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Summary

Improving Indoor Localization Accuracy through Information Fu-
sion

Indoor user localization and tracking techniques and systems are instrumental
to a broad range of services and applications that are supported by advanced
wireless networks, sensors and Internet of Things (IoT). Applications utilizing lo-
calization information can assist people in shopping malls, through the provision
of navigation services and geospatial marketing alerts; in hospitals, for monitoring
the location of patients, doctors and critical equipment; in logistics, for tracking
assets and optimizing empty spaces in ports or inland storage, even in homes or
for providing relevant Ambient Assisted Living (AAL) services. Since Global Nav-
igation Satellite System (GNSS) signals are not available in indoor environments,
localization can be typically achieved by utilizing other off-the-shelf wireless com-
munication technologies (Wi-Fi, Bluetooth, LTE, Zigbee, VLC etc.). Striving for
accuracy, the research community investigates sophisticated solutions that are of-
ten sought through hybrid approaches. It is a fact that the accuracy achieved by
any Real Time Localization System (RTLS) is affected by the volume and quality
of information that is available during the position estimation procedure. The
more useful information can be provided, the higher the probability of producing
a more accurate estimate. Depending on the capabilities of the terminal or the
overall RTLS, in retrieving, storing and processing location-specific information,
advanced positioning algorithms can be developed in order to provide improved po-
sitioning services. The location-specific information may include radio parameters
retrieved by one or more wireless technologies, such as Received Signal Strength
(RSS), Angle of Arrival (AOA), Time of Arrival (TOA) and Impulse Responses
(IR), or non-radio parameters, such as inertial measurements, prior map/layout
knowledge etc. Among all, fingerprint-based positioning is one of the most popular
indoor localization techniques implemented by RTLS due to its simplicity.

In this research work, we examine existing, and develop novel methodologies,
for the purpose of improving indoor localization accuracy, through information
fusion. In this context, by information fusion, we mean the usage of various avail-
able radio related parameters from heterogeneous wireless technologies, as well as
nonradio parameters such as physical information retrieved from an environment
map. More specifically, we have contributed in this research area by developing
enhanced methodologies and algorithms in the following areas of Fingerprint-based
Indoor Positioning:
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SUMMARY

(1) Cross-Device Indoor Positioning: We initially investigated the chal-
lenge of providing satisfactory positioning accuracy to users whose mobile
device models vary significantly. Device diversity means in simple words
different performance of characteristics like receiver sensitivity, antenna
patterns, RSS and other radio parameter readings. In such environments
indoor positioning platforms need to encapsulate such mechanisms that
can handle the differences and still perform within the expected specifi-
cations. Our approach, was published in [1] and [2] and is described in
Chapter 3 of this thesis.

(2) Map-Aided Indoor Positioning: The objective was to investigate po-
tential accuracy improvements in the fingerprint-based indoor positioning
processes, by imposing map-constraints into the positioning algorithms
in the form of apriori knowledge. In our approach, we proposed the
introduction of a Route Probability Factor (RPF), which reflects the
probability of a user, to be located in one position instead of all others.
Detailed analysis of the research work is provided in Chapter 4. The
work is based on our scientific papers [3] and [4].

(3) Combining Heterogeneous Technologies in Fingerprint-based
Positioning: In this research area, which is described in Chapter 5,
we introduced two new algorithms that utilize information retrieved by
IEEE 802.15.1 or IEEE 802.15.7 technologies in order to improve the
accuracy and performance of conventional fingerprint-based localization
platforms which use IEEE 802.11 wireless networks. Both algorithms
(i-KNN for IEEE 802.15.1 and vlp-KNN for IEEE 802.15.7) are filtering
the initial RSS fingerprint dataset in order to narrow it down to a subset
of the data that is used by the conventional positioning algorithm KNN.
In this way, mean error is reduced significantly and positioning speed is
improved. Further analysis is presented Chapter 5 as per the published
work in [5] and [6].

(4) Utilizing Polarization for Improved Single Access Point Indoor
Localization: In this work, which has been submitted to Sensors Jour-
nal, MDPI, we investigated a Multiple Input, Multiple Output (MIMO)
802.11 system, and its polarization effects on RSS, in order to achieve
single access point localization in indoor environments. Extended ex-
perimental testing indicated that the presence of differently polarized
antennas and signals can be utilized to provide unique fingerprints in a
multi-layered radiomap approach and improve accuracy through an RSS-
based localization method. The details are presented in Chapter 6.
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SUMMARY

During the thesis, further contributions were made, relevant to the topic of
the thesis. Contributions include:

(1) Quality evaluation of Real Time Localization Systems (RTLS) as per the
work published in [7], [8], [9] and [10] and

(2) Supportive work in optimizing Wireless Sensor Networks (WSN) deploy-
ment for providing better coverage in RTLS as per [11].
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CHAPTER 1

Introduction

Localization is the process of using wireless technologies in order to locate
and track users or assets in outdoor or indoor environments. As a term, in the
concept of this thesis, localization is interchangeable with the term positioning.
As a service, it became of extreme importance in both military and civilian appli-
cations. Such applications include the tracking of military forces in fast changing
battle environments, personal navigation and tracking of emergency calls. It is also
implemented in the logistics industry for managing the flow of assets and goods,
the medical sector for monitoring patients, as well as in the marketing domain
for advertising products to specific geographically located target groups [13]. Due
to the more recent technological advances and the trend towards the utilization
of internet cloud applications, localization service has been further expanded to
support location-sensitive billing and cellular phone fraud detection. The related
more advanced localization methodologies involve the utilization of heterogeneous
wireless technologies as well as the fusion of sensor and Internet of Things (IoT)
data ([14], [15], [16], [17]). Currently, the most active research topics concern
the provision of affordable localization solutions with improved accuracy through
the combination of technologies and fusion of information of radio and non-radio
parameters.

There are four fundamental localization techniques, for both indoor and outdoor
localization, and these are (i) Range-based (lateration), (ii) Direction-based
(angulation), (iii) Dead reckoning and (iv) Fingerprinting. Details on Wire-
less Indoor Positioning Techniques and Systems can be found in [18], [19] and
[20]. The theoretical background is explained in Chapter 2. An analysis and com-
parison of outdoor positioning methodologies is provided in [21], [22], [23] and
[24]. A brief overview on outdoor and indoor localization systems will follow in
Sections 1.1 and 1.2. The research scope is defined in Section 1.3 and the thesis
structure is explained in Section 1.4.

1.1. Outdoor Localization

The dominant wireless communication systems used for outdoor localization,
are the Global Navigation Satellite Systems (GNSS) and cellular networks. GNSS
implement purely TOA and TDOA-based localization techniques, while in cellu-
lar networks the techniques are much more broad with some of them being more
attractive than others, as will be presented in the coming subsections.
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CHAPTER 1. INTRODUCTION

1.1.1. Global Navigation Satellite Systems

GNSS systems are positioning and navigation systems that utilize the infor-
mation provided by a constellation of satellites in orbits around the earth. They
implement the TOA-based estimation and consequently they require a LOS condi-
tion to perform satisfactory. They are the dominant outdoor positioning system.
There are currently four well known GNSS systems: The US Global Positioning
System (GPS), the Russian Global Navigation Satellite System (GLONASS), the
European GALILEO and the Chinese BeiDou Navigation Satellite System (BDS)
[25].

For the implementation of GNSS concept, three segments are required: i. The
satellite constellation, ii. the ground control stations, and iii. the user equip-
ment. Satellites and ground control stations are synchronized with accurate clocks,
which is a prerequisite for the accomplishment of localization accuracy with the
Time-based technique. Conceptually, there are four steps during the localization
procedure in GNSS, as shown in figure 1.1 and summarized below:

Figure 1.1 – GNSS Schematic

(1) Satellite: A constellation of satellites is required to be in orbit in such
a way so that 4 satellites are always visible from a user device in order
to accomplish 3D localization. Their orbit ephemerides (the parame-
ters that define their orbit) are known with a high degree of precision
at any given time. Ground-based control stations adjust the satellites’
ephemerides and clocks, when necessary.

(2) Propagation: Every satellite broadcasts periodically its ephemerides
and its internal time. Radio signals follow the basic rules of propagation

2



1.1. OUTDOOR LOCALIZATION

as they pass through the different layers of the atmosphere until they are
eventually received by the user equipment.

(3) Reception: Signals from at least 4 satellites are required to be received
by the user’s equipment or device. These radio signals contain the data
required for the calculation of the propagation time.

(4) Computation: Upon receiving the radio signals, the user equipment
computes the propagation time and consequently calculates the relative
position.

(5) Application: At an application level, the relative position is utilized for
navigation, mapping, or any other service.

GNSS applications can be found on every level of our lives and in every in-
dustry sector. Typical examples include personal and commercial navigation and
LBS services, emergency location, security and humanitarian services, science,
environment, weather and agriculture [26].

The technical characteristics of the typical GNSS systems [27], are shown in
table 1.1.

Table 1.1 – GNSS Positioning System Characteristics

Parameter GPS GLONASS GALILEO Beidou

Satellites in orbit 31 26 28 23
Max Satellites 33 24 30 35
Orbital Planes 6 3 3 3
Orbit Altitude 20.183km 19.100km 23.222km 21.500km
Inclination 55° 64.8° 56° 55°
Orbital Period 11h55m 11h15m 14h05m 12h50m
Frequencies L1, L2, L5 G1, G2, G3 E1, E5a, E5b, E6 B1-2, B1, B2, B3
Coding CDMA FDMA CDMA CDMA
Accuracy [m] 5 2.8-7.38 1 10

1.1.2. Cellular Networks for Localization Services

Since their introduction to the market, cellular networks have being evolving
and incorporating new technologies, offering their users a broad number of services
in addition to mobile telephony. They have transformed from the 1st generation
to the 5th generation which offers transfer of information at extremely high data
rates. This capability has provided the opportunity for developing mobile applica-
tions, cloud based or not, which are nowadays accessible from almost everywhere.
A wide range of such applications require user localization information. The op-
portunity was triggered after the decision of Federal Communications Commission
of the United States which defined enhanced 911 (E911) location requirements in
the mid 1990s. A similar decision was taken in the European Commission (EC)
within the framework of harmonizing emergency services. For this task, a coordi-
nation group was formulated, to coordinate the access to location information by
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emergency services (CGALIES). Having the mandate of user localization in emer-
gency scenarios, the cellular service providers gradually included such Location
Based Services (LBS) in all cellular technologies.

The most widely utilized localization technique in cellular networks, is time-
based estimation. They implement methods such as Uplink TOA (UToA), Uplink
Time Difference of Arrival (UTDoA), Observed Time Difference of Arrival (OT-
DoA), Enhanced Cell ID (E-CID) -TA/CID and Enhanced Observed Time Differ-
ence (E-OTD) [21]. Some solutions also use outdoor fingerprinting, also known as
scene analysis [23].

A brief comparison of localization accuracy per method and technology is summa-
rized in Table 1.2 based on [21], [22], [23] and [24].

Table 1.2 – Cellular Networks Localization methods

Method Technology Type 67%-Accuracy[m]

CID+TA/CID+RTT 2G, 3G, 4G Proximity > 100
E-CID 3G, 4G Proximity ∼ 50
RFPM 2G, 3G, 4G Fingerprinting > 50
U-ToA 2G Trilateration > 100
UTDoA 3G, 4G Trilateration > 50
E-OTD 2G Trilateration > 100
OTDoA 3G, 4G Trilateration ≤ 50
TBS 4G Trilateration ≤ 50

Location Based Services (LBS) provided by cellular networks is currently a
very active topic in the research community, which investigates ways to improve
the communication capacity, by supporting decisions for better network manage-
ment and for radio re-configurable spectrum. A typical example of LSB utilization
for optimizing the network and improving quality of service, is the self-organizing
networks (SON) technology. SON is a mechanism to ease and improve the op-
eration of the network exploited commercially by the network operator or the
application developer, with an aim to obtain a revenue [28].

1.2. Indoor Localization

During the last decade, several indoor localization methods have been pro-
posed, a number of which is summarized in [29], [30] and [31]. In all cases, and
depending on the technology and equipment available, the localization methodol-
ogy utilizes parameters, such as Received Signal Strength (RSS), Time of Flight
(TOF) and Angle of Arrival (AOA). Methods based on TOF and AOA require
usage of specialized equipment in order to measure time or ray angles with high
accuracy, synchronization of transceivers and calibration of antennas [32].

With the advancement of computational power and the introduction of new
technologies, more sophisticated solutions have emerged. They typically include
hybrid approaches where information from different sources is fused in order to
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achieve improved localization accuracy. In this scope, two new novel approaches
are proposed in this thesis, which refer to the combination of Wi-Fi and Bluetooth
Low Energy (BLE) beacons [5], and Wi-Fi with Visual Light Positioning (VLP)
[6]. Other related work includes also the combination of VLP with ultra sound
[33].

With regard to fusion of information of non-radio parameters with radio pa-
rameters, details can be found in [34], [35], [36] where researchers utilize input
from inertial, magnetic or other sensors. In this area, information fusion retrieved
from maps is presented , as per work in [37] and [4].

A summary of the most common technologies utilized in indoor positioning,
with a brief analysis of their cons and pros is presented in table 1.3.

Table 1.3 – Indoor Positioning:Technologies comparison

Technology Advantages Disadvantages

RFID [38] Non-line of sight (NLOS) Short range, limited coverage

UWB [39]

High accuracy even in
multipath, limited inter-
ference with other RF sys-
tems

High cost, increased errors if
metallic materials exist

VLP [6] High accuracy
Infrastructure required, Line
of sight (LOS), UE con-
straints

ZigBee [40] Low energy, low cost
Vulnerable to interference (IS
band)

Infrared [41]
LOS (helps with security
aspects)

LOS, short range, vulnerable
to lighting conditions

Ultrasonic
[41]

Does not interfere with
RF

Loss of signal due to obstruc-
tions

Wi-Fi [9]
Widely used, adequate
range and coverage

Fingerprinting technique is
labour-intensive and not re-
silient to dynamic changes

Bluetooth [42] Widely used Low range, low accuracy

BLE [5]
Low energy, upcoming
trend, range information
provided

Low range, low coverage, eas-
ily interfered

IoT [11] Widely spread
Low range, sensitive to inter-
ference

The most popular localization technique that is widely used, is based on RSS
fingerprinting. The popularity of this method, lies on the utilization of existing
wireless communication infrastructures, the simplicity of the localization algo-
rithms, and the achieved levels of accuracy. In RSS fingerprint-based localization,
the procedure involves an offline and an online phase. During the offline phase, a
data–set of RSS fingerprints, named a radiomap, is generated by recording the RSS
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value of each Access Point (AP), for each location in the area of interest. The RSS
values are then calibrated in order to improve the quality of the radiomap [8]. Such
datasets can be generated rapidly and at a relatively low cost, through the use of
a deterministic radio propagation simulator. The conventional approach involves
performing a time consuming and expensive measurement campaign in the actual
environment [1]. The radiomap of such a campaign represents a static snapshot of
the APs’ RSS values at each measured location, requiring the repetition of mea-
surements every time that the environment or the wireless network is modified.
During the online phase, the Mobile Station (MS) performs network discovery as
well as real time RSS measurements. Different positioning algorithms are then ap-
plied in order to identify the best match between the observed RSS fingerprint and
the respective mean value of the fingerprints recorded in the radiomap during the
offline phase. An overview of typical fingerprint-based methods is provided in [43].

A significant drawback of these systems, is that they require the deployment of
several APs in order to generate unique fingerprints at each location and achieve a
satisfactory positioning accuracy [9]. Due to this characteristic, fingerprint-based
localization applications and platforms cannot be easily utilized in small indoor
environments (i.e., residential places or open-plan business spaces), where only a
single AP is typically being deployed.

1.3. Research Scope

In this research work, existing methodologies have been examined, and new
novel methodologies have been developed, for the purpose of improving indoor
localization accuracy, through information fusion. In this context, information
fusion means the usage of various available radio related parameters from hetero-
geneous wireless technologies, as well as non-radio parameters, such as physical
information retrieved from the environment map. More specifically, contribution
to this research area has been the development of the following enhanced method-
ologies/algorithms:

(1) Cross-Device Indoor Positioning: The proposed work was directed
towards facing the device diversity issue in indoor localization. The wide
variety of mobile devices which provide different signal measurement val-
ues, is an error generating factor during user location estimation. In
this approach, which was published in [1] and [2] a linear transformation
method between different devices, was implemented and tested, in order
to calibrate the radiomap used in fingerprinting positioning.

(2) Map-Aided Fingerprint-based Indoor Positioning: The objective
was to investigate potential accuracy improvements in the fingerprint-
based indoor positioning processes, by imposing map-constraints into the
positioning algorithms in the form of apriori knowledge. In this approach
in [3] and [4], the introduction of a Route Probability Factor (RPF), was
proposed, which reflects the probability of a user, to be located at one po-
sition instead of all others. The RPF does not only affect the probabilities
of the points along the pre-defined frequent routes, but also influences
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all the neighbouring points that lie in proximity to each frequent route.
The outcome of the evaluation process indicates the validity of the RPF
approach, demonstrated by the significant reduction of the positioning
error. It was finally further investigated how positioning accuracy is af-
fected in map-aided positioning systems, when a user’s typical route is
described by different probability distribution types. Probability distri-
butions are introduced in an effort to better explain any reasonable route
deviations from the user’s centre line of movement.

(3) Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps: Due
to the widespread availability of IEEE 802.11, many localization plat-
forms are based on Wi-Fi RSS, using algorithms such as KNN, MAP
and MMSE. Yet, accuracy achieved can greatly vary and can be consid-
ered insufficient depending on the application. In [5], a hybrid method
was introduced, which combines the information retrieved from low cost
Bluetooth Low Energy (BLE) beacons and other existing Wi-Fi infras-
tructure. Building on KNN, a new positioning algorithm (dubbed i-
KNN) was proposed, which is able to filter the initial fingerprint dataset
(i.e., the radiomap), by taking into consideration the proximity of RSS
fingerprints with respect to the BLE devices. In this way, i-KNN provides
an optimized small subset of possible user locations, based on which it
finally estimates the user position. The proposed methodology achieves
fast positioning estimation due to the utilization of a fragment of the
initial fingerprint dataset and, at the same time, improves positioning
accuracy by minimizing estimation errors.

