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Abstract—Data enrichment through interpolation or
regression is a common approach to deal with sample
collection for Indoor Localization with WiFi fingerprinting.
This paper provides guidelines on where to collect WiFi
samples and proposes a new model for received signal
strength regression. The new model creates vectors that
describe the presence of obstacles between an access point
and the collected samples. The vectors, the distance between
the access point and the positions of the samples, and the
collected, are used to train a Support Vector Regression. The
experiments included some relevant analyses and showed
that the proposed model improves received signal strength
regression in terms of regression residuals and positioning
accuracy.

15 Index Terms— Indoor positioning, WiFi fingerprinting, WiFi samples collection, RSS regression.

I. INTRODUCTION16

THE demand for Indoor Positioning Systems (IPS) has17

already driven academic and commercial research, it is18

expected that it will dramatically rise in the years to come [1].19

Despite the large diversity on related positioning technologies20

for indoor scenarios, WiFi is one of the most often used.21

Smartphones and applications relying on Location Based Ser-22

vices (LBS) made WiFi a cost-less approach at the expense23

of positioning errors around a few meters [2].24

Fingerprinting is commonly used with WiFi to provide posi-25

tion indoors. A WiFi fingerprint is a vector with the Received26
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Signal Strength (RSS) of each WiFi access point (AP) detected 27

in a given position and time. It requires a calibration stage, 28

where samples are collected at well-known positions to create 29

a reference dataset (radio map). In the operational stage, 30

given a new fingerprint measured at an unknown position, 31

the fingerprint method usually provides the centroid of the 32

most similar reference fingerprints as position estimate [3]. 33

Samples collection is known as one of the main challenges 34

of WiFi fingerprinting [4], given that the collection effort 35

can be significant for large areas. The literature suggests to 36

reduce the required effort either by crowdsourcing the col- 37

lection to volunteers [5], estimating the RSS values applying 38

a propagation model, or applying an interpolation technique 39

to densify an initial reduced radio map [4], [6], [7]. Despite 40

being very valuable, the reliability of position tags and the 41

improper distribution sample position are usual concerns with 42

crowdsourced signal data [8]. 43

This paper addresses the radio map enrichment by applying 44

regression techniques on a proper signal characterization of 45

the environment. Also, through experiments performed on 46

two publicly available databases, we address the problem of 47

choosing the most convenient positions for collecting WiFi 48

fingerprints for radio map creation. Furthermore, we evaluate 49

a new model that applies environment knowledge to Support 50

Vector Regression (SVR), which improves the regression 51

estimates corresponding to extrapolation points in comparison 52
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to other extrapolation work shown in WiFi positioning53

