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A B S T R A C T 

The emergence of novel pervasive networks that consist of tiny embedded nodes have reduced the gap 
between real and virtual worlds. This paradigm has opened the Service Cloud to a variety of wireless 
devices especially those with sensorial and actuating capabilities. Those pervasive networks contribute 
to build new context-aware applications that interpret the state of the physical world at real-time. How­
ever, traditional Service-Oriented Architectures (SOA), which are widely used in the current Internet are 
unsuitable for such resource-constraint devices since they are too heavy. In this research paper, an inter­
networking approach is proposed in order to address that important issue. The main part of our proposal 
is the Knowledge-Aware and Service-Oriented (KASO) Middleware that has been designed for pervasive 
embedded networks. KASO Middleware implements a diversity of mechanisms, services and protocols 
which enable developers and business processing designers to deploy, expose, discover, compose, and 
orchestrate real-world services (i.e. services running on sensor/actuator devices). Moreover, KASO Mid­
dleware implements endpoints to offer those services to the Cloud in a REST manner. Our internetwork­
ing approach has been validated through a real healthcare telemonitoring system deployed in a 
sanatorium. The validation tests show that KASO Middleware successfully brings pervasive embedded 
networks to the Service Cloud. 

1. Introduction 

1.1. Motivation 

During the last two decades, the Ubiquitous Computing 
philosophy has been used in a number of network designs. Such 
a concept was introduced by Mark Weiser [1]. Recently, early idea 
about Ubiquitous Computing is being broadly applied in the form 
of pervasive networks because of two major trends in embedded 
devices. First, hardware components are becoming cheaper, more 
integrated and powerful due to advances in nanotechnology. 
According to the Internet of Things paradigm [2], MEMS (micro-
electro-mechanical) technologies could provide tiny sensor nodes 
for communication and computation capabilities that will be able 
to interact and cooperate with their surrounding environment. 
Secondly, many software companies have become interested in 
addressing traditional problems through service-oriented technol­
ogies. The Internet of Service paradigm [3] assumes that simple to 
complex computational processes can be accessed in a highly 
distributed fashion through standardized interfaces. Typically, 

services-oriented technologies focused on creating architectures 
to provide services using the Service Cloud, which are made up 
powerful elements, e.g. company networks, racks, data base serv­
ers, etc. However, in the past few years we have been facing a 
new trend in which the service-oriented systems cross the border 
between physical and virtual world, providing great expectancy 
over real-world aware applications. The performance of these 
kinds of applications heavily depends on an efficient collaboration 
of heterogeneous, pervasive and networked embedded devices 
among themselves and with business systems [4]. 

Wireless Sensor and Actuator Networks (WSANs) is a basic pil­
lar in the provision of real-world services. These kinds of networks 
are made up of a number of embedded devices using sensors and 
actuators. WSANs are able to work autonomously in carrying out 
activities as monitoring physical parameters (e.g. temperature, 
vibrations, sound, movement, or gases [5]). 

Trends indicate that some critical challenges have to be solved 
in the Future Internet, mainly to deal with a much more varied 
infrastructure, which will need a number of service interactions. 
In such manner, new approaches for managing and using mash-
ups of services will have to be proposed. The baselines of those 
proposals have to be designed according to a cross-layer vision in 
which collaborations in two different planes will be performed; 
first, "horizontal" interaction among devices with no human 



involvement, and second, "vertical" interaction between devices 
and external entities, i.e. applications or services running on other 
networks and systems. The latter will be able to directly access 
functionalities offered by underlying devices without intervention 
of proprietary drivers, or through gateway wrapping approaches 
that hide their functionalities. Middleware architectures over the 
embedded platforms are necessary in order to optimize "vertical" 
communications and facilitate tools to deploy services involving 
"horizontal" interactions. 

In the Future Internet, real-world services provided by embed­
ded networks will be one of the key challenges. Embedded nodes 
will be able to offer those services by using the most broadly used 
standards in Service Oriented Computing (SoC) domain: SOAP-
based Web Services or RESTful APIs [6]. The resource costs (in 
terms of memory, CPU and bandwidth) necessary to support cur­
rent implementations of Web Services and RESTful architectures 
can be done by conventional devices. However, those requirements 
are not feasible for embedded networks made up of tiny resource-
constrained nodes. In that sense, the major challenge is to reach 
similar capabilities in order to be suitable for those tiny nodes in 
a cost effective way. 

