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A Novel Variable Precision Reduction Approach to
Comprehensive Knowledge Systems

Chao Yang, Hongbo Liu, Sean McLooreenior Member, IEEEC. L. Philip Chen Fellow, IEEE
Xindong Wu, Fellow, IEEE

Abstract—A comprehensive knowledge system reveals the in-

tangible insights hidden in an information system by integating
information from multiple data sources in a synthetical mamer.
In this paper, we present a variable precision reduction thery,
underpinned by two new concepts: distribution tables and ge
nealogical binary trees Sufficient and necessary conditions to
extract comprehensive knowledge from a given information ys-
tem are also presented and proven. A complete variable presion
reduction (CVPR) algorithm is proposed, in which we introduce
four important strategies, namely, distribution table abgracting,
attribute rank dynamic updating, hierarchical binary clas sifying,
and genealogical tree pruning. The completeness of our algthm
is proven theoretically and its superiority to existing mehods
for obtaining complete reducts is demonstrated experimeraly.
Finally, having obtaining the complete reduct set, we demastrate
how the relationships between the complete reduct set and
comprehensive knowledge system can be visualized in a doebl
layer lattice structure using Hasse diagrams.

Index Terms—Variable precision reduction, information sys-
tem, knowledge system, knowledge system structure, dataisnce.

I. INTRODUCTION

in data mining and knowledge discovery and has been widely
studied. Considerable progress has been made on topics such
as feature selection [4], [5], dimensionality reductior, [6
feature evaluation [7], dynamic updating approximatiofy [8
noisy processing [9], multi-granulation analysis [10]1]and
inconsistent data filtering [12], etc.

When performing knowledge extraction using rough set
theory [13], the goal is to obtain a minimum reduct [14],
[15] at an affordable computational cost and algorithmimeo
plexity. The corresponding knowledge derived from a single
reduct is called a single-knowledge [16]. However, in pract
multiple reducts usually exist in information systems, hwit
each reduct having a different attribute combination bat th
same classification capabilities. These can be thought of as
providing insights from different perspectives [17]. Mple
reducts can constitute a multi-knowledge system [18], bt t
does not guarantee that they capture all available knowledg
For a given information system, only a complete reduct set
contains all possible reducts without redundancy, anckthes
can be used to deduce a comprehensive knowledge system.
Unfortunately, obtaining a complete reduct set is an NP-

ATA science employs theories and techniques draviard problem [19], and as such represents a major challenge
from many fields for knowledge extraction from data&omputationally.

and information systems [1]. They are usually presentedrpig naner focuses on how to obtain the complete reducts

as decision tables with rows and columns,
attributes. Knowledge extraction [2] or rule generatiohif3

achieved by reducing the number of attributes in the detisi

.e. objects agg:  formulate the corresponding knowledge structure and
&enerate comprehensive knowledge systeht®e paper has

e following contributions:

tables in such a way that there is no loss of the information

hidden in the information systems. In other words, if thera i
metric A for information, the value of is not changed by the

reduction process. It is also one of the most common problems
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« We present a variable precision reduction theory for
comprehensive knowledge systems. Some underpinning
concepts relating to the completeness of reduct set and
knowledge are defined. In particular, we introduce two
new concepts, namely, distribution tables and genealogi-
cal binarytrees and establish the necessary and sufficient
conditions to achieve complete multi-knowledge extrac-
tion without redundancies.

« An efficient and effective complete variable precision
reduction algorithm is then proposed, the key elements
of which are distribution table abstracting, attributekan
dynamic updating, hierarchical binary classifying and
genealogical tree pruning. We prove theoretically the
completeness of our algorithm and compare its efficacy
to existing methods with the aid of experimental studies.

o We also explore the relationships between a complete
reduct set andits knowledge system, introducing a
double-layer lattice structure to enable them to be illus-
trated visually in Hasse diagrams.
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The remainder of the paper is organized as follows. Relat€d Knowledge Extraction Approaches

Y/vz:rzgtl)lsere;gi\i,;?:nTegjgttilc?: tlr:'elonr Sticitr'g?us d!' t\év:c%rr?;?gésur Different heuristic algorithms have been proposed to reduc
P y attributes and to extract knowledge from information syste

of reduct set and knOV\_/Iedge extraction. In Section 1V, "R the classical rough set model [31]. However, these algo-
propose a complete yarlab!e precision reduction a'go“?"."m rithms are subject to a rigid premise in the classical rowagh s
E:sctlrj(laaer’isthper:syenna}cgjlci:térsjkl)ausfc{;r;k;?/%&\t owiﬁ(ae?ﬁ:ﬁgf;c model that the error classification rate [32] must be zero.

. . . : . : To relax this rigid premise of the classical rough set model,
cal bmar_y classifying and pruning strateg|e§ are intredtin variable precisio% rgugh sets (VPRS) [33] aregpresented to
Subsection IV-B. Then, our complete reduction and knowded

extraction are presented in Subsection IV-C. The experﬁaherpgzjond du;:re ?2 (iaor:]osr iil;irzilflﬁaggtn t;\?aﬂisﬂreTEisﬁoﬁgzioag?stin-
results and discussions are provided in Section V. Final Yy reg 9 y 9

conclusions and areas for future work are given in Sectir%%l"c’h certam and ungertam objech,_ respectively [356].[3
Vi e predictable (certain) objects will increase by redggin

Ziarko presents & — reduct method [33] for attribute
reduction while Park and Choi propose a novel VPRS method
1. RELATED WORK using information entropy [37]. However, a side effect dadith
approaches is the so called “jumping” phenomenon [14],.[38]
where the output alternates between reduct and non-reduct.
Pancerz and his colleagues discussed information and dyWang et al. [38] show that the “jumping” phenomenon is
namic information systems, which can be used in predictisiue to the fact that the changes in classification quality and
problems [20], [21]. Compared to single-knowledge, multipositive region are non-monotonous. They further illustra
knowledge is usually more comprehensive, and as suchthgt the distribution of the lower approximation bound abou
likely to correctly classify new objects. Abu-Donia [22]epr decision classes varies monotonically. The reductiongugr
sented rough set approximations using multi-knowledge bas this case follows a decision monotonicity criterion [39]
to raise the efficiency of decision support system. Gan0]. It implies that rough set reduction is subject to the
[23] demonstrated the creation of a multi-knowledge systegistribution of the objects withB-dominant decision value in
by integrating ten single-knowledge systems using 10-foch equivalence class tbextent within the positive region,
partition learning. They illustrated that a multi-knowtgd while the distribution of other objects have little influenc
system can improve the accuracy of classification signifigan because of the error classification rate
However, although they put the multi-knowledge system into The attribute reduction methods based on the discermwibilit
practice, issues of redundancy and comprehensivenesg offatrix and the ones based on the positive region can both
knowledge extracted were not considered. Ma [24] introducée used to obtain multiple reducts from a given information
a completeness condition to determine whether an attribstestem. However, the former is usually much more compu-
combination is a reduct or not, but again does not considetionally intensive and is limited to much lower dimension
the completeness of multi-reducts. A complete reduct setpsoblems than the later, even when using the approach intro-
stricter than multi-reducts, since in a complete reductaét duced by Yang [41] to minimize the number of elements in
reducts are included without redundancy. Knowledge corfte discernibility matrix to decrease the computationaldlo
prehensiveness also depends on the corresponding comgletthe case of multi-reducts and multi-knowledge extractio
reduct set, because different reduct provide knowledgen franethods based on the positive region, the related work gnainl
different perspectives. falls into two categories:

e non-core attribute combination algorithms, such as the
worst-attribute-drop-first (WADF) algorithm [16]. In
these algorithms, all attributes are divided into core at-
Qian et al. presented a space distance [25] which is used tributes and non-core attributes. A reduct is obtained and

to characterize the similarity between reducts. Afteritaite then used as a seed reduct to generate other reducts in the

reduction, a knowledge system can be constituted by rule multi-reducts set through a non-core attribute replacemen
extraction tools, such as rough set [26], apriori algorithm  process, whereby one non-core attribute is excluded in

