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A Novel Variable Precision Reduction Approach to
Comprehensive Knowledge Systems

Chao Yang, Hongbo Liu, Sean McLoone,Senior Member, IEEE, C. L. Philip Chen,Fellow, IEEE,
Xindong Wu,Fellow, IEEE

Abstract—A comprehensive knowledge system reveals the in-
tangible insights hidden in an information system by integrating
information from multiple data sources in a synthetical manner.
In this paper, we present a variable precision reduction theory,
underpinned by two new concepts: distribution tables and ge-
nealogical binary trees. Sufficient and necessary conditions to
extract comprehensive knowledge from a given information sys-
tem are also presented and proven. A complete variable precision
reduction (CVPR) algorithm is proposed, in which we introduce
four important strategies, namely, distribution table abstracting,
attribute rank dynamic updating, hierarchical binary clas sifying,
and genealogical tree pruning. The completeness of our algorithm
is proven theoretically and its superiority to existing methods
for obtaining complete reducts is demonstrated experimentally.
Finally, having obtaining the complete reduct set, we demonstrate
how the relationships between the complete reduct set and
comprehensive knowledge system can be visualized in a double-
layer lattice structure using Hasse diagrams.

Index Terms—Variable precision reduction, information sys-
tem, knowledge system, knowledge system structure, data science.

I. I NTRODUCTION

DATA science employs theories and techniques drawn
from many fields for knowledge extraction from data

and information systems [1]. They are usually presented
as decision tables with rows and columns, i.e. objects and
attributes. Knowledge extraction [2] or rule generation [3] is
achieved by reducing the number of attributes in the decision
tables in such a way that there is no loss of the information
hidden in the information systems. In other words, if there is a
metricλ for information, the value ofλ is not changed by the
reduction process. It is also one of the most common problems
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in data mining and knowledge discovery and has been widely
studied. Considerable progress has been made on topics such
as feature selection [4], [5], dimensionality reduction [6],
feature evaluation [7], dynamic updating approximation [8],
noisy processing [9], multi-granulation analysis [10], [11] and
inconsistent data filtering [12], etc.

When performing knowledge extraction using rough set
theory [13], the goal is to obtain a minimum reduct [14],
[15] at an affordable computational cost and algorithmic com-
plexity. The corresponding knowledge derived from a single
reduct is called a single-knowledge [16]. However, in practice
multiple reducts usually exist in information systems, with
each reduct having a different attribute combination but the
same classification capabilities. These can be thought of as
providing insights from different perspectives [17]. Multiple
reducts can constitute a multi-knowledge system [18], but this
does not guarantee that they capture all available knowledge.
For a given information system, only a complete reduct set
contains all possible reducts without redundancy, and therefore
can be used to deduce a comprehensive knowledge system.
Unfortunately, obtaining a complete reduct set is an NP-
hard problem [19], and as such represents a major challenge
computationally.

This paper focuses on how to obtain the complete reducts
set, formulate the corresponding knowledge structure and
generate comprehensive knowledge systems.The paper has
the following contributions:

• We present a variable precision reduction theory for
comprehensive knowledge systems. Some underpinning
concepts relating to the completeness of reduct set and
knowledge are defined. In particular, we introduce two
new concepts, namely, distribution tables and genealogi-
cal binarytrees, and establish the necessary and sufficient
conditions to achieve complete multi-knowledge extrac-
tion without redundancies.

• An efficient and effective complete variable precision
reduction algorithm is then proposed, the key elements
of which are distribution table abstracting, attribute rank
dynamic updating, hierarchical binary classifying and
genealogical tree pruning. We prove theoretically the
completeness of our algorithm and compare its efficacy
to existing methods with the aid of experimental studies.

• We also explore the relationships between a complete
reduct set andits knowledge system, introducing a
double-layer lattice structure to enable them to be illus-
trated visually in Hasse diagrams.
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The remainder of the paper is organized as follows. Related
work is reviewed in Section II. In Sections III we present our
variable precision reduction theory to include the completeness
of reduct set and knowledge extraction. In Section IV, we
propose a complete variable precision reduction algorithm. In
particular, the dynamic attribute ranking to a genealogical bi-
nary tree is presented in Subsection IV-A, while the hierarchi-
cal binary classifying and pruning strategies are introduced in
Subsection IV-B. Then, our complete reduction and knowledge
extraction are presented in Subsection IV-C. The experimental
results and discussions are provided in Section V. Finally,
conclusions and areas for future work are given in Section
VI.

II. RELATED WORK

A. Knowledge Comprehensiveness

Pancerz and his colleagues discussed information and dy-
namic information systems, which can be used in prediction
problems [20], [21]. Compared to single-knowledge, multi-
knowledge is usually more comprehensive, and as such is
likely to correctly classify new objects. Abu-Donia [22] pre-
sented rough set approximations using multi-knowledge base
to raise the efficiency of decision support system. Gams
[23] demonstrated the creation of a multi-knowledge system
by integrating ten single-knowledge systems using 10-fold
partition learning. They illustrated that a multi-knowledge
system can improve the accuracy of classification significantly.
However, although they put the multi-knowledge system into
practice, issues of redundancy and comprehensiveness of the
knowledge extracted were not considered. Ma [24] introduced
a completeness condition to determine whether an attribute
combination is a reduct or not, but again does not consider
the completeness of multi-reducts. A complete reduct set is
stricter than multi-reducts, since in a complete reduct set, all
reducts are included without redundancy. Knowledge com-
prehensiveness also depends on the corresponding complete
reduct set, because different reduct provide knowledge from
different perspectives.

B. Knowledge Visualisation

Qian et al. presented a space distance [25] which is used
to characterize the similarity between reducts. After attribute
reduction, a knowledge system can be constituted by rule
extraction tools, such as rough set [26], apriori algorithm
[27], formal concept analysis [28] and so on. Formal concept
analysis not only gives implications “X → Y ”, but also builds
a hierarchical structure of knowledge concepts through concept
lattices [29] which can be used to describe the relationships
between objects and attributes. Through constructing complete
concept lattices, the lattice structure can be introduced to
describe the similarity between reducts or between knowledge,
and the relationship between a reduct and its corresponding
knowledge can also be depicted. Hasse diagrams [30] are a
suitable way to visualise the lattices of the comprehensive
knowledge system structure as developed in this paper.

C. Knowledge Extraction Approaches

Different heuristic algorithms have been proposed to reduce
attributes and to extract knowledge from information systems
in the classical rough set model [31]. However, these algo-
rithms are subject to a rigid premise in the classical rough set
model that the error classification rate [32] must be zero.

To relax this rigid premise of the classical rough set model,
variable precision rough sets (VPRS) [33] are presented to
introduce an error classification rateβ [34]. The positive and
boundary regions in rough set theory are designed to distin-
guish certain and uncertain objects, respectively [35], [36].
The predictable (certain) objects will increase by reducing β.

Ziarko presents aβ − reduct method [33] for attribute
reduction while Park and Choi propose a novel VPRS method
using information entropy [37]. However, a side effect of their
approaches is the so called “jumping” phenomenon [14], [38].
where the output alternates between reduct and non-reduct.

Wang et al. [38] show that the “jumping” phenomenon is
due to the fact that the changes in classification quality and
positive region are non-monotonous. They further illustrate
that the distribution of the lower approximation bound about
decision classes varies monotonically. The reduction approach
in this case follows a decision monotonicity criterion [39],
[40]. It implies that rough set reduction is subject to the
distribution of the objects withβ-dominant decision value in
each equivalence class toβ extent within the positive region,
while the distribution of other objects have little influence
because of the error classification rateβ.

The attribute reduction methods based on the discernibility
matrix and the ones based on the positive region can both
be used to obtain multiple reducts from a given information
system. However, the former is usually much more compu-
tationally intensive and is limited to much lower dimension
problems than the later, even when using the approach intro-
duced by Yang [41] to minimize the number of elements in
the discernibility matrix to decrease the computational load.
In the case of multi-reducts and multi-knowledge extraction
methods based on the positive region, the related work mainly
falls into two categories:

• non-core attribute combination algorithms, such as the
worst-attribute-drop-first (WADF) algorithm [16]. In
these algorithms, all attributes are divided into core at-
tributes and non-core attributes. A reduct is obtained and
then used as a seed reduct to generate other reducts in the
multi-reducts set through a non-core attribute replacement
process, whereby one non-core attribute is excluded in
the identified reduct. In [42] a multi-knowledge system
is constituted to help robots identify their environment.
However, in the algorithms employed, the number of
multi-reducts obtained is strongly dependent on the initial
seed reducts.