The early Wireless Sensor Networks were deployed for military 
objectives such as vehicle tracking in battlefield. Nowadays, 
WSANs are deployed in civil applications: energy harvesting, logis­
tics, security and healthcare, are common applications. The latter 
will be a relevant topic to consider in the coming decades. In 
2020 and beyond, demand in healthcare will increase because of 
aging. Studies performed by The World Health Organization indi­
cate that at least 1 billion of the world population will be 60 years 
and over in 2025 and 80% will be residing in developed countries 
[8]. According to other reports about the market of WSN [9], from 
2005 to 2011, an increase of $4.1 billion will be spent on systems 
and services based on WSN. Consequently, development and 
deployment in real-world services over embedded devices have 
become a relevant research topic and a promising business 
opportunity. 

1.2. Contributions of this research 

According to our experience in developing and deploying real-
world services over WSANs [10], a set of requirements to design 
a whole SOA-based architecture for pervasive embedded networks 
can be provided: 

(a) Reduced Service Overhead: Devices offering real-world ser­
vices usually have very limited resources, so typical ser­
vice-oriented solutions can generate an overload. Those 
devices have to implement lightweight mechanisms and 
protocols to work according to an optimized service-ori­
ented paradigm. 

(b) Reduced cost from discovery mechanisms: Nodes have to be 
able to expose their services in a specific repository by using 
discovery mechanisms. The discovery process has to comply 
the "plug and play" paradigm, which means human inter­
vention will not be needed or reduced to minimum during 
this process. Devices should provide minimum information 
when registering their services, and are expected to provide 
more details in information if necessary. 

(c) Resource-aware service orchestration: Context-aware applica­
tions are potential consumers of real-world services. Those 
types of applications need complex services involving other 
simple services. Dynamic and efficient allocation of 
resources has to be performed in order to orchestrate com­
plex real-world services over pervasive embedded networks. 
In such manner, mechanisms that explore best combination 
of resources have to be designed. 

(d) Simple programming paradigm for rapid prototyping: The per­
vasive nature of networks offering real-world services can 
hinder the development and deployment of business logic 
over the network nodes. Simple and flexible programming 
tools have to be provided to developers in order to allow fast 
prototyping of complex scenarios based on sensor and actu­
ator networks. 

The work presented in this research paper is partially based on 
previous existing works that dealt with adapting classical service 
approaches to embedded systems [11,12]. The main contribution 
of our research is the design, development and evaluation of a mid­
dleware platform that enables Service-Oriented Computing in per­
vasive embedded networks by providing lightweight protocols and 
mechanisms making both "horizontal" and "vertical" interactions 
easier (see Fig. 1). In such manner, a Knowledge-Aware and Ser­
vice-Oriented Middleware (KASO Middleware) for pervasive 
embedded networks is proposed, especially for those managing 
sensors and actuators like WSANs. This innovative architecture 
complies with the requirements explained above as follows 
(requirements from a to d): Every node offers its functionalities by 
means of a service paradigm which reduces service overload 
(requirement a) regarding typical service-oriented solutions; for 
this aim, two paradigms for service dispatching are provided: on-
demand and event-based. In order to enable service discovery with 
minimal resource cost (requirement b) a Micro Inter-Knowledge 
Protocol (ulKP) that allows providing service exposure and 
discovery mechanisms to agents running over KASO Middleware 
has been designed. Provision of contextual service through combi­
nations of simple services has been addressed by means of a dis­
tributed, dynamic and resource-aware orchestration engine 
(requirement c). Developers are provided with a simple program­
ming environment (requirement d) based on an agent pattern. 
The development and deployment of new agents is provided by 
means of well-specified development models. Finally, an informa­
tion model describing every system element as well as their 
relationship is specified. This information model is mapped over 
an ontology, which allows formalizing a representation of the 
real-world services and other resources offered by the pervasive 
embedded network. 

The rest of the paper is organized as follows: Section 2 
discusses related work and background emphasizing current 
drawbacks to be solved. Section 3 defines the foundation of our 
SOA-based architecture for embedded networks. Section 4 de­
scribes the conceptual model of the KASO Middleware architec­
ture. Section 5 shows the development model of KASO 
Middleware through examples. Section 6 describes the validation 
results of the overall architecture over a real healthcare scenario. 
The results of this research and some possible future work are 
pointed out in Section 7. 