literature.54

The main contributions of this paper can be summarized as55

follows: i) a novel regression model aware of the environment56

features; ii) a comprehensive analysis of reference position57

selection to build effective radio maps; and iii) validation in a58

real-world scenario independent to the research objectives.59

II. BACKGROUND AND RELATED WORKS60

A WiFi Access Point (AP) is a networking device that61

broadcasts one or more wireless networks. A set of RSS values62

from available APs measured at a specific location throughout63

a short time interval is called a fingerprint, which can be used64

for positioning as described in Section I. The quality of the65

radio map depends on the location of the reference points,66

the reference point density, the number of samples of each67

reference points, among many other parameters [9], [10].68

However, collecting samples for a radio map requires a69

notable amount of time [11]. To tackle this problem, two70

alternatives are usually considered: crowdsourcing and sparse71

collection. Crowdsourcing has been praised for radio map72

collection and update [12] at the expense of suffering from73

low quality of position tags or uneven distributions of the74

collected samples, whereas sparse collection reduces the col-75

lection efforts at the expense of poorer characterizations of76

the environments. The later approach (sparse collection with77

regression, interpolation and/or extrapolation models) has been78

applied to synthetically enrich the radio map for more than79

15 years [13], [14], and methods fall in one of the next groups:80

• Sparse recovery includes, for example, compressed sens-81

ing using Singular Value Decomposition (SVD) [15], and82

radio map interpolation using sparse recovery [6].83

• Interpolation methods includes traditional interpolation84

methods [16]–[19]; methods capable of delivering both85

interpolation and extrapolation like Nearest Neighbor86

and Inverse Distance Weighting (IWD) [20]; and other87

interpolation heuristics [21].88

• Extrapolation methods applied variants based on89

log-distance path loss model [21]–[23]; on the ray tracing90

model [24], [25] or the radiosity model [26]–[28].91

• Regression methods largely includes the application of92

Gaussian Process Regression (GPR) [29]–[33], although93

others have also applied Kriging [14], [34]–[36], Geog-94

raphy Weighted Regression (GWR) [37] and Support95

Vector Regression (SVR) [38].96

It is common that radio map enrichment works provide the97

proportions between points used for fitting and those used for98

estimations. Talvitie et al. [20] concluded that the positions99

where samples are selected were more important than how100

many of them were selected. Khalajmehrabadi et al. [6] sug-101

gested a random selection of reference points and discourage102

a uniform placement of those points. Ezpeleta et al. [16]103

supported the division in zones arguing that a zone with104

higher quality of RF signals than other zones required less105

training points. The importance of the distribution of samples106

for radio map construction is almost intuitive and acknowl-107

edged [39]. However, some works perform random selection108

of sample positions for radio map construction [6], [23], [32]. 109

Kanaris et al. [40], determined the sample size given a small 110

preliminary set of measurements, suggesting to randomly 111

choose positions from a grid in the number determined by 112

the sample size calculation. 113

Some radio map enrichment solutions have considered the 114

environment’s influence on the signals intensities. The inter- 115

polation in Bong and Kim [41] preserved signals discontinuity 116

over the wall. Ali et al. [23] used a path loss with wall 117

attenuation factor that introduced an image to count the 118

number of interfering walls. Moghtadaiee et al. [21] fitted a 119

log-distance model independently for each architectural zone 120

and created an interpolation that considered only sample at 121

similar distances to the target AP. Some authors [14], [34]–[36] 122

used Kriging, but only considered the Euclidean distance for 123

describing the spatial dependency, which does not hold true for 124

indoor environments. [39] fitted a log distance path loss model 125

for each target position, giving to the samples used for fitting 126

distinct weights (using a kernel density estimation) based on 127

their distances to the target position. Du et al. [37] applied 128

GWR, which computed several local models instead a single 129

global one. They used the distance between the emitters and 130

the sample points as predictor variables. 131

The distribution of samples necessarily should take the 132

layout of the environment into account, not only regarding 133

where it is possible to collect samples, but where is convenient 134

to collect them. The indoor environments strongly influence 135

the WiFi and BLE signals, and the decision on the collection 136

distribution should be aware of it. The radio map enrichment 137

method should ideally be also aware of the target environment, 138

i.e., of the obstacles and the positions of the emitters. 139

III. MATERIALS AND METHODS 140

A. Selected Datasets 141

This work is built on top of two public WiFi fingerprint- 142

ing datasets: the Library dataset [42] and the Mannheim 143

dataset [43]. Partial versions of both datasets will be used to 144

analyse the influence of position distribution and the influence 145

of AP strength on position accuracy. Moreover, they will be 146

used to analyse the influence of AP strength on RSS regres- 147

sions. For the evaluation of our proposed environment-aware 148

regression model only the Library dataset will be used. 149

The Library dataset was collected in two floors of the 150

Library building of University Jaume I (UJI) and the sys- 151

tematic data collection was repeated multiple times in a time 152

span of 25 months. There are six WiFi fingerprints per each 153

reference point and each of the two directions at which the 154

collection subject was facing. Also, as the data contained 155

information about a 620 AP, a selection of the 52 most relevant 156

APs was performed (as done in Torres-Sospedra et al. [44]) 157

to ease the analyses and reduce the noise created by a large 158

number of intermittent APs. The collection area is a relatively 159

small environment that covered about 15 × 10 m. The average 160

distance between reference points is about 2 m. 161

The Mannheim dataset was collected in the Mannheim 162

University. The collection area comprises a medium-scale 163

environment, covering about 50×36 m of corridors of a univer- 164

sity department. The fingerprints are on a 1.5 m grid [43], [45] 165



IEE
E P

ro
of

MENDOZA-SILVA et al.: ENVIRONMENT-AWARE REGRESSION FOR INDOOR LOCALIZATION 3

Fig. 1. Library 5th floor (left) and mannheim (right) floormaps. Blue and
magenta dots represent training and test reference points, respectively.
APs positions are drawn with orange circles. Other APs may lay out of
the areas.