(4) Combining Smart Lighting and Radio Fingerprinting for Im-
proved Indoor Localization: Following a similar methodology as de-
scribed above, in [6] and further expansion of research, a hybrid indoor
positioning system was proposed, which combines a minimal smart light-
ing deployment, for Visible Light Positioning (VPL) purposes, with an
IEEE 802.11 RSS Fingerprint-based Indoor Positioning System. Such
a hybrid deployment improves the localization performance by utilizing
the benefits of both the visible light and radio technologies. Improvement
is demonstrated in terms of accuracy, coverage and processing require-
ments. At the same time, the deployment cost and complexity remain
in affordable levels, due to the minimal deployment of the smart lighting
system and the utilization of an existing IEEE 802.11 wireless network.

(5) Utilizing Polarization for Improved Single Access Point Indoor
Localization: Finally, a MIMO 802.11 system was investigated, as well
as its polarization effects on RSS, in order to achieve improved single ac-
cess point indoor localization. Extended experimental testing indicated
that the presence of differently polarized antennas and signals can be uti-
lized to provide unique fingerprints in a multi-layered radiomap approach
and improve accuracy through an RSS-based localization method.
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1.4. Structure of Thesis

After the general introduction of outdoor and indoor localization concepts pre-
sented in Chapter 1, the rest of the thesis is organized as follows: In Chapter 2 the
fundamental localization techniques are analyzed and the respective mathematical
models are explained as per Section 2.2. In the same chapter, under Section 2.3,
the research work performed in information fusion and combination of wireless
technologies was further investigated, with an aim to provide more reliable and
accurate indoor localization. Chapter 2 ends with Section 2.4, where the most
common RTLS performance evaluation methodologies are presented. Chapters 3,
4, 5 and 6 include an analysis of the most important research contribution of this
thesis. More specifically, in Chapter 3 the challenge of cross device positioning is
explained and a linear transformation methodology is proposed to overcome such
issues. In Chapter 4, an advanced localization methodology is introduced, which
imposes map constraints and improves accuracy provided by fingerprint-based
platforms. In Chapter 5, an enhanced KNN algorithm is proposed. The afore-
mentioned algorithm combines information from two different technologies (either
Wi-Fi and BLE or Wi-Fi and VLP) and improves the performance in terms of
computational speed and location prediction accuracy. The research contribution
ends with Chapter 6, where a novel methodology for single MIMO-type access
point indoor localization is presented. The method is based on utilization of po-
larization effects as they occur in complex environments. The thesis ends with
conclusions and suggestions for future work, as per Chapter 7.
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CHAPTER 2

Related Work

2.1. Introduction

In this Chapter the fundamentals on localization techniques are presented,
while giving emphasis on fingerprint-based methodologies and core positioning
algorithms as per Section 2.2. A review of the research work performed in infor-
mation fusion for the purposes of improving indoor localization accuracy (Section
2.3) is also presented, focusing in three areas: the introduction of map-constraint
parameters, the combination of IEEE 802.15.1 and IEEE 802.15.7 wireless tech-
nologies and the utilization of polarization mechanisms for positioning purposes.
Finally, in Section 2.4 the evaluation methodologies widely used in testing the
performance of localization platforms is briefly explored.

2.2. Localization Techniques

The core localization techniques widely used for both indoor and outdoor
localization are the following:

(1) Range-based lateration, which estimates the location by measuring
the distance between the Mobile Station (MS) and a number of Base
Stations (BS). In 2D space, this technique requires at least three mea-
surements, while in 3D space four measurements are required. Distance
measurements are typically performed by calculating the Time of Flight
(TOF) or Time of Arrival (TOA). A more advanced methodology incor-
porates Time Difference of Arrival (TDOA) between each pair of BS.
Received Signal Strength (RSS) attenuation can be also utilized in order
to estimate the aforementioned distance.

(2) Direction-based angulation, that involves the calculation of the Di-
rection of Arrival (DOA) - or the Angle of Arrival (AOA) - of at least
two signals from known locations in a 2D-space scenario.

(3) Dead reckoning which estimates the position of a mobile station by
using an anchor point or a previously determined position. In this case,
the technique uses sensors to calculate distance, speed and/or drift angle
data from the known fixed positions.

(4) Fingerprinting, which is the most popular technique in indoor posi-
tioning. With this technique, location is identified by comparing and
matching the signal characteristics of pre-collected data named finger-
prints with the characteristics of the user real time signals in a specific
environment.

9



CHAPTER 2. RELATED WORK

All the above techniques can be also combined with, or supported by, informa-
tion retrieved by heterogeneous technologies. Details on Wireless Indoor Position-
ing Techniques and Systems can be found in [18], [19] and [20]. A comprehensive
analysis in outdoor positioning is provided in [21] and [23].

2.2.1. Range-based lateration

2.2.1.1. RSS Estimation. It is assumed that the Received Signal Strength
typically follows an exponential decay model, which is a function of the transmitted
power, the path loss constant and the distance between the source and the receiver.
RSS estimation, is based on the calculation of the aforementioned Path Loss.
Mathematically, path loss is defined as the ratio of the received power Pr to the
transmitted power Pt, expressed in dB [44] as shown in equation 2.1.

PL(dB) = 10 log(
Pr
Pt

) (2.1)

The free space path loss (FSPL) model is derived from the Friis Transmission
Formula, according to which, the path loss follows an inverse square law with
respect to the distance R between the transmitter and the receiver. The radio
propagation loss refers to an obstacle free environment (i.e., Line of Sight (LOS)
between the transmitter and the receiver). It also depends on the frequency -
or the wavelength λ - and the antenna patterns of both the transmitter and the
receiver, which specify the gains Gt and Gr respectively, as per equation 2.2.

PL(dB) = 10 log

(
GtGrλ

2

(4π)2R2

)
(2.2)

In the case of Free Space Loss (FSL), the model assumes isotropic antennas
for both the transmitting and receiving antennas, and therefore the equation is
simplified to:

FSL(dB) = 10 log

(
λ2

(4π)2R2

)
(2.3)

or

FSL(dB) = 20 log(d) + 20 log(f)− 147.55 (2.4)

The FSL model is useful for simple LOS scenarios and for rough preliminary
estimations, but is an oversimplified model that fails to provide accurate results
in most real life cases. For this reason, other models were developed. Empirical
models are based on extensive outdoor measurement campaigns that took place un-
der specific conditions, representing categories of environments that follow similar
characteristics [45]. Some examples of empirical models are the Okumura-Hata
Model, working in the frequency range 150MHz − 1.5GHz for Tokyo-like cities
[46], [47], the Cost-231-Hata model, that is an extension of the Okumura-Hata
and covers the frequencies 1500MHz − 2000MHz [48], and the Ibrahim and
Parsons Model, which is based on a measurement campaign executed around
London [49]. Typical semi-empirical models are the Allsebrook and Parsons
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Model, for suburban predictions and in the frequencies 86MHz, 167MHz and
441MHZ [50] and Walfish-Bertoni Model, that predicts multiple diffraction
over building rooftops [51].

The aforementioned indicative models, gather a large number of measurements
and perform mathematical methods like least squares to extract conversion graphs.
As it can be understood, such methods can provide only indications and rough
estimations of the RSS values in the outdoor study areas. They usually fail to
perform reliably and accurately in complex outdoor environments, in the presence
of fast fading and multipath effects.

Extensive research work has been done towards the direction of developing
indoor attenuation models that could more accurately calculate the RSS in such
complex environments [52], [53], [54]. The large-scale attenuation model, was the
basis for many proposed models. This model calculates the radio propagation path
loss as a function of an attenuation exponent α as indicated in equation 2.5. Pd is
the power at distance d from the transmitter and Pd0 is the power at a reference
distance of 1m. α typically receives a value of 2 for free space scenarios and may
increase up to 5 in an indoor environment. An implementation example can be
found in [55], where by setting n = 2.6, researchers managed to achieve an average
difference of 3.0dB between measurements and estimates, in their specific study
area.

Pd[dB] = Pd0 [dB]− 10α log

(
d

d0

)
(2.5)

Hence, in lognormal form, the average power received by the lth sensor, denoted
as Pr,l is expressed as:

ln(Pr,l) = ln(Kl) + ln(Pt)− α ln(dl) + nRSS,l (2.6)

where l = 1, 2, . . . , L, with L ≥ 3 and α are known a priori. Kl accounts for all
factors that affect the received power, including antenna gain and height. nRSS,l
is the disturbance, which for simplicity is assumed to be zero-mean uncorrelated
Gaussian process with variance σ2

RSS,l.

If the range measurement rRSS,l is set as:

rRSS,l = ln(Pr,j)− ln(Kl)− ln(Pt) (2.7)

then the RSS signal model can be expressed as:

rRSS,l = −α ln(dl) + nRSS,l (2.8)

And can be converted in a vector form:

~rRSS = ~fRSS(~ )x+ ~nRSS (2.9)

where

~rRSS = [ ~rRSS,1, ~rRSS,2, . . . ~rRSS,L]
T

(2.10)
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~nRSS = [ ~nRSS,1, ~nRSS,2, . . . ~nRSS,L] (2.11)

and

~fRSS(~ )x = ~p = −α



√
(x− x1)

2
+ (y − y1)

2√
(x− x2)

2
+ (y − y2)

2

...√
(x− xL)

2
+ (y − yL)

2

 (2.12)

The calculation of the Probability Density Function (PDF) for ~rRSS , denoted
as p( ~rRSS), is then performed by the following formula:

p( ~rRSS) =
1

(2π)L/2| ~CRSS |1/2
exp

(
−1

2
( ~rRSS − ~p)T ~C−1RSS( ~rRSS − ~p)

)
= (2.13)

=
1

(2π)L/2
∏L
l=1 σRSS,l

exp

(
−1

2

L∑
l=1

( ~rRSS,l + α ln(dl))
2

σ2
RSS,l

)
(2.14)

where ~CRSS = diag
(
σ2
RSS,1, σ

2
RSS,2, . . . , σ

2
RSS,L

)
All the above RSS measurement models are based on a number of assumptions and
include several parameters. In scenarios where accuracy is critical, the researchers
should use radio deterministic models. Deterministic models implement electro-
magnetic formulas and numerical methods (such as Ray Tracing) to a site-specific
environmental description [56].

Ray Tracing is the dominant deterministic technique used to predict propa-
gation effects in wireless communication environments. It is based on Geometrical
Optics (GO) and its extension, Uniform Theory of Diffraction (UTD). Ray tracing
can be easily applied for approximately predicting a high-frequency electromag-
netic field. It is used to identify all the possible ray paths between the transmitter
and possible receiver locations and uses high-frequency electromagnetic theory to
calculate the amplitude, phase, delay and polarization of each ray.

As mentioned earlier, GO is the basis of RT. It assumes an infinite frequency
for the propagating signal in such a way so as to consider all the propagating
energy to be contained inside very thin tubes, called rays [57]. Using this theory
the reflected and transmitted fields can be determined. However, this theory is
subject to assumptions [58]:

(1) Waves are locally plane to the points of interaction.
(2) Wavelength is small compared to the distance between the source and the

first interactions along each ray path and the distance between individual
interactions.

(3) Surfaces are large compared to the wavelength of transmission.
(4) Curvature of surfaces is small compared to the wavelength.
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However, by utilizing the Geometric Optics theory it is not possible to predict
diffraction over obstructions because it fails to account for the energy that prop-
agates into the shadowing regions For this reason, the RT method has included
the UTD. Based on these techniques, a ray obliquely incident upon the edge of an
obstruction at an angle β to the edge, produces a cone (Keller cone) of diffracted
rays having a semi-angle β. Ray Tracing is a method implemented in TruNET
wireless 3D polarimetric deterministic simulator [12], which is heavily utilized in
generating all the study area radiomaps for evaluating all the positioning method-
ologies proposed in this thesis.

2.2.1.2. TOA and TDOA Estimation. TOA is the propagation time that a
signal requires to travel from a transmitter to a receiver [20]. By accurately mea-
suring TOA and multiplying with the speed of light, we can calculate the distance
between the transmitter and the receiver. However, the practical implementation
of Time-based localization technique, requires accurate estimation of the signal
propagation delay, hence high resolution clock synchronization between all nodes
and mobile user equipment [59]. Additionally, multipath effects can generate large
localization errors, restricting the reliable implementation of such a technique to
only Line of Sight (LOS) scenarios.

For a 2D TOA positioning three transmitters are required, as shown in the
simplified TOA positioning concept of figure 2.1. The position of the user, lies
within the area where all circles overlap.

The localization problem, as analyzed in [20], is solved as follows: It is assumed

that ~X = [x, y]
T

is the unknown user position, while ~Xl = [xl, yl]
T

are the known
coordinates of the lth receiver, where l = 1, 2, . . . , L and L > 3. The distance
between the user and the lth sensor, denoted by dl, is given by:

dl = ‖ ~X − ~Xl‖2 =

√
(x− xl)2 + (y − yl)2 (2.15)

With no loss of generality, it is assumed that the source emits a signal at time
0 and the lth receiver receives it at time tl; which means that tl are the measured
times which have the following relationship with the dl:

tl =
dl
c
, l = 1, 2, . . . , L. (2.16)

In practice, range measurements ~rTOA include the inherent errors of the tech-
nique as explained earlier and are denoted as ~nTOA. Hence, the range measurement
is the sum of the actual distance dl as given by equation 2.15, but in a vector form,
plus the error ~nTOA. In a vector form the above concept is expressed as follows:

~rTOA = ~fTOA(~ )x+ ~nTOA (2.17)

where

~nTOA = [ ~nTOA,1, ~nTOA,2, . . . , ~nTOA,L]
T

(2.18)

~rTOA = [ ~rTOA,1, ~rTOA,2, . . . , ~rTOA,L]
T

(2.19)
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Figure 2.1 – TOA Localization Technique

and

~fTOA(~ )x =



√
(x− x1)

2
+ (y − y1)

2√
(x− x2)

2
+ (y − y2)

2

...√
(x− xL)

2
+ (y − yL)

2

 (2.20)

The calculation of the Probability Density Function (PDF) for each RTOA,i is
calculated by formula 2.21:

p(rTOA,i) =
1√

2πσ2
TOA,i

exp

[
− 1

2σ2
TOA,i

(rTOA,i − di)2
]

(2.21)

Node and user device synchronization issues can be overcome if time differ-
ence of arrival (TDOA) between all pairs of nodes is implemented. However, the
synchronization between the nodes themselves is still required. Each calculated
TDOA forms a hyperbola in the localization space and the intersection of all hy-
perbolas represents the possible location of the mobile terminal. The TDOA mea-
surement method can be formulated [20] in the following way. Assuming that the
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source emits a signal at an unknown time t0 and the lth receiver receives it at time

tl, l = 1, 2, . . . , L with L > 3, there are L(L−1)
2 distinct TDOAs from all possible

receiver pairs, denoted by tk,l = (tk− t0)− (tl− t0) = tk− tl, where l = 1, 2, . . . , L
with k > l. The solution of TDOA is similar to the TOA as described previously.

Summing up, TOA and TDOA localization is a popular technique for outdoor
scenarios where a LOS condition can be ensured. The most known and popular
implementation is a GNSS systems, which utilize a number of satellites and embed
a high accuracy clock.

2.2.2. DOA Estimation

DOA localization technique is based on the measurement of the arrival angles
of the transmitted signal from the source, as this is observed at the receiver [20].
Hence, by determining the direction of propagation of a signal and its angle of
arrival at a minimum of two nodes, the location of the user can be estimated, as
illustrated in figure 2.2.

Figure 2.2 – DOA Localization Technique

The mathematical model of DOA method is based on the geometrical formula
of angle φl, which represents the DOA between the source and the lth receiver
[20]:

tan(φl) =
y − yl
x− xl

, l = 1, 2, . . . , L (2.22)

with L > 2.

As in the case of TOA, during DOA measurements denoted as rDOA,l, an
error nDOA,l is included, which occurs from noises (assumed to be zero) mean
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uncorrelated Gaussian processes with variances σ2
DOA,l. In this case rDOA,l can

be expressed by equation 2.23:

rDOA,l = φl + nDOA,l = tan−1
[
y − yl
x− xl

]
+ nDOA,l, l = 1, 2, . . . , L (2.23)

Vector wise, 2.23 can be re-written as:

~rDOA = ~fDOA(~ )x+ ~nDOA (2.24)

where
~nDOA = [ ~nDOA,1, ~nDOA,2, . . . , ~nDOA,L]

T
(2.25)

~rDOA = [ ~rDOA,1, ~rDOA,2, . . . , ~rDOA,L]
T

(2.26)

and

~fDOA(~ )x = ~φ =


tan−1

(
y−y1
x−x1

)
tan−1

(
y−y2
x−x2

)
...

tan−1
(
y−yL
x−xL

)

 (2.27)

Typical examples of methods that are based on DOA are: (i) Delay and Sum
(DAS) [60] which is a spatial spectral estimation method and (ii) Multiple Signal
Classification (MUSIC) [61] which is an eigenstructure method. A more recent
work where DOA technique was utilized ispresented in [62]. In this approach,
authors proposed the utilization of sectorized antennas instead of antenna arrays.
They introduced a DOA estimator that is broadly applicable with different sector-
ized antenna types and signal wave-forms, and has low computational complexity.
Finally, taking advantage of the technological evolution, researchers in [60] intro-
duced hardware novelties, such as Software Defined Radios (SDRs) and/or propose
the fusion of multiple DOA techniques in order to combine the benefits of each
category.

Summing up, although the DOA-based localization technique does not require
clock synchronization, has several challenges to overcome, such as the requirement
for sophisticated antenna arrays and NLOS conditions, especially in indoor envi-
ronments.

2.2.3. Dead Reckoning

Dead reckoning is the technique of estimating the position of a mobile station
by using an anchor point or a previously determined position. The estimation is
performed considering a number of parameters, such as the speed and direction of
movement of the user, etc.

Systems implementing dead reckoning typically use sensors on the user’s device
to estimate relative, rather than absolute location (i.e., the change in position
since the last update), by knowing angle θi[°] and distance ri[m], as shown in
Figure 2.3. The infrastructure requirements are nil or minimal, but the localization
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error accumulates with time. For this reason they are usually combined with
other localization techniques and work supportively, exchanging and retrieving
information for correcting the relative location [63].

Figure 2.3 – Dead Reckoning Technique

With the sensors and processing nodes getting smaller and more affordable,
several solutions have been proposed for Pedestrian Dead Reckoning (PDR) sys-
tems, especially for indoor tracking. These use inertial and other sensors, often
combined with domain-specific knowledge about walking, to track user movements.
There is currently rich research and relevant literature, which is summarized in
[63]. From the aforementioned survey, the work done in [64] is highlighted, where
researchers fused data retrieved from dead reckoning sensors using the extended
Kalman filter (EKF) algorithm, in a multi-robot distributed cooperative localization
method. In this way, the authors aim to correct the accumulative error of the dead
reckoning. In another approach, authors of [65] propose an effective indoor local-
ization method for automated guided vehicles (AGVs), utilizing dead reckoning
while eliminating its inherent drawbacks, based on an encoder, and particle filters,
based on a 2D laser range finder. The proposed method involves an asynchronous
localization algorithm. Finally, in [66], authors presented a smartphone-based
pedestrian dead reckoning system, which uses data from inertial sensors embedded
in off-the-shelf smart-phones, without the support from any other infrastructure
or system.