2. Related work and background 

Several efforts have been done in order to achieve the 
requirements described in the previous section. The diversity of 
transactions related to real-world service has increased due to 
the introduction of novel context-aware applications that require 
more complex contextual information from pervasive embedded 
networks. This way, and taking into account the limited resources 
of pervasive embedded networks, a number of reasoning mecha­
nisms and protocols have been proposed in recent years. Usually, 
those solutions have been addressed in two approaches: (a) in-
network data processing; (b) data processing using a middleware 
layer interceding in communication between the pervasive 
network and business applications. 
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Fig. 1. Integration of pervasive networks into the service cloud of the future internet. 

In-network data processing is general procedure for gathering 
data and routing through the network in order to optimize the re­
sources of the network, particularly from the point of view of en­
ergy consumption that optimizes the system lifetime [13]. In this 
respect, a number of researches were performed during the past 
decade such as those related to aggregation, metadata negotiation 
or data fusion [14-18]. However, in most cases, in-network pro­
cessing is specifically designed for a single type of tasks and very 
often it is not generic enough to support multiple services de­
manded by the current context-aware applications that deal with 
a variety of objectives. 

An alternative to early ad hoc approaches is to support and pro­
vide a diversity of functionalities through a well-specified applica­
tion-level interface while taking advantage of in-network data 
processing background. This proposal can be achieved by using 
middleware platforms that allow developers to deploy applications 
disregarding low-level issues (e.g. resource allocation, node topol­
ogy, routing, etc). A middleware-based paradigm enables an easy 
development of novel sensing-based applications as well as its 
deployment and maintenance in pervasive networks [19]. 

Some interesting proposals have been found in the literature re­
lated to middleware approaches for embedded devices. For in­
stance, RUNES project (Reconfigurable, Ubiquitous, Networked 
Embedded System) [20] tries to solve the common challenges 
(mostly maintenance) using a component-based programming 
model. Another approach, MiLAN (Middleware Linking Applica­
tions and Networks) [21] allows the applications to specify their 
QoS needs and adjust the network characteristics to increase 
WSN lifetime while still meeting those requirements. In spite of 
early efforts in middleware for embedded platforms, it still shows 
some unacceptable drawbacks for current SOA-based pervasive 
networks. Data aggregation is the only in-network data processing 
performed by those middleware proposals. Furthermore, network 
node dynamic behavior and node mobility are not clearly sup­
ported. They impede the development of more robust and general-
ist environments that are needed in order to support service-
oriented paradigms. 

Big efforts have been done in order to model high level contex­
tual information and translate it in order to be used in a service-
oriented manner. Those service-oriented approaches are usually 



achieved through three phases managing the contextual informa­
tion: discovery, acquisition and reasoning. An early approach for this 
issue can be found in [22]. That proposal is based on a middleware 
platform for contextual agents. This middleware is designed to 
make up an execution framework suitable for agents in ubiquitous 
computing environments, allowing the use of various reasoning 
tools like first order logic and temporal logic to process contextual 
information. More recent approaches like [23] and [24] provide 
frameworks to hide the platform heterogeneity by means of inter­
faces of its various components. In [23] and [25] contextual infor­
mation is tagged semantically and mapped into ontologies. Those 
semantic mechanisms allow discovering and processing contextual 
information in the network. According to service-oriented comput­
ing paradigms, the semantic information models are necessary to 
integrate pervasive embedded networks into the Service Cloud. 
However, those models have to be standardized and become gen­
eric enough so as to describe a wide range of domains. 

Service-oriented approaches described above solve issues such 
as context information acquisition, classification and processing. 
However, their major drawback arises when dealing with high dy­
namic environments. Unlike traditional Internet services, real-
world services are provided by embedded and resources-con­
strained devices. These devices create high dynamic environments 
where services can appear, vanish, and re-appear. According to this 
specific characteristic, it is necessary to use mechanisms and pro­
tocols to discover devices and services, as well as their effective 
management. It could seem a good idea to implement SOA stan­
dards to solve this issue; however, these standards were designed 
taking into account service deployed on static and no resource lim­
ited networks e.g. WS-* specifications. 

