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Abstract—Neighborhood classification (NEC) algorithms has been 
widely used to solve classification problems. Most traditional NEC 
algorithms employ the majority voting mechanism as the basis for 
final decision-making. However, this mechanism hardly considers 
the spatial difference and label uncertainty of the neighborhood 
samples, which may increase the possibility of the 
misclassification. In addition, the traditional NEC algorithms 
need to load the whole data into memory at once, which is 
computationally inefficient when the size of data set is large. To 
address these problems, we propose a novel Spark-based attribute 
reduction and neighborhood classification for rough evidence in 
this paper. Specifically, we first construct a multi-granular sample 
space using parallel undersampling method. Then, we evaluate 
the significance of attribute by neighborhood rough evidence 
decision error rate and remove the redundant attribute on 
different samples subspaces. Based on this attribute reduction 
algorithm, we design a parallel attribute reduction algorithm 
which is able to compute equivalence classes in parallel and 
parallelize the process of searching for candidate attributes. 
Finally, we introduce the rough evidence into the classification 
decision of traditional NEC algorithms and parallelize the 
classification decision process. Furthermore, the proposed 
algorithms are conducted in the Spark parallel computing 
framework. Experimental results on both small and large-scale 
data sets show that the proposed algorithms outperform the 
benchmarking algorithms in the classification accuracy and the 
computational efficiency.  

Index Terms—Rough sets, Dempster-Shafer theory, Parallel 
attribute reduction, Parallel neighborhood classification, Spark 
framework. 

I. INTRODUCTION 
N recent years, with the booming development of 
information technology, the exponential growth of data has 
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caused serious challenges to traditional data mining and 
analysis technologies, and brought valuable opportunities to the 
development of various industries [1], [2]. Because of the huge 
scale and low value density of big data, it has brought several 
challenges to traditional data mining techniques. The current 
big data processing technologies [3], [4] mainly use cloud 
computing, distributed computing and parallel computing to 
slice large-scale data into multiple subsets, thereby reducing the 
scale of data and making it computable. However, these 
techniques do not remove the redundant attributes and 
information from the large-scale data, thereby reducing the 
uncertainty among the large-scale data. 

Granular computing has gradually developed into a new 
branch in the field of artificial intelligence. The granular 
computing models have been proposed include: rough set [5], 
fuzzy set [6], fuzzy rough set [7], three-way decision [8], etc. 
Rough set is one of the granular computing models, which can 
deal with and analyze the uncertain information in the 
decision-making process. Attribute reduction [9], [10], [11] is 
an important concept in rough sets, which can reduce the 
complexity and uncertainty of data by eliminating redundant 
attributes. How to use rough set theory to extract the huge 
potential value from large- scale data has long been one of the 
research topics of many scholars. For the "5V" characteristic of 
large-scale data, Li et al. [12] discussed the applicability of the 
a PICKT solution for big data analysis based on the theories of 
Granular Computing and Rough Set. Qian et al. [13], [14] and 
Zhang et al. [15] used MapReduce operations to aggregate 
equivalence classes to reduce the repetitive calculation time of 
equivalence classes, and proposed a parallel rough set 
extension model.  

In order to avoid partial information loss in the process of 
during data discretization, Hu et al. [16] proposed a 
neighborhood rough set model based on the neighborhood 
relation, which can directly deal with numerical data. In the 
neighborhood rough set model, different neighborhood space 
samples can be derived according to different neighborhood 
radius, and the overall sample space can be depicted from 
different granularities. In addition, in response to the problems 
encountered by the neighborhood rough set model when 
dealing with complex data, the researchers proposed the 
corresponding neighborhood rough set extension models, i.e., 
decision-neighborhood rough set [17], [18], local neighborhood 
rough sets [19], [20], multi-granularity neighborhood rough 
sets [21], [22], etc. 
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Hu et al. [23] proposed a neighborhood classifier (NEC) 
which based on the neighborhood rough set model. Unlike the 
traditional K-NN model which selects the nearest k samples, 
the neighborhood classifier obtains the surrounding 
neighborhood (SN) samples via neighborhood radius. The 
neighbors of a sample will consider not only in terms of 
closeness but also in terms of their spatial distribution regarding 
that sample. However, KNN and NEC assign a category label to 
the unclassified sample via a majority voting mechanism where 
all nearest neighbors are considered equally important. And it 
hardly considers the spatial difference [24], [25], [26] and label 
uncertainty [27], [28], [29] of neighborhood samples. To 
address the two shortcomings of the majority voting 
mechanism, Denoeux [27] applied Dempster-Shafer (D-S) 
evidence theory to K-NN to improve classification accuracy, 
which fused evidence support information of all neighborhood 
samples to predict the sample label. Although D-S evidence 
theory can fully consider the spatial distance and label 
information, it still easily suffers from conflicting evidence 
information between different labels [30]. In order to reduce the 
conflict of evidence information between different classes, this 
paper enhances the local evidence information of the majority 
class samples in the neighborhood by the rough membership 
function.  

Another challenge is that the time complexity and 
computation cost of the attribute reduction and classification 
are very high when dealing with large-scale data. Parallel 
algorithm in distributed computing framework is a practical 
pathway which can reduce the time complexity and improve 
computational efficiency. Spark is a distributed computing 
framework based on in-memory computing with faster 
computation speed and better iterative performance than 
Hadoop MapReduce [31]. Yin et al. [32] designed a new 
parallel attribute reduction4 based on Spark to resolve the 
limitations of MapReduce. Luo et al. [33], [34] proposed a 
novel Spark parallel attribute reduction based on a rough 
hypercuboid model, which employed two parallel strategies, 
vertical partitioning and horizontal partitioning. However, there 
are not only nominal data but also numerical data in large-scale 
data. In the above studies, most of the parallel extension models 
based on classical rough sets have been implemented, but this is 
only applicable to nominal data and cannot directly process 
large-scale numerical data.  

In this paper, we proposed a novel Spark-based attribute 
reduction and neighborhood classification for rough evidence, 
which aims to address the drawbacks of attribute reduction and 
neighborhood classification in massive data processing, to 
better deal with data redundancy and reduce data uncertainty. 
The main contributions of the proposed work are summarized 
below. 

(1) We first introduce the rough membership function into 
the combination rule of D-S evidence theory and propose the 
rough evidence. The rough evidence can enhance the local 
evidence information of the majority class samples in the 
neighborhood to obtain more reliable evidence information and 
reduce the degree of evidence information confliction. 
Furthermore, we employ rough evidence for the attribute 
reduction process to evaluate attribute significance and the 
neighborhood classification process to obtain decision 
information. 

(2) Through Spark parallel computing mechanism, 
multi-granular sample space based on Spark is constructed 
using parallel random undersampling algorithm, which can 
reflect the distinction of universe in terms of multi-granularity. 

(3) Based on the rough evidence, this paper implements a 
new Spark parallel attribute reduction based on neighborhood 
rough evidence decision error rate (called SPAR-NREDER), 
which can significantly improve the computational efficiency 
of attribute reduction. Moreover, the neighborhood rough 
evidence decision error rate can more precisely reflect the 
situation of misclassified samples in the boundary region. 

(4) Based on the proposed parallel attribute reduction 
algorithm, this paper implements a novel Spark-based rough 
evidence neighborhood classification (called SRENEC), which 
can be fused by parallel the rough evidence information of 
intra-class samples and inter-class samples in the neighborhood. 
This algorithm not only improve the classification accuracy of 
the NEC algorithm, but also solve the problem that the NEC 
algorithm is computationally inefficient when the size of data 
set is large. 