• non-deterministic random or quasi-random search algo-
rithm, such as swarm intelligent algorithms [43], [44].
These algorithms utilize a swarm of intelligent individuals
to search for the reducts in an information system and
can usually obtain multi-reducts quickly. They have been
employed to obtain a multi-knowledge system using
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rough sets and to complete multi-factor analysis of violent
crime [45]. However, although random search algorithms
can convergence theoretically with a probability of 1,
they cannot guarantee the completeness of multi-reducts
within a finite run time in practice.

III. R EDUCTION AND KNOWLEDGE THEORY

The basic concepts of attribute reduction and its philosophy
are presented in the related literature [38], [46] and multiple
reducts and multi-knowledge systems are described in [17].
Here, we will recall the reduction concepts that are relevant
to the present work and then extend the relevant theories and
concepts to provide a theoretical description of comprehensive
knowledge systems.

A. Distribution Table

An information system can be defined as a decision table by
T = (U,C,D, V, f), whereC is the set of condition attributes
andD is the set of decision attributes, respectively.V is the
value set of all attributes.f : U × {C ∪ D} → V is the
information function such thatf(x, a) ∈ Va for every a ∈
C ∪ D, x ∈ U . For E ⊆ C ∪ D, an equivalence relation
IND(E) is defined as follows:

IND(E) = {(x, y) ∈ U × U | ∀a ∈ E, f(x, a) = f(y, a)}
(1)

IND(E) partitionsU into disjoint subsets. LetU/E denote
the family of all equivalence classes of the relationIND(E),
i.e.U/E = {E1, E2, · · · , Ei, · · · }, whereEi is an equivalence
class ofE, which is denoted[xi]E . Note that equivalence
classes are defined with respect to their own attribute set.
Equivalence classesU/C andU/D will be called condition
and decision classes, respectively.

Definition 1: [Positive region] Given a decision tableT =
(U,C,D, V, f). Let B ⊆ C. TheB-positive region withβ of
D is the set of all objects fromU which satisfy Equ. (2).

POSβ
B(D) =

⋃

|[xi]B∩[x]D |

|[xi]B |
≥β

[xi]B (2)

whereβ ∈ (0.5, 1]. In particular, the positive region withβ
will degenerate into the classical rough set model ifβ = 1.

Definition 2: [β-decision table] Given a decision table
T = (U,C,D, V, f), determine its condition classes[xi]C . The
decision value of objects in each condition class toβ extent
within POSβ

C(D) is normalized to theβ-dominant decision
value in the respective condition class. Namely, the decision
value of [xi]C in the positive region is normalized such that:

|[xi]C ∩ [x]D|

|[xi]C |
= 1 (3)

and then, the information function is updated asfβ : U ×
{C ∪D} → Vβ . In this way aβ-decision table is formulated,
which will be denoted asTβ = (U,C,D, Vβ , fβ). Accordingly,
attributeb ∈ B ⊆ C isD−dispensable in B, if POSβ

B(D) =

POSβ
(B−{b})(D); otherwise attributeb is D− indispensable

in B. If ∀b ∈ B areD − indispensable in B, thenB will
be calledD − independent. A subset of attributesB ⊆ C is

a D − reduct of C, iff POSβ
B(D) = POSβ

C(D) andB is
D − independent.

Theorem 1:Given Tβ, setNEGβ
C(D) = U − POSβ

C(D).
B ⊆ C is a reduct, therefore∀[xi]B either [xi]B ⊆
NEGβ

C(D) or [xi]B ⊆ POSβ
C(D) ∧ |[xi]B/D| = 1 is

satisfied.
Proof 1: B is a reduct, soPOSβ

C(D) = POSβ
B(D) and

NEGβ
C(D) = NEGβ

B(D). If [xi]B ⊆ NEGβ
B(D), [xi]B ⊆

NEGβ
C(D). Similarly, [xi]B ⊆ POSβ

C(D). According to

Definition 2,
|[xi]B ∩ [x]D]|

|[xi]B|
= 1 ⇔ |[xi]B/D| = 1.

Definition 3: [Distribution table] Given a decision table
T = (U,C,D, V, f), transform it intoβ-decision tableTβ =
(U,C,D, Vβ , fβ), in which the decision value ofxi according
to a decision monotonicity criterion is adjusted by Equ. (4).

fβ(xi, D) =







argmax
D

{

|[xi]C∩[x]D|
|[xi]C |

}

if β ≤ ρ(xi) ≤ 1,

f(xi, D) otherwise.
(4)

where ρ(xi) =
|[xi]C ∩ [x]D|

|[xi]C |
. U/C =

{[x1]C , · · · , [xi]C , · · · , [xm]C} is the equivalence class
set. Here a distribution tableTD = (UD(ω), C,D, Vβ , fβ)
can be formulated with the same attributes while
UD = {(x1, ω(x1)), · · · , (xi, ω(xi)), · · · , (xm, ω(xm))},
where the distribution region labelω(xi) of object xi is
determined by Equ. (5).

ω(xi) =

{

1 if β ≤ ρ(xi) ≤ 1,

0 otherwise.
(5)

These objects are in the positive region ifω(xi) = 1 and in
the negative region ifω(xi) = 0. In other words, all objects
have their deterministic distributions during variable precision
reduction, which helps us avoid the “jumping” phenomenon.
Furthermore, the distribution table collects only one object
from each equivalence class in a given information system. It
is an essential abstract from the original universe of discourse,
and reduces significantly the number of considered objects,
especially for large datasets. These benefits motivate our use
of the distribution table instead of working directly with the
decision table. We will prove the equivalence between the
distribution table and the original decision table in Theorem
2 for attribute reduction.

Theorem 2: Given T , compute TD, where UD =
{(x1, ω(x1)), · · · , (xi, ω(xi)), · · · , (xm, ω(xm))}. ∀B ⊆ C,
if an arbitrary equivalence class[xi]B in TD satisfiesω(xi) =
0 or ω(xi) = 1 ∧ |[xi]B/D| = 1 for ∀xi ∈ [xi]B, then
POSβ

B(D) = POSβ
C(D).

Proof 2: [x′
i]B respects an arbitrary equivalence class about

xi in T . By Definition 3,∀xi ∈ [xi]B, ω(xi) = 0 ⇔ [xi]B ⊆
NEGβ

C(D) ⇔ [x′
i]B ⊆ NEGβ

C(D).
By Theorem 1 (∀xi ∈ [xi]B, ω(xi) = 1 and |[xi]B/D| =

1) ⇔ ([xi]B ⊆ POSβ
C(D) andβ >

1

2
) ⇔ [x′

i]B ⊆

POSβ
C(D). Thus,POSβ

B(D) = POSβ
C(D).
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B. Reduct Completeness

Definition 4: [Complete reduct set] Consider all possi-
ble attribute subsets{{b1}, · · · , {b|C|}, {b1, b2}, · · · , {b1, · · · ,
b|C|}}, where bi ∈ B ⊆ C, 1 ≤ i ≤ |C|. Let RED(β)
represent the set of complete reducts, i.e.

RED(β) ={B|POSβ
B(D) = POSβ

C(D),

∀b ∈ B,POSβ
(B−{b})(D) < POSβ

B(D)}.
(6)

Definition 5: [Reduct completeness ratio] The reduct com-
pleteness ratio is defined as follows.

ϑ =
| ˆRED(β)|

|RED(β)|
(7)

where ˆRED(β) represents the set of obtained reducts in
practice.

Theorem 3: Given a β-decision table Tβ =

(U,C,D, Vβ , fβ), B ⊆ C, then x ∈ POSβ
B(Dβ) iff

x satisfies the predicate formulas(∀y ∈ U)(Dβ(x) 6=
Dβ(y)) ⇒ B(x) 6= B(y) is true whereDβ(x) represents the
decision value ofx in Tβ.

Proof 3:

x ∈ POSβ
B(Dβ) ⇔ [x]B ⊆ [x]Dβ

⇔(∀y ∈ U)(B(x) = B(y) ⇒ Dβ(x) = Dβ(y))

⇔(∀y ∈ U)(B(x) 6= B(y) ∨Dβ(x) = Dβ(y))

⇔(∀y ∈ U)(Dβ(x) = Dβ(y) ∨B(x) = B(y))

⇔(∀y ∈ U)(Dβ(x) 6= Dβ(y) ⇒ B(x) 6= B(y)).

Theorem 4:POSβ
B(Dβ) ⊆ POSβ

C(Dβ) if B ⊆ C.
Proof 4: Set x ∈ POSβ

B(Dβ), we have[x]B ⊆ [x]Dβ
.

