36,236 research outputs found

    Attribute Equilibrium Dominance Reduction Accelerator (DCCAEDR) Based on Distributed Coevolutionary Cloud and Its Application in Medical Records

    Full text link
    © 2013 IEEE. Aimed at the tremendous challenge of attribute reduction for big data mining and knowledge discovery, we propose a new attribute equilibrium dominance reduction accelerator (DCCAEDR) based on the distributed coevolutionary cloud model. First, the framework of N-populations distributed coevolutionary MapReduce model is designed to divide the entire population into N subpopulations, sharing the reward of different subpopulations' solutions under a MapReduce cloud mechanism. Because the adaptive balancing between exploration and exploitation can be achieved in a better way, the reduction performance is guaranteed to be the same as those using the whole independent data set. Second, a novel Nash equilibrium dominance strategy of elitists under the N bounded rationality regions is adopted to assist the subpopulations necessary to attain the stable status of Nash equilibrium dominance. This further enhances the accelerator's robustness against complex noise on big data. Third, the approximation parallelism mechanism based on MapReduce is constructed to implement rule reduction by accelerating the computation of attribute equivalence classes. Consequently, the entire attribute reduction set with the equilibrium dominance solution can be achieved. Extensive simulation results have been used to illustrate the effectiveness and robustness of the proposed DCCAEDR accelerator for attribute reduction on big data. Furthermore, the DCCAEDR is applied to solve attribute reduction for traditional Chinese medical records and to segment cortical surfaces of the neonatal brain 3-D-MRI records, and the DCCAEDR shows the superior competitive results, when compared with the representative algorithms

    Enabling decision trend analysis with interactive scatter plot matrices visualization

    Full text link
    © 2015 Elsevier Ltd. This paper presents a new interactive scatter plot visualization for multi-dimensional data analysis. We apply Rough Set Theory (RST) to reduce the visual complexity through dimensionality reduction. We use an innovative point-to-region mouse click concept to enable direct interactions with scatter points that are theoretically impossible. To show the decision trend we use a virtual Z dimension to display a set of linear flows showing approximation of the decision trend. We conducted case studies to demonstrate the effectiveness and usefulness of our new technique for analyzing the property of three popular data sets including wine quality, wages and cars. The paper also includes a pilot usability study to evaluate parallel coordinate visualization with scatter plot matrices visualization with RST results

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces

    A Novel Variable Precision Reduction Approach to Comprehensive Knowledge Systems

    Get PDF

    Delaunay triangulation based image enhancement for echocardiography images

    Get PDF
    A novel image enhancement approach for automatic echocardiography image processing is proposed. The main steps include undecimated wavelet based speckle noise reduction, edge detection, followed by a regional enhancement process that employs Delaunay triangulation based thresholding. The edge detection is performed using a fuzzy logic based center point detection and a subsequent radial search based fuzzy multiscale edge detection. The edges obtained are used as the vertices for Delaunay triangulation for enhancement purposes. This method enhances the heart wall region in the echo image. This technique is applied to both synthetic and real image sets that were obtained from a local hospital

    Multiple Relevant Feature Ensemble Selection Based on Multilayer Co-Evolutionary Consensus MapReduce

    Full text link
    IEEE Although feature selection for large data has been intensively investigated in data mining, machine learning, and pattern recognition, the challenges are not just to invent new algorithms to handle noisy and uncertain large data in applications, but rather to link the multiple relevant feature sources, structured, or unstructured, to develop an effective feature reduction method. In this paper, we propose a multiple relevant feature ensemble selection (MRFES) algorithm based on multilayer co-evolutionary consensus MapReduce (MCCM). We construct an effective MCCM model to handle feature ensemble selection of large-scale datasets with multiple relevant feature sources, and explore the unified consistency aggregation between the local solutions and global dominance solutions achieved by the co-evolutionary memeplexes, which participate in the cooperative feature ensemble selection process. This model attempts to reach a mutual decision agreement among co-evolutionary memeplexes, which calls for the need for mechanisms to detect some noncooperative co-evolutionary behaviors and achieve better Nash equilibrium resolutions. Extensive experimental comparative studies substantiate the effectiveness of MRFES to solve large-scale dataset problems with the complex noise and multiple relevant feature sources on some well-known benchmark datasets. The algorithm can greatly facilitate the selection of relevant feature subsets coming from the original feature space with better accuracy, efficiency, and interpretability. Moreover, we apply MRFES to human cerebral cortex-based classification prediction. Such successful applications are expected to significantly scale up classification prediction for large-scale and complex brain data in terms of efficiency and feasibility
    • …
    corecore