A proposal to adapt SOA standards to pervasive embedded net­
works has been presented in [11]. This proposal deploys Web ser­
vices directly over embedded devices by using the Web Service 
Description Language (WSDL) [7]. Moreover, it uses SOAP over 
UDP in order to achieve high performance in service transactions 
as well as WS-Eventing [26] to enable integration with Web service 
based on Internet applications. However, this proposal introduces 
too much overhead when using WSDL to describe services, as well 
as SOAP as application protocol, since both use XML which is a 
redundant language. Using more lightweight languages that con­
sider limited resources of embedded devices e.g. JavaScript Object 
Notation (JSON) [27] can solve this issue. 

Another proposal to implement Web services in embedded de­
vices is SOCRADES [28]. Its major goal is to assist the developers to 
the discovery of real-world services by means of the Real-World 
Service Discovery and Provisioning Process (RSDPP). The access 
to real-world service is achieved by deploying two alternative ap­
proaches in gateways: Device Profile for Web Services (DPWS) [29] 
and Representational State Transfer (REST) APIs [6]. SOCRADES 
seems a good global solution to provide real-world services 
through pervasive embedded networks; however, the processes 
carried out to deploy and discover services over the embedded net­
work have not been completely specified enough from developer's 
point of view. 

The approaches previously described have positively contrib­
uted to the State of the Art of SOA-based pervasive embedded net­
works; although, there are many issues to be solved in this field 
yet. Firstly, lightweight information models have to be designed. 
We propose the use of JSON to describe services and tag contextual 
information. This offers less semantic redundancy than XML lan­
guage, which can better performance by saving computing re­
sources and bandwidth. Secondly, a development model for rapid 
prototyping in embedded networks does not successfully address 
this point. Our proposal aims a framework to model and deploy 
agents similar to the Plain Old Java Objects (POJOs), which allows 
rapid deployment and reusability. This development model en­

ables an easy integration and maintenance of loosely coupled 
software parts. Moreover, underlying mechanisms and protocols 
to discover and orchestrate services have been designed in order 
to hide resource allocation issues to developers, creating an 
Internetworking environment without the need of application 
gateways. 

The following sections do not aim to provide a comparison 
between our approach and other proposals that enable internet­
working capabilities; rather, the objective is to present an original 
SOA-based proposal for pervasive embedded networks and an 
evaluation that helps comparing it with other service-oriented 
solutions. 

3. General principles of the architecture 

One of the major foundations of KASO Middleware is a set of 
Knowledge Management (KM) services that depends on an Infor­
mation Model of the System. This Information Model is handled 
to expose network resources in a service-oriented manner in order 
to achieve the major challenge of our research: to narrow the gap 
between pervasive embedded networks and the Service Cloud. 

In this section, the general principles of the KASO Middleware 
architecture are explained. These principles are based on the fol­
lowing points: a basic deployment infrastructure over which perva­
sive service will be deployed and run; the Information Model in 
order to define an abstract representation of the System environ­
ment; Perceptual Reasoning Agents which are logical units imple­
menting business processes to provide pervasive services; and 
external entities, i.e. user applications and external services, which 
are deployed over conventional networks taking advantage of per­
vasive services. 

3.1. Basic Deployment Infrastructure 

The basic deployment infrastructure is made up of various types 
of hardware devices deployed around specific spaces. These de­
vices range from wireless embedded nodes, to Gateways. Fig. 2 
shows a scheme of this deployment infrastructure. As shown, 
nodes in the embedded network play three roles: (i) Sensor and 
Actuator (SA), (ii) Contextual (C), and (iii) Sink. SA Nodes offer sim­
ple services that are discovered and orchestrated on C Nodes. Sink 
Nodes collect descriptions of these services and transmit them di­
rectly to the Gateway. Furthermore, there are application servers 
running on the Gateway which enable performing any service 
transaction over pervasive services offered by the embedded 
network. 

Sensors and actuators connected to the nodes of the WSAN will 
allow providing a number of real-world services (e.g. environmen­
tal measurements and HVAC of a building). 

3.2. Information Model of the System 

An Information Model of the System has been designed in order 
to describe both low-level resources (e.g. sensors, actuators, mem­
ory, battery, etc.), and high-level resources (simple and composite 
services, service composition rules and workflow plans). Data char­
acterizing such resources is stored in Knowledge Bases; this data 
generates instantiations of the Information Model of the System. 