[27], formal concept analysis [28] and so on. Formal concept the identified reduct. In [42] a multi-knowledge system

A. Knowledge Comprehensiveness

B. Knowledge Visualisation

analysis not only gives implicationsy® — Y™, but also builds is constituted to help robots identify their environment.
a hierarchical structure of knowledge concepts througleepn However, in the algorithms employed, the number of
lattices [29] which can be used to describe the relatiorsship  multi-reducts obtained is strongly dependent on the initia
between objects and attributes. Through constructing éetep seed reducts.

concept lattices, the lattice structure can be introdueed t « non-deterministic random or quasi-random search algo-
describe the similarity between reducts or between knayded rithm, such as swarm intelligent algorithms [43], [44].
and the relationship between a reduct and its corresponding These algorithms utilize a swarm of intelligent individsial
knowledge can also be depicted. Hasse diagrams [30] are a to search for the reducts in an information system and
suitable way to visualise the lattices of the comprehensive can usually obtain multi-reducts quickly. They have been
knowledge system structure as developed in this paper. employed to obtain a multi-knowledge system using
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rough sets and to complete multi-factor analysis of violeat D — reduct of C, iff POS@(D) = POS@(D) and B is
crime [45]. However, although random search algorithm® — independent.

can convergence theoretically with a probability of 1, Theorem 1:Given T}, setNEGg(D) =U - POS@(D).
they cannot guarantee the completeness of multi-redugts C (' is a reduct, thereforev[z;]p either [z;]p C

within a finite run time in practice. NEG@(D) or [x;]p C POS@(D) A |lzils/D| = 1 is
satisfied.
[1l. REDUCTION AND KNOWLEDGE THEORY Proof 1: B is a reduct, saPOS2 (D) = POS% (D) and

The basic concepts of attribute reduction and its philoyoplNEG%(D) = NEG}(D). If 2]z € NEG%(D), [zi] C
are presented in the related literature [38], [46] and migti NEG/ (D). Similarly, [z;]p C POS@(D). According to
reducts and multi-knowledge systems are described in [17]. .. .. |[z:]B N [x] ]|
Here, we will recall the reduction concepts that are reltavaﬁe‘clnltlon 2, lsl L& [lzds/D] = 1.
to the present work and then extend the relevant theories an®efinition 3: [Distribution table] Given a decision table
concepts to provide a theoretical description of comprsiven 7' = (U, C, D, V, f), transform it into3-decision tablelz =
knowledge systems. (U,C, D, V3, f3), in which the decision value af; according

to a decision monotonicity criterion is adjusted by Equ. (4)

A. Distribution Table

An information system can be defined as a decision table by (. ) _ argmax {W} it B < plzi) <1,
T=(UC,D,V, f), whereC is the set of condition attributes f(zi, D) otherwise.
and D is the set of decision attributes, respectivélyis the (4)
value set of all attributesf : U x {C U D} — V is the |[zi]c N [x]p]
information function such thaf(z,a) € V, for everya e Where  p(zi) - " wdel v/ -
CUD,r e U. For E C CUD, an equivalence relation {[x1]c,--- ,[zi]c, -, [zm]c} is the equivalence class
IND(FE) is defined as follows: set. Here a distribution tablé, = (Up(w),C, D, V3, f3)
can be formulated with the same attributes while
IND(E)*{(QSHZ» GU'XU| VaGE,f(:c,a)—f(y,a)} UD = {(ICl,W(Il)),~~~ a(xiaw(xi))v"' ,(:rm,w(:cm))},

)

IND(FE) partitionsU into disjoint subsets. LelV/E denote

the family of all equivalence classes of the relatidi D (E),
i.e.U/E ={Ey, Es,---,FE;,---}, whereE; is an equivalence

w(w;) = {

where the distribution region labeb(z;) of object z; is
determined by Equ. (5).

class of E, which is denotedz;]r. Note that equivalence
0 otherwise.

classes are defined with respect to their own attribute set.
Equivalence classe8/C and U/D will be called condition
and decision classes, respectively. These objects are in the positive regiowifz;) = 1 and in
Definition 1:[Positive region] Given a decision table = the negative region ifo(z;) = 0. In other words, all objects
(U,C,D,V, f). Let B C C. The B-positive region with3 of have their deterministic distributions during variablegsion

®)

D is the set of all objects frony which satisfy Equ. (2). reduction, which helps us avoid the “jumping” phenomenon.
5 Furthermore, the distribution table collects only one obje
POSg(D) = U [zi] B @) from each equivalence class in a given information systém. |
legdnilelnl > g is an essential abstract from the original universe of diss®,

where 3 € (0.5,1]. In particular, the positive region with and reduces significantly the number of considered objects,
0,2 1N P ' P g especially for large datasets. These benefits motivate seir u

will degenerate into the classical rough set modef i 1. o ; : . .
Definition 2: [3-decision table] Given a decision tableof the distribution table instead of working directly withet

T = (U,C, D, V, ), determine its condition classgs]c.. The decision table. We will prove the equivalence between the

N . . o distribution table and the original decision table in Theror
decision value of objects in each condition class3textent ot : .
- 5 , , , L or attribute reduction.
within POS/, (D) is normalized to the3-dominant decision h > Gi T e T here Ur  —
value in the respective condition class. Namely, the degisi eorem <. Liven L, compute fp, whereé Yp =

value of ;] in the positive region is normalized such thati (1> @(@1)): s (23, w (i), - -, (2, w(2m))}. VB € C,
if an arbitrary equivalence clas$s;| s in Tp satisfiesv(z;) =
|[zi]e N [2]p| _ 4 @) 00" w(z) = 1A |lz;]5/D| = 1 for Va; € [z;]5, then
|[@i]c| POSE(D) = POSL(D).
and then, the information function is updated gs: U x Proof 2: [x}] 5 respects an arbitrary equivalence class about

{C'UD} — Vj. In this way aj-decision table is formulated, i in I By Definition 3,Vu; € [2i] B, w(xi) =0 [z]p C
which will be denoted a%}; = (U, C, D, Vs, f3). Accordingly, NEG(D) < [2]p € NEG (D).

attributeb € B C C'is D—dispensable in B, if POS%(D) = By Theorem 1 Yx; € [z;]p, w(z;) = 1 and|[z;|p/D| =

POS” (D); otherwise attributé is D — indispensable 8 1 /
(B—{ppH\*F ) 1) & i C POSAL(D)andp > =) < [« C

in B. If éb} € B are D — indispensable in B, then B will ) (s < c(D) P 2) lzils <

be calledD — independent. A subset of attribute® C C is POSZ(D). Thus, POS}(D) = POSZ(D).
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B. Reduct Completeness

C. Genealogical Binary Tree

Definition 4: [Complete reduct set] Consider all possi- |n g |eft-child-right-sibling (LCRS) binary treeM =

ble attribute subset§{b,}, - - - ,{b‘c‘} {b1,bo}, -+, {b1, -,
bci}}, whereb; € B C C, 1 < i < [C]. Let RED(S)
represent the set of complete reducts, i.e.

RED(B) ={B|POSy(D) = POSZ(D),

7 5 (6)
€ B, POS” (D) < POS%(D)}.

(B—={b})

(N,L,R), N denotes a node, its parent notye and sibling
nodeNs, L andR is the left and right child nodes, respectively.
There is no child node in a leaf node.

Definition 6: [Brotherhood] In the right path of the LCRS
binary tree, the previous node of the starting node is null or
Ny and the terminator node is a leaf node, then all of nodes

Definition 5: [Reduct completeness ratio] The reduct comin this path is a brotherhood in the binary tree.

pleteness ratio is defined as follows.

[RED(5)|
= )
|[RED(B)|
where RE]D(ﬂ) represents the set of obtained reducts

practice.

Theorem 3: Given a pj-decision table 77
(U,C,D,Vs,f3), B C C, thenz e POSY(Dg) iff
x satisfies the predicate formula®y € U)(Dg(z) #
Ds(y)) = B(x) # B(y) is true whereDg(z) represents the
decision value oft in Tjp.

