves virtual addresses as shown in figure 8.3 through the mapping

of figure 8.4 to become physical addresses as seen in figure 8.5. The physical address

format supports 28 bits each for up to two SRAM ICs. Twenty-eight bits will be

ample for some time because the largest ICs on the market only use 22 address bits.1

The reason for having the chip select bit separate from the physical page number

is, the board supports six available SRAM sizes between 128Ki× 36 and 4Mi× 36.

Because the size actually used is decided by soldering the chosen SRAM into place,

the board has no method of knowing which address bit should be used to switch

between RAMs M0 and M1. It is not a problem that the physical addresses of the

two ICs are not contiguous, because the page table can easily make their virtual

addresses contiguous. The operating system can determine the installed RAM sizes

by checking how addresses wrap around. The two RAM ICs do not need to be the

1An October 2022 catalog check search 4Mi× 36 SRAMs for $243.83 each. To fill out figure 8.5
without tapping the reserved bits, 128 SRAM ICs would be needed at a discounted cost of $27 121.92.

188

o�setvirtual page

bits 22–12 bits 11–00

reserved

bits 35–23

Figure 8.3: Virtual address format for data memory. The virtual page field’s width
matches figure 8.4, and can grow in the future from the reserved field.

physical page

bits 15–0

bit 16: chip select (M1 vs. M0)

bit 17: write disable

virtual pageuser

bits 18–11 bits 10–0

INPUT

OUTPUT

Figure 8.4: Page table RAM’s input and output bit assignments.

o�setphysical page

bits 27–12 bits 11–00

bit 35: write disable

bit 34: chip select (M1 vs. M0)

reserved

bits 33–28

Figure 8.5: Physical address format for data memory. The reserved field can be
reallocated as SRAM densities improve to expand the number of physical pages.

189

same size.

Supporting a selection of SRAM sizes for the data memory needs careful attention

given to address pin order. For any fixed memory size, both the manufacturer’s data

sheet and JEDEC specification indicate that all address pins are interchangeable. But

they are not interchangeable if more than one size is supported. For example, when

expanding from 128Ki× 36 with 215 rows to 256Ki× 36 with 216 rows, the selected

JEDEC packaging adds a new address bit at pin 49. For the address space to be

contiguous across all supported RAM sizes, pin 49 must attach to the 215 address

place value. Several more address pins representing further SRAM size increases

have similar assignment constraints.

The page table input and output fields are shown in figure 8.4. These fields may

expand in width should larger SRAM ICs for data memory become available, but

they are wide enough now to support two 4Mi× 36 SRAMs, which is the largest size

with leads in this series today. The page table SRAM IC itself is 512Ki× 18, which

is the smallest commonly-available, 18-wide size.

There is no out-of-bounds exception for memory reads or writes. Instead, out-of-

bounds memory accesses are real operations on live memory to whatever IC responds

modulo its size. The operating system is responsible for ensuring that all page table

entries for a running program, including virtual memory that is not in use, point to

a physical page that does not belong to another user. Unused table entries will have

a many-to-one relationship with a physical memory page that has been cordoned off.

In this manner, wayward programs will not have access to memory owned by other

programs. There are no RowHammer-class security attacks against SRAM chips,

so a rogue program’s ability to cause trouble is strictly limited to the memory the

operating system permits it to access.

As figure 8.5 shows, a provision exists for “write-protected physical addresses.”

Because the write disable bit does not connect to an SRAM address line, any physical

word of memory can be reached by via both a write-disabled physical address and a

190

write-enabled physical address. Reads and writes via either are fully allowed, except

that writes to the write-disabled addresses have no effect. By having the page table

map a virtual page to a write-protected physical page, the operating system can

prevent a user from writing to that page.

The CPU supports memory sharing between users at the operating system’s

discretion. Granting a user permission to access a page is a simple matter of adding a

new page table entry for for that user. The write disable bit need not be the same for

the same physical page as seen through different users’ page tables, so it is possible

to have pages that some users can read and write, but other users can only read.

The physical address format does not include a read disable bit, which if included

would have let a user write to a page for which the user does not also have read

permission. I did not try hard to find a compelling use for such a feature.

I considered an alternative for memory protection that involved locking a variable

number of address bits instead of having a page table. The locked-bit scheme would

require all of a user’s memory to be contiguous and have a number of words that

is a power of two. The consequences of such a scheme are not ideal. For example,

no user program would be able to use more than half of the installed data memory,

because the next size up would be all of the data memory, leaving no memory for an

operating system. Also, increasing the size of a user’s memory could require relocating

the memory of other users in order to provide a contiguous block.

8.4.2 Code memory organization

Code memory contains CPU instructions that are fetched, decoded, and executed in

order to run a program. Code memory can also be called program memory. Other

than this fetch-decode-execute process, which happens transparently, users have no

access at all to their code memory. Enforcement of this restriction works very simply.

Code memory can only be accessed via the WCM (write code memory) instruction and

RCM (read code memory) instruction family. The operating system will refuse to load

191

these instructions in application programs. The rigid machine instruction format

(section 8.5) makes it straightforward to exclude specific opcodes.

The architecture does not require, and does not offer, any further hardware

protection or page table scheme for code memory. By using a relocating program

loader to finalize addresses immediately prior to program execution, programs can

be scanned by the program loader to ensure that all CALL and JUMP destinations are

permitted for the user running. Because these instructions only come in fixed-address

formats, there is no means to evade this filtering. The drawback to this approach is

that pointers to functions, setjmp-like schemes in C, and the like are not available

in this architecture. The simplicity and security gained will greatly outweigh these

drawbacks in most cases.

Operating systems can easily offer linking to library code that shares the same

resources and privileges as the user running. All that is necessary is to have the code

in memory, and the application can simply CALL it directly. The program loader is

responsible for allowing specific program-external addresses to be called, and disal-

lowing calls to other addresses. These external routines cannot in themselves gain

privileges, registers, or memory access that their user does not already have, but they

can make calls to the operating system on the user’s behalf, and the operating system

may proxy additional privileges or memory access as needed.

At one point, there was a plan to segment the code memory into pages of 8 192

words. Offsets within pages would be advanced by a linear feedback shift register

(LFSR), and switches between pages would require JUMP instructions. This was be-

cause I did not think a fast enough program counter could be built using available glue

logic ICs. Mercifully, I was able to design a fast counter (section 3.5.3 and figure 3.3),

and the code memory organization is flat.

The code memory address space is 27 bits, and the implementation only supports

one SRAM IC for code. This 27-bit limit is on account of the instruction word size

for JUMP and CALL instructions, which have this format:

192

opcode code address for JUMP, CALI, or CALL

bits 35–27 bits 26–0

The single-SRAM IC constraint presently limits code memory to 4Mi words per ma-

chine. Although this does not sound like a lot of code to run a complete system, I

believe that many systems should not have more code than this. I think it would be

much easier to shrink a system to fit within 4Mi words (18 Mibyte) of code than to

efficaciously audit a larger system and warrant that it is free of defects.

8.4.3 Stack memory organization

A 128Ki× 36 SRAM contains the stack memory for the CPU. Only 64Ki× 27 bits of

this IC are used. Its rows are accessed using the 8-bit user, indicating which program

is executing, and an 8-bit call stack depth. The 27 columns correspond to the code

memory’s 27-bit address space. The stack memory contains return addresses only.

Rather than count in numerical order, the call stack depth changes via the suc-

cessor and predecessor operations of an eight-bit linear feedback shift register (LFSR)

as drawn in figure 3.2 (p. 45). The LFSR can adjust the stack depth faster and using

less circuitry than an up/down counter can, due to the limited variety of fast glue

logic ICs on the market. The all-zeros state of the LFSR is not valid, because its

successor and predecessor are also all zeros. The nonzero states form a cycle of 255

call depths, which permit each user up to 255 nested subroutine calls at a time.

The LFSR sequence has no beginning and no end, and the bottom position of

any user’s call stack is not monitored and almost entirely left to chance. The two

necessary requirements are (1) the stack begin at a nonzero LFSR state, and (2) no

more than 255 calls are active in the same program at any time.

Exactly three instructions affect the call stack:

• CALL adjusts the stack depth to its successor, and then writes the address of the

instruction that immediately follows CALL to the stack. As these are happening,

193

the 27-bit destination specified in the CALL instruction becomes the current

instruction pointer.

• CALI (call and initialize) is the same as CALL, except the control decoder strobes

the “preset depth” bit (figure 3.2 on p. 45) in order to guarantee the LFSR will

land in a nonzero state, thereby initializing the CALL stack to a sane condition.

CALI is a privileged instruction (not allowed in user code), because its return

address may not be initialized and therefore may not belong to the address

space of the program. Although CALI requires a valid destination because it

does branch, CALI should not have a matching RETURN.

• RETURN causes a branch to the address at the top of the user’s stack, and then

adjusts the stack depth to its predecessor.

With CALI banned from user programs (the program loader enforces this), only

four possibilities exist for a program to branch via CALL or RETURN:

1. The program can CALL a subroutine at some code address. The program loader

must enforce that the destination is either within the program that is running,

or is otherwise expressly permitted (library code, operating system call, shared

unprivileged code, etc.).

2. The program can RETURN to the instruction after an earlier CALL from code

that the program was authorized to execute. The program loader must ensure

that CALL is not the last instruction within an authorized block for some user.

Otherwise, its matching RETURN could land in unauthorized, privileged code.

3. The program can RETURN to an address that no longer belongs to its user. The

operating system must ensure that code memory is never taken away from an

unprivileged program without terminating the program first.

194

cali cali.done ; 1. Initialize call stack.
cali.done:

call user.program ; 2. Run the user’s program.
jump os.terminate.program ; 3. Prevent stack underflow.

user.program:

; ========== INSERT UNPRIVILEGED USER PROGRAM HERE. ==========

jump os.terminate.program ; 4. Don’t overrun allowed memory.

Listing 8.2: Four “bookend” instructions for call stack safety.

4. The program can underflow the call stack by using an unmatched RETURN, pos-

sibly into unauthorized, privileged code. The program loader must insert code

to catch an unmatched RETURN.

Listing 8.2 shows “bookend” assembly code that the program loader can place around

users programs to prevent call stack abuse.

Nothing has been said about call stack overflow. Although stack overflow is very

bad in terms of program execution, it is not a security concern in the sense that it

cannot cause a program to branch outside of a user’s permitted code.

8.5 Machine instruction format

The architecture implements four instruction formats, named after the number of

fields used. For example, Format III contains three fields. The underlying basic

format is that all fields are a multiple of nine bits, and the opcode field is always the

nine most significant bits.

Format I

opcode ignored

bits 35–27 bits 26–0

195

Format I instructions include CRF and NOP. The CPU is guaranteed to ignore the

“ignored” portion of the instruction. The virtual machine, on the other hand, some-

times uses this extra space to provide diagnostic capability such as SAY that is not

available on the hardware. (SAY is implemented as a parameterized NOP.)

Format II

opcode branch target in code memory

bits 35–27 bits 26–0

Format II is for CALL, CALI, and JUMP. All branch targets are physical addresses:

code memory is not protected by hardware and does not use a page table.

Note that code memory addresses cannot exceed 27 bits using this format. Most

systems built for this architecture are not expected to approach this much RAM in

the near term. Per section 8.4.2, the present implementation uses 22 bits at most.

Format III

opcode dest. register immediate value

bits 35–27 bits 26–18 bits 17–0

Format III is used for moving immediate values to registers. This is done 18 bits at

a time, with a worst case that 36 arbitrary bits would need three CPU instructions:

IMH, IMP, and OR. Several cases can be done in one instruction, one of IMB (immediate

both), IMH (immediate high), IMN (immediate negative), or IMP (immediate positive).

See also section 8.6.3.

Format IV

opcode dest. register left register right register

bits 35–27 bits 26–18 bits 17–9 bits 8–0

196

Format IV is for most CPU instructions, especially ALU operations requiring a des-

tination register, left operand register, and right operand register. Except for the

always-leftmost opcode, the field order purposely conforms to infix arithmetic in the

form c = a + b.

8.5.1 Alternative instruction formats

For my CPU, I chose that all instructions would have the same length and stand by

themselves. Having no modifying prefixes or other “instruction state” to remember

between fetches makes context switching between users easier to implement. An

important feature for ease of construction is that the CPU can be free to switch

users after any instruction.2 For SRAM minicomputer designs, I believe that this

instruction homogeneity would be a near-universal feature.

I also decided that the instruction word size would match the ALU word size.

This was more discretionary, and many good reasons exist to consider wider instruc-

tions. Even the four-bit advantage that 36 bits offers over 32 bits is very significant,

because these four bits double the number of program-accessible registers and double

the number of possible opcodes. It would be easy to modify my CPU for a larger

instruction word size.

Reasons to expand instructions beyond 36 bits

• A user (running program) could address more registers. This would be at the

expense of the number of permitted users.

• A user could address all 131 072 registers in the machine, allowing great flexi-

bility for register handling and exchanging data between users. This need not

make the system less secure, because the operating system can allocate regis-

ters to users on an as-needed basis. The only registers the hardware will let
2I propose an exception for reading code memory, because the situation is easy to manage. See

section 8.6.2.

197

any program address are the registers specified in the simple CPU instruction

format, so it is easy to constrain code to use only certain registers. And because

all registers are orthogonal, the operating system can defer assigning register

numbers to a program until it is to be loaded into code memory.

• The number of opcodes could be increased beyond 512, and/or opcode modifier

bits could be supported.

• The register file could be expanded to more than two copies, so that ALU

instructions could offer more operands. With four copies of the register file, an

ALU instruction could have a left operand, plus a separate right operand for

each ALU layer (α, β, and γ).

• Instructions could already be partially or fully decoded at the time they are

fetched. The present CPU can’t add an immediate value to a register, because

by the time the instruction is decoded, operands that would need to come from

the instruction word have already been fetched from registers and delivered to

the ALU. If the need for an immediate value could be determined by simply

fetching the instruction, the ALU could receive that value on time.

• Instructions could use a greater variety of decodings.

• “New” instructions could be synthesized from existing operations without any

firmware changes needed. This would involve doing much of the instruction

decoding in the compiler or assembler instead of in the decoder RAM.

• An expanded instruction word size can offer backwards compatibility with non-

expanded instruction words, by having the program loader expand narrow pro-

grams as they are copied to code memory. This would allow owners of “souped-

up” CPUs run unmodified code that was built for ordinary CPUs.

198

Reasons to not expand instructions beyond 36 bits

• Expanded instructions increase the firmware interface, creating more parts of

the firmware that should not change between releases.

• Expanded instructions could enable unforeseen privilege escalation attacks.

• Expanded instructions will require more code memory.

• Expanded instructions could require more circuit board space.

• Expanded instructions would slow down program loading.

• Expanded instructions would require more complex assemblers and compilers.

• Expanded instructions are not assured to add enough benefit to justify use.

• Expanded instructions could make analysis of binary programs more difficult.

Not difficult enough to offer new security assurances, but difficult enough to be

a nuisance to programmers.

• Use of expanded instructions could increase documentation needs.

8.6 CPU topology and instruction cycle

Figure 8.6 is a high-level diagram of the principal data paths of the CPU. Control

signals, ALU specifics, most of the return address stack mechanism, and more are not

drawn. Some explanation of the drawing symbols is needed.

The lines represent numbered nodes in the CPU, buses that move data between

sections. Some nodes are uniquely identified with the digits 0 through 5. The rectan-

gular and triangular boxes represent components that are selectively active as com-

putation proceeds.

199

I/O
subsystem

add one

�rmware load

�rmware load

�rmware
load

return
addresses

code
RAM

left
registers

right
registers

page
table

data
RAM

ALU �

ALU �T

ALU �

t
f r

c

d

b

i

o

a

m

w

j

Address for code reads and writes
Bypass page table
Call (save return address)
Destination register
From incrementer
Input from i/o
Jump and call destinations
iMmediate argument
Output to i/o
Return (restore return address)
To incrementer
Write code

letter codes for �ip-�ops

node 0

node 1

node 2

node 3

node 4

node 5

W

W

W

W

W writes disabled

W

Figure 8.6: Principal data paths of the CPU.

200

The rectangular boxes indicate SRAM ICs. The α, β, and γ boxes contain six

SRAMs each as explained in section 5.1, and the data RAM box may contain one

or two ICs. The remaining boxes are singleton ICs. Arrowheads pointing into the

top of each box mark address lines, indicating one-way information movement. The

connections without arrowheads at the bottom of each box indicate D/Q (input/out-

put) lines, indicating that the direction of information flow depends on timing. These

directions are as follows.

• The ALU’s α, β, and γ layers are used as logic elements only, and are marked

with a “writes disabled” icon. These RAMs can only be written to by the

firmware loader at power-up. No CPU instructions, whether privileged or not,

are able to write to these ICs.

• To aid the understanding of normal program flow, the code RAM is marked

“writes disabled.” But the privileged instruction WCM (write code memory) can

write to the code RAM so that programs can be loaded to run.

• To aid the understanding of memory protection, the page table is marked “writes

disabled.” But the privileged instruction WPT (write page table) can write to

the page table to allocate memory pages to users.

• The data RAM can be written to or read from via the STO and LD instructions.

• Operands for ALU instructions are read from the registers at the beginning of

each instruction, with the result of the computation written back at the end of

each instruction.

• The return addresses, or stack, is written to and read from by the CALL, CALI,

and RETURN instructions.

For simplicity of drawing and reading, as well as conformity with established

schematic symbols, the triangular boxes can be regarded as buffers. Data enters the

201

buffers on the flat side and emerges at the pointy connection. As with the SRAMs,

these “buffers” operate on demand by the control unit instead of continuously. In par-

ticular, the buffers have registered inputs and three-state outputs just as the SRAM

ICs do. This is a roundabout way of saying the triangles are really D flip-flops with

output enable, which had I used traditional schematic symbols for, would have made

the drawing much harder to read.

From here, these buffers-that-are-more-than-buffers will be called flip-flops, and

their usual purpose is to provide “wormholes” for out-of-path information transfers

within the CPU. Ordinarily, a computation in progress proceeds from one RAM or

layer of RAMs to the next in a four-clock cycle, while the flip-flops sit idly with high-

impedance outputs and no rising clock edges to capture their inputs. But now and

then something else may need to happen, such as a write to a code memory or input

from a peripheral. Like valves in a complex network of pipes, these flip-flops allow

information flow to be reconfigured as the control unit directs.

For convenience, the flip-flops have single-letter names that derive from their

purpose, and are notated in writing as ff a, ff j, ff t, etc. A guide to the names is

present in figure 8.6. Because the purpose of these flip-flops is to deviate from the

“normal” datapath flow, a statement to describe normal flow precedes an explanation

of the flip-flops and their functioning.

8.6.1 Instruction cycle for ALU opcodes

A majority of opcodes defined for my CPU are for ALU instructions, and they more

or less have the same datapath flow though the CPU. This flow is what is meant by

“normal,” and it’s only normal in the sense that it’s how most opcodes work.

The present design executes a CPU instruction every four clock cycles. To me,

this high throughput seems dazzlingly efficient and elegant, but it is premature to

know if four-clock instructions can be implemented reliably. The contingency, as

mentioned in section 3.4, is clock skew. Here is the four-clock design in the meantime.

202

Table 8.5: A new CPU instruction starts every fourth clock cycle.

click main activity other activity

−3 deliver instruction pointer
−2 fetch instruction
−1 fetch operands from registers decode instruction
0 ALU: α layer
1 ALU: β layer ALU: θ propagates carries
2 ALU: γ layer ALU: ζ manages flags
3 write result to registers further flag processing

The CPU counts clock cycles modulo four, with the remainder being called a

click. The time divisions are named click 0, click 1, click 2, and click 3. For counting,

click 0 begins with the rising clock edge that starts the ALU’s work at the α layer.

By the time click 0 is over, data will be ready to compute at β’s address pins.

Table 8.5 shows the essential instruction cycle, although it may be too detailed.

The short explanation is this. α, β, γ, registers. α, β, γ, registers. Over and over. 0

is α, 1 is β, 2 is γ, 3 is registers. You try it now. α, β, γ, registers. Look at figure 8.6.

α, β, γ, registers.

Sleight of hand clocking the registers

There’s a little magic to the four-click CPU cycle. It’s easy to understand that α, β,

and γ use one clock each, but the registers apparently read and write on the same

rising clock edge using the same pins. How can one data pin be two different bits?

There’s yet more magic, because the operand registers and destination registers are

often not the same, so how can one address pin be two different bits? Section 3.2.2

explains a little bit. This is a common (but not universal) feature of synchronous

SRAMs called zero bus turnaround, among other names.

With zero bus turnaround, two consecutive rising clock edges do the work. The

address to write is electrically ready at the address pins—it comes from something

203

else in the circuit—prior to the first rising edge. With the first rising edge, the RAM

captures its write address, but the RAM does nothing else yet. The address to read

is electrically ready at the address pins—again coming from something else in the

circuit—prior to the second rising edge. When the second rising edge arrives, five

things happen almost simultaneously:

• The RAM captures its address to read at its address pins.

• The RAM captures the data to write at its data pins.

• Whatever circuit was driving the data pins (with information to write) goes

high-impedance. (It’s synchronized using the same clock as the RAM). Within

a very few nanoseconds, the node will be free for the RAM to drive instead.

• The RAM initiates a read at the requested address.

• The RAM switches its data pins to low impedance. Within a very few nanosec-

onds, the node will contain the read data.

The above list isn’t quite the whole story. There is still the matter of actually

writing the data to the RAM. Internally, the RAM’s memory is in a hurry to do the

requested read, so the write operation is deferred using internal registers. There is

also the possibility that the write and read addresses are the same, with the hazard

that the data being read is not yet written. Here again, logic internal to the RAM

IC detects this hazard and reproduces the still-to-be-committed data as output in

the event the addresses match. So there’s a lot of clever engineering in zero bus

turnaround SRAMs—engineering that only involves the SRAM’s interface, not the

storage array itself. Zero bus turnaround adds almost no overhead to a chip.

Before an instruction can be executed

Although the four-click machine cycle finishes a CPU instruction every fourth clock

cycle, the start-to-finish time for any single instruction is more than four clicks. There

204

is some overlap. The first three rows of table 8.5 shows what happens prior to

the ALU’s involvement at click 0. Because the CPU counts clock cycles modulo

four, clicks −3, −2, and −1 of a given instruction happen during clicks 1, 2, and 3

respectively of its immediate predecessor.

During click −3, or three clicks before the ALU begins its work, the final in-

struction pointer is delivered from one of three sources. This is the address at which

the code memory will be read. Most often the address is one more than the pre-

vious instruction pointer. For this reason, some architectures use the term program

counter to mean instruction pointer. But it may instead be the destination address

of a conditional branch, or a subroutine return address that is popped from the call

stack.

During click −2, the instruction to be executed is fetched from the code RAM.

This will have one of the machine instruction formats of section 8.5.

During click −1, three pieces of information from the fetched instruction are

looked up. First, control decoder RAMs D0 and D1 convert the opcode into the

many control signals that are necessary to implement the opcode. Second, the left

register number is looked up in the left copy of the register file, and its contents

are retrieved for use as the ALU’s left operand. Third, the ALU’s right operand is

similarly fetched.

Branching as a potential bottleneck

One constraint on getting the four-click CPU cycle to work is that one of three

approaches to branching (JUMP or CALL) may be necessary:

• Branch approach 1. Branches need to be taken so quickly that they behave

like ordinary instructions.

• Branch approach 2. Branches are not taken fast enough to prevent executing

the instruction after the branch, so the hardware must somehow cause any

205

spurious post-branch instruction to have no effect.

• Branch approach 3. Branches are not taken fast enough to prevent executing

the instruction after the branch, so the programmer, assembler, or compiler

must write all code in such a way that spurious post-branch instructions can do

no harm.

My current implementation presently uses branch approach 1, which could either

be viewed as having a fast enough branch implementation, or viewed as reducing the

CPU speed during simulation to a point where branches work correctly. Although

the code of listing 8.1 runs at 16.11 MIPS, not all JUMP opcodes work correctly at

that speed. The problem is electrically motivated. Some branch calculations are five

SN74AUC-series logic gates deep, and branch decisions have to be ready by click 1.

It remains to be seen whether the branch circuit can be improved to run at 20 MIPS

without reconsidering what branching the architecture will support.

Mitigating clock skew risk

My greatest worry about implementing a reliable machine is that clock skew and noise

will be too large for the CPU’s timing tolerance tKQX− tH, which is SRAM hold time

subtracted from SRAM clock to data valid time (section 3.4). This tiny tolerance is

1.5 ns, and I have no prior experience or relevant study designing high-speed circuit

boards. Here are four sensible approaches to this problem.

1. Secure competent assistance.

2. Model the clock tree and circuit board using an appropriate RF or mixed-signal

simulator. This is discussed in section 11.4.5.

3. Increase track length from SRAM output pins to artificially increase tKQX.

4. Alter the design so that when a rising clock edge causes an SRAM to read

any input pins, the same rising clock edge does not cause any logic level or

206

impedance change at the input pins. This is likely to require changing the CPU

cycle from having four clock cycles to having five.

There would be gains and losses if this option is chosen. All things being equal,

the CPU would run slower and need a few more components. But all things

may not be equal, because a fifth clock cycle may be able to eliminate some

bottlenecks such as the branch decision calculation. If the right bottlenecks

could be amortized over a fifth clock cycle, it might even be possible to increase

the CPU a little beyond 80 MHz.

8.6.2 Memory access opcodes and routes

Opcodes that access memory, whether code, data, or page table, depart from the ALU

opcodes in how data flows. Tables 8.6 and 8.7 describe the opcodes for reading and

writing memory respectively and how the memory is electrically reached. Opcodes

that access stack memory were described in section 8.4.3.

Nonprivileged data memory: LD and STO

The LD (load) and STO (store) instructions achieve memory protection through use

of the page table. These instructions are very fast, because the page table and data

RAM are co-located within the ALU and straddle the α and β layers respectively.

There wasn’t another good place to put page table and data RAM anyway, because all

instructions execute in just four clock cycles. The bad news is that the only addressing

mode available is register indirect, because (1) the ALU is bypassed, and (2) there

is no time in the CPU cycle to add an offset to an address. So if a register contains

the base address of a structure, loading an arbitrary word within the structure would

require a preliminary A (add) instruction to compute the address to LD.

In my dissertation research proposal, I suggested a base-plus-offset addressing

mode for data memory. This mode required placing the page table after the γ layer

of the ALU, and then the data RAM after the page table. I decided this made the

207

Table 8.6: Memory read opcodes and their circuitous routes. See figure 8.6.

opcode description route from and to registers

LD load left, page table & ff b, data, γ, registers
RCM1 read code memory 1 right, ff a, code, ff m
RCM2 read code memory 2 (continued) ff m, β>, γ, registers
RDM read data memory left, α, data, γ, registers
RPT read page table left, page table, β>, γ, registers

Table 8.7: Memory-write opcodes and their register-to-memory routes.

opcode description address route data route

STO store left, page table & ff b, data right, β>, data
WCM write code memory right, ff a, code left, ff w, code
WDM write data memory left, α, data right, β>, data
WPT write page table left, page table right, α, page table

datapath too long, and that faster-executing instructions with less capability would

result in a faster CPU on average. One factor I considered was the relatively infrequent

need for data memory reads and writes due to the large number of available registers.

Because the offset within a page is the same for virtual and physical addresses,

the page table does not process the offset. A mechanism is needed for the offset

to bypass the page table so that it gets from node 2 to node 3 of figure 8.6. My

current implementation uses ff b to move the offset, but I intend to eliminate ff b

soon and use the ALU’s α0 and α1 RAMs instead. This will require separating the α

RAMs’ E1# (active-low enable) pins into two separate groups for α0–α1 and α2–α5.

In addition to eliminating a 16-bit flip-flop IC, this change will add a very limited

addressing mode for reads, where the α.or operation can be used with the 12 least

significant bits. This will support a future ORLD (OR and load) opcode that has a

base address aligned to some power of two in the left register, and an offset that is

less than the lesser of that power of two and 4 096 in the right register. On good days,

208

the new opcode may eliminate the A (add) instruction before certain LDs. Note that

a matching ORSTO (OR and store) instruction will not be available, because it would

need three operands (base, offset, value to write) on an architecture that supports

only two operands. ORLD will have a privileged version ORDM that bypasses the page

table.

Another change is coming to the data memory opcodes, because there is a prodi-

gious blooper in figure 8.6 and table 8.7. The data for the STO (store) and WDM (write

data memory) instructions originates with the right operand and is introduced via

the β layer, but β’s output is transposed per figures 4.8 and 5.1 (pp. 63 and 75) in

relation to the right operand and the data RAM, neither of which are transposed.

This transposition makes all writes wrong. A software workaround is available, but

it comes with a bloat and speed penalty. Every STO and WCM would need a TXOR

(transposing XOR) first, changing code that looks like:

sto address = data

to read:

data’ = 0 txor data
sto address = data’

In order to have STO and WCM work correctly, a 36-bit flip-flop must be added

that can send the right operand to node 4 without engaging the transposed β RAMs.

This wouldn’t significantly add components, because node 4 would lose its isolation

and no longer need a 36-bit flip-flop for loading firmware. So the big flip-flops are a

wash. But performance may be hindered. Nodes 2 and 5 are the most connected in

the datapath, with each net connecting to seven pins. The proposed change would

increase node 5 to eight pins per net, which might break the CPU at higher clock

speeds. Simulation will indicate whether this is a problem or not. Another possible

difficulty is that repurposing the flip-flops from firmware loading (where speed may

not be important) to system operation (where speed is important) may require them

209

to be located more centrally. Although these flip-flops are immediately adjacent to

the ALU at present, a new distance constraint may make finishing the design harder

when the layout needs updating.

Privileged data memory: RDM and WDM

The RDM (read data memory) and WDM (write data memory) instructions work much

like LD and STO, except that the page table is bypassed via α so physical addresses

are used directly.

Privileged code memory: WCM and RCM

The privileged WCM (write code memory) instruction is used by the program loader to

move instructions to execute into code memory.

I thought twice before specifying an RCM (read code memory) instruction, because

confidentiality of code is not the only reason it needs to be privileged. The path is

not short enough to complete in four clock cycles, so I split it into two instructions

named RCM1 and RCM2. At the end of RCM1, the word has been read from the code

RAM, but it’s held up at ff m on its way to the registers. The principal use for ff m is

the load immediate family of opcodes IMB, IMH, IMN, and IMP. These frequently-used

opcodes would cause RCM2 to lose information if they separate it in time sequence

from a prior RCM1. Thus RCM1 and RCM2 are only permissible in code that is not

subject to preemptive multitasking. I anticipate that the only code the hardware will

be able to protect from context switching will be the operating system main thread.

Other than memory testing, I do not foresee a need to read from code memory

other than for instruction fetching. For this reason, I was willing to include this

two-instruction instruction, the only of its kind at this time, in the architecture.

210

Privileged page table memory: WPT and RPT

The WPT (write page table) instruction provides a simple implementation for the op-

erating system to manage physical and virtual memory, including write protection

of virtual pages. Operating system implementers need to remember that user pro-

grams can produce any virtual address, therefore all virtual pages for a user program

(whether in use or not) must resolve to security-appropriate physical pages.

The RPT (read page table) instruction may be useful for memory testing, but

perhaps not much else.

8.6.3 Flip-flops not involved in memory accesses

There are five more uses for flip-flops in figure 8.6 beyond the memory operation uses

described in section 8.6.2 and its tables 8.6 and 8.7.

Immediate constant loading via ff m

Four CPU instructions that use Format III (section 8.5) are able to copy an 18-

bit numeric constant from the instruction word to a destination register via ff m.

This numeric constant is called an immediate operand, because it is “immediately”

available from the instruction rather than requiring a register to obtain it. There are

four natural things to do when an 18-bit constant is a converted to a 36-bit word to

store in a register:

• Use the 18 bits at face value as an unsigned integer. The 18 most significant

bits will be zeros. The IMP (immediate positive) instruction implements this.

• Use the 18 bits as a signed and negative integer. Bits 18–35 will be ones. The

IMN (immediate negative) instruction implements this.

• Copy the same 18 bits into both halves of a 36-bit word. The IMB (immediate

both) instruction implements this.

211

• Use the 18 bits as the upper half of a 36-bit word. The 18 least significant

bits will be zeros. The IMH (immediate high) instruction implements this. An

arbitrary 36-bit integer can be placed in a register using a three-instruction

sequence such as IMH, IMP, OR.

Input and output via ff i and ff o

The CPU can output a word to the I/O subsystem via ff o, and receive a word back via

ff i. It would be fine if an opcode is written that can do both in one instruction, but

due to lack of clock cycles for the I/O subsystem to do anything, the word received

back would not be in response to the word sent. Opcodes have not been named

yet to support this communication, because new control signals with yet-unknown

semantics and names would likely support those opcodes.

Branches via ff j, ff f, and ff r

Flip-flops ff j, ff f, and ff r comprise the instruction pointer, where ff f handles straight

runs of code, ff j supports CALL and JUMP, and ff r supports RETURN. This design is

messy in the sense that the instruction pointer is not contained in any single register—

doing so would add a fifth clock pulse to the instruction cycle, thus slowing down the

machine. The instruction pointer incrementer is fed by ff t, and ff c is used to save

the return address after CALL.

ALU destination register writes via ff d

The address pins on the two register RAMs require operand register numbers at the

beginning of an ALU instruction so that registers can be fetched, but destination

register numbers at the end of the instruction so that results can be written back.

This is the purpose of ff d, which saves two copies of the nine-bit destination register

after the instruction is fetched. Further in the machine cycle, the code RAM outputs

shut off, and ff d recalls the destination register so the ALU’s result can be stored.

212

Flip-flops for firmware initialization

The firmware loader needs to reach all address and data pins of the code and ALU

(αi, βi, γi, θ, ζ) RAMs. This access is sometimes through a series of flip-flops instead

of direct. Figure 8.6 shows three unlettered flip-flops for introducing firmware where

no other route exists via flip-flops to their destinations.

8.7 Control unit

8.7.1 Clock driver

The clock driver was described in section 8.1 without a drawing. Figure 8.7 shows how

the clock tree fans out. When placing components, I sought to have lengths nearly

equal so that intersecting conductors would have the same phase. The VHF nature

of the clock circuit and its UHF harmonics leave many questions unanswered as to

whether (1) the circuit can coexist with the rest of the minicomputer, (2) whether

clock skew across the system will be small enough, and (3) the level of effort that

will be needed to comply with 47 CFR 15, the FCC’s rules regarding unlicensed

transmissions.

8.7.2 Click counter

There are four rising clock edges per CPU cycle. These rising edges have names

click 0, click 1, click 2, and click 3. Two D flip-flops named clockphase0flop and

clockphase1flop are wired as a two-bit counter that indicates which click applies to

the next rising clock edge. (Because the clock edge must be acted on quickly, the

counter must already indicate which click the rising edge is for.)

There is also some minor logic on the board that detects when a specific click,

e.g. click 2, presently applies.

213

clock output

Figure 8.7: The clock driver uses eight 16-bit buffer ICs with stages wired in parallel.

214

8.7.3 Control decoder

Decoder RAM outputs

The control decoder can be viewed as a 11× 72 SRAM used in a read-only manner,

although it is actually implemented as two tandem-connected 17× 36 SRAMs named

D0 and D1. I opted early on to name the 72 outputs d100–d171, in order to minimize

rework should three digits become necessary. These outputs are control signals that

tell the minicomputer what to do and when to do it. Thus far, 40 of the 72 control

signals have been allocated, with d140 through d171 reserved for future use.

The decoder’s control signals are listed in table 8.8. Their order is intentionally

non-ideal from a documentation standpoint, because insertions and deletions would

involve a lot of error-prone manual changes to the netlist.

The control signal list is not stable yet, so it is not extensively described here.

There are a few general themes, however.

Because the α, β, and γ SRAMs never actuate on the same click, their function

select bits from tables 7.11, 7.12, and 7.13 can use the same control signals d100–d105.

For example, when the β ALU layer is active, the inactive γ layer RAMs will ignore

β’s function select bits. These nets have a fanout of 18, so the circuit includes some

buffers to assure me that their control signals have enough drive.

The θ and ζ SRAMs never actuate on the same click, so their control signals

d106–d110 are likewise shared. The fanout is only two, so no buffering is added.

Lockouts A, B, and G protect the nodes that are driven by the α, β, and γ

RAMs respectively from overcurrent. For example, figure 8.6 indicates that the α

RAMs drive node 3, as do the page table, ff b, and ff m. From a system safety

standpoint, it’s important that the control decoder not have individual control over

these four current sources. Individual control could permit more than one current

source—a logic 1 and a logic 0—per net, and perhaps lead to component damage.

Instead, the control decoder outputs “advice” as to which of the four sources for

215

Table 8.8: Control decoder assigned bits.

bit name description

d100 function select bit 0 for α, β, γ
d101 function select bit 1 for α, β, γ
d102 function select bit 2 for α, β, γ
d103 function select bit 3 for α, β, γ
d104 function select bit 4 for α, β, γ
d105 function select bit 5 for α, β, γ
d106 function select bit 0 for θ, ζ
d107 function select bit 1 for θ, ζ
d108 function select bit 2 for θ, ζ
d109 function select bit 3 for θ, ζ
d110 function select bit 4 for θ, ζ
d111 lockout A advice
d112 lockout A other advice
d113 lockout B advice
d114 lockout B other advice
d115 lockout C advice
d116 lockout C other advice
d117 lockout G advice
d118 lockout G other advice
d119 lockout IP advice
d120 lockout IP other advice
d121 page table’s W# (active low write input)
d122 branch if T(emporal) flag set
d123 branch if R(ange) flag set
d124 branch if N(egative) flag set
d125 branch if Z(ero) flag set
d126 branch if positive (neither N nor Z)
d127 invert T(emporal) or R(ange) branch condition
d128 invert ALU incoming T(emporal) flag
d129 permit ALU incoming T(emporal) flag
d130 clock flags into branch decision logic
d131 copy CPU instruction (write ff m)
d132 I/O output (write ff o)
d133 lockout Z advice
d134 lockout S advice
d135 lockout S other advice
d136 lockout E advice
d137 lockout E other advice
d138 preset call depth
d139 store N(egative) and Z(ero) flags

216

node 3 should turn on. Hardwired glue logic decodes this advice in such a manner

that only one current source per net can be active at a time.

Because the lockout schemes are complex, numerous, tedious to write, and crucial

to correct operating of the system, my implementation uses considerable automation

alongside some manual recordkeeping to write lockouts into the netlists. This automa-

tion includes converting truth tables to sets of boolean expressions to match the truth

tables, as well as selecting the fastest expression from each set based on datasheets

for available components. These expressions are then used to automatically allocate

and connect glue logic ICs to implement them correctly.

There are additional named lockouts in table 8.8 for the code RAM (C), instruc-

tion pointer (IP), call stack (S), call stack depth (E), and ALU ζ RAM (Z). Some

lockouts protect more than one node; for example, lockout A protects nodes 3, 6, and

9 from overcurrent. Specific details are in flux and out of scope for this document,

which does not even identify nodes 6 and 9. There are also some trivially simple

lockouts that will receive their advice from the firmware loader instead of the control

decoder.

I have not numbered the advice bits within individual lockouts, so table 8.8 uses

the current bit names from my notes, which are “advice” and “other advice.” They do

not have place values, because their decoding identifies unnumbered physical sources

of current.

After the function select and lockout advice bits, the remaining control decoder

outputs support other ALU and CPU functions as marked in table 8.8.

Decoder RAM inputs

The control decoder is a table containing 2 048 rows that specify the control signals

for 512 possible opcodes at each of the CPU cycle’s four clicks. This table is split

horizontally between RAMs D0 and D1 to obtain 72 control signals from these 36-wide

parts. Address pins 2–10 accept the opcode, and connect to the nine most significant

217

bits of the code RAM’s output. Address pins 0 and 1, which identify which of the

four clicks is current, are grounded.

As explained so far, these address connections have two problems. First, only

click 0 is accessible, because the click select bits are soldered to ground. Second, the

code RAM outputs the CPU instruction to node 1 in figure 8.6, but the instruction

cannot remain at node 1 throughout all four click of an instruction. For example,

during a WCM (write code memory) instruction, node 1 at some point must contain

the instruction begin written instead of the instruction being executed. This means

that RAMs D0 and D1 will not have useful input at their address pins while decoding

all four clicks.

These two addressing problems are solved as follows. As table 8.5 shows, every

click 2 is an instruction fetch, and every click 3 decodes the newly fetched instruction.

As of any click 3, all 11 address bits to D0 and D1 are correct. Nine of the bits contain

the newly-fetched opcode, and the two grounded bits indicate that control signals to

be fetched for click 0. Many synchronous RAM models, including that used for D0

and D1, have a feature called burst mode that captures the address inputs and includes

a wraparound counter for the two least significant bits of the address. The circuitry

surrounding D0 and D1 instruct them to read the address to fetch from the address

pins at click 3, and to increment that address internally for subsequent fetches at

clicks 0, 1, and 2.

It is sheer coincidence that the CPU cycle of my architecture has four clicks, and

that common SRAMs can count internally through four-word memory blocks. This

coincidence spared some effort working around a data timing collision at node 1.

8.8 Simplicity and scale of the CPU

In fewer than fifty pages, this chapter describes a robust 36-bit CPU with only 220

soldered components. This CPU is one of many practical, affordable designs that

218

could emerge for solder-defined minicomputers. Although this CPU still requires an

I/O subsystem, firmware loader, and preemptive multitasking before a physical ma-

chine would be worth using, I believe that its design evidences the merit of considering

solder-defined approaches for controllers and computers for critical infrastructure.

219

9

Forthcoming subsystems

The CPU infrastructure that chapter 8 describes needs only to be “finished” for it to

run cleanly in simulation. More specifically, it is the control decoder firmware that

is not finished. This firmware is generated by a C program that specifies the control

signals for the four clicks of 15 families of opcodes. Five families appear to be written

but may not be fully tested, and ten families remain to be written. Here is code that

is tested and working for one such family:

case cy_alu: // ALU operation
m[0] = lo_a_A | lo_z_Zh | lo_g_LRh | lo_c_dest | p_no_write

| lo_s_S;
m[1] = lo_a_Ah | lo_b_B | lo_z_Zh | lo_g_LRh | lo_c_dest

| lo_ip_next | p_no_write | lo_s_S;
m[2] = lo_z_Z | lo_g_G | lo_c_C | p_no_write | lo_s_S;
m[3] = lo_ip_jump | lo_z_Zh | lo_g_LR | lo_c_dest | save_inst

| p_no_write | lo_s_S;
break;

Put another way, the CPU as described in chapter 8 is about 100 lines of code from

full and working simulation, although writing assembly language test cases and being

ready to correct netlist errors are corequisites.

In contrast, table 8.1 lists three essential sections of the minicomputer for which

no circuit designs exist. The base functionality from chapter 8 needs to be working in

simulation before these further subsystems—preemptive multitasking, the firmware

loader, and input and output—can be incorporated.

221

9.1 Preemptive multitasking

Informally, preemptive multitasking is a mechanism where an operating system can

divide a CPU’s attention between more than one program that is in memory and ready

to run. The preemption process temporarily freezes whatever program is running after

a short moment, and unfreezes the next program so it can run. My architecture refers

to these programs as users, because they share the use of the CPU. The duration of

a short moment is kept small, so that whatever programs are waiting to run take on

the appearance and characteristics of running simultaneously.

All chapter 8 functionality needs to be in place before preemptive multitasking

can be designed, because the preemption (stopping one program) and context switch

(switching to another program) is particularly invasive. The entire CPU, comprising

thousands of pins spread over 450 cm2 of circuit board, needs to set aside what it was

doing in a coordinated manner and pick up something else. This chore’s intricacy is

temporal as well as spacial. The CPU works on two instructions simultaneously as

table 8.5 (p. 203) shows, and a context switch must atomically separate them. The

many spacetime boundaries and topologies need to be completely specified before

multitasking can manifest.

The existing design has an excellent start on preemptive multitasking, in that

the CPU registers, return address stack, and page table entries are already segregated

by user. This user is represented by an eight-bit number, so there can be up to 256

users. Changing the user number in a single eight-bit flip-flop is all that is needed for

the CPU to use a different user’s registers, stack, and page table.

I thought that a similar scheme would work for the instruction pointer and flags.