Knowledge Bases (KB) are distributed between the devices of 
the overall System (see Fig. 3). The KBs are planned in different ta­
bles which are explained in following sections. In this base scheme 
there are three kinds of KBs: 

Mote Knowledge Base is deployed on Sensor and Actuator nodes 
(motes) and stores information about simple services, service com-
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Fig. 3. Knowledge Bases mapped over the infrastructure devices. 

position rules and workflow plans to manage the orchestration of 
simple services and available physical resources. 

Contextual Knowledge Base is deployed on Contextual nodes and 
stores information about simple and composite services, service 
composition rules and workflow plans to manage the orchestration 
of composite services. 

System Knowledge Base is deployed on Gateways and collects 
semantic pieces in order to generate the Information Model of 
the whole embedded network. 

As previously described, the repository on the top of the hierar­
chy is deployed on the Gateway that interconnects the embedded 
network with the Service Cloud. This KB is intended to be struc­
tured as ontology over a RDF/OWL 2 [30,31] document. 

3.3. Perceptual Reasoning Agents 

KASO Middleware is designed from an agent paradigm called Per­
ceptual Reasoning Agents (PRAs). PRAs are deployed both in SA Nodes 
and C Modes according to the network hierarchy; they are called M-
PRAs and C-PRAs, respectively. A programming model has been de­
signed to facilitate the development and deployment of those PRAs 
into the execution environment of the KASO Middleware. 

Among other facilities, the KASO Middleware provides develop­
ers a common API to register PRAs in the system which allows 
hiding the complexity of underlying mechanisms, e.g. service 
discovery, resources allocation, orchestration and other control 
operations. 



3.4. External entities 

Internetworking mechanisms implemented by KASO Middle­
ware allows external entities to access pervasive services offered 
by the embedded network. These services are mapped over stan­
dardized REST Web services, which are described and exposed 
through a WSDL 2.0 document [7]. 

Internetworking functionalities implemented by KASO Middle­
ware allows performing actions over every level of a pervasive 
embedded network by invoking standard Web services. In Section 
5.6, the Web service method encapsulation used by KASO Middle­
ware is shown through an example. External entities have access 
to: (a) low-level resources by setting up parameters on hardware 
components (e.g. radio signal strength, behavior of sensors and 
actuators); (b) middleware level to control the life-cycle of PRAs 
(e.g. load/unload and start/stop them); (c) information modeling 
level to augment or restrict the Information Model of the System. 

In this section, principles of KASO Middleware architecture are 
explained. In the following sections, specific features of KASO Mid­
dleware architecture are explained. Those features are the corner­
stone in providing Knowledge Management services from data 
collected by sensors and actuators nodes and offering this knowl­
edge by means of SOA mechanisms. 

4. Design specifications of the Knowledge-Aware and Service-
Oriented Middleware 

4.1. Architecture overview 

KASO Middleware architecture takes advance from SOA ap­
proaches that have become very popular in the current Internet 
[32-34]. Moreover, semantic models defining ontologies [30,31] 
have been taken into account in order to design Knowledge Man­

agement services. Fig. 4 shows a block diagram of subsystems 
making up KASO Middleware architecture. 

KASO Middleware is based on a layered architecture in which 
each subsystem encapsulates different functionalities. Each of these 
layers is explained in the following sections. Firstly, the Multi-func­
tional Embedded Layer, which is common to most approaches for 
pervasive embedded networks, is explained. Secondly, the middle­
ware layer, which provides services-oriented and Knowledge Man­
agement capabilities to the embedded environment, is pointed out. 

4.2. Multi-functional Embedded Layer 

The Multi-functional Embedded Layer is the lowest layer of the 
architecture. In this layer, the hardware platform, which consists 
of a variety of hardware modules (e.g. CPU, radio, memory, etc.), 
is located. Recently, many products for Wireless Sensor and Actu­
ator Networks have emerged, in both commercial sector [35,36] 
and open-source sector [37,38]. 

A Real-Time Operating System, which manages most of the pro­
cesses running at low-level, is implemented in this layer. Its major 
aim is to hide the hardware heterogeneity from higher layers. Several 
open-source OS for wireless embedded devices such as TinyOS [39], 
Contiki [40] or LiteOS [41 ], have consolidated as valuable solutions. 

