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A B S T R A C T

Dissolved Gas Analysis (DGA) is the most commonly used method for power transformer fault diagnosis.
However, very few reliable and labeled fault DGA samples are available in the transformer substation whilst
DGA data without labels is easier to obtain, which makes it difficult to train fault detectors in high-dimensional
input space or select features using wrapper methods. Therefore, in order to improve the fault diagnosis
accuracy using limited labeled DGA samples but more unlabeled DGA data, this paper proposes a novel multi-
filter semi-supervised feature selection method for selecting optimal DGA features and building effective fault
diagnosis models. A confidence criterion is also proposed for selecting high confidence unlabeled data to
expand the training data set. Five filter techniques based on different evaluation criteria are employed to rank
input DGA features, and a feature combination method is then applied to aggregate feature ranks by multiple
filters and form a lower-dimensional candidate feature subset. The proposed method has been tested by using
the IEC T10 dataset and compared with traditional supervised diagnostic models. The results show that the
proposed method works well in optimizing DGA features and improving fault diagnosis accuracy significantly.
Besides, the robustness of the selection of optimal feature subset is validated by testing DGA samples from
the local power utility.
. Introduction

Power transformers are important transmission and transformation
quipment in the power grid, which undertake the tasks of voltage
onversion and current transmission. Failure of a power transformer
ill lead to disconnection of the system and economic losses (Ma et al.,
021). Therefore, the study of transformer fault diagnosis not only
trengthens the deep integration with the energy industry, but also will
reatly improve the health level of transformers, ensure the reliable
upply of clean energy across regions. Dissolved Gas Analysis (DGA) is
he most commonly used method for power transformer fault diagnosis.
he content of dissolved gases in the oil commonly includes H2, CH4,
2H2, C2H4, C2H6, CO and CO2. In recent years, various criteria for

ransformer fault diagnosis based on DGA have been proposed, such
s those reported in total gases (The Institute of Electrical and Elec-
ronics Engineers, 1992), Doernenberg (The Institute of Electrical and
lectronics Engineers, 1992), Rogers (Rogers, 1978), Duval Triangles
ethod (Mawelela et al., 2020) and IEC 60599 (Duval and Depabla,

001). These criteria often lead to misjudgment and omission of judg-
ent due to incomplete coding and absolute boundary. In Table 1,

he advantages and disadvantages of the criteria are compared. At
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E-mail address: Qhhchina689@163.com (J. Qi).

present, DGA has the problem of the low transformer diagnosis. A large
number of offline and online DGA data are idle and not used effectively.
However, traditional DGA mainly relies on manual experience and
IEC method, which results in low accuracy. Therefore, it is urgent
to introduce advanced AI algorithms for DAG data mining. Artificial
intelligence techniques have been widely used in this field because it
can establish complex nonlinear relationships between DGA content
and transformer faults. Clustering based Method (CBT), Fuzzy Logic
Inference System (FLIS), Artificial Neural Network (ANN), Support
Vector Machine (SVM), Fisher Linear Discriminant Analysis (FLDA)
and other AI techniques have been widely used in transformer fault
diagnosis and achieved good results. However, CBT can only divide the
fault samples into several different sub-classes rather than diagnose the
fault types of DGA samples. The inference rules and fuzzy membership
functions of FLIS are largely dependent on experience. ANN is prone
to fall into local minimum and over-fit. The performance of SVM is
greatly influenced by parameters. Among these methods, FLDA is an
effective method and has the advantages of fast calculation and no need
of hyperparameter adjustment.

Compared with semi-supervised method, most traditional super-
vised AI methods need a large number of labeled DGA data for building
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Table 1
The advantages and disadvantages comparison of the different criteria.

Method Feature sets Benefits Drawbacks

Total gases (The
Institute of
Electrical and
Electronics
Engineers, 1992)

H2, CH4, C2H2, C2H4, C2H6, CO,
CO2.

Preliminary determination of transformer fault type Only the characteristic gas content cannot diagnose
transformer fault type effectively

Dornenburg (The
Institute of
Electrical and
Electronics
Engineers, 1992)

CH4∕H2, C2H2∕C2H4, C2H2/CH4,
C2H6∕C2H2

The non-coding fault diagnosis method avoids the
misjudgment caused by the lack of coding and the
absolute coding interval

If the gas concentration is too low, transformer failure
cannot be determined

Roger (Rogers,
1978)

C2H6/CH4, C2H2∕C2H4, CH4∕H2,
C2H4∕C2H6

The mapping relationship between gas content ratio and
fault type is established

Some ratios can only reflect the finite temperature range
of thermal decomposition and cannot reflect discharge
faults

IEC 60599
(Duval and
Depabla, 2001)

C2H2∕C2H4, CH4∕H2, C2H4∕C2H6 Simple coding method, less dependence on personnel
experience, thus reducing the probability of misjudgment

Misjudgment between different faults near the boundary
may occur because of too clear boundary,and there is no
coding combination of corresponding fault type (lack of
coding combination)

Duval triangle
(Mawelela et al.,
2020)

CH4, C2H4, C2H2, CH4/TT,
C2H4/TT, C2H2/TT
(TT=(CH4+C2H4+C2H2))

The fault diagnosis results are complete, and the situation
is not occur that real data cannot find the corresponding
diagnosis or judge the failure

The use of content ratio diagnosis in low gas content
situations tends to magnify accidental test errors
a fault diagnosis model and improving accuracy. Gouda et al. (2019b,a)
proposed two supervised techniques which respectively consider the
effect of cellulose insulation failure and C2H6 and H2 concentrations
for their importance in diagnosing certain types of faults, and analyze
the concentration of combustible gases and interpreting their results in
detecting and evaluating the incipient fault condition of oil-immersed
transformers. In addition, Gouda et al. (2021) also provided a new con-
cept using supervised artificial intelligence for enhancing the diagnostic
accuracy of the conventional DGA method such as Dornenburg ratio,
Rogers’ ratio and IEC standard.

In fact, very few reliable and labeled fault DGA samples are avail-
able in the transformer substation. There are two reasons: (1) The fault
data on-site is scarce and labeling the actual fault data may not be ac-
curate, so it is necessary to disassemble the transformer for confirming
the real fault type and obtaining reliable fault category samples, which
is very costly. (2) Due to the interests of many companies, transformer
fault data is not transparent, which results in limited transformer fault
data with some distortion. This means that traditional AI algorithms
cannot diagnose transformer faults effectively. Nevertheless, unlabeled
DGA data is readily available. Semi-supervised Learning (SSL) can use
a small amount of labeled DGA data as guidance and a large amount
of unlabeled DGA data to improve the learning performance, which is
a powerful mathematical model for transformer fault diagnosis when
fault DGA samples are scarce. In the field of transformer fault diagnosis,
most of the existing research work focused on Supervised Learning
(SL) using a large amount of labeled data to build models, but the
application of SSL in transformer fault diagnosis is very rare. Chen
(2016) proposed a fault diagnosis method based on SSL, in which an
SSL method based on fuzzy nearest neighbor label propagation was
adopted to diagnose faults of power transformers. Mirowski and LeCun
(2012) tested two SSL algorithms on DGA datasets and verified the
effectiveness of low-dimensional scaling (LDS) and local linear semi-
supervised regression (LLSSR) in fault diagnosis. Mao et al. (2022)
proposed a fault diagnosis method based on deep neural networks
and a semi-supervised transfer learning framework called Adaptive
Reinforcement (AR) for solving small samples problem. However, there
was not much analysis and comparison for the benefits of SSL in
DGA, and the importance of feature selection to improve the fault
diagnosis accuracy was also not proved and discussed. Existing SSL
methods include self-training, co-training, generative model and graph
regularization framework (Song et al., 2022; Wei et al., 2021). Self-
training has many advantages. It does not need specific assumptions
like co-training, and it also does not need to estimate parameters like
generative models and construct complex graph model like graph-
based methods. Self-training only needs one classification model, a
2

small number of labeled samples and a large number of unlabeled
samples to complete the complex task. Therefore, this paper proposes
to combine self-training with DGA feature selection for improving the
fault diagnosis accuracy iteratively. However, it is difficult to improve
classifier performance in the iterative process if unlabeled samples
used to update the initial model are mislabeled in SSL, and there
needs a confidence criterion to find some data with high confidence
from unlabeled data. Therefore, this paper also proposes a confidence
criterion based multi-classification FLDA for selecting high confidence
DGA samples for self-training.