There would be a RAM with all of the users’ instruction pointers, and a RAM with

all of the users’ flags. In fact, with 5 currently defined flags and a 27-bit address

space for code, one 36-wide RAM could hold both lists and have extra space. But the

mechanism would be cumbersome and add a clock cycle to features that are already

222

crowded for time. The four clock cycles to execute and instruction would need to

be five. Furthermore, there is not another place in the architecture where a RAM is

read from or written to at the same memory location with every CPU cycle, let alone

both read and write with every CPU cycle.

There are resources in figure 8.6 (p. 200) that can be used to save and restore

the instruction pointer and flags between users. The context switches would not be

as instantaneous on account of needing to do the memory transfers, but they can be

fast enough that their duration does not matter. My dissertation research proposal

anticipated this possibility where it specified that context switches that take as long

as five CPU cycles would be acceptably fast.

Context switch interrupts can be raised such that the instruction pointer for the

instruction to come back to is ready at node 0. Rather than add a RAM to store

it, this address can be moved via ff t and ff c to the return address stack. This

would reduce the stack allowance from 255 calls to 254, which is still plenty deep for

an architecture that claims to not support recursion. The CPU flags can be stored

alongside the return address in the same 36-bit word, because the code address space

is only 27 bits.

One problem appears to exist, in that the identified path to save the instruction

pointer adds one, leading to unpredictable one-instruction “holes” in executed code

when context switches occur. The circuit has no accessible hardware that can reverse

this addition, and 35 ICs would be needed to add a decrementer. But there is a perfect

answer. Figure 3.3 (p. 46) shows the first eight bits of the incrementer circuit, and

the top of this drawing is a net labeled “logic 1.” That net triggers the increment, so

bringing a logic 0 from the control decoder is all that is needed to protect the resume

address from modification.

The next puzzle to solve is grabbing control to do the context switch. My thought

for a while was to use a 27-bit flip-flop with grounded inputs available to write node 0,

thereby forcing a branch to some operating system code with special opcodes that

223

would do the necessary user, instruction pointer, and flag swaps. I now think that a

different approach would use less hardware, while letting the operating system yield

from whatever address it chooses, instead of having to resume at a hardwired address

such as all zeros.

My suggestion is to branch the context via the control decoder instead of the

code RAM. Thus far, RAMs D0 and D1 only use 11 of their 17 address bits, so their

total content is just 4 096 doublewords. By adding a 12th address bit to RAMs D0

and D1, a parallel copy of the firmware is easily switched to that can have the control

signals needed to initiate the context switch. Also, because the parallel copy includes

every click of every opcode, the firmware for context switching can be customized on

a per-opcode basis if necessary. I anticipate that a 13th and possibly a 14th address

bit would also be added so that the control decoder can issue a long enough sequence

to finish the context switch.

There is an interesting metacontext in using the control decoder to switch con-

text. First, there are no CPU instructions or opcodes that participate in the context

switch. There would likely be instructions that identify the next user (privileged) and

set a flag that the CPU should yield (nonprivileged), but the control decoder would

make it happen. This would make CPU cycles the correct unit of duration for context

switches rather than instructions, because instructions would not run during context

switches. Another distinguishing characteristic is that the control sequence extends

beyond the duration of one CPU cycle. According to my reasoning in section 7.1,

this extended sequence is the first proposed use of microcode in my architecture.

Having established how multitasking may work, a mechanism for preemption is

up next. This would be a binary counter that sets the yield flag every time a preset

number of CPU instructions has passed. Some arbitration would be included to avoid

conflicts with a software-initiated yield, in order that the intended user is switched to

and no request is lost. The possible settings for the number of CPU cycles between

context switches and the granularity of those settings can be decided when the timer

224

is designed. So can whether or not a mechanism for reclaiming unused time will be

offered.

A minimal-hardware approach to the timer could use a 16-bit LFSR and switch

context every 65 535 CPU cycles. This would impose very low overhead, possibly tak-

ing 5 CPU cycles to switch to the operating system, 7 cycles for the operating system

to indicate if the time has come to switch users, and 5 cycles to return control to the

correct user.1 This would slow the minicomputer down by 1 out of 3 855 instructions,

or about 260 PPM. Although this minimal-hardware scheme would only provide a

fixed interrupt rate near 305 per second assuming the system runs at 20 MIPS, a

counter within the operating system can achieve a lower effective rate, subject to the

fixed granularity of the underlying interrupts.

9.2 Firmware loader

When power is applied to the minicomputer, the ALU’s 20 RAMs are empty of

knowledge and devoid of ability to compute logic or arithmetic. The two control unit

RAMs are also empty, leaving at least 40 control signals on sabbatical leave. The code

RAM contains no operating system and no code that can load one. The instruction

pointer, in addition to being unknown, may be in any of four locations. And these

are best-case predictions, because instead of zeros in the various RAMs, there may

be garbage instead.

The firmware loader is the answer to these many problems. Its task is to move the

binary tables that guide the minicomputer’s operation data from nonvolatile storage

into the 23 SRAMs where they are needed. Of these SRAMs, 22 will have their

contents frozen by the firmware loader prior to setting the instruction pointer and

starting the CPU.

Like preemptive multitasking, a complete CPU implementation through chap-

1I believe these counts to be conservative, and that the implementation would do better.

225

ter 8 is requisite before a firmware loader’s main design effort can begin. But the

dependency is not for the same reasons. The firmware loader doesn’t have to inter-

rupt complex processing, and its connections into the CPU are through designated

“firmware load” flip-flops as in figure 8.6 (p. 200). Once past those flip-flops, the ad-

dresses and data from the loader need to find their way through the CPU’s many other

flip-flops in carefully-orchestrated combinations to reach their destination RAMs.

For example, to load firmware into the ALU’s α layer, the data at node 3 has to

come in through node 2’s firmware load flip-flop, move through ff w to node 1, then

through ff m to node 3, and stay there. Then the firmware load flip-flop is used a

second time to set the address bits for the left operand on node 2. The right operand’s

firmware load flip-flop has to set up node 5. The α function select (operation) inputs

have to be set via the a firmware loading flip-flop for the control decoder. The

propagate and carry outputs from α have to be written at the same time, and that

node is supplied via another firmware load flip-flop that doesn’t appear in figure 8.6

(p. 200). Then the encoded range output for α5 needs preset via another firmware

load flip-flop that isn’t drawn. Only when all these preconditions are in place can

the firmware loader send a write signal to the α SRAMs. That signal will cause the

first word to be written to the six α RAMs. They will need another 262 143 words

written into them. So the firmware loader’s connectivity to the CPU is straightforward

enough, but a final and accurate netlist—all of chapter 8—is prerequisite to determine

a sequence for the firmware loader to issue.

Because the firmware loader must load more than five million words from non-

volatile storage to SRAM, one of its implementation challenges will be testing. My

implementation takes one second to simulate 210 clock cycles (about 52 instructions)

based on the chapter 8 netlist. If loading a word of firmware takes one clock cycle, a

complete startup would take about 30 hours to simulate. But the nonvolatile storage

is read no faster than one bit per clock cycle, and all the routing needed is in addition

to that. A full startup would take months of CPU time to try once. The firmware

226

Table 9.1: Data exchange flip-flops from the firmware loader to the CPU.

name width description

ff boi 36 beta output init
ff cdi 8 carry decision and carry summary init
ff dci 72 decoder init
ff eri 5 encoded range init
ff fli 7 flags (ζ RAM) init
ff gfi 7 gamma’s f lags init
ff loi 36 left operand init
ff pci 12 propagate-carry init
ff roi 36 right operand init

loader’s design will need to allow simulations to parallelize dependably.

To reach the address and data pins on the SRAMs it initializes, the firmware

loader needs to attach to 207 nets as shown in table 9.1. As section 8.6.2, ff boi will

probably be removed, leaving 171 nets to be driven by 24 eight-bit flip-flops. This

comes to 12 ICs, because each IC has two 8-bit flip-flops. Because the 24 flip-flops

have separate clock and output enable lines, they can in principle be consolidated

down to eight nets on the firmware loader side. Whether to reduce to 8, 36, or some

other number of nets will depend on the flow approaches chosen.

In addition, the firmware loader will need to generate a number of control signals.

At this time, these are known to include the W# (active-low write enable) pins for the

α, β, γ, θ, ζ, D0, and D1 RAMs, as well as the E1# (active-low enable 1) pins for D0

and D1. I expect that more will be added.

9.2.1 Option 1: Purchased complex logic

The firmware loader represents somewhat of a chicken-and-egg problem, because its

objective of moving data into a processor calls for a processor of some kind to do

it. This device need only have a few GPIO (general-purpose input/output) pins for

2.5 V logic. Only outputs would be used.

227

Many premanufactured devices exist that would allow a commodity computer to

load firmware into the CPU. A very lightweight approach would be a USB UART with

GPIO pins, such as FTDI’s FT232H series of ICs. This would add almost no hardware

beyond what chapter 8 already includes. All further development challenges would

jump through the USB cable to firmware loading software running on the external

system. It’s a great plan from a development and test standpoint, but my solder-

defined minicomputer would not be freestanding and always need something external

to help it power up. Perhaps as bad, the solder-defined machine’s lifecycle would

be capped to the longevity, code, and recordkeeping of the external computer that

supplies the firmware.

An internal option would be to use one of many microcontrollers that offer GPIO,

such as the RP2040 from Raspberry Pi Ltd. As of November 2022, this IC can be

purchased for one dollar. This part has a few drawbacks. As purchased complex logic,

it may in principle contain exploitable defects. But accessing the device to exploit

these defects can be made difficult.

• Firmware loading happens via unidirectional flip-flops, so a running solder-

defined system will not be able to alter anything concerning the RP2040.

• The firmware loader’s circuitry beyond the RP2040 can include a flip-flop that

locks out future changes, preventing the RP2040 from touching the solder-

defined system once the CPU is running.

• Apart from its outgoing connections into the transfer flip-flops, the RP2040

would ordinarily be air-gapped, making a remote exploit rather improbable.

• The RP2040 does not include a clock with battery backup, making a calendar-

triggered exploit less probable.

A potential concern with the RP2040 is that it may contain internal writable state

that could enable some kind of usage-metered triggering of an exploit. The RP2040

228

uses an external serial memory that should power up in write-protected mode as a

precaution.

Another concern about using a microcontroller like the RP2040 is that any

firmware, operating system, and applications present on a system used to bootstrap

a solder-defined computer should be open-source and audited. This would vastly ex-

pand the system’s design and maintenance scope without a large enough return on

that investment.

On the whole, a firmware loader based on a purchased microcontroller might not

be a terrible decision. But I would prefer to use either of the solder-defined approaches

in the following two sections. Either can be viable and may instill more confidence

in the overall minicomputer.

9.2.2 Option 2: Hardwired logic after NOR flash

A careful look should be taken at what data geometries and control signal sequences

are likely to work well for firmware loading. It may be helpful to write a simplified,

non-standard microcontroller with GPIO into the electrical simulation, and try some

firmware loads to get a sense of how much assistive logic a firmware loader would

need to implement.

Some models of serial memory ICs that contain NOR flash, such as the one I

purchased (section 3.6.1), can be configured to read their contents out at completion

of power-up without sending any command to do so. The device I bought can keep

up with an 80 MHz clock, which happens to be my targeted clock speed for the

minicomputer. Up to four bits per rising edge can be configured, so in theory the

entire 128 Mibit flash can be read out in 0.84 seconds. It may be safer to divide the

clock rate by two in case a substituted flash IC does not assure correct operation at

80 MHz, or someone tries to clock the CPU faster than 80 MHz. Extending the boot

time another 0.84 seconds is unlikely to harm much.

The bits retrieved from the serial memory would be moved into shift registers

229

implemented with yet more dual eight-bit flip-flops. Some mechanism would decide

when the registers are sufficiently loaded. At that point, the information in the shift

registers is interpreted by hardwired logic as representing either a command that

sequences some control signals, data to move to one of the table 9.1 flip-flops, an

address to load into an address counter, or a count to move into a repetition counter.

Firmware loader counters need not increment in sequential order, so a linear feed-

back shift register (LFSR) is likely to be used instead. If a counter is for repetitions,

its only requirement is that the counter signal after the required number of clock

cycles has passed. A repetition counter would be useful for tasks such as interpreting

the next 255 words from the serial memory as data to move instead of addresses or

commands. An address counter may increment its low eight bits through 255 nonzero

values so that address need not be reloaded. The all-zero case can’t be incremented

by an Galois LFSR, so it would use its own address load. This scheme amortizes to

one address load per 128 words written to SRAM, so it does well.

A complementary or alternative means to increment address counters is to use

the SRAMs’ burst mode and ADV input pins. Burst mode may not turn out to need

any fewer components than just tacking two more bits onto an address LFSR would

need, so it may be better to leave the SRAMs’ burst mode unused.

Although it would be bad for the serial memory to have any read errors that find

their way into the CPU’s implementation, it may be desirable to have some form of

synchronization marking within the stream coming from the serial memory. Other

than resynchronizing and continuing with the next valid address, I am uncertain what

corrective action could be taken.

It may be helpful to compute a NOR flash checksum as firmware loads, although

for 36-bit words this would require a lot of board space for XOR gates. An alternative

would be to give the operating system read-only access to occasionally verify the serial

memory via the I/O subsystem. Electrical assurances that the device stays read-only,

possibly by never taking the device out of “autoboot” mode, would be important.

230

28-bit shift
register

from
NOR
�ash

load
FSM

1

256Ki✕ 18
SRAM

run FSM

inputs

outputs

10

OE

OE
10

8

10

Figure 9.1: A single-RAM finite state machine with hardware to load its firmware.
Freestanding numbers indicate wire multiplicities.

9.2.3 Option 3: Finite state machine after NOR flash

A single SRAM can be hacked into a small controller that implements a deterministic

finite state machine, or FSM. Figure 9.1 shows an example with 10 input bits, 10

output bits, and 8 bits of internal state. Only the address (top) and data (bottom)

pins of the RAM are drawn; additional control logic and wiring are needed.

The FSM of figure 9.1 obtains its firmware via a 28-bit shift register that sur-

rounds it. Constructing the shift register uses a pair of dual 8-bit flip-flop ICs. The

drawing looks problematic in that the eight fed-back nets appear to constrain the

firmware being input to cases where eight of the output bits are identical to eight

of the input bit. But there is no such constraint, because the SRAM write process

231

captures the address and data pins at different times. This allows the shift register

to correctly align the bit stream for both the address and data pins.

Transfer of firmware from a serial NOR flash serial memory to the SRAM requires

many shifts and writes. For simplicity understanding the drawing, the serial memory

is configured to output one bit at a time.2 The transfer process for each word needs

the order of certain bits rearranged within the serial memory so that their clocked

positions align with the diagram. The sequence to transfer each word is:

1. Clock A0–A17 from the NOR flash into the shift register.

2. Clock D10–D17 from the NOR flash into the shift register.

3. Clock D0–D1 from the NOR flash into the shift register.

4. Strobe the address for the write into the SRAM.

5. Clock D2–D9 from the NOR flash into the shift register.

6. Strobe the data for the write into the SRAM.

During the firmware transfer, “load FSM” is true and “run FSM” is false, sur-

rounding the SRAM with the shift register outputs. When the transfer is complete,

“load FSM” is false and “run FSM” is true, permitting the SRAM’s address lines to

see the FSM’s most recent state (8 bits) and new inputs (10 bits) in order to look up

its next state (8 bits) and next outputs (10 bits).

Control signals to load the FSM RAM (write enable, clocks, etc.) would be

generated from a small amount of logic that can either be fully hardwired, or benefit

from the serial memory’s presence to generate a sequence of control signals through

a widened shift register and some glue logic.

The above process may be called boot phase 1, which loads only the single SRAM

at the heart of the finite state machine. At the end of boot phase 1, the FSM is able
2The four-bit transfer mode would need a widened shift register and alignment bits added to

each word to keep in sync with the 18-wide address and data nodes at the RAM.

232

to sequence far more complex logic. This logic will continue reading bits from the

serial memory and transferring firmware to the 23 SRAMs in the CPU that need it.

This process where the FSM loads the other 23 SRAMs is boot phase 2. As the final

steps of phase 2, the FSM locks out all further firmware writes for the remaining time

the power will be on. Then the FSM forces the CPU into a sane state via any control

signals necessary, starts the CPU at location zero in the code memory, and terminates

the FSM. The code memory will contain a small bootloader that was placed there by

boot phase 2 and written in the minicomputer’s instruction set as defined in chapters 7

and 8 and appendix B. Running this bootloader from the code memory is boot phase

3, which goes to the I/O subsystem to load an operating system from a storage or

network device. The operating system’s own initialization, run using code brought in

via the I/O subsystem, is boot phase 4.

The firmware loader’s finite state machine can be useful for implementing loops

in the firmware transfer process. If enough internal states are available, the FSM

table can implement loops directly. If there aren’t enough internal states, the FSM’s

external wiring (input and output bits) can interface with a simple presettable counter

such as an LFSR with some logic to detect when the sequence is finished.

The allocation of input, output, and internal state bits in figure 9.1 is for illus-

trative purposes and probably would not match the distributions of actual firmware

loader designs.

9.2.4 Option 4: Parallel NOR flash finite state machine

Rather than use an SRAM IC as a finite state machine as in option 3, a parallel NOR

flash IC might be used. The advantage would be the elimination of boot phase 1 and

a possible saving in components. But there are many drawbacks:

• NOR flash has longer access time than SRAM, which would slow the boot

process and probably makes the clock circuit more complex.

233

• The NOR flash for the FSM would require programming prior to soldering.

• Inspection of the NOR flash contents would be impractically difficult after as-

sembly.

• Data retention in the soldered NOR flash is not forever, meaning that resolder-

ing will be required every so many years to keep the computer working reliably.

• A NOR flash FSM violates the design goal of having all persistent state in one

place.

• Parallel NOR flash ICs tend to be only eight bits wide, which may prove to

be too limiting. The workaround would be to add another parallel NOR flash

memory alongside it, as if two wrongs make a right.

9.3 Input and output

Attaching an I/O subsystem to a CPU is the necessary and sufficient requirement to

build a computer. If I had to choose one peripheral that I couldn’t live without on

every machine, it would be the most accurate real-time clock I could afford. Unfor-

tunately, factory lead time for Maxim’s DS3231 can exceed 80 weeks as of October

2022, and a prominent distributor has about 120 000 on order.

As with multitasking and the firmware loader, the I/O subsystem can’t be de-

signed until chapter 8’s preconditions are met. Here again, its dependence on the

underlying CPU being ready is for a different reason. Unlike preemptive multitask-

ing, the interconnect between the CPU and I/O is extremely simple—a few signals

from the control decoder, and flip-flops from and back to the ALU. Unlike the firmware

loader, the I/O subsystem has no particular dependence on the CPU design or its

netlist. This time, the issue is that testing the I/O subsystem will require the ability

to run programs of considerable complexity on the CPU.

234

Many I/O controller ICs have been introduced to the market, and it would be no

challenge to connect one to the CPU via ff o and ff i (figure 8.6) and call the system

finished. But I am seeking stronger security assurances for the I/O subsystem all

the way from the CPU to the point where each peripheral attaches. Solder-defined

controllers with open-source firmware and open-source device drivers can be feasible

and affordable at transfer speeds of tens of millions of bits per second per wire.

My expectations for an I/O subsystem for the near term are as follows:

• Peripherals that adhere to the Serial Peripheral Interface (SPI) and Inter-

Integrated Circuit (I2C) bus specifications will be supported. These will be

the only data transfer mechanisms in the initial design.

• Both SPI and I2C support multiple peripherals on a single bus, sacrificing de-

vice isolation in favor of compactness, expandability, and flexibility. This offer

will be declined. The I/O subsystem will prioritize security instead, so that

no peripheral can detect another peripheral, eavesdrop on another peripheral,

change another peripheral’s data in flight, or block another peripheral’s ex-

change of data.

• Each serial bus will attach to at most one peripheral.

• Each serial bus may have jumper pins or DIP switches to configure its connection

point for I2C (open drain) or SPI (push-pull).

• Each serial bus need only be one bit wide per direction. Some peripherals

such as serial memories can double or quadruple their transfer rates by using a

minimal number of extra wires. I decline to make this an expectation for early

implementations.

• Each serial bus will have exactly one interrupt request line. It will be maskable,

active-low, and not shared with any other serial bus.

235

• Each serial bus will have exactly one outgoing device select line.

• A minicomputer will have at least eight serial buses. (Anyone who has set up

a desktop computer with four USB connectors or a LAN with a four-port hub

should understand why.)

• Serial bus transfers will be half duplex, in the sense that the buffer RAM will

never simultaneously contain data to read and write from the bus.

• An I/O controller will be a simple bit-banging finite state machine that can

only exchange data with one serial bus at a time.

• A minicomputer should (but may decline to) have two I/O controllers so that

transfers between two peripherals can be expedited.

• Each serial bus should (but may decline to) multiplex to both I/O controllers,

in order that the minicomputer can transfer between any two devices efficiently.

Note that this configuration only enables one such transfer to happen at a time.

• Each serial bus will have and be confined by hardwired logic to its own dedi-

cated memory for a transfer buffer. The confinement will not be escapable by

malicious I/O controller firmware or malformed serial data.

• Each serial bus will have and be confined by hardwired logic to its own dedicated

memory for its finite state machine firmware. The confinement will not be

escapable by malicious I/O controller firmware or malformed serial data.

• The I/O subsystem and its serial peripherals will have no access to the CPU’s

registers, code memory, data memory, return address stack, or page table.

• Isolation of peripherals is intended to be strong but not absolute. The de-

sign will not consider side channel threats such as overvoltage, overcurrent, ra-

diofrequency interference, compromising emanations, microphones, explosives,

236

quantum entanglement, postdoctoral scholars, or TARDISes.

I predict the I/O controller design will include these components and sections:

• A 128Ki× 36 buffer RAM will temporarily store bits received from the serial

bus, as well as temporarily store bits to be sent to the serial bus. For the

purpose of this list, the 36-bit node that connects to the buffer RAM’s data

pins is termed the parallel node.

• An eight-to-onemultiplexer/demultiplexer ormux/demux, likely implemented

using tristate buffers, connects the I/O controller to one of eight serial buses on

a one-at-a-time basis.

• A 36-bit shift register made from dual eight-bit flip-flops attaches to the

parallel node. The shift register uses both parallel in serial out and serial in

parallel out modes to exchange between the mux/demux and the buffer RAM.

• A 14-bit presettable address counter made from dual eight-bit flip-flops will

drive the buffer RAM’s address bits. The address counter will be a linear

feedback shift register, so the all-zero address will not be available for buffer

storage. It will not matter if the buffer contents are not in numeric order,

because storing and loading will use the same address sequence. Only 14 of the

buffer’s 17 address bits engage in counting, because the other three bits identify

which serial bus a block of memory belongs to.

• Gateway logic to connect the CPU’s ff o and ff i to the parallel node without

contention so the CPU can read and write the buffer RAM.

• A finite state machine SRAM that can be read, written, and have its internal

state set by the CPU. Like the buffer RAM, the FSM RAM will be partitioned

into eight blocks so that each serial bus is serviced by one block.

237

• A presettable bit counter LFSR to loop over 1 to 36 shift register positions.

• One or two presettable general counter LFSRs to support FSM firmware

loops. The FSM may also use some of its internal state to unroll short loops.

• Bus drivers are firmware within the FSM that implement I2C and SPI data

exchanges. These drivers can be custom-generated in the CPU for infrequently-

changed parameters such as clock polarity, clock phase, and delay loops for

slower peripherals. Frequently-changed parameters, such as the number of

words to transfer, are also “hardcoded” at known offsets within a driver. The

CPU will be able to update just the parameterized words of a driver prior to

each I/O transfer.

• Device drivers are not part of the I/O controller. They are CPU code that

synthesizes and interprets the data stream to and from a serial peripheral. Re-

turning to the DS3231 as an example, a person writing a device driver would

read the real-time clock’s datasheet. In contrast, a person writing its underlying

bus driver would read the Inter-Integrated Circuit (I2C) specification.

It would have been very easy to provide some GPIO (general-purpose input/out-

put) lines to the CPU without so much as a UART, attach I/O devices to those lines,

and write some demonstration code to claim that the minicomputer “works.” But I

have been around too long for this. I remember trying to write an assembly language

program for the Motorola 6803 to communicate 300-baud serial data one bit at a time

when I was about 15. The 6803 has a UART, but the computer it was in precluded its

use. Someone bought me terminal software as a gift before I could finish my program,

but I at least got a 6803 assembler written. I don’t want to go back to that time,

wasting a perfectly good CPU on bit-at-a-time level changes.

As my budget grew, I owned machines with working 16550 UARTs. They had a

16-byte buffer, but my recollection is that I didn’t bother and wrote code that was

238

backwards-compatible with the 8250 and its single-byte buffer instead. It was already

better than no UART at all. But I don’t want to go back to that time either.

The I/O subsystem as this section envisions is not all that might be done, but it

can transfer almost 72 Kibytes while the CPU does other things. The CPU will have

to transfer all communication between the I/O subsystem’s buffer and the CPU’s

data RAM, but the transfer can be 36 bits wide. The transfer may turn out to be

faster than memcpy, which is typically thought of as fast code. The reason an I/O

transfer can be faster than an ordinary memory copy is that with memcpy, two pointers

must be incremented per word transferred. But when one side of the copy is the I/O

subsystem, the address counter’s LFSR does the I/O side increments, so the CPU is

spared those add instructions.

239

10

Fast parallel multipliers

This chapter is a nearly-verbatim copy of a preprint I wrote to close the gap, should

it become necessary, between the ALU of chapter 5 and an ALU with a fast multi-

plier. Information is presented here about carry-skip adders and fast multipliers that

considerably surpasses their descriptions in sections 4.4 and 4.9.

Abstract

Reflow soldering can readily build robust CPUs solely from commodity static RAM

(SRAM) and trivial glue logic, potentially avoiding trust and transparency concerns

associated with the use of purchased microprocessors, ASICs, PLDs, and FPGAs.

This chapter shows how hardware multipliers for such CPUs can be constructed out

of separately-packaged SRAM ICs. This knowledge is new, because SRAMmultipliers

differ architecturally from multipliers built from basic gates. SRAM designs are aided

by offset-binary representations of signed subproduct terms, by generalizing carry-skip

addition to accept more than two addends, and by integrating carry-skip addition of

subproducts simultaneously with carry-save addition. Arbitrarily large factors can be

multiplied quickly using hierarchical carry-skip methods, although component counts

will be correspondingly high. Tables of component and clock cycle counts for SRAM

multipliers of common word sizes are presented. Open-source software is available to

241

generate and verify efficient multiplier designs.

Keywords

ALU, backdoor, binary multiplication, carry-skip adder, computing with memory,

CPU, hardware security, lookup table, LUT, maker movement, malware, manufac-

turing, minicomputer, multiplier, offset binary, open source hardware, privacy, ROM,

semiconductor supply chain, solder-defined hardware, SRAM, surface-mount technol-

ogy, trusted system.

10.1 Background

In 1977, researchers at University of Illinois, Urbana-Champaign built a 24-bit multi-

plier from 90 ICs on a 381× 457 mm (15× 18 inch) circuit board [Stenzel77]. What’s

remarkable about this experiment is its heavy reliance on ROMs as logic elements,

both for parallel computation of subproducts, and for adding the subproducts in par-

allel to obtain the final product. Building multipliers from ROM was not a trend of

that time and did not catch on subsequently. But as a one-shot prototype, the idea

was novel. 36 pieces of 256× 8 ROM multiplied four-bit subwords taken from both

factors in parallel to obtain 36 eight-bit subproducts. These 288 bits were added in

parallel using two IC types. 30 ICs were adders fashioned from 1024× 4 ROMs, each

accepting five 2-bit addends with maximum sum 15. Another 12 ICs were commercial

four-bit adders with carry input, with maximum sum 31. Two layers of these adders

reduced the problem to a point where a carry-lookahead adder could produce the

final product using 12 ICs. Total propagation delay was measured and reported to

be 200 ns.

This chapter is an update, extension, and generalization of the earlier parallel

multiplication work with ROMs. The scheme used 45 years ago needed too many ICs

242

containing too many transistors to be competitive then. Progress and demand soon

brought stand-alone multiplier ICs, as well as integrated multipliers on microprocessor

dies. By the end of the 1980s, whatever need that once existed to solder multipliers

together out of smaller parts had passed. Nor was there ever an advantage to building

multiplier ICs that used ROMs internally, because direct computation required far

fewer transistors and computed products faster than table lookup. But recently,

widespread fear concerning the VLSI supply chain has sparked my interest in having

a fresh look at discrete-component multipliers.

An emerging concern for VLSI is that complex ICs may be subject to design

defects or backdoors, and measures for inspection and audit of these chips are neither

practical nor supported by manufacturers. One approach for providing a “supply

chain firewall” may be to forgo use of complex and/or proprietary ICs, and instead to

build CPUs and other complex logic from simple, generic parts. This vertical supply

chain integration and simplification of individual components would not be practical

for most applications, but for specific critical uses that need low to modest computing

power, this strategy may have merit. My research of late has been designing an open-

source minicomputer that contains no purchased complex logic (not even in silicon),

can be assembled with maker-scale tools, and permits visible-scale inspection after

assembly.

Surprisingly capable computers can be built without using microprocessors,

FPGAs, PLDs, or other purchased complex logic, but there is one requirement that

can’t be met without VLSI. That need is main memory. If a computer needs a million

bits of primary storage, it’s either going to have over a million parts (tubes, relays,

or whatever), or it’s going to have integrated circuit RAM. Consequently, a key as-

sumption is that although computer designs might avoid using complex VLSI such

as microprocessors and FPGAs, they can’t avoid using static RAM (SRAM).

SRAM may be inherently more resistant to exploitable defects than are micro-

processors and other complex parts. For one thing, SRAM is generic, has multiple

243

sources, and is standardized by JEDEC. SRAM is simple and unlikely to contain the

kinds of exploitable surprises commonly found in dynamic RAM or microprocessors.

SRAM is volatile and forgets its contents when powered down. SRAM’s address space

is flat and consistent, ensuring that erasures and overwrites are dependable and irre-

versible. SRAM I/O timing is tight, increasing the difficulty of data tampering via

on-die backdoors. SRAM dies employ regular cell patterns, making it harder for a

manufacturer to conceal backdoors. SRAM ICs tend to use older process technologies

such as 90, 65, or 45 nm [Private21], and therefore are easier to study than denser

ICs. The low cost of small SRAMs also facilitates destructive inspection and testing

of samples from purchased lots.

In this chapter, logic implemented by RAMs is always combinational, never se-

quential. More simply, RAMs are being used in lieu of ROMs. When power is applied,

a loader moves firmware into the RAMs. Once the RAMs have their firmware, further

writes to them are disabled, and only then does the operating system boot and run.

The reason to choose RAM over ROM is speed: cheap SRAMs offer access times of

5.5 ns today, while contemporary ROMs come nowhere close. The disadvantage to

using RAM is that many additional parts—flip-flops with three-state outputs—are

required to move firmware into the RAMs.

If SRAM ICs are trustworthy for use storing data, they are probably even more

trustworthy for implementing logic via lookup tables. SRAMs for storage hold large

amounts of data at rest, but SRAMs used as logic see only tiny amounts of data at a

time. Moreover, SRAM used as logic contains firmware only, and never records any

of the data being processed.

One end product from my minicomputer work is a design for a robust 36-bit

arithmetic logic unit (ALU) that uses just 20 synchronous SRAMs and trivial glue

logic as components [Abel22b]. Its operations take three clock cycles to add, subtract,

compare magnitude, compute minimum or maximum, shift or rotate by any number

of bits, reverse the order of bits in a word, advance a linear feedback shift register,

244

hash a word for an associative array, or do a 36-bit cipher round. A CPU based

on this ALU would need just four clock cycles to fetch instruction operands from

registers, use the ALU, write the result to a register, and decode and fetch the next

instruction. I confirmed this timing by circuit-level simulation of short programs. My

clock goal for a working machine is 12.5 ns, which is 80 MHz or 20 MIPS.

In contrast to these fast operations, 36-bit multiplication to obtain a 72-bit prod-

uct on my ALU takes 47 instructions. This isn’t necessarily a problem, because the

design is for general purpose use, not image processing or scientific computing. Much

of computing doesn’t need a lot of multiplication, and the multiplication that it does

need is usually to compute offsets of array elements. This entails multiplying an array

index by a small element size, a task my ALU already can do in three instructions

if (a) the product will not exceed 36 bits, and (b) one factor is a constant from 0

through 63. The 36-bit ceiling is sufficient, because present SRAM ICs offer 24 ad-

dress bits at most. So with arrays taken care of, faster multiplication hardware may

not be needed.

Adding a fast multiplier to my minicomputer would add 49 RAMs to the design.

The latency, or time between factor and product availability, would be five clock cy-

cles. That’s much faster than the status quo of 188 clock cycles (47 instructions),

but the ALU would grow from 20 RAMs to 69 RAMs. Many applications cannot

benefit from this added cost. Without this added hardware, a 20 MIPS implementa-

tion would already surpass 400,000 long multiplications per second, which is roughly

comparable with early versions of Intel’s i486.

This chapter is about the contrary case, where someone wants an SRAM CPU

that can multiply faster. The approach is not unlike historical parallel multipliers, but

SRAM’s conciseness in expressing logic supports previously unreported optimizations.

Section 10.2 clarifies a brief list of symbols and terms.

Section 10.3 introduces parallel subproduct generation in SRAMmultipliers, with

attention given to factor partitioning, accommodation of optionally-signed factors,

245

and preparation of signed subfactors for summation by unsigned adders. For most

multiplier configurations, signed factors do not add to latency or component count,

and flexible signage does not add to latency.

Section 10.4 explains SRAM parallel summation principles, including arbitrary-

geometry (carry-save) multi-operand addition, carry-skip multi-operand addition, and

their simultaneous application to wide summands. Search techniques are suggested to

minimize the latency and component count of generated circuits. Multi-layer carry-

skip addition, which has potential use for word sizes larger than 64 bits, is discussed.

Data and trends are presented for various SRAM sizes and multiplier configurations,

with an observation that the best SRAM size to use for most multipliers is the smallest

size available.

Section 10.5 restates this work’s main contributions.

The explanations and data in this chapter are supported by an open-source

tool [Abel22a] for producing and verifying netlists and firmware for SRAMmultipliers.

RAM sizes from 2–63 address lines and 2–63 data lines are supported. The left and

right factors can range from one bit to thousands and need not match. Input signages

need not match and can be unsigned, signed, or flexible-signage. There also are

options for solution search strategy, optimizations, batch processing, multithreading,

and validation by simulation. Written in Rust 2018, the software has no external

dependencies.

This chapter mentions 256Ki× 18 SRAMs in several explanations, because this

is the smallest widely available size today for synchronous parts. Its corresponding

size for asynchronous parts is 64Ki× 16.

10.2 Notation and definitions

a · b, a ∗ b, (a)(b), ab. Scalar multiplication of a by b.

a× b. Rectangular dimensions of a by b.

246

Cycle. Interval between consecutive rising clock edges. For contemporary syn-

chronous parts, consider 12.5 ns.

Either signage. Signage specified at time of use.

Fixed signage. Ability of a factor input to accommodate only unsigned or only

signed words.

Flexible signage. Ability to compute with either signage.

Latency. Number of cycles a multiplier takes to convert factors into their product.

Equal to number of SRAM layers.

Parallel multiplier. Hardware that computes products by splitting individual

multiplication problems into small pieces that execute simultaneously. This older

term does not suggest the presence of more than one multiplier in a system [Dadda65].

RAM. Implied to be SRAM in this chapter.

Sign bit. Most significant bit of a signed (sub)word. All sign bits have negative

place value.

Signage. Designation of a word as signed, unsigned, or either. Not to be confused

with sign bit.

M×N SRAM. SRAM with log2 M address lines and N data lines. Its capacity

is MN bits. M is always a power of two. Suffixes Ki and Mi denote multiples of 210

and 220.

SRAM. Memory IC used as a substitute for ROM for its high speed and point-

of-use programmability.

Subfactor. Portion of a factor in a parallel multiplier.

Subproduct. Product of (ordinarily two) subfactors.

10.3 Generation of partial products

In a parallel SRAMmultiplier, the multiplication process is split into time-consecutive

sets of tasks, where all tasks within a set execute simultaneously. Each set is imple-

247

mented as a layer of SRAMs that do not depend on each other’s result, so that all

SRAMs within the layer can actuate simultaneously. Subproducts are generated in

parallel by the first layer of SRAMs, then summation of the generated subproducts

is done using as many subsequent layers as are needed to tally the eventual product.

For evaluating designs, the latency of the multiplier is the number of SRAM layers

the computation passes through. If the SRAMs are synchronous, the time required

to multiply is the clock period multiplied by the number of layers. No control signals

are needed within the multiplier, other than a clock signal that is common to all of

the SRAMs.

10.3.1 Unsigned partial products

The simplest parallel M × N -bit multiplier uses the method of grade school long

multiplication, except in base 2. Assuming M ≤ N , subproduct generation will use

MN AND gates, and will need to be followed by some method of adding M N -bit

numbers. The array of bits to sum form a parallelogram. We see this shape in the

three addends when multiplying 1012 by 110102, where M = 3 and N = 5:

11010
* 101

11010
00000

+ 11010

10000010

The preceding example may be considered to have 15 one-bit subproducts, be-

cause two-input AND gates are used as the basis operation for subproduct generation.

But gates with more inputs can be used, provided that they produce the desired sub-

products. When ROM ICs first appeared, [Johnson72] illustrated an 8-bit multiplier

that partitioned its factors into four-bit subwords and computed their subproducts

using four 256× 8 ROMs. The bit positions looked like:

248

AAAABBBB
* CCCCDDDD

EEEEEEEE (DDDD * BBBB)
FFFFFFFF (DDDD * AAAA)
GGGGGGGG (CCCC * BBBB)

+ HHHHHHHH (CCCC * AAAA)

(16-bit product)

The benefit of using eight-input ROMs over two-input ANDs is, only 28 sub-

product bits remain to be added instead of 255. It’s easy to generalize this scheme

for today’s RAMs and arbitrary factor lengths M and N . These lengths will have

to be partitioned, with the hard constraint that every pair of subfactors needs to fit

within the input bits of one RAM. If a 32× 32-bit multiplier is built using 256Ki× 18

ICs, the simplest partitioning uses 8-bit subwords, and two inputs will go unused on

each chip. It looks like:

AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
* EEEEEEEE FFFFFFFF GGGGGGGG HHHHHHHH

Although multiplier designs should seek as much computation as practical from

each RAM, it’s inevitable that some inputs will go unused as seen here. There are 16

subproducts of 16 bits each, so the total number of subproduct bits will be 256. Here

is another partitioning:

AAAAAAAAAA BBBBBBBBBBB CCCCCCCCCCC
* DDDDDD EEEEEE FFFFFF GGGGGGG HHHHHHH

The subword lengths are 10, 11, 11 and 6, 6, 6, 7, 7 for these factors, so RAMs

for their pairs will use 16, 17, or 18 input bits. There turn out to be 256 subproduct

bits, as with the previous partitioning, so the effort to sum subproducts is comparable

between these examples. On the other hand, the firmware increases from 1 048 576

words of 16 bits to 2 293 760 words of 16, 17, and 18 bits, and that’s a small negative

for this partitioning. But I would still choose this partitioning with three and five

249

subfactors instead of four and four, because only 15 RAMs need to be bought, sol-

dered, and powered instead of 16. Thus, the main heuristic for generating subproduct

circuitry is, employ as few RAMs to produce as few subproduct bits as possible.

The second factor has other partitionings, such as 7, 7, 6, 6, 6 instead of 6, 6,

6, 7, 7. But it may help to use the larger subword size for the least significant bits,

because (for this example) one more bit of the product will be known immediately

on subproduct generation. There will be one less place value that carries need to

propagate through later.

Parallel subproduct generation can be extended to build multipliers that accept

more than two factors simultaneously, although the number of SRAMs needed will

grow proportionally to the product of the input lengths. For example, a 3-input N -

bit adder would need O(N3) parts. Nevertheless, [Kobayashi81] illustrates a 3-input,

4-bit multiplier that uses eleven 256× 8 ROMs.

10.3.2 Signed partial products

Two’s complement multiplication [Booth51, Wallace64, Baugh73, Hatamian86] is com-

paratively easy with SRAM, because much complexity gets abstracted away in the

firmware. In the unsigned byte abcdefgh , where letters indicate bits, a has place

value 27, and the others have place values 26–20. If instead the byte is signed, the

only change is that a has place value −27. The distributive law allows us to bring

the negative place value along with any bits attached to it. For example,

abcdefgh · ijkl = 16 abcd · ijkl + efgh · ijkl

whether a ’s place value is positive or negative. This means we can freely break the

multiplication into a sum of partial products, even though the place value of some

bits may be negative. The subproduct RAMs would still have to “know” the signage

of their inputs for their results to be correct. For example, 10002 ·01112 will be either

001110002 or 110010002 depending on whether the factors are unsigned or signed.

250

If all we do is that much—keep track of the signage of all subfactors and sub-

products—then signed addition can directly combine the subproducts into the final

product. This works, but borrows now need to propagate from right to left in addition

to carries. The strain on SRAM capacity is immense, because each borrow or carry

in several-operand addition uses four or more bits, and every input bit added to a

RAM requires its capacity to double. Also, it would be convenient to not have to

reason about signed arithmetic for more of the circuit than necessary.

The method of [Baugh73], later improved by [Hatamian86], uses bit complements

and subproduct rearrangement in such a manner that the unsigned sum of all sub-

products will equal the correct signed product when truncated to the correct width.

These intrinsic operations are perfect when elementary gates are used as logic ele-

ments, but a method for SRAM multipliers can reflect SRAM’s greater capabilities.

In the case of SRAM, all that is necessary is to exaggerate a little.

Here is a method for signed multiplication. When subfactors x and y are given

to a RAM, instead of having the RAM look up the product xy, have it look up

f(x, y) = xy −min
x,y

(xy)

instead. This exaggerates xy by just enough that it can’t be negative. It doesn’t

matter if neither, either, or both subfactors are signed. The result will honor

0 ≤ f(x, y) ≤ max
x,y

(xy)−min
x,y

(xy)

and will never be negative. The extrema here are merely constants derived from the

width and signage of x and y.

As an example, consider an 8× 8 signed multiplier using four 256× 8 RAMs.

The eight-bit factors partition into four-bit pairs a : b and c : d, where −8 ≤ a ≤ 7,

251

0 ≤ b ≤ 15, −8 ≤ c ≤ 7, and 0 ≤ d ≤ 15. The product desired is

(a : b)(c : d) = (16a + b)(16c + d)

= 256ac + 16ad + 16bc + bd

where scaling by 256 and 16 are just left shifts of 8 and 4 bits. Four RAMs are needed

to compute

f0(a, c) = ac + 56

f1(a, d) = ad + 120

f2(b, c) = bc + 120

f3(b, d) = bd

because the minimum possible products of ac, ad, bc, and bd are −56, −120, −120,

and 0 respectively. But the column-appropriate sum from these RAMs overstates the

product (a : b)(c : d), because they compute

256(ac + 56) + 16(ad + 120) + 16(bc + 120) + bd

= 256ac + 16ad + 16bc + bd + 18 176

= (a : b)(c : d) + 18 176

instead. We can correct this by exaggerating by yet another 47 360, because 18 176 +

47 360 = 216, and the subproduct summation process will only keep the rightmost 16

bits.

Thus the subproduct RAMs introduce a constant bias of +18 176 to the multi-

plier, but an additional bias of +47 360 = 1011 1001 0000 00002 would correct it. This

correction can be applied anywhere within the multiplier circuit, as long as it does

252

get added in. Noting that 47 360 = 256 · 185, we can replace

f0(a, c) = ac + 56 + 185 = ac + 241 ,

and suddenly the entire scheme is perfect. Although RAM f0 will routinely overflow

past eight bits, its excess is beyond the 16-bit width of the product. To summarize

this example, an eight-bit signed multiplication problem is distributed to four RAMs

to determine subproducts, and even though only one RAM’s (f3’s) subproduct is

individually correct, the column-appropriate unsigned sum of the four RAM outputs

will give the correct signed product every time.

10.3.3 Mixed-signage multipliers

It’s common for CPUs to offer two multiplication instructions per supported word

size—one for unsigned factors, and another for signed factors. A single multiplier

can provide both services by having the control unit specify signage of its factors

at the time of use. Signage only needs consideration for multipliers that produce

doubleword results, because the less significant word does not change. CPUs should

also have instructions for mixed-signage multiplication. The cost to accommodate

mixed signage is negligible, but many CPUs overlook it.