In addition, to better demonstrate the effectiveness of the 
proposed algorithm in this paper, experimental studies are 
conducted to evaluate the classification performance of the 
algorithm through imbalanced benchmark data. 

The rest of this paper is organized as follows. Some 
preliminaries are provided in Section II. In Section III, the 
SPAR-NREDER and the SRENEC algorithms are introduced in 
details respectively. A series of experiments are conducted on 
both small and large-scale datasets in Section IV, and then we 
compare and analyze the experimental results and verify the 
performance of the SPAR-NREDER and SRENEC. The 
discussion of this paper is in Section V. The conclusions of this 
paper are demonstrated in Section VI. 

II. PRELIMINARIES 

A. Neighborhood Rough Sets and Classification Methods 
From the perspective of neighborhood granulation in 

numerical space, Hu et al. [16] introduced the neighbor-hood 
space into rough set, and reinterpret the neighbor-hood rough 
set model. In addition, Hu et al. [23] pro-posed a neighborhood 
classifier based on neighborhood rough sets. 

Definition 1 ([16]): In a decision information system =S <  
, , ,U C D V f > , let B C⊆  be a subset of condition attributes. 

The neighborhood space with respect to B  for ix U∀ ∈  is 
defined as: 

( ) ( ){ }| , ,B i j j B i jx x x U dis x xδ = ∈ , (1) 

where ( , )B i jdis x x  is the distance with respect to B between the 
sample ix  and jx . 

Definition 2 ([16]): In a decision information system =S <  
, , ,U C D V f > , for arbitrary X U⊆  and B C⊆ , N  is a 

neighborhood relation on U , then the lower and upper 
approximation sets of X  in terms of N  with respect to B  are 
defined and denoted respectively as: 

( ) ( ){ }|B i B iN X x U x Xδ= ∈ ⊆ , (2) 
( ) ( ){ }= |B i B iN X x U x Xδ∈ ≠ ∅ . (3) 
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The positive, negative and boundary regions of X  in terms 
of N  with respect to B  are defined and denoted respectively 
as: 

( ) ( )B BPOS X N X= , (4) 
( ) ( )B BNEG X U N X= − , (5) 

( ) ( ) ( )B B BBND X N X N X= − . (6) 
Definition 3 ([35]): In a decision information system =S <  
, , ,U C D V f > , for arbitrary B C⊆ , X U⊆ , ix U∀ ∈ , the 

rough membership function of ix  with respect to X  is defined 
as: 

( ) ( )
( )

B B i
X i

B i

x X
x

x
δ δ

µ
δ

=


, (7) 

where ( )B ixδ  is the neighborhood information granule of 
sample ix . 

Definition 4 ([16]): In a decision information system =S <  
, , ,U C D V f > , for arbitrary ix U∈  and B C⊆ , the true 

category label of ix  is ( )ixω , and ( )iND x  is the category 
label of the sample ix  predicted by the neighborhood 
classification algorithm. For the case of misclassified samples, 
a 0-1 loss function is expressed as: 

0, ( ) ( )
( ( ) | ( ))

1,
i i

i i

x ND x
x ND x

otherwise
ω

λ ω
=

= 


. (8) 

The neighborhood decision error rate (called NDER) is 
calculated as [16]: 

1

1 ( ( ) | ( ))
M

i i
i

NDER x ND x
M

λ ω
=

= ∑ , (9) 
where M  denotes the number of samples. 

Definition 5 ([16]): In a decision information system =S <  
, , ,U C D V f > , for arbitrary B C⊆ , if B  is a subset of 

attribute reduction based on the neighborhood decision error 
rate, then the following properties for B  hold: 

(1) B CNDER NDER≤ ; 
(2) for 'B B∀ ⊆ , there are ' BB

NDER NDER≥ . 
Hu et al. [23] proposed the NEC algorithm based on the 

neighborhood rough set model, which divides the data space 
into neighborhood spaces with different centers according to 
the neighborhood radius. And this algorithm predicts the 
category labels of unclassified samples from the distribution of 
neighborhood sample labels. 

Definition 6 ([23]): Let ( )B ixδ  be the neighborhood space of 
unclassified sample ix  and jx  be any sample in the 
neighborhood space whose category label is jω . According to 
the traditional NEC algorithm, then the category label of ix  
can be obtained as: 

{ }
( )

( )1 2, , ,
= arg max ,  

k m j B i

j k
x x

H
ω ω ω ω δ

ω ω ω
∈ ∈

 
  
 
∑



, (10) 

where ( ) 1,
,

0,
j k

j kH
otherwise
ω ω

ω ω
== 


 is the judgment function. 

B. Dempster-Shafer Evidence Theory 
D-S evidence theory [27] is a theory of evidence fusion 

based on belief trust function, which is an extension of 
Bayesian theory in probability theory. In the traditional 
Bayesian probability theory, the answer to a question is the 
most probable answer among all possible answers. While in 
D-S evidence theory, the answer to a question is obtained by 
fusing all possible answers.  

Definition 7 ([27]): In the discriminative framework Ω , the 
sample space can be partitioned into multiple subsets , where 
for any sX ⊆ Ω  corresponds to a basic probability number 

[ ]0,1M ∈ , which can be called the basic probability 

assignment (BPA) function of the power set 2Ω , and satisfies: 
( )=0M φ , (11) 

1
({ }) 1d

ss
M X

=
=∑ , (12) 

in which the basic probability of impossible event is 0 and 

{ }( )sM X  is the basic probability function of sX . 

Definition 8 ([27]): According to the basic probability 
assignment function, the belief function Bel  and the 
plausibility function Pl  are expressed respectively as: 

({ }) ( )
s

s B X
Bel X M B

⊆
=∑ , (13) 

({ }) 1 ({ }) ( )
s

s s B X
Pl X Bel X M B

≠∅
= − =∑



, (14) 
where ({ })sBel X  is interpreted as a measure of the total belief 
committed to sX  and ({ })sPl X  defines the degree of failing 
to doubt in sX . 

C. Spark Framework 
Apache Spark is a revolutionary framework that can perform 

in-memory computing faster than Hadoop MapReduce for 
large-scale preprocessing. Compared with Hadoop MapReduce, 
Spark [2], [4] is characterized by fast computation speed, ease 
of use, high generality, and run everywhere. Spark can cache 
the intermediate data into memory during computation and can 
persist data into disk when memory overflows. 

Resilient distributed dataset (RDD) [36] is a fault-tolerant 
parallel data structure, which is the core computational model 
in Spark. RDDs had two types of parallel operations [37]: 
transformation which returns a pointer to the new RDD, and 
action which returns a value to the deriver after running the 
computation. Spark provides four APIs, i.e., Java, Scala, R, and 
Python. Meanwhile, many developers had introduced a series 
of components based on Spark, such as Spark SQL [38], Spark 
Streaming [39], MLLib [40], and GraphX [41], forming a cloud 
computing platform for large-scale data preprocessing. 

The flow of Spark task execution is shown in Fig. 1. The 
process of task execution is partitioned into two phases in Spark 
[42]:  

(1) In the first stage, data is read from HDFS to generate 
RDD objects, and a directed acyclic graph (DAG) is 
constructed according to the lineage graph relationship between 
RDDs, and RDD operations are divided into different tasks. 

(2) In the second stage, different tasks are assigned to slaves 
for execution through the cluster manager. 
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Fig. 1.  Flow chart of Spark task execution. 
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Fig. 2.  The data processing of a novel Spark-based attribute reduction and neighborhood classification for rough evidence. 