In the field of fault diagnosis and detection, feature selection is very
important in improving the performance of a model. Boztas and Tuncer
(2022) proposed a novel multi-leveled feature extraction network,
which use neighborhood component analysis and ReliefF-based 2-
layered feature selector to select most discriminative features. Thomas
et al. (2023) proposed a novel deep convolutional neural network
transformer model to feature extraction and automatically detect the
fault type in power system networks. Wang et al. (2023) combined the
convolutional neural network and the long short-term memory network
to apply into the fault detection. For transformer fault diagnosis, most
commonly used DGA features are based on gas ratios (Jamshed et al.,
2021). There are obvious differences among gas ratios used in the
literature and no unified standard is available for selecting features in
diagnostic models (Huang et al., 2018), so all DGA gases, gas ratios and
other useful features will be used as initial features of fault diagnosis in
this paper. However, redundant features tend to reduce the efficiency
of data processing and prediction classification rate. Some researchers
have proposed various semi-supervised feature selection methods in the
past ten years, which can be categorized into two types (Sheikhpour,
2017): filter and wrapper. A filter for feature selection scores features
with a ranking criterion regardless of the model for fault diagno-
sis (Chen et al., 2020), such as ReliefF (Khan et al., 2021), Mutual
Information (MI) (Gu et al., 2022), Infinite Latent Feature Selection
(ILFS) (Cai et al., 2021) and other methods for semi-supervised feature
selection. ReliefF technique was used for selecting optimal feature com-
binations among computing statistical values in terms of weights (Khan
et al., 2021). Gu et al. (2022) proposed a feature selection algo-
rithm based on conditional mutual information for maximal relevance,
minimal redundancy, and mutual information between feature sets
is exploited to describe redundancy. Generally speaking, filter-based
methods are fast, efficient and scalable (Chen et al., 2020; Khan et al.,
2021; Gu et al., 2022; Cai et al., 2021). Ren et al. (2008) proposed
a wrapper-type forward semi-supervised feature selection framework
that performs supervised sequential forward feature selection on both
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labeled and unlabeled data. Han et al. (2011) investigated a new
wrapper-type semi-supervised feature selection framework that can
select a more relevant feature subset using confident unlabeled data,
which employs an ensemble classifier that supports the estimation of
the confidence of unlabeled data. However, such wrapper-type methods
are usually time consuming for high-dimensional data. Therefore, this
paper develops a novel multi-filter semi-supervised method for DGA
feature selection. The method includes two stages. In the first stage,
each filter method is respectively used to rank features, with all samples
repeated 20 times randomly and 5-fold cross validation performed
based on SSL. In the second stage, feature combination methods based
on Proportion Wrapper Strategy (PWS) and Average Threshold Strategy
(ATS) are used to aggregate feature ranks based on multiple filters and
obtain a lower-dimensional candidate feature subset, respectively.

The key contributions of this paper given as below:
• SSL is applied in DGA fault diagnosis, which is rarely used in the

DGA field. It not only increases the application of SSL in DGA feature
selection, but also deep the analysis and comparison for the benefits of
SSL in DGA.

• A multi-filter semi-supervised fault diagnosis model based on
feature selection is proposed,

which only take advantage of few labeled DGA data to obtain
the Optimal Feature Combination (OFC) based on feature combination
methods after SSL feature ranking based multiple filters.

• A confidence criterion for the expansion of training data is pro-
posed. The criterion selects high confidence ones from unlabeled sam-
ples by analyzing the decision scores of FLDA multiple classifiers for
avoiding unknown distribution noise and improving classifier perfor-
mance.

A public DGA dataset IEC TC 10 is used to verify the effectiveness of
the proposed method. Consequently, the results show that the proposed
method can effectively find the OFC and significantly improve the accu-
racy of fault diagnose compared with traditional supervised diagnostic
methods. Another dataset provided by a national power company is
used to test and validate the robustness of the obtained OFC.

The rest of this paper is organized as follows. In Section 2, the
Two-stage Multi-filter SSL Features Selection based on FLDA (TMSSL-
FS-FLDA) method is proposed and a confidence criterion is introduced
for the expansion of training data in SSL, followed by experimen-
tal study for feature selection and validation based semi-supervised
and supervised learning in Session 3. Limitations are listed in Sec-
tion 4, and conclusions and future directions are presented in Section 5.
In addition, Appendix A lists abbreviations of term involved in the
paper.

2. Selection of Optimal Feature Combination (OFC) based on multi-
filter semi-supervised methods

It is necessary to remove irrelevant and redundant features, which
can shorten the training time and improve the accuracy of fault diagno-
sis. For supervised feature selection methods, sufficient labeled data is
used for feature selection, but it is difficult to obtain sufficient DGA
labeled data for transformer fault diagnosis as it is time-consuming
and expensive. Unsupervised feature selection methods evaluate feature
relevance only with unlabeled data and ignore the value of labeled
data. Semi-supervised feature selection methods can use both labeled
and unlabeled data for selecting better features. This paper proposes
a semi-supervised method based on filter criteria for DGA feature
selection. However, it is incapable to select the optimal feature subset
using a single filter criterion, while the combination of multi-filter

criteria can obtain more reliable feature subsets (Yang et al., 2010).

3

2.1. Multi-class FLDA for transformer fault classification based on SSL

In the paper, the FLDA (Atoui and Cocquempot, 2021) is applied
to solve the classification problem because of the advantages of fast
calculation and no need of hyperparameter adjustment. The FLDA aims
at finding a transformation matrix W which maximizes between-class
scatter and minimizes within-class scatter, i.e.,

𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑡𝑟(𝑊 𝑇𝑆𝑏𝑊 )
𝑡𝑟(𝑊 𝑇𝑆𝑤𝑊 )

(1)

where W is the LDA weight vector. Let
𝑋 = [𝑥11, 𝑥

2
1,… , 𝑥𝑁1

1 , 𝑥12, 𝑥
2
2,… , 𝑥𝑁2

2 ,… ..., 𝑥11, 𝑥
2
1,… , 𝑥𝑁𝑑

𝑑 ] be the data ma-
trix of training samples and 𝑁𝑑 be the number of samples in the 𝑑th
class. The within-class scatter matrix (𝑆𝑤) and the between-class scatter
matrix (𝑆𝑏) are defined as follows:

𝑆𝑤 = 1
𝑁

𝐾
∑

𝑑=1

𝑁𝑑
∑

𝑖=1
(𝑥𝑖𝑑 − 𝑚𝑑 )(𝑥𝑖𝑑 − 𝑚𝑑 )𝑇 (2)

𝑆b =
1
𝑁

𝐾
∑

𝑑=1
𝑁𝑑 (𝑚𝑑 − 𝑚)(𝑚𝑑 − 𝑚)𝑇 (3)

where 𝑚𝑑 = 1
𝑁𝑑

∑𝑁𝑑
𝑖=1 𝑥

𝑖
𝑑 is the mean vector of the 𝑑th class and 𝑚 =

1
𝑁

∑𝐾
𝑑=1

∑𝑁𝑑
𝑖=1 𝑥

𝑖
𝑑 is the total mean vector, N is the total number of

samples, and K=2 is the number of classes for the binary problem.
The decision score function f (x) is defined as

𝑓 (𝑥) = 𝑊 𝑥 + 𝑏 (4)

where 𝑏 = −
∑𝐾

𝑑=1 𝑁𝑑𝑚𝑑∕
∑𝐾

𝑑=1 𝑁𝑑 is the bias, and the sign of f (x) is
used to predict the class label for a given test sample. If f (x)>0, the
sample x belongs to the first class (class1), otherwise it belongs to the
second class (class2).