Proof 3:

z € POSY 5(Dg) & [z]B C [x]p,
< (Vy € U)(B(z) = By) = Ds(x) = Dp(y))
&(Vy e U)(B(z) # Bly) v Ds(x) = Dp(y))
< (Vy € U)(Dp(x) = Dp(y) vV B(z) = B(y))
<(Vy € U)(Dp(x) # Ds(y) = B(x) # B(y))-
Theorem 4:POS%(Dg) C POSZ(Dp) if B C C.
Proof 4: Setx € POSJ(Dg), we havelz]z C [z]p,.
SinceB C C, [z]¢ C [z]B. Therefore[ le € [z]p,. We have

x € POSC(Dg)
Theorem 5:Set B C C, POS%(Dg) = POSE (D) iff B
satisfies the following predlcate formulas:

(Ve € U)((3y € U)(Dp(x) # Dp(y) A C(x) = C(y))
V (Vz € U)((Djs(x) # Dp(z) = B(z) # B(2)).
Proof 5: Since B C C, we have POS@(D;;) C

POSE(Dg) from Theorem 4. So (POS4(Ds) =
POSZ(Dg)) & (POSy(Dg) 2 POSL(Dg)), that
is (POSB( Dg) = POSS(Dg)) & ((Vz € Uz €

POSZ(Dg) = = € POSY(Dg)).
From Theorem 3, we have
POSE(Dg) = POSE(Dg) <
(Ve € U)((Vy € U)(Dg(z) # Dg(y) = C(z) # C(y)
= ((Vz € U)(Dg(z) # Dp(2) = B(z) # B(2))))) <
(Vz € U)(Vy € U)(Dg(x) # Dp(y) = C(z) # C(y)
V (V2 € U)(Dg(z) # Dg(z) = B(z) # B(2)))) &
(Vz € U)((Jy € U)(Ds(x) # Da(y) AC(x) = C(y))

V (Vz € U)(Dg(z) # Dp(z) = B(z) # B(2)))).

In particular, the brotherhood is also called the ancestor
when the previous node of the starting node is null.

Definition 7: [Genealogical binary tree] Giverl’
(U,C,D,V, f), a LCRS binary tree map€' to generate a
igenealogical binary tree, denoted@&”'), where any attribute
¢ in C'is mapped into a nod@). In the right path ofG(C),
the previous nodes of nod@) are its elder siblings, while
those next nodes of node are its younger siblings. In the
left path of G(C), the path from a node to its ancestor is
called as a genealogical generation path, denoted~ds The
nodes in a genealogical generation path only have paréldt-ch
relationships without brotherhood. By traversing all gaog-
ical generation paths the complete attribute combinatsmts
denotedP(“), can be obtained.

The genealogical binary tree @f will provide a determin-
istic roadmap to perform an orderly and complete search of
all candidate reducts iff".

Fig. 1: A genealogical binary tree

As shown in Figure 1, a genealogical binary tree is mapped
from C = {¢1,¢a,c3,c4} inagivenT = (U,C,D,V, f). The
number at the upper right of each node is its sequence number.
Here, the order of the attributes ifi is used as the order of
the attributes in the nodes. In practice, the attributesl hede
ranked before attribute reductioile will discuss the ranking
process later (see Equ. (15)).

Nodes 1, 2, 3 and 4 are the brotherhood (ancestor). Nodes
1 and 2 are the elder siblings of node 3 and its younger
sibling is node 4. In the left paths af?(C), all attribute
combinations can be obtained froR“(©), j.e. P¢(©) =
{{Cl}a {02}7 {63}a {04}7 {Cla 02}5 {Cla 03}5 {Clv 04}7 {CQa 03}5 {027

04},{03,04} {01702705} {Cla02764} {01,03,04} {02705764}7

Whenﬂ =1, Theorem 5 is consistent with the results in [24]{01 ca,C3, 04}} The Correspondmg genea|og|ca| generaﬂon

Theorem 6B C C, if |[z;]c/D| # 1, |[xi]s/D| # 1.
Proof 6: BecauseB C C, [z;]c C [x;]p. And |[z;]c/D| #
1, it must be|[x;]5/D| # 1.

paths are®, @, ®, @, @ ~ 6, @® ~ ® @® —~ @,
2@~ 0~0,00 "0 ~6~0,8~06 0,
~® 0,8~ ~"0,6~O~060.
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D. Knowledge Comprehensiveness and theoretical number of objects with different values, as
Theorem 7:Given a decision tabld" = (U,C, D,V, f), definedin Equ. (10).

denote RED(f3) as its reduct set with a gived. The set \C(U)|

of attribute combinations obtained by traversiggC) is £= (10)

o

denoted asRED*. (POSL(D) = POSA(D)) A ((Ya e Vel . |
)(POS(ﬁB (a })(D) < pogg(p))) for VB € RED* and If & = 1, the system is called a comprehensive information

8(D 5 5 system.

(POLS; s(D0) # POSg(D))v((Hb € B)A (Pof(B o (D) = Definition 9: [Knowledge system comprehensiveness] In a

POSy(D) = POS¢(D))) for ¥ ¢ RED", which is the ynowledge system, the number of objects with different ealu

necessary and sufficient condition f8D(5) = RED". is [W(3)] in the condition vector, and hence knowledge system

Proof 7: The number of nodes i8" — 1 for a complete comprehensivenes$, can be expressed as:
graphG of depthn. This implies that there ar&* —1 attribute

combinations inP%(©), Then RED(8) C P¢(©) in G(C). - (B (1)
By Definition 4, if RED(S) = RED*, it follows that Vel
(RED(B) = RED™) if £ = 1, the system is called a comprehensive knowledge
= (((VB € RED*)(POS%(D) = POS(D)) systefm- : | s fthe rules 11 (3)
Definition 10:[Basic rule ratio] Some of the rules
g5
A ((Va € B) (POS(B {a }>(D) < POSE(D)))) already exist ifC(U)|. These rules are called basic rules and
A ((VB ¢ RED* )(POSB (D) #£ P g(D)) explicit. The ratio of knowledge extraction, referred toths
Vv ((3be B) A (POSBB o (D) Sg(D) basic rule ratio, is defined as
. lCcU)nw
= POSZ(D))))). - % 12)
For VB € RED*, (POSS(D) = POSS(D)) A ((Va € X _ _
)(POS(ﬁB {a})(D) < POSB( )) B € RED(B). For If gt =1 |nta_1 corTIpLehgnS|v;e kr;owle?r?e systen_‘n,fthent_the
. 8(D system contains all basic rules from the given information
VB g:‘BRED (POS%(D )Zé POS ( )V (( b e )/\ system.
(POS(Bf{b})(D) = POSE(D) = POS ( ), B ¢
RED(S). SORED(S) = RED*.
Hence, the theorem follows. E. Knowledge Structure

Let RED(p) represent the set of reducts, andis a We define a structure for a comprehensive knowledge
mapping from the condition attributes set to the decisiagystem to illustrate a complete reduct set, the correspgndi
attributes set. Then the knowledge from the reduct set ckmowledge and their relationships.
be defined as follow. Definition 11:[Reduct chain] All possible attribute subsets

for 2!C1 form a complete lattice. The subsgt;, - - , ¢/} is
V() = {758 € RED(8)} ®) the maximum nodepof the complete Iattiscii, while lthle} empty

where each of the elements in(3) is a rule, all of which set® is the minimum nodevYB C C and B is a reduct, the
form a comprehensive knowledge systéin= {U},, A, I}, chain which passes through is called a reduct chain from
whereUp, is Up without thew component, and represents the minimum to the maximum node in the lattice.

the relation betweely}, and A. Definingz € U},,a € A, the The reducts inRED form a complete reduct set lattice. A
notationz/a is introduced to signify that the objecthas the Hasse diagram of the attributes fo¢, ca, c3, ¢4} is shown
attributea [47]. in Figure 2(a) for a givers. These are twenty-four attribute

In an information system, the condition attribute € C, chains, for exampl@ —c¢; — ¢, c3 — c1, ¢2,¢3 — ¢1, €2, €3, C4.
the condition vectolV and its size|V| [48] are as defined If {ci,c3,c4} and {co,c4} are considered as reducts, the

in Equ. (9). two chains highlighted in red are the reduct chains. A Hasse
Vo =Vi, x Viy X - x Vi, diagram of a complt_ate reduct set is shown in Figure 2(b).