2.2.4. Fingerprinting

As briefly explained in Chapter 1, Section 1.2, fingerprinting is a localization
technique, where the Mobile User (MU) device, through a dedicated positioning
application, retrieves the RSS values from all surrounding nodes, and “attempts”
to find the best match from a number of pre-existing RSS values - called finger-
prints. Fingerprints are recorded beforehand and stored in a database. For the
prediction of the best match and consequently the real time location estimation
of the user, the application utilizes numerous mathematical algorithms.

It can be easily understood that, for the aforementioned procedure to be exe-
cuted, two phases are required: (i) the offline phase, and (ii) the online phase, as
indicated in Figure 2.4. During the offline phase, a set of fingerprints is collected
from predetermined locations and recorded in a database, together with the in-
formation of the transmitting nodes (usually the MAC addresses), their location
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coordinates and any other supportive information. Such databases are named ra-
diomaps. During the second online phase, initially the MU scans the area and
identifies all the existing transmitters within range. It then collects the real time
RSS values and implements the positioning algorithm, which is either determinis-
tic or statistical. The task of such an algorithm is to find the best match of the
current online RSS value set, retrieved from all nodes, with the fingerprint sets
that exist in the radiomap. In this way location estimation is performed.

Figure 2.4 – Fingerprinting Concept

2.2.4.1. Radiomap Generation. In the literature, two map generation meth-
ods are used during the offline phase; actual measurements and utilization of sim-
ulation tools. The actual measurements method is extremely time consuming,
costly and more difficult to maintain, since the radiomaps produced are static.
In other words, in case of changes in the environment setup, new measurements
must be taken. For the execution of a measurement campaign, special equipment
can be used, such as spectrum analyzers, or typical smart devices which have
the necessary data collection application installed. Examples of this method can
be found in [67] and [68]. The simulated map generation method is faster and
much easier to maintain. During this procedure, the indoor environment is cre-
ated in a simulator and different radio propagation models are used to generate
the RSS fingerprints. Examples include the adoption of 2D Ray Tracing (RT)
models in [69] and [70], and full 3D Ray Tracing Models in [71], [1] and [2]. The
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3D RT algorithm typically utilizes the 3D electromagnetic formulation of reflec-
tion, refraction and diffraction based on the Uniform Theory of Diffraction (UTD).

In both cases, a reliable calibration procedure is required in order to achieve de-
vice diversity matching. The calibration challenge is investigated in more detail
in Chapter 3.

2.2.4.2. Fingerprint–based Positioning Algorithms. Fingerprint–based
positioning using RSS can be classified into two main categories (1) Determin-
istic and (2) Probabilistic approaches. The deterministic positioning methods
estimate location as a convex combination of the reference locations [72]. Usu-
ally, the K reference locations with the shortest distance between ri and s in the

n-dimensional RSS space are used and the estimated location ̂̀ is given by

̂̀=

K∑
i=1

(
wi∑K
j=1 wj

`′i

)
. (2.28)

The set {`′1, . . . , `′l} denotes the ordering of reference locations with respect to
increasing distance between the respective fingerprint ri and the observed mea-
surement during positioning s, i.e., ‖ri− s‖. The distance can be calculated using
standard norms, such as the Manhattan (1-norm) [73], the Euclidean (2-norm)
[67], the general p-norm with modifications [74] or the Mahalanobis norm that
employs the sample means and variances of the reference fingerprint [75].

One possible option for the non–negative weights wi in Eq. (2.28) is the inverse of
‖ri− s‖ and in this case the positioning method is known as Weighted K-Nearest
Neighbour (WKNN) [73]. The K-Nearest Neighbour (KNN) method assumes
equal weights for the candidate reference locations, while setting K = 1 leads to
the simple Nearest Neighbour (NN) method [67, 76, 77]. In general, the KNN
and the WKNN methods have been reported to provide higher level of accuracy
compared to the NN method, particularly with parameter values K = 3 and K = 4
[67, 73]. However, if the density of the RSS radio map is high, NN method per-
forms equally well compared to more complicated methods [72]. Several variants
of the KNN method have been discussed in the literature, including the Database
Correlation Method (DCM) which introduces an additional term in the error func-
tion to penalize missing RSS values in the fingerprints [78, 79].

In probabilistic methods, location ` can be estimated by calculating and maximiz-
ing the conditional posterior probabilities p(`i|s), i = 1, . . . , l given an observed
fingerprint s and a fingerprint database (l is the number of fingerprints in the
database). These methods have been extensively used in the Maximum A Posteri-
ori (MAP) approach [80, 81, 82] and the Minimum Mean Square Error (MMSE)
approach [68] to estimate the expected value of `.

The posterior probability p(`i|s) is obtained by applying Bayes’ rule:

p(`i|s) =
p(s|`i)p(`i)∑l
i=1 p(s|`i)p(`i)

(2.29)
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where p(s|`i) is a conditional probability calculated through statistics at the
survey stage and p(`i) is the a–priori probability, a weighting factor based on
the probability distribution of the target over the reference position candidates
(database fingerprints). If we assume that we do not have any prior knowledge
then this prior can be assumed to be unity providing equal a-priori probability to
all the fingerprint candidates in the database.

2.3. Information Fusion in Indoor Positioning

2.3.1. Map Information Extraction

Most of the work carried out in the direction of utilizing map information for
indoor positioning purposes, is related to the robotics area and the enhancement
of the respective mobility models. In this scope, Liao et al. in [83] and Evennou et
al. in [84] proposed the use of particle filters to make use of the inherent structure
of indoor environments. In order to simplify the calculation complexity of the
unconstrained particle filters, they suggested the estimation of the locations of
people based on the Voronoi graph of the environment. By restricting particles to
a graph, they achieved a more efficient algorithm and at the same time simulated
a basic human motion in the indoor environment.

In the work presented in Chapter 4, instead of adopting the Voronoi graphs and
particle filters, the frequent –or most probable– routes are defined, based on ob-
servations. The recording of the frequent routes based on simple observations, can
be replaced by the adoption of supervised or unsupervised learning techniques. As
the names suggest, in the case of supervised learning, the researcher must involve
some supervision by an external source in order to improve the algorithm, while
in the case of unsupervised learning, the algorithm will self-evolve, and gradually
achieve a very representative snapshot of the most frequently used routes.

2.3.2. Retrieving Information from IEEE 802.15.1 Technology

Bluetooth Low Energy was introduced as part of Bluetooth 4.0 specifications,
allowing devices to support both BLE and classic Bluetooth protocols simulta-
neously [85]. The power efficiency of Bluetooth was especially created for IoT
applications. It allows devices to run for long periods of time on extremely low
power sources, such as coin-cell batteries or energy-harvesting devices.

BLE operates at 2.4GHz and uses Gaussian Frequency Shift Key (GFSK)
modulation in 40 channels of 2MHz each. Three of the channels, called “ad-
vertising channels”, are used to ensure connectivity with other nodes, while the
remaining 37, are the “data channels”. BLE has a range of around 100m in an out-
door environment, a maximum data rate of 1Mbps and an application throughput
of up to 305 kbps [85]. Lastly, it supports point-to-point and mesh networks.

iBeacon was developed by Apple in order to provide a higher level of location
awareness, by utilizing BLE technology. iBeacon is a cross platform technology
for both Android and iOS devices which are able to support the BLE standard
[86]. Devices, acting as beacons, generate iBeacon advertisements through which
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they establish a region around them. Android and iOS mobile devices receiving the
advertisements can determine the entrance and exit border from each beacon’s re-
gion, estimate the nearest beacon and approximate the distance between the two
devices. The aforementioned advertisements contain three identifying fields, as
described in [87]:

• UUID: Universally Unique Identifier, is a 128-bit integer used as an ID for all
beacons in an application

• Major: is a 16-bit integer, used to differentiate Beacons with the same UUID.
• Minor: is a 16-bit integer, used to further differentiate Beacons that have the

same UUID and Major values.

Due to their design philosophy, iBeacons are flexible in deployment and can
be used in mobile objects or to temporarily define a region and sub-regions.

The possibilities introduced by BLE and iBeacon technologies in indoor posi-
tioning, are currently a topic of investigation from the research community. The
authors of [88] proposed a software framework which can be used to automate
IoT applications based on the proximity, which is triggered by AltBeacon devices.
AltBeacon is an open and interoperable specification that defines the format of
the advertisement message that BLE proximity beacons broadcast. In [89], InLoc
is introduced, which is a positioning and tracking system using commercial mo-
bile devices, with navigation (routing) capability. With InLoc, authors propose,
among others, a method for independent fusion of location information from a
smart phone’s Inertial Measurement Unit (IMU) sensors and BLE beacons.

In [90], the authors propose a solution for the creation of study groups in fu-
ture smart libraries, featuring a smart phone application to create study groups
and a hybrid BLE and Wi-Fi indoor positioning system. Their hybrid indoor po-
sitioning system calculates two probable user locations every time, utilizing each
technology separately, compares the estimated conditional probabilities and se-
lects the most reliable. Following a different approach, researchers in [91] assume
a very dense IoT environment with BLE compatible devices and propose an It-
erative Weighted KNN (IW-KNN) indoor localization method based on the RSS
of the BLE, which has a low power consumption and hence long life expectancy.
Finally, a combination of Wi-Fi and BLE fingerprints was implemented in [92],
utilizing the conventional WKNN algorithm. The test case included the deploy-
ment of 17 Estimote BLEs on top of the existing Wi-Fi network, in a study area
of 52m x 43m. Positioning was performed by utilizing both BLE and Wi-Fi RSS
fingerprints, resulting in a 23% accuracy improvement of the RTLS system.

A different and novel approach is proposed in Chapter 5, Section 5.4.3, where
IEEE 802.15.1 technology is utilized in a filtering algorithm that creates a sub-
set of fingerprints from the initial IEEE 802.11 radiomap. In this way errors are
minimized and computational speed is improved.
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2.3.3. Retrieving Information from IEEE 802.15.7 Technology

A Visible Light Positioning (VLP) system is graphically illustrated in Fig-
ure 2.5. It consists of a transmitter (TxSL) which is the Smart Light, the receiver
(Rx) which is the mobile station (user smart phone, wearable device with a light
sensor etc.) and the environment [93]. The transmitter emits at a power PSL
which follows a certain radiation pattern (RE(φi)). The encoded light follows the
well known optical geometry, i.e travels in a direct path (LOS), reflects, diffracts
or scatters on different obstacles and falls onto the receiver (NLOS). In the case of
indoor positioning, the channel can be considered flat, since no high data rates are
expected in the case of VLP, making the channel response more simple and taking
into consideration only the LOS paths [31], [94]. The mobile station is equipped
with either a photodiode or an image sensor that converts the optical signal back
to an electrical signal. The received power PR depends on the transmitted power
PTx and radiation pattern RE(φi), the AOA (θi), the Active Area (AR) related
to the FOV and clear ceiling-user height hcl and the spectral response. If an op-
tical concentrator (G(θi), or optical filter (T (θi)) exists in the receiver, it is taken
into consideration. The aforementioned relations are expressed with the following
formulas:

PR =
PTx
d2

RE(φi)T (θi)G(θi)AR cos(θi) (2.30)

and

d = 4

√
PTx
PR

h2

π
AR (2.31)

In order to achieve accurate localization in VLP systems, the mobile station
must be able to receive and process signals from multiple smart lighting sources.
This fundamental requirement is the origin of most of the challenges in this spe-
cific research area. Several methods have been investigated depending on whether
the mobile station uses an image sensor or a single photodiode. In the case of
image sensor, each smart light can be processed by a different part of the sensor,
without any synchronization requirements. Hence, Spatial Division Multiple Ac-
cess (SDMA) can be used [95], [96]. On the other hand, in the case of a single
photodiode, either the Time Division Multiple Access (TDMA) is implemented
[97] or the Frequency Division Multiple Access (FDMA) [93]. TDMA requires
synchronization in order to manage the time slots of every smart light communi-
cation channel and both RSS and TOF parameters can be utilized for positioning.
FDMA does not require any backbone since each smart light is allocated a specific
carrier frequency, but only the RSS can be used. Code Division Multiple Access
(CDMA) is another option, where every smart light is assigned a unique sequence
to encode its information. However, several interference issues occur due to the
fact that none of the used codes are fully orthogonal [98].

The aforementioned methods, although they benefit from the inherent properties
of the Visible Light Communication (VLC), at the same time they suffer from the
physical propagation constraints of light and from technological limitations. Tech-
nological challenges faced, are related to low sample rate processing capabilities
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Figure 2.5 – Angles φ and θ to compute channel impulse response and SL Radius

of the commercial image sensors, high processing power requirements, increased
power consumption, necessity for dense smart light grids and/or expensive dedi-
cated infrastructure for synchronization purposes [31].

2.3.4. Utilizing Polarization Effects

2.3.4.1. Polarization Mechanisms. Before investigating the related research
work performed in the area of utilizing polarization for localization purposes, a
brief explanation on how the polarization mechanism works and how it may affect
the indoor positioning accuracy, is first given.

Polarization is the alignment of the axis of the electric field
−→
E oscillation, rela-

tive to the direction of propagation. Such an alignment, can sometimes be parallel
to one of the two planes of a typical orthogonal system, providing a vertically or a
horizontally polarized wave. In these two cases the electric field has a single direc-
tion of oscillation along the direction of propagation and the waves are described
as linearly polarized. If two plane waves of the same frequency, unequal magni-
tude and a phase difference of 90° are combined, the result is a wave of elliptical
polarization; if the magnitude of these waves is equal, then the combined wave

becomes circularly polarized. Electric field and magnetic field
−→
H are transverse

waves, meaning that their plane waves are perpendicular to the direction of wave
propagation. They are also perpendicular to each other.

Focusing on the electric field, it can be expressed using a complex expression
as a function of time t and spatial position z, as per equation 2.32:
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−→
E (z, t) =

exey
0

 ei2π( z
(λ\n)

−(t\T )) =

exey
0

 e(kz−ωt) (2.32)

where λ\n is the wavelength in a medium whose refractive index is n =
√
εµ,

T = 1\f is the period of the wave and ex, and ey, are complex numbers. In the
second part of the equation, the electric field is described using the wavenumber
k = 2πn/λ and angular frequency ω = 2πf .

All the different polarization states of the electric field can be represented by
a compound electric field composed of x- and y-linearly polarized plane waves as
in equation 2.33:

−→
E =

−→
Exχ̂+

−→
Eyψ̂ (2.33)

In order to understand the importance of polarization effects in indoor en-
vironments, we recall the basic principles of radio propagation that whenever a
propagating wave impinges on an obstruction, its amplitude, phase, direction and
polarization will change. For the calculation of the kinematic properties of the
wave, Snell’s Law of reflection and refraction is applied. The dynamic properties,
such as amplitude, phase, polarization and the Fresnel Reflection (R) and Trans-
mission (T ) Coefficients need to be considered as per the following formulas:

Er = REi (2.34)

and

Et = TEi (2.35)

where Ei is the incident electric field, Er is the reflected electric field and Et
is the transmitted electric field. The calculation of the reflection and transmission
coefficients can be performed by utilizing the Boundary Model, the Single Slab
Model or the Multi-layer Model.

The Boundary Model [58] assumes that the two media are semi-infinite as
shown in figure 2.6. It can be observed that, although the angle of incidence of the
rays is kept the same in both sub-figures, the direction of the electric field vector
is different, depending solely on the polarization. Such a mechanism influences
the RSS value calculation in all possible mobile user locations that fall within the
path of the wave. The Fresnel Coefficients of reflection and refraction which need
to be calculated, depend on the constitutive parameters of the materials, the wave
angle of incidence and its polarization. At this point, it is critical to highlight
that each of the two polarization cases should be considered separately, since the
Fresnel Coefficients vary significantly with respect to polarization. The two cases
are the horizontal or transverse electric (TE) polarization, where the electric field
vector is perpendicular to the plane of incidence, and the vertical or transverse
magnetic (TM) polarization where the electric field vector is parallel to the plane
of incidence. The Fresnel Coefficients for dielectric materials are given by the
following formulas:
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(a) Horizontal (b) Vertical

Figure 2.6 – Boundary Layer Model - Horizontal and Vertical polarization

R⊥ =
cos(θi)−

√
ε2
ε1

√
1− ε1

ε2
sin2(θi)

cos(θi) +
√

ε2
ε1

√
1− ε1

ε2
sin2(θi)

(2.36)

T⊥ =
2 cos(θi)

cos(θi) +
√

ε2
ε1

√
1− ε1

ε2
sin2(θi)

(2.37)

R‖ =
− cos(θi)−

√
ε1
ε2

√
1− ε1

ε2
sin2(θi)

cos(θi) +
√

ε1
ε2

√
1− ε1

ε2
sin2(θi)

(2.38)

R‖ =
2
√

ε1
ε2

cos(θi)

cos(θi) +
√

ε2
ε1

√
1− ε1

ε2
sin2(θi)

(2.39)

The aforementioned formulas can be used for lossy media ((σ/2πfε)2 >> 1),
if ε is replaced by its complex value εcomplex:

εcomplex = εr(1− j tan δ) (2.40)

where tan δ is the loss tangent:

tan δ =
σ

2πfεrε0
(2.41)

Moving a step further, it is understood that the obstructions are not semi-
infinite in a real environment. For this reason, the Single Slab Model [99] is utilized
for providing more realistic results, by taking into consideration the thickness of
the media. This mechanism is preferable for fully deterministic radio propagation
modelling, and this is one of the models implemented in TruNET wireless simulator
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[12], which is chosen for the experiments. This model assumes that multiple
interactions exist between the incident ray and the two facets of the obstruction,
as shown in Figure 2.7.