The original FLDA is used for solving the binary classification
problem, but the transformer fault classification is referred to multi-
classification. Therefore, it is necessary to expand the binary FLDA to
multi-class FLDA. In the paper, we select One-against-one (OAO) (Zheng
et al., 2011) for multi-class FLDA because of the effectiveness in
transformer fault classification. The OAO is used to train 𝑛 ∗ (𝑛−1)∕2(n
represent the number of class) binary FLDA classifiers with few initial
available labeled samples. After the training, 𝑛 ∗ (𝑛 − 1)∕2 decision
scores 𝑓𝑗(x) (𝑗 = 1, 2, . . . , 𝑛 ∗ (𝑛−1)∕2) are calculated separately based
on 𝑛 ∗ (𝑛 − 1)∕2 binary LDA classifiers for all unlabeled samples. When
classifying an unknown sample, the category with the most votes is the
classification result of the unknown sample.

2.2. The candidate features

Transformer oil and insulating paper (board) will decompose when
the transformer has an electrical or thermal fault. The decomposed
contents mainly include H2, CH4, C2H2, C2H4, C2H6, CO and CO2,
which are not enough as the input features of fault diagnosis algorithm
for accurate diagnosis. Features derived from dissolved gases can be
divided into three categories: gas concentration, gas ratio and gas rel-
ative percentage, which have discriminative power in different aspects
and degrees. However, it is still unclear whether gas concentration
or gas ratio or gas relative percentage is most relevant to the fault
types of power transformer. According to conventional approaches and
published literature (Wei et al., 2014; Koroglu and Demircali, 2016), a
comprehensive feature set is created, as shown in Table 2. In Table 2,
the first 11 features (number 1–11) represent gas concentration, the
next 49 features (number 12–60) represent gas ratio, and the final 4
features (number 61–64) represent key gas relative percentage.

2.3. Data pre-processing

Two DGA datasets are respectively gathered to establish semi-
supervised fault diagnosis model based on feature selection and test its
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Table 2
The original feature set for fault diagnosis.

Number Feature Number Feature Number Feature Number Feature

1 H2 17 CO2∕C2H2 33 C2H4∕H2 49 C2H2/THD
2 CH4 18 CO/C2H4 34 C2H6∕H2 50 C2H2/THH
3 C2H2 19 CO2∕C2H4 35 H2/TH 51 C2H2/TCH
4 C2H4 20 CO/C2H6 36 H2/THD 52 C2H6∕C2H4
5 C2H6 21 CO2∕C2H6 37 H2/THH 53 C2H4/TH
6 CO 22 CO/TH 38 H2/TCH 54 C2H4/THD
7 CO2 23 CO/THD 39 C2H2/CH4 55 C2H4/THH
8 TH 24 CO/THH 40 C2H4/CH4 56 C2H4/TCH
9 THD 25 CO/TCH 41 C2H6/CH4 57 C2H6/TH
10 THH 26 CO2/CO 42 CH4/TH 58 C2H6/THD
11 TCH 27 CO2/TH 43 CH4/THD 59 C2H6/TH
12 CO/H2 28 CO2/THD 44 CH4/THH 60 C2H6/TCH
13 CO2∕H2 29 CO2/THH 45 CH4/TCH 61 max(key gas)
14 CO/CH4 30 CO2/TCH 46 C2H4∕C2H2 62 10/(C2H4∕C2H2)
15 CO2/CH4 31 CH4∕H2 47 C2H6∕C2H2 63 C2H2/THD/0.21
16 CO/C2H2 32 C2H2∕H2 48 C2H2/TH 64 C2H6/THD/0.23

TH=H2+CH4+C2H2+C2H4+C2H6, THD=CH4+C2H2+C2H4, THH=H2+C2H2+C2H4, TCH=CH4+C2H2+C2H4+C2H6
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Table 3
The number of fault samples before and after ADASYN.

Faults LED HED LMT HT N

Before balance 26 48 16 18 50
After balance 49 48 46 49 50

performance. The public dataset, IEC TC10 dataset (Duval and Depabla,
2001), is utilized to build a fault diagnosis model based on feature
selection and select optimal input feature subset. Another dataset
provided by a national power company is used to test the performance
of the obtained OFC. In these two DGA datasets, transformer faults are
classified into six categories: Low-energy Discharge (LED), High-energy
Discharge (HED), Low and Middle-temperature overheat (LMT), High
Temperature overheating (HT), Partial Discharge (PD) and Normal
operation (N). In our experiment the PD samples are excluded because
the number of this class of samples is too small.

2.3.1. Data balance
Usually, the distributions of samples from different categories are

imbalanced, and the imbalanced distributions of DGA data will cause
the classification boundary shifting to the weak sample space, leading
to wrongly classify weak samples as strong samples and reduce the
performance of the classifier. To tackle data imbalance issue, many
data balance techniques (Zhang and Li, 2022), such as Synthetic Mi-
nority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling
Algorithm (ADASYN) and Bootstraps, have been used for balancing
samples. ADASYN is used to balance sample distribution in this paper.
The results are shown in Table 3.

2.3.2. Data conversion
For improving fault diagnosis performance Arctangent Transforma-

tion (AT) (Li et al., 2016) and normalization are carried out after
ADASYN. Let missing data be set to 0, the rule of AT for gas ratio and
gas relative percentage is described as follows:

𝑟𝑎𝑡𝑖𝑜 =

⎧

⎪

⎨

⎪

⎩

𝑥∕0 = 𝐼𝑛𝑓 , 𝑥 ≠ 0
0∕𝑥 = 0, 𝑥 ≠ 0
0∕𝑥 = NaN, 𝑥 = 0

⎫

⎪

⎬

⎪

⎭

⇒ 𝑇𝑟𝑎𝑡𝑖𝑜 =

⎧

⎪

⎨

⎪

⎩

arctan(inf) ≈ 1.571
arctan(0) = 0
NaN = 0

(5)

ata normalization is carried out as follows to avoid data singularity
nd eliminate the difference in value ranges of different features:

′
𝑖𝑗 =

𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛𝑗

𝑥𝑚𝑎𝑥𝑗 − 𝑥𝑚𝑖𝑛𝑗
(6)

where 𝑥𝑖𝑗 and x ′
𝑖𝑗 respectively represents the jth feature value of the ith

sample before and after normalization, 𝑥𝑚𝑎𝑥𝑗 and 𝑥𝑚𝑖𝑛𝑗 are the maximum
and minimum value of the jth feature.
4

2.4. Two-stage Multi-filter SSL Feature Selection based on FLDA (TMSSL-
FS-FLDA) for power transformer fault diagnosis

To select important DGA features, the TMSSL-FS-FLDA algorithm
for building fault diagnosis model and selecting OFC is proposed and
described in this section. The algorithm includes initialization, feature
ranking and feature selection. The steps of TMSSL-FS-FLDA are as
follows:

Initialization (Steps 1 to 3)
Step 1: Divide DGA fault samples. DGA fault samples is divided

nto training set 𝐷𝑇 and validation set 𝐷𝑉 after pre-processing. The
raining set 𝐷𝑇 is further divided into the labeled training set 𝐷𝐼 and
he unlabeled training set 𝐷𝐹 . Thus, the sample set consists of 𝐷𝐼 , 𝐷𝐹
nd 𝐷𝑉 .

Step 2: Train an initial classifier. Use the candidate features shown
n Table 1 and corresponding labels of set 𝐷𝐼 to train the initial FLDA

multi-class classifier based on OAO, and then predict the labels of the
samples in 𝐷𝐹 and 𝐷𝑉 .