SinceB ⊆ C, [x]C ⊆ [x]B. Therefore[x]C ⊆ [x]Dβ
. We have

x ∈ POSβ
C(Dβ).

Theorem 5:SetB ⊆ C, POSβ
B(Dβ) = POSβ

C(Dβ) iff B
satisfies the following predicate formulas:

(∀x ∈ U)((∃y ∈ U)(Dβ(x) 6= Dβ(y) ∧ C(x) = C(y))

∨ (∀z ∈ U)((Dβ(x) 6= Dβ(z) ⇒ B(x) 6= B(z)).

Proof 5: Since B ⊆ C, we have POSβ
B(Dβ) ⊆

POSβ
C(Dβ) from Theorem 4. So (POSβ

B(Dβ) =

POSβ
C(Dβ)) ⇔ (POSβ

B(Dβ) ⊇ POSβ
C(Dβ)), that

is (POSβ
B(Dβ) = POSβ

C(Dβ)) ⇔ ((∀x ∈ U)(x ∈
POSβ

C(Dβ) ⇒ x ∈ POSβ
B(Dβ)).

From Theorem 3, we have

POSβ
B(Dβ) = POSβ

C(Dβ) ⇔

((∀x ∈ U)((∀y ∈ U)(Dβ(x) 6= Dβ(y) ⇒ C(x) 6= C(y)

⇒ ((∀z ∈ U)(Dβ(x) 6= Dβ(z) ⇒ B(x) 6= B(z))))) ⇔

((∀x ∈ U)(∀y ∈ U)(Dβ(x) 6= Dβ(y) ⇒ C(x) 6= C(y)

∨ (∀z ∈ U)(Dβ(x) 6= Dβ(z) ⇒ B(x) 6= B(z)))) ⇔

((∀x ∈ U)((∃y ∈ U)(Dβ(x) 6= Dβ(y) ∧ C(x) = C(y))

∨ (∀z ∈ U)(Dβ(x) 6= Dβ(z) ⇒ B(x) 6= B(z)))).

Whenβ = 1, Theorem 5 is consistent with the results in [24].
Theorem 6:∀B ⊆ C, if |[xi]C/D| 6= 1, |[xi]B/D| 6= 1.
Proof 6: BecauseB ⊆ C, [xi]C ⊆ [xi]B. And |[xi]C/D| 6=

1, it must be|[xi]B/D| 6= 1.

C. Genealogical Binary Tree

In a left-child-right-sibling (LCRS) binary treeM =
(N,L,R), N denotes a node, its parent nodeNf and sibling
nodeNs,L andR is the left and right child nodes, respectively.
There is no child node in a leaf node.

Definition 6: [Brotherhood] In the right path of the LCRS
binary tree, the previous node of the starting node is null or
Nf and the terminator node is a leaf node, then all of nodes
in this path is a brotherhood in the binary tree.

In particular, the brotherhood is also called the ancestor
when the previous node of the starting node is null.

Definition 7: [Genealogical binary tree] GivenT =
(U,C,D, V, f), a LCRS binary tree mapsC to generate a
genealogical binary tree, denoted asG(C), where any attribute
c in C is mapped into a nodec©. In the right path ofG(C),
the previous nodes of nodec© are its elder siblings, while
those next nodes of nodec© are its younger siblings. In the
left path of G(C), the path from a node to its ancestor is
called as a genealogical generation path, denoted as “⌢”. The
nodes in a genealogical generation path only have parent-child
relationships without brotherhood. By traversing all genealog-
ical generation paths the complete attribute combinationsset,
denotedPG(C), can be obtained.

The genealogical binary tree ofT will provide a determin-
istic roadmap to perform an orderly and complete search of
all candidate reducts inT .

c1 1

c2 5

c3 11

c4
15

c4
12

c3 6

c4
13

c4
7

c2 2

c3 8

c4
14

c4
9

c3 3

c4
10

c4
4

Fig. 1: A genealogical binary tree

As shown in Figure 1, a genealogical binary tree is mapped
from C = {c1, c2, c3, c4} in a givenT = (U,C,D, V, f). The
number at the upper right of each node is its sequence number.
Here, the order of the attributes inT is used as the order of
the attributes in the nodes. In practice, the attributes need to be
ranked before attribute reduction.We will discuss the ranking
process later (see Equ. (15)).

Nodes 1, 2, 3 and 4 are the brotherhood (ancestor). Nodes
1 and 2 are the elder siblings of node 3 and its younger
sibling is node 4. In the left paths ofG(C), all attribute
combinations can be obtained fromPG(C), i.e. PG(C) =
{{c1}, {c2}, {c3}, {c4}, {c1, c2}, {c1, c3}, {c1, c4}, {c2, c3}, {c2,
c4}, {c3, c4}, {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}, {c2, c3, c4},
{c1, c2, c3, c4}}. The corresponding genealogical generation
paths are 1©, 2©, 3©, 4©, 1© ⌢ 5©, 1© ⌢ 6©, 1© ⌢ 7©,
2© ⌢ 8©, 2© ⌢ 9©, 3© ⌢ 10©, 11© ⌢ 5© ⌢ 1©, 12© ⌢ 5© ⌢ 1©,
13© ⌢ 6© ⌢ 1©, 14© ⌢ 8© ⌢ 2©, 15© ⌢ 11© ⌢ 5© ⌢ 1©.
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D. Knowledge Comprehensiveness

Theorem 7:Given a decision tableT = (U,C,D, V, f),
denoteRED(β) as its reduct set with a givenβ. The set
of attribute combinations obtained by traversingG(C) is
denoted asRED∗. (POSβ

B(D) = POSβ
C(D)) ∧ ((∀a ∈

B)(POSβ
(B−{a})(D) < POSβ

B(D))) for ∀B ∈ RED∗ and

(POSβ
B(D) 6= POSβ

C(D))∨((∃b ∈ B)∧(POSβ
(B−{b})(D) =

POSβ
B(D) = POSβ

C(D))) for ∀B /∈ RED∗, which is the
necessary and sufficient condition forRED(β) = RED∗.

Proof 7: The number of nodes is2n − 1 for a complete
graphG of depthn. This implies that there are2n−1 attribute
combinations inPG(C). ThenRED(β) ⊆ PG(C) in G(C).

By Definition 4, if RED(β) = RED∗, it follows that

(RED(β) = RED∗)

⇒ (((∀B ∈ RED∗)(POSβ
B(D) = POSβ

C(D))

∧ ((∀a ∈ B)(POSβ
(B−{a})(D) < POSβ

B(D))))

∧ ((∀B /∈ RED∗)(POSβ
B(D) 6= POSβ

C(D))

∨ ((∃b ∈ B) ∧ (POSβ
(B−{b})(D) = POSβ

B(D)

= POSβ
C(D))))).

For ∀B ∈ RED∗, (POSβ
B(D) = POSβ

C(D)) ∧ ((∀a ∈
B)(POSβ

(B−{a})(D) < POSβ
B(D)), B ∈ RED(β). For

∀B /∈ RED∗, (POSβ
B(D) 6= POSβ

C(D)) ∨ ((∃b ∈ B) ∧
(POSβ

(B−{b})(D) = POSβ
B(D) = POSβ

C(D))), B /∈
RED(β). SoRED(β) = RED∗.

Hence, the theorem follows.
Let RED(β) represent the set of reducts, andτ is a

mapping from the condition attributes set to the decision
attributes set. Then the knowledge from the reduct set can
be defined as follow.

Ψ(β) = {τB|B ∈ RED(β)} (8)

where each of the elements inΨ(β) is a rule, all of which
form a comprehensive knowledge systemK = {U ′

D, A, I},
whereU ′

D is UD without theω component, andI represents
the relation betweenU ′

D andA. Definingx ∈ U ′
D, a ∈ A, the

notationxIa is introduced to signify that the objectx has the
attributea [47].

In an information system, the condition attribute∀c ∈ C,
the condition vectorVC and its size|VC | [48] are as defined
in Equ. (9).

VC =Vc1 × Vc2 × · · · × Vc|C|

|VC | =

|C|
∏

i=1

|Vci |
(9)

where|VC | is the number of objects with different values that
can theoretically exist in the condition vector, while|C(U)| is
the actual number of objects with different values that exists
for a given information system. Since the attribute values can
be formulated as vectors of Cartesian products of attribute
values in the information system, they can be regarded as an
extension of the information system [20], [21].

Definition 8: [Information system comprehensiveness] In-
formation system comprehensiveness is the ratio of the actual

and theoretical number of objects with different values, as
defined in Equ. (10).

ξ =
|C(U)|

|VC |
(10)

if ξ = 1, the system is called a comprehensive information
system.