III. A NOVEL SPARK-BASED ATTRIBUTE REDUCTION AND 
NEIGHBORHOOD CLASSIFICATION FOR ROUGH EVIDENCE 

In this section, we propose a novel Spark-based attribute 
reduction and neighborhood classification for rough evidence. 
Specifically, we first construct a multi-granular sample space 
using parallel undersampling method. Then, we evaluate the 
significance of attribute by neighborhood rough evidence 
decision error rate and remove the redundant attribute on 
different samples subspaces. Based on this attribute reduction 
algorithm, we design a new Spark parallel attribute reduction 
based on neighborhood rough evidence decision error rate 
(called SPAR-NREDER) which is able to compute equivalence 
classes in parallel and parallelize the process of searching for 
candidate attributes. Finally, we introduce the rough evidence 
into the classification decision of traditional NEC algorithms 
and parallelize the classification decision process. Thus, we 
propose a novel Spark-based rough evidence neighborhood 
classification (called SRENEC), which can be fused by parallel 
the rough evidence information of intra-class samples and 
inter-class samples in the neighborhood. Furthermore, the 
proposed algorithms are conducted in the Spark parallel 
computing framework. The process of SRENEC algorithm is 
shown in Fig. 2. 

A. The Method of Fusing the Rough Evidence Information 
The rough evidence is a novel decision rule using the rough 

membership function and D-S evidence theory. The rough 
membership function is applied to the global evidence 

information merging process, which enhances the local 
evidence information of the majority class samples in the 
neighborhood and reduces the degree of conflict between the 
local evidence information of the different classes of samples. 
Specifically, the rough evidence first computes the evidence 
information of the neighborhood samples of sample tx  that 
support its belonging to decision class qX . Next, the local 
evidence information can be fused to the evidence information 
provided by the neighborhood samples with decision class qX  
of sample tx  for its belonging to decision class qX  by the 
Demspter’s rule. Then, the local rough evidence information 
strengthens the local evidence information provided by the 
majority class samples in the neighborhood. Finally, according 
to the Demspter’s rule, the global evidence information can be 
obtained by fusing the local evidence information of different 
classes of sample tx . 

Definition 9 ([27]): In a decision information system =S <  
, , ,U C D V f > , the decision attributes D  divides the 

university U  into several non-intersecting equivalence classes, 
which can be denominated as { }1 2/ , , , dU D X X Xπ = =  . 

The category labels of the samples jx U∈  can be denoted as 

{ }1,2, ,dω =  . For arbitrary jx U∈ , the category label of jx  

is { }1,2, ,j q dω = ∈  . Specially, the samples pairs ( ),j qx X  

are the evidence support information for tx  in the decision 
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equivalence class qX . The evidence support information is 
defined as: 

, 2
0({ }) exp{ ( ( , )) }t j

q q t jM X dis x xβ γ= ⋅ − ⋅ , (15) 
, ,( ) 1 ({ })t j t j

qM M Xπ = − , (16) 
where 00 1β< < , 0qγ > , Rδ  is represented as a neighborhood 
of tx  with respect to the R . 

Obviously, , ({ })t j
qM X  is the belief of the evidence support 

information provided by jx  to support that tx  belongs to 

decision equivalence class qX  and , ( )t jM π  is the belief of the 
evidence information provided by jx  to support that tx  
belongs to decision equivalence class π . The evidence support 
information provided by jx  is mainly determined by two 
parameters and the distance between sample tx  and its 
neighborhood sample. 0β  is a class-independent parameter and 

qγ  is the reciprocal of the mean distance between all training 
samples with category label q . 

Then, the local evidence support information provided by the 
neighborhood samples of sample tx  with category label q  can 
be aggregated, where the combination rules of the D-S 
evidence theory can be denoted as ,

( )q
j tRi

t t j
q x x

M M
δ∈

= ⊕ . The 

neighborhood space of an unclassified sample tx  with the 
category label q  can be denoted ( )q

B txδ . 
Definition 10 ([27]): According to the D-S evidence theory, 

the local evidence support information of ( )q
B txδ  for tx  is 

expressed as: 
,

( )
({ }) 1 ( )q

j tB

t t j
q q x x

M X M
δ

π
∈

= −∏ , (17) 
,

( )
({ }) ( )q

j tB

t t j
q x x

M M
δ

π π
∈

=∏ . (18) 
In the whole neighborhood sample space, the evidence 

support information from different labels may arise conflicts in 
the integration process, resulting in imprecise global evidence 
support information obtained finally. Rough membership 
function can reflect the ratio of samples with different labels in 
the neighborhood space. Thus, we introduce the rough 
membership function into the global evidence support 
information merging process, which can enhance the local 
evidence information provided by the majority classes in the 
neighborhood. The local rough evidence information provided 
by neighborhood samples with the same class label q  is given 
by [35]: 

({ }) ({ })
q

t t
q q X q qRM X M Xδµ= ⋅ , (19) 
({ }) 1 ({ })

q

t t
q X q qRM M Xδπ µ= − ⋅ . (20) 

Similarly, the global rough evidence information from all 
samples in the whole neighborhood space 1

t d t
q qM M== ⊕  can 

be generated by fusing the local rough evidence information 
t
qM , and it is obtained as [27], [35]: 

({ }) ( )
({ }) 1,2, ,

t t
q q rr qt

q

RM X RM
RM X q d

K

π
≠= =

∏
 , (21) 

1
( )

( )
d t

qqt
RM

RM
K

π
π ==

∏
, (22) 

where K  is the normalization factor and is calculated as 
follows: 

1 1
({ }) ( ) ( )dd t t t

q q r qq r q q
K RM X RM RMπ π

= ≠ =
= ⋅ +∑ ∏ ∏ . (23) 

Definition 11 ([27], [35]): The RBel  function and RPl  
function of unclassified sample tx  with respect to qX  are 
obtained respectively as: 

({ }) ({ })t t
q qRBel X RM X= , (24) 

({ }) ({ }) ( )t t t
q qRPl X RM X RM π= + . (25) 

It is not difficult to notice that ({ })t
qRBel X  is the belief of 

sample tx  which is committed to qX . 

Definition 12 ([27]): In the neighborhood ( )B txδ  of 

unclassified sample tx , for arbitrary ( )k B tx xδ∈ , the category 
label of kx  is kω . Then the predicted category label of tx  in 
the decision information system S  is computed by: 

( ) arg max( ({ }))
k

t
t kl x RBel X

ω
= . (26) 

Example 1: For a sample y , its category label and 
neighborhood are 1l  and ( ) { }1 2 3 4 5, , , ,C y x x x x xδ = , 

respectively. The partition set of ( )C yδ  with the category label 

is ( ) 1 2 1 3 5 2 4/ { , } {{ , , },{ , }}C y D X X x x x x xδ = = . We suppose 
that the evidence information provided by each sample of 
neighborhood ( )C yδ  is { }0.5,0.85,0.5,0.4,0.6 . According to 
the D-S evidence theory, the local evidence information 
provided by difference category label is 

{ }( )1 1 0.9,yM X = { }( )1 2 0.91yM X =  and the global evidence 
information provided by the whole neighborhood is 

{ }( )1 0.4475,yM X = { }( )2 0.5028yM X = . Thus, the predicted 

label of y  is 2l . However, the true label is difference from the 
predicted label. Therefore, in this situation the D-S evidence 
theory result in the misclassification of samples. 

According to Eq. (19)-(23), the local rough evidence 
information provided by difference category label is 

{ }( ) { }( )1 1 1 20.54, 0.364y yRM X RM X= =  and the global rough 
evidence information provided by the whole neighborhood is 

{ }( ) { }( )1 20.4275, 0.1345y yM X M X= = . Thus, the predicted 

label of y  is 1l , which is the same as the true label. 
Therefore, it is necessary to fuse the evidence information by 

the rough evidence information. For samples with complex data 
distribution, the rough evidence information can improve the 
accuracy of classification. 