Step 3: Calculate the decision scores. Calculate the decision scores
f FLDA multi-class classifier based on OAO in 𝐷𝐹 , denoted as Scores(m),
here m represents the number of iterations and is equal to 0 in

nitialization.

he first stage — feature ranking based on multi-filter semi-
upervised method (Steps 4 to 8)

Step 4: Update the training set. In the mth iteration, according to
he confidence criteria shown in Section 2.5, select samples with high
onfidence from the unlabeled training set 𝐷𝐹 and predict their labels,
orming a set of extended training samples denoted as 𝑄𝑚. Therefore,
new training set 𝑃𝑚 (𝑃m = 𝐷𝐼 ∪ 𝑄m) is constituted and the labels of
𝑚 are denoted as 𝑦𝑚(.).

Step 5: Retrain the classifier. Retrain FLDA multi-class classifier
ased on OAO by using the new training set 𝑃𝑚 and their corresponding
abels 𝑦𝑚(.), and then perform classification on 𝐷𝐹 and 𝐷𝑉 .

Step 6: Re-calculate the decision scores. Calculate the decision
cores of each sample in 𝐷𝐹 , denoted as Scores(m) in the mth iteration.

Step 7: Find out the number of samples from 𝐷𝐹 with different
predicted labels in the mth and (m-1)th iterations when the number
of iteration is greater than 1.

𝑡(𝑚) = 𝑛𝑢𝑚𝑏𝑒𝑟(𝑓𝑖𝑛𝑑(𝑦𝑚(.) ≠ 𝑦𝑚−1(.)))(𝑚 > 1) (7)

here number(.) represents the number of the samples satisfying the
ondition in the parenthesis.

Step 8: Check the termination criterion. If t(m)=0 or 𝑚 = 𝑚0 (the
reset maximum number of iterations) the algorithm terminates. Other-
ise, go to Step 4 to perform the (m+1)th iteration. After termination of

he algorithm, the final accuracy on 𝐷 is obtained, and the candidate
𝑉
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Fig. 1. The flowchart of TMSSL-FS-FLDA.
features are ranked by each filter listed in Section 2.4.1 according to
the candidate features and final labels of 𝑄𝑚 after the mth iteration.
(In this paper, 𝑚0 is set to 10 because t(m) has become stable after 10
iterations)

The second stage — feature selection (Steps 9 to 11)
Step 9: After k-fold cross-validation, the average accuracy on 𝐷𝑉 is

calculated and a Rank matrix with results from k times ranking based
on different filter methods is obtained (The matrix size is k*c, with c
representing the number of candidate features, which is set to 64 in
this paper).

Step 10: DGA fault samples are repeated r times in validation,
with all the samples randomly shuffled each time and r different data
ensembles are obtained. The average accuracy on 𝐷𝑉 is then calculated.
For each filter method, the size of the resulted matrix Rank is (k*r)*c,

ith (k*r) and c respectively representing the number of rows and
umber of columns of the matrix.

Step 11: Feature combination method is used to select OFC based
n the result matrix (See Section 2.4.2 for details). Aggregating feature
anks of each filter method according to the matrix Rank by using
WS and ATS. No matter PWS or ATS, the OFC and the corresponding
verage iteration accuracy for each filter method are obtained. After
hat, feature subsets from different filter methods are used for voting
nd the OFC is obtained.

In order to better understand the TMSSL-FS-FLDA algorithm, its
lowchart is shown in Fig. 1. The pseudo-code is shown in Fig. 2.

.4.1. Feature ranking based on SSL
Five popular filter techniques with different evaluation criteria

Jovic et al., 2015), including ReliefF, Mutual Information (MI), Infinite
atent Feature Selection (ILFS), Max-Relevance and Min-Redundancy
MRMR), Least absolute shrinkage and selection operator (Lasso) are
dopted to rank all features. The details of the ranking procedure
re described in Steps 4–8 in the TMSSL-FS-FLDA algorithm. All sam-
les are repeated 20 times randomly and 5-fold cross-validation is

erformed.

5

2.4.2. Feature combination method for selecting OFC
Feature combination method is used to select OFC based on the

result matrix of feature ranking. Firstly, we proposed the two methods
of Proportion Wrapper Strategy (PWS) and Average Threshold Strategy
(ATS), which are respectively applied to aggregate feature ranks from
each filter method and obtain a dimension-reduced feature subset.
When using the PWS method to analyze the result matrix of each filter
method, the summation of each row of the result matrix is calculated
and sorted from smallest to largest, and then a feature subset which can
provide the best average accuracy is selected as OFC after the features
with different proportions are used to execute SSL based on 20 × 5
cross-validation. By the way, the average iteration accuracy based on
different feature proportions are also obtained. For ATS, the features
whose rank order summation is less than average summation value
are kept as OFC after calculating the summation of each row of the
result matrix of each filter method. Therefore, no matter PWS or ATS
is adopted, the OFC from each filter method is obtained. Secondly,
feature subsets for different filter methods are used for voting. These
features with voting frequency >2 are retained and used to form a
new candidate feature subset respectively for PWS and ATS, otherwise
discarded.

2.5. Confidence criterion for training data expansion based on Multi-class
Nearest Average Distance (MNAD) in SSL

In the semi-supervised learning process, there are two reasons for
preventing the improvement of the classifier: using small labeled train-
ing set cannot obtain a reliable initial model and the unlabeled samples
used to update initial model are not informative or have no discrim-
inative power. Therefore, it is critical to find some data with high
confidence from unlabeled data. In this paper, the MNAD criterion
is proposed to select high confidence ones from unlabeled samples,
and only those unlabeled samples with high confidence are used to
expand training dataset. The criterion is implemented by analyzing

the decision scores of FLDA classifier for unlabeled samples. The OAO
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Fig. 2. The pseudo-code of TMSSL-FS-FLDA.

strategy involves a parallel architecture made up of 𝑛 ∗ (𝑛−1)∕2 binary
LDA classifiers, and n-1 binary classifiers for each class are defined by
one class against another class. In the proposed MNAD technique, we
use the OAO strategy to train 𝑛 ∗ (𝑛−1)∕2 binary FLDA classifiers with
an initial set of labeled samples. After the initial training, 𝑛 ∗ (𝑛 − 1)∕2
decision scores 𝑓𝑗 (𝑥) (j=1, 2, . . . , 𝑛 ∗ (𝑛−1)∕2) are calculated separately
based on 𝑛 ∗ (𝑛 − 1)∕2 binary LDA classifiers for each of unlabeled
samples. The confidence of each unlabeled sample depends on the
votes received, which means that we only consider samples with a full
vote (each category receive a maximum of n-1 votes), and then these
samples satisfying the following formula are selected for expanding
training dataset at each iteration.

𝑆 = 𝑉 𝑜𝑡𝑒(𝑋)𝑓𝑢𝑙𝑙(𝑋 ∈ 𝐷𝐹 ) (8)

𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑒𝑎𝑛(𝑠𝑐𝑜𝑟𝑒𝑠(𝑆))(𝑆 ∈ 𝐷𝑆 ) (9)

𝑠𝑒𝑙𝑒𝑐𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = {𝑣𝑎𝑙𝑢𝑒 > ℎ ∗ 𝑚𝑒𝑎𝑛(𝑣𝑎𝑙𝑢𝑒)} (10)

where S denote the samples with a full vote from unlabeled samples,
value and h respectively represents the average value of the decision
scores and a weighting parameter.

3. Results and analysis

3.1. Data preparation

The public dataset IEC TC 10 (Duval and Depabla, 2001), which
consists of 158 samples from 6 classes of faults (Partial Discharge class
was excluded in this study), was utilized to build a fault diagnosis
model and select the OFC. Another dataset provided by a national
power company was used to test the performance of the obtained
6

Fig. 3. Comparison of iterative average accuracy based on 34 features and 64 features
respectively.

