1,415 research outputs found

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Decentralized disturbance observer-based sliding mode load frequency control in multiarea interconnected power systems

    Get PDF
    The load frequency control (LFC) problem in interconnected multiarea power systems is facing more challenges due to increasing uncertainties caused by the penetration of intermittent renewable energy resources, random changes in load patterns, uncertainties in system parameters and unmodeled system dynamics, leading to a compromised reliability of power systems and increasing the risk of power outages. In responding to this problem, this paper proposes a decentralized disturbance observer-based sliding mode LFC scheme for multiarea interlinked power systems with external disturbances. First, a reduced power system order is constructed by lumping disturbances from tie-line power deviations, load variations and the output power from renewable energy resources. The disturbance observer is then designed to estimate the lumped disturbance, which is further utilized to construct a novel integral-based sliding surface. The necessary and sufficient conditions to determine the tuning parameters of the sliding surface are then formulated in terms of linear matrix inequalities (LMIs), thus guaranteeing that the resultant sliding mode dynamics meet the H∞{H_\infty } performance requirements. The sliding mode controller is then synthesized to drive the system trajectories onto the predesigned sliding surface in finite time in the presence of a lumped disturbance. From a practical perspective, the merit of the proposed control method is to minimize the impact of the lumped disturbance on the system frequency, which has not been considered to date in sliding mode LFC design. Numerical simulations are illustrated to validate the effectiveness of the proposed LFC strategy and verify its advantages over other approaches

    Decentralised control for complex systems - An invited survey

    Get PDF
    © 2014 Inderscience Enterprises Ltd. With the advancement of science and technology, practical systems are becoming more complex. Decentralised control has been recognised as a practical, feasible and powerful tool for application to large scale interconnected systems. In this paper, past and recent results relating to decentralised control of complex large scale interconnected systems are reviewed. Decentralised control based on modern control approaches such as variable structure techniques, adaptive control and backstepping approaches are discussed. It is well known that system structure can be employed to reduce conservatism in the control design and decentralised control for interconnected systems with similar and symmetric structure is explored. Decentralised control of singular large scale systems is also reviewed in this paper

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency
    • …
    corecore