and the positions of 10 APs are known. The dataset contained166

110 fingerprints per reference point. Out of 110 samples,167

we randomly selected 10 to ease the analyzes and have a168

number of samples that is closer to that of the Library dataset.169

Both the original Mannheim and the Library datasets provided170

their position tags using a local coordinate system that allows171

distance computation using the Euclidean distance.172

Figure 1 shows the operational area of the two evaluation173

environments. The structural barriers were manually created174

from floor plans. Thick walls were drawn in black color and175

thin walls were drawn with a light shade of gray in the176

image, whose intensity values are used by eq.(2). Figure 1 also177

presents the distribution of training and test reference points,178

as well as the position of some APs. The higher the density179

of APs and reference points in the operational area, the lower180

expected positioning error. In both cases, some APs lay out181

the floormap or have an unknown location.182

B. Environment-Aware Regression on WiFi Radio Maps183

This work presents a regression model that integrates the AP184

reference position and a floor plan of the area. The reference185

position is used as a raw indication of where the AP is. The186

position of APs inside or very close to the collection area187

can be determined with, for instance, the weighted centroid188

or the method proposed in [46]. The approximate position189

of an AP can be also manually obtained by measuring the190

signal intensity with a smartphone application walking in the191

area. However, the accuracy for AP location is low for those192

APs that are away from the operational area and an indicator193

of the relative direction is obtained instead. Those far APs194

are typically detected with a maximum intensity weaker than195

−60 dBm. Determining whether an AP is within the collection196

area could be done, for instance, using the Situation Goodness197

test presented in [46] if a relatively dense sample collection is198

available.199

Figure 2 introduces an example in the Library environment200

(5th floor). It shows the mean RSS values per reference point201

for 3 APs, which will later be used to evaluate the proposed202

regression model. The APs with IDs 15 and 49 are inside the203

collection area. Their positions shown in the figure are about204

half a meter and more than a meter away from the actual205

device positions, respectively. The position of the device that206

Fig. 2. Mean RSS values per reference point and device reference
positions of three APs (Library, 5th floor). The device position is indicated
with a star. Circles highlight the reference points whose values where
used to train regression models.

emitted the AP with ID 8 was unknown. The position shown 207

in the figure is anyway a useful estimation of the actual AP 208

direction. 209

In the proposed model, the predictor variables include 210

the target point’s position components, the AP’s reference 211

position and information from the environment floor map. 212

Moreover, we applied a data transformation before and after 213

the application of the regression method, so that the values 214

of the response variable are determined as log10(−RSS) (as 215

a distance indicator) and the RSS estimate is computed as 216

−(10est) if est is an estimate provided by the regression 217

model. The positions of points used for training and testing 218

the model are expressed in the local coordinate system. Thus, 219

their coordinates need to be transformed into image coordi- 220

nates (cell positions or pixels) before applying the proposed 221

model. The following definitions assume positions in image 222

coordinates (i.e. pixels not meters). 223

Let r p = (r px ; r py) be the position of a reference 224

point used for training the model. Let ap = (apx; apy) be 225

the position of the AP targeted for regression. Let Brp = 226

{(x1, y1), . . . , (xk, yk)} be the line that connects r p and ap. 227

The cell positions that constitute the line are determined using 228

the Bresenham’s line algorithm [47]. The values of predictor 229

variables for r p are: 230

Prp = {r px, r py,
drp + 1

2
, Frp}, (1) 231

where Frp = { f1, . . . , fk, . . . , fn} and drp is the Euclidean 232

distance between r p and ap. The value fi is computed as: 233

fi =
{

log2(2 + 255 − Im(xi , yi )) for 1 ≤ i ≤ k

0 for k < i ≤ n
(2) 234
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where xi and yi are the position components of the i th point in235

Brp , Im is the image representation of the environment, and236

Im(xi , yi ) is the cell value in the image Im whose position237

is (xi , yi ). The value of n is the maximum number of points238

that may have a line connecting the positions of the AP and a239

point in the environment representation. If ap lies beyond the240

environment represented by Im, the image is enlarge applying241

a padding of zeros. In other words, Im(x, y) = 0 for all (x, y)242

that lies beyond the environment representation.243

Algorithm 1 : Regression Model Training for an AP
Input: Im, RP L, SI , apl Output: The trained

regression model M
1 Compute ap = (apx, apy), the position of apl j in Im
2 for each r pl j in RP L do
3 Get r p = (r px , r py), the position of r pl j in Im
4 Get Brp , as stated previously
5 Get Prp , as stated in Equation 1
6 Set p j = Prp