OFC. The ADASYN method was applied to balance the sample distri-
bution by increasing the number of samples from 158 to 242, and
the balanced results is shown in Table 3. After that, the balanced
samples with 64 candidate features were further processed by Arctan-
gent Transformation and normalization for improving fault diagnosis
performance.

3.2. Feature ranking based on the multi-filter semi-supervised method

In the stage of feature ranking for TMSSL-FS-FLDA, 242 DGA fault
samples (with 64 features) were divided into training set and validation
set, and experiments based on 5-fold cross-validation and 20 repeated
runs were conducted for obtaining average accuracy and feature ranks.
An initial labeled training dataset with 75 samples and an unlabeled
training dataset with 119 samples constitute the training dataset, and
the remaining samples are in the validation dataset. Firstly, the average
iteration accuracy based on 64 and 34 features after 20 × 5-fold
cross-validation is shown in Fig. 3. The average accuracy for 64 and
34 features respectively decreases and increase with increasing num-
ber of iterations, which denotes that redundant features degrade the
performance of the classifier with the SSL process.

The average feature ranks obtained by different filter methods are
presented in Fig. 4. For most methods, the number of average feature
rank is generally decreasing with the feature number from 1 to 64,
which means the ranking is increasing. It is obvious that the DGA
gases and the related gas ratios with CO and CO2 (these features are
numbered 1–30 in Table 2) are ranked lower by most methods except
for Lasso. 34 highly ranked features were selected in the first stage of
TMSSL-FS-FLDA, which are listed in Table 4. For comparison purpose,
the average iteration accuracy based on these 34 features and 20 × 5
cross-validation is also shown in Fig. 3. Unlike the case based on 64
features, the average accuracy based on 34 selected features generally
increases with increasing number of iterations, which demonstrates that
with the selected 34 features the SSL process generally improve the
performance of the classifier although the classification rate may not
reach the optimal.

3.3. Feature selection based on feature combination methods

In the stage of feature ranking, the best accuracy achieved is 73.48%
based on 34 features. However, the selected feature set could be further
optimized using feature combination method based on PWS and ATS.
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Table 4
The selected 34 features for fault diagnosis.

Number Feature Number Feature Number Feature

1 CH4∕H2 12 CH4/TH 23 C2H4/TH
2 C2H2∕H2 13 CH4/THD 24 C2H4/THD
3 C2H4∕H2 14 CH4/THH 25 C2H4/THH
4 C2H6∕H2 15 CH4/TCH 26 C2H4/TCH
5 H2/TH 16 C2H4∕C2H2 27 C2H6/TH
6 H2/THD 17 C2H6∕C2H2 28 C2H6/THD
7 H2/THH 18 C2H2/TH 29 C2H6/TH
8 H2/TCH 19 C2H2/THD 30 C2H6/TCH
9 C2H2/CH4 20 C2H2/THH 31 max(key gas)
10 C2H4/CH4 21 C2H2/TCH 32 10/(C2H4∕C2H2)
11 C2H6/CH4 22 C2H6∕C2H4 33 C2H2/THD/0.21

34 C2H6/THD/0.23

TH=H2+CH4+C2H2+C2H4+C2H6, THD=CH4+C2H2+C2H4, THH=H2+C2H2+C2H4, TCH=CH4+C2H2+C2H4+C2H6
Table 5
Best features selected with supervised and semi-supervised algorithms based on PWS or ATS.

Algorithms Selected features

TMSSL-FS-FLDA PWS (based on ILFS) 32, 33, 31, 30, 29, 27, 28, 34, 21, 26
ATS (based on MRMR) 18, 22, 24, 25, 26, 29, 30, 31, 32, 33, 21, 27, 28, 34

TMSTC-FS-FLDA PWS (based on ReliefF) 30, 31, 28, 29, 32, 27, 26, 34, 25, 33
ATS (based on ILFS) 12, 32, 30, 27, 28, 34, 13, 16, 25, 33, 15, 18, 21, 24, 29, 31

TMSUC-FS-FLDA PWS (based on ReliefF) 29, 30, 26, 28, 27, 21, 31, 25, 20, 22
ATS (based on ReliefF) 12, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34
Fig. 4. Average feature ranks based on different filter methods.

For selecting OFC based on PWS, the variation of fault diagnosis ac-
uracy with different proportions features selected according to feature
anking is presented in Fig. 5. The results are obtained based on 20 × 5-

fold semi-supervised cross-validation after PWS. It is shown that the
best accuracy corresponds to certain feature proportion for each filter
method. Respectively, for the five different filter methods, using the
first 30%, 40%, 30%, 40% and 30% of the ranked features can obtain
the best fault diagnosis accuracy. Besides, it is found that fault diagnosis
accuracy increases firstly and then decreases when the selected features
exceed certain proportion, which shows the importance of feature
selection in fault diagnosis. Fig. 6 shows the average accuracy after
each iteration by selecting the best proportion of features for each
filter method. The average iteration accuracy for each filter method
is generally increasing and ILFS can obtain the best accuracy among
other filter methods for TMSSL-FS-FLDA. The selected features based on
ILFS for TMSSL-FS-FLDA are listed in Table 5. After aggregating feature
ranks and voting for all filter methods, the OFC based PWS is obtained
and shown in Table 6.
7

Fig. 5. Comparison of average accuracy of TMSSL-FS-FLDA with different proportions
of features selected and using PWS for OFC.

It can be seen from Fig. 6 that the DGA features selected by ILFS
for PWS produced the best fault diagnosis accuracy among the tested
filter methods. Fig. 7 shows the average accuracy after each iteration
by selecting the best proportion of features and using ATS for OFC.
It can be seen that MRMR achieved the best fault diagnosis accuracy.
The selected features based on MRMR for TMSSL-FS-FLDA are listed
in Table 5. After aggregating feature ranks and voting for all filter
methods, the OFC based ATS is obtained shown in Table 6.

For comparing the performance of PWS and ATS in optimizing
feature combinations, Fig. 8 shows the average accuracy of the last
iteration of TMSSL-FS-FLDA after completing PWS or ATS based on
different filter methods. For PWS, the best accuracy based on certain
proportion of features for different filter methods is shown in Fig. 5, and
30% or 40% of the features can obtain higher accuracy. It is noteworthy
that PWS method can obtain better iteration accuracy than ATS for all

filter methods.
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Table 6
Candidate feature subsets obtained using the proposed feature combination methods in comparison with wrapper
methods.

Algorithms Selected features

TMSSL-FS-FLDA
PWS 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
ATS 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
FW-SemiFS 5, 8, 9, 14, 15, 19, 20, 25, 27, 32, 33, 34

TMSTC-FS-FLDA
PWS 27, 28, 29, 30, 31, 32, 33, 34
ATS 12, 13, 15, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
SFFS-STC 1, 2, 6, 11, 12, 13, 15, 16, 26, 29, 30, 34

TMSUC-FS-FLDA
PWS 12, 15, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34
ATS 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
SFFS-SUC 1, 2, 10, 11, 12, 13, 14, 15, 25, 32, 33, 34
Fig. 6. Comparison of average accuracy after each iteration by selecting the best
roportion of features selected and using PWS for OFC.

Fig. 7. Comparison of average accuracy after each iteration by selecting the best
roportion of features selected and using ATS for OFC.