cl < In a comprehensive knowledge system, a formal context

(9)  with complete reducts can be used to reveal the internal
Vel = H Ve, relationships between knowledge from multiple perspestiv

The knowledge lattice is obtained from the formal context
where[Vc| is the number of objects with different values thaf47]. |ts minimum node is an empty set, and the maximum

can theoretically exist in the condition vector, whi@U)| is node is a complete attributes set with corresponding atib
the actual number of objects with different values th:’;\tte3X|s\,a|ueS ForRED( ) ={Bi,---,B,}, the lower the value of

for a given information system. Since the attribute valums c

be formulated as vectors of Cartesian products of attrib téJ B;| -

values in the information system, they can be regarded as arIDeflmtlon 12 [Double-layer Complete Structure] A double-

extension of the information system [20], [21]. layer complete structure consists of two layers, in whicé isn
Definition 8: [Information system comprehensiveness] Ina complete reduct set lattice and the other is a compretensiv

formation system comprehensiveness is the ratio of theahctknowledge lattice. Set redué € RED and BY = B U {d}.

ﬂ B;|, the less the dispersion of complete reducts.
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w(z;) is computed by Equ. (5) iffz. We get the distri-
bution tableTp = (Up(w),C,D,V3s, f3), where Up =
{(x1,w(x1)), -, (@i, w(®i))y - (@ w(Tm))}. It is our
distribution table abstracting strategy, which helps ustiuce
the considered universe (objects) significantly compared t
the original decision table through the equivalence class.
From Theorem 2 it follows that this strategy can keep the
equivalence between obtaining reducts fr@ip and 7. An
abstracting proportion denotes the percentage reduction o
objects fromT" to Tp as follows.

B 170

U]

where|U| and|Up(w)| are the numbers of objects i and
o Tp, respectively.

Consider here an attribute s&t, which is ( initially. We
combine incrementally an attributento H from the attribute
setC — H (i.e. ¢ € (C — H)) in distribution tableTp =
(Up(w),C, D, Vg, fg) to obtain a reduct. The combination

C1,C2,C3,C4

(13)

(a) a four-attribute lattices

C1,C3,Cq C2,Cy

€1, 69,3, C4 priority of any attribute ¢ € C'— H) will be mainly dependent
(b) a lattice for complete on its attribute rank. I8[x;]x with |[x;] gz /w| # 1, we denote
reduct set the objects withw(z;) = 1 in [2]g with |[z;]m/w| # 1

as Syp;. In the next loop, if |[z;]g/w] = 1, but Ix;]u
with w(z;) = 1 A |[zi]a/D| # 1, we denote the objects
with the same decision values in dlt;|y with w(z;) =
In a comprehensive knowledge lattice, each node has aglattlc” |[#ila /D] # 1 a@s Sx;. If there are multiple different
connotation, in which/ denotes that the value of attributeis decision values in these equivalence classes, other ebjtet
j, similarly & denotes that the value of the decision attribiite Other different decision values would be denotedSag one
is j. Set lattice connotatio’ is from an upper-neighbats: by one in the next loops in our algonthm. At worst, it W|II_Ipo
of the maximum node in a comprehensive knowledge latticd?| + 1 times, while at best, it will only loop once, as will be
whereB’ is B¢ with corresponding attribute values and denofdiScussed in Subsection IV-B. B.,; has been denoted, our
their relationship a®’ €* B. The set of nodes on the chaindiNary classifying labep is determined as follows.

Fig. 2: A complete reduct lattice

passing noderp/, excluding the minimum and maximum 1 if 2 € Sy,

nodes, forms a set(.5/) in a comprehensive knowledge f(z,0) = : (14)
. . : 0 otherwise.

lattice. The relationship between the complete reduct sét a

the comprehensive knowledge lattices is denoted-by™ If We usec to partition [z;] g with |[z;]z /| # 1, and then

B' €* BY, B —* Y(1p). obtain[z;]... Then the attribute rank(c) can be calculated as
Property 1: Some double-layer structure properties are B

summarized as follows. r(e) = *‘ U {zi} (15)

1) Bi ﬂBé 4 §) = B, N B, £ 0: |[%]H/?ﬂ?ﬂ/\‘[%r]i/tﬂ‘#-l/\f(wuw):l
2) BiNBy=0 BN By =0. It means thatr(c) is the negative of the number af-
3) Y(em)NY(tpy) #0= BiNBy# 0= BN By # 0. inconsistency equivalence classes with respect to afiéribu
whereB,. B, ¢ RED and B! ¢* BY. B, c* B against[z;] . The largerr(c) is, the higher the combination
’ ! b2 2 priority of attributec. Whenr(c) is the same for two attributes
priority is determined according to the from-left-to-rigirder
IV. KNOWLEDGE EXTRACTION METHODOLOGY in Tp. If #(¢c) = 0, H U ¢ is a candidate reduct, since all

In this section, our complete variable precision reductio®bjects have been partitioned clearly. If all the equiveéen
(CVPR) algorithm is presented in detail. The computationglasses with respect té/ U ¢ satisfy Theorem 2, then this
time complexity and completeness of the methodology are akandidate reduct is a reduct according to Definition 2.
analyzed and proven. Let Up, |n’| and|m/| represent the universe of discourse,
its number of objects and the number of condition attributes
C . . . in the distribution table, respectively. The pseudo-code o
A. D|s_tr|but|on Table Abstracting and Attribute Rank Dyriam our attribute rank updatingARB) algorithm forpgenealogical
Updating brotherhood is illustrated in Algorithm 1.

Given a decision tableT’, we transform it into 5-  We analyze the time complexity of ARU algorithm as
decision tableTp, in which the decision value ofr; ac- follows. Because the loop from Steps 1 to 9 occurs at st

cording to a decision monotonicity criterion is adjusted b%{ . o IC]
Equ. (4). Then only object; in V[z;]. is collected and tmes the time complexity i©)(|U[|C] + g(Mi_miJFl))-

1=1
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ALGORITHM 1: Attribute Rank Updating (ARU) algo- ALGORITHM 2: Hierarchical Binary Classifying (HBC)

rithm algorithm
input : [z;]g with ¢ input : H and [z;] 5 with ¢
output: attribute rank of a genealogical brotherhood output: Candidate multiple reducts s&FD’
1 for i =1to |m| do 1 Call Algorithm 1 to calculate rank of every attribute in
2 Obtain the maximum and minimum values ©f C - H:
(Vei € C — H) for all objects in[z;];7, denote them  , Generate the ancestor branches according to their
as M; andm;; attribute ranks;
3 CreateM; — m; + 1 queues; 3 do
4 | forj=1to|n'| do 4 | Visit an ancestor following the ancestor branch
5 Assign f(z;, ¢;) —m,; into the corresponding one-by-one;
queue; 5 Obtain the attribute combination s&t
6 | end 6 | if r 0 then
7 | Setr(c) =1 7 if Q) is satisfiedthen
8 | Calculater(c;) by Equ. (15); 8 Current attributes are collected into gét;;
9 end _ 9 Obtain the attribute combination SEt
10 Sort the attributes by(c;) and output. 10 Current objectd/,, are partitioned intdz;]y
in [z]y which are|[z;]y /o] = 2;
o 11 Calculate rank- of every attribute inH 4
with Up by calling Algorithm 1;
Usua"y'é?gf(m(Mi —mit1) <[U]= (Ulic] +,L;(Mi T Generate the left child node according to its
m; + 1)) < (|U||C|+|U||C|). Therefore the time complexity attribute ranks;
of the loop isO(|U]|C|), and hence the time complexity ofi3 else
Algorithm 1 isO(|U||CY). 14 Goto the youngest sibling in the
brotherhood;
. . . . . 15 end
B. Hierarchical Binary Classifying and Genealogical Tretle6 end
Pruning 17 else
The distribution state of objects is determined once the Collect the attributes in this genealogical
information system is given. Attribute reduction is esg#nt generation path as a candidate reduct and add
to find some subsets of attributes (i.e. reducts) to pantitio it into RED':
the objects distinctly through updating the equivalenessts 19 end
with respect to different tentative attribute combinatioAc- 20 end

cording to Theorem 2, the partition can be implemented while all ancestor nodes are visited
by multi-binary classifying of the equivalence classeshwit
l[zi]s/D| # 1 Aw = 1 hierarchically.