Figure 2.7 – Single Slab Model

Taking into consideration the multiple interactions, the total transmission and
total reflection coefficients, are finally influenced by the phase delay of the field in
a single crossing of the layer φd and the phase difference between adjacent rays
leaving the layer φα, as per Formula 2.42:

T =
(T1T2

∑n
i=1 (φ2iα φ

i−1
d R2i

2 )

φαR2
2

(2.42)

Expanding 2.42, authors in [100] proved that:
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T =
(1− Ŕ2)e−j(δ−k0d)

1− Ŕ2e−j2δ
(2.43)

and

R =
1− e−j2δ

1− Ŕ2e−j2δ
Ŕ (2.44)

where

δ =
2πd

λ

√
εcomplex − sin2(θi) (2.45)

and k0 = 2π/λ, λ is the free space wavelength and εcomplex is the complex

relative permittivity and d is the thickness of the material. Ŕ is then replaced
by the respective Fresnel equations, depending on the polarization (vertical or
horizontal).

Summarizing the theoretical background of this subsection, it was shown that
for each wave interaction with an obstruction, the rays are reflected, refracted or
diffracted in different directions, causing the polarization to change, and the power
to be attenuated differently based on the equations described above. Additionally,
due to the multipath effects in an indoor environment, time of flight for each ray
is affected, resulting in ray phase difference, finally causing an impact on the total
3D vectorially summed RSS at the receiver locations.

The previously described mechanism dominates in indoor environments, where
multiple obstacles exist, forcing the waves to interact multiple times within the
area of interest. Based on the above, it can be safely concluded that any modifica-
tion on the antenna polarization axis, either at the transmitter or at the receiver
level, will finally influence the Power Delay Profile (PDP), and the generated
radiomap. The aforementioned modifications will finally affect the localization es-
timation and the achieved accuracy of any method.

2.3.4.2. Related work with Polarization in Localization. Research work
performed in the area of indoor localization referencing polarization, or multipath,
tends to focus on the minimization of their influence on the received signal, in-
stead on how to use polarization to improve the localization process. In this
scope, authors of [101] presented a method for decreasing errors of TOA-based
indoor positioning systems, based on directional antennas with small side lobes.
They additionally utilized circular polarization antennas for attenuating multipath
components arriving from the Line of Sight (LOS) direction.

Authors of [102] investigated the effects of polarization on the accuracy of
an indoor location tracking system and established an experimental model that
includes parameters which take into account the environmental effects. Based on
their observations, they concluded that the accuracy of the location calculation is
mainly dependent on the accuracy of the range measurements and that antenna
polarization angle will affect RSSI and thus range accuracy.

In another approach, in [10], researchers investigated potential accuracy im-
provements in the RSS indoor localization process, through the introduction of
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directional antennas in the radio network infrastructure. The positions and ori-
entations of the directional antennas was carefully selected in order to decrease
the correlation levels of the Received Signal Strength fingerprints which form the
radiomap.

Research community also proposed sophisticated and specialized RF designs
for enabling spatial re-usability, and polarization diversity in order to mitigate
multipath propagation. Authors of [103] and [104] designed a switched beam
array optimized for 2.45 GHz wireless indoor applications. The proposed antenna
also supports absolute 2D target localization using measurements from a single
anchor node, achieving an average localization error of 1.7 m.

Polarization scenarios were also investigated in Ultra wide-band (UWB) fin-
gerprinting [105]. Comparisons between vertical and horizontal polarization cases
at a frequency range from 3 GHz to 11 GHz, suggested that horizontal polarization
provides greater accuracy than vertical polarization.

The combination of linear and circular polarized antennas for RSS-based in-
door positioning techniques was proposed in [106]. In this work, it was shown
that the utilization of linear and circular polarized antennas, instead of only linear
polarized antennas, decreases the standard deviation of the received power and
enhances the effective range.

All the aforementioned work, focuses in mitigating multipath and polarization
effects, rather than utilizing their inherent properties for the benefit of improving
localization accuracy in RSS fingerprint–based indoor localization. In the author’s
best knowledge, no previous work has been performed in developing a methodol-
ogy where the impact of polarization is utilized to provide unique fingerprints, as
this is presented in Chapter 6, and has been submitted to EURASIP Journal on
Wireless Communications and Networking, Special issue on Smart Cyber-Physical
Systems for publishing.

2.4. RTLS Performance Evaluation Techniques

A typical RTLS evaluation method refers to the development of benchmark
standards for the comparison of the performance of different localization schemes
[107]. Such schemes usually include environment type categorization, and their
dynamic behaviour. The main disadvantages of benchmarks are the complexity
and the abstract procedures that need to be implemented.

More precise methods were presented by researchers in [108] and [109], who
suggested the enumeration of a number of critical factors that influence the perfor-
mance of localization platforms. These factors included the number of transmit-
ters, the number of reference measurements and the signal measurement dynamics.
They examined a set of localization mechanisms and evaluated their performance
robustness under various configuration settings using two typical types of build-
ing environments: an office building and an underground floor-plan. Although
they enumerated several critical factors, they have not provided a direct relation
between each factor. The difficulty of assessing the performance of different local-
ization systems due to different testing conditions, was also reported in [110].

The performance of radiomaps, using dynamically collected measurements was
later exploited in [111]. In this research work, radiomaps were generated from

28



2.4. RTLS PERFORMANCE EVALUATION TECHNIQUES

dynamically collected measurements during the offline phase, and the KNN al-
gorithm was employed for positioning during the online phase. The positioning
performance was then compared with different grid spacing and with various K
numbers for a KNN algorithm. However, the proposed methodology is algorithm
specific, and the general outcome was that the positioning performance is affected
by various parameters, which should be thoroughly decided. Authors do not de-
fine such critical factors and they do not propose a holistic evaluation methodology.

In order to assess already deployed positioning platforms, in a previous contri-
bution, the utilization of binomial distribution was proposed[7]. Especially for
the evaluation of the quality of RSS fingerprint databases, a contribution to the
development of a dedicated correlation algorithm named Tolerance Based - Nor-
mal Probability Distribution (TBNPD) [9] has also been made. This algorithm
calculates the correlation level for every pair of fingerprint entries forming the
radiomap, taking into consideration the possible RSS fluctuations (RSStol), oc-
curring due to the dynamic nature of the environment. TBNPD algorithm offers
the possibility to assess the uniqueness of each fingerprint entry in a radiomap,
prior to its utilization in a Real-Time Locating System (RTLS). For this reason,
the TBNPD algorithm is considered suitable and convenient to be used for the
assessment of the candidate radiomaps and will be used especially in Chapter 6
where a large number of radiomaps are generated and need to be assessed.

Based on the analysis of this algorithm, the Correlation Score (CSpairAB) of any
pair of random fingerprint entries, A (xA, yA) and B (xB , yB), for any active AP
(APi), without introducing the RSStol parameter, is given by the formula:

CSpairAB =
1

σRSSAPi

√
2π
e
− 1

2 (
RSSB−RSSA
σ
RSSAPi

)2

(2.46)

where random fingerprint entries A,B ∈ Arearadiomap, and σRSSAPi
is the

standard deviation of the RSS values observed from each APi as follows:

σRSSAPi
=

√√√√∑n
i=1RSS

2

i −
(∑n

i=1 RSSi
n

)2
n− 1

(2.47)

where n is the number of fingerprint entries in the radio map and RSSi ≥
MSSensitivity.

By introducing theRSStol parameter in formula 2.46, the correlation score CSTBNPD,
is formulated. The CSTBNPD for a pair of random points A,B ∈ Arearadiomap
and for any APi is calculated by 2.48 below:

CSTBNPDpairAB =
1

σRSSAPi

√
2π
e
− 1

2 (
RSSdiff
σ
RSSAPi

)2

(2.48)

where

RSSdiff =
∣∣∣(RSSA)APi − (RSSB)APi∣∣∣− 2RSStol (2.49)
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In formula 2.49, RSSdiff ≥ 0. For RSSdiff < 0 the value is explicitly set to
0, since the range of the RSS values of the two fingerprint entries overlap indicat-
ing a high level of correlation.

The total correlation score (CSTBNPDtotal), to be utilized for candidate ra-
diomap assessment during the implementation of the proposed approach, is the
product of the correlation scores of all active APs:

CSTBNPDtotal =

m∏
AP=1

(
CSTBNPDpairAB

)
(2.50)

The latter algorithm is extensively utilized in Chapter 6 during the performance
and quality evaluation of a single access point localization methodology.
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CHAPTER 3

Cross-Device Fingerprint-based Positioning

3.1. Introduction

As discussed in Chapter 2, the most important part of fingerprint-based meth-
ods is the construction and maintenance of the radiomap. It can either be created
through an extensive measurement campaign or through radio propagation mod-
eling techniques. Despite the fact that experimental measurements might lead to
more accurate fingerprints, collecting them might be very laborious and also their
applicability is reduced if the geometry or morphology of the wireless environment
is changed. The availability of accurate Radio Propagation modeling techniques,
such as Ray Tracing (RT), and the growth of computational systems, makes this
solution more attractive for the creation and maintenance of the radiomap. Still,
RT accuracy is subject to the precise definition of the geometry and morphology
(e.g., wall electrical parameters) of the environment and also the accurate defi-
nition of the transmitter and receiver antennas. Precise information of these RT
input parameters is usually hard to obtain, therefore in order to achieve higher
accuracy, crude calibration of the RT tool might be required [112].

A second significant limitation of fingerprint-based techniques is that the device
heterogeneity may degrade the positioning performance when the device to be po-
sitioned is different from the device that was used to train (create) the radiomap.
Differences may arise due to the different antenna characteristics of the mobile
terminals, which are usually difficult to know or predict, or due to RF receiver
chain differences. There is work reported in literature that tries to address the
issue of device diversity; mainly by calibrating the RSS measurements collected
from a mobile device to be positioned, to match the fingerprints contained in the
radiomap, which has been created using a different device.

In this Chapter the work published in [1] and [2] is presented, where both chal-
lenges are addressed by using artificial radiomaps generated through 3D RT Sim-
ulations and then through the use linear transformation with an aim to correlate
the radiomaps to a set of fingerprints collected using four different WLAN-enabled
devices. Specifically, focus is on the on the amount of fingerprints that need to be
collected to obtain appropriate linear transformation parameters that guarantee
low positioning error for each device.
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Figure 3.1 – 3D Model of the Indoor Environment for Ray Tracing Simulations

3.2. Proposed Approach

3.2.1. Ray Tracing Radiomap

For the creation of the fingerprinting radiomap, TruNET wireless has been
used, which is a powerful 3D Ray Tracing polarimetric Simulator developed by
Sigint Solutions Ltd. Its calculation engine uses a RT algorithm which utilizes
the 3D EM formulation of reflection, refraction and diffraction based on the UTD.
The 3D environment description can be defined by means of a built-in 3D-CAD
application or by importing standard CAD files. It offers the ability to define the
receiver and transmitter antenna characteristics from a wide range of antennas, as
well as the flexibility to import a custom-made antenna by defining its radiation
pattern. A snapshot is shown in Figure 3.2.

The indoor environment shown in Figure 3.4 has been modeled into the RT Sim-
ulator by importing the CAD file into its CAD designer including features of the
environment such as desks, tables etc. Figure 3.1 shows the 3D model of the indoor
environment. In this case 110 receiving locations have been defined at the same po-
sitions where the measurements have been carried out. In every receiving location
a rectangular grid of 36 equally-spaced (10cm) isotropic receivers (at 90cm height)
have been defined in order to remove potential fast fading behaviour by obtaining
their local average. The 6 access points were equipped with an omni-directional
antenna and placed at a height of 2.3m. Typical values of the electrical parameters
obtained from literature [113] have been used in order to characterize the building
walls and geometric features. These parameters have been further tuned in order
to better match the measurements collected with the Nexus S mobile device; see
Table 3.1. This latter process is known as Ray Tracing calibration [112]. The Ray
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Table 3.1 – Electrical Parameters used to characterize the morphology of the indoor
environment

Material Electrical Permittivity (F/m) Loss Tangent

Concrete 3.9 0.23
Wood 2 0.025
Brick 5.5 0.03
Metal 1 1000000
Plasterboard 3 0.067
Glass 4.5 0.007

Figure 3.2 – TruNET wireless Ray Tracing Simulator [12]

Tracing simulations (compared to the measurements) have achieved a mean error
of 5.62dB with a standard deviation of 4.23dB using all the measured locations.
This error is assumed to be mainly due to the uncertainties of the exact values of
the electrical parameters, the exact radiation pattern of the transmitting anten-
nas, the environment clutter (chairs, computers etc.) but more importantly due
to the fact that the receiver antenna pattern is unknown and it has been assumed
as isotropic. However, since the objective is to devise a methodology where we
have to collect as few measurements as possible, the RT accuracy using part of the
measured data has been evaluated. Specifically, 1000 combinations of 4 training
locations per region weew randomly selected, as described in Section 3.3, leading
to the observation that similar behaviour is achieved (mean error is 5.6±0.3dB and
the standard deviation is 4.3± 0.2dB). This effectively means that with very few
measurements we can achieve reasonably good fine-tuning of the RT Simulator.
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3.2.2. Device Calibration

The RT radiomap can be used as a reference radiomap for cross device posi-
tioning. However, the mobile devices report different RSS values depending on the
hardware vendor of the WLAN adapter, the antenna sensitivity and its pattern.
Therefore, the range of RSS values can greatly vary among devices, thus rendering
the direct use of a single reference radiomap questionable. Consequently, device
calibration is necessary to deliver a consistent level of performance, regardless of
the device used during positioning. In order to increase the applicability of the
mentioned approach, only a small amount of training data is used for the device
calibration; otherwise, if a lot of training data is required to achieve adequate
performance for a particular device, then such training data might as well be used
to build a device-specific radiomap that ensures optimum performance.

In this approach linear transformation was investigated by using the training data
for mapping the RSS values recorded with each target device to the RT radiomap.
The RT radiomap contains the expected (mean) RSS value of each AP at every
training location inside the area of interest. For this reason, the linear data fitting
is performed in a least-squares sense using the mean RSS values of each device aver-
aged over multiple fingerprints, collected at each training location. In this fashion,
the two linear coefficients are estimated and can be used in a pre-processing step
during positioning in order to scale the observed RSS values accordingly.

The data fitting is plotted for all four devices in Figure 3.3 indicating a strong lin-
ear correlation between the mean RSS values of each device and the RT radiomap.
The linear fitting parameters are also indicated in the figures. The Lenovo X100e
(laptop) behaves differently compared to the three Android devices and exhibits a
large number of values ranging from -50dBm to -45dBm that correspond to values
between -65dBm and -35dBm with respect to the RT data; see Figure 3.3a. This
is also the reason for the hard limit appearing in Figure 3.3a. For this specific
range of RSS values a higher order fitting could be applied to address this non-
linearity. As it will be shown later in the performance evaluation (Section 3.4),
this behaviour leads to a large positioning error if the RT radiomap is used to
localize the X100e device without any calibration. Interestingly, the linear fitting
obtained by using only 10% of the training data (dashed line), i.e., the mean RSS
values in the fingerprints from 11 randomly selected locations, is very close to
the respective fitting when all available training data are considered (solid line).
This implies that we may use only few of the data for the device calibration and
considerably reduce the data collection time for all target devices.

3.3. Test Environment

In order to assess the use of RT-generated radiomaps for enabling fingerprint-
based positioning with diverse devices, WLAN RSS measurements have been col-
lected in an indoor environment using four different devices. Three Android-based
handsets (HTC Desire HD, Samsung Nexus S and Samsung Galaxy Tab) and one
laptop (Lenovo X100e) have been used. Measurements have been performed at
the same time with all four devices logging data from up to 6 D-Link 802.11b APs
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(a) Data fitting for Lenovo X100e.
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(b) Data fitting for HTC Desire HD.
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(c) Data fitting for Samsung Nexus S.
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(d) Data fitting for Samsung Galaxy
Tab.

Figure 3.3 – Device calibration using the Ray Tracing radiomap.

installed inside the building, and the RSS values range from -98dBm to -15dBm.
Data was measured at 110 equally-spaced (1m spacing) training locations. At
every training location 30 fingerprints have been recorded (1 sample/sec) and the
mean value fingerprint, averaged for each AP, has been computed in every location
to build each device-specific radiomap. The whole data collection process took 2
hours to complete. For testing purposes additional RSS fingerprints have been
collected with all devices along a route that comprises 40 distinct locations, while
10 fingerprints were measured at every test location with no averaging. The floor-
plan of the experimentation area, the installed APs, the training locations and
test route are depicted in Figure 3.4. To enable random selection of data which
are distributed uniformly in the environment, the whole area was divided into
seven non-overlapping regions Ai, i = 1, . . . , 7 representing rooms and large open
spaces (see Figure 3.4), i.e., {A1 : `j , j = 1, . . . , 11}, {A2 : `j , j = 12, . . . , 30},
{A3 : `j , j = 31, . . . , 40}, {A4 : `j , j = 41, . . . , 59}, {A5 : `j = 60, . . . , 69},
{A6 : `j , j = 70, . . . , 89}, {A7 : `j , j = 90, . . . , 110} where j is the training lo-
cation index.
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Figure 3.4 – Experimentation Area Floor Plan (Reference Locations and APs).

3.4. Performance Evaluation

The effectiveness of the proposed approach is assessed with respect to the po-
sitioning accuracy in an indoor environment and compare it with the case of using
device-specific radiomaps collected with each device. Specifically, the experimental
data collected with all four commercial devices, as detailed in Section 3.3, was em-
ployed to investigate the positioning error pertaining to the testing dataset. The
focus was on the improvement achieved solely by combining the RT radiomap with
the device calibration, rather than the fingerprint-based positioning method itself.
Thus, the results are obtained using the well known closest Nearest Neighbour
(NN) method [67]. Note that the proposed approach is independent of the un-
derlying fingerprint-based method and using a more sophisticated approach, such
as the probabilistic method described in [114], would incur additional accuracy
improvement in the overall positioning system. Positioning accuracy results by
such approaches are reported in [1].

The NN method estimates location by minimizing the Euclidean distance Di,
between the observed fingerprint during positioning s = [s1, . . . , s6]T and the fin-
gerprints ri = [ri1, . . . , ri6]T in the radiomap

̂̀(s) = arg min
`i

Di, Di =

√√√√ 6∑
j=1

(
rij − sj

)2
(3.1)

where rij and sj denote the RSS value related to the j-th AP (j = 1, . . . , 6).
Essentially, all training locations `i, i = 1, . . . , 110 are ordered according to Di

and the location with the shortest distance between ri and s in the RSS space is
returned as the location estimate.
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3.4.1. No Device Calibration

First, the performance in the case where the Ray Tracing radiomap is utilized
without any device calibration is examined and the findings are summarized in
Table 3.2. The accuracy results in the case where manually collected, device-
specific radiomaps are used, are shown in parentheses for comparison. Apart from
the mean, median and maximum positioning error pertaining to the dataset the
67th and 95th percentiles of the cumulative distribution function (CDF) are also
reported, which represent the accuracy achieved for 67% and 95% of the time,
respectively.