.4. Effectiveness of using threshold in selecting unlabeled data for expand-
ng training dataset

In SSL for classification, an initial training dataset is used to train a
tandard FLDA classifier at first, and then unlabeled samples predicted
ith high confidence are used to expand the training dataset and
8

Fig. 8. Comparison of average accuracy of TMSSL-FS-FLDA using PWS or ATS for OFC.

update the standard FLDA classifier iteration by iteration. In each itera-
tion, a part of the unlabeled data are classified and those samples with
predicted labels of high confidence are added to the training dataset,
and the standard FLDA classifier is then updated (retrained) using the
expanded training dataset and tested on the validation dataset. If we
select all samples of the available unlabeled data, which could cause
some unreliable samples to be added into the training dataset in the
previous iteration and deteriorate the performance of the classifier.
In this paper, MNAD criterion (Section 2.5 for details) is proposed to
select high confidence ones from unlabeled samples. From Fig. 8, it can
be seen that using ILFS method can achieve the best accuracy using
PWS for OFC (the proportion of selected features is 30%). Therefore,
based on the features selected by ILFS, Fig. 9 compares the average
results of using MNAD and without using MNAD (no threshold) after
20 × 5-fold cross-validation, and it is obvious that the average iteration
accuracy of using MNAD is better than the average accuracy without
using threshold, which denotes the effectiveness of MNAD in selecting
high confidence samples.

3.5. Performance metrics

In addition to the classification accuracy, F-score (Baldi et al.) and
Matthews correlation coefficient (MCC) (Baldi et al.) are used to per-
formance metrics. The metrics results are the average value based OAO
multi-class. F-score considers both the precision and recall measures to
analyze the accuracy of binary classification. See Eq. (11).

𝐹 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
(11)

When 𝛽 is equal to 1 the measure is called balanced F-score (F1 score)
which is the harmonic mean of precision and recall and takes both
precision and recall into account equally.
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Fig. 9. Comparison of average accuracy using and without using MNAD.

Table 7
Comparison of the metrics.

Method The classification accuracy (%) F1 score MCC

TMSSL-FS-FLDA based PWS 88.49 0.68 0.62
TMSSL-FS-FLDA based ATS 84.56 0.53 0.59

MCC interprets the correlation between the target and prediction
n a two class classification. The value of MCC shows the classification
bility or total conflict between prediction and target. See Eq. (12).

𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(12)

Where TP represents the True Positive, FP represents the False Positive,
TN represents the True Negative and FN represents the False Negative.

Therefore, we compared different metrics in the proposed method
based PWS and ATS in Table 7. The results confirm that TMSSL-FS-
FLDA based PWS has better classification ability.

3.6. Supervised learning for DGA based fault diagnosis

To further evaluate the performance of TMSSL-FS-FLDA, which uses
75 labeled samples only in the initial training set, in this section two
supervised learning methods are used to replace the SSL in TMSSL-
FS-FLDA, leading to two new models: Two-stage Multi-filter Static
Classification Feature Selection based on FLDA (TMSTC-FS-FLDA) and
Two-stage Multi-filter Supervised Classification Feature Selection based
on FLDA (TMSUC-FS-FLDA). The supervised learning models use all
the available labeled samples as the training set that will not be ex-
panded, and they use the same two-stage multi-filter method for feature
selection. The average accuracy of TMSTC-FS-FLDA and TMSUC-FS-
FLDA is calculated on 48 validation samples over 20 × 5-fold cross-
validation. The major difference between them is that TMSTC-FS-FLDA
only uses the initial labeled dataset (75 samples) for training the clas-
sifier, TMSUC-FS-FLDA uses the whole training dataset (194 samples),
and TMSSL-FS-FLDA uses 75 labeled samples as initial training set and
119 unlabeled samples for expanding the training set.

Fig. 10 and Fig. 11 respectively show the fault diagnosis accuracy
with different proportion of selected features. The new ranks for the
34 features based on TMSTC-FS-FLDA and TMSUC-FS-FLDA are given
in Appendix B respectively, and the number in Appendix B corresponds
to the feature number in Table 4. Fig. 10 shows that the average best
accuracy can be achieved by selecting 30% of features based on TMSTC-
FS-FLDA for all filter methods. The performance drops significantly
9

Fig. 10. Comparison of average accuracy of TMSTC-FS-FLDA with different proportions
of features selected and using PWS for OFC.

when more features are selected. However, the performance of TMSUC-
FS-FLDA peaks by selecting 30% of features and only slightly drops
with more features selected, as shown in Fig. 11. This demonstrates
that redundant features have little influence on the performance of
TMSUC-FS-FLDA, but have great influence on TMSTC-FS-FLDA and
intermediate impact on TMSSL-FS-FLDA as shown in Fig. 5. There-
fore, it can be concluded that the disturbance degree of redundant
features to the model is related to the number of training samples. The
average iteration accuracy of TMSTC-FS-FLDA and TMSUC-FS-FLDA
after completing PWS (the best accuracy based on certain proportion
for each filter method) and ATS based on different filter methods are
presented in Fig. 12 and Fig. 13, respectively. It is noteworthy that
PWS method can obtain better iteration accuracy than ATS for TMSTC-
FS-FLDA based all filter methods, and PWS method can achieve better
iteration accuracy than ATS for TMSUC-FS-FLDA based the majority
of filter methods. In addition, ReliefF based on PWS achieved the best
accuracy of 85.02% among tested filter methods for TMSTC-FS-FLDA
and ReliefF based on ATS achieved the best accuracy of 89.21% among
tested filter methods for TMSUC-FS-FLDA. The selected features based
on ReliefF for TMSTC-FS-FLDA after PWS and based on ReliefF for
TMSUC-FS-FLDA after ATS are listed in Table 5. After aggregating
feature ranks and voting for all filter methods, the OFC based PWS and
ATS is obtained and shown in Table 6.

3.7. Comparison of supervised and semi-supervised learning for DGA based
fault diagnosis

From Figs. 5, 10 and 11, it can be seen that ILFS combined with
PWS achieved the best accuracy for TMSSL-FS-FLDA, ReliefF com-
bined with PWS and ReliefF combined with ATS worked the best for
TMSTC-FS-FLDA and TMSUC-FS-FLDA, respectively.

In the stage of the feature ranking, Fig. 14 compares the average
accuracy of supervised and semi-supervised learning algorithms using
20 × 5-fold cross-validation based on 34 features selected in the first
stage for feature ranking. It is clear that TMSSL-FS-FLDA outperformed
TMSTC-FS-FLDA, but achieved lower accuracy than TMSUC-FS-FLDA
when more unlabeled samples were used to train classifier. The p
values between TMSSL-FS-FLDA and TMSTC-FS-FLDA, TMSSL-FS-FLDA
and TMSUC-FS-FLDA are 0.2594 and 0.6224, as shown in Table 8,
demonstrating no statistically significant difference.

In order to compare the fault diagnosis accuracy of supervised
and semi-supervised learning algorithms under different situations for
feature selection, Fig. 15 compares the performance of TMSSL-FS-FLDA,
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Fig. 11. Comparison of average accuracy of TMSUC-FS-FLDA with different proportions
f features selected and using PWS for OFC.

Fig. 12. Comparison of average accuracy of TMSTC-FS-FLDA using PWS or ATS for
OFC.

Fig. 13. Comparison of average accuracy of TMSUC-FS-FLDA using PWS or ATS for
OFC.
10
Fig. 14. Comparison of average accuracy of supervised and semi-supervised learning
algorithms based on 34 features after 20 × 5-fold cross-validation.

Fig. 15. Comparison of the performance of TMSSL-FS-FLDA, TMSTC-FS-FLDA and
TMSUC-FS-FLDA with different proportions of features selected and using PWS for OFC.

TMSTC-FS-FLDA and TMSUC-FS-FLDA with different proportions of
features selected and using PWS for OFC. It can be observed that
TMSUC-FS-FLDA achieved the best accuracy consistently with different
proportions of features selected. The accuracy achieved by TMSSL-FS-
FLDA is close to that of TMSUC-FS-FLDA when 30% of highly ranked
features were used to build the fault diagnosis model.