Using the genealogical binary tree of attributes to paniiti iy pe discussed in detail in Subsection IV-C. Here we ferth
the objects distinctly, the hierarchical binary classity{HBC) analyze the time complexity of Algorithm 2 as follows. To

algorithm illustrated in Algorithm 2 is proposed. Her®, gyecyte Algorithm 1, Steps 1 and 11 take no longer than
represents the condition, i.e. the attribute combinatién |17|¢| time. The useful attributes and objects obtained using
containinge and its younger siblings satisfiél:;]z/¢| = 1 Steps 8 and 10 is dominated I6y(|U[|C]). Since the best,
for V[z;]z, andY represents the corresponding attributes, i.6,,rst and average case time complexity for pre-rank of the
the attributes in the path from th€; node of the current node binary tree isO(1), O(2/€) and O(2/€1/|C|), respectively,
to its ancestor. . _ and the average case time complexity through Steps 3 to 21
From Theorem 6, Lemma 1 immediately follows. is O(2!¢1|U), it can be concluded that the average case time
Lemma 1VZ' C Z, if |[zi]z/¢| # 1, |[zi]z /¢l # 1. complexity of Algorithm 2 isO(2/1|U|).
Lemma 1 provides us with a pruning opportunity. At Step
7 in Algorithm 2, our pruning strategy is triggered @ if )
37 = |[zi]z/¢| = 2, since the attributes at these pruneff- Knowledge Extraction
nodes cannot be included in any reduct. In the same way/n order to obtain a complete reduct set, we havpddorm
our pruning strategy is also triggered at Step 6 if rank four tasks as follows. Firstlywe transform the considered
0. This is very helpful in terms of reducing computationatlecision table of the information system into its distribaot
complexity, and enables multiple reducts to be determinéd wtable. Secondly, attribute rank is calculated dynamically when
significantly reduced computational effort. any attribute combination set is obtained for the reducts.
Note that the output of the HBC algorithm is the candidatehirdly, a genealogical binary tree is generated depenadent
multiple reduct setRED’ for the binary classifying. The the attribute rank. Fourthly, the objects in the positivgioa of
validity of each of the candidate reducts is checked usitige information system will be binary classified hierareliic
Theorem 2 in our complete attribute reduction algorithm, da3uring binary classifying, the attributes not included het
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current considered attribute combination will be combined Proof 8: From Theorem 7, the complete reduct set is a sub-
into the current considered attribute combination follegvi set of P(©) in the genealogical binary tre@(C). According
any branch of the genealogical tree from the root to thte Lemma 1, the genealogical paths of these attributé ()
attribute node with rank = 0. After completing the four tasks, are pruned during hierarchical binary classifying fromSte
all candidate reducts are checked and redundancies removetb 16 in Algorithm 2 once there is no candidate reduct in
and the algorithm outputs the complete reduct sets. Othe paths. The redundant attribute combinations are rednove
variable precision reductiofCVPR) algorithm is summarized at Step 21 in Algorithm 3. The theorem follows.
in Algorithm 3. The reduct lattice and its comprehensive knowledge system
can be built once the complete reduct B&E D(/3) is obtained
ALGORITHM 3: Complete Variable Precision Reduction by the CVPR aIgorit_hmThe_ comprehensive knowledge sys-
(CVPR) Algorithm temK = {_Ujj, A, T} is consudered_ as a formal cqntext. Then
. ; ¢! andd® in every knowledge lattice are determined through
input : 7" and 3 férmal concept analysis [47]. The double-layer structufe o
output: Complete reduct sek ') the comprehgnsive )I/mowled;qe system is e)établished as in
Formulate the distribution tablép;

2 Candidate complete reduct sBfZ D’ = () and complete Definition 12.
reduct setRED = (),

[

V. EXPERIMENTS, RESULTS AND DISCUSSION

j do Choose the first candidate reduct dsin RED': In this section, our complete attribute reduction alganitis
Current objects are partitioned into all pf;] in evaluated pased on an implementgti_on in the C language and
e a computational environment consisting Qf an |8t&oreM
Assign o values of the objects using Equ. (14): |5-3_230M CPQ _@2.60GHZ_ processor with 4G memory. We
Call Algorithm 2 to obtain the candidate reduct set 2€din by providing a relatively simple example to illuseat
RED),; set; comprehensive knowledge extraction and then demonshrate t

8 if RED".! — null then performance of our algorithm on 30 benchmark datasets with

0 SetRED), = {Ry.--- R, B different instances and attributes.

10 for j=1—ndo

11 if all of [x,], satisfy Theorem shen A. Be.nchmark Problem§

1 Union B U H into RED: To illustrate the effectweness and pgrformance of the pro-

13 else J ' posed CVPR algorithm, we evaluate its perforrr_lance on_30

L s . , well-known benchmark datasets from the UC Irvine machine

1 | Union £; U H into the end ofRED learning repositoryy Some of these datasets (e.g. heart, iris,

1 end glass) are frequently used to test classification methods. W

10 end also consider some of the newer datasets, such as Connec-

Y end tionist Bench, Fertility, and MAGIC Gamma Telescope. The

12 (Faer;?nove the first candidate reduct fraRED’ average number of attributes in the datasets is 12 and the

maximum number is 60. The average number of objects is
1,980, with ten datasets having more than 1,000 objects and
the maximum number is 19,020. The results obtained with
different 5 values are presented and discussed in Subsection

In Algorithm 3, Step 1 take®)(|U||C|) time to formulate V-B. In this section we consider the datasets listed in Table
Tp. The algorithm chooses the attribute sets at least once, W 5 = 1 to enable a fair comparison with the alternative
average2/“l/|C| times and at mos2/°! times. Therefore the @pproaches considered. _ _
operation ha$)(22/°!|U|/|C|) average case time complexity In the case of the heart dataset, the ancestor of its attribut
from Steps 3 to 20. Step 21 involves removing reducts wifighealogical tree ig; — cs —cio —ca —¢1 — ¢z — 3 — ¢ —
redundant attributes which can be doné@ift/C!) time. There- ¢7 — €9 — 11 — ¢12 — c13. The time performance curve during
fore the best, worst and average case time complexity of Axtraction of complete reducts without pruning is illuséc
gorithm 3 isO(|U||C]), O4IC|U||C|) and O@4ICU|/|C]), I Figure 3(a). Searc_hmg the left subtree @f we obtain
respectively. the reducts from the first to th&8rd reduct. Accordingly¢s

In general,|C| < |U|, however, the rate of exponentiaICO”eSpondS to thé4th to the 83rd reduct,c;y corresponds
growth with respect toC' is far faster than the quadratict® the84th to the 95¢h reduct,c, corresponds to the6th
growth with U7, hence in Algorithm 3 the number of attributed® the 106¢h reduct, ande; corresponds to thé07th to the
has more influence than the number of objects in terms H19th reduct. With regard to the child generation, for example,
computational complexity. The pruning strategy is a ver§io—C1 corresponds to thelth to the9lst reduct, andkio—cq
important mechanism for reducing the number of objects af@eSPONdS to the2nd to the 95t/ reduct. _
consequently decreasing algorithm time complexity. F_|gure 3(b) shovx_/s the time performance curve comparison

Theorem 8:RED(3) extracted by the CVPR algorithm iSdurmg the extraction of complete reducts from the heart
the complete reduct set. Ihttp://archive.ics.uci.edu/ml/