7 Get resp j = log10(−si j )
8 end
9 Build M by training SVR using {p j } as predictors data

and {resp j} as responses data

Algorithm 2 : Signal Prediction for an AP
Input: Im, T P L, apl, M
Output: The predicted intensities SO

1 Compute ap = (apx, apy), the position of apl j in Im
2 for each tpl j in T P L do
3 Get r p = (r px , r py), the position of t pl j in Im
4 Get Brp , as stated previously
5 Get Prp , as stated in Equation 1
6 Set p j = Prp

7 Get est j using M with {p j } as predictors values
8 Set so j = −(10est j )
9 end

10 Set SO = {so j }

Algorithm 1 resumes the process of training the proposed244

regression model. Its inputs are the environment image Im,245

the positions (expressed in a local coordinate system) of246

collection points RP L = {r pl j } and their respective RSS247

values SI = {si j } measured for an AP. Once the model M is248

ready, it serves for predicting the RSS values SO = {so j } for249

a set of positions T P L = {t pl j } using the Algorithm 2.250

The set Frp in Equation 1 is a representation of the obstacles251

between r p and ap using the information of the image’s cells252

that lie in that path. The cell values in the image Im represent253

either free space or an obstacle (black or white). Thus,254

the model is trained to learn the influence of an obstacle cell255

value at a given distance from an AP in the signal propagation.256

This work did not differentiate among distinct types of obstacle257

materials for simplicity, despite Equation 2 allows the range258

[1, . . . , 255] for obstacle representation. Setting appropriate259

opaqueness for each material requires additional consideration260

Fig. 3. Relation between training covered area and positioning accuracy
for Library 5th Floor (left) and Mannheimm (right).

and measurements. Equation 1 includes half of the distance 261

between r p and ap. Using the actual value of the distance 262

significantly decreased the obstacles influences in the model. 263

The number of variables presented in Equation 1 depends on 264

the environment and the AP position. Finally, according to our 265

experience, we selected the Support Vector Regression (SVR) 266

with a linear kernel function as regressor. 267

IV. EXPERIMENTS AND RESULTS 268

A. Influence of RPs Distribution on IPS Accuracy 269

The goal of the radio map in WiFi fingerprinting is to 270

characterize the signal propagation in the target environment. 271

As the main fingerprint methods (including k-NN) can only 272

provide position estimates within the convex hull of the 273

reference sample locations, we hipotetise that the number 274

and distribution of the collected samples are strongly related 275

quality of the radio map and, hence, the accuracy of the IPS. 276

For that purpose, we have evaluated the performance of 277

the radio map in two environments and four different cases: 278

with 100%, 75%, 50% and 25% of RPs. Except for 100%, 279

we repeated the evaluation 400 times with different initializa- 280

tion to cover multiple random scenarios. In all cases, we report 281

the results provided by the optimal k-value (from the set 282

[1, . . . , 15]). The results are reported as a scatter in Figure 3 283

for Library 5th floor (left) and Mannheim (right). 284

Every point in the figure represent the area of the reduced 285

radio map’s convex hull and the best accuracy reported by the 286

k-NN method with that data set. The accuracy corresponds 287

to the Q3 value, i.e., the 75th percentile as done in IPIN 288

Competition. The color indicates the size of the radio map case 289

(100%, 75%, 50% and 25%). A clear trend can be observed 290

in the two environments, the large the area covered, the best 291

positioning accuracy. In contrast, the worst positioning results 292

came when the convex hull of the reference radio map was 293

small. This is because the kNN method can provide position 294

estimates only within the convex hull of the reference points. 295

Good accuracy can be reached with a reduced radio map if 296

the reference points cover the full operational area. 297

The figure also shows that the distribution of reference 298

points is relevant. Even for a high covered area, the positioning 299

accuracy can vary up to more than 2 m in the three cases. 300

The largest differences in positioning are observed for cases 301

with low RPs density (i.e. 25%). To evaluate the relation 302

between covered area and accuracy, we calculated the Pearson 303

correlation between the area and the Positioning error in the 304
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third quartile in the 1201 points. The correlation factor (ρ) for305