B. A New Spark Parallel Attribute Reduction based on 
Neighborhood Rough Evidence Decision Error Rate  

The running time of the attribute reduction algorithm 
depends mainly on the scale of the dataset and the number of its 
attributes, whose time complexity is 2 2(| | | | )O C U ( | |C  is the 
number of conditional attributes and | |U  is the number of 
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samples in the decision information system). It is obvious that 
the attribute reduction algorithm not only has a high time cost 
but also suffers from low computational efficiency when 
dealing with large-scale datasets. The purpose of algorithm 
parallelism is to be able to execute multiple tasks or process 
different subsets of data in parallel, reducing the computational 
complexity and increasing the computational efficiency of the 
algorithm. Thus, we implement Spark parallel attribute 
reduction based on neighborhood rough evidence decision error 
rate , named SPAR-NREDER, which reduces the time 
complexity from 2 2(| | | | )O C U  to 2 2(| | | | )iO C U ( | |iU  is the 
number of samples in the decision information sub-system). 
The SPAR-NREDER evaluates the significance of attributes 
via the neighborhood rough evidence decision error rate which 
can more accurately reflect the misclassification of boundary 
region samples. 

According to the definition of neighborhood rough evidence, 
the rough belief function of tx  is ({ })t

qRBel X = ({ })t
qRM X , 

and then the predicted label of tx  is ( )tl x =  
arg max( ({ }))

k

t
kRBel X

ω
. If the predicted label of tx  is the same 

as its true label, then ( ( ) | ( )) 0i t i tl x ND xλ = , otherwise 
( ( ) | ( )) 1i t i tl x ND xλ = . The neighborhood rough evidence 

decision error rate (NREDER) is defined by 

1

1 ( ( ) | ( ))M
t tt

NREDER l x ND x
M

λ
=

= ∑ , (27) 
where M  is the number of samples in S . 

Following the process of attribute reduction, the significance 
of candidate attributes based on NREDER is calculated by 

( ) ( ) { } ( ), , R R aSIG a R D NREDER D NREDER D= −


. (28) 
In SPAR-NREDER, we achieve parallelized computation of 

the equivalence classes and the significance of candidate 
attributes, which reduces the time cost consumed by iterative 
computation in the attribute reduction process and improves the 
computational efficiency of the attribute reduction algorithm. 
The pseudocode of SPAR-NREDER is shown in Algorithm 1. 
Its main steps are mentioned as follows. 

First, Algorithm 1 sends the collection of decision 
information sub-systems { }1 2, , , , ,i mS S S S   to the 
corresponding slave node islave .  

Second, Algorithm 1 computes decision equivalence classes 
and neighborhood equivalence classes in different decision 
information sub-system iS  by parallel. 

Third, Algorithm 1 calculates the significance of candidate 
attributes in different decision information sub-system iS  via 
parallel mechanism, and adds the conditional attributes with the 
largest value of attribute significance to iR , and then computes 
the NREDER of the attribute reduction subset iR  until it 
satisfies 

iR cNREDER NREDER≤ .  
Fourth, Algorithm 1 outputs the collection of attribute 

reduction subset { }1 2, , , mR R R  at each slave node.  

To illustrate the NREDER-based attribute reduction process 
more clearly, the specific computation process on the decision 
information sub-system is given in the following Example 2.  

Algorithm 1 (SPAR-NREDER): Spark parallel attribute reduction based on 
neighborhood rough evidence decision error rate  
Input: Decision information sub-systems { }1 2, , , mS S S , neighborhood 
radius δ . 
Output: Attribute reduction subsets { }1 2, , , mR R R . 

1 : Let { }1 2, , , mR R R ←∅ . 

2 : For each iS  partition, [ ]1,2, ,i m∈   do 

3 : 
_ . (' ').

                                 . ( . (' ')).
                                 . (  , :  ). ()

i

i

Decision Class S select Class rdd
zip S select Index rdd
reduceByKey lambda x y x y collect

←

+

. 

4 : Compute Distance_Matrix . 

5 : 
_ . ( )

                                    . ( : ). ()
Neighbor Class sc parallelize Distance_Matrix

filter lambdax x collectδ
←

<
. 

6 : Compute CNREDER  for the conditional attributes C . 

7 : For each attribute j ia C R∈ −  do 

8 : Calculate the attribute significance ( ), ,j iSIG a R D . 

9 : End 
10: Do 
11: Select the best candidate attribute ka . 

12 : If ( ), , 0k iSIG a R D >  then 

13 : 
Add the candidate attribute ka  to the attribute reduction 

subsets iR . 
14 : End If 
15: Calculate 

iRNREDER  for the attribute reduction subsets iR . 

16 : Until 
iR CNREDER NREDER≤  

17 : End 
18: Output { }1 2, , , mR R R . 

Example 2: A decision information sub-system 1 1= ,S U<  
, ,C D V f >  is presented in Table Ⅰ, where 1 2 3 4 5{ , , , , }a a a a a  

are the set of conditional attributes and d  is the decision 
attribute. According to the calculation steps in the third line of 
Algorithm 1, we compute the decision equivalence classes 

1 1 2 2 3 4 8 1 5 6 7 9/ { , } {{ , , , },{ , , , , }}U D X X x x x x x x x x x= =  on 1S . 
The distance matrix is computed as follows: 

0 0.6128 0.6812 0.3134
0.6128 0 0.4532 0.8984

0.6812 0.4532 0 0.9855
0.3134 0.8984 0.9855 0

Distance_Matrix

 
 
 
 =
 
 
  





    





. 

We compute the neighborhood equivalence classes. For 
sample 1x , its neighborhood is 1 7( ) { }x xδ = . Then, we 
compute the CNREDER  for the set of conditional attributes C . 
According to Eq. (27), we have 0CNREDER = .  

In the process of searching for candidate attributes, we will 
iteratively calculate the significance of each candidate attribute 
and select the candidate attribute with the greatest attribute 
significance in turn until the attribute reduction subset satisfies 
the stopping criterion.  

For the first iteration, we calculate the significance for each 
conditional attribute. We have 1 1( , , ) 0.11SIG a R D = , 

2 1( , , ) 0.11SIG a R D = , 3 1( , , ) 0SIG a R D = , 4 1( , , ) 0SIG a R D = , 
and 5 1( , , ) 0.11SIG a R D = . We select the candidate attribute 1a  
and append it to the attribute reduction subset 1 1 1R R a=  . We 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

compute the 
1RNREDER  for the attribute reduction subset 1R  

and have 
1

0.11RNREDER = .  

For the second iteration, we have 2 1( , , ) 0.11SIG a R D = , 

3 1( , , ) 0.11SIG a R D = − , 4 1( , , ) 0.11SIG a R D = − , and 5( ,SIG a  

1, ) 0R D = . We select the candidate attribute 2a  and append it 
to the attribute reduction subset 1 1 2R R a=  . We compute the 

1RNREDER  for the attribute reduction subset 1R  and have 

1
0RNREDER = . Because of 

1R CNREDER NREDER≤ , we 
stopped the attribute search process and obtained the final 
attribute reduction subset 1 1 2{ , }R a a= .  