The first observation is that for the Nexus S the performance is marginally
worse when the Ray Tracing radiomap is employed for positioning. This is justified
by the fact that part of the training data from this device was used to fine-tune
the Ray Tracing Simulator during the construction of the artificial radiomap as
discussed in Section 3.2.1. For the Galaxy Tab device, this radiomap delivers
similar accuracy with the device-specific radiomap (mean error 2.2m compared to
1.9m), however it fails to provide adequate performance for the Desire and X100e
devices. For these two devices the mean error is increased by 0.9m and 1.3m,
respectively and this suggests that there is room for improving accuracy by means
of device calibration.

Table 3.2 – Positioning error [m] using an uncalibrated RT radiomap compared to
device-specific radiomaps.

X100e Desire Nexus S Galaxy Tab

Mean 4.4 (3.1) 3.0 (2.1) 2.2 (2.2) 2.2 (1.9)
Median 4.4 (2.6) 2.5 (1.6) 2.1 (2.0) 2.1 (1.5)
67% cdf 5.1 (3.5) 3.3 (2.2) 2.8 (2.5) 2.7 (2.5)
95% cdf 7.6 (7.1) 6.7 (4.4) 4.9 (4.7) 4.7 (4.6)
Max 11.3 (11.1) 8.4 (10.2) 7.5 (8.5) 8.6 (9.4)

3.4.2. Device Calibration with Partial Data

The question is how much training data is required to calibrate each device
and ensure a good mapping between the RSS values observed during positioning
and the RT radiomap. In this experimental analysis device-specific training data
is employed and the effect of using part of the data for calibrating the devices
is studied, as detailed in Section 3.2.2. Partial data is selected by varying the
number of training locations in the setup that contribute their mean value fin-
gerprints in the calibration process. In order to achieve a uniform distribution
of the training data utilized for calibration, a specific number of locations from
each region that is described in Section 3.3 is randomly selected. The average and
standard deviation of the mean and 95% CDF positioning error, obtained over
100 runs using a variable number of randomly selected locations per region in each
run, are tabulated in Table 3.3. In this case, all 30 fingerprints available for each
location are used to calculate the mean RSS fingerprints for the device calibration.
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Regarding the mean positioning error, shown in rows 1-3, it seems that using
the data from only one location per region, provides the same performance with
the case when using the data from all 110 training locations. The standard de-
viation is also very low, indicating that the mean error is not affected by the
selection of specific locations in each region. On the other hand, data from more
locations per region should be used to narrow the confidence interval for the 95%
CDF positioning error (rows 4-6). The 95% CDF error provides an insight of the
high errors anticipated during positioning and it is preferable to keep it as low as
possible. Using data from 4 locations per region decreases further the uncertainty
around the expected value of the 95% CDF error. These results indicate that by
using training data from only a few locations for the device calibration suffices to
reach the same level of accuracy as with the case of using all available data. This
is justified because this subset of the data actually contains several RSS values
from all APs, which cover a wide range of values, thus the data fitting during the
device calibration is very effective.

However, another important issue is the number of fingerprints, containing raw
RSS values, that need to be collected at each location in order to calculate the
mean RSS fingerprints. This is directly related to the time spent at a particular
location for recording a sequence of samples. Thus, the number of fingerprints that
contribute to the mean RSS fingerprint at each location was additionally varied.
Findings suggest that by using only 5 fingerprints per location does not affect the
performance of the proposed approach and provides the same positioning accuracy,
as with the case of using all 30 fingerprints per location; see Table 3.3. Essentially,
this means that only a small fraction of time needs to be spent for collecting data
and the device calibration overhead can be significantly reduced.

Table 3.3 – Positioning error [m] using a variable number of training locations per
region.

X100e Desire Nexus S Galaxy Tab

Mean error
1 location 3.3±0.1 2.4±0.1 2.3±0.1 2.5±0.2
4 locations 3.3±0.0 2.4±0.0 2.3±0.0 2.5±0.1
All locations 3.3 2.4 2.3 2.4

95% CDF error
1 location 7.9±0.4 5.6±0.7 4.9±0.3 5.9±0.8
4 locations 8.0±0.1 5.8±0.3 5.0±0.1 5.9±0.3
All locations 8.0 5.9 4.9 5.8

3.4.3. Discussion

The statistics of the positioning error, assuming data from only four locations
per region and five fingerprints per location are used in the device calibration, are
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Table 3.4 – Performance of the proposed approach using 4 locations per region and
5 fingerprints per location for device calibration.

X100e Desire Nexus S Galaxy Tab

Mean
3.4±0.0 2.4±0.0 2.3±0.0 2.5±0.1

(3.1) (2.1) (2.2) (1.9)

Median
2.7±0.1 2.1±0.0 2.1±0.0 2.1±0.1

(2.6) (1.6) (2.0) (1.5)

67% CDF
3.6±0.1 2.5±0.0 2.8±0.0 2.8±0.1

(3.5) (2.2) (2.5) (2.5)

95% CDF
8.0±0.0 5.8±0.3 5.0±0.1 5.9±0.2

(7.1) (4.4) (4.7) (4.6)

Max
10.4±0.4 9.0±0.3 7.5±0.1 8.5±0.2

(11.1) (10.2) (8.5) (9.4)

reported in Table 3.4. For the X100e and Desire devices the proposed approach
improves considerably the performance compared to using the RT radiomap with-
out any calibration, while the positioning error is close to the error achieved when
device-specific radiomaps are employed; the positioning accuracy obtained using
device specific measurements is shown in parentheses for comparison. For the
Nexus S device similar behaviour was observed, while in the case of Galaxy Tab
the device calibration leads to some higher errors during positioning that slightly
increase the mean error. In any case, the traditional fingerprint-based approach
can be replaced by the proposed approach. Here only five fingerprints at four
random locations in each of the seven regions inside the experimentation area for
device calibration need to be collected.

This translates into less than five minutes of data collection for each device
to be positioned, compared to around two hours of RSS data logging for building
each device-specific radiomap. If we also consider that RT simulations for this
wireless environment took about 40 minutes to generate the radiomap the total
time saving is around 60%. Larger scale setups would lead to greater savings in
time and labour.

3.5. Conclusion

Fingerprint-based positioning with respect to device diversity is an active re-
search field because the time consuming data collection process, using several tar-
get devices, is involved in the construction of the necessary radiomap. This work
focuses on the use of a 3D Ray Tracing polarimetric simulator to automatically
obtain a reference radiomap with much less effort. Subsequently, that is combined
with a device calibration phase, which is based on linear fitting, to effectively map
the RSS values observed during positioning to the reference RT radiomap, irre-
spectively of the user device. The proposed approach mitigates the cumbersome
task of recording large datasets of RSS values throughout the area of interest with
multiple devices. The performance evaluation indicates that only a small amount
of device-specific data is required to reach the same level of positioning accuracy
attained with a manually collected radiomap. Thus, the mentioned approach is
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far less laborious compared to traditional radiomap construction. Moreover, the
radiomap can be easily updated if the propagation environment changes in the
future (e.g., APs are added or removed, or furniture is relocated, etc.) by running
the RT simulator, instead of collecting the radiomap data from scratch.
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CHAPTER 4

Map-Aided Fingerprint-based Indoor Positioning

4.1. Introduction

The accuracy achieved by any Real Time Localization System (RTLS) is af-
fected by the volume and quality of information that is available during the position
estimation procedure. The more useful information can be provided, the higher
the probability for producing a more accurate estimate.

Depending on the capabilities of the terminal or the overall RTLS, in retriev-
ing, storing and processing location-specific information, advanced positioning al-
gorithms can be developed in order to provide improved positioning services.

The location-specific information may include radio parameters, such as Re-
ceived Signal Strength (RSS), Angle of Arrival (AOA), Time of Arrival (TOA) and
Impulse Responses (IR) or non-radio parameters, such as inertial measurements,
prior map/layout knowledge etc.

In many cases, the sole utilization of the radio parameters, during the position
estimation, imposes limits that are hard to overcome. By introducing and fusing
additional non-radio parameters to the localization process, it is expected that one
could potentially improve the positioning accuracy.

In this direction, the information retrieved from the inertial sensors can be
used in conjunction with environment maps. The idea presented in this Chapter,
which is based on the work in [3], is to utilize the available environment description
of building databases and blueprints/architectural drawings of indoor areas, for
the purpose of aiding the localization process. By using map–related information,
the possible movement and location of the user is expected to be constrained and
different probabilities can be assigned to different areas of the environment where
the User/Mobile Station (MS) might reside. As a result, long–term error stability
can be achieved when the map is sufficiently accurate and effectively constrains
the motion.

Proper use of any available information into the positioning process, is def-
initely a challenge and can contribute noticeably to the minimization of the po-
sitioning error. In fact, the information retrieved from environment maps, can
offer this extra knowledge. This paper describes how such environment knowledge
can be extracted and exploited into a fingerprint-based positioning process. The
proposed approach utilizes a-priori knowledge of the likelihood of a user being at
a specific location. This a-priori knowledge can be made available as a means of
probabilistic map constraints.
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4.2. Methodology and Test Environment

4.2.1. Route Probability Factor

This Section introduces a new map–aided method, using what was named
as Route Probability Factor (RPF). The RPF reflects the likelihood of a user to
be located at a specific position instead of all other positions. This means that
along a frequent route, the RPF will be increased, while in unlikely areas it will be
decreased. The RPF does not only affect the probabilities along the specified route,
but also the positions at its proximity. For this purpose, a normally distributed
approach was implemented, at a radius ρ across the route, creating route tubes. For
every location on each frequent route, the algorithm assigns a decaying probability
to all those fingerprints in the fingerprint database, which reside within a circle
with radius ρ around this location. This decaying probability is given by the
following formula:

RPF`i = RPF`

(
1

σroute
√

2π

)
e−

1
2 (
‖`−`i‖
σroute

)2 (4.1)

where RPF` is the route probability factor at the location ` which lies exactly
on the route and ‖`− `i‖ is the distance between location ` and any other location
`i within the range of ρ. Finally, σroute is given with respect to the selected ρ for
a 99% confidence level σroute = ρ/3, since statistically 3σ provides this confidence
level.

This iterative process results in a normalized probability matrix for every lo-
cation along each frequent route tube. All these matrices are then summed up
to result into an accumulated probability matrix which describes the likelihood
of a user being in any location in the environment. This matrix has a one to
one relation to the fingerprints database and is then used in conjunction with the
positioning algorithm to improve the localization accuracy.

In this research work, the WKNN deterministic algorithm was employed to per-
form fingerprint–based positioning, extended with the probabilistic part of the
RPF. This approach takes into consideration a-priori knowledge of the frequent
user routes, as well as the weighted Euclidean distance of the observed location.
The former allows to incorporate map constraints into the position estimation, by
assigning the different probabilities of likelihood of each location in the environ-
ment, in the form of a matrix as described above. In this context each fingerprint
in the database is given a prior probability Pi = RPFi, which multiplies the
Euclidean Distance as Pi‖ri − s‖. This gives less likelihood to fingerprints in con-
strained areas to appear higher in the ordered vector {`′1, . . . , `′l} which is then
used in Eq. (2.28). These prior probabilities can also be combined with the prob-
abilities explicitly set to a minimum, in areas that are not accessible by the user
(e.g., locked rooms, dangerous and forbidden areas etc.).

The normalized distribution of RPF in the test environment is visually pre-
sented in Figure 4.1.
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Figure 4.1 – Prior Probabilities

4.2.2. Generation of Fingerprint Database and Test Results

In this work, the generation of the fingerprint database of the testing envi-
ronment was carried out in TruNET wireless simulator [12]. The 3D model of
the building shown in Figure 4.2, including the furniture set up, was imported in
the simulator in a digital form (.OBJ). The calculation algorithm of the Route
Probability Factor, which was utilized in this research work, was developed and
added into the source code of TruNET wireless.

For the creation of the fingerprint database, 1584 isotropic receivers (Rx) were
defined in the floor plan. They were equally-spaced with a step of 0.5m, at a height
of 1.5m. The underlying wireless network included 8 Wi-Fi (2.4GHz) Access Points
(APs) with omni-directional antennas, installed at a height of 2.2m. The locations
of the APs are depicted in Figure 4.2. Typical values of the electrical parameters
obtained from literature [113], were used to characterize the morphology of the
walls and other geometric features of the building.

4.3. Performance Evaluation

In order to assess the performance of the proposed approach, two separate
simulations have been carried out for estimating the position of a user moving
along the test route shown in Figure 4.3. The purpose of the test route is to
evaluate the positioning accuracy before and after imposing the map constrains.
It consists of 520 equally spaced (0.25m) locations at a height of 1.5m. When a
positioning platform is deployed under real operating conditions, several factors
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Figure 4.2 – 3D Model of the Indoor Environment with Fingerprint Locations
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Figure 4.3 – Estimates along the Test Route

affect the positioning accuracy. The user might not be using the same device
as the one used to collect the database fingerprints (device diversity issue), or
even the geometric environment might have changed (displacement of furniture,
new partitions etc.). Moreover, the movement of people create a more dynamic
environment. To incorporate this profile variability onto the RSS values estimated
along the test route, an uncertainty factor (normally distributed with standard
deviation σ = ±3dB) has been introduced on the RSS values of the Mobile Station
(MS) [114],[1]. The WKNN positioning method was tested iteratively for various
values of K in the case where no map constraints are used and it was found that
the optimum one that minimizes the mean error was K = 5. This value was then
also used for the case where map constrains are incorporated into the positioning
process.
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4.3. PERFORMANCE EVALUATION

The results from the two aforementioned positioning estimations (with and
without map constraints) are summarized in Table 4.1, while the respective graphs
showing the CDF of the obtained localization accuracy are depicted in Figure 4.4.

Table 4.1 – Positioning Accuracy with and without map Constraints

Positioning Estimation Parameter Error m

Without Map Constraints Mean 2.03
CEP 50% 1.79
CEP 67% 2.35
CEP 95% 4.53
Max 17.09

With Map Constraints Mean 1.46
CEP 50% 1.09
CEP 67% 1.62
CEP 95% 3.77
Max 5.95
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Figure 4.4 – CDF of Localization Accuracy

From the above findings it is noted that, when the map constraints are used,
a significant improvement of 28% occurs on the mean positioning accuracy (from
2.03m to 1.46m). A radical reduction of 65% on the maximum error (5.95m
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CHAPTER 4. MAP-AIDED FINGERPRINT-BASED INDOOR POSITIONING

instead of 17.09m) is also be observed. The improvement is sustained in the whole
range of Circular Error Probable (CEP), as it can be seen in Figure 4.4. The
position estimation for all points along the test route in the map-aided scenario, is
presented in Figure 4.3 with square symbols. It can be observed that, as a result
of the implementation of the RPF in the positioning procedure, the estimated
locations were shifted from the areas captured by furniture (asterisk symbols)
towards more reasonable positions, near the test route.

Given the above improvements in the positioning accuracy, it is interesting to
investigate what would be the effect of the radius ρ around each of the locations of
the frequent route used for the generation of the a-priori probabilistic knowledge
by the RPF method. In this context, for the optimization of the RPF, different
values of route radius ρ were investigated. As it is illustrated in Figure 4.5, the
value of ρ affects the localization accuracy and should be ρ ≥ dRx, where dRx is
the fingerprint radiomap resolution (step between the receivers).

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

accuracy [m]

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

 

 

0.3m

0.5m

1.0m

1.5m

2.0m

Figure 4.5 – Effect of RPF radius ρ on accuracy

4.4. Route Prior Knowledge for Map-Aided Fingerprint-based
Positioning

In this Section the concept of Map-aided positioning was further extended.
Within the work performed in [4], the positioning accuracy behaviour in map-
aided positioning systems is investigated, when different probability distribution
types are employed along typical predefined user routes. The aforesaid routes refer
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to the most frequent user paths. These are given higher probability scores in an a–
priori knowledge probability matrix, which includes all fingerprint locations. Such
a–priori knowledge is usually retrieved from environment maps and the user mo-
bility behaviour. It is assumed that the user’s behaviour can be recorded through
observations, or can be predicted through learning techniques. The effect of the
probability distribution width, radius ρ, on positioning accuracy is also examined,
by varying the value of ρ for both sides of the route. In this way, the allocated
weight probability for locations near the user center line route, can be controlled.

4.4.1. Methodology and Test Environment for Route Prior Knowledge
Concept

As discussed in previous Sections, map information utilization is also inves-
tigated in [3], where the implementation of a Route Probability Factor (RPF) is
proposed. RPF reflects the probability of a user to be located at a position along
the typical route, instead of all other positions. This is calculated by Equation
4.1 and is implemented in the form of a matrix that includes a probability factor
for all fingerprint locations. In the aforementioned research work, the probability
distribution width of the typical user route, called radius ρ, is used to calculate the
standard deviation σroute. Hence, varying the value of ρ, affects the probability
factor value for locations near the user’s route. In this way, route tubes are formed
instead of one-dimensional line paths. The value of ρ depends on the fingerprint
radio–map resolution, and can be optimized accordingly, to minimize positioning
error [3].

In the following subsections, the effect of different probability distribution
types on positioning accuracy, when employed to describe a user’s movement along
typical predefined routes is investigated.

4.4.1.1. Route Probability Distribution Types. The a–priori knowledge
of typical user routes, defines probable paths (routes) within the indoor environ-
ment. Probability distributions are introduced in an effort to better explain any
reasonable route deviations from the user’s center line of movement. Introduction
of probability distributions on each fingerprint location of these paths, influences
the weight factor of a number of neighbouring points that fall within the width
of the applied distribution (radius ρ). In this respect, uniform, linear, distance
ratio and exponential distribution types were applied and tested. The respective
RPFs, are extracted by modification of formula 4.1, and are given in the following
Equations 4.2, 4.3, 4.4 and 4.5:

Uniform distribution:

RPF`i = RPF` (4.2)

Linear distribution:

RPF`i = RPF`
(
ρ− ‖`− `i‖

)
(4.3)
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Exponential distribution:

RPF`i = RPF`

(
ρ

e‖`−`i‖

)
(4.4)

Distance Ratio distribution:

RPF`i = RPF`

(
ρ

‖`− `i‖

)
(4.5)

where RPF` is the route probability factor at location `, which is positioned
exactly on the center line of the route and ‖`−`i‖ is the distance between locations
` and `i within the range of ρ.