Mannheim is −0.77, whereas it is −0.89 for Library. In both306

cases, the significance (p-value) is much lower than 0.05307

showing that the inverse correlation is statistically significant.308

Our hypothesis is that placing reference points near the inner309

boundary of the collection area would maximize the covered310

area and assure that test positions are located inside the convex311

of the training positions. Finding those positions is a trivial312

task and can be provided by, for instance, alpha-shape [48].313

Thus empirical data collection can be optimized to relevant314

places according to the imposed restrictions. The restrictions315

will somehow will be an indicator of the density and distrib-316

ution of the empirical reference points, which will be located317

only at feasible locations (e.g. there are no samples inside a318

wall). If the radio map needs to be enrichted, regression can be319

used to synthetically generate new reference samples in those320

positions that lack of empirically collected data.321

One strategy for creating the set of reference points is to322

first add reference points lying close to environment bound-323

ary and later add a number of points mp that maximize324

the mean minimum distance among the points in the set.325

In kNN, the estimated position is commonly computed as326

the centroid of the positions of the most similar samples in327

the training dataset. Thus, maximizing the minimum distance328

among the reference points reduces the areas without position329

estimates produced by kNN. Such an even distribution of330

point also benefits regressions as it provides intermediate331

positions that help explain non-linear behaviors. The value332

of mp may be dictated by the affordable collection effort.333

For low values of mp, like those below 20, a brute force334

approach may be applied to determine the mp positions335

of the reference points. For large mp values, a Monte336

Carlo approach [49] can be used. This work used an opti-337

mization approach based on agents moving under repulsion338

forces [50].339

To explore the convenience of using the previous training340

points distribution, the Pearson correlation test was applied341

between the mean minimum distance and the positioning342

error for several distributions of training points. The tests343

were performed 400 independent times (with random sets344

of reference points that included the shape boundary) sepa-345

rately for each of the two environments. The position esti-346

mations were obtained with kNN, using the best k for the347

training set.348

Table I presents the correlation results. The negative correla-349

tion between the mean minimum distance and the positioning350

accuracy is not statistically significant. For the Library envi-351

ronment, the negative weak to moderate correlation appears352

only for large sets, and it is statistically significant for353

them. The correlation is consistently negative for all set354

sizes in the Mannheim environment. However, its statisti-355

cal significance does not show a clear pattern. The results356

from Table I suggest that the distribution of the inner ref-357

erence points proposed above is beneficial for environments358

that are large or have relatively dense collections. Despite359

it is desirable to avoid the existence of non-positionable360

zones, alternative distributions may be preferable for other361

environments.362

TABLE I
CORRELATION (ρ) AND STATISTICAL SIGNIFICANCE (p-VALUE)

BETWEEN THE MEAN MINIMUM DISTANCE AMONG TRAINING POINTS

AND THE THIRD QUARTILE OF THE POSITIONING ERROR (Q3)
FOR DIFFERENT SIZES OF THE RADIO MAP

(FROM 25� TO 90� OF RPS)

B. Influence of AP Strength on Positioning Accuracy 363

It is known that the signal strength from an AP logarithmicly 364

decreases as the distance to the AP increases. Thus, it is 365

expected that the closer to the emitter the larger the expected 366

variations in the signals. A radio map should grasp as much 367

as the signal variations in the environment as possible. Having 368

reference points close to the emitter increases the likelihood 369

of incorporating much of those variations. 370

This subsection explores the correlation between AP prox- 371

imity to the collection area and the positioning accuracy of 372

a kNN method. Determining the distance to an AP requires 373

knowing the actual position of the AP. Given that the knowl- 374

edge of AP positions is commonly not assumed for finger- 375

printing, we inferred proximity from the RSS values. The RSS 376

values for an AP measured in an area should be strong if the 377

AP is close to that area or inside it. 378

Let us assume a radio map RM (training set) and a test 379

set. Let maxa = max({rp,i,a}) be the strongest RSS value 380

for the ath detected AP in RM , with 1 ≤ a ≤ m and m 381

being the number of APs. Let qap (median inferred proximity) 382

be the Q2 value of {maxa}. Let qpe (positioning accuracy) be 383

the Q3 value of positioning errors obtained by a kNN method 384

using the above training and test sets. 385

Here, we also created 400 random subsets containing the 386

25% of an original training set (either for the Library or 387

Mannheim). For each subset RMs , the qaps and qpes were 388

computed. For qpes , the kNN method used RMs as training set 389

and the original test set. Then, the Pearson correlation test was 390

applied on the sets {qaps} and {qpes}, with 1 ≤ s ≤ 400. The 391

test results are shown in Table II. For the two environments, 392

the correlation results were statistically significant. The low 393

to moderate negative correlation indicates that high accuracy 394

is associated with low proximity values (weak RSS). Thus, 395

the results suggest the convenience of distributing some refer- 396

ence points in zones of the collection area where nearby APs 397

are may result in large signal variations. 398
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TABLE II
CORRELATION TEST RESULTS BETWEEN qap (MEDIAN INFERRED