TABLE I 
A DECISION INFORMATION SUB-SYSTEM 1S  

1U  1a  2a  3a  4a  5a  D  

1x  0.35 0.74 0.59 0.50 0.48 1 

2x  0.06 0.43 0.54 0.39 0.17 0 

3x  0.29 0.58 0.60 0.38 0.15 0 

4x  0.23 0.55 0.75 0.56 0.15 0 

5x  0.47 0.92 0.52 0.35 0.18 1 

6x  0.65 0.72 0.77 0.55 0.50 1 

7x  0.41 0.74 0.62 0.59 0.37 1 

8x  0.05 0.51 0.25 0.65 0.20 0 

9x  0.47 0.88 0.74 0.50 0.62 1 

C. A Novel Spark-based Rough Evidence Neighborhood 
Classification 

To improve the decision-making capability of the 
neighborhood classifier and reduce the conflicts between the 
local evidence information with different labels in the evidence 
fusion process, we introduce rough evidence information into 
the process of neighborhood classification. In addition, 
neighborhood classifier suffers from high computational 
time-consumption and inefficiency when dealing with 
large-scale datasets, whose time complexity is 

(| | | |)train testO U U  ( | |trainU  is the number of training samples 
and | |testU  is the number of testing samples). Therefore, we 
propose a novel Spark-based rough evidence neighborhood 
classification, called SRENEC, which reduces the time 
complexity from (| | | |)train testO U U  to (| | | |)i

train testO U U  
( | |i

trainU  is the number of training samples in the decision 
information sub-system). The SRENEC is able to fuse rough 
evidence information of neighborhood samples to improve the 
classification performance of the neighborhood classifier and 
reduce its computation time. The pseudocode of SRENEC is 
shown in Algorithm 2. Its main steps are mentioned as follows. 

First, Algorithm 2 updates the decision information 
sub-system iS  by iR  to obtain the new decision information 
sub-system ' , , ,i i i aS U R D V f=< >  in each slave node, and 
then broadcast the unclassified sample tx  to all slave nodes. 

Second, Algorithm 2 computes the rough evidence 
information to get the rough belief value tRBel  in each slave 
node, and then obtains the predicted label ( )i tl x  of tx  in the 

corresponding slave node islave . 
Third, Algorithm 2 aggregates the predicted label of 

unclassified sample tx  on all slave nodes to get the final 
prediction label and outputs it. 
Algorithm 2 (SRENEC): Spark-based rough evidence neighborhood 
classification  
Input: Decision information system , , ,aS U C D V f=  , neighborhood 

radius δ , and unclassified sample tx . 

Output: The predicted category label ( )tl x  of tx . 
1 : Compute new decision information sub-systems { }1 2, , , mS S S  by 

Algorithm 3. 
2 : Calculate attribute reduction subspaces { }1 2, , , mR R R  by Algorithm 1. 
3 : Broadcast tx  to each slaver node . ( )t tx sc broadcast x← . 
4 : For each iS  partition, [ ]1,2, ,i m∈   do 
5 : Update the sub-system iS  by iR . 
6 : Compute decision equivalence class 1 2{ , , , }i i i

i dX X Xπ =  . 
7 : Calculate the neighborhood space ( )

iR txδ  of tx . 
8 : For each sample pair ( ), i

j qx X , ( )
ij R tx xδ∈  and i

q iX π∈  do 

9 : Compute , ({ })t j i
qM X  and , ( )t j

iM π , respectively, and they are 

computed by  
, 2

0({ }) exp{ ( ( , )) }t j i
q q t jM X dis x xβ γ= ⋅ − ⋅ ,        (29) 

( ), ,1 ({ })t j t j i
i qM M Xπ = − ,                   (30) 

where 00 1β< < , 0qγ > . 
10 : End 
11 : Merge the evidence information provided by samples with the same 

label to obtain the local evidence information ({ })t i
q qM X  and 

( )t
q iM π , and they are redefined by 

,

( )

({ }) 1 ( )
q

j tRi

t i t j
q q i

x x

M X M
δ

π
∈

= − ∏ ,                  (31) 

,

( )

({ }) ( )
q

j tRi

t t j
q i i

x x

M M
δ

π π
∈

= ∏ .                      (32) 

12 : Compute the local rough evidence information ({ })t i
q qRM X  and 

( )t
q iRM π , and they are is obtained by 

{ }( )({ }) i
q

t i t i
q q q qX

RM X M Xδµ= ⋅ ,                  (33) 

({ }) 1 ({ })t t i
q i q qRM RM Xπ = − .                    (34) 

13 : Aggregate the local rough evidence information with different labels 
to get the global rough evidence information ({ })t i

qRM X  and 

( )t
iRM π , and they are is calculated by 

({ }) ( )
({ }) 1,2, ,

t i t
q q r i

r qt i
q

RM X RM
RM X q d

K

π
≠= =
∏

 ,  (35) 

1

( )
( )

d
t
q i

qt
i

RM
RM

K

π
π ==

∏
,                             (36) 

where K  is the normalization factor, which is computed by  

1 1

({ }) ( ) ( )
dd

t i t t
q q r i q i

q r q q

K RM X RM RMπ π
= ≠ =

= ⋅ +∑ ∏ ∏ .       (37) 

14 : The rough belief function ({ })t i
qRBel X  is generated by fusing 

global rough evidence information, and it is given by 
({ }) ({ })t i t i

q qRBel X RM X= .                         (38) 

15 : In iS , the predicted label of unclassified sample tx  is calculated by 
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( ) arg max( ({ }))
ik

t
i t kl x Bel X

ω
= .                     (39) 

16 : End 
17 : Aggregate the collection of predicted labels ( )i tl x  from different 

partitions to get the final prediction label which is defined by  

{ }1 2, , ,

( ) arg max( ( , ))
t t

ik
j mt t t t

t j kl x H
ω

ω ω ω ω

ω ω
∈

= ∑


,             (40) 

where 
1,

( , )
0,

t t

t t

j k
j kH

otherwise

ω ω
ω ω

== 


 is the judge function. 

18 : Output the predicted label ( )tl x  of unclassified sample tx . 

To illustrate the computational process of neighborhood 
decision making based on rough evidence more clearly, the 
following Example 3 presents the specific computational 
results on the decision information subsystem. 
Example 3: According to the Example 2, the decision 
information sub-system 1S  is updated to '

1 1 1= , , ,S U R D V<   
f > . For a unclassified sample 10 {0.12,0.71,0.67,0.36,0}x = , 

its neighborhood is 10 1 3 4 8( ) { , , , }x x x x xδ = .  
According to Eq. (29), we compute the evidence information 

provide by its neighbors. We have 10,1 1
1({ }) 0.8307M X = , 

10,3 1
0({ }) 0.8559M X = , 10,4 1

0({ }) 0.8719M X = , and 10,8M  
1
0({ }) 0.8577X = .  

The local evidence information 10 1
1 1({ }) 0.8307M X =  and 

10 1
0 0({ }) 0.9974M X =  is obtained by Eq. (31).  
According to the distribution of category labels in the 

neighborhood of unclassified sample 10x , its rough 
membership is 1

0
0.75

X
δµ =  and 1

1
0.25

X
δµ = , respectively. 

According to Eq. (33), we compute the local rough evidence 
information. We have 10 1

1 1({ }) 0.2076RM X =  and 10
0RM  

1
0({ }) 0.7480X = .  

The global rough evidence information 10 1
1({ })RM X =  

0.0619  and 10 1
0({ }) 0.7016RM X =  is calculated by Eq. (35).  

The rough belief function of the unclassified sample 10x  is 
10 1

1({ }) 0.0619RBel X =  and 10 1
0({ }) 0.7016RBel X = .  

Therefore, we assign the category label 0  with the 
maximum rough belief value to the unclassified sample 10x . 