Introducing flexible signage to traditional multipliers (no SRAM) can be done

by sign extending by one bit. For example, a 36-bit either-signage multiplier can be

built as a 37-bit signed multiplier. If the factor bits are L0 . . . L35 and R0 . . . R35, then

L36 = L35 ∧CL and R36 = R35 ∧CR, where control signals CL and CR are true when

their respective factors are signed and false otherwise. Components serving only the

two most significant bits of the product can be omitted, because the intended product

is 72 bits, not 74.

The sign extension scheme for traditional multipliers can be used with SRAM

multipliers, but two AND gates would have to be inserted in the datapath, perhaps

253

Table 10.1: Number of 256Ki× 18 SRAMs needed for various multipliers.

bits per factor
signage 31 32 33 34 35 36 37

unsigned× unsigned 40 41 43 39 41 41 50
signed× signed 40 41 43 40 41 41 50
either× either 39 40 44 41 41 49 50

The cost to specify signage at the time of multiplication is akin to adding
an input bit. The seeming improvement from 33 to 34 bits comes with a
latency increase from four to five clock cycles.

increasing the clock period for the whole CPU. This is unnecessary, however, because

signage can be supplied directly with the most significant factors. Continuing the 36-

bit example, RAMs can accept CL with L35, and CR with R35, instead of computing

intermediate values L36 and R36 via AND gates. The firmware tables are written as

if L36 and R36 were available.

The one limitation of directly supplying signage control signals to subproduct

RAMs instead of sign-extending first is, the signage must always accompany the most

significant bit that it modifies. This increases the lower bound on permissible RAM

size: fixed-signage multipliers can be built from 4× 2 SRAMs, but flexible-signage

multipliers require at least 8× 2 SRAMs were one control signal appears, and at least

16× 2 SRAMs where both control signals appear. This constraint is moot for typical

multipliers, because typical RAMs are much larger.

The cost to extend an input from always unsigned or always signed to support

either is about the same as sizing the input one bit wider. This trend is somewhat

visible in table 10.1, although the data are not smooth. In most cases, the number of

parts needed to build a flexible-signage multiplier is only slightly greater than for its

fixed-signage version, and the latency usually does not increase.

254

10.4 Partial product summation

A parallel multiplier can compute all subproducts for a multiplication during its

first clock cycle by using a separate SRAM for each subproduct. The remainder of

the circuit adds these subproducts in their correct place values to obtain the final

product. The subproducts can be selectively exaggerated such that all are unsigned,

yet their truncated sum yields the correct unsigned or signed final product. Thus the

summation portion of the circuit only needs to use unsigned arithmetic. If neither

factor is signed, the product is unsigned; otherwise, the product is signed.

Just like digits in grade-school long multiplication, the bits comprising partial

products appear at specific place values where they are to be added. For example, a

factor for a 24-bit unsigned multiplier can be partitioned into two 12-bit subfactors,

and another factor into four 6-bit subfactors. Pairs taken from the two sets will each

have 18 bits, so eight 256Ki× 18 RAMs can look up their subproducts, which align

in these 48 columns for summation:

Dot diagrams like the above were popularized by [Dadda65]. For clarity of deriva-

tion, the subproducts from the two 12-bit subfactors are shown in different colors. Dot

diagrams are often rearranged and compressed to improve legibility of the remaining

addends, and often look like a triangle:

Throughout this chapter, the least significant bit is drawn rightmost, and carries

propagate from right to left. The leftmost bit in this example has place value 247.

255

10.4.1 Carry-save addition

A dynasty of papers has been written about how to add subproducts. [Booth51]

found a creative way to reduce the number of addends by half. Full adders were

used in parallel by [Wallace64], who called the layers pseudoadders, because carries

within a layer were passed directly to the next layer in their original place values

instead of propagating them out first. The term carry-save refers to this deferral of

carry propagation to a layer time. A more generalized term for full adder appeared

in [Dadda65], which called it a (3, 2) counter, because “counting” three same-weight

input bits yields two different-weight output bits.

The summation process was to keep reducing the number of input bits until at

most two bits remain in each column; that is, two addends are left. At that point,

a carry-propagating adder such as carry-lookahead or carry-skip would be used to

produce the final product.

When full adders were used for the carry-save steps, each step would reduce the

number of bits to sum by no more than one-third. A race ensued to find methods

to increase the reduction per step in hope of reducing total summation delay. Some

papers looked at soldered circuits, some at ASICs, others FPGAs. A few used ROMs

as logic elements, some built from small circuits or basic gates, and some began with

transistors. Permitted geometries changed along the way. For instance, [Verma07]

considered (7, 3) counters, which required that all input bits for any counter come

from the same column. But [Mora05, Mora08] used wider circuits that add the

same number of bits from a few contiguous columns. This restriction was dropped in

[Afshar08], which wrote of generalized parallel counters that permit differing numbers

of bits per column.1 A brilliant observation at IBM [Weinberger81] disavowed any

need to count subproduct bits at all, because the real goal is to reduce their number

without changing the total, not keep track of column-wise counts. This introduced an

1These circuits may be too generalized to call counters instead of adders. I have been using the
phrase arbitrary-geometry adder.

256

efficient family of on-die logic elements called compressors, which have an explanation

in [Oklobdzija96]. As for ROMs, [Stenzel77] soldered 66 together to build a multiplier,

and [Paul09] used on-die sparse ROMs to build an ASIC multiplier.

All this literature has little bearing on SRAM carry-save addition, because an

SRAM implements all functions within its capacity with equal efficiency. It’s just a

lookup table. All that is wanted is to take as many input bits as possible in order

from least significant to most significant, and output as few bits as possible—which

turn out to be the place-value-weighted sum of the input bits.

Figure 10.1 shows how subproducts from the 24-bit multiplier example would be

summed. Although the caption says the factors are unsigned, the circuit would be

identical for signed factors, albeit the firmware would differ. The coincidence does

not apply for all word sizes, but happens by chance for 24 bits× 24 bits. Four layers

of parallel SRAM follow the subproduct generation layer. This circuit, like all SRAM

multipliers in this chapter, offers one multiplication per clock cycle, but there will be

a certain number of cycles—a latency, which is equal to the count of RAM layers—

before the product appears for a given pair of factors. So this figure shows four layers,

but the total multiplier has a latency of five cycles when the subproduct generation

layer is included.

The first SRAM layer in figure 10.1 is at the top, with up to five input bits per

column. The horizontal column indicates place value, growing right-to-left from 20 to

247. Each symbol within a column denotes an output bit from the prior layer, which

is subproduct lookup in this case. Hexadecimal digits indicate which of this layer’s

eight RAMs each bit leads to.

The six least significant bits are alone in their columns, and therefore are their

own sum. They are drawn as dashes to indicate unchanged passage to the next

layer. They are called final, because they need no further computation. Another

dash appears for a singleton bit at place value 228, which did not fit in RAM 5. This

bit would be its own column sum in RAM 6, so including it would waste half of that

257

888888887777776666655544443333222211111111------
88-777777666655554443333222211111111

777666655554443333222221
777666655554444333222221

6-5554444333

BBBBBBBBBBBBBAAAAAAAAAA-99999999999-------------
BB B-A AAAAAAA -99 99 999

-----------CCCCCCCCCCCCCC-----------------------
CC CC

DDDDDDDDDDD-------------------------------------
D

Figure 10.1: Subproduct summation steps for a 24-bit unsigned multiplier using
carry-save adders. The product is 48 bits. SRAMs are 256Ki× 18. Input bits to each
of the 13 RAMs appear as hexadecimal digits, with each RAM accepting up to 18
bits. Dashes show bits that are deferred or already final. Color indicates arbitrary-
geometry addition.

RAM’s cells for no computation benefit. A dash appears at place value 239 for the

same reason: its bit is too late for RAM 7 but too early for RAM 8. Depending

on architecture decisions, bits marked with dashes will likely need D flip-flops to

maintain pipeline consistency.

RAMs 1–7 absorb 18 subproduct bits each, leaving 10 bits for RAM 8. Each

RAM’s output bits are contiguous, one per column, and reflect the maximum possible

sum of its addends. For example, RAM 5 has maximum sum 10000102 and therefore

outputs seven bits across place values 225–231. The totality of these output bits defines

the shape of the next layer, which is reduced further by RAMs 9–B. RAM C is alone in

its layer, because the bits to its left and right already indicate their own sum. RAM D

in the final layer finishes the subproduct addition and therefore the multiplication.

This all-carry-save method of figure 10.1 is of limited value, because the number

of layers will grow approximately linearly with the word size. It’s easy to see that

ripple carry through RAMs 1, 9, C, and D is what limits the speed of this circuit, and

258

the problem would get worse as factors get longer. Multiplying 24-bit words already

takes five cycles, and 64-bit words would take ten. The next section will show a

method for 24-bit multiplication in four cycles, and 64-bit multiplication in five.

An unshown optimization exists for figure 10.1. This drawing shows 13 RAMs,

but my tool [Abel22a] for synthesizing multipliers only uses 12, because RAMs 8

and B can be combined. RAM B only indicates 16 input bits, of which 8 come from

RAM 8, which has 10 input bits and sends its output to RAM B exclusively. This

permits elimination of RAM 8 in favor of 10 D flip-flops, whereupon RAM B is fed with

the 16−8+10 = 18 inputs that need computed. Firmware for RAM B is a functional

composition of what the two firmwares would have done, sparing one RAM from the

design. The complete multiplier then uses 20 RAMs: 8 for subproduct generation

and 12 for carry-save addition.

10.4.2 Carry-skip addition

The terms carry-save and carry-skip are easily confused because of their shared initials

and the coincidence that save and skip both support meanings bail out and let alone

[Ward96]. The distinction is, a carry-save adder can “obviate the necessity of” carry

propagation, but a carry-skip adder’s action is “passing over an interval from one thing

to another” [Webster13]. Carry-skip’s passing over of components and component

delay can appreciably shorten carry propagation paths and the latency of addition

[Lehman61].

Carry-skip adders can be described using a mixed radix numeral system. In

the ensuing discussion, all numbers are non-negative integers. The equations below

apply to any number base and hold true for decimal calculators, etc., but the examples

presented are in binary.

If some radix R has k ordered factors, these factors can represent k simultaneously-

operating stages of a carry-skip adder modulo some base R.

259

R =
k−1∏
i=0

ri where ∀i, ri > 1

This causes any summand X modulo R to have a unique representation using k terms

in mixed radix:

X := xk−1 : . . . : x1 : x0

= x0 +
k−1∑
i=1

xi

i∏
j=1

rj−1 where ∀i, 0 ≤ xi < ri.

Here is an example with k = 3, corresponding to a carry-skip adder that is im-

plemented using three parallel stages. A summand X might be represented as

01 : 11010 : 101 in base 2, where colons indicate X’s partitioning according to the

mixed radices that are factors of R. In particular:

R = 210 X = 01 11010 1012

r0 = 23 x0 = 1012

r1 = 25 x1 = 110102

r2 = 22 x2 = 012

When adding a set of numbers S := {S0, S1, . . . , S|S|−1} modulo R, the computa-

tion can stay in the mixed radix. If T := tk−1 : . . . : t1 : t0 = ∑
S, then ∀i, 0 ≤ i < k,

ti = (Σi + ai) mod ri, where (10.1)

Σi =
|S|−1∑
m=0

Sm
i , (10.2)

a0 = 0,

ai+1 = b(Σi + ai)÷ ric. (10.3)

Here, Σi is the tentative sum before carry for term i, and ai is its “actual,” recur-

sive incoming carry. An example showing how sums and carries are determined from

260

arbitrary-chosen addend bits with |S| = 4 and the same 10-bit mixed radix as be-

fore is:

10 11110 010 addend
00 01101 110 addend
11 10000 001 addend
01 10101 110 addend
10 01 carry

00 10001 111 sum

A machine can add quickly modulo R by computing the k terms of (10.1) in

parallel. This requires parallel computation of (10.2), which uses one SRAM per term

after the problem has been made small enough by carry-save adders. The difficulty

is parallel computation of (10.3), which causes every ti to recursively consume every

Σi up to it as input, rapidly exhausting the few input bits an SRAM can accept.

There is a better way. Consider

ai = ci + c′i,

where actual carry ai is the sum of the “direct” carry ci from the immediately pre-

ceding term only, and an occasional recursive carry c′i from any earlier terms. Then

rewrite:

ti = (Σi + ci + c′i) mod ri, (10.4)

c0 = 0,

ci+1 = bΣi ÷ ric, (10.5)

c′0 = 0,

c′i+1 =
⌊

((Σi + ci) mod ri) + c′i
ri

⌋
. (10.6)

The idea of (10.6) is that c′i+1 is zero unless there is a recursive carry. For example

when adding 1 to 999 in decimal, c1 = 1 and c′1 = 0 due to the direct carry into the

tens place, but c2 = 0 and c′2 = 1 due to the recursive carry into the hundreds place.

261

The equation is such that c′i+1 steps from 0 to 1 if c′i becomes large enough.

The work is simplified if c′i+1 ≤ 1 can be guaranteed. This will be recursively

true if ∀i, ci ≤ ri, which can be simply phrased as “don’t add too many numbers at

a time.” In a binary adder, the constraint means that the number of carry bits into

any term cannot exceed that term’s width. This spares the division in (10.6):

c′i+1 =


1 when ci + c′i ≥ ri − (Σi mod ri),

0 otherwise.
(10.7)

The largest that ci + c′i can be for a given i is called the maximum effective

carry value (MECVi) contributing to ti. These constant MECVs are easily computed

by maxing out all of an adder’s inputs. Here are the MECV determinations for the

ten-bit mixed radix example with |S| = 4:

11 11111 111 addend
11 11111 111 addend
11 11111 111 addend
11 11111 111 addend
11 11 MECV

11 11111 100 sum

A propagate encoding, written as pi and often simply called propagate, is a range-

bounded encoding of p′i, a tentative sum’s closeness to wraparound modulo ri.

p′i = ri − (Σi mod ri) (10.8)

pi =


p′i when p′i ≤ MECVi,

0 otherwise.
(10.9)

Now (10.7) can be rewritten again.

c′i+1 =


1 when pi 6= 0 and ci + c′i ≥ pi,

0 otherwise.
(10.10)

A two-layer carry-skip adder adds quickly modulo R with a latency of two cycles.

262

setup 1

c2 p1c3 p2 c13 mod r3

setup 0setup 2setup 3

nish 1nish 3 nish 2

S0S1S2S3

t0t1t2t3

2
mod
r2

1
mod
r1

0
mod
r0

Figure 10.2: Two-layer carry-skip adder, shown computing four terms in parallel.
There is no presumption as to number of summands or radix, except that each carry
ci may not spill wider than its nearest destination term. The radix typically will vary
between terms, as Figs. 10.3 and 10.4 show.

The first layer is called carry-skip setup or just setup, and uses just one RAM per

term to find Σi mod ri, ci, pi, and internal value p′i from (10.2), (10.5), (10.9), and

(10.8) respectively. The second layer is called carry-skip finish or just finish, and uses

one RAM per term to find total ti and internal value c′i from (10.4) and (10.10).

Figure 10.2 draws a two-layer carry-skip adder having four terms. The drawing,

like the preceding discussion, is radix-agnostic and does not presume that any logic

elements or representations are binary. No presumption exists that the terms have

the same radix, and there is no presumption as to the number of addends in S. The

only practical constraint is that the problem must be small enough that each box in

figure 10.2 can be implemented by one RAM. If not, the number of addends can be

reduced by carry-save addition, and/or the problem can be truncated to a smaller

radix R.

263

--8888888888777776665555444433332222111111------
888888777776666555444433332222111111

877776666555444433332222
877776666555544433332222

666555544433

DDDDDDDDDDDCCCCCCCCCCBAAAAAA99999999------------
D DCC CCC CCC AAA

FFFFFFFFFFFEEEEEEEEEEE--------------------------

Figure 10.3: Subproduct summation for a 24-bit unsigned multiplier using
carry-save alongside carry-skip adders. SRAMs are 256Ki× 18 . Colors denote
arbitrary-geometry addition, finishing arbitrary-geometry addition, carry-
skip setup, finishing carry-skip setup, and carry-skip finish.

10.4.3 Fast subproduct totals

Figure 10.3 shows the 24-bit unsigned multiplier from figure 10.1, except that carry-

skip summation is now used alongside carry-save, reducing latency from five cycles

to four. One RAM has been added for 21 in total: 8 RAMs generate subproducts for

13 RAMs to sum. Figure 10.3 appears to show 15 summation RAMs, but underused

RAMsD and F are consolidated into one package by later optimization, as are RAMs

9 and B.

Figure 10.3 and similar figure 10.4 retain green to indicate bits summed by

arbitrary-geometry (carry-save) addition. Inputs to carry-skip setup RAMs are

red. Bits destined for RAMs that do carry-skip finish are underlined. There are three

combinations of these. Carry-skip finish without other processing is blue with un-

derline. Finishing arbitrary-geometry addition, green with underline, indicates

a carry-save adder that needs to include in its sum direct and recursive carries from

the previous layer. Finishing carry-skip setup, red with underline, marks the hor-

izontal and vertical intersection term of two carry-skip adders in consecutive layers.

Using figure 10.2 as a model, “finishing setup” superposes in a single RAM the “finish

3” RAM (which is running low on input bits) of one adder with the “setup 0” RAM

264

(with more available) of a subsequent adder.

For legibility, Figs. 10.3 and 10.4 show all output bits from carry-save RAMs, all

Σi mod ri from setup RAMs, and all ti from finish RAMs, but not any propagate or

carry bits from setup RAMs. Not only would these be tricky to interpret, but copies

of pi and ci+1 are consumed by more than one RAM. Nonetheless, it’s possible with

some practice to surmise where these appear. In figure 10.3, setup 1 sends a carry

but not a propagate to 9 and A. Setup 2 sends two carry bits to 9 and A, plus a

propagate to cover 1’s MECV of 1. Setup 3 sends three carry bits to A, plus two

propagate bits to cover 2’s MECV of 3. 9 serves double-duty finishing the terms from

2 and 3, because 9 happens to be large enough.

The second summation layer finishes one carry-skip adder with 9 and A, and

simultaneously sets up another with A, B, and C. A sends a carry bit but no prop-

agate to E and F. B sends a propagate to E and F, but doesn’t carry, because it

only has one summand bit. Here is an opportunity for further optimization, first

because B is an identity function with equal sum and propagate, and second because

its same-valued bit occupies two inputs of E, with one read as a sum and another

read as a propagate. The tool I wrote does not do that specific optimization. C sends

a carry to F, along with a propagate to cover B’s MECV of 1.

The essential heuristic for efficient summation in medium-sized2 multipliers is,

favor aggressive use of carry-skip addition. By taking as many columns as possible for

each carry-skip setup and not backtracking to evaluate other possibilities, consistently

efficient multipliers are produced. But not optimally efficient, because carry-skip

adders have “combinatorial hiccups” that I suspect are due to SRAM granularity.

My multiplier synthesis tool [Abel22a] supports a few methods for generating

candidate multipliers, from which a “lowest cost” circuit can be chosen. These strate-

gies look at just one RAM at a time, just one layer at a time, or the whole multiplier

at once, and backtrack accordingly. The relative cost of two designs is the number of
2All carry-save summation is sometimes more efficient for narrow factors, and multilayer carry-

skip summation for wide factors.

265

layers, with ties broken by number of SRAMs, with those ties broken by total firmware

size in bits. The 24-bit unsigned multiplier of figure 10.3 is the winning design among

133 candidates, sparing 12 288 firmware bits compared to the second-place circuit,

which doesn’t happen to have the anomalous one-input-bit B RAM.

The 64-bit, either-signage multiplier in figure 10.4 was chosen from 350 651 de-

signs. Its seven-term carry-skip step contributes largely to its ability to multiply in six

cycles, instead of ten cycles if using only carry-save adders. The first carry-skip stage

has only one setup RAM, so two carry bits but no propagate bits are generated. Con-

ceptually this seems identical to arbitrary-geometry addition, but the implementation

outcome differs. Greedy arbitrary-geometry addition would have taken 18 input bits

and led to a multiplier with 152 RAMs, not 151 as in the figure. Carry-skip setup

had to stop early at 17 bits, because term boundaries must be located at place value

boundaries. In this instance, a locally worse strategy happens to produce a glob-

ally cheaper multiplier. Unfortunately, an exhaustive search of all opportunities to

strategically stop some number of bits short when filling RAMs has dreadful time

complexity.

Table 10.2 shows the effect of SRAM size and allowable latency on multiplier

width. The table cells are factor widths, in bits, that my tool is able to design a

multiplier for within the allotted number of layers, given a few assumptions:

• The multiplier takes two factors of the same width.

• Factors are either-signage; that is, factors may be specified as any combination

of signed and unsigned at the time they are presented.

• Signage control does not count toward factor width.

• Only the methods covered so far are used, namely arbitrary-geometry and two-

layer carry-skip addition.

The maximums in table 10.2 would in most cases be one greater for fixed-signage

266

-V
VV

VV
VV

VV
VU

UU
UT

TT
TS

SS
RR

RQ
QP

PP
OO

NN
MM

LK
KJ

JI
IH

GG
FE

ED
CB

BA
zy

xx
wv

ut
ss

rq
po

nn
ml

kk
ji

hh
gf

fe
ed

cc
bb

aa
99

88
77

76
65

55
44

43
33

32
22

22
11

11
11

1-
--

--
--

VV
VV

VV
UU

UU
TT

TT
SS

SR
RR

QQ
PP

PO
ON

NM
ML

LK
JJ

II
HG

GF
EE

DC
BB

Az
yy

xw
vu

tt
sr

qp
oo

nm
lk

kj
ii

hg
gf

ee
dc

cb
ba

a9
98

87
77

66
55

54
44

33
33

22
22

21
11

11
11

VV
UU

UU
UT

TT
SS

SR
RR

QQ
PP

PO
ON

NM
ML

LK
JJ

II
HG

GF
EE

DC
CB

Az
yy

xw
vu

tt
sr

qp
oo

nm
lk

kj
ii

hg
gf

ee
dd

cb
ba

a9
98

87
77

66
55

54
44

33
33

32
22

21
11

UU
UU

UT
TT

SS
SR

RR
QQ

QP
PO

ON
NM

ML
LK

KJ
II

HG
GF

EE
DC

CB
Az

yy
xw

vu
tt

sr
qp

oo
nm

lk
kj

ii
hg

gf
ee

dd
cb

ba
a9

98
87

77
66

65
55

44
43

33
32

22
2

TT
TS

SS
RR

QQ
QP

PO
ON

NM
ML

LK
KJ

II
HG

GF
EE

DC
CB

Az
zy

xw
vu

ut
sr

qp
po

nm
ll

kj
ii

hg
gf

ee
dd

cc
ba

a9
98

88
77

66
65

55
44

43
TS

SS
RR

QQ
QP

PO
ON

NM
ML

LK
KJ

II
HG

GF
EE

DC
CB

Az
zy

xw
vu

ut
sr

qp
po

nm
ll

kj
ii

hg
gf

ee
dd

cc
bb

aa
99

88
77

66
65

55
44

4
RR

QQ
QP

PO
ON

NM
ML

LK
KJ

JI
HH

GF
FE

DC
CB

Az
zy

xw
vu

ut
sr

qp
po

nm
ll

kj
ii

hg
gf

ee
dd

cc
bb

aa
99

88
77

66
6

PO
ON

NM
ML

LK
KJ

JI
HH

GF
FE

DD
CB

Az
zy

xw
vv

ut
sr

qq
po

nm
ll

kj
ji

hh
gf

fe
dd

cc
bb

aa
99

88
OO

NN
-M

LL
KK

JJ
IH

HG
FF

ED
DC

BA
Az

yx
wv

vu
ts

rq
qp

on
mm

lk
jj

ih
hg

ff
ed

dc
cb

ba
a9

98
M-

LK
KJ

JI
HH

GF
FE

DD
CB

AA
zy

xw
vv

ut
sr

qq
po

nm
ml

kj
ji

hh
gf

fe
dd

cc
b

JI
HH

GF
FE

DD
CB

AA
zy

xw
wv

ut
sr

rq
po

nm
ml

kj
ji

hh
gf

fe
-

IH
HG

FF
ED

DC
BA

Az
yx

ww
vu

ts
rr

qp
on

mm
lk

jj
ih

hg
ff

-D
CB

BA
zy

xw
wv

ut
sr

rq
po

nn
ml

k-
j

BB
Az

yx
xw

vu
ts

sr
qp

on
nm

lk
yx

xw
vu

ts
sr

qp
on

ii
ii

ii
ii

ii
i-

hh
hh

hh
hh

hg
gg

gg
gg

gf
ff

ff
ff

ee
ee

ed
dd

dd
dc

cc
cb

bb
bb

aa
aa

99
99

88
88

77
77

76
66

65
55

55
54

44
44

43
33

33
32

22
22

22
22

11
11

11
11

11
--

--
--

--
--

--
--

i
ii

hh
hh

hh
hh

-g
gg

gg
gg

ff
ff

ff
fe

ee
ee

dd
dd

dd
cc

cc
cb

bb
ba

aa
a9

99
98

88
87

77
77

66
66

65
55

55
44

44
44

33
33

33
22

22
22

22
21

1
11

1
h

g
g

g
-

f
ff

fe
ee

ee
ed

dd
dd

cc
cc

cb
bb

ba
aa

a9
99

98
88

88
77

77
66

66
65

55
55

44
44

44
33

33
3

e
e

d
-c

cc
cb

bb
ba

aa
a9

99
99

88
88

77
77

66
66

5
5

-
b

aa
98

99
99

99
99

99
99

--
--

--
-8

88
88

88
77

77
77

77
76

66
66

66
66

66
55

55
55

55
55

54
44

44
44

44
44

33
33

33
33

33
33

22
22

22
22

21
11

11
11

11
11

11
11

--
--

--
--

--
--

--
--

--
--

--
--

9
88

77
7

76
66

6
65

5
55

5
55

44
44

4
44

3
33

33
3

22
2

--
--

--
--

--
--

--
77

77
76

66
66

66
55

55
55

55
54

44
44

44
44

44
33

33
33

33
33

32
22

22
22

22
22

11
11

11
11

11
11

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

11
11

11
11

11
11

11
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1

F
ig
ur
e
10
.4
:
T
hi
s
64
-b
it,

ei
th
er
-s
ig
na

ge
m
ul
tip

lie
r
us
es

25
6K

i×
18

SR
A
M
s
in

six
la
ye
rs
,f
or

a
to
ta
lo

f1
51

R
A
M
s.

In
pu

ts
to

th
e
fir
st

la
ye
r
ar
e
th
e
fa
ct
or
s
to

m
ul
tip

ly
an

d
ar
e
no

t
sh
ow

n.
Se
e
fig

ur
e
10
.3

fo
r
co
lo
r
m
ea
ni
ng

s.

267

Table 10.2: Maximum bits per factor for two-input, either-signage, readily-
designable multipliers for various SRAM sizes and latencies. Only two-layer carry-skip
and arbitrary-geometry adders are used; cascaded carry-skip schemes are considered
in table 10.4. Widths in bold color use a greedy algorithm to reduce design time at
the expense of factor width.

SRAM size latency in clock cycles
2n × n 1 2 3 4 5 6 7 8 9 10

4 1 1 2 3 4 5 6 8 9 11
5 1 2 3 5 5 8 10 12 14 17
6 2 2 3 5 8 11 14 20 23 28
7 2 2 4 6 10 14 19 26 33 38
8 3 3 4 8 13 19 26 35 43 45
9 3 3 6 10 15 23 34 43 43 46
10 4 4 7 14 20 29 44 58 53 65
11 4 4 7 14 24 35 51 56 64 72
12 5 5 9 17 29 43 63 62 78 103
13 5 5 10 17 34 50 75 72 84 110
14 6 6 10 20 39 62 88 84 127 126
15 6 6 12 23 44 68 88 100 140 150
16 7 7 13 26 49 78 80 105 146 153
17 7 7 15 27 55 88 102 110 136 159
18 8 8 15 33 63 99 84 131 145 200
19 8 8 16 34 69 109 114 171 191 220
20 9 9 19 39 77 90 104 212 221 246
21 9 9 19 41 86 105 143 198 222 308
22 10 10 21 47 92 135 192 209 252 300
23 10 10 21 49 103 164 197 249 296 390
24 11 11 22 54 111 175 185 276 360 375
25 11 11 24 54 120 192 249 301 351 384
26 12 12 25 64 130 198 230 301 347 401
27 12 12 26 64 140 185 247 344 448 539
28 13 13 31 72 153 243 294 371 416 505
29 13 13 32 74 163 201 257 304 395 460
30 14 14 32 78 149 284 303 443 488 587
31 14 14 33 83 184 267 336 369 479 627
32 15 15 37 90 183 307 343 505 530 695
33 15 15 38 95 209 308 362 461 562 661
34 16 16 38 101 205 374 378 564 623 649
35 16 16 41 105 200 338 409 578 585 776
36 17 17 41 111 232 406 608 623 766 867

268

multipliers. For example, 256Ki× 18 RAMs can build a 64-bit unsigned × 64-bit

signed multiplier in five layers instead of six.

Although present commercial synchronous SRAMs have between 218 and 224

words of either 18 or 36 bits, the rows of table 10.2 show a wider range to show

trends. One trend is that doubling SRAM size has only a small effect on the number

of bits that can be multiplied for a fixed latency. Consequently, it usually takes a

large increase in RAM size to build the same multiplier in one fewer layer.

Table cells with medium black print indicate known maximum widths for their

latency, so if a cell says 24, it means 25 was also attempted but did not succeed.

Forty thread hours on a circa 2012 computer were used to compute each row of black

print. These were full backtracking runs that considered the entire multiplier cost.

This left 128 empty cells that ran out of CPU time. These appear in bold color,

and were completed by greedily adding one RAM at a time to the circuit without

backtracking. There is a discontinuity between the two regions of the table, with the

colored portion showing reduced factor widths possible because of the reduced design

effort. This duality of visualization loses some information: for example, 30× 30

SRAMs reached a 170-bit multiplier with 5-cycle latency before the 40-thread-hour

limit. This exceeds the table’s figure of 149 bits, but 170 bits is not thought to be

the maximum reachable for the method indicated, and therefore is not reported in

this table of maximums.

10.4.4 Multilayer carry-skip addition

For typical CPU word sizes, the previous section concluded this chapter. In seven

layers, 557 commodity 256Ki× 18 RAMs, can multiply 128× 128 bits with either

signage. But what if someone asks about a fast multiplier for 8 192× 8 192 bits? The

method thus far breaks down. Even doubling the latency to 14 layers would only

reach 300× 300 bits, because finish RAM inputs in two-layer carry-skip adders clog

up with propagate and carry data, limiting how wide each layer can stretch. Yet it

269

setup 1

c2 p1c3 p2 c13 mod r3

setup 0setup 2setup 3

nish 1nish 3 nish 2

S0S1S2S3

t0t1t2t3

2
mod
r2

1
mod
r1

0
mod
r0

decide
carries

’c2 +c2’c3 +c3

Figure 10.5: Three-layer carry-skip adder. The dedicated carry decision RAM frees
finish RAM inputs to support wider summands, but adds latency. Expansion to four
or more layers would invoke a tree of carry decision RAMs, and accommodate very
wide summands.

is possible to multiply 8 192 bits in 14 layers by using a more potent carry scheme.

Figure 10.5 shows a three-layer carry-skip adder, which starts with figure 10.2’s

two-layer adder, but separates carry propagation into its own layer instead of prop-

agating carries and adjusting tentative sums within the same RAMs. Although this

decluttering adds a cycle of latency, input bits are freed in the leftmost finish RAMs,

allowing wider terms in the adder, and the carry decision RAM has all of its input

bits dedicated to carry and propagate information, allowing more terms. Three-layer

adders are especially useful within the non-multiplying portion of ALUs, because an

SRAM logarithmic shifter and a lot more can be superposed over the second and third

layer in the manner of chapter 5, resulting in a robust set of ALU operations. But

for multipliers built from 256Ki× 18 SRAMs, the latency added by the new middle

layer will not be recovered by the longer carry propagation chains it facilitates.

270

Table 10.3: .

Computation of the 27 carry decisions from figure 10.6’s hierarchical carry-skip adder
example. Bold color indicates which finish RAM each carry decision is for. Up to
three partial carry decisions from figure 10.6, shown here from most to least signifi-
cant, are combined for each decision.

i1 i0 `1 `0 a2 o1 o0 f1
i2 01 `2 31 a2 o2 61 f1
j0 02 m0 32 a2 p0 62 f1
j1 j0 02 m1 m0 32 a2 p1 p0 62 f1
j2 11 02 m2 41 32 a2 p2 71 62 f1
k0 a1 n0 b1 a2 q0 c1 f1
k1 k0 a1 n1 n0 b1 a2 q1 q0 c1 f1
k2 21 a1 n2 51 b1 a2 q2 81 c1 f1
`0 a2 o0 f1 r0 f2

What would help is allowing the carry decision RAM of figure 10.5 to have as

many inputs as needed, rather than stopping around 18 bits. The approach is iso-

morphic with canonical parallel methods of computing exclusive prefix sums, where

scalar addition has been replaced by carry aggregation. Leaving that metaphor aside,

the intuition is that a long line of setup RAMs can be partitioned into small segments,

with each segment having its own RAM to process carries. These will then aggre-

gate into progressively smaller layers of carry processing. This structure is shown in

figure 10.6, where 28 terms of carry-skip setup, labeled i0 through r0, are combined

in a hierarchical scheme that soon computes the correct carry decision for each finish

RAM. This is the foundation for a multi-layer carry-skip adder.

Section 10.4.2 generalized carry-skip addition for any number of summands, in-

troducing the useful possibility that carries and propagates not be limited to one bit

each. Multilayer carry-skip adders are enough complex and robust, that it helps in

these to re-impose the conventional expectation that each term uses at most one bit

each for propagate and carry. In particular, for any term i, exactly one of

271

0
1

2
3

4
5

6
7

8

a
b

c f

r
0

i
0

0
1

0
2

1
1

1
2

k
0

2
1

2
2

l
0

3
1

3
2

m
0

4
1

4
2

n
0

5
1

5
2

o
0

6
1

6
2

p
0

7
1

7
2

q
0

8
1

8
2

6
2

c
1

c
2

3
2

b
1

b
2

0
2

a
1

a
2

j
0

 D
a
s
h
e
s

l
i
k
e

t
h
i
s

m
a
y

g
e
n
e
r
a
t
e
,

b
u
t

n
o
t

p
r
o
p
a
g
a
t
e
.

 D
a
s
h
e
s

f
o
r

"
r
0
"

d
o

n
o
t

g
e
n
e
r
a
t
e

o
r

p
r
o
p
a
g
a
t
e
.

 S
o
l
i
d

l
i
n
e
s

m
a
y

g
e
n
e
r
a
t
e

o
r

p
r
o
p
a
g
a
t
e
.

q
2
q
1
q
0

p
2
p
1
p
0

o
2
o
1
o
0

n
2
n
1
n
0

m
2
m
1
m
0

l
2
l
1
l
0

k
2
k
1
k
0

j
2
j
1
j
0

i
2
i
1
i
0

f
2
f
1
a
2

F
ig
ur
e
10
.6
:
H
ie
ra
rc
hi
ca
ls

ch
em

e
fo
r
a
fiv

e-
la
ye
r,

28
-t
er
m

ca
rr
y-
sk
ip

ad
de
r.

T
he

28
no

de
s
ac
ro
ss

th
e
to
p
lin

e
ar
e
pr
op

ag
at
e

an
d
ca
rr
y
in
fo
rm

at
io
n
fro

m
28

se
tu
p
R
A
M
s.

C
ar
ry

de
ci
sio

ns
fo
r
th
e
27

fin
ish

R
A
M
s
co
m
bi
ne

up
to

th
re
e
no

de
s
ea
ch

fro
m

th
is

tr
ee
.
Ta

bl
e
10
.3

sh
ow

s
w
hi
ch

no
de
s
co
nt
rib

ut
e
to

ea
ch

ca
rr
y
de
ci
sio

n.
T
he

tw
o-
ch
ar
ac
te
r
no

de
la
be

ls
ha

ve
no

pu
rp
os
e
ot
he
r

th
an

to
id
en
tif
y
th
e
no

de
s
un

am
bi
gu

ou
sly

.

272

condition notation description

ci+1 = 0 and pi = 0 - no carry

ci+1 = 1 and pi = 0 G generate

ci+1 = 0 and pi = 1 P propagate

applies. Limiting each place value to a maximum of two summand bits is simple and

sufficient (but not necessary) to ensure one of these three conditions always holds.

When this is the case, the setup RAMs will output some sequence of carry and

propagate information, such as for 28 terms:

P-PGP---PGGP--P-PPGPP-GPPPGG

These terms are written from most significant (left) to least (right). Carry aggre-

gation can be viewed as a function, notated solely by adjacency without an operator

symbol, that is associative but not commutative. The above could be rewritten as

P ((-PG)(P--)(-PG)) ((GP-)(-P-)(PPG)) ((PP-)(GPP)(PGG))

using the associative property. This can be reduced by the carry aggregation function

using its ternary truth table:

ti+1 ti ti+1 ti ti+1 ti ti+1 ti ti+1 ti ti+1 ti

- - - G - G P - -

- G - G G G P G G

- P - G P G P P P

The 28-term example then simplifies to:

P ((-)(-)(-)) ((G)(-)(G)) ((-)(G)(G))
= P (-) (G) (-)
= -

273

Table 10.4: Characteristics of hierarchical carry-skip unsigned multipliers employing
256Ki× 18 SRAMS.

bits per number of number of firmware
factor layers SRAMs size (bits)

32 6 40 86 839 360
64 6 143 287 047 690
128 7 526 1 415 782 400
256 8 2 042 5 378 101 864
512 9 7 899 21 684 594 176

1 024 10 31 295 85 062 327 270
2 048 12 124 653 338 455 229 862
4 096 13 497 306 1 347 697 573 632
8 192 14 1 981 799 5 404 324 177 388

Figure 10.6 depicts a 28-term SRAM carry aggregation tree with a fanout of

three, paralleling with the above example. A typical fanout would be nine, because a

256Ki× 18 RAM can process nine carry/propagate pairs, but three is easier to draw

and read. The nodes of figure 10.6 indicate partial carry decisions for the figure’s

subtrees. Here, partial means an answer may not yet be - or G, but may be P,

meaning undecided. The eventual carry decision for each term will be a composition

of the carry information for all less significant terms, like an exclusive prefix sum,

as found by further merging one to three subtrees. Table 10.3 shows which trees to

combine for each finish RAM’s carry decision, which will always be either - or G.

My tool [Abel22a] can synthesize multipliers with multi-layer carry-skip adders,

and is publicly available for any purpose. Table 10.4 shows the latency and cost

to build such unsigned multipliers for power-of-two widths. Here again, the devices

in the table can all do one multiplication per clock cycle, but the output will lag

the input by the indicated number of layers. In real circuits, the large fanout from

subfactor bits to many RAMs will either need amplification, thereby adding some

delay, or a reduction in clock speed.

274

10.5 Implication and contribution

By using large lookup tables that are compatible in size with presently available

SRAM ICs, long-established methods for binary integer multiplication can be aug-

mented in a manner that permits easy construction of multipliers using maker-scale

tools. Specifically, hardware multipliers can be included in solder-defined minicom-

puters comparable to the architecture of this dissertation in size, cost, power con-

sumption, and speed without resorting to any purchased complex logic such as mi-

croprocessors, ASICs, PLDs, or FPGAs. Although these multipliers will be orders of

magnitude larger, costlier, slower, and more cumbersome (because the firmware lives

in volatile memory) than present on-die multipliers, a potential workaround for lim-

ited use now exists in the event dependence on the supply chain for microprocessors,

ASICs, PLDs, and FPGAs needs to lessen on account of trust and reliability.

This work is the first to present a radix-agnostic treatment of carry-skip ad-

dition, extend carry-skip addition to consider multiple addends and multiple carry

bits, propose an offset binary technique to represent subproducts, or offer a design

methodology for adapting parallel multiplication of any geometry to lookup tables

for any plausible RAM size. The open-source tool [Abel22a] is the first implementa-

tion of these methods in code. Tables 10.1, 10.2, and 10.4 offer the first hard figures

published with respect to speed, number of SRAMs, and firmware size of SRAM

multipliers.

275

11

Minicomputer implementation

The central deliverable I wrote into my topic proposal was a fully-assembled mini-

computer that could run programs. The end of November 2022 marks 18 months past

the date I projected to receive an assembled board, and as yet not even its design is

finished. I don’t count this as a loss, and I am glad that I challenged myself with

an ambitious project. It’s possible that I accomplished more than I would have with

fewer expectations.

This chapter is about what I have done to bring solder-defined minicomput-

ers from being a suggestion to being deployed around the world. Already, a 36-bit

solder-defined CPU has been designed and validated in simulation that almost fully

demonstrates the “chapter 8 minicomputer.” Today’s implementation is about 20

lines1 of firmware code from implementing all the operations in table 11.1, and about

100 lines of firmware code from implementing everything through chapter 8.

The implementation is exclusively in simulation at this time, and is completely

built from plain ASCII text files in various languages: C, Python 3, a small macro

language for specifying netlists, a language for specifying component locations and

rotations, and the architecture’s assembly language. There are zero external depen-

dencies beyond the libraries that come by default with C and Python.

At 19 402 lines as of November 2022, the implementation is small relative to what

1The 20 lines are to define instruction pointer control signals for CALL and RETURN.

277

Table 11.1: Number of instructions required for some common tasks. All instruc-
tions take four clock cycles.

number of arithmetic logic complexinstructions

0 accumulate range-
exceeded flag

1

add bitwise Boolean load or store
(16 operations) data RAM

subtract shift by a preset call, return,
of positions (un)conditional jump

compare rotate by a preset 36-bit linear feed-
of positions back shift register

minimum reverse order of accumulate hash
bits in word function on 36 bits

maximum parity 36-bit cipher
round function

absolute value shift or rotate bit incr. or decrement
(up to 31 bits) through T flag mirrored word

2

shift by a variable 36-bit pseudorandom
of positions number

absolute value rotate by a variable popcount
(full 36 bits) # of positions (Hamming weight)

leading or trailing
bit manipulation

3 unsigned mult. by
constant 0–63

4 unsigned mult. by count leading or possibly any 36-bit
variable 0–63 trailing 0s or 1s permutation

5 any 36-bit
permutation

47 36-bit unsigned
mult. (72-bit result)

278

Table 11.2: Tally of the minicomputer firmware size, measured in rows.

number number of input bits number
type of RAMs operations per operation of rows

ALU α 6 29 12 712 704
ALU β 6 15 12 386 640
ALU γ 6 20 12 491 520
ALU θ 1 12 13 98 304
ALU ζ 1 16 10 16 384
decoder 2 163 2 1 304
total 22 1 688 856

it includes. This count, which includes comments and blank lines, includes everything

needed to go from a fresh host image with C and Python 3 installed, to running

electrical simulations of a chapter 8 minicomputer running assembler programs.

Although this chapter describes the implementation, specifics as to how the

source tree is structured and what files are named are sufficiently likely to change

as to not belong here. Appendix D contains a guide of what can be found where.

11.1 Firmware implementation

Table 11.2 lists the firmware-containing RAMs, the number of operations each im-

plements, and how many input bits each operation accepts. These figures lead to a

total number of rows, or SRAM addresses where a value must exist, for each case.

Almost the entire firmware of the minicomputer is for the arithmetic logic unit. The

remaining firmware specifies control signals for the four clock cycles of 163 opcodes.

The contents of the αi RAMs are interchangeable for some operations but not all,

because tribble position is a parameter for certain operations such as α.e35 (p. 144).

Tribble position also causes differences among the the βi and γi RAMs.

The motivation for Table 11.2 is to establish two needs. Although the firmware is

simply a collection of lookup tables, the total number of table entries is 1 688 856, so

279

manually writing the firmware is not practical. Second, the size and importance of the

ALU firmware in particular make regression testing a technical and moral imperative.

The principal point to understand about the firmware is that it’s algorithmically

generated, so it exists in three forms today:

1. Firmware source code is a program that generates lookup tables that control

the ALU and control decoder.

2. Executable code is produced by a C compiler from the firmware source code.

3. Firmware is produced by running the executable code.

A firmware image residing in nonvolatile storage will be a fourth form in the future.

This image will contain both the firmware and additional code that the firmware

loader needs to load the firmware into the ALU and control decoder. Section 9.2

describes this process.