Fig. 16 compares the best accuracy of supervised and semi-supervised
algorithms using PWS or ATS for OFC. It is obvious that TMSUC-
FS-FLDA achieved the highest fault diagnosis accuracy because of
using more labeled samples. However, TMSSL-FS-FLDA selected better
features(especially with PWS)and its accuracy is close to TMSUC-FS-
FLDA with much fewer labeled samples used for training the classifier.
It outperformed TMSTC-FS-FLDA in the case of using the same number
of labeled samples. Generally methods using PWS can achieve better
accuracy than using ATS, which is related to the selected features
as shown in Table 5. It is worth noticing that features numbered
26–34 were selected by most algorithms using PWS or ATS, which
demonstrates that these features are critical for improving the fault
diagnosis accuracy no matter for semi-supervised or supervised method.
However, too many features can deteriorate the performance of the
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Table 8
Comparison of different feature combinations in terms of p-values.

Features p1 p2

34 features 0.2594 0.6224
After PWS 0.0299* 0.9904
After ATS 0.0422* 0.5724
After using feature combination
method based on PWS 0.0058* 0.8635

After using feature combination
method based on ATS 0.0063* 0.0884

*The statistically significant p-values (<0.05).
More details about p-values can be found in Goodman (1999). p1 and
p2, respectively, represents the p-values between TMSSL-FS-FLDA and
TMSTC-FS-FLDA, TMSSL-FS-FLDA and TMSUC-FS-FLDA over 20 × 5-fold
cross-validation.

Fig. 16. Comparison of the best average accuracy of supervised and semi-supervised
lgorithms using PWS or ATS for OFC.

lassifier. TMSTC-FS-FLDA based on ATS selected more features but
chieved the lowest accuracy. In addition, from the statistical test
esults as shown in Table 8, the performance of TMSSL-FS-FLDA is
ignificantly better than TMSTC-FS-FLDA, and the performance of
MSUC-FS-FLDA is not significantly better than TMSSL-FS-FLDA, which
emonstrates the validity of the proposed SSL algorithm for feature
election.

Table 9 shows the candidate feature subsets obtained using the
roposed feature combination methods in comparison with wrapper
ethods. The number of features selected by PWS and ATS are 10

nd 13 for TMSSL-FS-FLDA, 8 and 14 for TMSTC-FS-FLDA, 14 and 17
or TMSUC-FS-FLDA, respectively. Features selected by PWS are also
elected by ATS, and ATS selected more features.

Table 10 compares the results of TMSSL-FS-FLDA, TMSTC-FS-FLDA,

nd TMSUC-FS-FLDA using the candidate feature subsets obtained by

11
the proposed SSL for feature ranking combined with feature combina-
tion methods. It is worth noticing that TMSSL-FS-FLDA always achieved
better classification accuracy than TMSTC-FS-FLDA after using feature
combination method based on PWS or ATS. The p-values in Table 8
show that the difference is significant, however the difference be-
tween the performance of TMSUC-FS-FLDA and TMSSL-FS-FLDA is not
statistically significant.

It is obvious that the multi-filter semi-supervised feature selec-
tion approach plays a significant role in feature selection. To further
evaluate the proposed method, it is compared with a semi-supervised
wrapper method called FW-SemiFS (Forward Semi-Supervised Feature
Selection) (Ren et al., 2008) and a supervised wrapper method called
SFFS (Supervised Sequential Forward Feature Selection) (Ren et al.,
2008). Table 11 shows the average accuracy of different methods in
pairs and the corresponding p-values. It is shown that the performance
of the multi-filter methods is better than that of the wrapper methods
no matter for semi-supervised or supervised learning. The OFC based
supervised and semi-supervised wrapper methods are obtained and
shown in Table 6.

In addition, a computational time complexity about TMSSL-FS-FLDA
is O((2n/C)3)≈O(n)3, which is followed by O(𝑛2) of TMSUC-FS-FLDA,
and TMSTC-FS-FLDA has the lowest time complexity (O(n)). Where n
and C are the number of training samples and class, respectively. This
demonstrates the semi-supervised method has more higher complexity
than supervised method because of using more unlabeled samples and
spending more time for model training. However, the semi-supervised
method also gets the corresponding return in the correct rate.

3.8. Robustness of the proposed method for feature subset selection

Another dataset provided by a national power company is used
to test the performance of the feature subsets obtained by the pro-
posed methods, especially their robustness. Features selected by the
conventional methods, such as Total gases, Doernenberg, Rogers, IEC
60599 and Duval Triangles, provide different power transformer fault
diagnosis performance. Table 12 shows the fault diagnosis performance
based on semi-supervised and supervised learning with different feature
subsets, including the features selected by the conventional methods as
shown in Table 13 those selected by the proposed algorithms using PWS
and by wrapper methods as shown in Table 5. 5-fold cross-validation
was carried out 20 times with randomly split training and validation
data, and the average validation accuracy is used to evaluate the fault
diagnosis performance. It can be concluded from Table 12 that the
Dornenburg method achieved the worst fault diagnosis performance,
while the proposed approach achieved the highest fault diagnosis ac-
curacy overall no matter for semi-supervised or supervised learning.
This is also demonstrated in Fig. 17, from which it can be observed
that the accuracy of the proposed SSL method improves with more
iterations and can outperform the wrapper approach, with feature

subsets selected from one dataset applied to another new dataset.
Table 9
Candidate feature subsets obtained using the proposed feature combination methods in comparison with wrapper
methods.

Algorithms Selected features

TMSSL-FS-FLDA
PWS 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
ATS 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
FW-SemiFS 5, 8, 9, 14, 15, 19, 20, 25, 27, 32, 33, 34

TMSTC-FS-FLDA
PWS 27, 28, 29, 30, 31, 32, 33, 34
ATS 12, 13, 15, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
SFFS-STC 1, 2, 6, 11, 12, 13, 15, 16, 26, 29, 30, 34

TMSUC-FS-FLDA
PWS 12, 15, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34
ATS 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
SFFS-SUC 1, 2, 10, 11, 12, 13, 14, 15, 25, 32, 33, 34
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Table 10
Comparison of results of using the proposed feature combination methods.

Algorithms After using feature
combination method(%)

The best results after
PWS and ATS (%)

The mean results of multi-filter
after PWS and ATS (%)

TMSSL-FS-FLDA PWS 88.49 87.86 85.13
ATS 84.56 85.71 82.99

TMSTC-FS-FLDA PWS 85.85 85.02 84.07
ATS 80.14 80.29 79.18

TMSUC-FS-FLDA PWS 88.98 88.77 87.38
ATS 87.48 89.21 85.76
Table 11
Comparison of multi-filter and wrapper methods.

Algorithms Average accuracy p3

SSL TMSSL-FS-FLDA 88.49 0.0178*FW-SemiFS (Wei et al., 2014) 85.56

STC TMSTC-FS-FLDA 85.85 0.0421*SFFS-STC 82.29

SUC TMSUC-FS-FLDA 88.98 0.9309SFFS-SUC 88.22

p3 represents the 𝑝-value between multi-filter and wrapper method for semi-supervised
and supervised algorithms.
*The statistically significant 𝑝-value (< 0.05).
Table 12
Comparison of fault diagnosis performance based on different methods.

Total
gases

Dornenburg Roger IEC 60599 Duval
triangle

The features from
wrapper method

The features from our proposed
methods based on PWS

p4

SSL 57.73 54.15 65.06 73.12 54.00 85.46 88.19 0.0556
STC 59.88 58.94 67.62 77.62 61.06 81.33 82.98 0.6522
SUC 64.04 57.12 70.87 78.85 62.88 91.75 89.83 0.0853

p4 represents the p-value between multi-filter and wrapper method for semi-supervised and supervised algorithms.
Table 13
Feature sets selected by conventional methods.