  

IV. EXPERIMENTAL ANALYSIS  
In the section, the objective of the experiments are conducted 

to evaluate the feasibility and effectiveness of the proposed 
method in six UCI imbalanced datasets. Furthermore, to verify 
the performance of algorithm parallelization in terms of 
speedup and sizeup, we conduct a series of experiments on 
three large-scale datasets. All the experiments are conducted on 
a personal computer with Windows 10， Intel (R) Core (TM) 
i9-128900K CPU@3.19GHz and RAM 64GB. The integrated 
development environment is JetBrains PyCharm 2020.3.5 and 
the programming language used is Python. We build the virtual 
environment of Hadoop-2.7.1 and Spark-2.4.6-preview on 
Windows 10 system, and the cluster mode is set to “local”. This 
experiment is compiled by the Python API in Spark, and 

manages 16 CPU cores and 24 logical processors by setting the 
parameter in the “local” mode to “local [*]”. 

A. Small data analysis 
1) Experimental Data Pre-processing 

Regarding the public datasets, we selected six medical 
datasets from the UCI database with different IR. Table II 
depicts the relevant statistical information of these six 
imbalanced datasets. 

In order to reduce the imbalance rate (called IR) of the 
dataset, this paper performs parallel randomly under sampling 
and expands the data size via parallel computing mechanism of 
Spark. First, the data of the same size as the negative class is 
generated by parallel random undersampling from the positive 
class. Then, the subset of positive class is reconstructed with 
the negative class to obtain multiple new data subsets. The 
pseudo-code for parallel random undersampling is discussed in 
Algorithm 3. 

TABLE II 
DATASET DESCRIPTION 

ID Dataset Samples Attributes Classes IR 
1 WPBC 194 34 2 3.2 
2 ZAS 303 22 2 2.5 
3 WDBC 569 31 2 1.7 
4 ILP 579 11 2 2.5 
5 PIMA 768 9 2 1.9 
6 DRD 1,151 20 2 1.1 

Definition 13: In a decision information system = ,S U C<  

, ,D V f > , where { }1 2, , , MU x x x=  . Assume that the 
collection of the positive samples and the negative samples are 

{ }1 2, , ,P
PU y y y=   and { }1 2, , ,N

NU z z z=   respectively, 
and P N M+ = . The collection of new decision information 
sub-systems { }1 2, , , mS S S  by the parallel random 
undersampling can be defined as: 

, , ,i iS U C D V f=  , (41) 
where P N

i iU U U=  , ( ){ }| 1,P P
i jU y U j Rand P= ∈ = , and 

P
iU N= . 

Algorithm 3 (PRUS): Parallel random undersampling algorithm  
Input: Decision information system , , ,S U C D V f=  . 

Output: Decision information sub-systems { }1 2, , , mS S S . 
1: Convert the data to . . ( )S spark read csv path←  via Spark. 
2: . ( [' '] _ )NU S filter S label negative label= == . 
3: Generate '

iS  based on the m  partitions. 
4: For each '

iS  partition, [1,2, , ]i m∈   do 
5: 

According to Eq. (41),
' '. ( [' '] _ )

             . .

P
i i iU S filter S label positive label

rdd takesample
= ==

. 

6: . ( )P N
i iS U union U= . 

7: End 
8: return { }1 2, , , mS S S . 

According to Def. 13, a multi-granular sample space based 
on Spark is constructed using parallel random undersampling 
algorithm. In Algorithm 3, the original decision information 
system is loaded by . . ()spark read csv  (line1). Then the 
algorithm filters out a subset of negative class samples (line2). 
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After that, a multi-granular sample space { }1 2, , , mS S S  can 
be generated by merging a subset of negative samples with a 
subset of positive samples (line3~7). Finally, Algorithm 3 
outputs a multi-granular sample space { }1 2, , , mS S S  (line8). 

In this experiment, we use the hold-out method to divide the 
raw dataset into training and test data at the ratio of 4:1. The 
training data is preprocessed by Algorithm 3, and the new 
subset with IR of 1 is reconstructed. Meanwhile, the data scale 
is expanded and reorganized into 15 subsets by using the 
parallelize operator in Spark. Table III describes the relevant 
statistical information related to the preprocessed dataset. 

TABLE III  
PREPROCESSED DATASET DESCRIPTION 

ID Dataset Samples Scale of Data Expansion  
1 WPBC 1,380 7.11 
2 ZAS 2,610 8.61 
3 WDBC 6,360 11.18 
4 ILP 4,950 8.55 
5 PIMA 8,040 10.47 
6 DRD 16,200 14.07 

2) The performance of SPAR-NREDER algorithm 
To examine the performance of AR-NREDER and 

SPAR-NREDER evaluation functions, this section presents two 
comparative experimental results based on six UCI imbalance 
datasets. Firstly, we compare the running time of the attribute 
reduction algorithms, including AR-NREDER and 
SPAR-NREDER. Secondly, we compare the classification 
performance of different attribute reduction subsets on 
neighborhood classifiers (called NEC), K-NN and Logistic 
Regression classifiers (called LR). Fig. 3 indicates the 
performance of AR-NREDER and SPAR-NREDER in terms of 
running time and the efficiency. Table IV demonstrates the 
classification performance of three attribute reduction subsets 
on three classifiers. 

In Fig. 3, it is obviously that SPAR-NREDER has far less 
running time than AR-NREDER, which indicates that 
SPAR-NREDER can effectively reduce the running time of 
AR-NREDER. For example, in the WDBC dataset, the running 
time of SPAR-NREDER is much less than that of 
AR-NREDER. The red line in Fig. 3 shows a trend that as the 
scale of datasets and the number of its conditional attribute 
grow, both the reduced running time and the improved 
computational efficiency of SPAR-NREDER also increase. The 
experimental results show that the parallel attribute reduction 
algorithm can dramatically reduce the running time and 
improve the computational efficiency of the attribute reduction 
algorithm with excellent performance. 

 
Fig. 3.  The running time and the efficient of AR-NREDER and 

SPAR-NREDER. 

As can be seen from Table IV, SPAR-NREDER has higher 
classification performance on NEC and K-NN classifiers for 
the majority of datasets. For NEC, the classification 
performance of SPAR-NREDER is lower than AR-NREDER 
only on the DRD dataset, and is better than the others attribute 
reduction on the rest of the datasets. For K-NN, the 
classification performance of SPAR-NREDER is lower than 
AR-NREDER on the DRD and ILP datasets, and is better than 
the others attribute reduction on the rest of the datasets. 
Although SPAR-NREDER performs poorly on LR, its 
classification performance for all classifiers on the ZAS dataset 
outperforms the others attribute reduction. Thus, 
SPAR-NREDER not only reduces the computational time of 
the attribute reduction, but also improves the performance of 
the attribute reduction subset. 
3) The performance of SRENEC algorithm 

To examine the performance of the algorithm SRENEC in 
terms of computation time and classification, this section 
presents comparative experiments based on six UCI imbalance 
datasets. The neighborhood classification algorithm (called 
NEC) [23], the evidence neighborhood classification algorithm 
(called ENEC) [27], the rough evidence neighborhood 
classification algorithm (called RENEC), and the Spark-based 
rough evidence neighborhood classification (called SRENEC). 
The running time and the efficient of RENEC and SRENEC 
with the same data size are given in Fig. 4. 