Definition 9: [Knowledge system comprehensiveness] In a
knowledge system, the number of objects with different value
is |Ψ(β)| in the condition vector, and hence knowledge system
comprehensiveness, ξ̇, can be expressed as:

ξ̇ =
|Ψ(β)|

|VC |
(11)

if ξ̇ = 1, the system is called a comprehensive knowledge
system.

Definition 10:[Basic rule ratio] Some of the rules in|Ψ(β)|
already exist in|C(U)|. These rules are called basic rules and
explicit. The ratio of knowledge extraction, referred to asthe
basic rule ratio, is defined as

ξ̂ =
|C(U) ∩Ψ(β)|

|C(U)|
(12)

If ξ̂ = 1 in a comprehensive knowledge system, then the
system contains all basic rules from the given information
system.

E. Knowledge Structure

We define a structure for a comprehensive knowledge
system to illustrate a complete reduct set, the corresponding
knowledge and their relationships.

Definition 11: [Reduct chain] All possible attribute subsets
for 2|C| form a complete lattice. The subset{c1, · · · , c|C|} is
the maximum node of the complete lattice, while the empty
setΦ is the minimum node.∀B ⊂ C andB is a reduct, the
chain which passes throughB is called a reduct chain from
the minimum to the maximum node in the lattice.

The reducts inRED form a complete reduct set lattice. A
Hasse diagram of the attributes for{c1, c2, c3, c4} is shown
in Figure 2(a) for a givenβ. These are twenty-four attribute
chains, for exampleΦ− c1− c1, c3 − c1, c2, c3− c1, c2, c3, c4.
If {c1, c3, c4} and {c2, c4} are considered as reducts, the
two chains highlighted in red are the reduct chains. A Hasse
diagram of a complete reduct set is shown in Figure 2(b).

In a comprehensive knowledge system, a formal context
with complete reducts can be used to reveal the internal
relationships between knowledge from multiple perspectives.
The knowledge lattice is obtained from the formal context
[47]. Its minimum node is an empty set, and the maximum
node is a complete attributes set with corresponding attribute
values. ForRED(β) = {B1, · · · , Br}, the lower the value of

|
r
⋃

i=1

Bi|−|
r
⋂

i=1

Bi|, the less the dispersion of complete reducts.

Definition 12:[Double-layer Complete Structure] A double-
layer complete structure consists of two layers, in which one is
a complete reduct set lattice and the other is a comprehensive
knowledge lattice. Set reductB ∈ RED andBd = B ∪ {d}.
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(a) a four-attribute lattices

Φ

c1, c3, c4 c2, c4

c1, c2, c3, c4

(b) a lattice for complete
reduct set

Fig. 2: A complete reduct lattice

In a comprehensive knowledge lattice, each node has a lattice
connotation, in whichcji denotes that the value of attributeci is
j, similarly dj denotes that the value of the decision attributed
is j. Set lattice connotationB′ is from an upper-neighborιB′

of the maximum node in a comprehensive knowledge lattice,
whereB′ is Bd with corresponding attribute values and denote
their relationship asB′ ∈∗ Bd. The set of nodes on the chains
passing nodeιB′ , excluding the minimum and maximum
nodes, forms a setΥ(ιB′) in a comprehensive knowledge
lattice. The relationship between the complete reduct set and
the comprehensive knowledge lattices is denoted by “→∗”. If
B′ ∈∗ Bd, B →∗ Υ(ιB′).

Property 1: Some double-layer structure properties are
summarized as follows.

1) B′
1 ∩B′

2 6= ∅ ⇒ B1 ∩B2 6= ∅;
2) B′

1 ∩B′
2 = ∅ ⇔ B1 ∩B2 = ∅.

3) Υ(ιB′
1
)∩Υ(ιB′

2
) 6= ∅ ⇒ B′

1 ∩B′
2 6= ∅ ⇒ B1 ∩B2 6= ∅.

whereB1, B2 ∈ RED andB′
1 ∈∗ Bd

1 , B
′
2 ∈∗ Bd

2 .

IV. K NOWLEDGE EXTRACTION METHODOLOGY

In this section, our complete variable precision reduction
(CVPR) algorithm is presented in detail. The computational
time complexity and completeness of the methodology are also
analyzed and proven.

A. Distribution Table Abstracting and Attribute Rank Dynamic
Updating

Given a decision tableT , we transform it into β-
decision tableTβ , in which the decision value ofxi ac-
cording to a decision monotonicity criterion is adjusted by
Equ. (4). Then only objectxi in ∀[xi]c is collected and

ω(xi) is computed by Equ. (5) inTβ. We get the distri-
bution table TD = (UD(ω), C,D, Vβ , fβ), where UD =
{(x1, ω(x1)), · · · , (xi, ω(xi)), · · · , (xm, ω(xm))}. It is our
distribution table abstracting strategy, which helps us toreduce
the considered universe (objects) significantly compared to
the original decision table through the equivalence class.
From Theorem 2 it follows that this strategy can keep the
equivalence between obtaining reducts fromTD and T . An
abstracting proportion denotes the percentage reduction of
objects fromT to TD as follows.

ς =
|U | − |UD(ω)|

|U |
(13)

where|U | and |UD(ω)| are the numbers of objects inT and
TD, respectively.

Consider here an attribute setH , which is ∅ initially. We
combine incrementally an attributec into H from the attribute
set C − H (i.e. c ∈ (C − H)) in distribution tableTD =
(UD(ω), C,D, Vβ , fβ) to obtain a reduct. The combination
priority of any attribute (c ∈ C−H) will be mainly dependent
on its attribute rank. If∃[xi]H with |[xi]H/ω| 6= 1, we denote
the objects withω(xi) = 1 in [xi]H with |[xi]H/ω| 6= 1
as Sobj . In the next loop, if |[xi]H/ω| = 1, but ∃[xi]H
with ω(xi) = 1 ∧ |[xi]H/D| 6= 1, we denote the objects
with the same decision values in all[xi]H with ω(xi) =
1 ∧ |[xi]H/D| 6= 1 as Sobj . If there are multiple different
decision values in these equivalence classes, other objects with
other different decision values would be denoted asSobj one
by one in the next loops in our algorithm. At worst, it will loop
|D|+1 times, while at best, it will only loop once, as will be
discussed in Subsection IV-B. IfSobj has been denoted, our
binary classifying labelϕ is determined as follows.

f(x, ϕ) =

{

1 if x ∈ Sobj ,

0 otherwise.
(14)

We usec to partition [xi]H with |[xi]H/ϕ| 6= 1, and then
obtain [xi]

′
c. Then the attribute rankr(c) can be calculated as

r(c) = −
∣

∣

∣

⋃

|[xi]H/ϕ|6=1∧|[xi]′c/ϕ|6=1∧f(xi,ϕ)=1

{xi}
∣

∣

∣
(15)

It means thatr(c) is the negative of the number ofϕ-
inconsistency equivalence classes with respect to attribute c
against[xi]H . The largerr(c) is, the higher the combination
priority of attributec. Whenr(c) is the same for two attributes
priority is determined according to the from-left-to-right order
in TD. If r(c) = 0, H ∪ c is a candidate reduct, since all
objects have been partitioned clearly. If all the equivalence
classes with respect toH ∪ c satisfy Theorem 2, then this
candidate reduct is a reduct according to Definition 2.

Let UD, |n′| and |m′| represent the universe of discourse,
its number of objects and the number of condition attributes
in the distribution table, respectively. The pseudo-code of
our attribute rank updating(ARU) algorithm for genealogical
brotherhood is illustrated in Algorithm 1.

We analyze the time complexity of ARU algorithm as
follows. Because the loop from Steps 1 to 9 occurs at most|C|

times, the time complexity isO(|U ||C|+
|C|
∑

i=1

(Mi −mi +1)).
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ALGORITHM 1: Attribute Rank Updating (ARU) algo-
rithm
input : [xi]H with ϕ
output: attribute rank of a genealogical brotherhood

1 for i = 1 to |m′| do
2 Obtain the maximum and minimum values ofci

(∀ci ∈ C −H) for all objects in[xi]H , denote them
asMi andmi;

3 CreateMi −mi + 1 queues;
4 for j = 1 to |n′| do
5 Assignf(xj , ci)−mi into the corresponding

queue;
6 end
7 Setr(ci) = 1
8 Calculater(ci) by Equ. (15);
9 end

10 Sort the attributes byr(ci) and output.

Usually, max
1≤i≤|C|

(Mi −mi +1) < |U | ⇒ (|U ||C|+
|C|
∑

i=1

(Mi −

mi +1)) ≤ (|U ||C|+ |U ||C|). Therefore the time complexity
of the loop isO(|U ||C|), and hence the time complexity of
Algorithm 1 isO(|U ||C|).