20 while RED’! = null,
21 Remove the redundant reduct(s) R¥2D;
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x10* the © condition, and therefore are not valid to include in any
1.2} 2 reduct. In other words, the red and blue nodes will not ggaera
ol | child nqdes, i.e. our pruning strategy is triggered. I_:ommde,
_ traversing the pathes —~ ¢4 —~ c¢9, We getcg with rank
g 087 | r(c) = 0, the candidate redudfcs, cs4,co} is obtained, and
£ o06] | the left child nodes oty are not transversed. Insteag, is
g transversed. Note that the attributes of child nodes of auen
@ 047 | are the same as its younger siblings, only with differenksan
02} 1 Since the child node attribute combination setcs, ¢12, ¢13
ol | of ¢g in the attribute sefcs, c4, cg} cannot partition its objects,
0 20 10 60 30 100 109 it is not possible for its subset to par_tition the objectsriably,
Reduct (th) hence the branch, — ¢s — ¢12 — ¢13 is pruned.
(a) Extracting complete reducts without pruning .
5
x101 c1/ PR
12 ] ] S es P
e
—— Non-pruning N
| e
— /07 co /clu < ey
£ 08f . g e N e -
= \ 10 RN c3
2 N Ve .
E 0.6 [- i ce VRN Ce
=] : / NS e .
= 04 o cr C13 VRN e
e \ / N cg co
c11 Cr C2 N N
02} : A N e o
Cz C11 (4 C3 N S
0 1 [ | | | | | | | | | \ \ \ / \ 62\ €12
0 10 20 30 40 50 60 70 80 90 100 109 C3 C2 C3 €11 cr N N
, VoN [ \ " . 1
Reduct <th> Ci2 €3 Ci1C11 c7  Ci2C11

I “o
.

\ \ N
€13 Ci2 Ci2 Ci2 Ci2 Ci2 Ci1 Ci2

(b) Comparison between pruning and non-pruning

Fig. 3: Reduction performance curves from the heart dataset  Fig. 4: Part of the heart dataset genealogical tree

In Figure 4, there are two paths—c11 —co—cs —c12—c13

andcg — c13 — co — c3 — ¢7 — c11 — c12. Although the attributes
dataset with and without pruning. The pruning strategy Savgre the same with the exception of, they have different
significantly on computational time without omitting anyattripute ranks. They provide dynamic opportunities tajoi
reduct. When traversing the ancestess— cs — cio — ¢4 —  the candidate reduct(s), which is obviously different frtva
¢ — €y — €3~ Cg — €7 — Cg — €11 — 12 — ¢13, the attribute jmportance of attributes in the model [49]. This is a static
nodes frome; to c13 do not satisfy theé condition, hence all guantity and only equivalent to our attribute ranks in the
of them are pruned. Even traversing the first 5 attribute 80dgncestor branch in Figure 4. In the heart dataset there is a
(i.e.,c5 —cg — 10 — ca — 1), the complete traverse procedur@educt{cs, cs, c7, c10}. According to the classical importance
takes much longer on five slopes, deno@d@, ®, @ and of attributes approach to obtaining the reduct, after sielgc
®, respectively. For example, to obtain theth reduct after .. and cg, co,c4,c1,c2,c3, and ¢ would be considered
traversingco, takes nearly 3000 ms to get the next reduct (i.8yccessively. While we select the attributes following the
the 96¢h reduct) without pruning (the child branches@f). genealogical tree generated through these attribute raftks
Sincecyo’s child nodec, has eight younger siblings, there ar@glecting:; andcs, ¢; should be considered, since our attribute
28 —1 nodes to be traversed and calculated. Even when sharjggks are dynamic. Afters and cs are selected the objects
one father node, child branch pruning also makes a differenghich need to be considered are reduced with the remaining
For example, under the ancestap, it takes nearly 1000 ms attributes in a new distribution table. The attribute raaks

from traVerSing its Ch||(k1 to tl’aveI’Sing its ChI|Ct4 without updated according|y, which is very he'pfu| for obtainin@th
pruning, as shown in Figures 3(a) and 3(b). In general, tisergeduct(s) successfully.

a positive correlation between the time cost and the number o | Figure 4, there are two different genealogical genenatio
nodes. The idea of the pruning strategy is that if one anEiprathSC5 ~ 4~ C3 ~ C7 —~ c1g @ndcs —~ ¢4 —~ 7 —~

node cannot be included in a reduct, then none of its child, \with the former contained in the latter. The former is

nodes can be included in the reduct either. redundant with respect to the lattdihe reason is that when
There are three kinds of attribute node in Figure 4, ttmombining the attribute set with different sequences t@iobt

black ones which are traversed normally, the red one whitte candidate reduct, they both partition all the objectsaéig.

are skipped, and the blue ones which are pruned. Since Trreerefore it is necessary to remove the redundancies in the

red nodes are rank(c) = 0, it is impossible for the candidatecollected reduct set.

reduct to include more attributes. The blue ones do notfgatis In Figure 5, the left subfigure shows the comparison be-
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Fig. 5: Node counts for the different node types during pmgni

tween the number of normally traversed nodes and the number
of pruned nodes about the child nodes of the five first atebut

in the ancestor branch for the heart dataset. There are 12
nodes in the next generation @f, as shown in the left bar of
the left subfigure, no node is skipped, five pruned, and seven
(i.e. ¢y, cs, ¢q, Cg, C12, c3, c11) NOrmally traversed. For the next
generation ot;, the right subfigure of Figure 5 shows further
the comparison among the three kinds of node in terms of their
visit states. It is clear that the number of normally traeers
nodes is a small portion of the nodes in the whole genealbgica
binary tree in our algorithm, with most nodes either skipped
or pruned. Our pruning strategy reduces computationakcost
significantly. Figure 6 shows more performance comparison
curves during reduct extraction for the seismic-bump, €red
Approvals and ILPD datasets.

Run time (ms)

Run time (ms)
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=== Pruning
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Reduct (th)

(a) seismic-bumps dataset

x103

—— Non-pruning
=== Pruning

P

Reduct (th)

(b) Credit Approval dataset

x10?

. 14F T s
—TABLE | Considered datasets and the reduct number e —
Data set % NA NR 12 ¢ i
Credit Approval 690 15 60 z )
heart 270 13 109 = i
lonosphere 351 34 5759 g
iris 150 4 4 = 1
Lenses 24 4 0 2
Liver Disorders 345 6 9 b
Statlog (German Credit Data) 1000 20 846 B
Glass 214 9 18 ;
Abalone 4177 8 25 0 T
Auto MPG 398 8 5 0 5 10 15 20 RQod 30 h35 40 45 50 56
banknote 1372 4 6 educt, (th)
Blood Transfusion 748 4 2 (¢) ILPD dataset
Breast Cancer Wisconsin 699 9 19
Breast Tissue 106 9 8
Connectionist Bench _ 208 60 1314 Fig. 6: Time performance curves during the extraction of
Contraceptive Method Choice 1473 9 0 reducts
Ecoli 336 7 7
EEG Eye 14980 14 597
Fertility 100 9 12
ILPD 583 10 56 ) . .
Knowledge Modeling Data 403 5 g different varieties of wheat: Kama, Rosa and Canadian. The
MAGIC Gamma Telescope 19020 10 32 objects with a decision value of 1 are selected and their
Se“eﬂgat'V@Ba”kr“ptcy 2251% f; 281 classifying value set to 1 at Step 6 in Algorithm 3. After
seismic-bumps 2584 18 34 the first _calllng of Algorithm 2 at Step 7, all 2_1 reducts
SPECT Heart 80 22 725 are obtained, becausRED’ = () at Step 20, which leads
wggagﬁ ;S”ltj;g(?;)é)Data 154;790 1116 22174 directly to Step 21 and then to the end of the whole algorithm.
Wine Quality (white) 4898 1 127 When u;ing thg classic class_ific.r:ltioln quaity38] .to evalgate
Yeast 1484 8 4 the attribute’s importance (indicating the attribute’spiat

O Number of Objects.
A Number of Condition Attributes.
R Number of Reducts.

on all decision classes), there is little difference betwa#
attributes. However our attribute ranks are calculateddoy ¢
sidering only two classes during any binary classifyinghwit
binary classifying labep. The significant differences between

In the seeds dataset, the three decision values are the tlattigbutes are very helpful in determining straightforaisr
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whether the attribute and its attribute combinations sthdnd reducts, {cs,c7,co}, {ca,c5,¢6}, {ca,c5,c8}, {ca,c5,¢9},
included in a candidate reduct or not. For the Contraceptiye., cs, cs, cs}, and {cq, cs3, cg, co}), were not identified. The
Method Choice dataset, the search stops once the first binargin reason that FSRS failed to identify all reducts is that i
classifying is completed, since it is impossible to includstochastic search algorithm and hence cannot guarantéesgfind
any attribute to obtain a reduct. In other words, there is ribe complete set of reducts in a finite number run times.
reduct in the dataset. The binary classifying strategydpeap Figure 8 shows the time performance curve when using
distinguishing whether there is a candidate reduct or nét. e CVPR algorithm to extract all 18 reducts from the Glass
course, the binary classifying strategy also makes it ptesgd  dataset. Here all 18 reducts are obtained within 593 ms teflec
generate the genealogical binary tree with the attributésa ing the fact that CVPR algorithm is a deterministic algarith
The fourth column in Table | shows the number of completidat considers distribution information and employs dffec
reducts in each dataset identified by the CVPR algorithm. pruning strategies to reduce the computational overhead.