The Network Protocol layer uses mechanisms and protocols for 
transmitting packets in a multi-hop communication taking into ac­
count some essential factors as network topology, energy consump­
tion, and QoS requirements [42-44]. Moreover, standardized 
routing protocols have to be considered, as those implemented in 
61owpan [45] and uIP [46], in order to guarantee compatibility with 
external conventional network, e.g. LANs or Internet. 

The Multi-functional Embedded Layer provides basic functional­
ities, which are complemented by a middleware layer. This mid­
dleware layer was designed keeping in mind the major objective 
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of this research: to provide Knowledge Management functional­
ities in a service-oriented framework. Major features of this mid­
dleware layer are explained in the following section. 

4.3. Middleware layer 

The middleware layer is made up of three subsystems. Fig. 5 
shows each one of these subsystems. 

The main subsystem offers Framework Services which create an 
execution environment to control the life-cycle of components and 
agents. The Query Service allows PRAs and external services to request 
information about specific parameters by using a limited set of SQL 
queries. The Runtime Manager Service is in charge of load/unload 
and star/stop components and PRAs. The Security Service offers proce­
dures and algorithms to manage various security issues, majorly 
those regarding information ciphering and service access permis­
sions. The In-node Configuration Service allows setting up parameters 
at low-level such as allocation of resources (e.g. memory). 

The second subsystem provides Communication Services. These 
services are distributed in three modules enabling low-level re­
source discovery, service exposure and discovery, and internet­
working communications. The first module implements Resource 
Monitor. This module provides mechanisms to establish bidirec­
tional communication with physical resources of the node by 
means of OS primitive callings. 

Two modules complement the device communication function­
alities in this middleware approach. Each one of them implements 
application protocols: Micro Inter-Knowledge Protocol (u.IKP) and 
Compressed HTTP over PANs (CHOPAN) [47]. uIKP offers service dis­
covery mechanisms to nodes belonging to the same embedded net­
work. (J.IKP is based on a subset of WS-Discovery standard [48]. 
Furthermore, a REST endpoint is implemented based on the CHO­
PAN protocol specification. CHOPAN is designed from a binary 
specification of HTTP with the aim of saving bandwidth and energy 
consumption in resource-constraint embedded networks. An adap­
tation layer is necessary in order to translate CHOPAN messages 
into compatible format for KASO Middleware. 

One of the major contributions of this research comes from the 
subsystem providing Knowledge Management Services (KMS). The 

business logic behind KMS is implemented by a Broker and an 
Orchestrator of services. The function of Brokers and Orchestrators 
depends on the Information Model of the System and its instanti­
ations which are stored in Knowledge Bases (KB) (see Section 3.2). 
The Broker implements an API that is offered to developers of PRAs 
in order to register services in the System. Table 1 shows this API. 

API shown above hides low-level issues to developers; they 
have to be only aware of managing simple and composite services, 
which will be offered by PRAs. The Broker requires three parame­
ters in order to be able to manage a service; two descriptive docu­
ments (Service Description and Service Composition Rules) and a 
structure that controls two callback methods (see Table 1). 

Orchestrator mechanisms need a set of Service Composition Rules 
stored in the KB. This kind of documents indicates which resources 
have to be allocated so as to provide a service as well as how that 
service has to be orchestrated is case of being activated. This pro­
cess is explained in depth in Section 5.4. 

5. Programming pervasive services for embedded networks 

In this section, the main tools to program pervasive services by 
means of the development of Perceptual Reasoning Agents are ex­
plained. Explanations are illustrated with real-world examples in 
order to facilitate its comprehension; to this end, a healthcare appli­
cation based on Wireless Sensor and Actuator Networks (WSANs) 
has been used as reference. This section finishes with a proposal 
to interconnect a KASO-based WSAN with the Service Cloud. 

5.1. Discovery and mapping of low-level resources 

Before KASO Middleware can offer pervasive services, it has to 
be aware of low-level resources in the node platform, majorly 
those with sensorial and actuation capabilities. Those resources 
are locally discovered by means of Resource Monitor of the Commu­
nication subsystem. Knowledge Management subsystem models 
every low-level resource like sensors or actuators. In order to mod­
el such low-level resources, a lightweight description language is 
proposed: the Sensor and Actuator Mapping Description (SAMD). 