B. Hierarchical Binary Classifying and Genealogical Tree
Pruning

The distribution state of objects is determined once the
information system is given. Attribute reduction is essential
to find some subsets of attributes (i.e. reducts) to partition
the objects distinctly through updating the equivalence classes
with respect to different tentative attribute combinations. Ac-
cording to Theorem 2, the partition can be implemented
by multi-binary classifying of the equivalence classes with
|[xi]B/D| 6= 1 ∧ ω = 1 hierarchically.

Using the genealogical binary tree of attributes to partition
the objects distinctly, the hierarchical binary classifying (HBC)
algorithm illustrated in Algorithm 2 is proposed. Here,Ω
represents the condition, i.e. the attribute combinationZ
containingc and its younger siblings satisfies|[xi]Z/ϕ| = 1
for ∀[xi]Z , andY represents the corresponding attributes, i.e.
the attributes in the path from theNf node of the current node
to its ancestor.

From Theorem 6, Lemma 1 immediately follows.
Lemma 1:∀Z ′ ⊆ Z, if |[xi]Z/ϕ| 6= 1, |[xi]Z′/ϕ| 6= 1.
Lemma 1 provides us with a pruning opportunity. At Step

7 in Algorithm 2, our pruning strategy is triggered inG if
∃Z ⇒ |[xi]Z/ϕ| = 2, since the attributes at these pruned
nodes cannot be included in any reduct. In the same way,
our pruning strategy is also triggered at Step 6 if rankr =
0. This is very helpful in terms of reducing computational
complexity, and enables multiple reducts to be determined with
significantly reduced computational effort.

Note that the output of the HBC algorithm is the candidate
multiple reduct setRED′ for the binary classifying. The
validity of each of the candidate reducts is checked using
Theorem 2 in our complete attribute reduction algorithm, as

ALGORITHM 2: Hierarchical Binary Classifying (HBC)
algorithm

input : H and [xi]H with ϕ
output: Candidate multiple reducts setRED′

1 Call Algorithm 1 to calculate rankr of every attribute in
C −H ;

2 Generate the ancestor branches according to their
attribute ranks;

3 do
4 Visit an ancestor following the ancestor branch

one-by-one;
5 Obtain the attribute combination setZ;
6 if r 6= 0 then
7 if Ω is satisfiedthen
8 Current attributes are collected into setHA;
9 Obtain the attribute combination setY ;

10 Current objectsUO are partitioned into[xj ]Y
in [x]Y which are|[xj ]Y /ϕ| = 2;

11 Calculate rankr of every attribute inHA

with UO by calling Algorithm 1;
12 Generate the left child node according to its

attribute ranks;
13 else
14 Goto the youngest sibling in the

brotherhood;
15 end
16 end
17 else
18 Collect the attributes in this genealogical

generation path as a candidate reduct and add
it into RED′;

19 end
20 end
21 while all ancestor nodes are visited;

will be discussed in detail in Subsection IV-C. Here we further
analyze the time complexity of Algorithm 2 as follows. To
execute Algorithm 1, Steps 1 and 11 take no longer than
|U ||C| time. The useful attributes and objects obtained using
Steps 8 and 10 is dominated byO(|U ||C|). Since the best,
worst and average case time complexity for pre-rank of the
binary tree isO(1), O(2|C|) and O(2|C|/|C|), respectively,
and the average case time complexity through Steps 3 to 21
is O(2|C||U |), it can be concluded that the average case time
complexity of Algorithm 2 isO(2|C||U |).

C. Knowledge Extraction

In order to obtain a complete reduct set, we have toperform
four tasks as follows. Firstly,we transform the considered
decision table of the information system into its distribution
table.Secondly, attribute rank is calculated dynamically when
any attribute combination set is obtained for the reducts.
Thirdly, a genealogical binary tree is generated dependenton
the attribute rank. Fourthly, the objects in the positive region of
the information system will be binary classified hierarchically.
During binary classifying, the attributes not included in the
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current considered attribute combination will be combined
into the current considered attribute combination following
any branch of the genealogical tree from the root to the
attribute node with rankr = 0. After completing the four tasks,
all candidate reducts are checked and redundancies removed,
and the algorithm outputs the complete reduct sets. Our
variable precision reduction(CVPR) algorithm is summarized
in Algorithm 3.

ALGORITHM 3: Complete Variable Precision Reduction
(CVPR) Algorithm
input : T andβ
output: Complete reduct setRED

1 Formulate the distribution tableTD;
2 Candidate complete reduct setRED′ = ∅ and complete

reduct setRED = ∅;
3 do
4 Choose the first candidate reduct asH in RED′;
5 Current objects are partitioned into all of[xi]H in

[x]H ;
6 Assignϕ values of the objects using Equ. (14);
7 Call Algorithm 2 to obtain the candidate reduct set

RED′
H set;

8 if RED′
H ! = null then

9 SetRED′
H = {R̂1, · · · , R̂j , · · · , R̂n};

10 for j = 1 → n do
11 if all of [xi]

′
R̂j

satisfy Theorem 2then

12 Union R̂j ∪H into RED;
13 else
14 Union R̂i ∪H into the end ofRED′

15 end
16 end
17 end
18 end
19 Remove the first candidate reduct fromRED′;
20 while RED′! = null;
21 Remove the redundant reduct(s) inRED;

In Algorithm 3, Step 1 takesO(|U ||C|) time to formulate
TD. The algorithm chooses the attribute sets at least once, on
average2|C|/|C| times and at most2|C| times. Therefore the
operation hasO(22|C||U |/|C|) average case time complexity
from Steps 3 to 20. Step 21 involves removing reducts with
redundant attributes which can be done inO(4|C|) time. There-
fore the best, worst and average case time complexity of Al-
gorithm 3 isO(|U ||C|), O(4|C||U ||C|) andO(4|C||U |/|C|),
respectively.

In general,|C| < |U |, however, the rate of exponential
growth with respect toC is far faster than the quadratic
growth withU , hence in Algorithm 3 the number of attributes
has more influence than the number of objects in terms of
computational complexity. The pruning strategy is a very
important mechanism for reducing the number of objects and
consequently decreasing algorithm time complexity.

Theorem 8:RED(β) extracted by the CVPR algorithm is
the complete reduct set.

Proof 8: From Theorem 7, the complete reduct set is a sub-
set ofPG(C) in the genealogical binary treeG(C). According
to Lemma 1, the genealogical paths of these attributes inG(C)
are pruned during hierarchical binary classifying from Steps
7 to 16 in Algorithm 2 once there is no candidate reduct in
the paths. The redundant attribute combinations are removed
at Step 21 in Algorithm 3. The theorem follows.

The reduct lattice and its comprehensive knowledge system
can be built once the complete reduct setRED(β) is obtained
by the CVPR algorithm.The comprehensive knowledge sys-
temK = {U ′

D, A, I} is considered as a formal context. Then
cji anddi in every knowledge lattice are determined through
formal concept analysis [47]. The double-layer structure of
the comprehensive knowledge system is established as in
Definition 12.

V. EXPERIMENTS, RESULTS AND DISCUSSION.

In this section, our complete attribute reduction algorithm is
evaluated based on an implementation in the C language and
a computational environment consisting of an Intelr CoreTM

i5-3230M CPU @2.60GHz processor with 4G memory. We
begin by providing a relatively simple example to illustrate
comprehensive knowledge extraction and then demonstrate the
performance of our algorithm on 30 benchmark datasets with
different instances and attributes.

A. Benchmark Problems

To illustrate the effectiveness and performance of the pro-
posed CVPR algorithm, we evaluate its performance on 30
well-known benchmark datasets from the UC Irvine machine
learning repository1. Some of these datasets (e.g. heart, iris,
glass) are frequently used to test classification methods. We
also consider some of the newer datasets, such as Connec-
tionist Bench, Fertility, and MAGIC Gamma Telescope. The
average number of attributes in the datasets is 12 and the
maximum number is 60. The average number of objects is
1,980, with ten datasets having more than 1,000 objects and
the maximum number is 19,020. The results obtained with
different β values are presented and discussed in Subsection
V-B. In this section we consider the datasets listed in TableI
with β = 1 to enable a fair comparison with the alternative
approaches considered.

