38,238 research outputs found

    Blade fault diagnosis using artificial intelligence technique

    Get PDF
    Blade fault diagnosis is conventionally based on interpretation of vibration spectrum and wavelet map. These methods are however found to be difficult and subjective as it requires visual interpretation of chart and wavelet color map. To overcome this problem, important features for blade fault diagnosis in a multi row of rotor blade system was selected to develop a novel blade fault diagnosis method based on artificial intelligence techniques to reduce subjective interpretation. Three artificial neural network models were developed to detect blade fault, classify the type of blade fault, and locate the blade fault location. An experimental study was conducted to simulate different types of blade faults involving blade rubbing, loss of blade part, and twisted blade. Vibration signals for all blade fault conditions were measured with a sampling rate of 5 kHz under steady-state conditions at a constant rotating speed. Continuous wavelet transform was used to analyse the vibration signals and its results were used subsequently for feature extraction. Statistical features were extracted from the continuous wavelet coefficients of the rotor operating frequency and its corresponding blade passing frequencies. The extracted statistical features were grouped into three different feature sets. In addition, two new feature sets were proposed: blade statistical curve area and blade statistical summation. The effectiveness of the five different feature sets for blade fault detection, classification, and localisation was investigated. Classification results showed that the statistical features extracted from the operating frequency to be more effective for blade fault detection, classification, and localisation than the statistical features from blade passing frequencies. Feature sets of blade statistical curve area was found to be more effective for blade fault classification, while feature sets of blade statistical summation were more effective for blade fault localisation. The application of feature selection using genetic algorithm showed good accuracy performance with fewer features achieved. The neural network developed for blade fault detection, classification, and localisation achieved accuracy of 100%, 98.15% and 83.47% respectively. With the developed blade fault diagnosis methods, manual interpretation solely dependent on knowledge and the experience of individuals can be reduced. The novel methods can therefore be used as an alternative method for blade fault diagnosis

    Multi-filter semi-supervised transformer model for fault diagnosis

    Get PDF
    Dissolved Gas Analysis (DGA) is the most commonly used method for power transformer fault diagnosis. However, very few reliable and labeled fault DGA samples are available in the transformer substation whilst DGA data without labels is easier to obtain, which makes it difficult to train fault detectors in high-dimensional input space or select features using wrapper methods. Therefore, in order to improve the fault diagnosis accuracy using limited labeled DGA samples but more unlabeled DGA data, this paper proposes a novel multi-filter semi-supervised feature selection method for selecting optimal DGA features and building effective fault diagnosis models. A confidence criterion is also proposed for selecting high confidence unlabeled data to expand the training data set. Five filter techniques based on different evaluation criteria are employed to rank input DGA features, and a feature combination method is then applied to aggregate feature ranks by multiple filters and form a lower-dimensional candidate feature subset. The proposed method has been tested by using the IEC T10 dataset and compared with traditional supervised diagnostic models. The results show that the proposed method works well in optimizing DGA features and improving fault diagnosis accuracy significantly. Besides, the robustness of the selection of optimal feature subset is validated by testing DGA samples from the local power utility

    Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordGearbox is the key functional unit in a mechanical transmission system. As its operating condition being complex and the interference transmitting from diverse paths, the vibration signals collected from an individual sensor may not provide a fully accurate description on the health condition of a gearbox. For this reason, a new method for fault diagnosis of gearboxes based on multi-sensor data fusion is presented in this paper. There are three main steps in this method. First, prior to feature extraction, two signal processing methods, i.e. the energy operator and time synchronous averaging, are applied to multi-sensor vibration signals to remove interference and highlight fault characteristic information, then the statistical features are extracted from both the raw and preprocessed signals to form an original feature set. Second, a coupled feature selection scheme combining the distance evaluation technique and max-relevance and min-redundancy is carried out to obtain an optimal feature set. Finally, the deep belief network, a novel intelligent diagnosis method with a deep architecture, is applied to identify different gearbox health conditions. As the multi-sensor data fusion technique is utilized to provide sufficient and complementary information for fault diagnosis, this method holds the potential to overcome the shortcomings from an individual sensor that may not accurately describe the health conditions of gearboxes. Ten different gearbox health conditions are simulated to validate the performance of the proposed method. The results confirm the superiority of the proposed method in gearbox fault diagnosis.National Natural Science Foundation of Chin

    A New Bearing Fault Diagnosis Method based on Fine-to-Coarse Multiscale Permutation Entropy, Laplacian Score and SVM

    Get PDF
    Fault diagnosis of rotating machinery is vital to identify incipient failures and avoid unexpected downtime in industrial systems. This paper proposes a new rolling bearing fault diagnosis method by integrating the Fine-to-Coarse Multiscale Permutation Entropy (F2CMPE), Laplacian Score (LS) and Support Vector Machine (SVM). A novel entropy measure, named F2CMPE, was proposed by calculating permutation entropy via multiple-scale fine-grained and coarse-grained signals based on wavelet packet decomposition. The entropy measure estimates the dynamic changes of time series from both low- and high-frequency components. Moreover, the F2CMPE mitigates the drawback of producing time series with sharply reduced data length via the coarse-grained procedure in the conventional Composite Multiscale Permutation Entropy (CMPE). The comparative performance of the F2CMPE and CMPE is investigated by analyzing synthetic and experimental signals for entropy-based feature extraction. In the proposed bearing fault diagnosis method, the F2CMPE is first used to extract entropy-based features from bearing vibration signals. Then, LS and SVM are used for selection of features and fault classification respectively. Finally, the effectiveness of the proposed method is verified for rolling bearing fault diagnosis using experimental vibration data sets, and the results have demonstrated the capability of the proposed method to recognize and identify bearing fault patterns under different fault states and severity levels

    Sensor Selection and Location Scheme for Prognostic and Health Management

    Get PDF
    The performance of electronic vehicle PHM relies not only on the diagnostic and prognostic algorithms used, but also on the types, location, and number of sensors selected. The paper firstly presents the architecture for PHM. Sensor localization and selection for fault diagnostic purposes is the importance part. It introduces the new sensor approach for PHM, such as smart sensor. Sensor localization and selection for fault diagnosis has been studied. A novel scheme for a diagnostic and prognostic system to integrate the functions of sensor localization and selection, feature extraction, mode identification, fault diagnosis and prognosis is introduced. The detailed process includes modeling, FMECA research, FOM, optimization algorithm and performance assessment .The algorithm combines particle swarm optimization method with a heuristic search algorithm to solve the NP question

    A novel intelligent fault diagnosis method of rotating machinery based on deep learning and PSO-SVM

    Get PDF
    A novel intelligent fault diagnosis method based on deep learning and particle swarm optimization support vectors machine (PSO-SVM) is proposed. The method uses deep learning neural network (DNN) to extract fault features automatically, and then uses support vector machine to classify diagnose faults based on extracted features. DNN consists of a stack of denoising autoencoders. Through pre-training and fine-tuning of DNN, features of input parameters can be extracted automatically. This paper uses particle swarm optimization algorithm to select the best parameters for SVM. The extracted features from multiple hidden layers of DNN are used as the input of PSO-SVM. Experimental data is derived from the data of rolling bearing test platform of West University. The results demonstrate that deep learning can automatically extract fault feature, which removes the need for manual feature selection, various signal processing technologies and diagnosis experience, and improves the efficiency of fault feature extraction. Under the condition of small sample size, combining the features of the multiple hidden layers as the input into the PSO-SVM can significantly increase the accuracy of fault diagnosis

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version
    corecore