Listing 1. A SAMP document to describe low-level resources related to a healthcare scenario. 
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"sensors":{ //Defines a list of sensors connected to the node and its capabilities, 
"battery": { //Battery is defined as a sensor. 

"unit":"volts", //Defines representation units of the sensor, 
"accuracy": "0.2", //Defines the accuracy of the sensorial hardware, 
"resolution": "0.001", //Defines the resolution of sensor samples, 
"eventing":{"bySamplingPeriod", "byThreshold"} //Define event-based behavior. 

), 
"Heart_Monitor":{ 

"unit":{"beat_per_second"}, 
"accuracy": "2", 
"resolution": "1", 
"eventing": {"bySamplingPeriod", "byThreshold"} 

}, 
"Sphygmomanometer":{ 

"unit": "mmHg", 
"accuracy": "1", 
"resolution": "2", 
"eventing" : { "byThreshold" } 

> 
}, 

"actuators":{ //Defines a list of actuators connected to the node and its capabilities, 
"defibrillator":{ 

"actions":[ //Defines a list of available actions 
//Configuration attributes (minValue, matfValue and resolution)are defined for each action. 

{"name":"defibrillation", "minValue":"5", "maxValue":"400", "resolution":"1"}, 
1 

) 
) 



Table 1 
API offered by the Broker. 

PRA_ID=registerPRA(Service_Description, 

Service_Composition_Rules, Service_Processor) 

deregisterPRA(PRA_ID) 

updatePRA(PRA_ID, Service_Description, 

Composition_Rules) 

This method registers PRAs into the System by means of its three gears: description of services 
provided by such PRA, composition rules for those services, and a structure consisting of two callback 
methods to receive final results from service request and partial results from a service workflow that 
has to be controlled by the PRA. 
This method deregisters a PRA from the System. 
This method updates information about a registered PRA. 
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Fig. 5. Detailed diagram of KASO Middleware subsystems. 

An example of SAMD document is shown in Listing 1. 

SAMD documents describe parameters such as representation 
unit ( ' ' u n i t ' ' ) , asynchronous behavior ( ' ' e v e n t i n g ' ' ) or sen­
sorial accuracy ( ' ' a c c u r a c y ' ' ) can be described. 

Low-level resources are discovered through protocols managed 
by the Resource Monitor during node's bootstrapping process and 
runtime. Finally, a SAMD document is instantiated with semantic 
description about low-level resources and stored in the Contextual 
Resources Table of the Knowledge Base. 

5.2. Specifications of the Perceptual Reasoning Agent 

Perceptual Reasoning Agent (PRA) specification is based on two 
characteristics: independency from the platform, and reusability in 
multiple kinds of scenarios. A specific programming model is pro­
posed to expedite design, develop, and deploy PRAs while consum­
ing few low-level resources (e.g. low footprints and CPU use). 

The development of PRA is tackled by means of a model-driven 
approach. This way, a UML (Unified Modeling Language) model is 
designed as a PRA template to be used by developers. That interface 
facilitates a seamlessly management and scheduling of the PRA's 
lifecycle by Framework and Knowledge Management subsystems. 
The UML model is illustrated in Fig. 6. 

The PRA's life-cycle can be manage through control methods: 
l o a d ( ) , r u n ( ) , s t o p ( ) and u n l o a d ( ). An invocation to l o a d 
() method allows instantiating a copy of the Framework context. 
Moreover, when invocating load () method, two semantic struc­
tures, which are related to services provided by the PRA, are 
instantiated: the first one (Service Description) describes the service 
itself; the second one (Service Composition Rules) describes how the 
service has to be composed and orchestrated. After an invocation 
to run () method, PRAs are registered into the System by means 
a calling to registerPHA () method of the Broker API. This step 
establishes a service point between the PRA and the Knowledge 
Management Subsystem. When nodes are being shutdown, PRAs 
running on them are deregistered and semantic structures regard-



ing services are liberated from the KB; Such operations are per­
formed by means of invocations to s top () and unload () 
methods. 