In Table I, the highest abstracting proportion defined in
Equ. (13) reaches 58.80% for the QualitatiBankruptcy 12 213
dataset. The proportion is more than 30%, for the Blood 10l :
Transfusion and Breast Cancer Wisconsin datasets, whgle th
proportions for the SPECT Heart, Wine Quality (red) and Wine
Quality (white) datasets are 18.75%, 15.01% and 19.13%,
respectively.

Table Il provides a comparison of the results obtained using
the CVPR algorithm and the WADF (worst-attribute-drop- a2l
first) algorithm [16]. For the relatively small scale datase SREREE -
i.e. credit approval, heart, iris and liver disorders, CVRRi 12545 7 1617 1920 - 108
WADF algorithms both determined all of the reducts, while Run times (th)
only the CVPR algorithm identified the complete reduct set fo
the relatively large scale datasets, i.e. lonosphere aamtb&t

In WADF, the maximum number of multi-reducts that can

Reduct (th)
o

Fig. 7: Multiple reducts processing using FSRS

be identified is the number of non-core attributes in the seed x 103
reduct, and the reducts which the algorithm can identify is 06 | g
strongly dependent on the seed reducts. For example, WADF 05l |
is able to extract all reducts from the Credit Approval andrhe _
datasets, but not from the lonosphere and Statlog datasets. £ 04) )

é 0.3 :
TABLE II: Comparisons about the number of obtained multi- E; 02l |
reducts

0.1} |

dataset WADF [16] 9 CVPR 9 0
Credit Approval 60 100% 60 100% o 2 4 6 8 10 12 14 16 18
heart 109 100% 109 100% Reduct (th)
iris 4 100% 4 100% . . .
Lenses 0 _ 0 - Fig. 8: Reduction performance curve using CVPR from the
Liver Disorders 9 100% 9 100%  Glass dataset
lonosphere 32 5.56% 5759 100%
Statlog 16 18.9% 846 100% The CVPR algorithm is designed based on the theory of

comprehensive knowledge extraction introduced in the pape

To compare the performance of the CVPR and FSRS (fuzltyis a deterministic search procedure in which dynamic
swarm rough set) algorithms [45], we firstly test a classicaltribute rank is used as heuristical information to traeeits
dataset, i.e. the Glass dataset, in which there are sixidecisgenealogical tree, such that the completeness of the redtict
values. Figure 7 shows the performance of FSRS with respextensured. This contrasts with which is different obvigusl
to identifying multiple reducts. The swarm size was 30, d&& t from WADF and FSRS which do not guarantee completeness.
maximum number of iterations was 108. The execution tinfeurthermore, CVPR algorithm is optimised with respect to
was 213s (the numbers above the vertical dotted lines are twenputational overhead through the use of distributiotetab
execution times of the corresponding run number in secondabstracting, hierarchical binary classifying and gengiakl
In total 11 reducts, {c1,c2}, {c1,ca}, {c1,¢5}, {c1,c6}, tree pruning.
{c1,¢7}, {ea,en}, {co,c5}{ca,er}, {c3,¢5}, {c3,¢7}, and  The numbers of complete reducts for each of the 30 bench-
{c4,c7}), were obtained, corresponding to run numbemsark datasets is listed in Table I, with all reducts satigfyi
1,2,3,4,5,7,14,16,17,19 and 20. In the case of the otHeefinition 2. The number of objects in the datasets has little
runs no new reduct were obtained. The reduct compleiafluence on the algorithm search time and completeness of
ness ratio? is finally stopped at 61.1% using FSRSreducts. The reason is that our distribution table collecly
In fact, there are 18 reducts in this dataset, hence ore object from each equivalence class in a given informatio
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system, and thewnly the objects in the subsequent equiv-TABLE V: Comprehensive knowledge system with= 0.7

alence classes withz;|z/D| # 1 Aw = 1 are considered
during binary classificatianThe number of attributes in the

datasets has a relatively larger influence on CVPR algorithm 21

performance. The pruning strategy is very helpful in obitain

sound and complete reducts. The average case time congplexit =,

of CVPR is O(4/°!|U|/|C|), which also verifies further the
theoretical analysis of the time complexity of algorithnmzla
theoretical proofs of completeness in Section V.

B. From Information Systems to Double-layer Lattice Struc-

tures

The previous section illustrated the effectiveness and per
formance of the proposed CVPR algorithm. Here we provide  z1,
an illustrative example of how a given information system ca z11

be represented as double-layer lattice structures.

Table Il shows an instance of a decision table in whic
the condition attributes are, co, c3,c4 andes, andd is the
decision attribute. Its condition equivalence classes{afg,
{xg,l‘g,l‘g,xlo}, {x3}, {l‘4,l‘9,$11}, {1‘5} and {1‘7} The
universe of discourse iz, 22, 3, x4, x5, 27} IN Th.

The POS@(D) and complete reduct sets corresponding to

different values ofs are shown in Table IV. Whepg = 0.70,
z¢ is added toPOSS(D). If 3 is changed ta).60, o is
also within POSZ, (D). BecausePOS5 (D) does not change

betweens = 1 and 3 = 0.80, the complete reduct set is also_5 3 3 g

unchanged. For the complete reduct set with= 0.7, the
comprehensive knowledge system is illustrated in Table V.

TABLE III: Decision table

objects

o
i
(o)
V)
[e)
Y
o
'y
o)
ot
ISH

Z1
€2
z3
T4
5
Z6
x7
s
9
xr10
xr11

OFRPORORRLPROORER
RPRRPRRORRRERRERRER
RPRPRPRPRORRRPRORER
NONOROONRFRON
RPRRPRRPRRPRRORPRORER
NNRPRNRNRRRR

TABLE IV: Complete reduct sets for Table Il

Ié] POS@(D) Reduct set

1.00 {z1, 23,25, 27} {{c1,ca,c5}}

0.80 {z1, 23,25, 27} {{c1,ca,c5}}

0.70  {x1,x2, 23,5, T7} {{c1,c2,¢5},{c1,ca,c5},{c1,c3,c5}}
0.60 {x1,z2,23, 74,75, 27} {{ca,c5},{c1,c2,¢5},{c3,c5}}

Wheng is set to three different values, three comprehensive
knowledge systems are extracted accordingly. Their caieple Qd

ness metric results with different are illustrated in Table
VI. The multi-knowledge systeng is the same, because it
is determined by the original information system, while th
knowledge systentomprehensivenessis influenced by its

No.

o
-
o
N
o
@
o
'y
o
3
U

1 1 * * 1 1
P 1 1 * * 1 1
3 0 1 * * 0 1

0 1 * * 1 1
s 1 1 * * 0 2
@r 0 0 * * 1 2
10 1 1 * * 1 2
11 0 1 * * 1 2
1 1 * * 2 1 1
@2 1 * * 0 1 1
3 0 * * 1 0 1
4 0 * * 2 1 1
a5 1 * * 0 0 2
@7 0 * * 1 1 2

1 * * 0 1 2

0 * * 2 1 2
a1 1 * 1 * 1 1

h o 1 * 1 * 1 1
3 0 * 0 * 0 1
4 0 * 1 * 1 1
s 1 * 1 * 0 2
ar 0 * 0 * 1 2
10 1 * 1 * 1 2
11 0 * 1 * 1 2

TABLE VI: Completeness metric results with

1.00 0.125 0.500 1.000
0.70 0.125 0.896 1.000
0.60 0.125 1.000 1.000

precision paramete$. In the classical rough set model (i.e.
B =1), £ is only 0.5, whileé = 1 when 3 decreases to 0.6.
Everywhere, the basic rule ratipis 1, which indicates our
algorithm can extract the comprehensive knowledge from the
given information system.