A small virtual machine has been written that can execute all ALU opcodes, all

conditional and unconditional JUMPs, CALL, RETURN, HALT, NOP, and the load imme-

diate opcodes IMB, IMH, IMN, and IMP. This virtual machine is accessible via a tool

vm that can

• test single ALU instructions from the command line,

• load and run assembler programs that use the supported opcodes,

• run regression tests of most ALU opcodes,

• measure characteristics of the MIX and XIM opcodes, and

• generate pseudorandom byte streams for Dieharder [Brown20] testing.

Listing 11.1 shows vm’s help text for its command line options. Listing 11.2 shows

a manual test of the LSL (logical shift left) instruction using vm.

The regression tests included with vm verify the numeric and CPU flag output of

110 ALU opcodes. Correct operation of overrange checking is a central component of

280

$ vm -h
Usage: vm [OPTION]... [EXPRESSION]

If EXPRESSION is present, like "34 a.sss -12345", calculate it.

Other notable uses and options:

-a FILE run assembler on FILE and execute
-c clear screen at startup
-d show more diagnostics
-f flip left and right operands to EXPRESSION
-h display this help and exit
-r run regression tests
-s OPT call experimental stats module with option OPT
-w swizzle right arg of EXPRESSION across tribbles
-N set N(egate) flag to evaluate EXPRESSION
-R set R(ange) flag to evaluate EXPRESSION
-T set T(emporal) flag to evaluate EXPRESSION
-Z set Z(ero) flag to evaluate EXPRESSION

Listing 11.1: Command line options for vm tool.

$ vm 000077007777 lsl 050505050505
L 000000 000000 111111 000000 111111 111111 t -> t
R 000101 000101 000101 000101 000101 000101

= alpha 000000 000000 111111 000000 111111 111111 p 001011
L beta 010110 010110 010110 010110 010110 001011 c 110100
l gamma 000000 011111 100000 011111 111111 100000 d 000000 r

flags i n r t z
unsigned 528613344

signed 528613344

Listing 11.2: Manual ALU test of a five-bit logical shift left. The bits to be shifted
appear at input L. Input R has the number of positions to shift available at all
subwords. The shifted word appears at output γ.

281

these tests. Assembler programs for short (36× 6-bit) and long (36× 36-bit) multi-

plication, R(ange) flag save and restore, the two-instruction macro for absolute value,

and the two-instruction macro for popcount (Hamming weight) are also tested.2

Operands for regression testing are derived from /dev/urandom. Different types

of intentionally skewed distributions are used for a portion of the trials in order to

improve test coverage for some of the opcodes. For example, additive opcodes receive

extra trials with operands close to 0 and −(235). Short multiplication and NUDGE

receive extra trials with the leading 1 bit’s position uniformly distributed.

Wrapping addition and subtraction are missing from regression testing. They

were added later and somewhat in a hurry, and are simpler than their range-checked

counterparts. They should be included. TXOR (transposing XOR) is likewise missing

from testing and should be added.

Simple unary instructions are also missing from regression testing. I did not view

these as a priority, because they operate on a tribble-wise basis in only one ALU layer

per instruction. This makes independent tests more difficult to write. Where possible,

the ALU regression tests are independent of the firmware implementation. Because

the α, β, and γ SRAMs only accept six-bit slices of their left and right operands,

their desired outputs are computed in C using 36-bit (in reality 64-bit) arithmetic and

compared on a whole-ALU basis.3 Because of the missing regression tests for simple

unary, I have manually checked the simple unary functions carefully and quarantined

them in a change-restricted source file.

Stacked unary instructions are missing from regression testing. Adding this test-

ing is perhaps the highest-priority ALU firmware work that remains. These tests de-

pend on first defining and stabilizing implementations for the stacked unary macros

in table 7.18. One reason I have neglected this testing is that the outcome of these

2The test output for long multiplication indicates that the R(ange) flag is set. This multiplication
can never overflow, and should therefore never set this flag, so attention is needed here. The 72-bit
products are computed correctly.

3Because MIX and XIM necessarily do subword mixing, they can’t be tested by independent 36-bit
code. Instead, they are just checked to ensure they are each other’s inverse.

282

tests will affect the firmware only and not the netlist or circuit board.

11.2 Assembler

As assembler with the features needed to test the firmware and circuits has been

written in C. More capabilities will be added as they become necessary.

11.2.1 What the assembler includes

Presently, the assembler supports all ALU opcodes, all conditional and unconditional

JUMPs, CALL, RETURN, HALT, and NOP. The load immediate opcodes IMB, IMH, IMN,

and IMP are available using a pseudo-instruction IMM that selects the opcode that can

represent the immediate value given. These instructions only have room for 18-bit

constants, so arbitrary 36-bit immediate values do not fit. Here is how to load an

36-bit immediate value, and what the assembler will eventually do behind the scenes:

unsigned fact53 temp

; imm fact53 53316291173 ; will not assemble

imm fact53 53316157440 ; left half of word
imm temp 133733 ; right half of word
fact53 = fact53 or temp ; intended result

Appendix A introduces basic features of the assembly language that will not be

restated in this chapter. The appendix is from a manual-in-progress for an assembler-

in-progress, so a few of its provisions are yet to be implemented. The principal

differences between what the implementation does as of November 2022 and what

Appendix A specifies are these:

• Decimal numerals work. Octal numerals follow C’s easy-to-implement but oth-

erwise dangerous tradition of a leading zero, so 077 means 63. No other radices

283

work yet, nor do the backtick radix notations. Once the backtick radices are

working, leading zeros will be made safe, at which time 077 will mean 77.

• Underscore group separators work for numerals, so you can write 123456 as

12_3456_. But underscore may not be used as a prefix, so you can’t write 789

as _789 until this is corrected.

• The assembler permanently allocates registers for all numeric constants it finds,

so the code a = a + 1 will create a read-only register named “1” in order

that the statement can increment as intended. The virtual machine vm presets

these registers prior to simulating any code, and everything works. But a real

minicomputer doesn’t initialize registers by extrasensory perception, and there

is no executable file format defined that would let a program loader initialize

registers either. Therefore, the electrical simulation ns will run the code just

fine—except the register named “1” will not be initialized, causing the increment

to have undefined results. The present workaround is to define and initialize

registers for all immediates in the source code like this:

unsigned one
imm one 1
; ...
a = a + one

Listing 11.3 shows diagnostic output from vm when the Fibonacci number pro-

gram (listing 8.1, p. 176) is run. The CPU has no I/O, so the program has none

either, but the assembled code, symbol table, and a list of changed register values at

the time the program terminates can be seen. The virtual machine zeros all registers

when a program is started, so the changed registers are the ones that have nonzero

final contents. The symbol table could bear a few explanations:

• The right column is the identifier in the source code. This is the symbol table’s

key, and you’ll see the lines are sorted on this right column. Although it is more

284

$ vm -a fibclean.a

--- code ---
nop 0 0 0
nop 0 0 0
nop 0 0 0
imp 0 53 6

j 0 0 6
halt 0 0 0
imp 0 1 2

cmp.uu 6 2 0
j.le 0 0 20
imp 0 1 4
imp 0 0 5
imp 0 1 1

a.uuu 5 1 3
j.t 0 0 22

a.uuu 2 4 2
a.uuu 0 1 5
a.uuu 0 3 1
cmp.uu 6 2 0

j.ne 0 0 12
j 0 0 5

a.uuu 0 6 1
j 0 0 5

imb 511 511 1
j 0 0 5

halt 0 0 0

--- symbols ---
0 u. 0
1 u. answer
5 l. back
6 l. fib
2 u. i
12 l. loop
3 u. next
4 u. one
5 u. prev
20 l. small
22 l. toobig
6 u. x

--- running ---

--- changed registers ---
53316291173 answer

53 i
53316291173 next

1 one
32951280099 prev

53 x

Listing 11.3: Virtual machine output running the Fibonacci program of listing 8.1
(p. 176). The right column is a continuation of the left column.

285

traditional to put the key on the left, identifiers have no length limit, so the list

will display more cleanly with identifiers at the end of the lines.

• The middle column indicates whether the identifier refers to a register number

(not register contents) or a label. Unsigned registers display as u, and signed

signed registers if present would display s. Labels display l and are destinations

of JUMP and CALL instructions. They resolve to an address in the code memory.

• The left column is the register number or code memory address that the identi-

fier resolves to. Right now there is only one namespace for identifiers, so a label

and register may not have the same name.

• Register numbers are assigned in the lexical order of their names, not their order

of appearance in a program. Labels are assigned in their order of appearance,

which for listing 8.1 happens to match their lexical order.

• There is a strange register named 0, although the immediate value zero does not

appear in the source code. The architecture does not have any assignment op-

codes, so lines such as prev = answer are implemented by adding zero with the

a.uuu (add unsigned to unsigned with unsigned result) opcode, which requires

the assembler to supply a zero immediate value.4

11.2.2 Future assembler features

As more of the architecture becomes available, the assembler will need more capabil-

ities in order to test or use the expanded implementation. Here are a few things that

would be added:

• Labels will have their own namespace. They will also appear separately in

4This immediate value is not initialized in the electrical simulation ns, so the program’s appear-
ance of correctness in netlist simulations is accidental. Extrapolating on this, the NR (not right)
instruction of table 7.3 (p. 107) is probably broken in the electrical simulation due to its all-ones left
operand that the assembler does not provide initialization code for.

286

diagnostic output, rather than hide alongside other symbols.

• The memory instructions LD, STO, RCM1, RCM2, WCM, RDM, WDM, RPT, and WPT will

be supported.

• The remaining non-ALU instructions, such as CALI (call and initialize) and

those that chapter 9’s subsystems will bring, will be supported.

• Radices for numeric constants will be available per section A.3.

• There will be spill mechanisms for programs that use more than 512 registers.

• The assembler will compute permutation operands per section A.8.

• Programs will be permitted to contain multiple modules.

• Decisions about scopes and namespaces will be made.

• Program loader conventions and an executable file format that is not overly

complex will be decided on.

• Methods for defining blocks of memory will be established.

• The language will afford practical handling of records with named fields.

• The assembler macros in tables 7.18 (p. 163) and 7.19 (p. 168) will be imple-

mented using a non-hardcoded (not C code) technique that permits ordinary

assembler programs to define their own macros that have similar capabilities.

• The virtual machine will be extended to simulate non-ALU instructions. The

reason this is needed is that the electrical simulation ns runs slowly, and cross-

development of nontrivial programs will need fast testing.

287

11.3 Netlist definition and processing

11.3.1 Off-the-shelf electronic design automation software

Because the minicomputer’s hardware and firmware is to be open source, all intellec-

tual property necessary to realize the minicomputer at any stage, such as software

for laying out the circuit board, must also be available to anyone without restric-

tion. In 2020, I looked at then-available electronic design software in hopes of finding

something that could capture defining information about the circuit and lay out cir-

cuit boards. I don’t regret excluding commercial and closed-source products from

consideration, but something I should have done is approach electrical engineering

faculty at Wright State and ask if they could suggest any software packages. Instead,

I searched on my own for alternatives.

For reasons forgotten, I settled on KiCad [KiCad22] and started learning to use

version 5.0.2. Also for reasons forgotten, I was not optimistic about any of KiCad’s

peers at that time. KiCad has helped me very little thus far, due to two limitations.

The first is that a minicomputer’s netlist is topologically complex. KiCad comes

with a schematic editor, but schematics are planar drawings. Labels are supported

for places where drawing a wire would be too cumbersome, but I learned quickly that

my minicomputer schematic would be nearly all labels. This challenged my hope

that a graphical editor could be a practical design tool. The problem can be seen in

figures 11.1 and 11.2, which are early efforts to drawn the ALU’s α, β, and γ RAMs.

The drawings show 44-pin 64Ki× 16 asynchronous SRAMs, which I had in mind at

the time. Two drawings exist in order to show different pins on the 18 SRAMs.

Having that much of a schematic with 18 ICs, 36 bypass capacitors, and 864 pins

to solder, I decided I was ready to learn a little of KiCad’s circuit board layout tool.

When the tool starts for the first time, the components appear as a big cluster on a

board, and my task was to drag them to where they go. After that, I would start

288

F
ig
ur
e
11
.1
:
Pa

rt
ia
lK

iC
ad

dr
aw

in
g
of

th
e
A
LU

da
ta
pa

th
.
T
hi
s
wa

s
as

aw
kw

ar
d
to

dr
aw

as
it

is
us
el
es
s
fo
r
un

de
rs
ta
nd

in
g.

289

F
ig
ur
e
11
.2
:
Pa

rt
ia
lK

iC
ad

dr
aw

in
g
of

th
e
A
LU

po
we

r
co
nn

ec
tio

ns
.
A

m
ist

ak
e
he
re

co
ul
d
hi
de

fo
r
a
lo
ng

tim
e.

290

routing tracks, which are unetched copper runs between pins. But KiCad proved

catastrophically inept at even the simpler task. The issue was performance: the

circuit was too large, and the CPU was too busy, for any plausible editing using a

mouse.

So not only was KiCad awkward to use in every way in defining the circuit

(not to mention being able to read it meaningfully), but KiCad also proved useless

converting the circuit into even a component placement, let alone milling instructions

for a board. There was another problem. There were only 864 pins in what I was

editing, and KiCad would fare at least polynomially slower as the design expanded.

Chapter 8’s minicomputer already has 6 678 pins and still lacks bypass capacitors and

more.

The whole idea of trying to do this graphically continued to seem wrong to me.

KiCad wasn’t to blame on that score. I would stubbornly go on to draw my own

schematics in an SVG editor. These number 24 pages and have been of some value,

although they now require extensive edits. Figures 3.2 and 3.3 (pp. 45 and 46) show

two of these free-form schematics. But the SVG drawings don’t capture any netlist

information for simulation testing or circuit board automation. I would have to come

up with a scheme that better fit the architecture’s needs.

11.3.2 A typewritten netlist

A non-graphical means for entering a machine-readable netlist was necessary, and it

would have to be easy for me to use and require minimal learning by future main-

tainers. I had carte blanche in its syntax and semantics, so I considered what an easy

implementation might be. Here is what I came up with.

A tiny token-processing language

Because several of the minicomputer’s nodes have as many as 36 nets, it would be

helpful to have a method for describing sequences of things. My approach was mo-

291

tivated from the brace expansion offered by the Bash command shell, which behaves

like this:

$ echo {top,bottom}-{left,right}
top-left top-right bottom-left bottom-right

$ echo {A,B,C}{5,17,41}
A5 A17 A41 B5 B17 B41 C5 C17 C41

So here is what I came up with. An input file specifies netlists via a series of

whitespace-delimited tokens. No tokens can contain whitespace. Everything in the

file is case-sensitive.

A macro system provides substring replacement within tokens. Macros can have,

but are not required to have, multiple replacements, causing tokens to multiply in

the Cartesian sense. All macros are expanded from left to right.

Macro names begin and end with angle brackets; e.g., <rock>. Like tokens,

macro names can’t contain whitespace or internal angle brackets. There are four

kinds of macros:

KIND 1: USER SPECIFIED

If the netlist preamble contains the definition:

.macro <rock> roy harold scherer

Then these two lines are equivalent:

.named <rock>’s_part

.named roy’s_part harold’s_part scherer’s_part

So now there are three parts. Yes, it’s okay to use ’ in names, because the macro

system imposes very few rules about non-whitespace symbols. This first of the four

kinds of macros is the only kind that uses a .macro directive in the netlist preamble

to define it.

292

KIND 2: RANGES OF NUMBERS

Simple up and down integer counting is offered. Zero-padding to the width of

the lesser bound is supported. So these two lines are equivalent:

.pins = set<12-08>

.pins = set12 set11 set10 set09 set08

KIND 3: REPETITION

To connect the five set pins to a single net that is named .vdd:

.wire set<12-08> = <5*>.vdd

Note the .wire directive works pairwise across =, so the above is equivalent to five

individual .wire directives that make one connection each.

KIND 4: SERIES OF NAMES

Use commas in macros to expand a set. Like this:

.wire <mon,tue,wed,thu,fri>.y = <tue,wed,thu,fri,mon>.a

This contrived example suggests a shift register that spans the weekdays. Five con-

nections are created, starting with mon.y to tue.a.

The processing to implement the four kinds of macros is extremely simple. When

a netlist is read, it is parsed to find occurrences of macro kinds 2, 3, and 4 before other

processing is done. These macros are converted into and stored as multiple instances

of kind 1, where the commas, dashes, and asterisks lose their special meaning and

become part of the literal macro names. This transforms the macro substitution task

into a trivial find and replace, leaving only Cartesian product expansion of token lists

to be done after that.

The entire macro definition and expansion process is implemented in 104 lines

of Python. It truly is a tiny language, but it pays big dividends. As an example, the

293

six RAMs for the ALU’s β layer have a total of 600 pins, but their wiring takes only

48 lines to specify all of them! The β layer could have been a little tedious to key in,

because of its incoming and outgoing transpositions per figures 5.1 and 5.3 (pp. 75

and 77). But the macro language needs only four lines to do both transpositions:

.macro <a-trans> <0-5>.a0 <0-5>.a1 <0-5>.a2 <0-5>.a3 <0-5>.a4 <0-5>.a5

.macro <d-trans> <0-5>.d0 <0-5>.d1 <0-5>.d2 <0-5>.d3 <0-5>.d4 <0-5>.d5

.wire beta<a-trans> = B.l<0-35>

.wire beta<d-trans> = B.y<0-35>

Without macros, 72 connections would have needed manual entry. Here are the first

seven, which may be helpful understanding how the macros unroll:

.wire beta0.a0 = B.l0 ; (lowercase ell, not the digit one)

.wire beta1.a0 = B.l1

.wire beta2.a0 = B.l2

.wire beta3.a0 = B.l3

.wire beta4.a0 = B.l4

.wire beta5.a0 = B.l5

.wire beta0.a1 = B.l6

The transposition macros can’t be abbreviated further, because the left-to-right ex-

pansion order would nullify the transposition. This would not work:

.macro <a-trans> <0-5>.a<0-5>

.macro <d-trans> <0-5>.d<0-5>

.wire beta<a-trans> = B.l<0-35>

.wire beta<d-trans> = B.y<0-35>

because we would get an untransposed connection sequence starting with:

.wire beta0.a0 = B.l0 ; (lowercase ell, not the digit one)

.wire beta0.a1 = B.l1

.wire beta0.a2 = B.l2

.wire beta0.a3 = B.l3

.wire beta0.a4 = B.l4

.wire beta0.a5 = B.l5

.wire beta1.a0 = B.l6

294

Netlist file structure

Lines within the file are just lines, and there is no line-splicing mechanism. Contiguous

whitespace within a line acts like a single space, separating runs of non-whitespace

characters into tokens. Leading and trailing whitespace is ignored, as are blank lines.

A semicolon introduces a comment to the end of the line it appears on.

Multi-line comments are available via .off and .on directives that suspend and

resume parsing. They need not be balanced in any fashion. Here is an example of

their use:

.off
How about those Buckeyes!
I mean THE OHIO STATE UNIVERSITY BUCKEYES.
Not some other, wannabe buckeyes.

Below is a circuit inspired by the Buckeyes.
.on

Another kind of comment is available to get the operator’s attention when a

netlist is processed. An .attn directive prints text to the screen next to the line

number the directive is on. This makes the run “look unclean,” because netlist

processing is usually silent. Here is an example:

.attn Be sure to reconnect the branch decision pin!

A netlist file has a first, second, and third section called phases where different

types of directives are allowed. There is no phase demarcation in the file itself, but a

phase 1 directive may not appear after the first phase 2 directive, nor may a phase 1

directive appear after a phase 3 directive.

The only phase 1 directive is .macro, which has already been described and

defines kind 1 macros. This instinctively makes sense: a macro must be defined prior

to use.

Phase 2 directives define the types of components that go in the netlist and

creates specific instances of them. For example, phase 2 is where the netlist explains

295

what a pull resistor is, and further explains how many there are and gives them

all names. This too makes sense: components must exist prior to use, and their

attributes must be known before they can be created with these attributes.

Phase 3 directives connect existing components together, most often with wires

implemented as copper tracks on a circuit board, but sometimes with glue logic in

addition to wires.

Defining and using component types

The file needs adequate descriptions of each kind of component used. Each of these

descriptions begins with the .kind directive, and a short block of parameters. Thus

a new component may look like this:

.kind dual-nand

.footprint Package_SO:VSSOP-8_2.4x2.1mm_P0.5mm

.lib 74xGxx

.part 74AUC2G00

.value 74AUC2G00

.order Texas Instruments SN74AUC2G00DCUR

.mm 2.1 3.2

.npins 8

Some of the parameters are used only by KiCad. Although I rejected KiCad as

offering utility for drawing schematics, producing netlists, or placing components, I

have yet to evaluate KiCad for routing tracks. I am not optimistic, but the file format

includes information that can be exported to KiCad.

Here is a list of directives that apply to a component as a whole, as opposed to

applying individually to a pin:

.kind This name determines the behavior that the simulator will confer on this

kind of component. Pick a name that you like. (This name will need to

be present in the simulator’s source code.)

.npins This is the number of pins on the component. The information is used

when checking for human mistakes in the file, and for determining if a

296

component is “real.” It’s sometimes helpful to define non-physical, “con-

ceptual” components or circuit sections to simplify and document wiring.

Omitting .npinsmakes a component conceptual. Conceptual components

do not undergo rule checking and are not exported anywhere.

.order This is the part number that will be given in the generated bill of materials.

This should be as specific as possible, with packaging specified and such, so

the generated bill of materials can be used to create purchase orders. This

directive permits multiple-token values (embedded spaces are allowed).

.lib This information is only exported to KiCad.

.part This information is only exported to KiCad.

.value This information is only exported to KiCad. This directive permits multiple-

token values (embedded spaces are allowed).

.footprint This information is only exported to KiCad.

.price A best-estimate cost to purchase one component of this kind, given as a

floating-point number. The generated bill of materials will total these.

.mm Maximum bounding box of this component, in mm, including pins but not

the soldering footprint. Specify width and then height. This information

is used for estimating circuit board size.

.rect Linear pin geometry. Not suitable for ball grid array parts. Seven space-

separated numbers must appear on this line in this order:

dw separation between the north-south rows of pins

dh separation between the east-west rows of pins

pitch pitch between centers of adjacent pins

west number of pins on left side

297

south number of pins on “bottom” side (often 0)

east number of pins on right side

north number of pins on “top” side (often 0)

All linear measurements millimeters between nominal pin centers. If south

and north are both 0, dh is irrelevant since there are no pins to separate.

Pin 1 is the northmost on the west side. From there, pins are consecu-

tively numbered going counterclockwise. Information from .rect is used

for board layout, estimating track lengths and capacitances based on com-

ponent placement. If you have an odd part with a triangle geometry or

something, just fabricate something here that’s good enough for simula-

tion. A part’s location affects timing more than its pin positions.

.noload Instructs the simulator not to model propagation delay associated with

capacitive loads of this component.

.load Describes capacitances. Four parameters must appear in this order:

in_pF capacitance of each input pin

io_pF capacitance of each I/O pin

delay_pF test capacitance for datasheet’s propagation delay

ns_pF_slope added nanoseconds per picofarad over delay_pF

.pins This directive indicates the function for each physical pin. Its name is

easily confused with .npins, which indicates the number of pins. Here is

a one-line example of .pins:

.pins <1-8> = 1a 1b 2y gnd 2a 2b 1y vdd

.pins can be used as many times as needed until all pins have been speci-

fied. It is not required that everything go on one line. If a .pins line only

defines one pin, it is still .pins, not .pin.

298

To the left of the = sign are the pin numbers, 8 in all. The ordering

and number convention are yours to control. For ball grid array (BGA)

packages, these numbers are usually alphanumeric instead of numeric.

For conceptual devices (not real devices), there are no physical pins, so

the pin numbers are omitted. But the = sign stays.

To the right of the = sign are pin names corresponding pairwise to the

pin numbers on the left. There aren’t many naming rules, but spaces and

semicolons do not work in pin names.

The above were all whole-component directives. There are also directives that

apply specifically to individual pins and groups of pins. First, the usage of each pin

must be indicated. Continuing the example for dual-nand:

.power vdd gnd

.in 1a 1b 2a 2b

.out 1y 2y

.oute ; used for output pins that have output enable

.bidir ; used for bidirectional pins

.nc ; used for pins to be left disconnected

.pull ; used to mark the weak side of pull resistors

.pflag ; used to indicate availability of power

The last five directives, .oute through .pflag, don’t identify any pins, because

they don’t apply to dual-nand devices. It is more legible to omit these in component

descriptions, but leaving them in without pins has the same effect on the netlist.

.power marks pins that require power. It is different from .pflag, which indi-

cates that power is available. These are for rule checking to hunt for human mistakes:

every pin that requires power must be in a net that has power available.

.in and .out mark pins used as inputs and outputs.

At this point, all directives that describe components have been briefly explained.

There is one more directive in phase 2, and it is used to instantiate and name com-

299

ponents. Here is an example of its use, where 50 dual-nand packages (total of 100

NAND gates) are created and given names:

.named nand<01-50>

Note that the names like nand01 have no bearing on what the gates are or do. NAND

gates can as easily have names such as xor01 or alabama. It is the .kind directive

that tells the simulator what the device does.

Connecting pins together

Phase 3 of a netlist file wires components together. A .wire directive works pairwise

across an = sign. For instance, to connect nand01.1y to nand33.1a and nand02.1y

to nand33.1b:

.wire nand01.1y nand02.1y = nand33.1a nand33.1b

Macros can get a lot done without much typing. Let’s power those 100 NAND gates

from the previous section:

.wire nand<01-50>.<vdd,gnd> = <50*>circuit.<vdd,gnd>

When wiring circuits, the exact pin of the exact component is specified, always joined

with a period without internal whitespace. Component names may also contain

periods, but the rightmost period within a given token always sets off name of a pin

as provided via the .pins directive for that component’s kind.

A special provision for clock driver wiring

A .short directive is used to connect buffers in parallel for clock distribution. These

parallel connections increase available drive and (kind of) maintain a single concept

of the clock waveform and try to minimize skew. The KiCad operator will have to

work some magic getting these pins connected with equal-length tracks. Here’s the

syntax (note there is no = sign):

300

.short 1866 source.out<0-3> dest.in<0-7>

It’s always .short, then an integer delay in picoseconds, and then some number of

input and output pins. Order of pins does not matter, because they all get connected

together.

On the KiCad side, .short connects a single track to all of the pins; that is, the

multiple outputs drive some large fan-out of inputs. The circuit board designer will

have to combine the output lines to a common point via equal-length paths, and then

distribute to each input by equal-length paths, such that the total track delay from

any output to any input is (in this example) 1866 ps.

The simulation software is not intended to handle such fan-ins and fan-outs, and

even if it could, it knows nothing of waveforms, rise and fall times, signal distortion,

or noise. Instead, what the simulator receives from this script is that each destina-

tion is driven by just one of the sources with the specified path delay (1866 ps in

this example), with the sources chosen round-robin to keep the fan-out within the

simulator’s configured fan_out_max.

For design rule checking, only one output pin is checked in any .shorted net.

This prevents generation of “out with out” error messages.

Glue logic synthesis

A .glue directive permits the user to write a logic function in reverse Polish notation

(RPN), with the line being interpreted as if the user had typed in the requisite .named

and .wire directives to implement the gate instances and wiring. This can save a lot

of human labor and errors. But there are some limitations:

• The only gates are nand, nor, not, and, or, notnot, and xor. Like directives,

these are lowercase names.

• The SN74AUC2Gxx chips are used, where xx = 00, 02, 04, 08, 32, 34, and 86 for

the above. Note that all of these chips are dual-gate packages, and the reason I

301

use these is that they are faster than their single-gate counterparts, and easier

to solder by hand than their leadless quad-gate counterparts.

• These devices must be declared in Phase 2 and have a .kind known to this

script, which is dual-nand, dual-nor, (They must not have a .named

directive, because .glue instantiates and names its gates automatically.)

• not and notnot have one input; the others have two.

• I didn’t want to reserve the word buf to mean buffer, so it’s called notnot.

Usage looks like this (and operations must be lowercase):

.glue out.0 = in.0 not

.glue out.1 = in.0 in.1 xor

.glue out.2 = in.0 in.1 and in.2 xor

.glue out.3 = in.0 in.1 and in.2 and in.3 xor

This example has 3 xor gates, 2 and gates, and an inverter. The .glue directive

factors out redundant calculations, so the and computed for out.2 simply fans over

as an input for out.3 without waste.

Sometimes a high-current load needs to be driven, and a low-delay method for

this is to use two copies of the last gate in parallel. This is signified by prepending

2* to the boolean operation. For instance:

.glue parity.y = p.a p.b xor p.c 2*xor

Doubling always is done in a single physical package. So the p.a p.b xor will not

be on the same chip as the final, high-current xor. There is no support for tripling,

quadrupling, etc.

A .cohort directive prevents .glue from using two halves of a dual IC for distant

parts of a circuit board. To share the same chip, two gates must be glued within the

same cohort. There are two forms of the directive:

.cohort ; from here forward is a unique cohort

.cohort mypart ; from here forward is a cohort named mypart

302

The first form is simple: the following .glue forms a cohort where its gates can share

one chip. Any unused halves are abandoned when the next cohort is entered. The

second form lets us return to a cohort later in a file and use up any unused halves

of gates from that cohort. The reason we offer the second form is that the logical

structure of your netlist may not always correspond with the order that glue logic is

specified in.

The .cohort directive only affects the operation of the .glue directive. .cohort’s

use is not mandatory, although very advisable in large circuits. .cohort has the

added benefit of including the cohort name as part of the generated part’s name,

which assists in part identification during the manual task of specifying component

positions.

A nontrivial example of .glue alongside .cohort and a conceptual component

(one that doesn’t have any ICs, but exists to help organize the netlist) is the in-

struction pointer implementation shown in listing 11.4. The first page of its 31
2 -page

free-form schematic is in figure 3.3.

As a human factors experiment to assess how straightforward .glue is to use, I

started a timer before translating the schematic into what turned out to be 33 .glue

directives, typing them in as I progressed. I thought all was going well, but the result

was not correct, and I had to start again from the beginning. That result did work

and has not been changed in more than a year since. The total time it took me to

manually convert the schematic into typing, including the false start, was 49 minutes

and 2 seconds to specify connections for all 278 pins and 35 ICs. This glue logic

synthesis capability is easy and fast to use, and tends to preclude human mistakes.

Diagnostic features

There is a .draw directive for diagnostic use. .draw is followed by a list of pins. For

each pin given, an SVG file named after the pin is generated with a drawing of the

net the pin is in.

303

; --
; IP incrementer conceptual component and glue logic
; --
.kind ip_incrementer
.pins = in<0-26> out<0-26> stage<0-5>
.named ipi

.cohort incrementer

.glue ipi.out0 = ipi.in0 not

.glue ipi.out1 = ipi.in0 ipi.in1 xor

.glue ipi.out2 = ipi.in0 ipi.in1 and ipi.in2 xor

.glue ipi.out3 = ipi.in0 ipi.in1 and ipi.in2 and ipi.in3 xor

.glue ipi.stage0 = ipi.in0 ipi.in1 and ipi.in2 ipi.in3 and and

.glue ipi.out4 = ipi.stage0 ipi.in4 xor

.glue ipi.out5 = ipi.stage0 ipi.in4 and ipi.in5 xor

.glue ipi.out6 = ipi.stage0 ipi.in4 and ipi.in5 and ipi.in6 xor

.glue ipi.out7 = ipi.stage0 ipi.in4 and ipi.in5 and ipi.in6 and ipi.in7 xor

.glue ipi.stage1 = ipi.in4 ipi.in5 and ipi.in6 ipi.in7 and and ipi.stage0 and

.glue ipi.out8 = ipi.stage1 ipi.in8 xor

.glue ipi.out9 = ipi.stage1 ipi.in8 and ipi.in9 xor

.glue ipi.out10 = ipi.stage1 ipi.in8 and ipi.in9 and ipi.in10 xor

.glue ipi.out11 = ipi.stage1 ipi.in8 and ipi.in9 and ipi.in10 and ipi.in11 xor

.glue ipi.stage2 = ipi.in8 ipi.in9 and ipi.in10 ipi.in11 and and ipi.stage1 and

.glue ipi.out12 = ipi.stage2 ipi.in12 xor

.glue ipi.out13 = ipi.stage2 ipi.in12 and ipi.in13 xor

.glue ipi.out14 = ipi.stage2 ipi.in12 and ipi.in13 and ipi.in14 xor

.glue ipi.out15 = ipi.stage2 ipi.in12 and ipi.in13 and ipi.in14 and ipi.in15 xor

.glue ipi.stage3 = ipi.in12 ipi.in13 and ipi.in14 ipi.in15 and and ipi.stage2 and

.glue ipi.out16 = ipi.stage3 ipi.in16 xor

.glue ipi.out17 = ipi.stage3 ipi.in16 and ipi.in17 xor

.glue ipi.out18 = ipi.stage3 ipi.in16 and ipi.in17 and ipi.in18 xor

.glue ipi.out19 = ipi.stage3 ipi.in16 and ipi.in17 and ipi.in18 and ipi.in19 xor

.glue ipi.stage4 = ipi.in16 ipi.in17 and ipi.in18 ipi.in19 and and ipi.stage3 and

.glue ipi.out20 = ipi.stage4 ipi.in20 xor

.glue ipi.out21 = ipi.stage4 ipi.in20 and ipi.in21 xor

.glue ipi.out22 = ipi.stage4 ipi.in20 and ipi.in21 and ipi.in22 xor

.glue ipi.out23 = ipi.stage4 ipi.in20 and ipi.in21 and ipi.in22 and ipi.in23 xor

.glue ipi.stage5 = ipi.in20 ipi.in21 and ipi.in22 ipi.in23 and and ipi.stage4 and

.glue ipi.out24 = ipi.stage5 ipi.in24 xor

.glue ipi.out25 = ipi.stage5 ipi.in24 and ipi.in25 xor

.glue ipi.out26 = ipi.stage5 ipi.in24 and ipi.in25 and ipi.in26 xor

Listing 11.4: Instruction pointer incrementer (figure 3.3) implemented.

304

A design rule checker is included that is characteristic of some schematic editors

and VLSI design software. This is worth the 50 lines of Python it took to implement,

because the timing-oriented electrical simulation doesn’t test a number of these cases.

The design rule checker verifies that all nets are free of these mistakes:

• power pin by itself

• power pin with output pin

• power pin with tristate pin

• power pin with bidirectional pin

• power pin without power available marker

• more than one power available marker

• power pin with pull resistor load side

• more than one pull resistor

• input pin by itself

• input pin without a pull resistor or output/tristate/bidirectional/power pin

• more than one output pin

• output pin with pull resistor

• output pin with tristate pin

• output pin with bidirectional pin

• bidirectional pin by itself

305

Terseness of netlist specification

The file described in this section (11.3.2) is 1 941 lines as of November 2022. The first

890 lines specify component type details, how many of each there are, and what their

names are. There are also some preliminary comments, and ten macros are defined.

The connections are made in the remaining 1 051 lines. This is a very convenient and

efficient mechanism for specifying and maintaining a minicomputer netlist.

11.3.3 Component placement

A non-graphical means of choosing and describing component positions and their

orientations was needed. To do this optimally is probably an NP-complete problem,

so two heuristics were used. The first heuristic was, I made an “educated guess” as to

where everything would go. This is to say, software was not used to directly position

components. But with 220 components, I would need another heuristic to simplify

my choices.

As section 8.1 mentions, the components fall into three size categories that I

named small, medium, and large. I partitioned the circuit board into a 10× 8 grid

where the large ICs could be placed. These are the SRAMs, and they have 100

pins. The grid is not isotropic, but has an aspect ratio to approximate the shape

of the SRAM ICs. This grid’s uniform offsets for SRAMs are easily visible in fig-

ure 8.1 (pp. 180–181). I looked at the remaining components and determined that

two medium components—the ones with 48 pins—can fit in one grid space, or nine

small components, or one medium with five small components. All I needed to do

was manually assign related components onto tiles that fit in one grid space each,

and then arrange the tiles as best I could on the grid.

Listing 11.5 is a sample of a tiny language I concocted to specify what components

go on which tiles. The tiles have names like spreadsheet cells, with range a1 through

j8. I summarized what each tile did on slips of rectangular paper, arranged them on

306

D0

374.37

374.38

374.40
flop

flop

xoror xor

nor and nand

and xor or

nand nand and

.tile h2
374.37
374.38

.tile i2
glue-lockouts-nor-1
glue-lockouts-and-5
glue-lockouts-nand-2
east: glue-lockouts-and-6
glue-lockouts-xor-0
north: glue-lockouts-or-1
glue-lockouts-nand-3
south: glue-lockouts-nand-4
glue-lockouts-and-7

.tile h3
374.40
ffeflop
ffsflop
glue-call-depth-ctr-or-0
glue-call-depth-ctr-xor-0
glue-call-depth-ctr-xor-1

.tile i3
D0

Listing 11.5: Component placement syntax showing four circuit board tiles.

a table, and typed up the eventual placements. Listing 11.5 shows the specification

for four of figure 8.1’s tiles. This happens to be the only 2× 2 space in the grid

having all four tile population schemes, having a maximum of one, two, six, or nine

components depending on their sizes. Within a tile, component names appear from

left to right, repeating from top to bottom.

There are three subtleties to mention about listing 11.5. First, the effect of my

grouping by component function is visible. Tile i2 has nine ICs that have lockouts

as part of their name. I did not name these components, because they were auto-

matically generated by .glue directives. But I did have a .cohort lockouts prior

to making those connections, which is where the lockouts part of their name came

307

from. Likewise for tile h3, there is a .cohort call-depth-counter in the netlist.

Another subtlety is component orientation. In packages with two rows of pins,

pin 1 is usually shown on datasheets at the top left, and the highest-numbered pin at

the top right. For both, the top is involved, and so I call this orientation north. For

east components, the lowest and highest-numbered pins are on the right side, and so

on. Where orientation is not specified, the small ICs all face west, and the large ones

face north. The medium ICs face west if there are two on the tile, otherwise they

face north. It turns out that tiles h2, i2, h3, and i3 have all of their components at

their default orientation in figure 8.1, so for listing 11.5, I rotated three components

on tile i2 to illustrate how their orientation is overridden.

The final subtlety is off-topic, except it’s so glaring in the listing. ICs 374.37

and 374.38 have terrible names. The 374 makes it obvious they are—according to the

manufacturer—16-bit flip-flops, but what do they do, and why did I not name them

for it? The reason is that these are dual 8-bit flip-flops, in the sense that each IC

has two clock and two output enable pins. Having more than one section, these ICs

can have more than one purpose, and this creates a naming problem. In the netlist,

conceptual components are used to represent the eight-bit halves, and these are given

names based on what they actually do. These halves eventually get “snapped into”

physical ICs using .wire directives near the end of the file. But a drawback of

the process is that the conceptual components and their names are stripped out of

further processing, and this makes setting up and interpreting electrical simulations

more tedious. Useful names should persist through the whole toolchain.

11.3.4 Netlist summary information output

The typewritten netlist (section 11.3.2) and component placement files (section 11.3.3)

are processed through a Python 3 script. As of November 2022, this script is 2 618

lines long and perhaps should be split into easier-to-digest sections. It produces five

kinds of output.

308

• A bill of materials file is written, showing how many of each .kind of IC, their

total .price, and the part number to .order. A total count of parts, pins,

and nets is given. Circuit board dimensions are estimated as a function of tile

separation. A list of dual-gate glue logic ICs that have an unused gate is given.

A list of the names of all components is also included.

• A floorplan is drawn that looks like figures 8.1 and 8.2 (pp. 180–181 and 182).

• Pin-to-pin connectivity between pins can be drawn underneath a floorplan. This

can be sampled to include only a percentage of nets, or specified using .draw to

draw only an identified net. Figure 11.3 shows a connectivity drawing for the

whole chapter 8 minicomputer. Connections to VDD and ground are not drawn

to improve legibility.

For each net drawn, a point is found on the board that locally minimizes the

sum of distances from that point to each pin in the net. This point is that net’s

hub, and it may not be globally minimal. The hub is drawn as a small dot,

and straight lines of the same color are drawn from the hub to each pin. A

limited palette of colors is used, so one color will typically denote many nets.

But where colors are different, they are guaranteed to be electrically separated.

Lines do not indicate any proposed length or routing of a track, but only show

relationships among nets and pins.

• A netlist is written in KiCad’s format for possible use to route tracks. KiCad

is able to draw pictures of circuit boards using imported netlists, although

its output resolution is limited by the size of the display used while drawing.

Figure 11.4 shows KiCad’s drawing of a chapter 8 minicomputer.

• A component list with propagation delay estimates for all connections is written

for use by the electrical simulation. The next section explains the assumptions

that undergird these estimates.

309

r10k r10k r10k

r10k r10k r10k

r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k

CM0

M1

D0

D1

LR

S

P

alpha0 alpha1 alpha2

alpha3 alpha4 alpha5

beta0

beta1

beta2

beta3

beta4

beta5

gamma0 gamma1 gamma2

gamma3 gamma4 gamma5

theta

zeta

E

conctrl

374.0

374.1

374.2

374.3

374.4

374.5

374.6

374.7

374.8

374.9

374.10

374.11

374.12

374.13

374.14

374.15

374.16

374.17

374.18

374.19

374.20

374.21374.22

374.23

374.24

374.25

374.26

374.27

374.28

374.29

374.30

374.31

374.32

374.33

374.34

374.35

374.36

374.37

374.38

374.39

374.40

374.41

aod0

aod1

giant0

giant1

giant2

giant3giant4

giant5

giant6

giant7

flop flopflop

flop

flop

flop

flop flop

flop

flop

flop flop

flop

flop

flop

flopflop flop

flop

flop

flop

flopflop

80mhz

buf

buf

xoror xor

xor

xor

and

nand

or and and

nand nor and

nand and and

nor and nand

and xor or

nand nand and

buf nandor

nand nand

nand

nor

inv and and

nand nand

inv xor

and

xor

and

and

xor

and

xor

and

and

xor

and

xor

and and and

xor

and

xor

and and

xor

and

xor

and and

and

xor

and

xor

and

and

xor

and

and orand and

and xor xor

and and

ornor

and

or

Figure 11.3: A drawing of the chapter 8 minicomputer’s non-power connections.

310

Figure 11.4: A drawing by KiCad of the chapter 8 minicomputer.

311

kind flop ; create one component of kind ’flop’
name ffiflop

kind 16374 ; create three components of kind ’16374’
name 374.0
name 374.1
name 374.2

from ffiflop ; five signal paths
to 374.0
signal q 1oe# 750 ; from ffiflop.q to 374.0.1oe# takes 750 ps
signal q 2oe# 737 ; from ffiflop.q to 374.0.2oe# takes 737 ps
to 374.1
signal q 1oe# 700 ; from ffiflop.q to 374.1.1oe# takes 700 ps
signal q 2oe# 669 ; from ffiflop.q to 374.1.2oe# takes 669 ps
to 374.2
signal q 1oe# 764 ; from ffiflop.q to 374.2.1oe# takes 764 ps

Listing 11.6: Connectivity syntax example with five signal paths. Typical use is
without comments or blank lines, and abbreviates the keywords to k, n, f, t, and s.

11.3.5 Estimating propagation delay between pins

The hardest task for the previous section’s Python script is to prepare a list of all

signal paths on the circuit board, including a plausible propagation delay estimate

for each path. This is written to a file in the format of listing 11.6. For the chapter 8

minicomputer implementation as of November 2022, the file comes to 6 754 lines,

which is close in order of magnitude to the 6 678 total component pins. The time

granularity for simulation is 1 ps, so propagation delays are given in that unit.

Propagation delay is estimated on the basis of total net capacitance and the

track length from the source pin to destination pin. Because the simulation is only

intended to provide a conservative estimate as to attainable CPU speed, track layouts

are guessed so as to be plausible, but in many cases not close to optimal. The hub

and spoke model of section 11.3.4 attempts, to the nearest whole millimeter on the

x- and y-axes, to place a net’s central connection point (hub) such that the combined

312

distances from the hub to each pin of the net is minimized. The script is content

with a local minimum, and I believe there are situations where a more optimal hub

placement may be found.

One defect with the hub and spoke model is that long redundant runs occur in

places. Consider a hypothetical net with four collinear pins, all having x-coordinate

0, and having y-coordinates 0, 5, 95, and 100 mm. The hub will be at (0, 50). An

ideal track with no obstructions would be a 100 mm line segment from one end to

the other, and the track’s capacitance will be based on 100 mm of copper. But this is

not the model implemented. The hub indeed is at (0, 50), but the track calculation

naively uses four line segments with lengths 50, 45, 45, and 50, which contribute

190 mm of copper to the capacitance.