In the case of the heart dataset, the ancestor of its attribute
genealogical tree isc5 − c8 − c10 − c4 − c1 − c2 − c3 − c6 −
c7 − c9 − c11 − c12 − c13. The time performance curve during
extraction of complete reducts without pruning is illustrated
in Figure 3(a). Searching the left subtree ofc5, we obtain
the reducts from the first to the53rd reduct. Accordingly,c8
corresponds to the54th to the 83rd reduct,c10 corresponds
to the 84th to the 95th reduct,c4 corresponds to the96th
to the 106th reduct, andc1 corresponds to the107th to the
109th reduct. With regard to the child generation, for example,
c10−c1 corresponds to the84th to the91st reduct, andc10−c4
corresponds to the92nd to the95th reduct.

Figure 3(b) shows the time performance curve comparison
during the extraction of complete reducts from the heart

1http://archive.ics.uci.edu/ml/
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Fig. 3: Reduction performance curves from the heart dataset

dataset with and without pruning. The pruning strategy saves
significantly on computational time without omitting any
reduct. When traversing the ancestorsc5 − c8 − c10 − c4 −
c1 − c2 − c3 − c6 − c7 − c9 − c11 − c12 − c13, the attribute
nodes fromc2 to c13 do not satisfy theΩ condition, hence all
of them are pruned. Even traversing the first 5 attribute nodes
(i.e., c5 − c8− c10 − c4 − c1), the complete traverse procedure
takes much longer on five slopes, denoted1©, 12©, 3©, 4© and
5©, respectively. For example, to obtain the95th reduct after

traversingc10, takes nearly 3000 ms to get the next reduct (i.e.
the 96th reduct) without pruning (the child branches ofc10).
Sincec10’s child nodec4 has eight younger siblings, there are
28−1 nodes to be traversed and calculated. Even when sharing
one father node, child branch pruning also makes a difference.
For example, under the ancestorc10, it takes nearly 1000 ms
from traversing its childc1 to traversing its childc4 without
pruning, as shown in Figures 3(a) and 3(b). In general, thereis
a positive correlation between the time cost and the number of
nodes. The idea of the pruning strategy is that if one attribute
node cannot be included in a reduct, then none of its child
nodes can be included in the reduct either.

There are three kinds of attribute node in Figure 4, the
black ones which are traversed normally, the red one which
are skipped, and the blue ones which are pruned. Since the
red nodes are rankr(c) = 0, it is impossible for the candidate
reduct to include more attributes. The blue ones do not satisfy

theΩ condition, and therefore are not valid to include in any
reduct. In other words, the red and blue nodes will not generate
child nodes, i.e. our pruning strategy is triggered. For example,
traversing the pathc5 ⌢ c4 ⌢ c9, we get c9 with rank
r(c) = 0, the candidate reduct{c5, c4, c9} is obtained, and
the left child nodes ofc9 are not transversed. Insteadc10 is
transversed. Note that the attributes of child nodes of one node
are the same as its younger siblings, only with different ranks.
Since the child node attribute combination setc2, c3, c12, c13
of c6 in the attribute set{c5, c4, c6} cannot partition its objects,
it is not possible for its subset to partition the objects inerrably,
hence the branchc2 − c3 − c12 − c13 is pruned.
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Fig. 4: Part of the heart dataset genealogical tree

In Figure 4, there are two pathsc7−c11−c2−c3−c12−c13
andc6− c13− c2− c3− c7− c11− c12. Although the attributes
are the same with the exception ofc6, they have different
attribute ranks. They provide dynamic opportunities to join
the candidate reduct(s), which is obviously different fromthe
importance of attributes in the model [49]. This is a static
quantity and only equivalent to our attribute ranks in the
ancestor branch in Figure 4. In the heart dataset there is a
reduct{c5, c8, c7, c10}. According to the classical importance
of attributes approach to obtaining the reduct, after selecting
c5 and c8, c10, c4, c1, c2, c3, and c6 would be considered
successively. While we select the attributes following the
genealogical tree generated through these attribute ranks, after
selectingc5 andc8, c7 should be considered, since our attribute
ranks are dynamic. Afterc5 and c8 are selected the objects
which need to be considered are reduced with the remaining
attributes in a new distribution table. The attribute ranksare
updated accordingly, which is very helpful for obtaining the
reduct(s) successfully.

In Figure 4, there are two different genealogical generation
pathsc5 ⌢ c4 ⌢ c3 ⌢ c7 ⌢ c12 and c5 ⌢ c4 ⌢ c7 ⌢
c12, with the former contained in the latter. The former is
redundant with respect to the latter.The reason is that when
combining the attribute set with different sequences to obtain
the candidate reduct, they both partition all the objects equally.
Therefore it is necessary to remove the redundancies in the
collected reduct set.

In Figure 5, the left subfigure shows the comparison be-
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tween the number of normally traversed nodes and the number
of pruned nodes about the child nodes of the five first attributes
in the ancestor branch for the heart dataset. There are 12
nodes in the next generation ofc5, as shown in the left bar of
the left subfigure, no node is skipped, five pruned, and seven
(i.e. c1, c8, c4, c9, c12, c3, c11) normally traversed. For the next
generation ofc5, the right subfigure of Figure 5 shows further
the comparison among the three kinds of node in terms of their
visit states. It is clear that the number of normally traversed
nodes is a small portion of the nodes in the whole genealogical
binary tree in our algorithm, with most nodes either skipped
or pruned. Our pruning strategy reduces computational costs
significantly. Figure 6 shows more performance comparison
curves during reduct extraction for the seismic-bump, Credit
Approvals and ILPD datasets.

TABLE I: Considered datasets and the reduct number
Data set NO NA NR

Credit Approval 690 15 60
heart 270 13 109
Ionosphere 351 34 5759
iris 150 4 4
Lenses 24 4 0
Liver Disorders 345 6 9
Statlog (German Credit Data) 1000 20 846
Glass 214 9 18
Abalone 4177 8 25
Auto MPG 398 8 5
banknote 1372 4 6
Blood Transfusion 748 4 2
Breast Cancer Wisconsin 699 9 19
Breast Tissue 106 9 8
Connectionist Bench 208 60 1314
Contraceptive Method Choice 1473 9 0
Ecoli 336 7 7
EEG Eye 14980 14 597
Fertility 100 9 12
ILPD 583 10 56
Knowledge Modeling Data 403 5 8
MAGIC Gamma Telescope 19020 10 32
Qualitative Bankruptcy 250 6 8
seeds 210 7 21
seismic-bumps 2584 18 34
SPECT Heart 80 22 725
Thoracic Surgery Data 470 16 14
Wine Quality (red) 1599 11 227
Wine Quality (white) 4898 11 127
Yeast 1484 8 4

O Number of Objects.
A Number of Condition Attributes.
R Number of Reducts.

In the seeds dataset, the three decision values are the three
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Fig. 6: Time performance curves during the extraction of
reducts

different varieties of wheat: Kama, Rosa and Canadian. The
objects with a decision value of 1 are selected and their
classifying value,ϕ set to 1 at Step 6 in Algorithm 3. After
the first calling of Algorithm 2 at Step 7, all 21 reducts
are obtained, becauseRED′ = ∅ at Step 20, which leads
directly to Step 21 and then to the end of the whole algorithm.
When using the classic classification qualityγ [38] to evaluate
the attribute’s importance (indicating the attribute’s impact
on all decision classes), there is little difference between all
attributes. However our attribute ranks are calculated by con-
sidering only two classes during any binary classifying with
binary classifying labelϕ. The significant differences between
attributes are very helpful in determining straightforwardly
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whether the attribute and its attribute combinations should be
included in a candidate reduct or not. For the Contraceptive
Method Choice dataset, the search stops once the first binary
classifying is completed, since it is impossible to include
any attribute to obtain a reduct. In other words, there is no
reduct in the dataset. The binary classifying strategy speeds up
distinguishing whether there is a candidate reduct or not. Of
course, the binary classifying strategy also makes it possible to
generate the genealogical binary tree with the attribute ranks.
The fourth column in Table I shows the number of complete
reducts in each dataset identified by the CVPR algorithm.

In Table I, the highest abstracting proportion defined in
Equ. (13) reaches 58.80% for the QualitativeBankruptcy
dataset. The proportion is more than 30%, for the Blood
Transfusion and Breast Cancer Wisconsin datasets, while the
proportions for the SPECT Heart, Wine Quality (red) and Wine
Quality (white) datasets are 18.75%, 15.01% and 19.13%,
respectively.

Table II provides a comparison of the results obtained using
the CVPR algorithm and the WADF (worst-attribute-drop-
first) algorithm [16]. For the relatively small scale datasets,
i.e. credit approval, heart, iris and liver disorders, CVPRand
WADF algorithms both determined all of the reducts, while
only the CVPR algorithm identified the complete reduct set for
the relatively large scale datasets, i.e. Ionosphere and Statlog.