In Fig. 4, it is clearly that SRENEC has far less running time 
than RENEC, which indicates that SRENEC can effectively 
reduce the running time of RENEC. For example, in the DRD 
dataset, the running time of SRENEC is much less than that of 
RENEC. Compared to the parallel attribute reduction algorithm, 
the parallel classification algorithm improves the most 
computational efficiency on the DRD dataset rather than 
WDBC dataset, because the DRD dataset has the largest size. 
The red line in Fig. 4 shows a trend that as the scale of datasets 
and the number of its conditional attribute grow, both the 
reduced running time and the improved computational 
efficiency of SRENEC also increase. The experimental results 
show that the parallel classification algorithm can dramatically 
reduce the running time and improve the computational 
efficiency of the classification algorithm with excellent 
performance. 

  
Fig. 4.  The running time and the efficient of RENEC and SRENEC. 

Then, we compare the classification performance of four 
classifiers, NEC, ENEC, RENEC and SRENEC, with three 
classification evaluation metrics of precision, specificity and 
G-mean. The neighborhood radius is formulated as minδ =  

( ( , )) (max( ( , )) min( ( , )))R R R
B i j B i j B i jdis x x dis x x dis x xω+ ⋅ − , and  
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TABLE IV 
CLASSIFICATION ACCURACY COMPARISONS WITH THREE ATTRIBUTE REDUCTIONS 

Dataset 
NEC  K-NN  LR 

AR- 
NDER 

AR- 
NREDER 

SPAR- 
NREDER 

 AR- 
NDER 

AR- 
NREDER 

SPAR- 
NREDER 

 AR- 
NDER 

AR- 
NREDER 

SPAR- 
NREDER 

WPBC 0.6154 0.6410 0.6410  0.6154 0.6410 0.6410  0.7949 0.7436 0.7436 
ZAS 0.6393 0.6557 0.6721  0.7049 0.6393 0.7377  0.7705 0.7049 0.7869 

WDBC 0.9211 0.9298 0.9386  0.9298 0.9386 0.9386  0.9386 0.9298 0.9211 
ILP 0.6638 0.6810 0.6897  0.6983 0.6552 0.6466  0.7155 0.7241 0.7414 

PIMA 0.6364 0.6364 0.6753  0.6818 0.6818 0.7143  0.7857 0.7857 0.7403 
DRD 0.5974 0.6017 0.5974  0.5974 0.6104 0.5974  0.7056 0.7100 0.7056 

 
TABLE V 

CLASSIFICATION COMPARISONS WITH FOUR CLASSIFIERS 

Dataset Precision  Specificity  G-means 
NEC ENEC RENEC SRENEC  NEC ENEC RENEC SRENEC  NEC ENEC RENEC SRENEC 

WPBC 0.7241 0.7241 0.7500 1  0.2727 0.2727 0.3636 1  0.4523 0.4523 0.5222 0.7958 
ZAS 0.7778 0.7778 0.8222 0.9565  0.3333 0.3333 0.4667 0.9375  0.5036 0.5036 0.6127 0.6926 

WDBC 0.9200 0.9200 0.9200 0.9545  0.8571 0.8571 0.8571 0.9756  0.9063 0.9063 0.9063 0.9650 
ILP 0.7317 0.7529 0.7614 0.9778  0.3529 0.3824 0.3824 0.9697  0.5082 0.5463 0.5590 0.7493 

PIMA 0.7414 0.7818 0.7876 0.9114  0.4545 0.5636 0.5636 0.8511  0.6284 0.6997 0.7118 0.8161 
DRD 0.5833 0.5854 0.5746 0.6923  0.5536 0.5446 0.4911 0.7838  0.5706 0.5740 0.5637 0.6538 

 

   
(a) Precision (b) Specificity (c) G-mean 

Fig. 5.  Classification comparisons with four classifiers in ZAS dataset. 

   
(a) Precision (b) Specificity (c) G-mean 

Fig. 6.  Classification comparisons with four classifiers in WDBC dataset. 
 

we setup the weight is 0.1ω = . The results of the classification 
are shown in Table V. A comparison of the classification results 
with four classifiers on the ZAS and WDBC dataset for ten 
different neighborhood radius is illustrated in Figs. 5-6. It is not 
difficult to conclude from Table V that the classification 
performance of SRENEC is optimal. And the RENEC performs 
well on most datasets in terms of classification performance. 
The results of classification show that, in the majority of 
datasets, the rough evidence information can enhance the 
capability of neighborhood decision-making, to increase the 
accuracy of classification. What’s more, the SRENEC 
constructs a multi-granularity sample space and characterizes 
the samples from different granularity by parallel 
undersampling methods, which obtains more accurate 
classification results. For example, in the WPBC dataset, when 

RENEC is carried out, the precision is increased from 0.7241 to 
0.75, the specificity is enhanced from 0.2727 to 0.3636, and the 
G-mean is raised from 0.4523 to 0.5222. When SRENEC is 
undertaken, the precision is increased from 0.7241 to 1, the 
specificity is enhanced from 0.2727 to 1, and the G-mean is 
raised from 0.4523 to 0.7958. Its improvement ratio on the 
three classification evaluation metrics is 27.59%, 72.73%, 
34.35% respectively. It can be seen that the specificity of 
SRENEC shows the highest improvement ratio. However, in 
the DRD dataset, the classification performance of RENEC is 
inferior to that of NEC and ENEC. In general, the classification 
performance of SRENEC and RENEC is better than that of 
others classifiers.  

As can be seen from Figs. 5-6, there are a trend that as the 
weight of neighborhood radius increases, the classification 
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performance of the four algorithms under three evaluation 
metrics first rises, then falls and finally stabilizes. Obviously, 
the classification performance of SRENEC is consistently 
better than that of the others three algorithms. For RENEC, in 
some cases, the classification performance of it is better than 
that of the other three algorithms. 

B. Large-scale data analysis 
To examine the advantages of SPAR-NREDER and 

SRENEC, three large-scale datasets are added to further 
confirm the feasibility and effectiveness of parallelized 
computation, and the relevant statistical information of the 
added large-scale datasets is provided in Table VI. During the 
experimental analysis, the feasibility and effectiveness of 
SPAR-NREDER and SRENEC are focused mainly in terms of 
two evaluation metrics of speedup and sizeup. 

TABLE VI 
THE DESCRIPTION OF LARGE-SCALE DATASET 

ID Dataset Samples Attributes Classes 
1 SUSY 5,000,000 19 2 
2 HEPMASS 10,500,000 28 2 
3 HIGGS 11,000,000 28 2 

1) The speedup of parallel algorithm 
The speedup ratio of parallel algorithm measures the running 

time of the parallel algorithm by increasing the number of 
partitions in experiment while ensuring a constant data size, 
and it is computed by 

2( )
p

TSpeedup p
T

= , (42) 

where p  is the number of partitions, 2T  is the running time of 
on two partitions, pT  is the running time on p  partitions. 

TABLE VII 
THE RUNNING TIME OF SPAR-NREDER WITH DIFFERENT PARTITION 

NUMBERS (/S) 

Dataset The number of partitions 
2 4 6 8 10 

SUSY 7,249,296 2,183,94
2 

1,121,48
2 551,320 542,967 

HEPMASS 9,127,176 3,399,32
2 

1,926,98
0 

1,389,42
6 

1,247,5
52 

HIGGS 18,047,257 5,878,54
6 

3,265,96
1 

2,646,64
3 

2,082,1
47 

 
Fig. 7.  The speedup of SPAR-NREDER. 

In this experiment, the number of partitions is setup as 2,4,  
6,8,10 , and the running time consumed by the parallel 
algorithm is calculated on these partition numbers to compare 
the performance of the parallel algorithm in terms of speedup. 