The aforesaid probability distributions within the route tube, are illustrated
in Figure 4.6. The value of the tube radius ρ, is directly related to the fingerprint
radiomap resolution [3]. In order to test the stability of each distribution with
different values of ρ, ρ was varied from 1.0m to 2.0m, with a step of 0.5m. Tube
radius however, being scenario specific, should be optimized based on the layout
of the indoor environment (e.g., width of corridors, furniture setup, radiomap
resolution etc.).
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Figure 4.6 – Probability Distribution Types in Route Tube

For each distribution type, an iterative process along all points that fall within
the route tube, was performed. This process results in a normalized probability
matrix for all fingerprint locations in the environment. Each fingerprint in the
radiomap is directly related to a probability value in the normalized matrix, hence
it can be injected in the positioning algorithm in the form of a weight factor.
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In all experiments, the WKNN deterministic algorithm is employed, extended
with the probabilistic part of the RPF for each distribution type. The test envi-
ronment and typical routes are shown if Figure 4.7. Along the typical routes, the
weight probability is higher than other fingerprint locations in the environment,
since users tend to move more frequently on this specific path, than on any other.

Figure 4.7 – Test Environment and Test Route

4.4.1.2. Radiomap Generation. A 3D Ray Tracing simulator (TruNET wire-
less [12]), was used to generate the radiomap of the test environment The sim-
ulator implements and applies the 3D electromagnetic formulation of reflection,
refraction, and diffraction based on the Uniform Theory of Diffraction (UTD).

The area of interest was equally split every 0.5m in order to form a uniform
grid area. In this way, 1584 isotropic receivers (Rx) were defined in the floor plan,
at a height of 1.5m. An 802.11 wireless network with 8 Access Points (APs) was
placed at a height of 2.2m, as shown in Figure 4.8. The constitutive parameters
of the building and furniture materials were obtained from literature [113], and
an initial simulation was performed to populate the RSS values of each fingerprint
entry in the database.

4.4.2. Performance Evaluation of Route Prior Knowledge Concept

In order to assess the performance of each probability distribution type, sepa-
rate simulations have been carried out, for the purpose of estimating the position
of a user moving along the test route as shown in Figure 4.7. The test route
consisted of 520 locations at the height of (1.5m). To realistically simulate dy-
namic effects of a real case study, a normally distributed RSS fluctuation with a
σ = ±3dB was injected in the estimated RSS values. The aforesaid RSS fluctua-
tions can be typically observed in real operating conditions due to the distortions
caused by human/machine movement, device diversity etc. [1]. The positioning
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Figure 4.8 – 3D Model of the Indoor Environment with Fingerprint Locations

estimation was performed by implementing the WKNN algorithm with a K = 5,
which minimizes the positioning error in the case where no map constraints are
imposed.

Results of the aforementioned positioning estimations, including the case of
“no map constraints”, are summarized in Table 4.2. The respective graphs pre-
senting the Cumulative Distribution Functions (CDF) of the obtained localization
accuracy are depicted in Figure 4.9.

The results of the experiments indicate that all map-aided methods outperform
the conventional positioning estimation where no map constraints are imposed, as
depicted in Figure 4.10. Even the implementation of a simple uniform probabil-
ity distribution within the route tube, results in an improvement of 23% of the
mean positioning accuracy (from 2.03m to 1.57m). The best performance was ob-
served when the distance ratio probability distribution is used, with an accuracy
improvement of 28% of the mean (from 2.03m to 1.46m) and 65% of the maximum
error. It can be also observed that, as the tube width increases from 1m to 2m,
the positioning accuracy of all probability distribution types under investigation,
slightly degrades. This is noted along the whole range of Circular Error Probable
(CEP).

4.5. Conclusion

The introduction of weight coefficients in the form of a–priori knowledge, that
reflect the map constraints, can result in significant improvements of position es-
timation in indoor environments. In this direction the implementation of RPF
as a matrix was proposed, which can be either populated manually, by observing
the human movement behaviour, or through the implementation of supervised or
unsupervised learning methods. The value of the radius ρ which defines the range
of effect of the frequent routes, depends on the fingerprint radiomap resolution
and should be optimized accordingly to minimize positioning error.

50



4.5. CONCLUSION

Table 4.2 – Positioning Error (m) for Different Distribution Types

Method Parameter 1m Tube 1.5m Tube 2m Tube

No map Mean 2.03 2.03 2.03
CEP 50% 1.79 1.79 1.79
CEP 67% 2.35 2.35 2.35
CEP 95% 4.53 4.53 4.53
Max 17.09 17.09 17.09

Uniform Mean 1.57 1.72 1.77
CEP 50% 1.07 1.25 1.40
CEP 67% 1.83 1.86 1.91
CEP 95% 4.16 4.60 4.76
Max 6.83 6.15 6.46

Linear Mean 1.48 1.55 1.65
CEP 50% 1.10 1.11 1.20
CEP 67% 1.62 1.82 1.87
CEP 95% 4.19 4.20 4.55
Max 5.77 5.97 6.10

Exponential Mean 1.49 1.62 1.67
CEP 50% 1.06 1.12 1.28
CEP 67% 1.77 1.85 1.90
CEP 95% 3.94 4.54 4.52
Max 5.78 6.01 6.78

Distance Ratio Mean 1.46 1.54 1.57
CEP 50% 1.09 1.17 1.24
CEP 67% 1.62 1.79 1.80
CEP 95% 3.77 4.18 4.22
Max 5.95 6.13 6.84

Additionally, different probability distributions were applied and tested on pre-
defined, typical user routes, which are utilized as a–priori knowledge in map-aided
positioning. Results indicate a significant improvement on positioning accuracy,
when distribution types are applied to describe a user’s probable deviation from
the center line of a predefined route. The type of the probability distribution to
be used, has small influence to the overall localization error. However, optimum
results have been observed when the distance ratio distribution was used.
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Figure 4.10 – Positioning Accuracy Improvement

53





CHAPTER 5

Combination of Heterogeneous Technologies in
Fingerprint-based Positioning

5.1. Introduction

In this Chapter two new algorithms are introduced, which utilize information
retrieved by IEEE 802.15.1 or IEEE 802.15.7 technologies in order to improve
the accuracy and performance of conventional fingerprint-based localization plat-
forms, which use IEEE 802.11 wireless networks. Both algorithms (i-KNN for
IEEE 802.15.1 and vlp-KNN for IEEE 802.15.7), filter the initial RSS fingerprint
dataset, in order to narrow it down to a subset of the data that is used by the
conventional positioning algorithm KNN. The filtering procedure takes advantage
of the low energy and hence low range characteristics of BLE in the first case, and
of the LOS property of VLP. By taking advantage of these properties, an initial
rough estimation of a much smaller area is performed, where the MS is assumed to
lie within. In this way, mean error is reduced significantly by excluding other areas
(where fingerprint characteristics might be similar) from the matching procedure
during positioning. Having a much smaller subset of fingerprints to perform posi-
tioning, the calculation time decreases and consequently the energy consumption
is minimized.

Detailed analysis of the proposed approach is presented in Section 5.2. For testing
the aforementioned positioning algorithms an experimental positioning platform
dubbed φ-map has been developed, which is described in Section 5.3. Finally,
both algorithms were tested and evaluated with the procedure and results being
presented in Sections 5.4 and 5.5. The work is based on scientific publications [5]
and [6].

5.2. Proposed Approach

The proposed approach aims to gather general localization data from either
BLE devices deployed in an IoT environment, or from a VLP system deployed in
a smart lighting environment. The scope is to use this data to optimize the data
retrieved from existing popular and low cost IEEE 802.11 RSS fingerprint-based
indoor positioning systems in order to improve the provided positioning accuracy.
By implementing this concept, two new enhanced KNN positioning algorithms
were developed: i-KNN for BLE combination and vlp-KNN for smart lighting
scenario.
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Algorithms implement the same novel concept, i.e., to filter the initial Wi-Fi fin-
gerprint dataset (radiomap), taking into consideration the proximity of the RSS
fingerprints to the devices of the supporting technology (IEEE 802.15.1 or IEEE
802.15.7). By choosing to filter the initial dataset, instead of simply combining the
fingerprints of all technologies together, the proposed algorithms utilize an opti-
mized small size subset of possible user locations for the final position estimation.

5.2.1. Combining IEEE 802.15.1 with 802.11

In the case of i-KNN, the algorithm uses the range estimation data transmit-
ted from the iBeacons. The range refers to the distance between a BLE device and
the mobile user (mobile device or body sensor). The data package also includes
information referring to the nearest iBeacon and the ranges from all visible BLE
devices in the network. This data is used as an input to the filtering processes
of the i-KNN in order to roughly estimate a probable area A, which encloses the
user’s position. The aforementioned donut-shape area A, is formulated between
a minimum and a maximum radius (RBLEmin and RBLEmax) measured from a
center point, where the BLE device is located. The RBLEmin and RBLEmax values
are calculated, taking into consideration a predefined tolerance (Tol) parameter,
which accommodates any positioning error factors.

As illustrated in Figure 5.1, area A is then used to screen the number of can-
didate fingerprints, down to a subset (S : {`1, . . . , `k}) extracted from the initial
IEEE 802.11 fingerprint dataset (D : {`1, . . . , `j}Wi−Fi). The filtered fingerprint
data subset S is finally used as the optimized input, to typical indoor positioning
algorithms (in this case the KNN). The proposed methodology serves two pur-
poses: Firstly, achieving fast positioning estimation due to the utilization of a
fragment of the initial fingerprint dataset, and secondly achieving improved po-
sitioning accuracy by constraining any possible calculation errors within a very
specific area A, where the user is actually located. The latter is achieved due to
the inherited short range of IEEE 802.15.1 and its capability to identify the near-
est iBeacon device to each mobile user. For clarity, a self-explanatory pseudocode
of the i-KNN filtering algorithm used to calculate the subset S : {`1, . . . , `k}, is
presented in algorithm 5.2.1, and explained in subsection 5.2.1.1.

5.2.1.1. i-KNN Algorithm Explanation. i-KNN receives as input the Wi-
Fi radiomap D : {`1, . . . , `j}Wi−Fi and the BLE locations B : {BLE1 . . . , BLEi}.
A procedure named Fingerprints to BLE Distance pre-calculates the dis-
tances between BLE devices and all fingerprint locations for easier estimation of
the final output, which is subset S. Calculated distances are given in the form of
a matrix L : {r`1,BLE1

. . . , r`j ,BLEi}.

During the real-time positioning estimation, the algorithm initially scans for trace-
able BLEs by running BLE Discovery procedure, retrieves their parameters and
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sorts them based on their Received Signal Strength. Upon retrieval of BLE in-
formation, i-KNN selects the nearest BLE device and utilizes the distance infor-
mation broadcasted by the beacon (RangeBLEi) in order to additionally calculate
the Tolerance (Tol) level and define the donut-shape area A, shown in Figure 5.1.

Figure 5.1 – Concept of i-KNN: BLE utilization for Radiomap Subset Generation

Tol can be either a constant number, as in this research work, or it can be dy-
namically calculated as a percentage b% of the distance information: ±RangeBLEi∗
b%. In the latter case, the closer the MS user is to the BLE, the smaller the Tol
will be, and hence a smaller optimized dataset will be selected. This methodology
is a more optimized, since the BLE-MS user distance calculation is more reliable
at smaller distances. In either case, upon calculation of area A, the optimized
dataset S : {`1, . . . , `k}, is extracted by utilizing the pre-calculated distances re-
trieved from L : {r`1,BLE1

. . . , r`j ,BLEi} matrix. Finally, instead of utilizing the
larger initial radiomap D, the much smaller dataset S feeds the typical KNN
methods in order to estimate the location of the MS user.
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5.2.1.2. i-KNN in Pseudocode Form. To clarify the flow of the procedures,
i-KNN is presented in the form of a pseudocode:

Algorithm 5.2.1: BLE Filter(

D : {`1, . . . , `j}WiFi, B : {BLE1 . . . , BLEi}
)

procedure Fingerprints to BLE Distance(D,B)
for i← 1 to nB
for j ← 1 to nD
r`j ,BLEi
return (L : {r`1,BLE1 . . . , r`j ,BLEi})

procedure BLE Discovery(B)
for i← 1 to nBLE

do
if (BLEi ∈ B)

then

{
Retrieve BLE Parameters
Sort BLEs based on Nearest

return (BLENearest:ID,RSSI,Range)

. . . main
comment: Calculate BLE - Fingerprints distances

output (Fingerprints to BLE Distance(D,B))
comment: Calculate filtering criteria

output (BLE Discovery(B))
while (BLENearest! = null)

do

for i← 1 to nB
if (BLEi == BLENearest)

then

comment: Calculate Tolerance (Tol) in [m]

Tol← ±RangeBLEi ∗ b%
comment: Calculate Subset of Radiomap D (S)

for j ← 1 to nL
if ((RangeBLEi + Tol ≤ r`j ,BLEi)
or (RangeBLEi − Tol ≥ r`j ,BLEi))

then `j ∈ S
return (S : {`1, . . . , `k})
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5.2.2. Combining IEEE 802.15.7 with 802.11

In the case of utilizing the VLC technology, as a rule of thumb it is considered
that the minimal smart lighting deployment on the specific environment, is always
less than 1/3 of the total number of smart lights that are required in VLP de-
ployments. This means that depending on the space segmentation, the number of
required smart lights may vary. However, in all cases, instead of deploying dense
and expensive smart lighting grids that are necessary for achieving continuous
overlapping of rays from several smart lights, a single light per room is required.
In wide and open-plan environments, the required number of lights depends on
several factors, such as the smart light transmit power (PTx), the Receiver Field
of View (FOV ) and sensitivity, the existence or not of concentrating/optical lens,
installation height etc. Recalling Figure 2.5, typical receivers with a FOV of 160
°(FOV = 2∗φ), when deployed at a clear ceiling-user height of 2.0m, can cover an
area of radius of approximately 11.5m (total coverage of 404 m2), assuming that
the illumination power is adequate.

5.2.2.1. vlp-KNN Algorithm Explanation. The concept of the proposed
vlp-KNN algorithm is analogous to the i-KNN : to utilize the data received from a
local smart light (RSS, and/or TOF, AOA) in order to roughly estimate a probable
area A enclosing the user’s position. In this scenario, the aforementioned donut-
shape area A, is formulated between a minimum and a maximum Radius (RSLmin
and RSLmax) from the the Smart Light (SL) location, taking into consideration a
predefined tolerance (Tol) to accommodate any positioning error factors. As illus-
trated in Figure 5.12, Area A is then used to narrow down the number of candidate
fingerprints to a subset (S : {`1, . . . , `k}) extracted from the initial IEEE 802.11
fingerprint dataset (D : {`1, . . . , `j}WiFi). The filtered fingerprint data subset S is
finally used as input, when implementing the typical indoor positioning algorithms
(in this case the KNN).

The proposed methodology serves two purposes: Firstly, fast positioning esti-
mation due to the utilization of a fragment of the initial fingerprint dataset and
secondly improved positioning accuracy by minimizing any possible calculation
errors to a very specific area A, where the user is actually located. The latter
achievement is a result of the VLP property to rely only on Line of Sight rays,
avoiding multipath effects. For clarity, a self explanatory pseudocode of the algo-
rithm used to calculate the subset S : {`1, . . . , `k} is presented in algorithm 5.2.3.
Finally, it is noted that all distances between SLs and all fingerprint locations are
pre-calculated, for easier estimation of the subset S.
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5.2.2.2. vlp-KNN in Pseudocode Form. The vlp-KNN filtering procedure
flow is presented in the form of a self-explanatory pseudocode.

Algorithm 5.2.3: vlp-Filter(

D : {`1, . . . , `j}WiFi, SL : {SL1 . . . , SLi}
)

procedure Fingerprints to SL Distances(D,SL)
comment: Calculate distances between all `i and SLi

for i← 1 to nSL
for j ← 1 to n`
r`j ,SLi
return (L : {r`i,SL1

. . . , r`j ,SLi})

procedure In Range SL Radius(SL)

for i← 1 to nSL
do

if (SLi ∈ SL)

then


Retrieve In Range SL Parameters
SLInRange, XSL, YSL, ZSL
AOASL, RSSISL
Calculate Estimated Smart Light Radius (RSL)
RSL = ZSL−ZUser

tan (90−AOASL)
return (SLInRange, RSL)

. . . main
comment: Calculate SL - Fingerprints distances

output (Fingerprints to SL Distances(D,B))
output (In Range SL Radius(SL))
while (SLi! = null)

do

for i← 1 to nSL
if (SLi == SLInRange)

then

comment: Calculate Tolerance (Tol) in [m]

Tol← ±RSLi ∗ b%
comment: Calculate Subset of Radiomap D (S)

for j ← 1 to nL
if ((RSLi + Tol ≤ r`j ,SLi)
or (RSLi − Tol ≥ r`j ,SLi))

then `j ∈ S
return (S : {`1, . . . , `k})
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5.3. φ-map Experimental Positioning Platform

Within the research work of this thesis, it was soon realized that an agile,
modular fingerprint-based localization platform was needed, for testing and eval-
uating any newly developed algorithms or methodologies, including i-KNN and
vlp-KNN. For this reason, an Android experimental platform was designed and
developed, dubbed as φ-map. The platform provides access to numerous smart
phone sensors and parameters related with the configuration/parameterization of
both offline and online localization phases. It also provides flexibility in database
management, positioning algorithm editing and User Interface (UI) setup. In the
following Sections, a brief overview of φ-map characteristics and capabilities is
presented.

5.3.1. φ-map Parameters

As discussed previously, φ-map provides access to a number of general param-
eters related with the management of the deployment environment, as well as the
handling of wireless network parameters, as it is depicted in Figure 5.2.

(a) φ-map: Parameters - Part 1 (b) φ-map: Parameters - Part 2

Figure 5.2 – φ-map: Parameters

The user is able to enable or disable an automated snap-on grid, to set the
grid size and to upload a background blueprint of the study area. There is also a

61



CHAPTER 5. COMBINATION OF HETEROGENEOUS TECHNOLOGIES IN
FINGERPRINT-BASED POSITIONING

provision for defining an offset to the blueprint, auto-fit to the screen, and auto-
rotate. In this way the UI can be customized according to the preferences of the
user. Concerning the general radio parameters, we can set the sampling interval
time, the number of samples utilized for positioning purposes and the number of
samples registered per position during the offline phase. Finally, a very impor-
tant capability of φ-map is data logging of a wide range of parameters related to
i. the localization procedure, ii. MS sensors data and iii. cellular network data.
Data logs can be retrieved at any point by the researcher and analyzed in more
detail in order to identify patterns, correlations and behaviours that will support
performance improvement of the RTLS. Within the general parameters, an option
of Advanced Settings was added. Through Advanced Settings, the user gets ac-
cess to the activation and recording of a wide range of sensors, the management
of multiple sites and databases, as it is depicted in figure 5.3. Through database
management the user can either choose to create a new radiomap, restore an exist-
ing one or perform a backup for security purposes. Each newly created radiomap
takes the name of the site - as provided by the user - along with the date and
exact time stamp. Upon creation and saving of a radiomap, the platform can then
use the information for positioning estimation.