Although shortest routes are drawn in figure 11.3 to show connectivity, shortest

routes between pins are not used to estimate track lengths. It is assumed rather that

layout rules constrain tracks to orientations that are whole multiples of 45 degrees.

Due east-west, north-south, northeast-southwest, and northwest-southeast are the

only directions tracks may run. Figure 11.5 shows an approximately 10% sampling

of the non-power nets with these track assumptions. As with figure 11.3, this figure

depicts a timing and capacitance estimate and not a track layout. This would be

blatantly evident if figure 11.5 were to try drawing all of the nets, because north-south

and east-west runs would overlap rows of pins on a grand and physically impermissible

(not to mention illegible) scale. Many diagonal runs would also overlap.

For track length computations, every pin is presumed to have an extra 5 mm

of track that connects it for the purpose of evading obstacles. This may not be

enough allowance for estimation purposes, but it can be revisited easily following

some experience routing finalized, manufacturable tracks on the board.

The capacitance of a net is estimated as the sum of capacitances for all of its pins.

The capacitance of any presently-driven output pin is excluded, because that compo-

nent’s datasheet already accounted for it in propagation delay estimates. Added to

313

r10k r10k r10k

r10k r10k r10k

r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k r10k r10k

r10k

CM0

M1

D0

D1

LR

S

P

alpha0 alpha1 alpha2

alpha3 alpha4 alpha5

beta0

beta1

beta2

beta3

beta4

beta5

gamma0 gamma1 gamma2

gamma3 gamma4 gamma5

theta

zeta

E

conctrl

374.0

374.1

374.2

374.3

374.4

374.5

374.6

374.7

374.8

374.9

374.10

374.11

374.12

374.13

374.14

374.15

374.16

374.17

374.18

374.19

374.20

374.21374.22

374.23

374.24

374.25

374.26

374.27

374.28

374.29

374.30

374.31

374.32

374.33

374.34

374.35

374.36

374.37

374.38

374.39

374.40

374.41

aod0

aod1

giant0

giant1

giant2

giant3giant4

giant5

giant6

giant7

flop flopflop

flop

flop

flop

flop flop

flop

flop

flop flop

flop

flop

flop

flopflop flop

flop

flop

flop

flopflop

80mhz

buf

buf

xoror xor

xor

xor

and

nand

or and and

nand nor and

nand and and

nor and nand

and xor or

nand nand and

buf nandor

nand nand

nand

nor

inv and and

nand nand

inv xor

and

xor

and

and

xor

and

xor

and

and

xor

and

xor

and and and

xor

and

xor

and and

xor

and

xor

and and

and

xor

and

xor

and

and

xor

and

and orand and

and xor xor

and and

ornor

and

or

Figure 11.5: Visual illustration of track length estimates. Distances are computed
using a hub and spoke model with all runs constrained to the eight cardinal and
ordinal compass directions. An extra 5 mm is assumed at each pin for obstacle
clearance. For legibility, only about 10% of the non-power nets are drawn.

314

this capacitance is a track estimate of 0.08 pF per mm from all spokes, including the

allowance for dodging obstacles.

The pin-to-pin propagation delay is computed from the component’s datasheet,

with a straight-line approximation added for the net’s capacitance in excess of the

datasheet’s test condition. The amount of time to add per unit of capacitance comes

from either a second load condition on the datasheet, when available, or estimates

taken from comparable datasheets. Glue logic that are in tandem pairs for higher

drives is modeled by halving the load capacitance for timing estimates. In addition

to the datasheet’s propagation delay and excess capacitance propagation delay, addi-

tional delay for track length is assessed at 6 ps/mm. The applicable length is directly

along the two spokes through the hub, again including the length allowance for getting

around obstacles.

11.4 Electrical and timing simulation

Demonstrating that my architecture works is not the purpose of simulation, because

only construction can do that. The purpose of simulation is to search quickly for ways

that the netlist may be broken or inadvertently incomplete. Knowing in advance that

a circuit will fail allows the step of building, testing, and troubleshooting a broken

physical model to be skipped. On the other hand, a netlist with a clean simulation

result instills confidence for taking on more risk at a time when circuits need to be

physically built and validated. An effective simulation tool can immensely speed

the development process. Previous simulations that I wrote for other projects have

shortened hours to moments, and shortened months to hours.

11.4.1 Off-the-shelf simulation software

Several circuit simulation tools are already published, and in theory at least, one or

more of these could be applied to test the minicomputer netlist. I decided to write my

315

own simulator notwithstanding the time it would take to write or the risk of errors

and oversights on my part. Here are the reasons I did this.

• Existing tools are sufficiently capable as to have a large learning curve.

• I believed I could write a simple tool in about as much time as I could learn an

existing one.

• I would have full knowledge of the capability and use of what I write myself.

• I could decide all features and parameters for software that I write myself.

• Writing my own simulator eliminates all risk of selecting an undesirable existing

one.

• Existing tools would require further inputs, particularly component simulation

models. I would have to write any models I could not obtain from a manufac-

turer.

• At least one manufacturer in my bill of materials requires a nondisclosure agree-

ment as a precondition of obtaining models. My implementation would not be

allowed to distribute such models, rendering my simulation useless to (and pos-

sibly untrusted by) others.

• I would have no control over the speed of existing simulation software. For a

circuit with thousands of pins and a need to monitor timing closely, this is a

huge concern. An analog electrical simulation would be prohibitively slow, but

a non-electrical logical simulation would not detect timing problems.

• I would have no control over the size, quality, documentation, suitability, or

ease of use of an existing tool.

• An existing tool would introduce external dependencies, possibly many.

316

• An existing tool would create sensitivity to version mismatches.

• I happen to enjoy writing code and do it fairly well.

A case that sounds convincing could be made that with an open hardware spec-

ification, existing, well-validated tools that are already familiar in the field should be

used. That case didn’t win this round, but here is one more reason my architecture

is open: anyone is welcome to take on that mantle.

11.4.2 Electrical simulator description

I wrote a simulator that can load the netlist, initialize the 22 firmware-containing

RAMs with their firmware, assemble programs into the code RAM, force the circuit

into a consistent state, set the instruction pointer to address zero, and start the CPU

as the netlist describes it.

Because there are many components, trace output can be turned on and off on

a per-component basis. A few pseudo-component types are defined for diagnostic

purposes, and serve functions such and DIP switches and LEDs. But unlike their

real counterparts, the switches can be changed and the LEDs can be checked with

picosecond granularity. These pseudo-components have been useful for small regres-

sion test scripts for the real components, but they haven’t found much use in the

minicomputer simulation. The crazy state the netlist powers up in generates many

pages of error messages, so they can be suppressed until a fixed point in time that the

machine is known to have stabilized. Component parameters can be changed on the

fly, such as changing the oscillator frequency, clocking known state into 8-bit flip-flops,

write-protecting firmware RAMs until the system has stabilized, and forcing a RAM

to do a one-time read cycle to break an infinite loop between the control decoder and

code RAMs.

In addition to component trace output, the simulator has a regression test ca-

pability with scriptable tests of output pin states. This is a very limited feature,

317

because only one pin can be sampled per line of testing instructions. Evaluation of

simulator output will need better automation for regression testing. Most simulator

runs are evaluated manually as of November 2022. This evaluation usually comes to

three questions. First, does the program terminate as anticipated? Many problems

would cause the simulation to run indefinitely. Second, does a run’s output have any

worrisome colors? Output is color-coded, and errors are immediately visible. Third,

was the correct end-of-program result clocked into the appropriate register? When

all three conditions are met, it’s time to move on.

The simulator has an indirect output that can be obtained by inference: the

maximum oscillator speed the netlist functions at. This speed is determined by

manually changing the duration of the oscillator’s half-period in the script and re-

running the simulation. Repeating this a few times in a manually-imposed binary

search can find the half-period at which the simulation succeeds with correct output,

but adding another picosecond causes failures.

In addition to enabling manual identification of incorrect execution of assembler

programs, the simulator detects the following invalid electrical and timing situations:

• A clock input pin is not low for long enough.

• A clock input pin is not high for long enough.

• A clock input pin is driven by a high-impedance output, a pin with unknown

state, or two conflicting pins.

• A flip-flop sees a setup or hold time violation.

• A flip-flop that supports preset or clear encounters a removal or recovery time

violation.

• A flip-flop’s preset or clear input is driven by a high-impedance output, a pin

with unknown state, or two conflicting pins.

318

• A flip-flop is clocked during a preset or clear.

• An SRAM sees a setup or hold violation on a clocked input.

• An SRAM input is clocked while driven by a high-impedance output, a pin with

unknown state, or two conflicting pins.

The above error conditions are dynamic; that is, they are time-dependent prob-

lems that may occur during simulation. These represent approximately an eighth of

the problems the simulator can report. The other error messages signal uninteresting,

static problems such as misspelling a component name.

The electrical simulation is written in C, a language I have been comfortable

with for a third of a century. Good alternatives to C could have been Fortran, which

can sometimes optimize more aggressively than C to reach higher speeds, and Rust,

which offers certain reliability guarantees. Of these three, C is most mainstream at

present and may be less of a challenge for many maintainers. The program has no

external dependencies, and at 3 719 lines (including comments and blank lines) is very

compact. Half of this code is for the simulator proper, and the other half simulates

specific component types.

Understanding the many pins, capabilities, and alternatives offered by synchronous

SRAM ICs took required a lot of time to understand the datasheets. But when I

wrote the device simulation code based on my understanding of these ICs, the task

was strikingly simpler and faster than I anticipated. The SRAM datasheets were

so thorough and unambiguous describing their state transitions, that a table-driven

finite state machine for them worked from almost the first test.

The simulator is a discrete event simulation, where a priority queue delivers

information from pins where outputs are produced to pins where inputs are consumed

after the computed propagation delay for the path. The pin relationship is many-

to-many in that one of several output pins can drive a net at one time, and a net

may drive many input pins. For each input pin, the simulator maintains the state

319

of each output pin that drives it, which may be low, high, or uncertain, as well as

the impedance of the the output pin, which may be low or high. An output pin’s

state and impedance are always transmitted separately via the priority queue, so that

input pins receive these transitions independently at correct times.

When an output transition for state or impedance reaches the head of the priority

queue, the affected input pin and that pin’s component are placed in singly-linked

“dirty” lists for recalculation. At the end of each picosecond that exists in the queue,

all sources for each dirty pin are tabulated to determine that input pin’s new state,

which will be one of three possibilities:

low The input is considered a logic zero.

high The input is considered a logic one.

uncertain The input is either (a) in a transitioning state that has not settled, (b)

dependent on an upstream uncertain state, or (c) being driven high and

low simultaneously by competing outputs.

Cause (a) for an uncertain input pin is a pending state transition. This is to

accommodate the double-transition of outputs after SRAM reads: when an SRAM is

read, the data at its output pins will become invalid—the word from the previous read

will no longer be available—before the pins show the correct output for the current

read. This relates to strongly to CPU integrity and needs to be modeled correctly.

Section 3.4 explains why this behavior matters.

Cause (b) for an uncertain input pin happens when a gate cannot determine

its output because one or more of its inputs is uncertain. In real life, the gate will

choose a high or low output, possibly after a short metastable period. But rather than

try to model metastability or forcing a misleading decision, the simulation will place

the non-computable output in the uncertain state. This is a good thing for making

simulation results interpretable, but it also causes “uncertainty loops” that hang the

320

simulated CPU on power-up. The simulation script must forcibly break these loops

before anything can get done.

Cause (c) for an uncertain input pin is when outputs are fighting over whether a

net should be low or high. This is normal for very brief periods at hundreds of input

pins, but it is a high-current situation that could damage components if the matter

is not quickly settled.

Because of the simulation’s hundreds of components and thousands of pins, along

with the necessity to simulate potentially long assembler programs at the pin level,

speed of simulation is very important. This is why the C language, a heap-based

priority queue of closures (callback functions with their arguments), dirty lists, and

other fast approaches are important. The simulator would be difficult to parallelize

other than by breaking an assembler program into independent smaller programs,

which often would be impractical.

Careful attention is given to memory handling. At the end of any simulation,

any memory that was allocated is freed and counted, and a brightly-colored message

is written if the counts do not match. A simulator run with the Fibonacci program

of listing 8.1 (p. 176) does 6 439 malloc calls and a matching number of free calls.

Of these, 5 952 calls are to label every pin with its name, which only happens once.

11.4.3 Simulator test script semantics and example

The simulation process follows a human-written script that has a few responsibilities.

One is that component, connectivity, and timing information extracted from the

netlist needs to be loaded. This is the hardware side of what will be simulated.

Because this hardware information is specified in the same language as the human-

written test script, it can be either a file loaded by or pasted directly into the test

script.

The three-page listing 11.7 shows a working test script. The language is so

domain-specific and ad-hoc as to be very quirky, and there are points in the simulator

321

cls ; clear display
note fibclean.ns ; print "fibclean.ns" at top of run

; Suppress error messages until 135 ns, because there will be 1599
; "invalid clocked value" warnings due to still-uncertain inputs.

unstable 135000 ; suppress error messages up to 167 ns

load frozen.ns ; load converted netlist and signal timings

trace C ; trace the code RAM
trace L ; trace the left register file
trace R ; trace right register file
trace 80mhz ; trace the oscillator (its name is 80mhz)

; Artificially write-protect the code RAM and all of the firmware RAMs
; to prevent spurious writes before the CPU stabilizes.

tweak C ro
tweak D0 ro
tweak D1 ro
tweak alpha0 ro
tweak alpha1 ro
tweak alpha2 ro
tweak alpha3 ro
tweak alpha4 ro
tweak alpha5 ro
tweak beta0 ro
tweak beta1 ro
tweak beta2 ro
tweak beta3 ro
tweak beta4 ro
tweak beta5 ro
tweak gamma0 ro
tweak gamma1 ro
tweak gamma2 ro
tweak gamma3 ro
tweak gamma4 ro
tweak gamma5 ro
tweak theta ro
tweak zeta ro

Listing 11.7: Simulator script to start CPU and run Fibonacci program. (1 of 3)

322

; An oscillator half-period of 7757 ps is 64.46 MHz or 16.11 MIPS.
; This is the fastest speed that this netlist can run this program.

tweak 80mhz 7757 ; oscillator half-period is 7757 ps

; The two-bit counter for click 0 ... click 3 is starts up in an
; infinite loop of uncertain outputs, neither low nor high.
; Temporarily connect the these flip-flops’ CLR# pins to ground to
; force their outputs low. Then run the simulation through 10 ns.

from rail
to clockphase0flop
signal lo clr# 100
to clockphase1flop
signal lo clr# 100
quit 10000
settle

; Switch the CLR# pins from ground to Vdd to allow the click counter
; to run normally. Then run the simulation through 20 ns.

to clockphase0flop
signal hi clr# 100
to clockphase1flop
signal hi clr# 100
quit 20000
settle

asm fibclean.a ; assemble the Fibonacci program into code RAM

; At 47.5 ns, the two-bit click counter will be at click 2. The next
; rising clock will read the code RAM. Run simulation to that time.

quit 47500
settle

Listing 11.7: Simulator script to start CPU and run Fibonacci program. (2 of 3)

323

; The instruction pointer bounces around four 27-bit flip-flops, each
; constructed from two dual 8-bit flip-flops. To start reading code at
; location 0, we clock zeros into all of these flip-flops. To avoid
; conflicts, ff a, ff j, and ff r outputs are disabled, and ff f
; outputs are enabled.

tweak 374.5 a-=0 ; ff a (Address for code read/write)
tweak 374.5 b-=0
tweak 374.6 a-=0
tweak 374.6 b-=0
tweak 374.9 a+=0 ; ff f (From inst. ptr. incrementer)
tweak 374.9 b+=0
tweak 374.10 a+=0
tweak 374.10 b+=0
tweak 374.11 a-=0 ; ff j (Jump/call destination)
tweak 374.11 b-=0
tweak 374.12 a-=0
tweak 374.12 b-=0
tweak 374.15 a-=0 ; ff r (Return address)
tweak 374.15 b-=0
tweak 374.16 a-=0
tweak 374.16 b-=0

; The code and control decoder RAMs are at an impasse with "uncertain"
; outputs to each other. Tell the code RAM it’s okay to read the first
; opcode for the control decoder. From that point on, the control
; decoder will be able to signal the code RAM to read. The "forceread"
; tweak does not persist, but only affects the next read.

tweak C forceread

; The simulator interprets the end of the script here as permission to
; run indefinitely now. The run will end when the HALT instruction is
; executed in the Fibonacci program.

Listing 11.7: Simulator script to start CPU and run Fibonacci program. (3 of 3)

324

source code that add strangeness to the script semantics. The listing comments

explain much of what is happening. Here are some places where these comments may

be expanded on.

The file frozen.ns is where the hardware information is taken from. Listing 11.6

annotates a few lines from this file. The file imported by load is not restricted to

connectivity and timing information, but may contain any commands that are known

to the simulator.

Although 80mhz looks like a quantity, it is actually the name of an already-

purchased crystal oscillator. Thus far, simulations indicate that some changes to the

circuit would be necessary to use this part as the oscillator. The simulated top safe

speed is 64.46 MHz as of November 2022.

A careful reading of where the two-bit counter is cleared to logic zero has an

apparent contradiction. The CLR# pins on the flip-flops are connected to ground,

and then also connected to VDD. At face value, this would be electrically disastrous.

Behind the scenes in the source code, the pseudo-component named rail has a magi-

cal property that no other component has. When rail is connected to a pin that has

existing connections, a warning is issued and the existing connections are dropped.

This is was done as a scripting convenience for regression testing. No pin is ever con-

nected to ground and VDD at the same time. The 100 ps propagation time specified

from rail to the flip-flops is an arbitrary small positive interval.

The ill-named quit command specifies a time to pause the simulation and con-

tinue the test script on the next line. Somewhat inconveniently, quit requires an

absolute time expressed in total picoseconds, so if more tests are cut and pasted in

front of a series of quits, the script maintainer would have to update all of the times.

The settle command is also ill-named, because it causes the simulation to start

(or continue). The simulation will run until either the current quit time has been

reached or the signal queue is empty. The latter will not occur in a minicomputer,

because the clock oscillator will keep placing transitions in the queue.

325

The kludgiest way for the simulation to stop running is for a HALT instruction

to be executed. Behind the scenes, the simulator and netlist don’t know what any

instruction means, but the source code for simulating SRAMs monitors code RAM

fetches. When a HALT instruction is read from the code RAM, a quit is entered for

25 ns later, at which time the HALT is presumably being executed by the CPU.

The tweak command sends one token (a string of characters without spaces) to

the C code that is simulating a component. The string’s format is chosen to make

the C code that interprets it very simple. Sometimes that goal is at odds with the

tweak command’s legibility. In the 16 lines on the last page where the instruction

pointer is being zeroed, the eight-bit halves of the flip-flops are written as a and b,

the - sign means turn the outputs off, and + means turn the outputs on. The =0

means to clock a decimal 0 into that half’s eight bits. A presumptive reading of a-=0

to mean “subtract zero from a” is not the right interpretation.

The forceread tweak on the code RAM overrides the simulator’s pin semantics

that unknown outputs are left unknown instead of being allowed to collapse onto

low or high. When the opcode bits read from the code RAM are unknown, those

bits go to the control decoder RAMs to determine the correct control signals for that

opcode. All those control signals therefore become unknown. One of those control

signals is the enable input E1# for the code RAM. The code RAM will enable if E1#

is low, but not if E1# is unknown, so the next attempted code fetch will send another

unknown opcode to the control decoder. It’s an infinite loop. The forceread tweak

tells the code RAM to pretend, for just the next clock cycle, that E1# is low and a

read can proceed. This breaks the final stalemate that was keeping the CPU from

running.

The end of the test script is peculiar, because there is an implicit settle in

how it is interpreted. So when there appears to be nothing left to do, the simulation

resumes. To stop at the end of the script, quit 1 can be written, and if at least one

picosecond was simulated, the test will terminate.

326

11.4.4 Simulator output example

A run of listing 11.7’s test script produces 4 944 lines of output. Double-page list-

ing 11.8 shows the final lines of this run. Some output that is useful for certain runs,

but not this one, was removed to improved legibility. This included octal and hex-

adecimal translations of register values, and oscillator trace output for clicks 1, 2, and

3. The brown click 0 trace output occurs at high-to-low oscillator transitions.

Several features of the CPU’s operation can be seen in listing 11.8. Out of 30

SRAMs, only the code RAM and two register file copies are traced in this listing,

and none of the flip-flops are traced. The oscillator can be seen running in brown,

code RAM reads show the fetched opcodes and operands as red decimal numbers,

and tandem stores to the left and right register files appear in blue. The direction

transitions of all three RAMs’ data lines is visible, with the outputs coming on (low

impedance) and turning off (high impedance).

The last line of output, in green, directs the operator to a file named fire.report.

This report is a tabulation of overcurrent occurrences during the simulation. Many

nets are driven by different output pins at different times, and temporal tolerances

are tight. One output may be enabled picoseconds before its neighbor is disabled.

Or an output may transition to high impedance before another turns on, but the

output shutting down may be so far away that at the input pin’s location, its ves-

tigial voltage is still driving the net briefly when a conflicting signal arrives. A few

picoseconds of such overcurrent, if they do not occur too frequently, will not damage

any components.

The simulator keeps some track of these overcurrent conditions as they occur.

For each input pin, the duration of the longest conflict—being driven simultaneously

high and low—is stored. In addition, the duration of the shortest non-overcurrent

period at each pin is stored. No further details are saved. It is not known how

many overcurrent instances there are, when they occur, or anything. But the stored

327

fetched C[12] a.uuu 3 5 1 22,891,592 ps
C outputs going lo-Z
****** click 0 at next rise ****** 22,898,665 ps
reading 32951280099 from R[1] 22,907,106 ps
reading 20365011074 from L[5]
C outputs going hi-Z
fetched C[13] j.t 0 0 22 22,953,648 ps
C outputs going lo-Z
L outputs going hi-Z
R outputs going hi-Z
****** click 0 at next rise ****** 22,960,721 ps
STORING 53316291173 to R[3] 22,969,162 ps
reading 0 from R[0]
R outputs going lo-Z
C outputs going hi-Z
STORING 53316291173 to L[3]
reading 0 from L[0]
L outputs going lo-Z
fetched C[14] a.uuu 2 2 4 23,015,704 ps
C outputs going lo-Z
****** click 0 at next rise ****** 23,022,777 ps
reading 1 from R[4] 23,031,218 ps
C outputs going hi-Z
reading 52 from L[2]
fetched C[15] a.uuu 5 0 1 23,077,760 ps
C outputs going lo-Z
L outputs going hi-Z
R outputs going hi-Z
****** click 0 at next rise ****** 23,084,833 ps
C outputs going hi-Z 23,093,274 ps
STORING 53 to R[2]
reading 32951280099 from R[1]
R outputs going lo-Z
STORING 53 to L[2]
reading 0 from L[0]
L outputs going lo-Z
fetched C[16] a.uuu 1 0 3 23,139,816 ps
C outputs going lo-Z
L outputs going hi-Z
R outputs going hi-Z
****** click 0 at next rise ****** 23,146,889 ps
STORING 32951280099 to R[5] 23,155,330 ps

Listing 11.8: Final portion of simulator output with Fibonacci program. (1 of 2)

328

reading 53316291173 from R[3]
R outputs going lo-Z
C outputs going hi-Z
STORING 32951280099 to L[5]
reading 0 from L[0]
L outputs going lo-Z
fetched C[17] cmp.uu 0 6 2 23,201,872 ps
C outputs going lo-Z
R outputs going hi-Z
L outputs going hi-Z
****** click 0 at next rise ****** 23,208,945 ps
STORING 53316291173 to L[1] 23,217,386 ps
reading 53 from L[6]
L outputs going lo-Z
STORING 53316291173 to R[1]
reading 53 from R[2]
R outputs going lo-Z
C outputs going hi-Z
L outputs going hi-Z 23,263,928 ps
R outputs going hi-Z
fetched C[18] j.ne 0 0 12
C outputs going lo-Z
****** click 0 at next rise ****** 23,271,001 ps
C outputs going hi-Z 23,279,442 ps
reading 0 from R[0]
R outputs going lo-Z
reading 0 from L[0]
L outputs going lo-Z
fetched C[19] j 0 0 5 23,325,984 ps
C outputs going lo-Z
****** click 0 at next rise ****** 23,333,057 ps
C outputs going hi-Z 23,341,498 ps
reading 0 from L[0]
reading 0 from R[0]
fetched C[5] halt 0 0 0 23,388,040 ps
C outputs going lo-Z
****** click 0 at next rise ****** 23,395,113 ps
C outputs going hi-Z 23,403,554 ps
reading 0 from R[0]
reading 0 from L[0]
quit at 23413040 ps 23,413,040 ps
see fire.report for fire information

Listing 11.8: Final portion of simulator output with Fibonacci program. (2 of 2)

329

information does contain how many picoseconds the longest short circuit was present,

an important number to be aware of in order to avoid component damage.

Dividing the longest overcurrent interval by the shortest non-overcurrent interval

establishes an upper bound on what the duty cycle of an overcurrent net may have

been during a simulation. The long overcurrent may not be close in time to the short

non-overcurrent, so the duty cycle may not have been close to the quotient—but it is

guaranteed to not have been worse.

Table 11.3 shows saved overcurrent information from fire.report for the α4

RAM, which of all components had the most worrisome figures. I would guess that

upon further investigation, the 5.8 ns overcurrent at the d4 pin would be demon-

strated to be a harmless one-time startup glitch. Until the minicomputer is ready

for physical construction, it would be premature to be concerned about nanosecond-

scale overcurrents that show up during simulation. But when the time comes, at least

one tool for identifying harmful overcurrent in the design and suppressing it will be

available.

11.4.5 Hazards, limitations, and next steps of simulation

Revisiting a caution from section 11.4.2, simulations do well at uncovering things that

go wrong when they are run. But they are not so good at identifying what could go

wrong, but did not. If a simulation is so fortunate as to have enough CPU resources,

the simulation’s main lapses will come from the system model and the underlying

assumptions of that model.

Table 11.3 shows part of a system-wide survey of overcurrent risks, with the

affected nets identified by input pins they contain. This is one example of a prob-

lematic simulation assumption. Not all nets contain input pins. Therefore, there are

nets that were not evaluated for overcurrent. An example is the output pins of ff o,

which move words from the ALU to the I/O subsystem. The I/O side of ff o hasn’t

been designed yet, so that node has no input pins. Although finishing the minicom-

330

longest shortest worst-case
input conflict non-conflict conflict
pin (ps) (ps) fraction

a0 571 15 014 0.038
a1 630 15 014 0.042
a2 648 15 014 0.043
a3 670 15 014 0.045
a4 687 15 014 0.046
a5 703 15 014 0.047
a6 636 15 014 0.042
a7 654 15 014 0.044
a8 723 15 014 0.048
a9 674 15 014 0.045
a10 548 15 014 0.036
a11 560 15 014 0.037
d0 3 500 58 556 0.060
d1 3 425 58 631 0.058
d2 3 400 58 656 0.058
d3 3 500 58 556 0.060
d4 5 796 56 260 0.103
d5 2 513 59 543 0.042
d6 3 500 58 556 0.060
d7 4 063 57 993 0.070

cke# 6 2 555 0.002
e1# 6 46 536 0.000

Table 11.3: Overcurrent conflicts at the nets of α4’s input pins.

puter will resolve this particular example, similar cases could exist, such as an output

that only attaches to a connector. So only considering overcurrent at input pins is a

simulation risk at this time.

Another risk is that substituted components will rarely have the same specifi-

cations as the originals. The most foreseeable fault would be upgrading a code or

data RAM from 1Mi× 36 to 2Mi× 36, which my netlist is designed to accommodate.

The 1Mi RAM has a tKQ (clock to output valid time) of 5.5 ns, but the 2Mi RAM’s

tKQ is 6.5 ns. How will this be controlled? Somewhat strangely, a further upgrade to

331

4Mi× 36 returns to the better tKQ of 5.5 ns.5

Another limitation is that the simulation accepts a manufacturer’s maximum

propagation delay as its actual value. A related problem is that estimated maximum

for circuit board track lengths are presumed to be the actual track lengths. For both

cases, minimum values are supplied or computed in the source code, but these values

are not presently used. Once the minicomputer is working with the simulator as it

now exists, some “fuzzier” runs should be done to ensure it is not too sensitive to

small variances.

Clock tree skew, the clock waveform’s shape, the choice to use or not use ter-

mination resistors, and jitter everywhere may all affect whether the minicomputer

will or will not work in real life. Unless the design is changed so as to not critically

depend on tKQX− tH as it presently does (section 3.4), it is very important that

skew and jitter be incorporated into the simulation before investing in circuit board

track routing. The waveform issues, on the other hand, cannot be modeled by the

discrete event simulation. One piece of hopeful news is that traditional mixed-signal

simulators such as Ngspice may be able to answer a lot of clock tree, waveform, and

termination questions without needing to include the other 97% of the minicomputer

in those models.

Another wavelength that my simulation does not see is radiofrequency interfer-

ence. Perhaps established design heuristics for power, shielding, conformance testing,

bypassing, and filtering can adequately treat the RFI risk. Construction and testing

may help with some answers, but the simulation as it presently exists will not help.

5Contact with the manufacturer established that the 2Mi variance is not a typographic error.

332

12

Opposing viewpoints

The research of this dissertation, relating to both solder-defined minicomputers and

the excursion topic of fast SRAM-derived multipliers, confesses an audacious depar-

ture from mainstream computing literature and practice. Regrettably but unsurpris-

ingly, the more original a technically sound proposition is, the more opposition it

faces to survive or propagate. This is not a new problem for science, and I have seen

careers haunted by it. The maxim attributed to Louis Agassiz is not so remarkable

because it may have been said [Eddy1889], but for being so popularly requoted for

more than a century:

Every great scientific truth goes through three stages. First, people say

it conflicts with the Bible. Next, they say it has been discovered before.

Lastly, they say they have always believed it.

Other than what people accept as their canon, nothing has changed. As of

November 2022, four leading journals have rejected papers I have written describing

this work. Two of the journals reviewed a short paper about SRAM ALUs, and the

other two reviewed a paper that is now chapter 10 of this dissertation. Additionally,

a prominent organization that exists to support fundamental research has declined to

fund a proposal that I was invited to submit after a preliminary screening.

Among the most rigorous obstacles faced by many researchers is the imposition of

mandatory page limits for journal and conference papers. I treasure succinctness, but

333

some discoveries are of such complexity, novelty, and/or utility as to overwhelm the

reviewers’ available time for many journals and possibly most conferences, and page

limits are perceived to be the solution. Of the five times my work was rejected, three

had reviewers take a position that I had not included enough supporting material,

explanation, or context, notwithstanding their editor’s promise to reject the work

without review had I offered more.

Even without the pressure page limits place on reviewers to reject papers, review-

ers intuitively feel discomfort when technical arguments appear to defy established

practices. The legal tradition of stare decisis has a brother or sister in computer sci-

ence somewhere. In my experience this has been more of an issue with journals, where

my win-lose record is 0–4, than for conferences, where my record is 4–0, notwithstand-

ing that my four conference topics were similarly unconventional. Unfortunately, the

conference option is ill-suited for more than I presented in [Abel21], on account of

the anemic length limits advertised by most conferences. Other investigators such

as [Ousterhout21] have made similar observations and proposed changes.

For one of the five rejections, what I sent did not reach the reviewers at all,

but came back with an X in the out-of-scope box as its only feedback. I should have

challenged that gatekeeper, while I had an opportunity to do so privately, with a copy

of the scope that was claimed and asked for justification.

Because no architecture is separable from the communities it may serve, the

anonymous reviewer comments are an essential part of what is presently known about

this new technology. The following are word-for-word excerpts from their feedback.

To maintain impartiality in presentation, their order was randomized by running them

through shuf exactly once without further alteration.

334

• The writing style and structure of the paper should be significantly improved

to meet the standards of an academic publication.

• There is not any experimental results.

• The market opportunity is not clear and the proposal does not discuss potential

market size.

• The basic concepts in the paper are well known. Only the scenario of building

a processor using SRAM brings some novelty. I am not sure that this paper is

of much interest for many readers.

• There is no evidence to support claims such as “an emerging concern for VLSI is

that complex ICs may be subject to design defects or backdoors, and measures

for inspection and audit of these chips are neither practical nor supported by

manufacturers.”

• While it may be counterintuitive to provide motivation for solder-defined archi-

tectures in a paper that is fundamentally about multiplication techniques, it is

necessary when there are no previous works that provide this motivation instead

(e.g., the future paper concept of a “general introduction to or survey of the

surrounding security landscape” mentioned in the rebuttal does not exist yet)

and this motivation is used to support the sole improvement of this work over

traditional circuits (i.e., reliability). For comparison, when in-memory comput-

ing was first becoming popular several years ago, a significant portion of any

work in the field was devoted to motivation; nowadays, after the motivation

for in-memory computing has been clearly established in many previous works,

it is possible to publish algorithmic works (e.g., on in-memory multiplication)

without the need to extensively explain the motivation of in-memory comput-

ing by simply providing citations instead. Therefore, my recommendation is to

either strengthen the motivation section of this work to also include the validity

335

of solder-defined architectures, or to release that motivation separately (e.g.,

in an arXiv version of the aforementioned future paper concept) and then to

reference it in this work.

• With additional work, this paper may indeed be on-track to becoming a strong

academic publication.

• This project is about developing a new computer architecture that is simpler

and more secure. However, it is not clear that it will be powerful enough to

support a wide range of applications.

• Is the paper technically sound? No.

• I can understand that this paper is the first to propose an inexpensive (fitting

within one circuit board) means of building multipliers without reliance on

ASICs, microprocessors, FPGAs, or PLDs. However, I still think the author

could compare with the related work, such as discrete component multipliers

and VLSI multipliers, to better highlight the proposed work. Exact comparisons

can be difficult and allow for some estimation.

• No IP has been filed yet to protect the sustainable competitive advantage.

• Whereas the concept of building a microprocessor using SRAM is interesting,

I do not think that the implementation of individual components deserve to

make it into a journal paper.

• The revised paper presents interesting and novel techniques for constructing

multipliers from SRAM arrays, yet remains insufficient in establishing motiva-

tion and results.

• The paper lacks comparison with other related works. Could the author provide

a table that shows the comparison with other works?

336

• The contribution of this paper is interesting but quite modest. It is well known

that large products can be computed by combining smaller products. It’s also

known that some computations can be pre-calculated and stored into address-

able memory. Actually, that’s how FPGAs work.

• The whole ecosystem needs to be changed which makes adoption very difficult.

• The structure of this paper needs some improvement. This paper focuses on

the description of the proposed design but lacks test or simulation results.

• Under the presumption that solder-defined architectures are well-motivated,

there still remains several aspects of the evaluation that can be strengthened.

Essentially, the proposed work could be compared to several other approaches

to reliable multiplication (see below). Ideally, “reliability” could be quantified

for a numeric comparison between all of the approaches; as this is likely not

possible, then qualitative explanations should be provided at the very least.

• There are many statements in his manuscript that can be shortened.

• The author proposes carry-save and carry-skip two techniques. Could the au-

thors discuss how much performance can be improved with these two tech-

niques?

• In Section III C: “The cost to accommodate mixed signage is negligible, but

many CPUs overlook it.” I think many CPUs overlook it because it is not

needed. In a multiplication process, the system is either unsigned or signed,

and mixed signage (one has sign and another is unsigned) is not required since

it is not necessary for the applications.

• The percentage of improvement in terms of latency, energy can be added in the

abstract.

337

• It was not clear how users can write/migrate programs to execute on this new

architecture.

• Building hierarchical parallel multipliers is not new.

• The most significant problem with this work is the lack of motivation on the

need for an “open-source multiprocessor.” The motivation is discussed in Section

I, yet there are barely any citations (with citation [2] also being unspecified)

and the claims are not reassuring.

• The technical discussion only includes a map of how a general CPU may be

architected. A lot of key details are missing.

• [X] Submission is deemed outside of [acronym]’s topical scope.

• The exact technical discussion is not clear. Various components were omitted

from Figure 1 to illustrate the whole process.

• The problem of trusting a computing platform is well known, and I propose as

an example that Intel-designed 80286 processors are still in use in most civil

aircraft as the cost of certifying a more modern microprocessor is too high.

This is in my opinion the solution to the problem put forth by the author: if

we cannot trust a modern microprocessor, it would make more sense to rely on

a simpler design manufactured using old processes. Can the author refute this

argument?

• It appears that the performance of such a “minicomputer” will be drastically

worse than existing processors. Therefore, the author needs to clearly establish

two points: (1) the flaws in existing processors, and (2) why the proposed

SRAM-based architecture is not subject to these flaws (why can’t manufacturers

conceal “backdoors” in SRAM?).

338

• The feasibility of ALU component of the idea has only been shown in simula-

tions. No prototype has been built despite prototype is easy to build and is

based on inexpensive electronic components.

• Market penetration is very difficult in this domain. It was not clear who the

customers.

• The evaluation of the proposed multiplier is highly lacking, and should include a

comparison to alternative solutions. For example, how would the proposed mul-

tiplier compare to a VLSI circuit that consists of a single multiplier? Wouldn’t

an isolated VLSI circuit that only performs multiplication not have “backdoors”

since it is not complex enough?

• I agree with the author that asking to provide new references in a topic that

went out of fashion decades ago is really unfair.

• The main contributions of this paper are: how the author deals with mixed

signage, and compressing the partial products. Whereas this is interesting on

its own, I do not think it has the required merit for a journal paper.

• This project tackles an important problem, however the proposed approach

lacks details about the exact innovation, its business model and adoption.

• Does the paper contribute to the body of knowledge? No.

• Since the author is proposing a “novel computation with memory,” the author

should discuss that in his manuscript and compare and contrast it with the

famous “computation in memory” by citing the two suggested references and

other related references with the latest publication dates.

• The author’s motivation for using SRAM as a multiplier is not very clear.

• Comparison of the proposed method with state-of-art is missing. Authors may

339

compare their work with the existing works in terms of latency and energy.

• The references cited clearly explain the author’s justification. However, most

of them are old and from the past years. Could the author discuss more up to

date papers which are comparable to his claim?

• Since the validity of solder-defined architectures has not yet been clearly es-

tablished, then it is difficult to overlook the drastic performance decrease in

multiplication throughput compared to existing architectures. The difference

between the 10 million multiplications per second provided in this paper and the

10+ trillion multiplications per second present in modern GPUs/TPUs/etc.. is

over *six* orders of magnitude apart; this drastic gap is only countered by the

unsupported assertion that solder-defined architectures are more reliable than

traditional hardware.

• Are the references provided applicable and sufficient? No.

• Section III does not present any new information or ideas interesting for readers

of computer arithmetic.

• The hardware components are very simplistic. For example, the ALU is too

simple and inefficient, and the CPU does not provide support for powerful and

flexible program constructs, e.g., stack, cache, pointer to function, etc. While

they can be more secure, they can support very limited set of use cases.

• The claim that computers can be made in the suggested way is difficult to

defend because of the large cost, complexity, power consumption, and added

likelihood of hardware failure as the number of discrete component increases.

340

13

Findings, motivation, significance

13.1 Major findings to date

Chapter 1, Overview, describes VLSI irregularities that can lead to exploitable de-

fects, and categorizes the irregularities according to how they intersect with designer

intent. The chapter notes that maliciously introduced defects in microprocessors,

FPGAs, PLDs, ASICs, and other complex logic may not be avoidable without for-

going all use of these components. Due to differences in agenda, there may be dis-

agreements between manufacturers and buyers as to whether a specific behavior is a

benefit or a defect. Lists of criteria for acceptable computers, CPUs, and their sup-

ply chains are proposed, and a project is inaugurated to construct a computer that

satisfies the lists without the use of any microprocessor, FPGA, PLD, or ASIC. An

understanding is established that although such a computer would only be practical

for certain applications, there are enough use opportunities to justify this research.

Chapter 2, Definitions, does not have any narrative, but strongly implies a need

for new terminology for computers that do not contain microprocessors, FPGAs,

PLDs, ASICs, etc. New terms are proposed in response to this need such as complex

logic, discounted logic, internal firewall, maker-scale assembly tools, minicomputer,

solder-defined behavior, solder-defined hardware, and supply-chain firewall.

Chapter 3, Components, establishes that any practical general-purpose digital

341

computer will have to employ VLSI RAM. A case is presented that VLSI SRAM

ICs are unlikely to contain exploitable defects today, and it will not be practical to

maliciously introduce and exploit such defects in the near term. After considering

alternative logic families, a proposal is advanced that the best option for building

solder-defined minicomputers would be to construct all logic solely from VLSI SRAM

and trivial glue logic ICs. The chapter shows that only a limited selection of fast glue

logic components is available, and suggests circuits for needs that present commercial

ICs do not directly support.

Chapter 4, Logic blocks for SRAM ALUs, examines the effect of using SRAM

in logic design, and introduces new circuits for addition, rearrangement of subwords

(swizzling), rotation, shifting, and fast multiplication. (Simple lookup tables and

substitution-permutation networks based on SRAM are also described, but they are

not new.)

Chapter 5, Three-layer ALU structure, shows the existence of a natural super-

position for SRAM carry-skip adders, swizzlers, logarithmic shifts, and substitution-

permutation networks that can be used to construct robust SRAM ALUs. The nature

of this superposition and capacities of prevalent SRAM ICs suggest strongly that the

register width of an SRAM minicomputer should be 36 bits.

Chapter 6, Two-layer ALU structure, describes small SRAM ALUs for controllers

and other devices that can get by with less speed and/or a smaller word size.

Chapter 7, A three-layer, 36-bit ALU firmware, demonstrates that the set of

opcodes implemented by a three-layer SRAM ALU can be highly robust, flexible, and

competitive with other logic families. An open-source reference firmware has been

released to encourage the use of already-proven features, performance, usefulness, and

security in future implementations.

Chapter 8, A solder-defined CPU with protected memory, describes a robust

SRAM CPU and protected memory subsystem that fits on a circuit board smaller

than the dimensions of this page. Most functionality has been confirmed in electrical

342

simulations to work, with the remaining portions anticipated to be work by the time

you read this. A worst-scenario CPU speed of 16 MIPS appears to be easily reachable,

and 20 MIPS has not been ruled out as of November 2022.

Chapter 9, Forthcoming subsystems, argues that the missing subsystems of the

chapter 8 minicomputer—preemptive multitasking, firmware loading, and I/O—will

also be constructable using solder-defined logic and be useful in their implementations.

General descriptions are given of the anticipated designs for these subsystems.

Chapter 10, Fast parallel multipliers, introduces a new general theory for SRAM

multipliers, their sections, and their performance. This knowledge is new, because

SRAMmultipliers differ architecturally from multipliers built from basic gates. SRAM

designs are aided by offset-binary representations of signed subproduct terms, by gen-

eralizing carry-skip addition to accept more than two addends, and by integrating

carry-skip addition of subproducts simultaneously with carry-save addition. Arbi-

trarily large factors can be multiplied quickly using hierarchical carry-skip methods,

although component counts will be correspondingly high. Tables of component and

clock cycle counts for SRAM multipliers of anticipated word sizes are presented. Man-

ual design of SRAM multipliers is exceedingly tedious; therefore, an open-source tool

has been released for generating and verifying efficient designs.

Chapter 11, Minicomputer implementation, presents the publicly released imple-

mentation of the minicomputer thus far [Abel22b]. The dataset includes the firmware

for the ALU and other portions of the CPU, assembler for writing programs, virtual

machine for testing programs, netlist for the components and their interconnections,

software for processing the netlist, and discrete event simulation software that can

verify connections, wired logic, firmware, assembler programs, and signal timing as

the minicomputer is emulated. The completeness and transparency of the implemen-

tation dataset and its documentation throughout this dissertation, in conjunction

with the Creative Commons Attribution 4.0 International License they are available

under, establish that the architecture of this dissertation is fully open.

343

Chapter 12, Opposing viewpoints, explores some of the skepticism, reluctance,

and other barriers the proposed architecture will encounter along its path to deploy-

ment, standardization, and acceptance.

13.2 Motivation for this work

Although I enjoy designing computer architectures, I do not consider this to be my

native field of research. When I came to Wright State University, I had a thought

to focus on communication privacy, and I had a special interest in communication

metadata privacy, because who and when one associates with is at least as revealing

as what is being said between the parties. Metadata privacy touches on the founda-

tion of republics in civil rights that are supported by the rule of law, the stability of

economies around the world, and the intimacy that should be honored—but is sick-

eningly violated—between close family or friends who are separated geographically.