PROXIMITY) AND qpe (POSITIONING ACCURACY)

TABLE III
CORRELATION BETWEEN MEAN VALUES OF SIGNAL STRENGTH IN THE

ENVIRONMENT AND MEAN VALUES OF REGRESSION RESIDUALS

C. Influence of AP Strength on RSS Regressions399

The following experiments addressed the notion of the400

convenience of having more reference points close to nearby401

APs in relation to the regression or interpolation results.402

The goodness of a regression or an interpolation applied to403

radio map densification is normally assessed by the difference404

between the estimated RSS and their actual values. The405

interpolation methods used in the experiments were Nat-406

ural Neighbours [51], (Bi)Cubic Interpolation [52], [53] and407

Inverse Distance Weighting [54]. The regression methods used408

in the experiments were Support Vector Machines (SVM) [55],409

Gaussian Process [56], Generalized Linear Models [57], Deci-410

sion Trees (DT) [58], and Ensembles of Decision Trees [59].411

The interpolation and regression methods, hereinafter only412

called regression methods, were applied using training points413

to fit the model and tests point to compute RSS estimates. The414

mean RSS value for an AP and a reference point was used to415

train the regression model for an AP and to later compute the416

regression residuals. The residuals are the AP-wise absolute417

difference between RSS estimates provided by the regression418

and the actual RSS used for training.419

Table III shows the correlation values between signal420

strength and regression residuals for each environment. Let421

Sj = {s1, . . . , sn} and R j = {r j,1, . . . , r j,n} be two sets, where422

n is the number of APs detected in that environment. The value423

si was computed as the mean RSS value of the i th AP in the424

environment, considering all reference points. The value r j,i425

was computed as the mean of the residual values obtained426

for the i th AP applying the j th regression method in the427

environment. The values for the signal strength and regression428

residuals used for the correlation test in an environment are the429

sets {S1, . . . , Sm} and {R1, . . . , Rm}, where m is the number430

of regression methods.431

The correlation is statistically significant for the two432

environments. The correlation magnitude is weak for the433

Mannheim environment but notable for the Library environ-434

ment. The higher the median value of the signal strength in435

the environment, the larger the residuals of the regressions.436

The correlation difference between the two environments is437

a likely result of the dimensions of the environments. The438

Mannheim environment is large, and thus the detected signal439

Fig. 4. Mean value of residuals distribution compared to mean value of
RSS for the library environment.

intensities for an AP can be very strong in some areas and very 440

weak at some other areas. Very strong and very weak signal 441

intensities are not detected for the same AP in the Library 442

environment. 443

Figure 4 shows the relation between the strength with which 444

an AP is seen in an environment and the regression goodness. 445

The investigation was performed for two APs in the Library 446

environment (one with weak and one with strong RSS values). 447

The charts from Figure 4 present for each AP includes the 448

median value for the RSS values of the AP at each reference 449

point and the median value of the regression residuals at 450

each reference point. In particular, figure 4a shows regression 451

residuals of moderate values for the weak AP, while Figure 4b 452

shows regression residuals for the strong AP that are not only 453

notably larger than those for the weak AP but also mainly 454

situated in a specific zone of the environment. 455

The charts suggest that for weak, far away APs, the regres- 456

sion requires only a few samples to train a model, as the 457

APs signals are only weakly affected by the environment. 458

However, the strength values of signals from APs near the 459

target environment heavily depend on the Line of Sight (LOS) 460

and Non Line of Sight (NLOS) situations. 461

Table IV presents the spatial auto-correlation test as 462

obtained by Moran’s I [60] for the two antennas addressed 463

in Figure 4. The table suggests that for APs strongly seen 464

across the environment the distribution of regression residuals 465

is not random and tends to organize in clusters; while for APs 466

weakly seen in the environment the distribution of residuals is 467

likely random. As stated in the literature [61], the environment 468

influence is less significant for weak than for strong signals. 469

Furthermore, the signal in free space follows a logarithmic 470

decay, i.e., the farther from the AP the slower the decay 471

rate. The tested regression models fail to account for a spatial 472
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TABLE IV
SPATIAL AUTO-CORRELATION (MORAN’S I)