In WADF, the maximum number of multi-reducts that can
be identified is the number of non-core attributes in the seed
reduct, and the reducts which the algorithm can identify is
strongly dependent on the seed reducts. For example, WADF
is able to extract all reducts from the Credit Approval and heart
datasets, but not from the Ionosphere and Statlog datasets.

TABLE II: Comparisons about the number of obtained multi-
reducts

dataset WADF [16] ϑ CVPR ϑ

Credit Approval 60 100% 60 100%
heart 109 100% 109 100%
iris 4 100% 4 100%
Lenses 0 - 0 -
Liver Disorders 9 100% 9 100%
Ionosphere 32 5.56% 5759 100%
Statlog 16 18.9% 846 100%

To compare the performance of the CVPR and FSRS (fuzzy
swarm rough set) algorithms [45], we firstly test a classical
dataset, i.e. the Glass dataset, in which there are six decision
values. Figure 7 shows the performance of FSRS with respect
to identifying multiple reducts. The swarm size was 30, and the
maximum number of iterations was 108. The execution time
was 213s (the numbers above the vertical dotted lines are the
execution times of the corresponding run number in seconds).
In total 11 reducts, ({c1, c2}, {c1, c4}, {c1, c5}, {c1, c6},
{c1, c7}, {c2, c4}, {c2, c5},{c2, c7}, {c3, c5}, {c3, c7}, and
{c4, c7}), were obtained, corresponding to run numbers
1,2,3,4,5,7,14,16,17,19 and 20. In the case of the other
runs no new reduct were obtained. The reduct complete-
ness ratio ϑ is finally stopped at 61.1% using FSRS.
In fact, there are 18 reducts in this dataset, hence 7

reducts, ({c5, c7, c9}, {c4, c5, c6}, {c4, c5, c8}, {c4, c5, c9},
{c2, c3, c6, c8}, and{c2, c3, c6, c9}), were not identified. The
main reason that FSRS failed to identify all reducts is that it a
stochastic search algorithm and hence cannot guarantee finding
the complete set of reducts in a finite number run times.

Figure 8 shows the time performance curve when using
the CVPR algorithm to extract all 18 reducts from the Glass
dataset. Here all 18 reducts are obtained within 593 ms reflect-
ing the fact that CVPR algorithm is a deterministic algorithm
that considers distribution information and employs effective
pruning strategies to reduce the computational overhead.
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Fig. 8: Reduction performance curve using CVPR from the
Glass dataset

The CVPR algorithm is designed based on the theory of
comprehensive knowledge extraction introduced in the paper.
It is a deterministic search procedure in which dynamic
attribute rank is used as heuristical information to traverse its
genealogical tree, such that the completeness of the reductset
is ensured. This contrasts with which is different obviously
from WADF and FSRS which do not guarantee completeness.
Furthermore, CVPR algorithm is optimised with respect to
computational overhead through the use of distribution table
abstracting, hierarchical binary classifying and genealogical
tree pruning.

The numbers of complete reducts for each of the 30 bench-
mark datasets is listed in Table I, with all reducts satisfying
Definition 2. The number of objects in the datasets has little
influence on the algorithm search time and completeness of
reducts. The reason is that our distribution table collectsonly
one object from each equivalence class in a given information
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system, and thenonly the objects in the subsequent equiv-
alence classes with|[xi]H/D| 6= 1 ∧ ω = 1 are considered
during binary classification. The number of attributes in the
datasets has a relatively larger influence on CVPR algorithm
performance. The pruning strategy is very helpful in obtaining
sound and complete reducts. The average case time complexity
of CVPR is O(4|C||U |/|C|), which also verifies further the
theoretical analysis of the time complexity of algorithms and
theoretical proofs of completeness in Section IV.

B. From Information Systems to Double-layer Lattice Struc-
tures

The previous section illustrated the effectiveness and per-
formance of the proposed CVPR algorithm. Here we provide
an illustrative example of how a given information system can
be represented as double-layer lattice structures.

Table III shows an instance of a decision table in which
the condition attributes arec1, c2, c3, c4 and c5, andd is the
decision attribute. Its condition equivalence classes are{x1},
{x2, x6, x8, x10}, {x3}, {x4, x9, x11}, {x5} and {x7}. The
universe of discourse is{x1, x2, x3, x4, x5, x7} in TD.

ThePOSβ
C(D) and complete reduct sets corresponding to

different values ofβ are shown in Table IV. Whenβ = 0.70,
x6 is added toPOSβ

C(D). If β is changed to0.60, x9 is
also withinPOSβ

C(D). BecausePOSβ
C(D) does not change

betweenβ = 1 andβ = 0.80, the complete reduct set is also
unchanged. For the complete reduct set withβ = 0.7, the
comprehensive knowledge system is illustrated in Table V.

TABLE III: Decision table

objects c1 c2 c3 c4 c5 d

x1 1 1 1 2 1 1
x2 1 1 1 0 1 1
x3 0 1 0 1 0 1
x4 0 1 1 2 1 1
x5 1 1 1 0 0 2
x6 1 1 1 0 1 1
x7 0 0 0 1 1 2
x8 1 1 1 0 1 1
x9 0 1 1 2 1 1
x10 1 1 1 0 1 2
x11 0 1 1 2 1 2

TABLE IV: Complete reduct sets for Table III

β POS
β

C
(D) Reduct set

1.00 {x1, x3, x5, x7} {{c1, c4, c5}}
0.80 {x1, x3, x5, x7} {{c1, c4, c5}}
0.70 {x1, x2, x3, x5, x7} {{c1, c2, c5}, {c1, c4, c5}, {c1, c3, c5}}
0.60 {x1, x2, x3, x4, x5, x7} {{c4, c5}, {c1, c2, c5}, {c3, c5}}

Whenβ is set to three different values, three comprehensive
knowledge systems are extracted accordingly. Their complete-
ness metric results with differentβ are illustrated in Table
VI. The multi-knowledge systemξ is the same, because it
is determined by the original information system, while the
knowledge systemcomprehensivenesṡξ is influenced by its

TABLE V: Comprehensive knowledge system withβ = 0.7

No. c1 c2 c3 c4 c5 d

x1 1 1 * * 1 1
x2 1 1 * * 1 1
x3 0 1 * * 0 1
x4 0 1 * * 1 1
x5 1 1 * * 0 2
x7 0 0 * * 1 2
x10 1 1 * * 1 2
x11 0 1 * * 1 2

x1 1 * * 2 1 1
x2 1 * * 0 1 1
x3 0 * * 1 0 1
x4 0 * * 2 1 1
x5 1 * * 0 0 2
x7 0 * * 1 1 2
x10 1 * * 0 1 2
x11 0 * * 2 1 2

x1 1 * 1 * 1 1
x2 1 * 1 * 1 1
x3 0 * 0 * 0 1
x4 0 * 1 * 1 1
x5 1 * 1 * 0 2
x7 0 * 0 * 1 2
x10 1 * 1 * 1 2
x11 0 * 1 * 1 2

TABLE VI: Completeness metric results withβ

β ξ ξ̇ ξ̂

1.00 0.125 0.500 1.000
0.70 0.125 0.896 1.000
0.60 0.125 1.000 1.000

precision parameterβ. In the classical rough set model (i.e.
β =1), ξ̇ is only 0.5, whileξ̇ = 1 whenβ decreases to 0.6.
Everywhere, the basic rule ratiôξ is 1, which indicates our
algorithm can extract the comprehensive knowledge from the
given information system.

The double-layer structures of the comprehensive knowl-
edge system withβ = 0.7 values are presented in Figure
9. The complete reduct set lattice is depicted in the upper
left while the comprehensive knowledge lattice is shown in
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system forβ = 0.7
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the lower right of each plot in Figure 9. The relationship∈∗

between the two types of lattice is highlighted using dashed
red lines.
RED = {{c1, c2, c5}, {c1, c4, c5}, {c1, c3, c5}} when β =

0.7 in Figure 9. Node13© is an upper-neighbor of the maximum
node 28 and its connotation isc11, c

0

4, c
1

5, d
1. {c11, c

0

4, c
1

5, d
1} ∈∗

{c1, c4, c5, d}, so {c1, c4, c5} →∗ Υ(13©) = {2, 8, 9, 10, 11, 12, 13}.
And {c1, c2, c5} →∗ Υ(17©) = {2, 8, 9, 10, 11, 14, 15, 16}. The
connotation of node17© is c11, c

1
2, c

1
5, d

1. ({c11, c
0
4, c

1
5, d

1}∩{c11, c
1
2,

c15, d
1} = {c11, c

1
5, d

1}) ⇒ ({c1, c4, c5} ∩ {c1, c2, c5} =
{c1, c5}). (Υ(13©)∩Υ(17©) = {2, 8, 9, 10, 11})⇒ ({c1, c4, c5}∩
{c1, c2, c5} = {c1, c5}).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, a theory of complete variable precision
knowledge extraction has been developed. The concept of
complete reduct set and knowledge have been proposed.
An efficient complete variable precision reduction (CVPR)
algorithm which is able to extract comprehensive knowledge
has also been developed. This is achieved by transforming
the information system into a distribution table, which only
collects one object from each equivalence class in a given
information system. It is an essential abstract from the original
universe of the object discourse. Then the objects in the distri-
bution table are binary classified hierarchically. A genealogical
tree is generated according to the rank of attributes, which
facilitates dynamically combining attributes and triggering of
a pruning strategy to obtain the complete reduct set with
significantly low computational cost. The theoretical proof
and experimental results presented illustrate that the CVPR
algorithm is complete. The comprehensive knowledge system
structure is presented through concept lattices and is visualized
using Hasse diagrams.