So as a research computer scientist, it has been my mission to invent technologies for

defending civil rights in the face of dystopian threats.

From early years, I began to read James Bamford’s series of extremely dark

nonfiction books [Bamford82, Bamford01, Bamford04, Bamford08]. They purport to

be about the NSA, but I view them more as a cautionary tale of the opportunities

for calamity that come when any eavesdropper is given unlimited computing power,

unlimited network access, unlimited funding, or unlimited legal authority.

As an example of the power of metadata, consider the possibility that Bamford

wrote a fifth book in his series, a book that was never published and that goes

unmentioned online. We would have no knowledge as to the contents of this book,

but metadata about that book may indicate the book’s title or general subject, as

well as identify some of the persons involved in its writing, reviewing, and attempted

publication. Indeed, this is exactly what happened in 1995, when [Bamford95] was

either rejected, withdrawn, or suppressed from publication.

344

History books such as Bamford’s, technical books such as [Schneier96], a rule-

making fiasco known as Clipper, and other events in the news made me a cryptography

skeptic while I was still in my twenties. This was also a period when the cost to store

data imploded to nearly zero, suggesting to me that traditional cryptography could

be supplanted by one-time pads for certain uses, even as all “respectable” literature

seemed to advise against them. When I arrived at Wright State the same semester

as Junjie Zhang in the fall of 2012, he instructed his Computer and Network Security

pupils to do a project and write a “conference-style paper.” My paper was about

mechanisms for on-demand distribution of one-time pads within a large user commu-

nity. By having each user share a large one-time pad with a central hub, the hub

could be requested to consume that one-time pad in order to distribute new one-time

pads to user pairs as they need to communicate.

Because this was a class assignment and I had just started in the Ph.D. program,

my paper’s style and tone (and perhaps contribution) weren’t ready to submit to a

real conference, and the paper was a little long. But I defensively posted the work

to arXiv so that no one else could set progress back twenty years by patenting the

mechanism [Abel12]. And in this paper, I wrote ten columns about the myriad

challenges of securing the machines at the endpoints of one-time pad links—because

such endpoints are the sole location where a break in the encryption itself can happen.

Most of these challenges were a direct outcome of the “enlightened” features we teach

in operating system or computer architecture courses, features that leave key material

in places seldom thought of. But some of the challenges were in the hardware itself,

and I cited the critical role played by the CPU and other VLSI in handling sensitive

information.

On July 4, 2014, I published Clique, a network protocol for metadata privacy for

short messages, with a reference implementation written in C (and manpages written

in troff) [Abel14a]. Clique works by arranging all protocol users into a global (as

in planetwide) connected graph, where everyone sends UDP packets to everyone on

345

a fixed schedule, irrespective of who knows who to begin with. The protocol requires

that all packets be encrypted so as to be indistinguishable from independent and

identically distributed octet sequences. Every listener attempts to decrypt every

packet received with every key the listener has on hand, and those packets that

decrypt to plaintext are the ones where actual communication is happening. From

the perspective of an eavesdropper with unlimited network access, Clique works by

flipping the problem of determining who is talking to who to the much harder problem

of determining who is listening to who.

Here again with Clique, I found that the design of the endpoint hardware itself

was a critical factor if Clique were to be effective. In the platform notes of Clique’s

manpage, I noted:

The Clique protocol is only as secure as its communicating endpoints,

inclusive of hardware and operating system flaws. In today’s environment

of faithless routers, CPU “management engines” that cannot be disabled,

wide-open memory mapped I/O, automatic updates for software (whether

closed-source or open-), and an abundance of money for bribes, endpoint

security is about as tight as the border between Missouri and Kansas.

My first conference paper relating to the subject of this dissertation also ap-

peared in 2014. It related to a central problem of Clique, which was bandwidth.

When setting up a Clique endpoint, the owner must decide how much bandwidth to

permanently allocate to Clique. For instance, perhaps 57 600 bits per second out of

an inexpensive broadband connection can be afforded for Clique traffic. If the global

clique has 10 000 users, then the 57 600 bits will have to be distributed to 9 999 other

endpoints, making the throughput to any endpoint 5.7606 bits per second. Clique

allows each endpoint to decide (and stick with) its own packet size, but the documen-

tation recommends everyone choose 576 octets so that groups of similarly-configured

endpoints do not stand out. The endpoint will have enough bandwidth to send one

346

packet to each Clique host every 800 seconds, or 41
2 packets per hour. After protocol

and cryptographic overhead, each packet can hold 532 octets of chitchat.

So my conference paper [Abel14b] looked at the following question. Compression

algorithms that appeared over the years were increasingly well optimized for ever-

larger files to compress: gzip was good for small stuff, bzip2 for larger, xz for

immense. How can the most compression be gotten for 532 octets? Because a single

byte more would delay a transmission more than 13 minutes. And if the clique had

1 000 000 users instead of 10 000, the added delay for one byte would exceed 22 hours.

So every byte counts with Clique, and my paper describes a preset dictionary scheme

that could pack dozens of bytes beyond what plain gzip could do. (bzip2 and xz

have too much overhead for short datagrams.) But I knew before publication that the

whole premise of [Abel14b] depended on hardware security, and that without that,

my proposals to improve metadata privacy were not going to amount to much.

My second conference paper that motivated this dissertation’s research appeared

a year later [Abel15]. This paper was about the metadata privacy of one-time pads

in the presence of jamming. I wrote:

OTPs also have non-intuitive bottlenecks in CPU, RAM, disk I/O, and key

material consumption, particularly when OTPs protect their own commu-

nication metadata (such as the volume of information exchanged) in the

presence of random packet injection attacks, link failures, and endpoint

outages. This paper explains how these problems arise and presents a set

of countermeasures that treats them effectively and scalably.

In that paper also, I was very conscious of the risk hardware security posed to

all that I was discovering, and I projected:

As correctly implemented one-time pads have no other vulnerabilities,

the communication endpoint becomes the lightning rod for all attack sce-

narios. We expect that before long, most one-time pad research will be

347

centered around endpoint security

After I founded Wakefield Cybersecurity in 2018, I traveled with and recorded a

talk where I explain what I believe the central problems to be with that day’s leading

cybersecurity practices [Abel18]. And at the end of my talk, I brought up hardware

security yet again, and I talked a little about an idea I had mulled for several years.

What if building CPUs could skip the VLSI foundry entirely? I argued:

One technology we could use right now at medium cost, say $2 000 to

$20 000 per CPU, is to assemble processors directly out of surface-mount

transistors, placing and soldering them onto custom boards with relatively

inexpensive robots. The traces on the boards are large enough to audit,

and you can make a 32-bit processor like the original ARM CPU out of just

25 000 transistors. You might think that’s a lot of transistors, but they’re

a lot only in number. Some of today’s surface-mount transistors are so

small that you can scoop 25 000 of them up in a single teaspoon. Because

of low semiconductor prices and the automation we have available, it’s

less expensive today to make computers out of individual transistors than

at any time in history.

From that time, my thought kept coming back to becoming the architect of just

such a machine. Along the way, I read all I could about the experiences others had

building their own CPUs without microprocessors. The compilation in [Toomey17]

is exciting, not just because of the retro-ness and spunk of the hobbyists, but also

informative as to their mistakes, tendency to sometimes think too much alike, and

lack of use potential beyond entertainment and personal accomplishment.

I couldn’t help but notice the lovely relay computers that rose out of untold

hours of solo effort and meticulous workmanship, computers with very few registers

and no appreciable primary storage at all. Their only salvation would be SRAM

ICs—forbidden, hypocritical components that would undermine the very purpose of

348

these modern museum pieces. I also hung around with the retro computers I had

purchased before they were retro, including my HP-41CX, my TRS-80 Model 100,

and I added two sorobans and a Tandy 102. I bought some chips and expanded my

Model 100, which I bought in 1985, from 8 Kibyte to 32 Kibyte. But I felt a little

regret afterward, like I had somehow turned my back on my past and the truth of

what it actually was. And as I I played anew with my toy from three decades before,

feeling how wonderful its keyboard mechanism worked and thinking about what I

could use it for today, it came to me that available RAM was going to be a limiting

factor. And although there are kits for attaching large storage to that computer now,

their use would further separate me from what I once had. And I thought again of the

new computer I might build with those 30 000 transistors. It would not be enough.

It would have to have static RAM ICs.

Around 2019, I started taking a fresh look at what components I could and

couldn’t use in designing an open, secure computer architecture that did not require

a semiconductor foundry, or a lot of trust in one. This is about where chapter 3

continues my story, and I started puzzling over my project in roughly the order of

the remaining chapters.

I soon had a first draft of my dissertation topic proposal, but not an advisor yet in

our department. To make sure the its contributions would pass into the public domain

instead of a patent troll office, I posted its 128 pages on the Wakefield Cybersecurity

website on April 11, 2020.

A better repository for preservation would have been arXiv again. Over-moderation

had already kept me from publishing my Clique preprint, which has never been made

public. Their requirement to find a new recommender every single time one of their

subject boundaries gets crossed proved to be too much red tape. Another defen-

sive publication, a short white paper about SRAM multipliers, also didn’t make it

through arXiv moderation and was never posted elsewhere. The moderator thought

my write-up was too succinct for academia. So the Wakefield website served as my

349

personal IBM Technical Disclosure Bulletin from the first topic proposal draft until

I discovered Harvard Dataverse. In the meantime, arXiv continues to miss out on

preprints in every discipline, even while it facilitates amazing progress in these exact

same disciplines [Garisto22, vandenHuevel15].

I introduced myself to Travis Doom by email during 2020, and he kindly accepted

one of the stray ghosts of our department under his wing. After revising and defending

my topic proposal, I got back to work. My next conference paper, and last successful

peer-reviewed publication to date, appeared in [Abel21]. It was a reincarnation and

extension of the arithmetic logic unit that two journals rejected (chapter 12 has that

story), and it now had the entire minicomputer as its topic.

In 2022, I uploaded the implementation for my architecture as it exists thus far

into Harvard Dataverse [Abel22b], under the terms of a liberal open-source license. I

believe this is where the serious peer review process begins as it applies to my work.

For open software and open hardware, the relevant literature is the body of code

that is shared, downloaded, contributed to, deployed, and forked. This is a mixed

blessing. On one hand, the community does not wait for conferences and journals

to approve or curate their efforts. On the other hand, its platform for disseminating

new information, if such a platform exists at all, is very decentralized. There are

a lot of routes to a project becoming known and finding establishment, but there

is no instruction manual for seeking either. Also in 2022, I uploaded software for

automating the design of parallel SRAM multipliers for arbitrary combinations of

word size and signage, also in Harvard Dataverse [Abel22a].

13.3 Security advantages of the architecture

Open hardware and open firmware for running open software

I have read many forum posts where users complain that some portion of a controller’s

firmware is closed-source, inaccessible to the owner, and/or encrypted. All firmware

350

connected with this dissertation is completely open-source, accessible to those who

install it, and nothing is encrypted. Even the S-boxes for the ALU’s substitution-

permutation networks are fully derived using a transparent algorithm. The minicom-

puter owner has absolute and final authority over every bit of the firmware, and the

purpose of every bit is explained in the documentation.

The openness of the architecture’s firmware extends also to its electrical design

and implementation. Its only secrets are the die-level design of discounted logic ICs—

synchronous static RAMs and basic glue logic—with clear interface definitions and

publicly available datasheets. There are no secret functionalities in the architecture;

no vendor lock-in; no encrypted or closed-source firmware; no license fees to build, use,

or modify; no purpose of use limitations; no patents on any technology originating

from me; and no infringements on the owner’s right to repair the computer.

The hardware is visually and electrically inspectable after manufacture and pur-

chase. The firmware is easily accessible, using appropriate tools, on the serial flash

memory for verification and change management.

Security perimeter for solder-defined logic

A security perimeter surrounds the CPU, memory subsystem, firmware loader, and

I/O subsystem, inside which there are no purchased complex logic such as micropro-

cessors, FPGAs, PLDs, or ASICs. The only points where this perimeter is crossed

are the individual serial buses between the I/O controller and peripherals, with no

serial bus attaching to more than one peripheral. The boundaries at these serial buses

form an internal firewall, such that any peripheral’s defects that may be exploitable

cannot propagate into other parts of the system.

Some peripherals, such as mass storage, are not available as solder-defined sub-

systems. The operating system should use encryption mechanisms within the CPU

that are designed to prevent, for example, a rogue disk controller from reading or

modifying programs contained on its disk. This protection can be at low compu-

351

tational cost on account of the MIX and XIM opcodes. Encryption keys would be

installed by the firmware loader from the serial flash memory IC. These keys need

only be kept secret from the peripherals they defend against.

Memory hygiene for hardware

The architecture is intrinsically immune to certain memory exploits. A complete

absence of DRAM eliminates the RowHammer class of leaky-capacitor exploits, and

may also reduce susceptibility to radiation upsets. Absence of cache memory and

speculative execution also rules out Spectre- and Meltdown-type attacks and reduces

the range of side channel attacks that may be possible.

The firmware as written has no opcode that can result in data exchange between

the stack and registers. Figure 8.6 does not suggest firmware modifications that could

read data from the stack, short of having to pass through the code RAM. There are

two electrical routes to write to stack memory, which would require complicit firmware

using an elaborate control decoder scheme. The shorter route passes through via ff

a, ff t, and ff c.

In the presence of well-behaved firmware, the only access to stack memory is via

the CALL, RETURN, and privileged CALI instructions. No privilege escalation can result

from stack overflow, and there is no possibility for stack underflow by programs that

the program loader initializes correctly.

It is not possible to branch to locations in code memory that are not already

present in a branch instruction in code memory. This allows exclusive ownership

of portions of code memory by various users, along with arbitrary sharing of code

memory as may be supported and permitted by the operating system.

Unprivileged users employ paged virtual memory for data segregation.

The I/O controller’s buffer memory and finite state machine memory will be

electrically segregated on a per-serial-bus (meaning per-peripheral) basis.

Although memory hygiene for software is a hot topic today [NSA22], my archi-

352

tecture offers nothing new in this domain. I generally think that memory hygiene

within a program is a long-solved problem for well-written applications.

Control of the CPU

All nonprivileged CPU opcodes are such that they cannot cause privilege escalation

on their own. They would need a complicit human, operating system, or control

decoder RAM to do this. Of these three routes, the control decoder RAM is easiest

to defend against—its firmware is tiny—and a complicit human is the most difficult

to defend against.

The minicomputer contains no persistent state within the security perimeter

except for the firmware’s serial flash memory, which the CPU does not have write

access to.

Arithmetic

The ALU has effective means for detecting out-of-range conditions for addition, sub-

traction, multiplication, arithmetic shifts, and absolute value. These means can look

back to the last time the R(ange) flag was cleared, therefore permitting long compu-

tation sequences to run without overhead to check for out-of-range conditions. These

arithmetic improvements can help redeem out-of-favor programming languages such

as C and assembler, which current arithmetic hygiene expectations for traditional

architectures have made unsuitable for secure programming.

Why tamper resistance is out of scope

Some vendors and some cybersecurity practitioners will attack this architecture on

the pretext that it is not tamper-resistant. This would be a valid complaint for

electronics that safeguard a physical asset against on-site compromises, such as locks

to prevent a handgun from firing, a missile from detonating, or a bank card from

exposing a private key. The complaint may also be valid for small personal platforms

353

that could be stolen, such as smartphones. But for much tangible personal property

such as desktop computers in homes and offices, routers in network closets, industrial

controllers, and farm machinery, the presence of on-location, technically sophisticated

adversaries is perhaps not the top threat of 2022. More likely, the probable adversaries

will be the equipment manufacturers or part suppliers themselves, governments of the

jurisdictions where the equipment is used, or international criminals.

Buyers who require tamper resistance for this architecture are at liberty to add it,

subject to their weight, size, and cost budgets, using physical barriers and surveillance

that are suitable for their needs. But technological security controls have both active

and passive failures, and in the case of tamper resistance, an active failure infringes

on the buyer’s rights.

13.4 Drawbacks of the architecture

The architecture of this dissertation is compatible with nothing that exists on the

planet. This is by design—one could say there is something rather backward about

backward compatibility. But freedom from past baggage comes at the cost of needing

new. New operating systems, new toolchains, new software, new training, and new

documentation for all of it. No one familiar with this architecture is available to hire

for help.

Use cases and ease of deployment will be constrained by the size of available

SRAM ICs. A fully-loaded circuit board for the present netlist offers 4 Mi and 8 Mi

words of code and data memory respectively, equivalent to 54 Mibytes. Should the

architecture drive enough demand for larger SRAM ICs, foundries have the technical

ability to increase SRAM density and the financial margins to lower SRAM prices.

The peculiar security restrictions of the architecture, such as no data storage on

the stack, no pointers to code memory, new features for arithmetic overflow handling,

and small memory sizes make the architecture unlikely to ever run Linux, GCC, Clang,

354

or other prominent megaprograms. This is not entirely bad, but any functionality

that developers or system administrators need will have to be created. I hope that

this time around, consideration will be given to the size, reliability, longevity, and

auditability of the new software and libraries.

In addition to the drawback of limited memory, CPU speeds in excess of 20 MIPS

are not on the near-term horizon for this architecture, and speeds for early systems

could be as low as 16 MIPS. Peripheral support will be limited to SPI and I2C bus

devices indefinitely, and I/O bandwidth will be on the low side. (I/O bandwidth may

be of small concern, considering there is not much memory in the machine to transfer

in the first place.)

The physical size, cost per unit, and energy consumption of this minicomputer

will be larger than many alternatives.

I have saved what I regard to be the greatest drawback of solder-defined architec-

tures to note last. The ecological footprint of these devices is comparatively terrible,

whether one is considering carbon added to the oceans, conflict minerals, power to

operate, hazardous waste, foundry diversion to produce more SRAM ICs, freight,

reflow ovens and tools purchased to build a single computer, or other measures of

consumption. There may be balancing ecological benefits to consider such as long

product life, lack of imposed obsolescence, and losses averted by securing vital assets

using this architecture. Might a nuclear reactor meltdown be prevented? Or even a

war? I am not an actuary and cannot ethically make any claims, other than it takes

more resources to build a solder-defined minicomputer than to build a traditional

computer that—while not under attack—can do similar tasks.

13.5 Significance of this work

The security problems with today’s silicon derive from root causes external to the

hardware itself. We can talk about speculative execution, pipelines, cache misses, mal-

355

formed input, unstable memory schemes, corrupt stacks, arithmetic overflow, dopant-

level trojans, closed-source microcode, open system buses, proprietary firmware, coun-

terfeit accessories, and privilege escalation. These technical opportunities super-

pose with the human circumstances of globalization, divergent interests, addiction

to power, situational ethics, and economic inequality. But I believe the root problem

with our CPUs is that they are designed, assembled, and distributed without input

from the community that uses them. If we hope to find solutions for our security

concerns, a thoughtful look in a mirror may be a promising start.

A parallel malady has long existed in the software supply chain: software compa-

nies have been writing software for the purpose of selling it, rather than out of their

own need to have or use their wares. The symptoms are all too familiar: needless

changes and revisions made to already deployed software, premature end of sup-

port for widely used systems, easily foreseen vulnerabilities, cloud-based licensing,

and subscription-only availability. In many domains, the open-source software move-

ment has afforded relief for some users, although the scale of available software is

overwhelming the maintainers who volunteer their time. For closed-source software,

much still needs to improve. I believe that on the whole, community-sourced software

has brought unprecedented freedom, security, and stability to a world of users, al-

though news reports have proven that this freedom, like any, isn’t free [Nichols22]. I

believe that a similar approach can be taken with computing machinery itself, offering

stability, security, and freedom instead of obsolescence, malfeasance, and monopolism.

This research measured the ability, with presently available components and

maker-scale assembly tools, to construct computers that are free of purchased com-

plex logic (microprocessors, FPGAs, PLDs, ASICs), proprietary hardware, closed-

source or otherwise inaccessible firmware, and manufacturer aftermarket interference.

I found a strong likelihood that a 36-bit, 16 MIPS minicomputer with protected mem-

ory, preemptive multitasking, and securely isolated I/O devices on SPI and I2C buses

can be built.

356

The components needed are reasonably fungible, although the highest CPU

speeds are only attainable through one manufacturer’s glue logic ICs. Manufacturer

substitution for SRAM ICs is permissible, although the IC carriers would change and

necessitate changes near their circuit board footprints. All components are available

for the industrial temperature range of −40 to +85 ℃.

The minicomputer can fit on one printed circuit board. Once a bare board has

been plotted and pressed, assembly is a straightforward soldering task with a reflow

oven or hot air tool. All components have leads and need only be mounted on one

side of the board. The assembled computer can be visually inspected and checked for

pin-to-pin connectivity at any time it is not in use.

For minicomputers that are protected from physical intrusions, the hardware and

firmware are intended to be free of security defects. Demonstrating this is true using

formal proofs would be an ambitious, constructive, and interesting task. The useful

lifetime of the machine is hoped to be at least the data retention of the firmware’s

serial flash memory, which is specified to be 20 years for the component presently

under consideration. The retention can be extended to 20 more years, or if necessary

restored, by rewriting the memory. Attached peripherals that are not solder-defined

would have their own service requirements and longevity specifications that should

not be ignored.

The cost to use an assembly facility will not exclude many builders. Some new

reflow ovens cost less than $300, and yet-smaller-scale soldering methods exist. Even

so, automated assembly lines with excellent controls can be hired at reasonable cost

and less aggravation than donated time using the cheapest tools.

An eighth-grader with a web browser and a debit card can build a minicomputer.

This is a great shift from historic norms, when computers were assembled using wire

wrap on boards plugged into backplanes in cabinets on raised floors. Although designs

shrank into fewer and fewer discrete packages to reduce assembly costs, assembly costs

also ultimately collapsed. The least expensive time in history to build computers “the

357

hard way”—assembled from separate packages outside of a semiconductor plant—is

today and tomorrow.

13.6 Future work and timeframe for availability

As I write in mid-November, I expect all features through chapter 8 to work correctly

in simulation before you read this. Under the assumption I can be funded to help with

the architecture full-time after graduation, the missing subsystems for preemptive

multitasking, firmware loading, and SPI and I2C bus would take perhaps three months

in total to specify and confirm by simulation. A fourth month should be allocated

to either manage clock skew effectively or rework the control unit, instruction cycle,

and decoder firmware to be immune to any foreseeable amount of skew.

These preconditions would allow layout, prototyping, and evaluation of a real

circuit board to begin by month five, with a planned goal of demonstrating a working

minicomputer before the end of 2023 that any qualified maker can replicate.

Unless some helpers come around, I do not expect to complete any significant

software in 2023 that could either run on or aid in writing software to run on the

minicomputer. I do expect that the design and simulation tools, including the assem-

bler, would grow to keep pace with the hardware that is being completed and tested.

I also believe that the architecture will be interesting enough that once makers can

assemble working machines without trial and error, lots of innovation will appear in

short time on the software side of the project.

358

A

Assembly language conventions

This appendix is taken from the assembler reference manual and describes some of

how the architecture’s assembly language is planned. Most of what is here has been

implemented, although some of the window dressing—particularly certain number

bases, underscores as group separators, register declaration after use, and help with

permutations—is not yet implemented as of October 2022. As the architecture gets

nearer to a fully programmable implementation, this documentation will expand to

keep up.

A.1 Source code character set
Assembly language programs are written in 7-bit ASCII. The only supported symbols
are 7 (tab), 10 (newline), and 32–126 (space through ~). In the future, the UTF-8
encoding may be permitted. No other encodings will be supported.

New readers may notice unconventional or bewildering uses for certain characters.
Table A.1 summarizes some of those uses.

A.2 Comments
Comments begin with a semicolon and extend to the end of the line. For example:

open_secret = 314159 ; ten thousand times pi

359

Table A.1: Peculiar uses for various ASCII characters.

Symbol Use See section
0–9 digits 0–9; identifier tails A.3, A.4
a–z identifiers; digits 10–35 A.4, A.3
A–Z identifiers; digits 36–61 A.4, A.3
@ $ digits 62 and 63 A.3
‘ numeral base if not 10 A.3
_ digit grouping; identifier tails A.3, A.4
. ’ identifier tails A.4
; single-line comments A.2
() enclosed comments A.2
< > type coercion A.7
- ranges in permutation notations A.8
tab same as space
newline end of statement

Those are called single-line comments, because they cannot span multiple lines.
Also supported are inline comments, which begin and end explicitly with parentheses.
An inline comment can span as many lines as desired and can be used to “comment
out” a bunch of code, or to provide space within a source file for documentation. No
parsing or syntax checking is done inside inline comments, although only the ASCII
symbols authorized by section A.1 should be used. For example:

x = (Dare I choose zero here?!?) 0

Inline comments do not nest. So how does one comment out a block of code or
documentation that contains parentheses itself? This is done using multiple consec-
utive parentheses. Inline comments don’t technically begin with the (character, but
with a series of one or more consecutive (characters. They end with an equal num-
ber of consecutive) characters. So ((and)) can enclose blocks that do not contain
exactly two consecutive right parentheses. Notably but perhaps less usefully, (and
) can enclose blocks that contain multiple consecutive left or right parentheses, but
not isolated ones. In any event, the runs of parentheses that begin and end inline
comments can be as long as available memory permits. For example:

diameter = 10
(((

The circumference is exactly pi times the diameter,
but this program does not use any floating point
(so pi is going to be 3).

)))
double_diameter = diameter + diameter
circumference = diameter + double_diameter

360

Inline comments can, of course, allow a line of source code to continue after the
closing parenthesis (-es). Inline comments can also be placed around newlines in order
to provide line continuations. For example:

a = b + (added to) c

twelve_hundred = (
) 1200

fixed_point_thirty_six_bit_approximation_of_pi_divided_by_four (
) = 110010_010000_111111_011010_101000_100010‘b

All comments, whether single-line or inline, behave as spaces in terms of the
assembly language syntax. So identifiers, numbers, symbols, etc. cannot be spliced
together through inline comments.

A.3 Numbers
A number is an integer numeric constant for the assembler. The basic format is a
single optional + or -, any number of optional leading zeros, a string of digits in radix
10 or some indicated radix between 1 and 64, and an optional radix specification.

Digits in radices up to 10 are the familiar 0 through 9. Radices between 11 and
64 use the lowercase letters, uppercase letters, and finally @ and $ to fill the necessary
digits through 63. To preclude surprises, case is always sensitive for digits, implying
that a–f are valid hexadecimal digits, but A–F are not.

The symbol ‘ is called a backtick and is used to introduce a radix other than
10. It’s ASCII character 96. Following the backtick is either a decimal integer in the
range 1–64 (with any number of optional leading zeros), or one of the letters u, b,
o, d, h, or t indicating bases 1, 2, 8, 10, 16, or 64 respectively. These letters stand
for unary, binary, octal, decimal, hexadecimal, and tetrasexagesimal or tribble. For
consistency, there is no x option to mean hexadecimal: that word doesn’t start with
x. Note that radix one is a unary number system, with all places having value one.

Here are a few ways of writing 19 other than the usual:

1110111100111110001111111‘1 0010011‘b +201‘3 19‘10 13‘h

To aid legibility of long numbers, the string of digits prior to the backtick may
contain any number of _ (underscores) in any position as grouping symbols. For ex-
ample, the largest 36-bit unsigned number may be written 68_719_476_735 instead
of 68719476735 to make it clear the magnitude is about 70 billion. Here are some
decimal numbers that are important to the assembler with their base 64 representa-
tions:

-34_359_738_368 -w00000‘t most negative 36-bit number
0 000000‘t zero

34_359_738_367 v$$$$$‘t most positive signed 36-bit number
68_719_476_735 $$$$$$‘t most positive unsigned 36-bit number

361

The base-36 digits are also used in permutation notations, along with hyphens
to abbreviate ranges. See also section A.8.

Every number in this book, as well as every number in assembly programs, is in
base 10 unless expressly stated otherwise. For convenience, a table of digit symbols
appears as table A.2.

Table A.2: Digits for bases up to 64.

0 0 8 08 g 16 o 24 w 32 E 40 M 48 U 56
1 1 9 09 h 17 p 25 x 33 F 41 N 49 V 57
2 2 a 10 i 18 q 26 y 34 G 42 O 50 W 58
3 3 b 11 j 19 r 27 z 35 H 43 P 51 X 59
4 4 c 12 k 20 s 28 A 36 I 44 Q 52 Y 60
5 5 d 13 l 21 t 29 B 37 J 45 R 53 Z 61
6 6 e 14 m 22 u 30 C 38 K 46 S 54 @ 62
7 7 f 15 n 23 v 31 D 39 L 47 T 55 $ 63

A.4 Identifiers
Identifiers are “words” used to refer to either registers or branch destinations. They
have no limit as to number of characters. They work much like variables and labels
do in other programming languages, except in the case of variables, they are always
register variables. Identifiers are case-sensitive, and the first character—the identifier
head—must be a letter. The remaining zero or more characters is the tail and may
contain letters, digits, underscores (ASCII 95), single quotes (39), and periods (46).

The rationale for allowing ’ is that often in code, some quantity or location
is expressed in terms of two sets of units or coordinate systems. The double quote
(ASCII 34) is reserved for other uses, so if you want two quotes in a register name, use
two single quotes. Underscores are permitted because they are traditional; however,
they cannot be the first character, or there would be ambiguity as to whether _1 refers
to a register name or the number one with a strange grouping indicator. Periods are
allowed in identifiers as a lightweight means of denoting composite “objects” with
more than one member. In actuality, they are distinct variables.

Here are some valid identifiers:

j pt.x pt.y F F’ F’’ e.2.71828 another_example r(adius)

The last example is a trick. The identifier is actually r, and the text (adius) is an
inline comment that the assembler disregards. This technique allows the programmer
to clarify what is meant when using a short name for convenience. Here’s a longer
example, where two variables are conferred advantages of both short and long names:

362

unsigned r(adius) d(iameter)
r = 10
d = r + r

A.5 Abbreviating keywords
A few frequently-used longer assembler keywords have been given abbreviations that
can be used as alternatives. All abbreviations end with a mandatory period. The
period is part of the token instead of a separator: whitespace is mandatory immedi-
ately after the period, but is illegal immediately before it. Table A.3 provides a list
of these abbreviations.

Table A.3: Keyword abbreviations.

c. call
j. jump
r. return
s. signed
u. unsigned

A.6 Declaring registers
Every running program is allocated 512 general-purpose registers, allowing a lot of
computing without needing to save or load registers to or from primary storage. All
registers have the same capability, so there is no need or provision to address them
by register number via the assembler. There is also no indirect register access; for
instance, a loop can’t be written to go through all of the registers.1

To allocate a register for a program, it has to be declared with a name and given
a default assumption as to whether arithmetic operations should treat it an unsigned
or signed quantity. If the register is not intended to store a quantity, it is suggested
to specify it as unsigned. To declare registers, simply use the signed or unsigned
keyword anywhere within the code where the register is used. It is not necessary for a
register to be declared “prior to use,” so long as the assembler can find the declaration
somewhere. The form is simply the signedness with as many names as desired. Do
not use any commas. Examples:

1Such a loop can be written using self-modifying code, which is only possible for privileged
programs.

363

unsigned five ten
signed ; any # of names, including zero, is allowed

five = 5
ten = 10
fifteen = five + ten
twenty = ten + ten ; ERROR: register "twenty" is not declared

signed fifteen ; okay to declare after use

A register’s signedness refers to whether it is unsigned or signed. So in the
example above, the signedness of five is said to be unsigned, and the signedness
of fifteen is signed. Don’t feel locked in by a particular signedness declaration.
Signedness actually applies to the operations being performed, not the physical reg-
ister itself. Section A.7 shows how to override a register’s declared signedness for a
specific need.

A.7 Overriding register signedness
A register’s signedness affects the range of numbers it can represent without infor-
mation loss. Through awareness of the signedness of their source and destination
registers, operations such as addition and arithmetic shift are able to set error flags
in the event of an out-of-range result.

Sometimes the signedness of a register that has been declared with the signed or
unsigned keyword may not represent the programmer’s intent under an exceptional
circumstance. To overcome this, <signed> and <unsigned> casts are provided. These
casts don’t actually affect registers, but instead alter the register type information
provided to operations like subtraction or assignment. For instance:

signed s
unsigned u z

z = 0 ; constant zero
s = -5 ; no problem
u = z - s ; no problem; u is now 5
u = s - z ; underflow; sets the T and R flags
u = z + s ; underflow; sets the T and R flags
u = <unsigned> s ; no problem; u is now 2**36 - 5
<signed> u = s ; no problem; u is now 2**36 - 5
s = u ; overflow; sets the T and R flags

A.8 Permutation notations
Permutations of tribbles are notated in a 6-digit shorthand. Each digit shows the
original position of each bit, numbered from the left starting with zero, in the per-

364

muted outcome. Thus if the permutation 234501 is applied to the tribble 010011‘b,
the result is 001101‘b.

Permutations of 36-bit words use the same notation. All 10 numerals and 26
lowercase letters are necessary. In assembler source code, the few places where 36-bit
permutations appear are written without spaces, quotation marks, or the ‘36 suffix.
Underscores are allowed in any position for legibility. Hyphens provide a shorthand for
contiguous ascending or descending ranges of bit positions. Here are some examples:

unsigned in transpose left_rev right_rev full_rev
; ...
transpose = in perm 06ciou_17djpv_28ekqw_39flrx_4agmsy_5bhntz
left_rev (reverse most significant bits) = in perm h-0i-z
right_rev (reverse least significant bits) = in perm 0-hz-i
full_rev (reverse all bits) = in perm z-0
; ...
transpose = 0 txor in

Note: The efficient way to transpose a word is to use the TXOR instruction,
because the PERM macro may expand to as many as five instructions. Using PERM
here to compute transpose is for documentation purposes only.

365

B

Instruction reference

This appendix is taken from the assembler reference manual and tabulates opcodes

and macros alphabetically by mnemonic. What these entries have in common is,

they all translate directly into machine-language instructions that are fetched from

program memory, decoded, and executed as a program runs. This appendix does

not list keywords like unsigned, casts like <wrap>, and other language features that

may control the assembler and affect program execution, but do not themselves emit

executable instructions into the object file.

This appendix and its subject matter are still being actively written and revised.

367

A Add
c = a + b

Register signedness Flag set if

Left unsigned or signed N a + b < 0
Right unsigned or signed Z a + b = 0
Dest. unsigned or signed T c cannot fit a + b

8 opcodes total R T is set or R is already set

This is the instruction for ordinary addition of 36-bit numbers. It does not have
a carry input or carry output. It is fully range-checked, so the T and R flags will
indicate when the sum does not fit in 36 bits.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit
signed quantities, which then are added to produce a 38-bit signed sum that will not
overflow. The N and Z flags are set based on the original 38-bit sum. The 36 least
significant bits of the sum are stored in the destination register, which may be signed
or unsigned. Flags T and R are set if the full sum does not fit, otherwise T is cleared
and R is left unchanged.

ABS Absolute value
c = abs b

Register signedness Flag set if

b signed N never; flag is cleared
c unsigned or signed Z b = 0

2 macros total T c cannot fit |b|
R T is set or R is already set

This is a builtin macro that expands to two CPU instructions. The absolute
value of b is written to c. This macro has full range checking: if b is −(235) and c
is signed, the result will not fit, and flags T and R will be set, and Z will be cleared
because the true result is not zero. Otherwise T is cleared, R is left unchanged, and
Z is set if the result is zero. N always is cleared.

If −(230) ≤ b < 230 can be guaranteed, FABS is a faster alternative to ABS.
ABS is not implemented for and will not assemble if b is unsigned.

368

AC Add with carry
c = a ++ b

Register signedness Flag set if

Left unsigned or signed N a + b + T < 0
Right unsigned or signed Z a + b + T = 0
Dest. unsigned or signed T c cannot fit a + b + T

8 opcodes total R T is set or R is already set

This is the final instruction for multiple-precision addition of integers larger than
36 bits. It uses the T flag as a carry input, but has no carry output. It is fully range-
checked, so the T and R flags will indicate when the multiple-precision sum does not
fit.

This instruction is preceded by AW for 72-bit addition, or by AWC for 108-bit and
larger addition. It is never preceded by A, because A conflicts for range checking.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit
signed quantities, which then are added along with the T flag to produce a 38-bit
signed sum that will not overflow. The N and Z flags are set based on the original
38-bit sum. The 36 least significant bits of the sum are stored in the destination
register, which may be signed or unsigned. Flags T and R are set if the full sum does
not fit, otherwise T is cleared and R is left unchanged.

AND AND
c = a & b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

AND sets the destination to the bitwise AND of its operands. N and Z are set as
if the destination is a signed register. T and R do not change.

369

ASL Arithmetic shift left
c = a asl cw

Register signedness Flag set if

a unsigned or signed N a < 0
cw ignored Z a = 0
c unsigned or signed T c cannot fit full result

4 opcodes total R T is set or R is already set

The 2-instruction PSL and ASL sequence enables safe, range-checked power-of-
two multiplication, despite its many signedness combinations and corner cases. ASL
multiplies left operand a by a non-negative power of two, and writes the product’s 36
least significant bits to destination c. If the full result does not fit in c without loss
of information, the T and R flags will be set, otherwise T is cleared and R does not
change.

The PSL instruction is used to convert the desired exponent of two into control
word cw. This exponent is clamped to a maximum of 36, and then copied into all
tribbles.

370

ASR Arithmetic shift right
c = a asr cw

Register signedness Flag set if

a unsigned or signed N a < 0
cw ignored Z a = 0
c unsigned or signed T c cannot fit full result

4 opcodes total R T is set or R is already set

The 2-instruction PSR and ASR sequence enables safe, range-checked division by
powers of two, despite its many signedness combinations and corner cases. ASR divides
left operand a by a non-negative power of two with rounding towards −∞, and writes
the quotient’s 36 least significant bits to destination c. If the rounded quotient does
not fit in c without loss of information, the T and R flags will be set, otherwise T is
cleared and R does not change.

Note that because of the rounding towards −∞, ASR is not (for most purposes)
a stand-alone means for dividing numbers that are or may be negative by powers of
two.

The PSR instruction is used to convert the desired exponent of two into control
word cw. If the exponent is 36 or more, it is clamped to 36. If the exponent is zero, it
is left as zero. Otherwise, the exponent is subtracted from 36 in order to represent it
from the internal hardware perspective of a left rotation. After this clamping, leaving
as zero, or subtracting, the exponent is copied to all tribbles.

371

AW Add with wrap
<wrap> c = a + b

Register signedness Flag set if

Left ignored N never; flag is cleared
Right ignored Z a + b = 0
Dest. ignored T a + b ≥ 236

1 opcode only R flag does not change

This is the first instruction for multiple-precision addition of integers larger than
36 bits. It has no carry input, and uses the T flag as a carry output. It does not
require range checking and therefore has no effect on the R flag.

This instruction is followed by AC for 72-bit addition. For 108-bit and larger
integers, it is followed by AWC.

The three registers are treated as unsigned without regard to how they are de-
clared. The operands are added, and the 36 least significant bits of the sum are stored
in the destination. Flag N is cleared. Flag Z will be set if the left and right operands
are both zero, and cleared otherwise because the sum, however truncated, cannot
truly be zero. Flag T is set if a carry is generated, and cleared otherwise. Flag R
does not change.

372

AWC Add with wrap
and carry

<wrap> c = a ++ b

Register signedness Flag set if

Left ignored N never; flag is cleared
Right ignored Z a + b + T = 0
Dest. ignored T a + b + T ≥ 236

1 opcode only R flag does not change

This is the intermediate instruction for multiple-precision addition of integers
larger than 72 bits. It uses the T flag as a carry input and carry output. It does not
require range checking and therefore has no effect on the R flag.

In 108-bit addition, this instruction is preceded by AW and followed by AC. For
144-bit and larger integers, it is preceded by AW or AWC and followed by AWC or AC
depending on its position.

The three registers are treated as unsigned without regard to how they are de-
clared. The operands are added along with the T flag, and the 36 least significant
bits of the sum are stored in the destination. Flag N is cleared. Flag Z will be set if
both operands and the incoming T flag are all zero, and cleared otherwise because the
sum, however truncated, cannot truly be zero. Flag T is set if a carry is generated,
and cleared otherwise. Flag R does not change.

373

BO - Brighten ones
c = bol b c = bor b
c = boli b c = bori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 opcodes Z all result bits are zero

BOL, BOLI, BOR and BORI are builtin macros that expand to two CPU instructions
each. BOL/BOR ignores the leading/trailing ones of b, replaces the adjacent bit with
one, replaces all other bits with zeros, and writes the result to c. BOLI/BORI is
BOL/BOR with all output bits inverted. N and Z are set as if the destination is a
signed register. T and R do not change.

BOUND Bound
bound i < lim

Register signedness Generate interrupt if

i ignored i < 0 or i ≥ lim
lim unsigned or signed

2 opcodes total

This instruction provides a two-sided array boundary check in one CPU cycle.
The array presumably has less than 235 elements, which is guaranteed to be the
case if less than 144 Gibytes of RAM is installed. This allows index i to have any
signedness, because it will be unconditionally out of bounds—either because negative
or excessively positive—whenever the leftmost bit is set.

The upper limit lim may be signed or unsigned, and represents the number of
elements that may be safely accessed. If lim ≤ 0, index i is always out of bounds,
because there is no safe memory location for access. Otherwise, the maximum per-
mitted index is lim−1. If i is out of bounds, this instruction generates an interrupt,
otherwise this instruction does nothing. In any event, no registers are written to, and
no flags change.

The required < in the syntax is to remind the programmer of the operand posi-
tions.

374

BZ - Brighten zeros
c = bzl b c = bzr b
c = bzli b c = bzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 opcodes Z all result bits are zero

BZL, BZLI, BZR and BZRI are builtin macros that expand to two CPU instructions
each. BZL/BZR replaces the leading/trailing zeros of b with ones, replaces the adjacent
bit with one, replaces all other bits with zeros, and writes the result to c. BZLI/BZRI
is BZL/BZR with all output bits inverted. N and Z are set as if the destination is a
signed register. T and R do not change.

375

CALL Call
call subr call < subr
call -t subr call <= subr
call +t subr call == subr
call -r subr call != subr
call +r subr call >= subr

call > subr

No registers used No flags changed

11 opcodes total

The CALL instructions pushes the current instruction pointer on the call stack,
and transfers control to the subroutine with name subr. When a RETURN instruction is
executed by the subroutine later, the instruction address on the stack will be popped,
and the program will continue with the instruction following CALL.

For security reasons, the call stack is stored in a dedicated SRAM IC. The sole
electrical access to the stack SRAM’s data connects to the instruction pointer exclu-
sively. The only instructions that can access this memory’s contents are the CALL and
RETURN instructions. Thus the stack is not used for other purposes in the manner
of other architectures, such as for local variables. Because the architecture does not
support recursion via the stack, stack overflow is unlikely and in any event cannot
cause privilege escalation.

Calls can be conditioned on the N, R, T, or Z flags. The -t and +t designators
cause the call to occur only if T is clear or set, respectively. If the call does not occur,
execution continues with the instruction that immediately follows. The -r and +r
designators do the same using the R flag.

The <, <=, ==, !=, >=, and > designators operate as if a cmp a b instruction
immediately preceded the call, with the call taken if a is less than, less than or
equal, equal to, not equal to, greater than or equal to, or greater than b, respectively.
Equivalently, the call will be taken only under the following corresponding N and Z
flag states:

< N is set > N is clear
<= N or Z is set >= N is clear or Z is set
== Z is set != Z is clear

Note that N and Z are never simultaneously set.
It’s important to use == instead of merely = for the equality test, because call

= subr syntactically means to copy a register named subr to a register named call.

376

CLO Count leading ones
c = clo b

Register signedness Flag set if

All ignored N never; flag is cleared
1 macro only Z all result bits are zero

This builtin macro that expands to three CPU instructions. The number of
leading one bits in b is counted and written to c. N is cleared, and Z is set iff b = 0.
T and R do not change.

CLZ Count leading zeros
c = clz b

Register signedness Flag set if

All ignored N never; flag is cleared
1 macro only Z all bits of b are ones

This builtin macro that expands to three CPU instructions. The number of
leading zero bits in b is counted and written to c. N is cleared, and Z is set iff b =
777777777777‘o (all ones). T and R do not change.

377

CMP Compare
cmp a - b

Register signedness Flag set if

Left unsigned or signed N a < b
Right unsigned or signed Z a = b

4 opcodes total

This instruction subtracts the right operand from the left and sets the N and
Z flags according to the result. These flags will be correct for any combination of
inputs; there is no overrange situation that can occur. The result is discarded, and
the T and R flags do not change.