(a) φ-map: Advanced Settings -

Part 1

(b) φ-map: Advanced Settings -

Part 2

Figure 5.3 – φ-map: Advanced Settings
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5.3.2. φ-map Operation: Offline Phase

As a fingerprint-based localization platform, φ-map provides the option to
create a new radiomap through measurements, or to upload a radiomap generated
through simulation. For the measurement case, the user must select the Offline
Mode which can be found under Advanced Settings. Upon selection, the UI allows
to define by “touch on screen”, the measurement location point-by-point, as shown
in Figure 5.4. The user moves to any desired measurement point, specifies the
exact location on the blueprint and presses action button SCAN. The sampling
procedure is initiated and the predefined number of samples are recorded into
the database. The time required for sampling, is directly related to the sampling
rate, which is also defined during the parameterization of the platform. It is
also important to note that during the offline phase and the generation of the
radiomap, the system also records the values retrieved by all active device sensors.
The correlation between parameters can be achieved through the utilization of the
time-stamp.

(a) φ-map: Scanning Mode UI (b) φ-map: Registering Fingerprints

Figure 5.4 – φ-map: Offline Phase - Scanning Mode
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5.3.3. φ-map Operation: Online Phase

When a radiomap exists inside the database, generated either through mea-
surements or simulation, the user can select the appropriate one which belongs
to the area of interest. Through Advanced Settings, the user can now select the
Online mode and immediately the UI switches into the “Track me” mode. The
location estimation is performed through the selection of the desired position-
ing algorithm (KNN, i-KNN, vlp-KNN, WKNN, MMSE, hybrid combination with
Cellular parameters etc). Some further system customization is allowed, by defin-
ing the sample size and sampling rate, during the sample collection of the online
phase. As explained earlier, all data can be recorded and retrieved later for anal-
ysis. However, historical data about the user location can be visualized on the
platform, as shown in Figure 5.7.

(a) φ-map: “Track me” mode UI (b) φ-map: “Track me” mode with blueprint

Figure 5.5 – φ-map: Online Phase - “Track me” mode
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5.4. Test Environment

Both i-KNN and vlp-KNN algorithms were tested by combining actual mea-
surements and simulations on the φ-map experimental platform. In order to ac-
complish this task, a radiomap was generated by performing a number of measure-
ments in an indoor environment of approximately 250m2, while a second radiomap
was created using TruNET wireless [12]. The wireless network utilized is com-
posed of 6 D-Link 802.11 APs, deployed as indicated in Figure 5.6.

Figure 5.6 – Combined BLE and Wi-Fi Fingerprint-based Indoor Positioning
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5.4.1. Radiomap from Actual Measurements

The first radiomap was created by measurements collected at 110 equally-
spaced (1m spacing) locations, at a constant height of 90cm. At every mea-
surement point, 30 discreet RSS samples (1 sample/sec) were recorded using an
Android-based MS device. The RSS values recorded in the radiomap ranged from
-99 dBm to -34 dBm. During the network discovering procedure, the system
recorded data from 24 APs, due to the existence of other Wi-Fi networks in the
proximity of the test environment. Hence a filtering procedure was implemented
prior to the finalization of the dataset, leaving only the 6 APs related to the
localization experiment in the final radiomap.

5.4.2. Simulated Radiomap

The second radiomap was generated using a 3D polarimetric Ray Tracing
propagation model, implemented in TruNET wireless [12]. The building structure
and the various furniture were modeled using material constitutive parameters as
obtained from literature [113]. They were calibrated, as shown in Table 5.1, in
order to better match the MS device characteristics. A detailed analysis of the Ray
Tracing calibration procedure can be found in [112]. The same 110 measurement
points, were defined as receiver cells. Finally, the 6 APs were configured as per
the characteristics provided by the manufacturers.

Table 5.1 – Material Constitutive Parameters of the Test Environment

Material Electrical Permittivity (F/m) Loss Tangent

Concrete 3.9 0.23
Wood 2 0.025
Brick 5.5 0.03
Metal 1 1000000
Plasterboard 3 0.067
Glass 4.5 0.007

5.4.3. BLE Filtering

Initially, testing measurements were performed by implementing the simple
KNN algorithm (K = 4) on an IEEE 802.11 typical radiomap, in order to re-
trieve reference benchmark values, at 12 randomly selected locations. This strat-
egy allowed the authors to perform result analysis that could objectively depict
the improvement of the localization accuracy of the positioning algorithms un-
der study. Objective evaluation is achieved through the use of benchmark values
by maintaining the external environment unmodified during the experiment exe-
cution, keeping the testing locations constant and performing the measurements
under static conditions (no mobility allowed). After the retrieval of the benchmark
values, the proposed i-KNN filtering algorithm was implemented for two different
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scenarios, and test measurements were once again performed at the same 12 lo-
cations. The first scenario assumed that only one iBeacon device existed in the
study area, while the second scenario took into consideration that all 4 iBeacons
were deployed, as per Figure 5.6.

In all test cases an average number of 28 samples were collected, in order to
ensure that the sample size was large enough for the normal distribution statisti-
cal parameters to apply. In other words, the calculated standard deviation values,
and consequently any extracted confidence levels, were statistically acceptable and
could provide reliable result analysis [8]. The user orientation was also examined
for investigating the body presence effect. Finally, the influence of iBeacon num-
ber and location was also examined, by varying the number of active BLEs. The
variation of the localization error in the above cases, defined the maximum tol-
erance Tol parameter value at Tol = ±2m. In this way, it was ensured that the
user’s actual location was falling within the candidate fingerprints chosen in the
optimized dataset. Findings were consistent with [91], where BLE RSS indication
fluctuated up to 10 dB. Error factors covered by the introduction of the Tol pa-
rameter included the actual number of active BLEs, user/device orientation, body
and multipath effects.

5.4.4. VLP Filtering

The proposed vlp-KNN filtering algorithm was simulated for every selected
test point, introducing a large tolerance Tol = ±2m, in order to accommodate
large positioning errors that may occur in cases of different mobile station orien-
tations, device diversity errors, multipath effects etc. The implementation of the
vlp-KNN filter assumes that the mobile stations FOV has a LOS with the smart
light transmitter, therefore the radius RSL can be calculated either through AOA
or RSS optical channel parameters. In case the connection with the VLC is lost,
the vlp-KNN will function as a conventional KNN algorithm.

5.5. Performance Evaluation

5.5.1. i-KNN Algorithm

For the practical implementation and testing of the positioning algorithms
φ-map was utilized extensively, providing configuration capabilities for several pa-
rameters related to KNN and i-KNN algorithms. The most important parameters
include K value, number of samples recorded per point, time interval between
each sample and Tolerance (Tol) value. As explained in Section 5.3 and illus-
trated in Figure 5.7, φ-map also provides the capability to select between different
radiomaps (generated by both actual measurements or simulations) and to upload
a 2D blueprint of the study area for user friendly visualization of the user position.

For evaluating these scenarios, the Wi-Fi Indoor Positioning system was fully
deployed, and tests were performed at 12 randomly selected locations, as described
previously for the benchmark (Wi-Fi only) case and the two hybrid (Wi-Fi and
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Figure 5.7 – φ-map Localization Platform

BLE) scenarios. Data retrieval was performed with the MS user stationary, in
order to retrieve a statistically adequate number of samples allowing a valid sta-
tistical analysis. However, both φ-map platform and i-KNN algorithm can support
real time moving MS users. The experimental results concerning the positioning
error of the platform utilizing only the IEEE 802.11 radiomap, and implementing
the typical KNN algorithm, are presented in Table 5.2. An average positioning
error of e = 4.05m with standard deviation σ = 2.13 is achieved for the specific
environment under study. The findings of the benchmark case are aligned with
the performance of other typical Wi-Fi indoor localization systems, a compari-
son of which is illustrated in Table 5.3. A general conclusion extracted from the
aforementioned table, is that typical RSS fingerprint-based positioning systems
can provide an accuracy ranging from 3m to 7m, practically meaning a typical
room level designation.

Test results for the first hybrid scenario (existence of a single BLE device) are
shown in Table 5.4. The positioning error e is improved to 3.07m with a smaller
standard deviation of σ = 1.60, while the utilized fingerprint dataset size is re-
duced to an average of 67%. At 5 out of 12 test points the i-KNN algorithm
utilized the total number of fingerprints as included in the initial radiomap, since
no BLE signal was identified in these specific locations, due to wall attenuation ef-
fects. Although BLE signals could penetrate single plasterboard walls and double
glass windows, they were heavily weakened when transmission occurred through
cement and brick walls. In those 5 test points, i-KNN algorithm did not have
any effect and φ-map operated as a Wi-Fi only platform. During the second
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Table 5.2 – Positioning Error of Wi-Fi RSS Fingerprint-based Positioning System

Test Point eaverage(m) σ Radiomap size (%) Samples No

1 5.09 2.96 100 19
2 2.45 1.79 100 21
3 3.81 2.15 100 21
4 4.70 3.76 100 20
5 4.15 2.56 100 25
6 6.55 2.26 100 23
7 5.21 2.02 100 16
8 2.91 1.56 100 29
9 5.61 2.02 100 37
10 3.50 1.58 100 50
11 3.02 1.01 100 30
12 2.58 1.72 100 45

Table 5.3 – Positioning Error of Typical Indoor Wi-Fi Positioning Systems

System Accuracy/Error Methodology Complexity

TIX[115] 5.4m
Linear mapping of
RSS

Light algorithm
with AP modifica-
tions

EZ [116] 2.0− 7.0m Model based Complex algorithm

SDM [117] 3m
Linear mapping of
RSS

Light algorithm
with sniffers

Zee [118] 3m RSS fingerprints
Combined with Ho-
rus or EZ

LiFS [119] 89% room level RSS fingerprints
Complex training
phase

WILL [120] 86% room level RSS fingerprints
Complex mapping
of virtual floor

φ-map [5] 4.05m
Wi-Fi RSS finger-
prints

Light algorithm

φ-map [5] 2.33m
Wi-Fi-BLE RSS
fingerprints

Light algorithm

AnyPlace
[121]

1.96m

Wi-Fi crowd-
sourcing-based
fingerprint collec-
tion

Light algorithm

hybrid scenario, the full deployment of the BLE devices ensured that location in-
formation from at least one iBeacon was retrieved in all 12 test locations. Test
results of this scenario are presented in Table 5.5. A radical improvement of the
positioning accuracy and optimization of the utilized dataset was observed. More
specifically, the error was reduced to 2.33m for the same study area, indicating
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an improvement of 42%. Standard deviation was also significantly reduced to
1.22, depicting the much higher concentration of results around the mean values
of positioning results. Additionally, the utilized dataset size was significantly re-
duced, ranging between 12% and 37%, depending on the test point. Taking into
consideration the comparison Table 5.3, it is observed that the proposed i-KNN
algorithm over-performs the typical Wi-Fi localization platforms. As a price for
increased accuracy, the RTLS operators need to deploy a number of BLE systems
to cover the maximum area of interest. Obviously, such a deployment depends
on the complexity of the indoor environment; open-plan spaces require less BLE
devices than wall-separated areas.

Table 5.4 – Positioning Error of Combined BLE (single BLE) and Wi-Fi RSS
Fingerprint-based Positioning System

Test Point eaverage(m) σ Radiomap size (%) Samples No

1 1.60 1.22 29 19
2 2.62 1.75 53 21
3 2.77 2.01 38 21
4 3.63 2.65 45 20
5 3.64 2.35 40 25
6 2.17 2.16 39 23
7 5.21 2.02 100 16
8 2.91 1.56 100 29
9 3.20 1.90 69 37
10 3.50 1.58 100 50
11 3.02 1.01 100 30
12 2.58 1.72 100 45

Figures 5.8 and 5.9 provide a visual performance comparison for the first
scenario.

Figure 5.8 – Positioning Error Comparison: Wi-Fi only vs single BLE and Wi-Fi
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Table 5.5 – Positioning Error of Combined BLE (all deployed BLEs) and Wi-Fi RSS
Fingerprint-based Positioning System

Test Point eaverage(m) σ Radiomap size (%) Samples No

1 1.96 1.44 22 19
2 1.70 0.93 12 21
3 1.22 0.81 12 21
4 1.52 0.62 16 20
5 2.38 1.14 12 25
6 2.12 0.63 16 23
7 2.33 0.67 16 16
8 2.91 0.65 12 29
9 3.84 1.89 37 37
10 3.17 0.79 22 50
11 2.97 1.26 28 30
12 1.87 0.55 19 45

Figure 5.9 – Fingerprint Dataset Size Utilization: Wi-Fi only vs single BLE and
Wi-Fi

Figures 5.10 and 5.11 refer to the outcomes of the second scenario. What is
obvious from the graphs is that, the combination of Wi-Fi and BLE systems in
the proposed i-KNN algorithm constantly outperforms the simple KNN, especially
when the BLE deployment is such that it can provide adequate signal coverage
in the study area. In such scenarios, accuracy is improved and positioning results
fluctuate much less, as indicated by the lower standard deviation. Dataset uti-
lization is optimized to an average of 20% for typical scenarios and can be further
improved if the set Tolerance Tol factor is further optimized to a minimum value.
Overall, the findings provide hard evidence that the proposed i-KNN algorithm
improves the computational and processing requirements, provides faster and more
accurate positioning and incurs lower power consumption.
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Figure 5.10 – Positioning Error Comparison: Wi-Fi only vs nearest BLE and Wi-Fi

Figure 5.11 – Fingerprint Dataset Size Utilization: Wi-Fi only vs nearest BLE and
Wi-Fi

5.5.2. vlp-KNN Algorithm

The Wi-Fi Indoor Positioning system was fully deployed, and tests were per-
formed at 7 randomly selected locations, distributed across the whole study area,
as shown with X mark in Figure 5.12.

At each test location both simple KNN and proposed vlp-KNN algorithms
were implemented to estimate user position. The experimental results concerning
the positioning error and the utilized fingerprint dataset size, are presented in Ta-
bles 5.6 and 5.7 respectively. Figures 5.13 and 5.14 provide a visual comparison
between the two methods. A significant improvement on the localization accuracy
is observed, from a 4.7m average error, the proposed algorithm recorded 1.89m.
The standard deviation σ also appears to be much smaller, pinpointing less fluctu-
ations on the overall system performance. Finally, the utilized fingerprint dataset
is reduced to approximately 20% of the initial dataset size. This finding means
less computational and processing requirements, faster positioning and less power
consumption.
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Figure 5.12 – Combined VLP and Wi-Fi Fingerprint Based Indoor Positioning

Table 5.6 – Positioning Error of Wi-Fi RSS Fingerprint-based Positioning System

Test Point Eaverage(m) σ RadiomapSize(%)

1 5.09 2.96 100
2 2.45 1.79 100
3 3.81 2.15 100
4 4.70 3.76 100
5 4.15 2.56 100
6 6.55 2.26 100
7 5.21 2.02 100
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Table 5.7 – Positioning Error of Combined VLP and Wi-Fi RSS Fingerprint-based
Positioning System

Test Point Eaverage(m) σ RadiomapSize(%)

1 1.96 1.44 22
2 1.70 0.93 12
3 1.22 0.81 12
4 1.52 0.62 16
5 2.38 1.14 12
6 2.12 0.63 20
7 2.33 0.67 16

Figure 5.13 – Positioning Error Comparison: Wi-Fi only vs VLP and Wi-Fi

Figure 5.14 – Fingerprint Dataset Size Utilization: Wi-Fi only vs VLP and Wi-Fi
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5.6. Conclusion

In this Chapter two novel algorithms were presented aiming in improving
indoor localization accuracy and performance of IEEE 802.11 fingerprint-based
RLTS, via the fusion of information of a second supporting wireless technology.
i-KNN and vlp-KNN algorithms were the result of Wi-Fi-BLE and Wi-Fi-VLP
combination respectively. The aforementioned localization algorithms are based
on the same concept: to take advantage of the benefits of each technology and
fuse the available information in order to enhance the performance of fingerprint–
based indoor localization. Both algorithms are novel and, to the knowledge of
the author, no previous research work has been proposed before. Performance
evaluation indicates that both algorithms, improve localization accuracy roughly
at the same level. This is an expected finding since they both filter in a similar way
the same fingerprint dataset that is generated by the same IEEE 802.11 wireless
network. Given the fact that a device of the supporting technology was placed
in every room of the test environment, it can be safely expected that the subset
extracted by the filtering algorithms concerned the fingerprints of the respective
room. Consequently, the conventional KNN positioning algorithm was fed with
almost the same input and for this reason the localization accuracy was similar.
Computational performance increase was indicated by the reduction of the utilized
dataset size, to a range between 12% and 37% of the initial radiomap size. A
significant improvement in localization accuracy was also recorded and reached a
42%. The scalability of both i-KNN and vlp-KNN algorithm makes them ideal
for advancing the performance of existing fingerprint based RTLS systems.
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CHAPTER 6

Utilizing Polarization for Single Access Point
Indoor Positioning

6.1. Introduction

A significant drawback of fingerprint-based localization systems, is that they
require the deployment of several APs in order to generate a combination of unique
fingerprints at each location and achieve satisfactory positioning accuracy [9]. Due
to this characteristic, fingerprint-based localization applications and platforms can-
not be easily utilized in small indoor environments (i.e., residential places or open-
plan business spaces), where typically only a single AP is being deployed.

This Chapter focused on generating unique fingerprint datasets from a single Mul-
tiple Input, Multiple Output (MIMO) AP, by utilizing the antenna polarization
effects arising from a single AP, and fusing the data retrieved from multiple anten-
nas into a multi-layered radiomap concept. Extended analysis indicated that each
antenna of the MIMO device, can be considered as an independent transmitting
source. Different polarization configurations are then taken into account in order
to ensure that RSS values from different antennas, at the same location, are not
correlated. In this way, data retrieved from each antenna is fused to generate a
single multi-layered radiomap, which has been found to perform satisfactory in
terms of accuracy, when utilized in an RSS-based localization system.

