947 research outputs found

    Hydrological Models as Web Services: An Implementation using OGC Standards

    No full text
    <p>Presentation for the HIC 2012 - 10th International Conference on Hydroinformatics. "Understanding Changing Climate and Environment and Finding Solutions" Hamburg, Germany July 14-18, 2012</p> <p> </p

    Bringing pervasive embedded networks to the service cloud: a lightweight middleware approach

    Get PDF
    The emergence of novel pervasive networks that consist of tiny embedded nodes have reduced the gap between real and virtual worlds. This paradigm has opened the Service Cloud to a variety of wireless devices especially those with sensorial and actuating capabilities. Those pervasive networks contribute to build new context-aware applications that interpret the state of the physical world at real-time. However, traditional Service-Oriented Architectures (SOA), which are widely used in the current Internet are unsuitable for such resource-constraint devices since they are too heavy. In this research paper, an internetworking approach is proposed in order to address that important issue. The main part of our proposal is the Knowledge-Aware and Service-Oriented (KASO) Middleware that has been designed for pervasive embedded networks. KASO Middleware implements a diversity of mechanisms, services and protocols which enable developers and business processing designers to deploy, expose, discover, compose, and orchestrate real-world services (i.e. services running on sensor/actuator devices). Moreover, KASO Middleware implements endpoints to offer those services to the Cloud in a REST manner. Our internetworking approach has been validated through a real healthcare telemonitoring system deployed in a sanatorium. The validation tests show that KASO Middleware successfully brings pervasive embedded networks to the Service Cloud

    Current Trends and New Challenges of Databases and Web Applications for Systems Driven Biological Research

    Get PDF
    Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and Web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases and Web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research

    Cloud service discovery and analysis: a unified framework

    Get PDF
    Over the past few years, cloud computing has been more and more attractive as a new computing paradigm due to high flexibility for provisioning on-demand computing resources that are used as services through the Internet. The issues around cloud service discovery have considered by many researchers in the recent years. However, in cloud computing, with the highly dynamic, distributed, the lack of standardized description languages, diverse services offered at different levels and non-transparent nature of cloud services, this research area has gained a significant attention. Robust cloud service discovery approaches will assist the promotion and growth of cloud service customers and providers, but will also provide a meaningful contribution to the acceptance and development of cloud computing. In this dissertation, we have proposed an automated cloud service discovery approach of cloud services. We have also conducted extensive experiments to validate our proposed approach. The results demonstrate the applicability of our approach and its capability of effectively identifying and categorizing cloud services on the Internet. Firstly, we develop a novel approach to build cloud service ontology. Cloud service ontology initially is built based on the National Institute of Standards and Technology (NIST) cloud computing standard. Then, we add new concepts to ontology by automatically analyzing real cloud services based on cloud service ontology Algorithm. We also propose cloud service categorization that use Term Frequency to weigh cloud service ontology concepts and calculate cosine similarity to measure the similarity between cloud services. The cloud service categorization algorithm is able to categorize cloud services to clusters for effective categorization of cloud services. In addition, we use Machine Learning techniques to identify cloud service in real environment. Our cloud service identifier is built by utilizing cloud service features extracted from the real cloud service providers. We determine several features such as similarity function, semantic ontology, cloud service description and cloud services components, to be used effectively in identifying cloud service on the Web. Also, we build a unified model to expose the cloud service’s features to a cloud service search user to ease the process of searching and comparison among a large amount of cloud services by building cloud service’s profile. Furthermore, we particularly develop a cloud service discovery Engine that has capability to crawl the Web automatically and collect cloud services. The collected datasets include meta-data of nearly 7,500 real-world cloud services providers and nearly 15,000 services (2.45GB). The experimental results show that our approach i) is able to effectively build automatic cloud service ontology, ii) is robust in identifying cloud service in real environment and iii) is more scalable in providing more details about cloud services.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    WHAT’S IN A SERVICE? SPECIFYING THE BUSINESS SEMANTICS OF SOFTWARE SERVICES

    Get PDF
    The success of the service-oriented computing (SOC) paradigm considerably depends on the ability of service consumers to distinguish between published services and choose the ones best suited for a development project. Current SOC standards primarily give information about technical service properties such as the programming interface and the binding information. This enables designers to analyze the technical compatibility of services with the rest of the system. On the basis of such technical information, it is difficult to assess which business semantics a service actually implements and whether it is suited to satisfy functional requirements, however. In this paper, we therefore propose the WS-Functionality language which allows providers to specify the business semantics of software services in business terms. In a design science approach, we firstly describe how conceptual models, which contain business terms and relationships between them, can be used to specify the business semantics of services. Building upon this solution concept, we present the language constructs of WS-Functionality and show a prototypic implementation as proof-of-concept. In a controlled experiment, we were able to support our claim that the information provided with WS-Functionality enhances the ability of service consumers to analyze the business semantics of services and judge whether it satisfies existing functional requirements

    An interactive metaheuristic search framework for software serviceidentification from business process models

    Get PDF
    In recent years, the Service-Oriented Architecture (SOA) model of computing has become widely used and has provided efficient and agile business solutions in response to inevitable and rapid changes in business requirements. Software service identification is a crucial component in the production of a service-oriented architecture and subsequent successful software development, yet current service identification methods have limitations. For example, service identification methods are either not sufficiently comprehensive to handle the totality of service identification activities, or they lack computational support, or they pay insufficient attention to quality checks of resulting services. To address these limitations, comprehensive computationally intelligent support for software engineers when deriving software services from an organisation’s business process models shows great potential, especially when the impact of human preference on the quality of the resulting solutions can be incorporated. Accordingly, this research attempts to apply interactive metaheuristic search to effectively bridge the gap between business and SOA technology and so increase business agility.A novel, comprehensive framework is introduced that is driven by domain independent role-based business process models, and uses an interactive metaheuristic search-based service identification approach based on a genetic algorithm, while adhering to SOA principles. Termed BPMiSearch, the framework is composed of three main layers. The first layer is concerned with processing inputs from business process models into search space elements by modelling input data and presenting them at an appropriate level of granularity. The second layer focuses on identifying software services from the specified search space. The third layer refines the resulting services to map the business elements in the resulting candidate services to the corresponding service components. The proposed BPMiSearch framework has been evaluated by applying it to a healthcare domain case study, specifically, Cancer Care and Registration (CCR) business processes at the King Hussein Cancer Centre, Amman, Jordan.Experiments show that the impact of software engineer interaction on the quality of the outcomes in terms of search effectiveness, efficiency, and level of user satisfaction, is assessed. Results show that BPMiSearch has rapid search performance to positively support software engineers in the identification of services from role-based business process models while adhering to SOA principles. High-quality services are identified that might not have been arrived at manually by software engineers. Furthermore, it is found that BPMiSearch is sensitive and responsive to software engineer interaction resulting in a positive level of user trust, acceptance, and satisfaction with the candidate services
    • 

    corecore