Method Feature sets

Total gases H2, CH4, C2H2, C2H4, C2H6, CO, CO2.
Dornenburg CH4∕H2, C2H2∕C2H4, C2H2/CH4, C2H6∕C2H2
Roger C2H6/CH4, C2H2∕C2H4, CH4∕H2, C2H4∕C2H6
IEC 60599 C2H2∕C2H4, CH4∕H2, C2H4∕C2H6

Duval triangle CH4, C2H4, C2H2, CH4/(CH4+C2H4+C2H2),
C2H4/(CH4+C2H4+C2H2), C2H2/(CH4+C2H4+C2H2)
t
O
u
w
(
a
u
v
h
r
a
a
(
b
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I
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4. Limitations

Although iterative training can improve the fault diagnose accuracy
in proposed TMSSL-FS-FLDA algorithm, some limitations still exist. The
model cannot correct its own mistakes, and the wrong predictions
from unlabeled samples will destroy the entire model. In addition,
the similarity between labeled and unlabeled samples is high, which
makes it difficult to great improve the classifier performance through
further iteration. Therefore, the better threshold strategy should be
explored for restraining noise from unlabeled samples and the active
learning is introduced in combination with semi-supervised learning to
select informative samples for improve the classifier performance in the
future work section.

5. Conclusion and future directions

This paper proposes a Two-stage Multi-filter SSL Feature Selection
method based on FLDA (TMSSL-FS-FLDA) for building fault diagnosis
model and selecting optimal DGA features with limited labeled data
samples. The method includes two stages in which feature ranking and
aggregating feature ranks for obtaining a candidate feature subset are
performed respectively. The validity of the TMSSL-FS-FLDA has been

proved by experiments on dataset IEC TC 10. The results show that: (1) f

12
Features referred to CO and CO2 are not important in the process of fea-
ure selection. (2) TMSSL-FS-FLDA has much stronger ability to select
FC and improve fault diagnosis accuracy than TMSTC-FS-FLDA when
sing the same number of labeled samples, and considerable ability
hen compared with TMSUC-FS-FLDA by using fewer labeled samples.

3) PWS method can obtain better iteration accuracy than ATS for
lmost all filter criteria. In addition, the ability of feature combination
sing PWS is also superior to ATS no matter semi-supervised or super-
ised learning is adopted. (4) The effectiveness of MNAD for selecting
igh-confident samples in the progress of SSL is proved. (5) The features
anging from number 26 to number 34 (including the partial gas radio
nd gas relative percentage) are critical for improving fault diagnosis
ccuracy no matter semi-supervised or supervised method is adopted.
6) The robustness of the obtained optimal feature subset is validated
y a test using DGA samples provided by a national power company
ompared with features selected by conventional and wrapper methods.
n the future work, more DGA data should be investigated and col-
ected for algorithm training and testing. New semi-supervised feature
election methods and threshold criteria need to be further studied. In
ddition, more informative features and other semi-supervised methods
hould be explored to improved DGA fault diagnose classification in
urther.
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Fig. 17. Comparison of average accuracy after each iteration with different feature
combinations.
13
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Appendix A

See Table A.14.

Appendix B
See Table B.15.
Table A.14
The abbreviation of terms.

Term Abbreviation Term Abbreviation

Dissolved Gas Analysis DGA Low-energy Discharge LED
Clustering based Method CBT High-energy Discharge HED
Fuzzy Logic Inference System FLIS Low and Middle-temperature overheat LMT
Artificial Neural Network ANN High Temperature overheating HT
Support Vector Machine SVM Partial Discharge PD
Fisher Linear Discriminant Analysis FLAD Normal N
Semi-supervised Learning SSL Synthetic Minority Oversampling Technique SMOTE
Supervised Learning SL Adaptive Synthetic Sampling Algorithm ADASYN
Low-dimensional Scaling LDS Arctangent Transformation AT
Local Linear Semi-supervised Regression LLSSR Max-Relevance and Min-Redundancy MRMR
Adaptive Reinforcement AR Least absolute shrinkage and selection operator Lasso
Mutual Information MI Multi-class Nearest Average Distance MNAD
Infinite Latent Feature Selection ILFS Matthews Correlation Coefficient MCC

Proportion Wrapper Strategy PWS Two-stage Multi-filter Static Classification Feature
Selection based on FLDA

TMSTC-FS-FLDA

Average Threshold Strategy ATS Two-stage Multi-filter Supervised Classification
Feature Selection based on FLDA

TMSUC-FS-FLDA

Optimal Feature Combination OFC Forward Semi-Supervised Feature Selection FW-SemiFS
Two-stage Multi-filter SSL Features
Selection based on FLDA TMSSL-FS-FLDA Supervised Sequential Forward Feature Selection SFFS

One-against-one OAO
Table B.15
Feature ranks obtained by different filter methods.

Feature ranks TMSSL-FS-FLDA TMSTC-FS-FLDA TMSUC-FS-FLDA

ReliefF MI ILFS MRMR Lasso ReliefF MI ILFS MRMR Lasso ReliefF MI ILFS MRMR Lasso

1 31 32 32 32 1 30 31 29 32 1 29 32 31 32 1
2 30 33 33 31 34 31 32 30 31 34 30 33 30 33 13
3 32 34 31 33 15 28 30 32 30 2 26 34 32 34 14
4 29 31 30 30 14 29 33 31 33 13 28 20 33 31 34
5 28 30 29 34 16 32 29 33 29 14 27 30 29 22 15
6 33 29 27 29 13 27 28 28 28 15 21 31 28 23 12
7 27 23 28 27 2 26 27 24 34 33 31 15 13 15 16
8 26 11 34 28 33 34 23 21 26 12 25 22 12 30 23
9 23 27 21 24 12 25 12 34 24 16 20 14 27 12 10
10 25 22 26 26 9 33 34 27 14 11 22 21 34 21 2
11 34 25 23 22 25 24 25 25 25 26 34 25 26 24 25
12 20 13 22 25 32 18 10 18 22 29 33 24 11 16 32

(continued on next page)
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Table B.15 (continued).
Feature ranks TMSSL-FS-FLDA TMSTC-FS-FLDA TMSUC-FS-FLDA

ReliefF MI ILFS MRMR Lasso ReliefF MI ILFS MRMR Lasso ReliefF MI ILFS MRMR Lasso

13 15 26 25 18 10 19 26 15 27 32 24 23 7 26 11
14 22 12 20 21 11 21 11 16 15 9 12 12 22 25 27
15 24 24 24 13 17 20 24 13 13 10 32 26 10 14 24
16 14 14 18 14 3 17 22 12 12 3 15 10 14 13 26
17 21 21 19 17 6 22 21 20 21 28 19 11 6 29 30
18 17 20 8 23 26 23 13 17 23 24 14 13 9 27 17
19 9 28 12 15 4 15 14 22 10 4 11 27 8 11 29
20 16 15 11 12 23 12 15 26 11 8 18 5 5 9 6
21 19 16 6 20 31 16 20 19 16 7 10 28 23 4 33
22 13 10 4 19 8 13 5 7 9 23 17 29 25 1 28
23 8 5 17 16 28 9 6 23 1 27 13 1 21 28 31
24 7 18 15 3 29 14 1 10 3 17 9 6 2 10 9
25 11 1 3 1 5 11 8 14 20 30 23 4 19 20 22
26 18 9 10 11 27 3 16 6 19 6 16 9 20 6 7
27 10 7 14 4 30 5 9 8 4 31 4 8 24 5 5
28 6 8 1 10 24 2 7 11 18 25 5 7 16 3 8
29 12 4 7 5 22 4 4 9 5 5 6 16 15 8 3
30 5 6 9 8 7 6 19 5 17 22 3 3 4 2 4
31 2 19 13 6 18 8 18 3 8 18 2 18 18 19 21
32 3 3 16 7 19 10 2 4 7 19 8 2 17 17 18
33 4 2 2 9 21 7 17 2 6 21 7 17 1 18 19
34 1 17 5 2 20 1 3 1 2 20 1 19 3 7 20
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