1,279 research outputs found

    Improving indoor localization accuracy through information fusion

    Get PDF

    Evaluating and improving indoor positioning methods

    Get PDF

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    L/F-CIPS: collaborative indoor positioning for smartphones with lateration and fingerprinting

    Get PDF
    The demand for indoor location-based services (LBS) and the wide availability of mobile devices have triggered research into new positioning systems able to provide accurate indoor positions using smartphones. However, accurate solutions require a complex implementation and long-term maintenance of their infrastructure. Collaborative systems may help alleviate these drawbacks. In this article, we propose a smartphone-based collaborative architecture using neural networks and received signal strength (RSS), which exploits the built-in wireless communication technologies in smartphones and the collaboration between devices to improve the traditional positioning systems without additional deployment. Experiments are carried out in two real-world scenarios, demonstrating that our proposed architecture enhances the position accuracy of the traditional indoor positioning systems (IPSs)

    L/F-CIPS: Collaborative indoor positioning for smartphones with lateration and fingerprinting

    Get PDF
    The demand for indoor location-based services and the wide availability of mobile devices have triggered research into new positioning systems able to provide accurate indoor positions using smartphones. However, accurate solutions require a complex implementation and long-term maintenance of their infrastructure. Collaborative systems may help to alleviate these drawbacks. In this paper, we propose a smartphone-based collaborative architecture using neural networks and received signal strength, which exploits the built-in wireless communication technologies in smartphones and the collaboration between devices to improve traditional positioning systems without additional deployment. Experiments are carried out in two real-world scenarios, demonstrating that our proposed architecture enhances the position accuracy of traditional indoor positioning systems.The authors gratefully acknowledge funding from European Union’s Horizon 2020 RIA programme under the Marie Skłodowska Curie grant agreement No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories). The associate editor coordinating the review of this article and approving it for publication was Prof. Name Surname (Corresponding authors: J. Torres-Sospedra and S. Casteleyn)

    Indoor navigation systems based on data mining techniques in internet of things: a survey

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Internet of Things (IoT) is turning into an essential part of daily life, and numerous IoT-based scenarios will be seen in future of modern cities ranging from small indoor situations to huge outdoor environments. In this era, navigation continues to be a crucial element in both outdoor and indoor environments, and many solutions have been provided in both cases. On the other side, recent smart objects have produced a substantial amount of various data which demands sophisticated data mining solutions to cope with them. This paper presents a detailed review of previous studies on using data mining techniques in indoor navigation systems for the loT scenarios. We aim to understand what type of navigation problems exist in different IoT scenarios with a focus on indoor environments and later on we investigate how data mining solutions can provide solutions on those challenges

    Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting

    Get PDF
    Mendoza-Silva, G., Costa, A. C., Torres-Sospedra, J., Painho, M., & Huerta, J. (2022). Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting. IEEE Sensors Journal, 22(6), 4978 - 4988. https://doi.org/10.1109/JSEN.2021.3073878Data enrichment through interpolation or regression is a common approach to deal with sample collection for Indoor Localization with WiFi fingerprinting. This paper provides guidelines on where to collect WiFi samples, and proposes a new model for received signal strength regression. The new model creates vectors that describe the presence of obstacles between an access point and the collected samples. The vectors, the distance between the access point and the positions of the samples, and the collected, are used to train a Support Vector Regression. The experiments included some relevant analyses and showed that the proposed model improves received signal strength regression in terms of regression residuals and positioning accuracy.authorsversionpublishe
    corecore