The double-layer structures of the comprehensive knowl-
edge system with3 = 0.7 values are presented in Figure
9. The complete reduct set lattice is depicted in the upper
left while the comprehensive knowledge lattice is shown in

C ciescgd” 0 0.1,00.1,2.0.1 4172
1.1 1 1
c?c}lcgdl cicicycscze e cicgesd d

Eig. 9: Double-layer structure of comprehensive knowledge
system fors = 0.7
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VIlI. SUPPLEMENTAL MATERIALS |
Table VIl is a decision table whet®@/C = {{z1,xz3}, {z2}, {z4, 5, 27}, {xs, x5} }. The distribution tables witl# = 1 and
£ = 0.6 are shown in Table VIl according to Definition 3. Note that is in the positive region withs = 0.6 but it is not
with g = 1. The decision values af, are adjusted by Equ. (4) as shown in Table VIII and the valdfes are obtained
according to Equ. (5).

TABLE VII: A decision table

Object

(3}
—
o
N
(9
w
o
N
ISH

x1
2
z3
x4
Z5
Z6
z7
g

PWPWWENE
WRWRRRPWRE
ANDBNNERLNE
NEFENR R P WRE
NFRPFRPRRLROOOO

TABLE VIII: The distribution tables with differents

ObjECt c1 () c3 c4 B =1 B =0.6
d w d w
1 1 1 1 1 0 1 0 1
T2 2 3 2 3 0 1 0 1
T4 3 1 2 1 0 0 1 1
T6 4 3 4 2 1 0 1 0

Table IX is a decision table on playing tennis. The condiédinibutes set i Outlook, Temp, Humidity, Wind and { Play}
is the decision attributeRE D of playing tennis decision table is{Outlook, Humidity, Wind, {Outlook, Temp, Windl}.

TABLE IX: A decision table about playing tennis

Object Outlook Temp Humid Wind Playing
1 Sunny Hot High Weak No
T2 Sunny Hot High Strong No
T3 Overcast Hot High Weak Yes
T4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
Tg Rain Cool Normal Strong No
T7 Overcast Cool Normal Strong Yes
g Sunny Mild High Weak No
T9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

In Table IX, there are 14 actual objects, i@(U)=14. |voutiocor] = 3 becausevoutioor = {Sunny, Overcast, Rain}.
Vo =3 x3x2x2=236 by Equ. (9), so the theoretical number of objects is 36. Tts &ind eighth objects have the same
condition attribute values according {®utlook, Humid, Wind, and the fifth and tenth objects are also the same. Because
[vremp| = 3, the number of the knowledge frofOutlook, Humid, Wing is (14 — 2) x 3 = 36. Likewise, the cardinality

14 . .
of the knowledge from{Outlook, Temp, Windl is 24. So |¥(3)| = 36 without redundancy, = — = —, { =1 and¢ =1
. 36 18
according to Equs. (10) to (12).
The double-layer structures of the comprehensive knovdeygtem with3 = 1 and 8 = 0.6 from Table Il are presented
in Figure 10.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. **, NO. **, AUGUST 206

[od
® 0 Q- fer e 05}
{ese570)
Q €,
{e1,e4,¢53QQ @ Q. S, o
B! TS {64;& —~* ~ 1 2
O N O] ' Wi
NN C | 24E /6
AV . Y0 Feeo ! N T 15) --.clel
Y €y Cy .~ o S22
- S . et .
~ SOl T
S = V02 3.
X () cfela Tt :
b cid*: N 1,192
® (QEMES NI OPL L
1 : s \ N A 0 Y 141
d : R @ . /et @ S5 . éieyd
\ > . 10410
@ veld' . 0,21 g2 @CCCd
At} 3 ciciesd i1
del 104 g1 3654
€1 v @ cicyed ngl
i @ Acichd?
27 g1
()—cigd
0,101
clejedd 0n1,.1.0.1.0.1.2.0.17172
1747 cdelchcicicdctdtd? cleecgezeieqciciesd'd

@B=1

(b) 8 = 0.72

Fig. 10: Double-layer structure of the comprehensive kedge system with different
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VIIl. SUPPLEMENTAL MATERIALS Il

An instance procedure is illustrated in Figure 11. Theretau@ decision values, i.e. 0 and 1, which are partitioned by
the red curves. The central white regionRQSé(D) and the peripheral gray region NEG@(D), as shown in Figure 11.
Based on the attribute rank obtained using Algorithm 1, ftsbaite genealogical binary tre@ can be generated to combine
attribute sets sequentialluppose we get an attribute combination Bet which some equivalence classes satisfy;) = 1,
i.e., [z1]B,, [x2] B, [x3] B, While all other satisfyw(z;) = 0, i.e., [x4]p,, [5]B,, [x6]B, IN Figure 11(b). Note thar,]z, and
[x2] B, do not satisfy|[z;] 5, /D| = 1. Now we only focus on these two equivalence classes in thestegs. An object set can
be collected from the objects ia1]5, and[zs]p, in Figure 11(c) with the attribute§' — B;. Accordingly for this object set,
all attribute ranks inC' — B; are re-calculated and the corresponding subtree of thbuatrgenealogical binary tre@ also
continues to generate further to the current attribute soEkem this attribute subtree, suppose we get an attritmrdoimation
set By to partition[z1]p, in Figure 11(c) intox11]p, and[z12]s,, and to partitionzs] s, INt0 [x21]5,, [r22]s, and[zas]s,,
as shown in Figure 11(d). Thus far, all equivalence clas$eB,0J B, satisfy Theorem 2. It means thét; € [2;](5,uB,)
w(x;) =0 orw(z;) = 1A |[zs](s,uB,)/D| = 1. Hence, a reduct is obtained & U Bo.

POS(D) POS(D}.

[z4] B\

POSu(D) POSc(D)

Tz]B,

(@) (b) () (d)

Fig. 11: Multi-binary classification for a reduct
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IX. SUPPLEMENTAL MATERIALS Il

Considering a simple example to demonstrate our algorithfable X andj3 = 1 are used as the input of Al-
gorithm 3. Up = {(x1,0),(x2,1), (z3,1), (24,0), (x6,1),(xs,1)} in Tp can be obtained using Equs. (4) and (5) in
Step 1. They values of z; and x4, are assigned 1 by Equ. (14) in Step 6. When calling Algorithnin2Step 7,
r(ca) = 0,7(c5) = —1,1r(cs) = —1,r(ca) = —2,r7(c1) = —2 according to Algorithm 1 using Equ. (15) and
REDY, = {{za}, {xs,x3}, {xs5, 22}, {x3, 22,21 }}. Every candidate reduct iRED’, is checked to see if it is a reduct
or notin Step 11. The®ED = {{z4}, {x5, x3}, {x5, 22}, {x3, 22,21 }} and RED’ = () from Steps 12 to 14. The algorithms
end and the complete reduct 9@t/ D is returned.

TABLE X: A decision table for the algorithm demonstration

Object c1 co c3 c4 cs d
T1 1 1 1 1 1 1
9 1 0 1 0 0 0
3 0 1 1 0 0 0
T4 1 1 2 1 2 1
5 1 1 1 1 1 0
T 1 1 0 0 0 0
7 1 1 2 1 2 0
8 1 0 0 0 1 0
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X. SUPPLEMENTAL MATERIALS IV
The flowchart of our attribute reduction algorithm is presenin Figure 12.

19
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Fig. 12: Flowchart of the complete attribute reduction ailtpon