Our CVPR algorithm is suitable for the variable precision
reduction and can also be degenerated to a classic rough set
model. The underlying approach can also degenerate to give
a single minimum reduct, since the first reduct obtained tends
to be the minimum reduct. The earlier a reduct is obtained,
the fewer attributes are involved, due to the hierarchical binary
classifying strategy employed.

The genealogical tree employed is a left-child-right-sibling
binary tree. Binary trees and forests can be converted to
each other [50]. Therefore in a genealogical binary tree, the
offspring of the nodes in a brotherhood will not be mutually
interfering when there are similar ways to search for reducts.
It is feasible to design a parallel complete reduction algorithm
with mapreduce, which will be considered in future work. It is
also of interest to explore the application of CVPR algorithm
to the analysis of multiple pathways in brain neural networks
and big data networks.
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VII. SUPPLEMENTAL MATERIALS I

Table VII is a decision table whereU/C = {{x1, x3}, {x2}, {x4, x5, x7}, {x6, x8}}. The distribution tables withβ = 1 and
β = 0.6 are shown in Table VIII according to Definition 3. Note thatx4 is in the positive region withβ = 0.6 but it is not
with β = 1. The decision values ofx4 are adjusted by Equ. (4) as shown in Table VIII and the values of ω are obtained
according to Equ. (5).

TABLE VII: A decision table

Object c1 c2 c3 c4 d

x1 1 1 1 1 0
x2 2 3 2 3 0
x3 1 1 1 1 0
x4 3 1 2 1 0
x5 3 1 2 1 1
x6 4 3 4 2 1
x7 3 1 2 1 1
x8 4 3 4 2 2

TABLE VIII: The distribution tables with differentβ

Object c1 c2 c3 c4
β = 1 β = 0.6

d ω d ω

x1 1 1 1 1 0 1 0 1
x2 2 3 2 3 0 1 0 1
x4 3 1 2 1 0 0 1 1
x6 4 3 4 2 1 0 1 0

Table IX is a decision table on playing tennis. The conditionattributes set is{Outlook, Temp, Humidity, Wind} and{Play}
is the decision attribute.RED of playing tennis decision table is{{Outlook, Humidity, Wind}, {Outlook, Temp, Wind}}.

TABLE IX: A decision table about playing tennis

Object Outlook Temp Humid Wind Playing

x1 Sunny Hot High Weak No
x2 Sunny Hot High Strong No
x3 Overcast Hot High Weak Yes
x4 Rain Mild High Weak Yes
x5 Rain Cool Normal Weak Yes
x6 Rain Cool Normal Strong No
x7 Overcast Cool Normal Strong Yes
x8 Sunny Mild High Weak No
x9 Sunny Cool Normal Weak Yes
x10 Rain Mild Normal Weak Yes
x11 Sunny Mild Normal Strong Yes
x12 Overcast Mild High Strong Yes
x13 Overcast Hot Normal Weak Yes
x14 Rain Mild High Strong No

In Table IX, there are 14 actual objects, i.e.C(U)=14. |vOutlook| = 3 becausevOutlook = {Sunny,Overcast, Rain}.
VC = 3× 3× 2× 2 = 36 by Equ. (9), so the theoretical number of objects is 36. The first and eighth objects have the same
condition attribute values according to{Outlook, Humid, Wind}, and the fifth and tenth objects are also the same. Because
|vTemp| = 3, the number of the knowledge from{Outlook, Humid, Wind} is (14 − 2) × 3 = 36. Likewise, the cardinality

of the knowledge from{Outlook, Temp, Wind} is 24. So |Ψ(β)| = 36 without redundancy.ξ =
14

36
=

7

18
, ξ̇ = 1 and ξ̂ = 1

according to Equs. (10) to (12).
The double-layer structures of the comprehensive knowledge system withβ = 1 andβ = 0.6 from Table III are presented

in Figure 10.
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Fig. 10: Double-layer structure of the comprehensive knowledge system with differentβ
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VIII. S UPPLEMENTAL MATERIALS II

An instance procedure is illustrated in Figure 11. There aretwo decision values, i.e. 0 and 1, which are partitioned by
the red curves. The central white region isPOSβ

C(D) and the peripheral gray region isNEGβ
C(D), as shown in Figure 11.

Based on the attribute rank obtained using Algorithm 1, its attribute genealogical binary treeG can be generated to combine
attribute sets sequentially.Suppose we get an attribute combination setB1, which some equivalence classes satisfyω(xi) = 1,
i.e., [x1]B1 , [x2]B1 , [x3]B1 while all other satisfyω(xi) = 0, i.e., [x4]B1 , [x5]B1 , [x6]B1 in Figure 11(b). Note that[x1]B1 and
[x2]B1 do not satisfy|[xi]B1/D| = 1. Now we only focus on these two equivalence classes in the next steps. An object set can
be collected from the objects in[x1]B1 and [x2]B1 in Figure 11(c) with the attributesC −B1. Accordingly for this object set,
all attribute ranks inC − B1 are re-calculated and the corresponding subtree of the attribute genealogical binary treeG also
continues to generate further to the current attribute nodes. From this attribute subtree, suppose we get an attribute combination
setB2 to partition [x1]B1 in Figure 11(c) into[x11]B2 and [x12]B2 , and to partition[x2]B1 into [x21]B2 , [x22]B2 and [x23]B2 ,
as shown in Figure 11(d). Thus far, all equivalence classes of B1 ∪ B2 satisfy Theorem 2. It means that∀xi ∈ [xi](B1∪B2),
ω(xi) = 0 or ω(xi) = 1 ∧ |[xi](B1∪B2)/D| = 1. Hence, a reduct is obtained asB1 ∪B2.
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(a)
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(d)

Fig. 11: Multi-binary classification for a reduct
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IX. SUPPLEMENTAL MATERIALS III

Considering a simple example to demonstrate our algorithms, Table X andβ = 1 are used as the input of Al-
gorithm 3. UD = {(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x6, 1), (x8, 1)} in TD can be obtained using Equs. (4) and (5) in
Step 1. Theϕ values of x1 and x4 are assigned 1 by Equ. (14) in Step 6. When calling Algorithm 2in Step 7,
r(c4) = 0, r(c5) = −1, r(c3) = −1, r(c2) = −2, r(c1) = −2 according to Algorithm 1 using Equ. (15) and
RED′

H = {{x4}, {x5, x3}, {x5, x2}, {x3, x2, x1}}. Every candidate reduct inRED′
H is checked to see if it is a reduct

or not in Step 11. ThenRED = {{x4}, {x5, x3}, {x5, x2}, {x3, x2, x1}} andRED′ = ∅ from Steps 12 to 14. The algorithms
end and the complete reduct setRED is returned.

TABLE X: A decision table for the algorithm demonstration

Object c1 c2 c3 c4 c5 d

x1 1 1 1 1 1 1
x2 1 0 1 0 0 0
x3 0 1 1 0 0 0
x4 1 1 2 1 2 1
x5 1 1 1 1 1 0
x6 1 1 0 0 0 0
x7 1 1 2 1 2 0
x8 1 0 0 0 1 0
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X. SUPPLEMENTAL MATERIALS IV

The flowchart of our attribute reduction algorithm is presented in Figure 12.

START T and β TD RED′ = φ, RED = φ
Choose the first
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as H in RED′

generate an-
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calculate r

in C − H
assign ϕ

get [xi]H which
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Theorem 2 in [x]H

visit an ances-
tor following the
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r! = 0
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Ω
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NO NO

get HA and UO
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END

Fig. 12: Flowchart of the complete attribute reduction algorithm