The proposed method’s performance is evaluated in a two-step procedure. Initially,
by implementing deterministic and probabilistic algorithms (Weighted k-Nearest-
Neighbour - WKNN, and Minimum Mean Square Error - MMSE, respectively),
for a set of different antenna orientations, hence different polarization set-ups.
Secondly, the uniqueness of all candidate radiomaps is examined, by calculating
the correlation level of each fingerprint pair. High correlation scores indicate a
high probability for localization errors and vice versa. This method requires the
implementation of the “Tolerance Based - Normal Probability Distribution (TB-
NPD)” algorithm [9]. The polarization mechanisms and the related research work
regarding their utilization in localization are analyzed in Chapter 2, Section 2.3.

6.2. Proposed Approach

6.2.1. High Level Description of the Proposed Approach

In this Chapter, a new localization approach based on a single MIMO AP
where each AP antenna acts as a separate transmitter is presented. The RSS
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values consisting the fingerprint radiomap were purposely manipulate by carefully
configuring each antenna orientation and polarization, and then fuse the retrieved
information together, generating a multi-layered radiomap. A Multi-layered ra-
diomap is defined as the unified dataset created from the fusion of RSS and an-
tenna identification data received by each MIMO antenna. In order to achieve such
a task, the MIMO AP should support and be able to be injected with a mech-
anism - such as Radiotap - which offers the capability to retrieve the additional
information about frames, from the device driver into user-space applications. In
this respect, Radiotap defines - among others - two important fields that are im-
portant for this approach: Antenna, a unit-less indication of the Rx/Tx physical
antenna for each packet, and Antenna Signal, that provides the value of the RF
signal power at the antenna. A typical code snippet of transmit definitions for the
Atheros driver is presented below:

#define ATH TX RADIOTAP PRESENT ( \
(1 << IEEE80211 RADIOTAP TSFT) | \
(1 << IEEE80211 RADIOTAP FLAGS) | \
(1 << IEEE80211 RADIOTAP RATE) | \
(1 << IEEE80211 RADIOTAP ANTENNA) | \
(1 << IEEE80211 RADIOTAP DBM TX POWER) | \
(1 << IEEE80211 RADIOTAP XCHANNEL) | \
0)

struct a t h t x r a d i o t a p h e a d e r {
struct i e e e 8 0 2 11 r a d i o t ap h ea d e r wt ihdr ;

u i n t 6 4 t w t t s f ;

u i n t 8 t w t f l a g s ;

u i n t 8 t wt rate ;

u i n t 8 t wt antenna ;

u i n t 8 t wt txpower ;

u i n t 3 2 t wt ch an f l a g s ;

u i n t 1 6 t wt chan f req ;

u i n t 8 t wt chan i e ee ;

i n t 8 t wt chan maxpow ;

}

Having fulfilled the requirement of antenna identification and the respective
RSS retrieval, the candidate radiomaps are then generated utilizing a fully de-
terministic simulator. TruNET wireless simulation tool [12] was utilized in the
trials. On top of this simulator, a set of modules were developed to support the
implementation of the following steps: i. Environment design and wireless net-
work set-up, ii. Candidate radiomap generation, and iii. Iterative simulation and
evaluation of each candidate radiomap.

Initially, the area of interest is designed in TruNET wireless simulator, taking
into account the different building structure geometry, dimensions and material
constitutive parameters. Then a list of different scenarios is created by configuring
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the wireless network antennas. The wireless network, as discussed previously, is
considered to be a single MIMO Access Point (AP) with a minimum of two an-
tennas.

Afterwards, a simulation takes place for each scenario; and a candidate multi-
layered radiomap is generated based on fused antenna information. More specifi-
cally, each AP antenna is considered as a separate transmitter and the calculated
RSS values are registered in the receiver cells linked with the transmitter (an-
tenna) ID. Depending on the scenario set-up (different antenna orientation and
polarization), the RSS values vary. Finally, the candidate radiomaps are exported
in a standardized template form and are passed forward for localization accuracy
assessment. In order to perform the assessment, a testing dataset sample is re-
quired, which is a set of RSS fingerprints that could be retrieved either during an
online phase, or can be generated through a simulator.
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Figure 6.1 – Concept Illustration

The sample dataset size and distribution are selected in such a way so that
they provide reliable and objective testing results, as per [8]. The localization
procedure followed includes two types of localization algorithms: a deterministic
(WKNN) and a probabilistic (MMSE). Each candidate radiomap is tested and
its performance is evaluated with respect to the localization accuracy than it can
achieve. At the last stage of the procedure, the correlation between the finger-
prints in the dataset is examined and an overall correlation score for the candidate
radiomaps [9] is provided. A high correlation score designates a higher probabil-
ity for localization errors due to similarities existing between different fingerprints
(locations). After the completion of the aforementioned iterative procedure, the
most suitable radiomap among the candidates is selected. The selection is based
on two performance metrics: minimum mean localization error and minimum cor-
relation score. The previously described procedure is illustrated in the high level
descriptive illustration of Figure 6.1.
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6.2.2. Investigation of Polarization Effect in Radiomaps

Since the proposed approach relies heavily on the utilization of polarization
mechanisms for optimizing the RSS datasets, its impact should be isolated and
investigated in more depth. In order to eliminate any other factors that may affect
the RSS indications in the receiver cells, a number of scenario set-ups is considered,
simulated without any obstacles or ground effect, in pure free space loss conditions.
The scenarios involve only one set of a Transmitter (Tx) and a Receiver (Rx) in
the area of interest, and assume that they both have theoretical isotropic antennas.
In this respect, four scenarios are created, by combining vertical and horizontal
antenna polarization setups:

i . Tx : h o r i z o n t a l vs Rx : h o r i z o n t a l

i i . Tx : h o r i z o n t a l vs Rx : v e r t i c a l

i i i . Tx : v e r t i c a l vs Rx : h o r i z o n t a l

i v . Tx : v e r t i c a l vs Rx : v e r t i c a l

The generated radiomaps are presented in Figures 6.2 and 6.3.

(a) Rx Horizontal (b) Rx Vertical

Figure 6.2 – Radiomap for Isotropic Antennas with Vertical Polarization Tx

To further investigate the variation of the RSS in each scenario, it is assumed
that a mobile user is moving across the area of interest, following a diagonal path.
The path is kept constant for all four radiomaps. Results shown in Figure 6.4 in-
dicate that RSS received across Rx cells, varies significantly when the polarization
of the antennas is modified.

6.3. Test Environment

The tests were performed in a laboratory area of approximately 100m2 which
approximates a typical residential indoor floor, or a 3 bedroom flat. The 3D
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(a) Rx Horizontal (b) Rx Vertical

Figure 6.3 – Radiomap for Isotropic Antennas with Horizontal Polarization Tx

environment and the various different wireless network setups were simulated in
TruNET wireless, a 3D polarimetric Ray Tracing simulator [12]. The building
structure and large furniture were configured using material constitutive parame-
ters obtained from literature [113], as per Table 6.1.

Table 6.1 – Material Constitutive Parameters of the Test Environment

Material El.Per. (F/m) L. Tangent

Concrete 3.9 0.23
Wood 2 0.025
Brick 5.5 0.03
Metal 1 1000000
Plasterboard 3 0.067
Glass 4.5 0.007

The generated candidate radiomaps include 406 receiver cells at a height of
1.2m, and information retrieved by two antennas from a single 1x2 MIMO AP.
The AP was intentionally positioned at the edge of the area of interest, in order to
minimize the possibility of creating multiple similar fingerprints due to symmetries
in the environment. A series of 12 different scenarios were created by combining
different polarization setups - vertical and horizontal - as well as different antenna
orientations with a changing step of 45°. The 12 scenario configuration parameters
are shown in Table 6.2.

Finally, for reference purposes, a typical scenario (No 1) with five APs was cre-
ated for the same environment. The radiomap generated was used for localization
by implementing WKNN and MMSE algorithms, and the results were compared
with the 11, single AP scenarios.
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Figure 6.4 – RSS Variation Across a Route

Table 6.2 – Antenna configuration per Scenario ID

Antenna 1 Antenna 2
Scenario ID Polarization Polarization

2 V V
3 H 0° V
4 H 45° V
5 H 90° V
6 H 135° V
7 H 180° V
8 H 0° H 0°

9 H 0° H 45°

10 H 0° H 90°

11 H 0° H 135°

12 H 0° H 180°

The effect of polarization and antenna orientation on the radiomaps is depicted
in the snapshots of Figure 6.5. Figure 6.7 shows the changes in Power Delay Profile
(PDP) for a randomly selected cell. It can be easily observed that the ray path’s
arrival time, and consequently the RSS values, may vary due to the changes in
polarization and antenna orientation.
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(a) H090Tx1-RSS (b) H045Tx2-RSS

Figure 6.5 – Radiomap vs Antenna polarization H090 and H045

Figure 6.6 – Multipath Effect in Indoor Environment (Rx Cell 198)

(a) H090Tx1-PDP (b) H045Tx1-PDP

Figure 6.7 – Power Delay Profile vs Antenna Polarization H090 and H045

6.4. Performance Evaluation

The proposed methodology was implemented for all 12 scenarios. The calcu-
lated mean error and Circular Error Probable (CEP) 95% for both WKNN and
MMSE localization algorithms, are presented in Table 6.3 and Figures 6.8, 6.9,
6.10 and 6.11 respectively. The quality Correlation Score (CS) for each radiomap
is illustrated in Figure 6.12.

Based on the aforementioned results, a significant variation on the localization
accuracy is observed, which depends on the transmitter configuration setup. When
implementing WKNN (k = 4), the mean error varies from 1.69m for scenario No.
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Table 6.3 – Localization Algorithm Performance and Correlation Score per Candi-
date Radiomap

Decision Factor
Scenario WKNN WKNN MMSE MMSE Correlation
ID Mean Error CEP 95% Mean Error CEP 95% Score

2 1.91 3.41 2.17 3.78 0.371
3 2.21 4.27 2.48 4.14 0.440
4 1.91 3.69 2.11 4.19 0.355
5 1.98 3.36 2.49 5.60 0.363
6 1.69 3.45 2.29 4.27 0.314
7 2.09 3.48 2.55 4.37 0.398
8 2.27 6.22 2.82 4.97 0.442
9 2.72 4.45 2.71 4.54 0.525
10 3.01 2.99 3.08 6.07 0.591
11 2.67 9.00 3.09 5.86 0.488
12 3.25 9.85 2.52 5.01 0.657

Figure 6.8 – WKNN: Mean Error per Polarization Scenario

6, and 1.91m for scenario No. 2 and No. 4, to 3.25m for scenario No. 12.
A similar behaviour is noted for the mean error achieved when utilizing MMSE
(σ = 9) algorithm. A minimum mean error of 2.11m was recorded for scenario
No. 4 and 2.29m for scenario No. 6, to a maximum of 3.09m for scenario No. 11.
The quality evaluation of the candidate radiomaps supports the above findings,
indicating that the most appropriate radiomaps for indoor positioning utilization
are No. 6 (CS = 0.314) and No. 4 (CS = 0.355). The localization accuracy that
can be achieved with the proposed methodology, is comparable to the benchmark
scenario No. 1, where 5 APs were used. More specifically, although utilizing the

84



6.4. PERFORMANCE EVALUATION

Figure 6.9 – WKNN: CEP95 per Polarization Scenario

Figure 6.10 – MMSE: Mean Error per Polarization Scenario

information from 5 different APs leads to a minimum of 1.04m mean error, still
the 1.69m error accomplished by a single AP is satisfactory and provides a much
more tangible solution for individual residences. Another observation that is worth
mentioning, is related to scenario 2, which scored the second best performance. In
this scenario, the configuration of both antennas was set to Vertical Polarization.
The RSS differences occur only due to the spatial separation of the antennas.
On the other hand, it is noted that both scenario No. 4 and scenario No. 6,
which performed best, were configured with their antennas having a 45° angle
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Figure 6.11 – MMSE: CEP95 per Polarization Scenario

Figure 6.12 – Correlation Score per Polarization Scenario

between them. Finally, it can be safely assumed that by utilizing more complex
MIMO devices (i.e., 4x4), and a proper antenna polarization configuration, the
localization accuracy achieved can be further improved.
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6.5. Conclusion

In this Chapter, a novel approach is presented in performing indoor localiza-
tion by utilizing a single MIMO AP. The novelty of the approach lies on multiple
antenna information fusion, for the purposes of generating a high quality radiomap
and utilizing it in an RSS fingerprint-based indoor localization system. Antenna
information retrieved is optimized by taking into consideration antenna polariza-
tion effects. Testing and evaluation of the proposed methodology indicates that
satisfactory localization accuracy can be achieved, providing in this way a more
tangible and affordable solution for single AP owners. The research may be further
expanded by investigating more complex MIMO device antenna configurations.
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CHAPTER 7

Conclusion and Future Work

7.1. Conclusion

Nowadays, outdoor and indoor localization of people, vehicles, equipment and
assets is an essential service required by a vast number of applications. In outdoor
environments, GNSS is the dominant type of positioning service, but alternative
solutions are still vital due to the vulnerability of GNSS to attacks and spoof-
ing of satellite signals. In indoor environments, the research challenges are still
very active and ongoing, despite the fact that the research community has been
investigating the topic for decades. The rapid technological and computational
advances have opened the road for new categories of services and have increased
the demand by the users in turns of quality of service and quality of experience.
Mobility, accessibility, as well as fast and effective accomplishment of tasks have
been the main driving factors in our era. The booming in the IoT and Wireless
Sensor Networks (WSN), including Body Sensor Networks (BSN), has also gener-
ated new opportunities and demands related to localization as a service.

Numerous positioning techniques and methodologies have been proposed, as de-
scribed in Section 2. Focusing in the indoor requirements, it was noted that the
most popular technique is currently fingerprinting, due to the simplicity of the
related positioning algorithms, their satisfactory accuracy, as well as the ability to
utilize widely used, off-the-shelf wireless networks, such as Wi-Fi and Bluetooth.
The most important disadvantages of fingerprint-based platforms are related to
the following:

(1) Calibration requirements in order to enable the underlying radiomaps,
which are used during the location estimation, to be device-independent.

(2) Sensitivity to dynamic changes in the environment and inter-
ference, that result in increased mean and maximum positioning errors.
Such errors are inflated by the inherent characteristics of fingerprint “best
match” methodology.

(3) Labour intensive and time consuming radiomap generation dur-
ing the offline phase. Especially focusing in measurement campaigns,
these are becoming less attractive due to their static and inflexible na-
ture.

(4) Requirement for the deployment of several access points to serve
as transmitting nodes and provide satisfactory distinction between each
pair of fingerprints and hence, less positioning errors.

The research work of this thesis was concentrated exactly on providing novel
approaches and practical solutions to face all the aforementioned challenges. The
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device diversity concept was investigated in [1] and [2] and analyzed in Chapter
3. Novel solutions and algorithms on information fusion and combination of het-
erogeneous technologies are presented in Chapters 4 and 5 respectively. Related
scientific work [3], [4], [5] and [6] has also been published. The last drawback of
fingerprint-based platforms, which is related to the requirement of multiple access
point deployment, is investigated in Chapter 6. In this Chapter a methodology
for single access point localization, by utilizing the polarization effects that occur
in indoor environments is proposed. Such a solution is actually and practically
implementable in residential and small office areas where usually only one single
access point is being deployed.

Finally, in the area of RTLS performance evaluation, contribution have been made
towards the development of TBNPD algorithm, as per [9], which is extensively
utilized in Chapter 6.

Last but not least, for the actual implementation of the initial novel concepts,
the test and evaluation of new positioning algorithms, an experimental versatile
localization platform called φ-map was created. This platform was developed in
Android and supports a wide range of functions and capabilities.

7.2. Future Work

It is the author’s personal belief that the research work presented in this the-
sis, and especially the algorithms presented in relation to information fusion, can
be further expanded and find practical implementation by the industry. Special
notice should be given to the proposed novel methodology for single MIMO AP
positioning that takes advantage of the polarization effects. The concept of access-
ing all MIMO device antennas separately, and considering them as independent
emitters, can provide new positioning capabilities, when the information retrieved
is utilized effectively.

Additionally, the developed φ-map localization platform is modular and expand-
able and can further accommodate different types of positioning algorithms and
evaluation techniques, in order to be utilized for the evaluation of new concepts.
Typical examples for future investigation are the following:

(1) Fusion of information from an actually deployed Visible Light Positioning
System with Wi-Fi and BLE information, in order to produce a triple
heterogeneous technology localization platform.

(2) Dynamic radiomap update by utilizing crowd sourcing data collection
and automatic filtering.

(3) 3D indoor positioning by combining fingerprinting with inertial sensors.
(4) Enhanced positioning algorithm for minimizing the antenna orientation

effects.

In a more general approach of future work, several topics can be identified that
are foreseen to be especially active for the research community in the coming years.
Information fusion and combination of heterogeneous wireless technologies for
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improving RTLS performance is considered to be an ongoing and open-ended chal-
lenge. Radio and non-radio parameters availability and diversity is vast and in-
creasing rapidly. Issues on selecting and filtering such information or mitigating
the effects of interference are challenges to be faced. Future work, will unavoid-
ably involve the introduction of artificial intelligence in positioning algorithms,
as well as in the high level management and optimization of localization platforms.

As discussed in this thesis, location information is becoming more and more critical
in the provision of a vast number of services. It is currently being investigated on
how to better support self-organizing networks in 5G era. However, the nature of
such information - monitoring and tracking of everybody and everything - invades
deeply in privacy and sensitive security aspects. Such an issue puts a burden on
the shoulders of the research community: the responsibility to provide adequate
security mechanisms to protect the confidentiality aspects from any type of attack.
Hence, it is also expected that localization topics will be even more related and
associated with security topics, ethical and non-ethical hacking, satellite spoofing
cyber-attacks etc.

It is envisioned that future work of this thesis will focus in the following areas:

(1) Firstly, the fusion of information from heterogeneous wireless technolo-
gies, as well as data from other sensors (i.e, microphone, temperature,
pressure) that can be found in a modern smart phone.

(2) Following that, the combination of positioning with machine learning,
in order to study potential performance improvements of the positioning
methods in large fingerprint databases. The resiliency of the positioning
algorithms in fast changing environments and dynamic interference can
be investigated.

(3) Finally, one can investigate how to take advantage of the computational
power of new Graphics Processing Units (GPUs) in two directions: i.
leveraging real-time Ray Tracing to detect significant changes in an envi-
ronment, during the online phase of positioning, and ii. use the efficiency
of parallel programming of GPUs to increase the performance of posi-
tioning algorithms when they have to deal with very large fingerprinting
databases.

In the scope of these studies, the φ-map platform, as well as the TruNET
wireless simulator, which will provide the testing platforms for newly created al-
gorithms and methodologies, will be further extended and developed.
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