Table VII and Fig. 7 show the running time and the speedup 
ratio variation curves of the SPAR-NREDER for different 
number of partitions, respectively. And then Table VIII and Fig. 
8 show the running time and the speedup ratio variation curves 

of the SRENEC algorithm for different number of partitions, 
respectively. It is not difficult to observe from Figs. 7-8 that as 
the number of partitions increases SPAR-NREDER and 
SRENEC take less time to process the same size dataset. 
However, for the SUSY dataset, the computational efficiency 
of SPAR-NREDER and SRENEC improvement significantly 
decreases when the number of partitions is increased from 8 to 
10, which indicates that some partitions are note fully used in 
the parallel processing of SUSY. Based on the experimental 
results of speedup, it is not hard to conclude that our proposed 
parallel algorithms can effectively process large-scale datasets. 

TABLE VIII 
THE RUNNING TIME OF SRENEC WITH DIFFERENT PARTITION NUMBERS (/S) 

Dataset The number of partitions 
2 4 6 8 10 

SUSY 8,086,363 2,615,54
9 

1,426,88
5 802,582 789,722 

HEPMASS 10,548,241 4,170,78
5 

2,464,82
7 

1,829,4
52 

1,712,42
2 

HIGGS 19,742,276 6,743,35
7 

3,875,21
0 

3,757,5
69 

2,588,36
3 

 
Fig. 8.  The speedup of SRENEC. 

2) The sizeup of parallel algorithm 
The sizeup ratio of parallel algorithm shows the change in 

the running time of the parallel algorithm by increasing the size 
of datasets experiment while keeping the number of partitions, 
and it is computed by 

1( , )
p

D

D

T
Sizeup D p

T
= , (43) 

where D  is one dataset, 
1DT  is the running time for D , 

pDT  is 
the running time for p D× . 

In this experiment, we set the number of partitions as 2 , and 
then gradually grow the size of datasets from D  to 8D  by 2 
times. 

TABLE IX 
THE RUNNING TIME OF SPAR-NREDER WITH DIFFERENT SCALE OF 

DATASETS (/S) 

Dataset 
The multiples of D  

D  2D  4D  8D  
SUSY 110,564 348,471 1,003,525 4,933,438 

HEPMASS 433,928 1,055,153 2,556,667 6,544,484 
HIGGS 519,733 1,329,162 4,633,389 11,566,334 

Table IX and Fig. 9 show the running time and the sizeup 
ratio variation curves of the SPAR-NREDER for different size 
of datasets, respectively. And then Table X and Fig. 10 show 
the running time and the sizeup ratio variation curves of the 
SRENEC algorithm for different size of datasets, respectively. 
The sizeup ratio change curves in Figs. 9-10 show that when the 
size of datasets gradually grows, the running time of 
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SPAR-NREDER and SRENEC also increases. Therefore, 
according to the experimental results of sizeup, our proposed 
parallel algorithms have a good sizeup performance.  

 
Fig. 9.  The sizeup of SPAR-NREDER. 

TABLE X 
THE RUNNING TIME OF SRENEC WITH DIFFERENT SIZE OF DATASETS (/S) 

Dataset 
The multiples of D  

D  2D  4D  8D  
SUSY 121,332 385,060 1,135,904 5,451,248 

HEPMASS 456,042 1,126,889 2,807,404 7,399,377 
HIGGS 544,083 1,401,842 4,904,663 12,485,335 

 
Fig. 10.  The sizeup of SRENEC. 

V. DISCUSSION 
The traditional NEC algorithm hardly considers the spatial 

difference and label uncertainty of the neighborhood samples, 
which may increase the possibility of the misclassification. 
Compared with majority voting mechanism, the rough 
evidence can obtain the more precise decision-making 
information, which demonstrates that the rough evidence can 
improve the classification accuracy. The rough evidence is a 
novel decision rule using the rough membership function and 
D-S evidence theory. The rough membership function is 
applied to the global evidence information merging process, 
which enhances the local evidence information of the majority 
class samples in the neighborhood and reduces the degree of 
conflict between the local evidence information of the different 
classes of samples. Therefore, the rough evidence is more 
suitable for the neighborhood decision process than the 
majority voting mechanism and the D-S evidence. 

In attribute reduction, the experimental results of NREDER 
show that the AR-NREDER is more precise than the 
AR-NDER in evaluating the attribute significance by the 
number of misclassified samples. Moreover, the experimental 
results of RENEC indicates that the rough evidence 
outperformed the majority voting mechanism and the D-S 
evidence in classification. Therefore, we conclude that the 
rough evidence is suitable for processing the data with 
complicated sample distributions and can significantly improve 
the neighborhood decision making ability. 

For another challenge that the AR-NREDER and the 
RENEC is computationally inefficient handling the large-scale 
data, we have implemented SPAR-NREDER and SRENEC 
respectively by using the parallel computing advantage of 
Spark framework. First, the multi-granular sample space 
obtained by Spark-based parallel random undersampling can 
depict the overall sample space from different granularities, 
which can improve the algorithm performance more 
significantly. Then, the SPAR-NREDER can compute 
equivalence classes in parallel and parallelize the process of 
searching for candidate attributes on different samples 
subspaces. Finally, the SRENEC can compute the 
neighborhood space and rough evidence information in parallel 
on different attribute reduction subsets.  

The running time and the efficient of SPAR-NREDER and 
SRENEC show that the Spark parallel computing framework 
can significantly improve the computational efficiency of 
attribute reduction and neighborhood classification algorithms. 
Furthermore, the classification accuracy results of 
SPAR-NREDER under different classifiers show that it not 
only improves the computational efficiency of attribute 
reduction, but also enhances the performance of attribute 
reduction subsets. And the classification results of SRENEC 
indicate that it not only improves the computational efficiency 
of neighborhood classification, but also strengthens the 
neighborhood decision making ability. In addition, 
experimental results of SPAR-NREDER and SRENEC 
algorithms on large-scale data demonstrate that it has favorable 
performance in terms of speedup and sizeup. 

VI. CONCLUSIONS  
Since there is a characteristic that the larger size of 

large-scale data, the lower value density, the neighborhood 
classifier cannot effectively deal with the classification 
problem of large-scale data. In this paper, partial improvements 
have been proposed to address the limitations of the 
neighborhood classifier. We present a novel Spark-based 
attribute reduction and neighborhood classification for rough 
evidence. We first introduce the rough membership function 
into the combination rule of D-S evidence theory to enhance the 
local evidence information of the majority class samples in the 
neighborhood and obtain more reliable evidence information. 
Second, a multi-granular sample space based on Spark is 
constructed using parallel random undersampling algorithm to 
reflect the distinction of universe in terms of multi-granularity. 
Third, a new Spark parallel attribute reduction based on 
neighborhood rough evidence decision error rate is proposed to 
more precisely evaluate attribute significance and improve the 
computational efficiency of attribute reduction. Finally, we 
propose a novel Spark-based rough evidence neighborhood 
classification, which can be fused by parallel the rough 
evidence information of intra-class samples and inter-class 
samples in the neighborhood. Experimental results on small 
datasets show that the classification accuracy of the attribute 
reduction subset obtained by the SPAR-NREDER parallel 
attribute algorithm is better than NDER and NREDER, and the 
classification performance of the SRENEC parallel 
classification algorithm is also superior to NEC, ENEC and 
RENEC, which indicates that the rough evidence can 
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effectively improve the neighborhood decision making ability 
and reduce the evidence information provided by the outlier 
samples in the neighborhood. In additional, we verify that the 
proposed SPAR-NREDER and SRENEC parallel algorithms 
have favorable performance in terms of speedup and sizeup via 
experiment on large-scale datasets. Our future research work 
will focus on how to further optimize the search process of 
attribute reduction. 
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