CRF Clear range flag
crf

No registers used Flag set if

1 opcode only T R was previously set
R never; flag is cleared

This is the only instruction that can clear the R (Range) flag. The R flag is
copied to T, and then R is cleared. Here is a code example for how to save and
restore the R flag:

unsigned save_R

; save R flag
crf ; previous R now in T
save_R = 0 ++ 0 ; add with carry saves T

; restore R flag
crf ; R is now clear
save_R = 0 - save_R ; possible overflow restores R

378

CTO Count trailing ones
c = clo b

Register signedness Flag set if

All ignored N never; flag is cleared
1 macro only Z all result bits are zero

This builtin macro that expands to three CPU instructions. The number of
trailing one bits in b is counted and written to c. N is cleared, and Z is set iff b = 0.
T and R do not change.

CTZ Count trailing zeros
c = clz b

Register signedness Flag set if

All ignored N never; flag is cleared
1 macro only Z all bits of b are ones

This builtin macro that expands to three CPU instructions. The number of
trailing zero bits in b is counted and written to c. N is cleared, and Z is set iff b =
777777777777‘o (all ones). T and R do not change.

379

CX Check and extend
cw = cx f

Register signedness Flag set if

f unsigned or signed N bit 35 of the result is set
cw ignored Z all result bits are zero

1 opcode only T f < 0 or f > 63
R T is set or R is already set

CX is used to prepare control words for several instructions, including MH and ML.
This single-instruction macro verifies that 0 ≤ f ≤ 63, and then replicates the least
significant tribble of f to all of the others. The T and R flags are set if the range
check fails, otherwise T is cleared and R does not change.

DSL Double shift left
c = a dsl b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction adds the T flag with wrapping to a, and then shifts the sum left
six bits. The six bits shifted in at the right are the six leftmost bits of b. The result
is written to c. N and Z are set as if the destination is a signed register. T and R do
not change.

This is a key instruction for long multiplication, providing in one CPU cycle
what would otherwise take five cycles. Listing 7.2 has sample code. The N and Z
flags are not used for long multiplication, but are available in case someone identifies
a use for them later.

380

EO - Erase ones
c = eol b c = eor b
c = eoli b c = eori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

EOL, EOLI, EOR and EORI are builtin macros that expand to two CPU instructions
each. EOL/EOR replaces any leading/trailing ones of b with zeros, and write the result
to c. EOLI/EORI is EOL/EOR with all output bits inverted. N and Z are set as if the
destination is a signed register. T and R do not change.

EZ - Erase zeros
c = ezl b c = ezr b
c = ezli b c = ezri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

EZL, EZLI, EZR and EZRI are builtin macros that expand to two CPU instructions
each. EZL/EZR replaces any leading/trailing zeros of b with ones, and writes the result
to c. EZLI/EZRI is EZL/EZR with all output bits inverted. N and Z are set as if the
destination is a signed register. T and R do not change.

381

FABS Fast absolute value
c = fabs b

Register signedness Flag set if

b signed N never; flag is cleared
c unsigned or signed Z b = 0

1 opcode only T b < −(235) or b ≥ 235

R T is set or R is already set

This is a single-instruction implementation of absolute value. The architecture
only supports this operation if the six leftmost bits of the operand are either all ones
or all zeros. This instruction is fully range-checked, so if the operand is not within
the supported range, the T and R flags will both be set, and N and Z will both be
cleared.

If b is within the supported range, its absolute value is written to c. T and N
are cleared, and R is left unchanged. Z is set if b is zero, and cleared otherwise.

If −(230) ≤ b < 230 is too restrictive for the application, ABS offers a full-word
“slow” absolute value operation using two instructions.

FABS is not implemented for and will not assemble if b is unsigned.

FO - Find one
c = fol b c = for b
c = foli b c = fori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

FOL, FOLI, FOR and FORI are builtin macros that expand to two CPU instructions
each. FOL/FOR scans b for the leftmost/rightmost one bit, sets all other bits to
zero, and writes the result to c. If b does not contain any ones, the output is all
zeros. FOLI/FORI is FOL/FOR with all output bits inverted. N and Z are set as if the
destination is a signed register. T and R do not change.

382

FZ - Find zero
c = fzl b c = fzr b
c = fzli b c = fzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

FZL, FZLI, FZR and FZRI are builtin macros that expand to two CPU instructions
each. FZL/FZR scans b for the leftmost/rightmost zero bit, sets that bit to one, sets
all other bits to zero, and writes the result to c. If b does not contain any zeros, the
output is all zeros. FZLI/FZRI is FZL/FZR with all output bits inverted. N and Z are
set as if the destination is a signed register. T and R do not change.

GO - Grow one
c = gol b c = gor b
c = goli b c = gori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

GOL, GOLI, GOR and GORI are builtin macros that expand to two CPU instructions
each. GOL/GOR replaces the leftmost/rightmost zero of b with one, and writes the
result to c. If b does not contain any zeros, the output is all ones. GOLI/GORI is
GOL/GOR with all output bits inverted. N and Z are set as if the destination is a
signed register. T and R do not change.

383

GZ - Grow zero
c = gzl b c = gzr b
c = gzli b c = gzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

GZL, GZLI, GZR and GZRI are builtin macros that expand to two CPU instructions
each. GZL/GZR replaces the leftmost/rightmost one of b with zero, and writes the
result to c. If b does not contain any ones, the output is all zeros. GZLI/GZRI is
GZL/GZR with all output bits inverted. N and Z are set as if the destination is a
signed register. T and R do not change.

HALT Halt
halt

No registers used No flags changed

1 opcode only

As of October 2020, this is a vestigial instruction that causes the virtual machine
to quit. Instructions for yielding the CPU and possibly waiting for interrupts will be
worked out in the next few weeks. This entry will be removed or seriously altered.

384

IPSR Instruction pointer
shift register

c = ipsr b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

As of September 2022, this instruction has been removed. The in-
struction pointer now uses a linear counter.

This instruction sets c to the successor of b according to the Galois linear feed-
back shift register corresponding to x13 + x10 + x4 + x + 1. This is done by shifting
b right one position, and then clearing bit 12. If b was odd prior to the shift (that
is, a one was shifted out), then the quantity is XORed with 11011‘o, otherwise no
XOR is done. The final result is written to c. N and Z are set as if the destination
is a signed register. T and R do not change.

This LFSR is used by the operating system and programming tools to emulate
the behavior of the instruction pointer 13 least significant bits, which do not simply
increment. If b is initially 1, the next five terms generated are 4617, 6925, 8079, 7630,
3815. The predecessor of 1 is 2, so 2 is the last output before the cycle loops every
8 191 terms. This LFSR follows the paging scheme of the instruction pointer, in that
the 23 most significant bits do not change. Note that if the least 13 significant bits
are all zero, c will be equal to b, and the LFSR will not progress.

385

JUMP Jump
jump dest jump < dest
jump -t dest jump <= dest
jump +t dest jump == dest
jump -r dest jump != dest
jump +r dest jump >= dest

jump > dest

No registers used No flags changed

11 opcodes total

The JUMP instructions transfer control to the instruction at label dest. Nearly
always, this label should be within the present scope. Here is a sample:

again: nop
jump again ; infinite loop

Jumps can be conditioned on the N, R, T, or Z flags. The -t and +t designators
cause the jump to occur only if T is clear or set, respectively. If the jump does not
occur, execution continues with the instruction that immediately follows. The -r and
+r do the same using the R flag.

The <, <=, ==, !=, >=, and > designators operate as if a cmp a b instruction
immediately preceded the jump, with the jump taken if a is less than, less than or
equal, equal to, not equal to, greater than or equal to, or greater than b, respectively.
Equivalently, the jump will be taken only under the following corresponding N and Z
flag states:

< N is set > N is clear
<= N or Z is set >= N is clear or Z is set
== Z is set != Z is clear

Note that N and Z are never simultaneously true.
It’s important to use == instead of merely = for the equality test, because jump

= dest syntactically means to copy a register named dest to a register named jump.
JUMP may have important pipelining consequences. Stay tuned.
Here is a simple double loop with 6300 inner iterations:

386

unsigned i j
i = 0
j = 0

outer: cmp i 90
jump >= outer_done

inner: cmp j 70
jump >= inner_done
say "i = " i " and j = " j
j = j + 1
jump inner

inner_done: i = i + 1
jump outer

outer_done: nop

LANR Left and not right
c = a & !b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

LANR sets the destination to the bitwise AND of the left operand with the bitwise
complement of the right operand. N and Z are set as if the destination is a signed
register. T and R do not change.

387

LAS Logical assignment
<wrap> c = b
<wrap> c = <left> a

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

LAS copies the operand to the destination without range checking. N and Z are
set as if the destination is a signed register. T and R do not change.

By default, the operand is taken from the right copy of the register file. To force
use of the left copy, use the <left> cast as shown.

388

LFSR Linear feedback
shift register

c = lfsr b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction sets c to the successor of b according to the Galois linear feed-
back shift register corresponding to x36 + x31 + x13 + x7 + x6 + x5 + x3 + x2 + 1. This
is done by shifting b right one position, with bit 35 filled with zero. If b was odd
prior to the shift (that is, a one was shifted out), then the shifted amount is XORed
with 410000_010166‘o, otherwise no XOR is done. The final result is written to c.
N and Z are set as if the destination is a signed register. T and R do not change.

LFSRs are useful, because they can key fast pseudorandom number generators
(PRNGs) implemented with MIX. See that instruction for sample code. The period of
this LFSR is 236− 1 for any nonzero initial value. The period of the resulting PRNG
is guaranteed to be at least 236− 1, but has not been adequately validated for longer
lengths.

The polynomial chosen for this LFSR can also be used, with powers raised by 36,
72, or 108, as the most significant word of 72-bit, 108-bit, and 144-bit LFSRs. This
turns out to be the only polynomial with eight taps or fewer which has this property.
Such LFSRs are useful for producing PRNGs with longer guaranteed periods. See
also XPOLY.

389

LO - Light ones
c = lol b c = lor b
c = loli b c = lori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
2 opcodes, 2 macros Z all result bits are zero

LOL/LOR ignores the leading/trailing ones of b, replaces all other bits with zeros,
and writes the result to c. LOLI/LORI is LOL/LOR with all output bits inverted,
implemented as a two-instruction macro. N and Z are set as if the destination is a
signed register. T and R do not change.

LONR Left or not right
c = a | !b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

LONR sets the destination to the bitwise OR of the left operand with the bitwise
complement of the right operand. N and Z are set as if the destination is a signed
register. T and R do not change.

390

LSL Logical shift left
c = a lsl cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction shifts the bits of register a left. Bits shifted out are discarded,
and bits shifted in are zeros. The number of positions to shift may not be negative,
and must be copied into every tribble of control word cw. The PSL instruction can
convert any unsigned value into a suitable control word. N and Z are set as if the
destination is a signed register. T and R are not changed by LSL or any preceding
PSL.

LSR Logical shift right
c = a lsr cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction shifts the bits of register a right. Bits shifted out are discarded,
and bits shifted in are zeros. The number of positions to shift may not be negative, is
specified from the perspective of a left rotation (sic), and must be copied into every
tribble of control word cw. The PSR instruction can convert any unsigned value into
a suitable control word. N and Z are set as if the destination is a signed register. T
and R are not changed by LSR or any preceding PSR.

391

LZ - Light zeros
c = lzl b c = lzr b
c = lzli b c = lzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
2 opcodes, 2 macros Z all result bits are zero

LZL/LZR replaces the leading/trailing zeros of b with ones, replaces all other
bits with zeros, and writes the result to c. LZLI/LZRI is LZL/LZR with all output
bits inverted, implemented as a two-instruction macro. N and Z are set as if the
destination is a signed register. T and R do not change.

MAX Maximum
c = a max b

Register signedness Flag set if

Left unsigned or signed N maximum < 0
Right unsigned or signed Z maximum = 0
Dest. unsigned or signed T c cannot fit maximum

8 opcodes total R T is set or R is already set

The maximum of the two operands is determined, and the N and Z flags are set
accordingly. The 36 least significant bits of the maximum are stored in the destination
register, which may be signed or unsigned. Flags T and R are set if the full maximum
does not fit, otherwise T is cleared and R is left unchanged.

392

MH Multiply high
c = a mh b

Register signedness Flag set if

Left ignored N never; flag is cleared
Right ignored Z c = 0
Dest. ignored T c mod 64 6= 0

1 opcode only R T is set or R is already set

This is a key instruction for unsigned “short” multiplication where one of the
factors fits into six bits, and the product fits into 36 bits. The smaller of the factors
must be copied into all of the tribbles via CX or an assembler constant. MH multiplies
the tribbles of a and b pairwise, but the six 12-bit results cannot fit the 6-bit spaces
afforded by the tribbles of c. Instead, MH retains only the six most significant bits
of each 12-bit result. ML is the complementary instruction that retains the six least
significant bits of each.

To meaningfully add the output of MH and ML, their place values must be aligned
consistently, meaning that MH needs a 6-position left shift, and that the result can
spill to as many as 42 bits (which will not fit in a 36-bit register) as a result of that
shift. The solution is that instead of shift, MH rotates its result six bits left. If the
six bits rotated into the rightmost places are not all zeros, the T and R flags are set
because the eventual product will not fit in 36 bits. Otherwise T is cleared, R is left
unchanged, and the output of MH can be directly added to ML to obtain the 36-bit
product. Z will be set if the output of MH is all zeros. N is always cleared.

Here is an unsigned short multiplication example with full range checking, and
an always-accurate Z flag at the end whether or not overflow occurs. Four cycles are
needed. The CX can be optimized out when multiplying by a small constant.

unsigned big small t result ; will multiply big * small
; ...
t = cx small ; copy small into all tribbles
result = big mh t ; high bits of product
t = big ml t ; low bits of product
result = result + t ; result is now big * small

393

MHNS Multiply high no shift
c = a mhns b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z c = 0

This is a key instruction for unsigned long multiplication, where two 36-bit factors
are multiplied as 6-bit tribbles and eventually sum to produce a 72-bit result. MHNS
multiplies the tribbles of a and b pairwise, but the six 12-bit results cannot fit the
6-bit spaces afforded by the tribbles of c. Instead, MHNS retains only the six most
significant bits of each result. The tribbles are output in their original positions,
instead of being rotated left as with MH. The Z flag is set if the outcome of MHNS is all
zeros, and cleared otherwise. N is always cleared, and T and R do not change. See
listing 7.2 for sample code.

MIN Minimum
c = a min b

Register signedness Flag set if

Left unsigned or signed N minimum < 0
Right unsigned or signed Z minimum = 0
Dest. unsigned or signed T c cannot fit minimum

8 opcodes total R T is set or R is already set

The minimum of the two operands is determined, and the N and Z flags are set
accordingly. The 36 least significant bits of the minimum are stored in the destination
register, which may be signed or unsigned. Flags T and R are set if the full minimum
does not fit, otherwise T is cleared and R is left unchanged.

394

MIRD Mirrored decrement
c = mird b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction subtracts one from b mod 236 as if b’s place values are in reverse
order.

For example, if b = 00000_00000_000011_110101_000011_011110‘2
then mird b = 11111_11111_111101_110101_000011_011110‘2 .

Because no range checking is done, the T flag is cleared and R is left unchanged.
N is not “mirrored,” but is a copy of the leftmost output bit. In the example above,
N is set. Z is set if all output bits are set, and cleared otherwise.

MIRI Mirrored increment
c = miri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction adds one to b mod 236 as if b’s place values are in reverse order.
For example, if b = 11111_11111_111101_110101_000011_011111‘2

then mird b = 00000_00000_000011_110101_000011_011111‘2 .
Because no range checking is done, the T flag is cleared and R is left unchanged.

N is not “mirrored,” but is a copy of the leftmost output bit. In the example above,
N is cleared. Z is set if all output bits are set, and cleared otherwise.

395

MIX Mix
c(iphertext) = p(laintext) mix k(ey)

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

MIX passes 36-bit word p through an invertible substitution-permutation network
keyed by 36-bit word k. The inverse operation of MIX is XIM. Testing shows that on
average, one-bit changes to the value of p/k cause c to change by 15.37/16.47 bits.
An ideal mixing function would cause half of the bits of c—half is 18 bits—to change.
N and Z are set as if the destination is a signed register. T and R do not change. Here
are sample uses for hashing an object, pseudorandom numbers, and cryptography:

396

; Compute hash of 4-word object
unsigned hash word.1 word.2 word.3 word.4
; ...
hash = o3THvL‘t mix word.1 ; use 36-bit const as initial value
hash = hash mix word.2 ; use progressive words of object
hash = hash mix word.3
hash = hash mix word.4

; Pseudorandom number generator
unsigned state1 state2 output
state1 = zRN6x1‘t ; 36-bit seed #1
state2 = mPC$TB‘t ; 36-bit seed #2
; ...
get_next_rand: ; period of PRNG >= (2**36) - 1

state2 = lfsr state2 ; rekey in just one instruction
state1 = state1 mix state2 ; new value
output = state1 ; keep caller from changing state
return

; Toy example cipher - insecure!
unsigned in out key.1 key.2
key.1 = EtdvIv‘t ; bits 0-35 of key
key.2 = yKoM2j‘t ; bits 36-71 of key
; ...
encrypt:

out = in mix key.1 ; ECB mode with 36-bit block size
out = out mix key.2 ; two rounds total
return

;
decrypt:

out = in xim key.2 ; "in" here is "out" from encrypt
out = out xim key.1 ; "unwrap" key in reverse order
return

397

ML Multiply low
c = a ml b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z c = 0

This is a key instruction for unsigned “short” multiplication where one of the
factors fits into six bits, and the product fits into 36 bits. The smaller of the factors
must be copied into all of the tribbles via CX or an assembler constant. ML multiplies
the tribbles of a and b pairwise, but the six 12-bit results cannot fit the 6-bit spaces
afforded by the tribbles of c. Instead, ML retains only the six least significant bits of
each 12-bit result. The Z flag is set if the outcome of ML is all zeros, and cleared oth-
erwise. N is always cleared, and T and R do not change. See MH for more information
and sample code.

NAND NAND
c = a !& b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NAND sets the destination to the bitwise NAND of its operands. N and Z are set
as if the destination is a signed register. T and R do not change.

398

NAS Numeric assignment
c = b
c = <left> a

Register signedness Flag set if

Left unsigned or signed N operand < 0
Right unsigned or signed Z operand = 0
Dest. unsigned or signed T dest. cannot fit operand

8 variants total R T is set or R is already set

NAS copies the 36 operand bits to the 36 destination bits exactly, and then con-
firms that a change in signedness has not changed the resulting quantity. N and Z
are set to indicate if the operand is negative or zero respectively. T and R are set if
the operand does not fit in the destination. Otherwise, T is cleared, and R does not
change.

By default, the operand is taken from the right copy of the register file. To force
use of the left copy, use the <left> cast as shown.

NOP No operation
nop

No registers used No flags changed

1 opcode only

This instruction sits out the current CPU cycle without writing to any register
or changing any flags. If the control transfer instructions CALL, JUMP, and RETURN
require flushing the instruction pipeline, NOP is a simple and fail-safe option to place
immediately following these instructions.

Because the hardware ignores the 27 operand bits of NOP, the emulation software
uses NOP to encode diagnostic instructions such as SAY and SAYS that have no hard-
ware support. This allows the programs assembled for the virtual machine to run
unmodified on physical hardware.

399

NOR NOR
c = a !| b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NOR sets the destination to the bitwise NOR of its operands. N and Z are set as
if the destination is a signed register. T and R do not change.

NOT NOT
c = !b
c = <left> !a

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NOT sets the destination to the bitwise NOT of the operand. N and Z are set as
if the destination is a signed register. T and R do not change.

By default, the operand is taken from the right copy of the register file. To force
use of the left copy, use the <left> cast as shown.

400

NUDGE Nudge
c = a nudge b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NUDGE replaces the rightmost 0–35 bits of a with the same number of bits from
b, and writes the result to c. The number of bits replaced is the number that appear
to the right of the leftmost one in b. In essence, the first one bit as b is scanned from
left to right is the start bit, with all bits following that bit replacing the bits in the
corresponding positions of a. For example, 1101_0110‘b nudge 0010_1101‘b would
be 1100_1101‘b.

NUDGE is useful for altering the modulus of a number relative to some power of
two. For example if ba ÷ 256 = 12 000c and we want to force a mod 256 = 197 =
1100_0101‘b
without knowing it’s current value and without changing ba ÷ 256c, we would set
c = a nudge 1_1100_0101‘b.

NUDGE is also useful for efficiently converting a pointer to a member of a power-of-
two-sized structure to a pointer to any other member of the same structure, without
needing to know which member was indicated by the original pointer.

OR OR
c = a | b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

OR sets the destination to the bitwise OR of its operands. N and Z are set as if
the destination is a signed register. T and R do not change.

401

PARTY Parity
c = party b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z parity of b is even

This instruction determines whether the number of ones in b is odd, and if so
sets c to 1 and clears the Z flag. Otherwise, c is zeroed and Z is set. The N and T
flags are cleared, and R is left unchanged.

PAT Permute across
tribbles

c = a pat b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction transposes a per figure 5.3. The tribbles of a> then undergo
permutation operations selected by the corresponding tribbles of b. The permuted
outcome is then transposed back and written to c. Due to the 6-bit encoding limit
of 64 operations, only 64 of the possible 6 ! = 720 permutations of six bits can be
supported by this instruction. These 64 permutations appear in table B.1 and follow
the notation of section A.8. All 720 permutations can be reached via 2-instruction
compositions of these 64.

In essence, PAT does permutations between tribbles, where tribble i of b specifies
a permutation among the ith bits of each tribble of a. PIT and PAT can be used in
combination to produce any permutation of 36 bits in five instructions or fewer. As
computing operands for these instructions manually would be tedious and error-prone,
the assembler provides this service automatically via the PERM macro.

402

Table B.1: Tribble permutation operations.

Oct. Perm. Derivation Oct. Perm. Derivation

00 012345 identity 40 031524 count out of circle by 3s
01 123450 rotated identity 41 142035 count out of circle by 3s
02 234501 rotated identity 42 253140 count out of circle by 3s
03 345012 rotated identity 43 304251 count out of circle by 3s
04 450123 rotated identity 44 415302 count out of circle by 3s
05 501234 rotated identity 45 520413 count out of circle by 3s
06 432105 reflected 05 46 035124 count out by 3s backward
07 321054 reflected 04 47 140253 count out by 3s backward
10 210543 reflected 03 50 251304 count out by 3s backward
11 105432 reflected 02 51 302415 count out by 3s backward
12 054321 reflected 01 52 413520 count out by 3s backward
13 543210 reflected identity 53 524031 count out by 3s backward
14 102345 pair swap 54 102354 2-pair rotation
15 210345 pair swap 55 315042 2-pair rotation
16 312045 pair swap 56 542310 2-pair rotation
17 412305 pair swap 57 513240 2-pair rotation
20 512340 pair swap 60 021435 3-pair rotation
21 021345 pair swap 61 034125 3-pair rotation
22 032145 pair swap 62 043215 3-pair rotation
23 042315 pair swap 63 103254 3-pair rotation
24 052341 pair swap 64 240513 3-pair rotation
25 013245 pair swap 65 453201 3-pair rotation
26 014325 pair swap 66 521430 3-pair rotation
27 015342 pair swap 67 534120 3-pair rotation
30 012435 pair swap 70 120534 symmetric half rotation
31 012543 pair swap 71 201453 symmetric half rotation
32 012354 pair swap 72 034512 algorithmically selected
33 452301 movement in pairs 73 035421 algorithmically selected
34 014523 movement in pairs 74 105243 algorithmically selected
35 230145 movement in pairs 75 130542 algorithmically selected
36 024135 2× 3, 3× 2 transposes 76 254310 algorithmically selected
37 031425 2× 3, 3× 2 transposes 77 510432 algorithmically selected

403

PAIT Permute across and
inside tribbles

c = a pait b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

In unusual circumstances where PIT is applied to the result of PAT using the
same operands, the ALU can roll these two operations into this single instruction.
For instance, c = a pait 131313131313‘o mirrors the bits of a 36-bit word (see
table B.1).

PIT Permute inside tribbles
c = a pit b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

Each tribble of a undergoes a permutation operation selected by the correspond-
ing tribble of b, with the result written to c. Due to the 6-bit encoding limit of 64
operations, only 64 of the possible 6 ! = 720 permutations of six bits can be sup-
ported by this instruction. These 64 permutations appear in table B.1 and follow
the notation of section A.8. All 720 permutations can be reached via 2-instruction
compositions of these 64.

404

POPC Popcount
c = popc b

Register signedness Flag set if

All ignored N never; flag is cleared
Z b = 0

POPC is a builtin assembler macro that expands to two esoteric CPU instructions
that aren’t in this appendix. At the conclusion of the sequence, c is equal to the
number of one bits in b. This operation is sometimes called population count, pop-
count, or Hamming weight in other literature. N and Z are set as if the destination
is a signed register. Because the result only uses the six rightmost bits, N will not be
set. T and R do not change.

A third register is required for intermediate results during the computation; this
register is provided transparently by the assembler and is shared with other builtin
macros. Register b is never overwritten by this macro.

PRL Prepare to rotate left
cw = prl amt

Register signedness Flag set if

amt unsigned or signed T amt < 0 or amt > 63
cw ignored R T is set or R is already set

1 opcode only

PRL prepares a control word for the ROL instruction by copying the least significant
tribble into all others. For instance, if amt = 5, then cw = 050505050505‘8. Left
rotations of 0 through 63 bits are supported. Rotating 36–63 bits is equivalent to
rotating 0–27 bits. If amt is outside the supported range, the T and R flags are set.
Otherwise, T is cleared and R does not change.

PRL is the same instruction as CX, but PRL is preferred for legibility.

405

PRR Prepare to rotate right
cw = prr amt

Register signedness Flag set if

amt unsigned or signed T amt < 0 or amt > 63
cw ignored R T is set or R is already set

1 opcode only

This instruction prepares a control word for the ROL instruction by first altering
the least significant tribble to be from the perspective of a left rotation, then copying
that tribble to all others. For instance, if amt = 29, then cw = 070707070707‘8. Right
rotations of 0 through 63 bits are supported. Rotating 36–63 bits is equivalent to
rotating 0–27 bits. If amt is outside the supported range, the T and R flags are set.
Otherwise, T is cleared and R does not change.

PSL Prepare to shift left
cw = psl amt

Register signedness Flag set if

amt unsigned N bit 35 of the result is set
cw ignored Z all result bits are zero

1 opcode only

This instruction prepares a control word for an ASL or LSL instruction by copy-
ing the number of positions to shift into all tribbles. For instance, if amt = 4, then
cw = 040404040404‘8. Left shifts of any non-negative number of positions are
supported. Shifts of more than 35 bits are all equivalent to 36-bit shifts and set
cw = 444444444444‘8 (each tribble is 36). N and Z are set as if cw is a signed register.
T and R do not change.

406

PSR Prepare to shift right
cw = psr amt

Register signedness Flag set if

amt unsigned N bit 35 of the result is set
cw ignored Z all result bits are zero

1 opcode only

This instruction prepares a control word for an ASR or LSR instruction copying
the number of positions to shift into all tribbles. This amount to shift is speci-
fied from the perspective of a left rotation (sic). For instance, if amt = 34, then
cw = 020202020202‘8. Right shifts of any non-negative number of positions are
supported. Shifts of more than 35 bits are all equivalent to 36-bit shifts and set
cw = 444444444444‘8 (each tribble is 36). N and Z are set as if cw is a signed register.
T and R do not change.

RANL Right and not left
c = !a & b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

RANL sets the destination to the bitwise AND of the right operand with the
bitwise complement of the left operand. N and Z are set as if the destination is a
signed register. T and R do not change.

407

ROL Rotate left
c = a rot cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction rotates the bits of a. The number of positions to rotate must
be specified from the perspective of a left rotation, and copied into every tribble of
control word cw. The PRL and PRR instructions offer a range-checked mechanism to set
up the control word for left and right rotations. N and Z are set as if the destination
is a signed register. ROL will not change T or R, although a preceding PRL and PRR
may.

RONL Right or not left
c = !a | b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

RONL sets the destination to the bitwise OR of the right operand with the bitwise
complement of the left operand. N and Z are set as if the destination is a signed
register. T and R do not change.

408

RS Reverse subtract
c = a ˜- b

Register signedness Flag set if

Left unsigned or signed N b− a < 0
Right unsigned or signed Z b− a = 0
Dest. unsigned or signed T c cannot fit b− a

8 opcodes total R T is set or R is already set

This is the instruction for reverse subtraction of 36-bit numbers. It does not have
a borrow input or borrow output. It is fully range-checked, so the T and R flags will
indicate when the difference does not fit in 36 bits.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit
signed quantities. The left operand is subtracted from the right to produce a 38-bit
signed difference that will not overflow. The N and Z flags are set based on the
original 38-bit difference. The 36 least significant bits of the difference are stored in
the destination register, which may be signed or unsigned. Flags T and R are set if
the full difference does not fit, otherwise T is cleared and R is left unchanged.

409

RSC Reverse subtract
with carry

c = a ˜– b

Register signedness Flag set if

Left unsigned or signed N b− a− T < 0
Right unsigned or signed Z b− a− T = 0
Dest. unsigned or signed T c cannot fit b− a− T

8 opcodes total R T is set or R is already set

This is the final instruction for multiple-precision reverse subtraction of integers
larger than 36 bits. It uses the T flag as a borrow input, but has no borrow output. It
is fully range-checked, so the T and R flags will indicate when the multiple-precision
difference does not fit.

This instruction is preceded by RSW for 72-bit reverse subtraction, or by RSWB
for 108-bit and larger reverse subtraction. It is never preceded by RS, because RS
conflicts for range checking.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit
signed quantities. The T flag and left operand are subtracted from the right to
produce a 38-bit signed difference that will not overflow. The N and Z flags are set
based on the original 38-bit difference. The 36 least significant bits of the difference
are stored in the destination register, which may be signed or unsigned. Flags T
and R are set if the full difference does not fit, otherwise T is cleared and R is left
unchanged.

410

RSW Reverse subtract
with wrap

<wrap> c = a ˜- b

Register signedness Flag set if

Left ignored N b− a < 0
Right ignored Z b− a = 0
Dest. ignored T b− a < 0

1 opcode only R flag does not change

This is the first instruction for multiple-precision reverse subtraction of integers
larger than 36 bits. It has no borrow input, and uses the T flag as a borrow output.
It does not require range checking and therefore has no effect on the R flag.

This instruction is followed by RSB for 72-bit reverse subtraction. For 108-bit
and larger integers, it is followed by RSWB.

The three registers are treated as unsigned without regard to how they are de-
clared. The T flag and left operand are subtracted from the right, and the 36-bit
difference is stored in the destination. Flag Z will be set if the left and right operands
are equal, and cleared otherwise. Flags N and T are set if a borrow is generated, and
cleared otherwise. Flag R does not change.

411

RSWC Reverse subtract and
wrap and carry

<wrap> c = a ˜– b

Register signedness Flag set if

Left ignored N b− a− T < 0
Right ignored Z b− a− T = 0
Dest. ignored T b− a− T < 0

1 opcode only R flag does not change

This is the intermediate instruction for multiple-precision reverse subtraction of
integers larger than 72 bits. It uses the T flag as a borrow input and borrow output.
It does not require range checking and therefore has no effect on the R flag.

In 108-bit reverse subtraction, this instruction is preceded by RSW and followed
by RSB. For 144-bit and larger integers, it is preceded by RSW or RSWB and followed
by RSWB or RSB depending on its position.

The three registers are treated as unsigned without regard to how they are de-
clared. The T flag and left operand are subtracted from the right, and the 36-bit
difference is stored in the destination. Flag Z will be set if the 36-bit difference is
zero and no borrow is generated. Flags N and T are set if a borrow is generated, and
cleared otherwise. Flag R does not change.

RTGL Rotate T going left
c = rtgl b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

T bit 35 of b is set
R R is already set

This instruction rotates b left one position, fills bit 0 with the existing T flag,
and writes the result to c. The bit rotated out from bit 35 is moved to the T flag. R
is left unchanged. N and Z are set as if the destination is a signed register.

412

RTGR Rotate T going right
c = rtgr b

Register signedness Flag set if

All ignored N incoming T flag is set
1 opcode only Z all result bits are zero

T bit 0 of b is set
R R is already set

This instruction rotates b right one position, fills bit 35 with the incoming T flag,
and writes the result to c. The bit shifted out from bit 0 is copied to the T flag. R
is left unchanged. N and Z are set as if the destination is a signed register.

S Subtract
c = a - b

Register signedness Flag set if

Left unsigned or signed N a− b < 0
Right unsigned or signed Z a− b = 0
Dest. unsigned or signed T c cannot fit a− b

8 opcodes total R T is set or R is already set

This is the instruction for ordinary subtraction of 36-bit numbers. It does not
have a borrow input or borrow output. It is fully range-checked, so the T and R flags
will indicate when the difference does not fit in 36 bits.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit
signed quantities. The right operand is subtracted from the left to produce a 38-bit
signed difference that will not overflow. The N and Z flags are set based on the
original 38-bit difference. The 36 least significant bits of the difference are stored in
the destination register, which may be signed or unsigned. Flags T and R are set if
the full difference does not fit, otherwise T is cleared and R is left unchanged.

413

SC Subtract with carry
c = a – b

Register signedness Flag set if

Left unsigned or signed N a− b− T < 0
Right unsigned or signed Z a− b− T = 0
Dest. unsigned or signed T c cannot fit a− b− T

8 opcodes total R T is set or R is already set

This is the final instruction for multiple-precision subtraction of integers larger
than 36 bits. It uses the T flag as a borrow input, but has no borrow output. It is
fully range-checked, so the T and R flags will indicate when the multiple-precision
difference does not fit.

This instruction is preceded by SW for 72-bit subtraction, or by SWB for 108-
bit and larger subtraction. It is never preceded by S, because S conflicts for range
checking.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit
signed quantities. The T flag and right operand are subtracted from the left to
produce a 38-bit signed difference that will not overflow. The N and Z flags are set
based on the original 38-bit difference. The 36 least significant bits of the difference
are stored in the destination register, which may be signed or unsigned. Flags T
and R are set if the full difference does not fit, otherwise T is cleared and R is left
unchanged.

STGL Shift T going left
c = stgl b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

T bit 35 of b is set
R R is already set

This instruction shifts b left one position, fills bit 0 with a zero, and writes the
result to c. The bit shifted out from bit 35 is copied to the T flag. R is left unchanged.
N and Z are set as if the destination is a signed register.

414

STGR Shift T going right
c = stgr b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z all result bits are zero

T bit 0 of b is set
R R is already set

This instruction shifts b right one position, fills bit 35 with a zero, and writes the
result to c. The bit shifted out from bit 0 is copied to the T flag. R is left unchanged,
and N is cleared. Z is set if the result is all zeros, and cleared otherwise.

SW Subtract with wrap
<wrap> c = a - b

Register signedness Flag set if

Left ignored N a− b < 0
Right ignored Z a− b = 0
Dest. ignored T a− b < 0

1 opcode only R flag does not change

This is the first instruction for multiple-precision subtraction of integers larger
than 36 bits. It has no borrow input, and uses the T flag as a borrow output. It does
not require range checking and therefore has no effect on the R flag.

This instruction is followed by SB for 72-bit subtraction. For 108-bit and larger
integers, it is followed by SWB.

The three registers are treated as unsigned without regard to how they are de-
clared. The T flag and right operand are subtracted from the left, and the 36-bit
difference is stored in the destination. Flag Z will be set if the left and right operands
are equal, and cleared otherwise. Flags N and T are set if a borrow is generated, and
cleared otherwise. Flag R does not change.

415

SWC Subtract with wrap
and carry

<wrap> c = a – b

Register signedness Flag set if

Left ignored N a− b− T < 0
Right ignored Z a− b− T = 0
Dest. ignored T a− b− T < 0

1 opcode only R flag does not change

This is the intermediate instruction for multiple-precision subtraction of integers
larger than 72 bits. It uses the T flag as a borrow input and borrow output. It does
not require range checking and therefore has no effect on the R flag.

In 108-bit subtraction, this instruction is preceded by SW and followed by SB. For
144-bit and larger integers, it is preceded by SW or SWB and followed by SWB or SB
depending on its position.

The three registers are treated as unsigned without regard to how they are de-
clared. The T flag and right operand are subtracted from the left, and the 36-bit
difference is stored in the destination. Flag Z will be set if the 36-bit difference is
zero and no borrow is generated. Flags N and T are set if a borrow is generated, and
cleared otherwise. Flag R does not change.

SWIZ Swizzle
c = a swiz cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction replaces tribbles of a> using the tribbles of cw as swizzle function
identifiers. These 64 swizzle functions appear in table B.2. See TXOR for a synopsis
of the transposing operation from a to a>. N and Z are set as if the destination is a
signed register. T and R do not change, because no range checking is done.

A routine use for SWIZ is to select a tribble from a register and replicate it to all of
the other tribbles. For example, if a = 01 34 67 90 23 56 ‘8 and cw = 02 02 02 02 02 02 ‘8,
the result will be 90 90 90 90 90 90 ‘8.

416

Table B.2: Swizzle operations.

Slot Operation
0 copy from tribble 0
1 copy from tribble 1
2 copy from tribble 2
3 copy from tribble 3
4 copy from tribble 4
5 copy from tribble 5

6–63 reserved

TXOR Transposing XOR
c = a txor b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

The bits of b are transposed to compute b> by relocating the ith bit of tribble
j to the jth bit of tribble i for all i, j ∈ {0...5}. The bitwise exclusive-OR of a with
b> is then written to destination c. N and Z are set as if the destination is a signed
register. T and R do not change.

TXOR can be used to obtain the transpose of a register. To do this, use zero for
a.

417

XIM Undo mix
p(laintext) = c(iphertext) xim k(ey)

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

XIM is the inverse operation of MIX. XIM passes 36-bit word c through an inverted
substitution-permutation network keyed by 36-bit word k. N and Z are set as if the
destination is a signed register. T and R do not change. See MIX for more specifics.

Testing shows that on average, one-bit changes to the value of c/k cause p to
change by 15.36/16.48 bits. Note these measurements are distinguishable from those
of MIX, and could be indicative of S-box imbalances.

XNOR XNOR
c = a !ˆ b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

XNOR sets the destination to the bitwise XNOR of its operands (the opposite of
XOR). N and Z are set as if the destination is a signed register. T and R do not
change.

418

XOR XOR
c = a ˆ b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

XOR sets the destination to the bitwise XOR of its operands. N and Z are set as
if the destination is a signed register. T and R do not change.

419

XPOLY XOR polynomial
if T is set

c = xpoly b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

If the T flag is set, this instruction XORs b with 410000_010166‘o and writes the
result to c. Otherwise b is copied directly to c. N and Z are set as if the destination
is a signed register. T and R do not change.

XPOLY is used to implement 72-bit, 108-bit, and 144-bit Galois linear feedback
shift registers with periods of 272 − 1, 2108 − 1, and 2144 − 1 respectively. Because it
would take the CPU at least millions of years to cycle through the 72-bit sequence,
applications that require 108 or 144 bits would be rare. But 36-bit LFSRs imple-
mented by the LFSR instruction can restart their cycles in less than a day, so 72-bit
LFSRs would find application. The XPOLY polynomial is not suitable for (and may
produce very short sequences if used for) LFSRs of more than 144 bits.

Here are sample implementations for all four LFSR sizes. The word registers
must be initialized before the sequence starts, with at least one register in each case
not zero. Note from section A.5 that u. is a supported shorthand meaning unsigned.
When an LFSR is used to key MIX for a pseudorandom number generator, any single
register from the LFSR is adequate.1

; 36-bit LFSR ; 72-bit LFSR ; 108-bit LFSR ; 144-bit LFSR
u. w0 u. w1 w0 u. w2 w1 w0 u. w3 w2 w1 w0
; ; ; ;
w0 = lfsr w0 w1 = stgr w1 w2 = stgr w2 w3 = stgr w3

w0 = rtgr w0 w1 = rtgr w1 w2 = rtgr w2
w1 = xpoly w1 w0 = rtgr w0 w1 = rtgr w1

w3 = xpoly w3 w0 = rtgr w0
w3 = xpoly w3

1This should be verified with Dieharder before finalizing this section. There are eight untested
cases.

420

C

Advance corrections

When I documented specifics of the implementation [Abel22b], there were several

places where I found the implementation needs minor updates, in order to improve

the future usability of both the implementation and this dissertation. These circuit

changes, although small, call for careful execution, testing, and some prerequisite

improvements to the simulation environment. This dissertation was finished before

the pending implementation changes could be made.

To make this dissertation as useful as possible to future readers, it has been

written as if near-term minor edits to the implementation have already been released.

This appendix contains a short description of each place where, as of November 2022,

the implementation is still catching up to the text of this dissertation.

C.1 Instruction format fields to move

The field locations for some of the instruction formats are moving. The implementa-

tion [Abel22b] uses these formats:

Immediate value instructions

opcode immediate value dest. register

bits 35–27 bits 26–9 bits 8–0

421

ALU instructions

opcode left register right register dest. register

bits 35–27 bits 26–18 bits 17–9 bits 8–0

The implementation will be corrected to conform with this dissertation, which

specifies:

Immediate value instructions

opcode dest. register immediate value

bits 35–27 bits 26–18 bits 17–0

ALU instructions

opcode dest. register left register right register

bits 35–27 bits 26–18 bits 17–9 bits 8–0

The instruction word output for Listing 11.8’s code fetches was altered to conform

to the intended field order.

C.2 ALU operation to be deleted

The implementation includes a γ layer operation γ.imb (immediate both), which

allows an 18-bit immediate value in a CPU instruction to be repeated into a 36-bit

immediate value. The β layer does the necessary swizzle, but the bits come out in

the wrong positions. γ.imb exchanges the necessary three-bit fields to produce the

correct immediate value.

After the immediate value repositioning of section C.1, β’s swizzle will place

all subwords in their correct order, and γ.imb can be replaced with any identity-

capable γ operation such as γ.add. The γ.imb operation will be purged from the

implementation.

422

C.3 Physical address format to change

The implementation’s physical address format for data memory is:

o�setphysical pageunused

bits 35–29 bits 26–11 bits 10–00

bit 28: write disable

bit 27: chip select (M1 vs. M0)

The implementation is being changed to use this format:

o�setphysical page

bits 27–12 bits 11–00

bit 35: write disable

bit 34: chip select (M1 vs. M0)

reserved

bits 33–28

There are two reasons for this change. The visually obvious one is that the first

format will not allow the physical page field to grow contiguously if larger SRAM ICs

enter the market. In the new format, the write disable and chip select bits are moved

out of the way, and the intermediate bits are reserved to support a larger physical

page field.

The less obvious change is, the offset field is growing from 11 to 12 bits, meaning

that the physical pages themselves are increasing from 2 048 to 4 096 words. I had

meant for the the address format work for the largest-available 36-wide ICs, which are

4Mi× 36. But I made a mistake: the virtual page and offset together only came to

22 bits—enough for one SRAM, but I forgot that the board accommodates a second

SRAM. By increasing the page size, a fully-expanded system (based on presently

available components) with 8Mi words of data memory can be addressed.

423

Another reason to increase the offset field from 11 to 12 bits is so that page table

bypass flip-flop ff b can be eliminated at a future time in favor of using RAMs α0 and

α1. Because the α RAMs operate on six-bit slices, using a six-bit multiple for the

offset field is helpful. This limited α RAM use in parallel with the page table may

support an additional addressing mode for certain reads. Section 8.6.2 describes this

suggestion further.

424

D

What’s where in the source tree

Because the minicomputer implementation actively being developed, the contents and

arrangement of the source tree are expected to change. This appendix lists a coarse

inventory of the source code as of November 2022.

Table D.1: code/ Implementation directory root.

directory description

asm/ assembler and virtual machine
consts/ constants that represent opcodes and operations
firmware/ modules to compute SRAM firmware
logic-solver/ synthesize optimal SN74AUC-series glue logic
misc/ helper functions, constants, and macros
netlist/ “electrical source code” of the minicomputer and conversion software
netsim/ “electrical object code” of the minicomputer and simulation software
vm/ testing for assembler and ALU firmware

This directory also contains the only makefile for the implementation.