OF REGRESSION RESIDUALS

process induced by the environment for strong signals. Thus,473

samples are required in zones of LOS and NLOS with respect474

to nearby APs, given that the RSS values in those two475

situations can be significantly different.476

Given the moderate correlation obtained in some of the477

analyses, and that the experiments were only performed in two478

environments, a reference point position determination method479

is not proposed. However, such determination method may480

have the following steps:481

1) Place some reference points in the boundaries.482

2) Distribute the rest of point maximizing the mean mini-483

mum distance among reference points.484

3) Adjust the distribution to have some points closer to485

nearby APs.486

4) Tend to LOS situations, assuring to place points in LOS487

and NLOS situations.488

This work recommends the previous method steps as a set of489

guidelines that follow after the results of the analyses provided490

in this section. The most common approach of placing the491

reference points on a grid does not take into account the492

environment characteristics. The guidelines suggest adapting493

the sampling positions to the environment and highlight the494

importance of knowing the position of nearby antennas. Thus,495

the following two experiments address the environment aware496

regression and its evaluation on the Library environment.497

We selected the Library as the evaluation environment because498

the benefits from including environment knowledge into a499

regression model were expected to be greater for the Library500

than for Mannheim, as suggested by the correlations shown501

in Table III. Furthermore, the Library environment represents502

a medium-size open area with many obstacles (bookshelves),503

in which a positioning service is commonly desired.504

D. Environment Aware Regression Assessment505

The regression models were generated using the reference506

points that defined the boundary of the collection area (see507

Figure 2), which represent less than 8% of all available508

reference points. The remaining reference points were used509

to compute the regression residuals. The experiments only510

included APs that had measurements for all reference points.511

Figure 5 presents the regression estimates for APs 15, 49512

and 8 provided by a baseline that combines Natural Neighbour513

interpolation and Gradient Extrapolation and by the proposed514

regression model based on Support Vector Machine. For our515

proposed Model, the images were smoothed using 9 pixels516

square windows convolution.517

Given the small number of training points, the two regres-518

sions performed remarkably well for the APs located inside519

the collection area, APs 15 and 49. The proposed regression520

Fig. 5. Regression estimates for APs 15, 49 and 8.

TABLE V
75th PERCENTILE OF REGRESSION RESIDUALS IN DB

can clearly capture the influence of obstacles in the radio 521

map. For an AP outside the collection zone, the difference 522

between Baseline and Model regression is not significant as 523

the environment has little impact on the propagation of weak 524

signals. The proposed model captures such behavior, and thus 525

its estimates mostly depend on the distance to APs. 526

Figure 6 presents the regression residuals obtained using the 527

baseline and our proposed model. The residuals obtained for 528

the proposed model are consistently better than those from the 529

baseline. For AP 15, the maximum residual value was about 530

10 dBm smaller in the proposed model than in the baseline. 531

For AP 49, the maximum residual values were similar for 532

the two approaches. However, the proposed model performed 533

notably better than the baseline regarding percentiles between 534

the 25th and 75th . For AP 8, the difference in residual values 535

is less notable than for the previous two AP, which is in part 536

a result of notably lower residual values. 537

Table V presents the 75th percentile of regression residuals 538

for the proposed model and the baseline method. The results 539

are provided for some relevant APs, i.e., those APs with 540

valid measurements available for all (106) reference points. 541

Additionally, we included AP 71 (which had measurements 542

for 105 points) and one weakly seen AP (AP 8). The 543

proposed method performs better than the baseline for all 544

selected APs. 545
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Fig. 6. Regression residuals CDF of baseline and our model.

V. EMPIRICAL VALIDATION546

This section includes the empirical validation by applying547

together the two main contributions of this paper: the con-548

venient positions where to collect the reference samples and549

the improved RSS regressor to enhance the radio map. For550

that purpose, we have used the data collected for the first551

month from the Library dataset [42]. It corresponds to a real552

environment with several obstacles (bookshelves and people)553

whose data collection was independent to this research work.554

Traditional: The set 01 from the training set was used as555

reference data (radio map), and the sets 02–05 from the556

evaluation set were used for evaluation.557

Measurement: Only the testing data (sets 01–05) was used for558

reference and evaluation. The 8 points highlighted in Figure 2559

are used as training data (radio map), whereas the remaining560

points are used for evaluation.561

Interpolation – Baseline: Similar to Measurement, but Nat-562

ural Neighbors interpolation model is applied to increase the563

density of data in the training set.564

Interpolation – Proposed model: Similar to Measurement,565

but our proposed interpolation model is applied to increase566

the density of data in the training set.567

Following the ISO 18305 Standard for test and evaluation of568

localization and tracking systems, we report the results using569

the mean, median and 95th percentile (P95) of the positioning570

error in Table VI. Additionally, we provide the Third quartile571

(Q3) as done in the IPIN Competition [62] and the 90th
572

percentile (P90).573

As expected, the traditional approach, where multiple ref-574

erence positions (24 in this case) are equally distributed in575

the operational area, is providing the best overall results,576

except, surprisingly, for the P95 metric. The measurement577

approach (with 8 reference points) is, as expected, providing578

the worst results as a few reference points are located in579

the periphery. Both interpolations, the Natural Neighbors and580

TABLE VI
RESULTS OF THE EMPIRICAL EVALUATION

Fig. 7. Positioning accuracy.

our proposed model, improve the results of the measurement 581

approach. In general, our model is providing the best results 582

using the reduced set of reference points. With a few reference 583

points, we achieved a mean accuracy below 4 m and percentile 584

errors close to the traditional approach. 585

Analysing the CDF plot (Figure 7) we can observe that: 586

i) below 30th percentile, the traditional approach and both 587

interpolations perform similarly; ii) between 30th and 80th
588

percentiles, the traditional approach is clearly the best method 589

(at the expense of collecting 3 times more reference data); and 590

iii) the traditional approach and our proposed method have a 591

similar performance in values above 80th percentile. 592

VI. CONCLUSION 593

This paper has addressed the reduction of collection efforts 594

for WiFi fingerprinting with two proposals. The first proposal 595

is a set of guidelines to determine convenient positions where 596

to collect WiFi samples. The second proposal is a model 597

that improves the RSS regression estimates for APs that are 598

strongly seen in the collection area. The guidelines were 599

drawn from experiments that analyzed the effect that the 600

distribution of collection points and the intensity of the APs 601

in the environment have in (1) the accuracy of an IPS and 602

(2) in the quality of a regression that could be applied to 603

enrich the radio map. The guidelines highlight the importance 604

of situating collection points around the boundaries of the 605

target environment. Also, zones that are close to APs require 606

more collection points than others. Thus, the position of 607

an AP was shown to be an important piece of information 608

for the determination of collection positions. Furthermore, 609

the regressions and interpolation methods are shown to provide 610

very good estimates for AP weakly seen in the environment. 611

The proposed model considers the influence of obstacles to 612

improve WiFi RSS regressions for APs strongly seen in the 613
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environment. The model requires an approximate reference614

position of the AP whose RSS are to be estimated. The ref-615

erence AP position and raw map information of the obstacles616

in the environment are used to create the training features for617

a Support Vector Machine regression. The regression proposal618

provided RSS estimates better than other regression or inter-619

polation methods in the test environment and selected (strong)620

APs. The benefits of the regression proposal were also tested621

according to the positioning accuracy of a kNN method. The622

kNN was applied (1) using the radio map composed only by623

collected samples, (2) using the radio map created with other624

regression or interpolation methods, and (3) using the radio625

map created with our regression proposal. The best positioning626

accuracy was obtained using the third option.627

The regression model presented in this paper could be628

considered a first step towards the definition of more general629

regression models or methods where, for instance, the type of630

material could be considered. To the best of this work’s knowl-631

edge, there is no interpolation method, regression method,632

or tool that allows the direct modeling of the environment633

influence (presence of obstacles and walls) on a measured634

phenomenon.635

The idea behind the regression model proposed in this paper636

could inspire others to include the environment characteristics637

into the existent methods that consider the spatial relation638

between measurements. We acknowledge that more ambitious639

conclusions would have reached with a more comprehensive640

evaluation. However, some methods proposed in the literature641

are not fully reproducible (some parameters are still missing)642

and the set of diverse data sets available for positioning do not643

contain enough information to integrate maps. We, the indoor644

positioning community, need to adopt and promote repro-645

ducible practices as well as creating rich data sets following646

international standards and ensuring interoperability. Further647

research is still needed to test the proposed method in a648

more challenging industrial environments and/or using BLE649

as positioning technology.650
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