425

Table D.2: code/asm/ Assembler and virtual machine.

file contents

alu.c ALU for the virtual machine, including colored trace output
asm.c outermost routines for assembler and virtual machine
asm.h API for assembler and virtual machine
context.h non-shared struct for the API’s opaque pointer
errors.c de-duplicates and reports errors found by assembler
lex.c assembler terminals and low-level parsing
no-bu list of files that GNU Tar need not save
symc.c symbol table implementation for assembler
syntax.c assembler high-level parsing and instruction encoding

Table D.3: code/consts/ Constants that represent opcodes and operations.

file contents

opcode.h assigned numbers and source code names for opcodes
slots.h assigned numbers and source code names for ALU operations

Table D.4: code/firmware/ Modules to compute SRAM firmware.

file contents

alpha.c ALU α layer
audited.c short functions exempted from separately-written test cases
beta.c ALU β layer
decoder.c non-ALU portion of control decoder RAMs D0 and D1
firmware.c firmware memory allocation and loading for simulations
firmware.h local header file for firmware modules
gamma.c ALU γ layer
gen-sbox.py compute S-boxes derived from

√
2÷ 2

instruct.c ALU portion of control decoder RAMs D0 and D1
no-bu list of files that GNU Tar need not save
pieces.c firmware-computing functions that don’t fit neatly elsewhere
sbox.c automatically generated by gen-sbox.py
theta.c ALU θ RAM
unary.c stacked unary operations (simple unary are in audited.c)
uninit.c obsolete stubs for “initializing” non-firmware RAMs
zeta.c ALU ζ RAM

426

Table D.5: code/logic-solver/ Synthesize optimal SN74AUC-series glue logic.

file contents

alpha-lock-permutations
what-if scenarios for various control signal meanings

freebie demonstration.odt
optimal boolean functions of 3 variables for SRAM enable inputs

logic solver demonstration.odt
optimal boolean functions of 3 variables

no-bu list of files that GNU Tar need not save
size database of size-optimized boolean functions of 4 variables
size-freebies “size” recomputed for use as SRAM enable inputs
solve.c solver program for fastest/smallest SN74AUC circuits
speed database of speed-optimized boolean functions of 4 variables
speed-freebies “speed” recomputed for use as SRAM enable inputs
tables.py Python batch job to compute glue logic for node lockouts

Table D.6: code/misc/ Helper functions, constants, and macros.

file contents

misc.c general support functions, mostly not architecture-specific
misc.h general and architecture-specific definitions
unused.c unused code emulating the β layer transposition

427

T
ab

le
D
.7
:
co

de
/n

et
li

st
/
“E

le
ct
ric

al
so
ur
ce

co
de
”
of

th
e
m
in
ic
om

pu
te
r
an

d
so
ftw

ar
e
to

pr
oc
es
s
it.

fil
e

co
nt
en
ts

20
21

to
po

lo
gy
.o
ds

27
sp
re
ad

sh
ee
ts

of
ci
rc
ui
t
de
ta
ils
;p

os
sib

ly
ou

t
of

sy
nc

w
ith

tim
in
g
st
ud

y.
od

s
fe
b.
ne
tli
st

fir
st
-a
tt
em

pt
C
PU

ne
tli
st

st
ar
te
d
Fe

br
ua

ry
2,

20
21

(h
um

an
-w

rit
te
n)

flo
or
pl
an

.sv
g

la
te
st

co
m
po

ne
nt

flo
or
pl
an

ge
ne
ra
te
d
by

ru
n.

ne
tl

is
t.

py
fro

ze
n.
ne
tli
st

ve
rs
io
n
of

fe
b.

ne
tl

is
t
th
at

ge
ne
ra
te
d
ne

ts
im

/f
ro

ze
n.

ns
ge
ne
ra
te
d.
bo

m
bi
ll
of

m
at
er
ia
ls,

co
m
po

ne
nt

lis
t,

an
d
ru
n
st
at
ist

ic
s
fro

m
ru

n.
ne

tl
is

t.
py

ge
ne
ra
te
d.
ne
t

ru
n.

ne
tl

is
t.

py
ou

tp
ut

in
a
fo
rm

at
th
at

K
iC
ad

5.
0.
2
ca
n
lo
ad

ne
t-
ev
er
yt
hi
ng

.sv
g

ne
t
co
nn

ec
tiv

ity
m
ar
ki
ng

s
on

to
p
of

fl
oo

rp
la

n.
sv

g
no

-b
u

lis
t
of

fil
es

th
at

G
N
U

Ta
r
ne
ed

no
t
sa
ve

ru
n.
ne
tli
st
.p
y

m
ai
n
ne
tli
st

pr
oc
es
sin

g
pr
og
ra
m
;i
ts

in
pu

ts
ar
e
fe

b.
ne

tl
is

t
an

d
ti

le
s

til
es

ci
rc
ui
t
bo

ar
d
lo
ca
tio

ns
fo
r
al
lc

om
po

ne
nt
s
(h
um

an
-w

rit
te
n)

tim
in
g
st
ud

y.
od

s
po

ss
ib
le

un
in
te
nt
io
na

lf
or
k
of

20
21

to
po

lo
gy
.o
ds
;n

ee
ds

ch
ec
k
fo
r
m
er
ge

428

Table D.8: code/netsim/ “Electrical object code” of the minicomputer and software
to simulate it.

C source code description

compo.h structs that represent components and pins
comps/c_1g74.c simulated D flip-flop with preset and clear
comps/c_244.c simulated quad 4-bit buffer with output enable
comps/c_2gxx.c simulated AND, BUF, INV, NAND, NOR, OR, XOR
comps/c_374.c simulated dual 8-bit D flip-flop
comps/c_io.c simulated component for generic test hook
comps/c_osc.c simulated crystal oscillator
comps/c_pull.c simulated pull resistor
comps/c_reset.c simulated voltage monitor (power-on reset)
comps/c_sram.c simulated synchronous SRAM
comps/c_switch.c simulated DIP switch
connect.c deals with components, connections, short circuits, etc.
load.c parser for simulation scripts
ns.c root source file and main() for the simulator
pin.c simulates component input, output, and clock input pins
queue.c heap-based generic priority queue (wrapped by quser.c)
quser.c time-based priority queue for netlist simulation
util.c minor tidbit functions not used elsewhere

other file description

connectivity.ns connections and timings computed by run.netlist.py
fib.a assembly: infinite loop of overflowing Fibonacci numbers
fib.ns script: load frozen.ns and run fib.a
fibclean.a assembly: compute xth Fibonacci number, 0 <= x <= 53
fibclean.ns script: load frozen.ns and run fibclean.a
fire.report overcurrent/short-circuit measurements from last ns run
frozen.ns connectivity.ns as computed using frozen.netlist
last-test.ns symbolic link to last script run from ns
no-bu list of files that GNU Tar need not save
nop.a assembly: 8 NOPs and a HALT for system power-up tests
nop.ns script: load frozen.ns and run nop.a
ns binary executable for electrical simulation
regress/ directory of forgotten regression tests (may still work)
writeprotect.ns script: disable SRAM writes for purpose of testing
zero-pc.ns script: force program counters to zero for purpose of testing

429

Table D.9: code/vm/ Testing for assembler and ALU firmware.

file contents

asm-tests.c asm-tests/ folder converted to static C strings
asm-tests/abs.at assembly: absolute value regression test
asm-tests/dist.test assembly: mixed-signage arithmetic example
asm-tests/ham2.at assembly: two-cycle popcount regression test
asm-tests/imm.test assembly: manual verification of immediate opcodes
asm-tests/lmul.at assembly: 64-bit multiplication regression test
asm-tests/rpop.at assembly: R(ange) flag save and restore regression test
asm-tests/smul.at assembly: absolute value regression test
gen-asm-tests.py tool to convert asm-tests/*.at to asm-tests.c
no-bu list of files that GNU Tar need not save
perms.c regression test code for permutations
stats.c statistical tests for MIX and XIM instructions
tests.c regression tests for 109 ALU opcodes
vm tool to test assembler and ALU firmware in virtual machine
vm.c main() routine for vm

430

References

[Abel12] Marc W. Abel. 2012. Practical, scalable alternative ses-
sion encryption using one-time pads. arXiv:1212.5086. doi:
10.48550/arXiv.1212.5086

[Abel14a] Marc W. Abel. 2014. Clique network protocol and reference imple-
mentation. Retrieved Nov. 12, 2022 from https://clique4.us

[Abel14b] Marc. W. Abel and Soon. M. Chung. 2014. Computing preset dic-
tionaries from text corpora for the compression of messages. In
2014 Int. Conf. Data Software Eng. (ICoDSE), Nov. 26–27, 2014,
Bandung, Indonesia. IEEE, New York, NY, USA, 5 pages. doi:
10.1109/ICODSE.2014.7062490

[Abel15] Marc. W. Abel and Soon. M. Chung. 2015. Defending one-time
pad cryptosystems from denial-of-service attacks. In 2015 Int.
Conf. Data Software Eng. (ICoDSE), Nov. 25–26, 2015, Yo-
gyakarta, Indonesia. IEEE, New York, NY, USA, 77–82. doi:
10.1109/ICODSE.2015.7436975

[Abel18] Marc W. Abel. 2018. Apocalypse not: Practical security against
state-sponsored shenanigans. Audio. 46 minutes. https://talk.
wakesecure.com

[Abel21] Marc W. Abel. 2021. Solder-defined architectures for trusted com-
puting. In NAECON 2021—IEEE Nat. Aerosp. Electron. Conf.,
Aug. 16–19, 2021, Dayton, OH, USA. IEEE, New York, NY, USA,
246–253. doi: 10.1109/NAECON49338.2021.9696432

[Abel22a] Marc W. Abel. 2022. Parallel Multiplier Synthesis Software. Har-
vard Dataverse. (Sep. 4, 2022). doi: 10.7910/DVN/DABIBJ

[Abel22b] Marc W. Abel. 2022. 36-Bit Minicomputer Using SRAM ICs
as Logic Elements. Harvard Dataverse. (Nov. 12, 2022). doi:
10.7910/DVN/SOHO2F

431

https://doi.org/10.48550/arXiv.1212.5086
https://doi.org/10.48550/arXiv.1212.5086
https://clique4.us
https://doi.org/10.1109/ICODSE.2014.7062490
https://doi.org/10.1109/ICODSE.2014.7062490
https://doi.org/10.1109/ICODSE.2015.7436975
https://doi.org/10.1109/ICODSE.2015.7436975
https://talk.wakesecure.com
https://talk.wakesecure.com
https://doi.org/10.1109/NAECON49338.2021.9696432
https://doi.org/10.7910/DVN/DABIBJ
https://doi.org/10.7910/DVN/SOHO2F
https://doi.org/10.7910/DVN/SOHO2F

[Afshar08] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. 2008. Im-
proving synthesis of compressor trees on FPGAs via integer linear
programming. In Proc. Conf. Des. Automat. Test Europe, March
10–14, 2008, Munich, Germany. IEEE, New York, NY, USA 1256–
1261. doi: 10.1109/DATE.2008.4484851

[Appelbaum13] Jacob Appelbaum, Laura Poitras, Marcel Rosenbach, Christian
Stocker, Jorg Schindler and Holger Stark. 2013. Documents reveal
top NSA hacking unit. Spiegel, Dec. 29, 2013. Retrieved Apr. 4, 2020
from https://www.spiegel.de/international/world/the-
nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-
networks-a-940969.html

[Appleby16] Austin Appleby. 2016. SMHasher is a test suite designed to test
the distribution, collision, and performance properties of non-
cryptographic hash functions. Retrieved Oct. 15, 2022 from https:
//github.com/aappleby/smhasher

[Aumasson12] Jean-Philippe Aumasson and Daniel Julius Bernstein. 2012.
SipHash: A fast short-input PRF. In 13th Int. Conf. Cryptology In-
dia, Dec. 9–12, 2012, Kolkata, India. Lect. Notes Comput. Sci. 7668.
Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-34931-7_28

[Bailleux16a] Olivier Bailleux. 2016. A CPU made of ROMs. Watched Apr. 4,
2020 from https://www.youtube.com/watch?v=J-pyCxMg-xg

[Bailleux16b] Olivier Bailleux. 2016. The Gray-1, a homebrew CPU exclu-
sively composed of memory. Retrieved Apr. 4, 2020 from https:
//bailleux.net/pub/ob-project-gray1.pdf

[Bamford82] James Bamford. 1982. The Puzzle Palace: Inside the National Se-
curity Agency, America’s Most Secret Intelligence Organization.
Houghton Mifflin, Boston, MA, USA.

[Bamford95] James Bamford and Wayne Madsen. 1995. The Puzzle Palace (2nd.
ed.). Penguin Books. Never released, but a citation can be found
in [Schneier96]. I sought and obtained further verification that the
second edition was in fact written.

[Bamford01] James Bamford. 2001. Body of Secrets: Anatomy of the Ultra-Secret
National Security Agency. Doubleday, New York, London, Toronto,
Sydney, Auckland.

[Bamford04] James Bamford. 2004. A Pretext for War: 9/11, Iraq, and the Abuse
of America’s Intelligence Agencies. Doubleday, New York, London,
Toronto, Sydney, Auckland.

432

https://doi.org/10.1109/DATE.2008.4484851
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://doi.org/10.1007/978-3-642-34931-7_28
https://www.youtube.com/watch?v=J-pyCxMg-xg
https://bailleux.net/pub/ob-project-gray1.pdf
https://bailleux.net/pub/ob-project-gray1.pdf

[Bamford08] James Bamford. 2008. The Shadow Factory: The Ultra-Secret NSA
from 9/11 to the Eavesdropping on America. Doubleday, New York,
London, Toronto, Sydney, Auckland.

[Baugh73] Charles R. Baugh and Bruce A. Wooley. 1973. A two’s complement
parallel array multiplication algorithm. IEEE Trans. Comput. C-22,
12 (Dec. 1973), 1045–1047. doi: 10.1109/T-C.1973.223648

[Becker13] Georg T. Becker, Francesco Regazzoni, Christof Paar, andWayne P.
Burleson. 2013. Stealthy Dopant-Level Hardware Trojans. In Cryp-
togr. Hardw. Embed. Syst. –CHES 2013, August 18–23, 2013, Santa
Barbara, CA, USA. Lect. Notes Comput. Sci. 8086 (July 30, 2013),
Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-40349-1_12

[Bhargavan16] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. On the practi-
cal (in-)security of 64-bit block ciphers: Collision attacks on HTTP
over TLS and OpenVPN. In Proc. 2016 ACM SIGSAC Conf. Com-
put. Commun. Secur. (CCS ’16). ACM, New York, NY, USA, 456–
467. doi: 10.1145/2976749.2978423

[Booth51] Andrew D. Booth. 1951. A signed binary multiplication tech-
nique. Quart. J. Mech. Appl. Math. 4, 2 (Jan. 1951), 236–240. doi:
10.1093/qjmam/4.2.236

[Bratus12] Sergey Bratus, Travis Goodspeed, Peter C. Johnson, Sean W.
Smith, and Ryan Speers. 2012. Perimeter-crossing buses: A new
attack surface for embedded systems. In Proc. 7th Workshop Em-
bed. Syst. Secur. (WESS 2012), (Tampere, Finland).

[Brewer13] Cynthia A. Brewer, ed. 2013. ColorBrewer 2.0: Color Advice for
Cartography. Geography, Pennsylvania State University. University
Park, PA, USA. https://colorbrewer2.org

[Brown20] Robert G. Brown, Dirk Eddelbuettel, and David Bauer. 2020.
Dieharder: A random number test suite. Retrieved Sep. 6, 2022
from http://webhome.phy.duke.edu/~rgb/General/dieharder.
php

[Butterfield16] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr, eds.
2016. A Dictionary of Computer Science (7th ed.). Oxford Univer-
sity Press, Oxford, England.

[Buzbee10] Bill Buzbee. 2010. Magic-1 is a completely homebuilt minicom-
puter. Retrieved Sep. 6, 2022 from http://www.homebrewcpu.com

[Collet21] Yann Collet. 2021. xxHash Library. Retrieved Oct. 15, 2022 from
https://github.com/Cyan4973/xxHash

433

https://doi.org/10.1109/T-C.1973.223648
https://doi.org/10.1007/978-3-642-40349-1_12
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1093/qjmam/4.2.236
https://doi.org/10.1093/qjmam/4.2.236
https://colorbrewer2.org
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://www.homebrewcpu.com
https://github.com/Cyan4973/xxHash

[CTS18] CTS Labs. 2018. Severe Security Advisory on AMD Processors.
CTS Labs, Tel Aviv, Israel.

[Dadda65] Luigi Dadda. 1965. Some schemes for parallel multipliers. Alta Freq.
34, 5 (May 1965), 349–356.

[Dannenberg10] Roger Dannenberg, Will Dormann, David Keaton, Thomas Plum,
Robert C. Seacord, David Svoboda, Alex Volkovitsky, Timo-
thy Wilson. 2010. As-if Infinitely Ranged Integer Model (2nd
ed.). Technical Note CMU/SEI-2010-TN-008. Carnegie Mellon
University Software Engineering Institute, Pittsburgh, PA. doi:
10.1184/R1/6572048.v1

[Domas18] Christopher Domas. 2018. Hardware Backdoors in x86 CPUs. At
Black Hat USA 2018, (Las Vegas, NV), white paper.

[Dovgalyuk19] Pavel Dovgalyuk. 2019. Relay computer computes 7 digits of pi.
Video retrieved Apr. 4, 2020 from https://www.youtube.com/
watch?v=bOOCfx2EN10

[Eddy1889] Mary Baker G. Eddy. 1889. Science and Health with Key to the
Scriptures (40th ed.), p. 254. J. A. J. Wilcox, Boston, MA. Re-
trieved Jan. 3, 2023 from https://en.wikisource.org/wiki/
Science_and_Health_with_Key_to_the_Scriptures_(1889)

[Ermolov17] Mark Ermolov and Maxim Goryachy. 2017. How to hack a turned-
off computer, or running unsigned code in Intel Management En-
gine. At Black Hat Europe 2017, (London, UK), slides.

[Ermolov20] Mark Ermolov. 2020. Intel x86 root of trust: loss of trust. (Mar.
2020). Retrieved Apr. 4, 2020 from https://blog.ptsecurity.
com/2020/03/intelx86-root-of-trust-loss-of-trust.html

[Gambrell20] Jon Gambrell and Josef Federman. 2020. Fireworks, ammo-
nium nitrate likely fueled Beirut explosion. Associated Press,
Aug. 5, 2020. Retrieved Aug. 6, 2020 from https://apnews.com/
cbeb3263d6fc30a63a0300f588e7207b

[Glaisher1889] James Whitbread Lee Glaisher. 1889. The method of quarter-
squares. Nature 40 (Oct. 10, 1889), 573–576. doi: 10.1038/040573c0

[Galassi21] Mark Galassi et al. 2021. GNU Scientific Library Reference Manual
(3rd. ed.). https://www.gnu.org/software/gsl

[Garisto22] Daniel Garisto. 2022. ArXiv.org reaches a milestone and a
reckoning: Runaway success and underfunding have led
to growing pains for the preprint server. (Jan. 10, 2022).
https://www.scientificamerican.com/article/arxiv-org-
reaches-a-milestone-and-a-reckoning/

434

https://doi.org/10.1184/R1/6572048.v1
https://doi.org/10.1184/R1/6572048.v1
https://www.youtube.com/watch?v=bOOCfx2EN10
https://www.youtube.com/watch?v=bOOCfx2EN10
https://en.wikisource.org/wiki/Science_and_Health_with_Key_to_the_Scriptures_(1889)
https://en.wikisource.org/wiki/Science_and_Health_with_Key_to_the_Scriptures_(1889)
https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html
https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html
https://apnews.com/cbeb3263d6fc30a63a0300f588e7207b
https://apnews.com/cbeb3263d6fc30a63a0300f588e7207b
https://doi.org/10.1038/040573c0
https://www.gnu.org/software/gsl
https://www.scientificamerican.com/article/arxiv-org-reaches-a-milestone-and-a-reckoning/
https://www.scientificamerican.com/article/arxiv-org-reaches-a-milestone-and-a-reckoning/

[Greenemeier17] Larry Geenemeier. 2017. The Pentagon’s seek and destroy mis-
sion for counterfeit electronics. (Apr. 28, 2017). https://www.
scientificamerican.com/article/the-pentagon-rsquo-s-
seek-and-destroy-mission-for-counterfeit-electronics/

[Han19] Jin-Woo Han, Myeong-Lok Seol, Dong-Il Moon, Gary Hunter, and
M. Meyyappan. 2019. Nanoscale vacuum channel transistors fab-
ricated on silicon carbide wafers. Nat. Electr. 2 (Aug. 26, 2019),
405–411. doi: 10.1038/s41928-019-0289-z

[Hatamian86] Medhi Hatamian and Glenn L. Cash. 1986. A 70-MHz
8-bit× 8-bit parallel pipelined multiplier in 2.5-µm CMOS. In
IEEE J. Solid-State Circuits 21, 4 (Aug. 1986), 505–513. doi:
10.1109/JSSC.1986.1052564

[Holler17] Mirko Holler, Manuel Guizar-Sicairos, Esther H. R. Tsai, Roberto
Dinapoli, Elisabeth Müller, Oliver Bunk, Jörg Raabe, and Gabriel
Aeppli. 2017. High-resolution non-destructive three-dimensional
imaging of integrated circuits. Nature 543 (Mar. 16, 2017), 402–
417. doi: 10.1038/nature21698

[IBM22] IBM Security and Ponemon Institute LLC. 2022. Cost of a Data
Breach Report 2022. Retrieved Sep. 6, 2022 from https://www.
ibm.com/downloads/cas/3R8N1DZJ

[IEEE19] Institute of Electrical and Electronic Engineers. 2019. IEEE
764-2019. IEEE Standard for Floating-Point Arithmetic. doi:
10.1109/IEEESTD.2019.8766229

[ISO18] International Organization for Standardization. 2018.
ISO/IEC 27000:2018(E). Information technology – Security
techniques – Information security management systems –
Overview and vocabulary. Retrieved Jul. 14, 2020 from https:
//standards.iso.org/ittf/PubliclyAvailableStandards/
c073906_ISO_IEC_27000_2018_E.zip

[Iwata06] Tetsu Iwata. 2006. New blockcipher modes of operation with be-
yond the birthday bound security. In Fast Software Encryption 2006
(FSE 2006), March 15–17, 2006, Graz, Austria. Lect. Notes Com-
put. Sci. 4047 (July 6, 2006), Springer, Berlin, Heidelberg. doi:
10.1007/11799313_20

[Jansky33] Karl G. Jansky. 1933. Electrical disturbances apparently of ex-
traterrestrial origin. Proc. Inst. Radio Eng. 21, 10 (Oct. 1933),
1387–1398. doi: 10.1109/JRPROC.1933.227458

435

https://www.scientificamerican.com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-counterfeit-electronics/
https://www.scientificamerican.com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-counterfeit-electronics/
https://www.scientificamerican.com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-counterfeit-electronics/
https://doi.org/10.1038/s41928-019-0289-z
https://doi.org/10.1109/JSSC.1986.1052564
https://doi.org/10.1109/JSSC.1986.1052564
https://doi.org/10.1038/nature21698
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip
https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/11799313_20
https://doi.org/10.1109/JRPROC.1933.227458

[Janushkevich20] Dmitry Janushkevich. 2020. The Fake Cisco: Hunting for Back-
doors in Counterfeit Cisco Devices. Version 1.0, Jul. 2020. Re-
trieved Jul. 19, 2020 from https://labs.f-secure.com/assets/
BlogFiles/2020-07-the-fake-cisco.pdf

[Johnson72] Nigel Johnson. 1973. Improved binary multiplication system. Elec-
tron. Lett. 9, 1 (Jan. 1973), 6–7. doi: 10.1049/el:19730005

[Johnson80] Everett L. Johnson. 1980. A digital quarter square multiplier.
IEEE Trans. Comput. C-29, 3 (Mar. 1980), 258–261. doi:
10.1109/TC.1980.1675558

[KiCad22] KiCad project. 2022. KiCad EDA: A Cross Platform and Open
Source Electronics Design Automation Suite. Retrieved Sep. 7, 2022
from https://www.kicad.org/

[Knuth81] Donald Ervin Knuth. 1981. The Art of Computer Programming,
Vol. 2: Seminumerical Algorithms (2nd. ed.), 1–5. Addison-Wesley,
Reading, MA, USA.

[Kobayashi81] Hideaki Kobayashi. 1981. A fast multi-operand multiplication
scheme. In 1981 IEEE 5th Symp. Comput. Arith. (ARITH), May
16–19, 1981, Ann Arbor, MI, USA. IEEE, New York, NY, USA,
246–250. doi: 10.1109/ARITH.1981.6159279

[Kocher19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2019. Spectre attacks: Exploiting speculative execution. In 40th
IEEE Symp. Secur. Priv., (San Francisco, CA), IEEE, 1–19. doi:
10.1109/SP.2019.00002

[Lehman61] Meir M. Lehman and Naphtali Burla. 1961. Skip techniques
for high-speed carry-propagation in binary arithmetic units. IRE
Trans. on Electron. Comput. EC-10, 4 (Dec. 1961), 691–698. doi:
10.1109/TEC.1961.5219274

[Ling90] Huey Ling. 1990. An approach to implementing multiplication with
small tables. IEEE Trans. Comput. 39, 5 (May 1990), 717–718. doi:
10.1109/12.53588

[Lipp18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018.
Meltdown: Reading Kernel Memory from User Space. In Proc.
27th USENIX Secur. Symp., (Baltimore, MD), USENIX Associ-
ation, 973–990. doi: 10.1145/3357033

436

https://labs.f-secure.com/assets/BlogFiles/2020-07-the-fake-cisco.pdf
https://labs.f-secure.com/assets/BlogFiles/2020-07-the-fake-cisco.pdf
https://doi.org/10.1049/el:19730005
https://doi.org/10.1109/TC.1980.1675558
https://doi.org/10.1109/TC.1980.1675558
https://www.kicad.org/
https://doi.org/10.1109/ARITH.1981.6159279
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/TEC.1961.5219274
https://doi.org/10.1109/TEC.1961.5219274
https://doi.org/10.1109/12.53588
https://doi.org/10.1109/12.53588
https://doi.org/10.1145/3357033

[Love11] Eric Love, Yier Jin, and Yiorgos Makris. 2011. Enhancing security
via provably trustworthy hardware intellectual property. In 2011
IEEE Int. Symp. Hardw.-Oriented Secur. Trust, June 5–6, 2011,
San Diego, CA, USA. IEEE, New York, NY, USA, 12–17. doi:
10.1109/HST.2011.5954988

[Schlaepfer16] Eric Schlaepfer. 2016. The MOnSter 6502. Retrieved Sep. 6, 2022
from https://monster6502.com

[Mora05] Higinio Mora Mora, Jerónimo Manuel Mora Pascual, José Luis
Sánchez Romero and Francisco Antonio Pujol López. 2005. Partial
product reduction based on look-up tables. 19th Int. Conf. VLSI
Des. & 5th Int. Conf. on Embed. Syst. Des. (VLSID ’06), Jan. 3–7,
2006, Hyderabad, India. IEEE, New York, NY, USA, 6 pages. doi:
10.1109/VLSID.2006.130

[Mora08] Higinio Mora Mora, Jerónimo Manuel Mora Pascual, José Luis
Sánchez Romero and Juan Manuel García-Chamizo. 2008. Partial
product reduction by using look-up tables for M×N multiplier. In-
tegration 41, 4 (July 2008), 557–571. doi: 10.1016/j.vlsi.2008.01.005

[Mutlu19] Onur Mutlu and Jeremie S. Kim. 2019. RowHammer: A retrospec-
tive. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.. doi:
10.1109/TCAD.2019.2915318

[Nichols22] Steven J. Vaughan-Nichols. 2022. Securing open-source code isn’t
going to be cheap. (Feb. 9, 2022). Retrieved Sep. 21, 2022
from https://www.theregister.com/2022/02/09/secure_open_
source_software

[NSA08] National Security Agency Advanced Network Technology Di-
vision. 2008. NSA ANT catalog. Retrieved Apr. 4, 2020
from https://www.eff.org/files/2014/01/06/20131230-
appelbaum-nsa_ant_catalog.pdf

[NSA22] National Security Agency. 2022. Software memory se-
curity. (Nov. 10, 2022). Retrieved Nov. 14, 2022 from
https://media.defense.gov/2022/Nov/10/2003112742/-
1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

[Obama13] Barack Obama. 2013. Statement by the President. Jun. 7,
2013, (San Jose, CA), transcript. Retrieved Apr. 4, 2020
from https://obamawhitehouse.archives.gov/the-press-
office/2013/06/07/statement-president

[Oklobdzija96] Vojin G. Oklobdzija, David Villeger and Simon S. Liu. 1996. A
method for speed optimized partial product reduction and genera-
tion of fast parallel multipliers using an algorithmic approach. IEEE
Trans. Comput. 45, 3 (Mar. 1996), 294–306. doi: 10.1109/12.485568

437

https://doi.org/10.1109/HST.2011.5954988
https://doi.org/10.1109/HST.2011.5954988
https://monster6502.com
https://doi.org/10.1109/VLSID.2006.130
https://doi.org/10.1109/VLSID.2006.130
https://doi.org/10.1016/j.vlsi.2008.01.005
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://www.theregister.com/2022/02/09/secure_open_source_software
https://www.theregister.com/2022/02/09/secure_open_source_software
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://obamawhitehouse.archives.gov/the-press-office/2013/06/07/statement-president
https://obamawhitehouse.archives.gov/the-press-office/2013/06/07/statement-president
https://doi.org/10.1109/12.485568

[Ousterhout21] John Kenneth Ousterhout. 2021. Eliminate page limits for fi-
nal paper versions. Retrieved Nov. 11, 2022 from https://web.
stanford.edu/~ouster/cgi-bin/pageLimits.php

[Patterson83] David Andrew Patterson. 1983. Microprogramming. Sci. Am. 248,
3 (Mar. 1983), 50–57. Retrieved Oct. 12, 2022 from https://www.
jstor.org/stable/24968851

[Paul09] Bipul C. Paul, Shinobu Fujita, and Masaki Okajima. 2009.
ROM-based logic (RBL) design: a low-power 16 bit multiplier.
IEEE J. Solid-State Circuits 44, 11 (Nov. 2009), 2935–2942. doi:
10.1109/JSSC.2009.2028928

[Pompeo20] Michael Pompeo. 2020. The tide is turning toward trusted
5G vendors. Press Statement by the Secretary of State.
Jun. 24, 2020, (Washington, DC). Retrieved Sep. 5, 2022
from https://2017-2021.state.gov/the-tide-is-turning-
toward-trusted-5g-vendors/index.html

[Portnoy17] Erica Portnoy and Peter Eckersley. 2017. Intel’s Manage-
ment Engine is a security hazard, and users need a way to
disable it. (May 2017). Retrieved Apr. 4, 2020 from https:
//www.eff.org/deeplinks/2017/05/intels-management-
engine-security-hazard-and-users-need-way-disable-it

[Private21] Manufacturer representative. 2021. Private communication. Jan.
25, 2021.

[Rice53] Henry Gordon Rice. 1953. Classes of recursively enumerable sets
and their decision problems. Trans. Am. Math. Soc. 74, 2 (Mar.
1953), 358–366. doi: 10.1090/s0002-9947-1953-0053041-6

[Russell78] Richard M. Russell. 1978. The CRAY-1 computer system. Commun.
ACM 21, 1 (Jan. 1978), 63–72. doi: 10.1145/359327.359336

[Rutkowska15a] Joanna Rutkowska. 2015. Intel x86 considered harmful. (Oct. 2015).
Retrieved Apr. 4, 2020 from https://blog.invisiblethings.
org/papers/2015/x86_harmful.pdf

[Rutkowska15b] Joanna Rutkowska. 2015. State considered harmful: A proposal
for a stateless laptop. (Dec. 2015). Retrieved Sep. 26, 2022
from https://blog.invisiblethings.org/papers/2015/state_
harmful.pdf

[Schneier96] Bruce Schneier. 1996. Applied Cryptography: Protocols, Algorithms,
and Source Code in C. John Wiley & Sons, New York, Chichester,
Brisbane, Toronto, Singapore.

438

https://web.stanford.edu/~ouster/cgi-bin/pageLimits.php
https://web.stanford.edu/~ouster/cgi-bin/pageLimits.php
https://www.jstor.org/stable/24968851
https://www.jstor.org/stable/24968851
https://doi.org/10.1109/JSSC.2009.2028928
https://doi.org/10.1109/JSSC.2009.2028928
https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html
https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1145/359327.359336
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/state_harmful.pdf
https://blog.invisiblethings.org/papers/2015/state_harmful.pdf

[Schwartz08] Mischa Schwartz and Jeremiah Hayes. 2008. A history of transat-
lantic cables. IEEE Commun. Mag. 46, 9 (Sep. 12, 2008), 42–48.
doi: 10.1109/MCOM.2008.4623705

[Seacord14] Robert C. Seacord. 2014. The CERT C Coding Standard: 98
Rules for Developing Safe, Reliable, and Secure Systems (2nd. ed.).
Addison-Wesley, New York, NY, USA, 112–118, 126–135.

[Spafford89] Eugene Howard Spafford. 1989. The Internet worm: Crisis and
aftermath. Commun. ACM 32, 6 (June 1989), 678–687. doi:
10.1145/63526.63527

[Stoll88] Clifford Paul Stoll. 1988. Stalking the wily hacker. Commun. ACM
31, 5 (May 1988), 484–497. doi: 10.1145/42411.42412

[Stenzel77] William J. Stenzel, William J. Kubitz and Gilles H. Gar-
cia. 1977. A compact high-speed parallel multiplication scheme.
IEEE Trans. Comput. C-26, 10 (Oct. 1977), 948–957. doi:
10.1109/TC.1977.1674730

[Tatar18] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Throwham-
mer: Rowhammer attacks over the network and defenses. In 2018
USENIX Annu. Tech. Conf., (Boston, MA), USENIX Association,
213–225.

[TI75] Texas Instruments Inc. 1975. TMS 1000 Series MOS/LSI One-
Chip Microcomputers Programmer’s Reference Manual. Texas In-
struments Inc., Dallas, TX.

[TI98] Texas Instruments Inc. 1998. AVC Logic Family Technology and
Applications. Texas Instruments Inc., Dallas, TX. Retrieved Sept.
23, 2022 from https://www.ti.com/lit/pdf/scea006

[TI02] Texas Instruments Inc. 2002. AUC: Advanced Ultra-Low-Voltage
CMOS Logic (product bulletin). Texas Instruments Inc., Dallas,
TX. Retrieved Sept. 23, 2022 from https://www.ti.com/lit/pdf/
sceb011

[TienLin73] Tien-Lin Chang. 1973. Binary read-only-memory multiplier. Elec-
tron. Lett. 9, 25 (Dec. 1973), 580–581. doi: 10.1049/el:19730429

[Toomey17] Warren Toomey (Ed.). 2017. Homebrew computers web-ring. Re-
trieved Sep. 6, 2022 from https://www.homebrewcpuring.org

[VanBulck20] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. 2020. LVI: Hijacking transient execution

439

https://doi.org/10.1109/MCOM.2008.4623705
https://doi.org/10.1145/63526.63527
https://doi.org/10.1145/63526.63527
https://doi.org/10.1145/42411.42412
https://doi.org/10.1109/TC.1977.1674730
https://doi.org/10.1109/TC.1977.1674730
https://www.ti.com/lit/pdf/scea006
https://www.ti.com/lit/pdf/sceb011
https://www.ti.com/lit/pdf/sceb011
https://doi.org/10.1049/el:19730429
https://www.homebrewcpuring.org

through microarchitectural load value injection. 41st IEEE Symp.
Secur. and Priv. (S&P 20), (pandemic all-digital conference). doi:
10.1109/SP40000.2020.00089

[vandenHuevel15] Jan van den Huevel. 2015. The arXiv cannot replace tra-
ditional publishing without addressing the standards of re-
search assessment. (Oct. 23, 2015). https://blogs.lse.ac.uk/
impactofsocialsciences/2015/10/23/open-repositories-
arxiv-scientific-publishing/

[Verma07] Ajay K. Verma and Paolo Ienne. 2007. Automatic Synthesis of Com-
pressor Trees: Reevaluating Large Counters. In 2007 Des. Automat.
Test Europe Conf. Exhib., Apr. 16–20, 2007, Nice, France. IEEE,
New York, NY, USA, 6 pages. doi: 10.1109/DATE.2007.364632

[Waksman14] Adam Waksman. 2014. Producing Trustworthy Hardware Us-
ing Untrusted Components, Personnel and Resources. Ph.D.
Dissertation. Columbia University, New York, NY, USA. doi:
10.7916/D8N014PX

[Wallace64] Christopher Stewart Wallace. 1964. A suggestion for a fast multi-
plier. IEEE Trans. Electr. Comput. EC-13, 1 (Feb. 1964), 14–17.
doi: 10.1109/PGEC.1964.263830

[Ward96] William GradyWard. 1996. Moby Thesaurus II, distributed by Zeke
Sikelianos, https://moby-thesaurus.org

[Webster13] Webster’s Revised Unabridged Dictionary. 1913. G. & C. Merriam
Co., Springfield, MA, USA.

[Weinberger58] Arnold Weinberger and Jay L. Smith. 1958. A logic for high-speed
addition. Natl. Bur. Stand. Circ. 591, 1 (Feb. 14, 1958), 3–12. doi:
10.6028/NBS.CIRC.591

[Weinberger81] Arnold Weinberger. 1981. 4:2 carry-save adder module. IBM Tech.
Discl. Bull. 23, 8 (Jan. 1981), 3811–3814.

[Weste11] Neil H. E. Weste and David Money Harris. 2011. CMOS VLSI
Design: A Circuits and Systems Perspective (4th. ed.). Addison-
Wesley, New York, NY, USA, 475–476.

440

https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1109/SP40000.2020.00089
https://blogs.lse.ac.uk/impactofsocialsciences/2015/10/23/open-repositories-arxiv-scientific-publishing/
https://blogs.lse.ac.uk/impactofsocialsciences/2015/10/23/open-repositories-arxiv-scientific-publishing/
https://blogs.lse.ac.uk/impactofsocialsciences/2015/10/23/open-repositories-arxiv-scientific-publishing/
https://doi.org/10.1109/DATE.2007.364632
https://doi.org/10.7916/D8N014PX
https://doi.org/10.7916/D8N014PX
https://doi.org/10.1109/PGEC.1964.263830
https://moby-thesaurus.org
https://doi.org/10.6028/NBS.CIRC.591
https://doi.org/10.6028/NBS.CIRC.591

	A Solder-Defined Computer Architecture for Backdoor and Malware Resistance
	Repository Citation

	Overview
	Problem statement
	Seeking a solution
	Research questions
	Original results

	Definitions
	Components
	Logic family selection
	SRAMs as electrical components
	Asynchronous SRAM
	Synchronous SRAM
	Dual-ported SRAM

	Traditional logic ICs
	Clock skew with mixed logic families
	Derived components
	Multiplexers
	Shift registers
	Counters

	Non-computing component security
	Firmware reservoir
	Oscillators and clock buffers
	Peripherals
	Capacitors

	Logic blocks for SRAM ALUs
	Hierarchy of ALU capabilities
	Simple lookup elements
	Arbitrary geometry adders
	Carry-skip adders
	Swizzlers
	Logarithmic shifters
	Semi-swizzlers
	Substitution-permutation networks
	Fast multipliers
	Open question: medium-speed multipliers

	Three-layer ALU structure
	Superpositions of SRAM logic blocks
	Word sizes for minicomputer architectures
	CPU flags
	SRAM bit assignments
	Alternate diagram for ALU

	Two-layer ALU structure
	An elegant two-layer ALU for 36-bit words
	A tiny ALU for 18-bit words

	A three-layer, 36-bit ALU firmware
	What is SRAM ALU firmware?
	ALU opcodes and their implementations
	Additive opcodes
	Bitwise boolean opcodes
	Compare opcodes
	Shift and rotate opcodes
	Multiply opcodes
	NUDGE instruction
	Bit permute opcodes
	Mix opcodes
	Simple unary instructions
	Stacked unary instructions

	ALU operations and their implementations
	Alpha layer operation
	Beta layer operation
	Gamma layer operation
	Theta operation
	Zeta operation
	Simple unary operations
	Stacked unary operations

	Leading and trailing bit manipulation
	A reference implementation
	Future work

	A solder-defined CPU with protected memory
	Physical characteristics of the CPU
	Machine word structure
	Register organization
	Register splitting and reverse subtraction

	Memory organization
	Data memory organization
	Code memory organization
	Stack memory organization

	Machine instruction format
	Alternative instruction formats

	CPU topology and instruction cycle
	Instruction cycle for ALU opcodes
	Memory access opcodes and routes
	Flip-flops not involved in memory accesses

	Control unit
	Clock driver
	Click counter
	Control decoder

	Simplicity and scale of the CPU

	Forthcoming subsystems
	Preemptive multitasking
	Firmware loader
	Option 1: Purchased complex logic
	Option 2: Hardwired logic after NOR flash
	Option 3: Finite state machine after NOR flash
	Option 4: Parallel NOR flash finite state machine

	Input and output

	Fast parallel multipliers
	Background
	Notation and definitions
	Generation of partial products
	Unsigned partial products
	Signed partial products
	Mixed-signage multipliers

	Partial product summation
	Carry-save addition
	Carry-skip addition
	Fast subproduct totals
	Multilayer carry-skip addition

	Implication and contribution

	Minicomputer implementation
	Firmware implementation
	Assembler
	What the assembler includes
	Future assembler features

	Netlist definition and processing
	Off-the-shelf electronic design automation software
	A typewritten netlist
	Component placement
	Netlist summary information output
	Estimating propagation delay between pins

	Electrical and timing simulation
	Off-the-shelf simulation software
	Electrical simulator description
	Simulator test script semantics and example
	Simulator output example
	Hazards, limitations, and next steps of simulation

	Opposing viewpoints
	Findings, motivation, significance
	Major findings to date
	Motivation for this work
	Security advantages of the architecture
	Drawbacks of the architecture
	Significance of this work
	Future work and timeframe for availability

	Assembly language conventions
	Source code character set
	Comments
	Numbers
	Identifiers
	Abbreviating keywords
	Declaring registers
	Overriding register signedness
	Permutation notations

	Instruction reference
	A Add
	ABS Absolute value
	AC Add with carry
	AND AND
	ASL Arithmetic shift left
	ASR Arithmetic shift right
	AW Add with wrap
	AWC Add with wrap and carry
	BO- Brighten ones
	BOUND Bound
	BZ- Brighten zeros
	CALL Call
	CLO Count leading ones
	CLZ Count leading zeros
	CMP Compare
	CRF Clear range flag
	CTO Count trailing ones
	CTZ Count trailing zeros
	CX Check and extend
	DSL Double shift left
	EO- Erase ones
	EZ- Erase zeros
	FABS Fast absolute value
	FO- Find one
	FZ- Find zero
	GO- Grow one
	GZ- Grow zero
	HALT Halt
	IPSR Instruction pointer shift register
	JUMP Jump
	LANR Left and not right
	LAS Logical assignment
	LFSR Linear feedback shift register
	LO- Light ones
	LONR Left or not right
	LSL Logical shift left
	LSR Logical shift right
	LZ- Light zeros
	MAX Maximum
	MH Multiply high
	MHNS Multiply high no shift
	MIN Minimum
	MIRD Mirrored decrement
	MIRI Mirrored increment
	MIX Mix
	ML Multiply low
	NAND NAND
	NAS Numeric assignment
	NOP No operation
	NOR NOR
	NOT NOT
	NUDGE Nudge
	OR OR
	PARTY Parity
	PAT Permute across tribbles
	PAIT Permute across and inside tribbles
	PIT Permute inside tribbles
	POPC Popcount
	PRL Prepare to rotate left
	PRR Prepare to rotate right
	PSL Prepare to shift left
	PSR Prepare to shift right
	RANL Right and not left
	ROL Rotate left
	RONL Right or not left
	RS Reverse subtract
	RSC Reverse subtract with carry
	RSW Reverse subtract with wrap
	RSWC Reverse subtract with wrap and carry
	RTGL Rotate T going left
	RTGR Rotate T going right
	S Subtract
	SC Subtract with carry
	STGL Shift T going left
	STGR Shift T going right
	SW Subtract with wrap
	SWC Subtract with wrap and carry
	SWIZ Swizzle
	TXOR Transposing XOR
	XIM Undo mix
	XNOR XNOR
	XOR XOR
	XPOLY XOR polynomial on T flag

	Advance corrections
	Instruction format fields to move
	ALU operation to be deleted
	Physical address format to change

	What's where in the source tree
	References