5.3. Register of pervasive services 

As explained in Section 4.3, when registering PRA services, 
developers have to perform an invocation to the method r e g i s -
terPHA () of the Broker's API. Such method needs several param­
eters to complete a registration, among others, a service 
description document. That document has to be written according 
to the Service Mapping Description (SMD) [49]. SMD documents are 
compact, simple and readable; they are represented as aJSON Object 
describing specific features of Web services. The Broker collects 
and stores every SMD document in the Service Description Table 
of the Knowledge Base. Listing 2 shows an example of a service 
description document based on SMD. 

The JSON schema of the SMD has been extended in order to im­
prove service-oriented capabilities of the KASO Middleware fo­
cused on discovery, composition and dispatching mechanisms. This 
way, three new attributes have been added to the original schema 
of the SMD: "exposure", "composition" and "eventing". The 
definition of these attributes is mandatory; if they do not exist in 
the SMD document, default values will be obtained. 

The "exposure" attribute is defined to manage service discov­
ery by means of the (J.IKP protocol. This attribute can get the fol­
lowing values: 

• "LevelO": Services are not exposed to any entity of the system. 
This is the default value. 

• "Leveii": Services are exposed to other entities of the embed­
ded network, i.e. other SA and C nodes. 

• "Levei2": Services are exposed to entities making up the whole 
system. 

The ' ' composi t ion ' ' attribute indicates if a simple service 
can be composed and orchestrated into a workflow. This attribute 
can get ' ' t r u e ' ' or ' ' f a l s e ' ' value. If it is instantiated to 
' ' f a l s e' ' value, the service will not be able to be aggregated into 
a composite service. Such pervasive services are intended to be 
atomically invocated. The default value for the ' ' composi t ion ' ' 
attribute is ' ' f a l s e ' ' . 

The ' ' even t ing ' ' attribute defines two models of service dis­
patching mechanisms: on-demand and event-based. Furthermore, 
two methods are supported for event-based services, which are 
available through values assigned to ' ' e v e n t i n g ' ' attribute. 
Those values are the following ones: 

• ' ' byThresho id ' ' : Events are thrown when results of service 
procedures comply specific threshold conditions defined in a 
subscription. This kind of subscriptions use two parameters to 
define threshold conditions: "operator", which permitted val­
ues are "equal", "more Than" and " l e s s Than"; and "value", 
that defines the value from which the threshold is defined. 

• "by Sampling P e r i o d ' ' : Events are thrown when finishing a 
period of time defined in the subscription. This kind of subscrip­
tions uses the "period" attribute in order to define the sam­
pling period to throw results to event consumers. 

Event subscriptions are also defined by the ' ' e x p i r a t i o n ' ' 
attribute. This attribute indicates the period of time during which 

Listing 2. Service description for a healthcare application based on the SMD proposal. 
if 
2 "transport": "REST", //The service request should be sent using 
3 //standard HTTP methods (GET, POST, PUT and DELETE). 
4 "envelope": "URL", //The response should be value returned from the method call. 
5 "target": "/eHealthPRA", //Defines the URL to connect the service. 

"SMDVersion": "2.1", 
"exposure": "level2", //Defines the exposure level of the service. To be used by uXKP. 

8 
9 "services": { 
10 "BloodPressure": { //Definition of an event-based service 
11 "composition": false, //Defines availability to be aggregated in composite services. 
12 "eventing": "byThreshoid", //Defines event-based behavior. 
13 "parameters": [ 
14 //Defines parameter for the subscription to events. 
15 {"name":"operator", "type": "string"}, 
16 {"name":"value", "type": "number"}, 
17 {"name":"expiration", "type": "number"}, 
18 ] 
19 "additionalParameters": [ 
20 //Defines Additional parameter for the subscription to events. 
21 {"name": "operator", "type": "string"} 
22 {"name":"value", "type": "number") 
23 ] 
24 "return":{"type": "number"} 
25 }, 
26 "getHeartRate": { //Definition of an on-demand service. 
27 //Redefines the transport and envelope for this specific service. 
28 "transport": "POST", //It uses POST as the transport. 
29 "envelope": "JSON", //It uses JSON object as the envelope. 

"composition": true, 
31 "parameters": [ 
32 {"name": "mode", "type": "string"}, 
33 {"name": "minThreshold", "type": "integer", "optional": true}, 
34 {"name": "maxThreshold", "type": "integer", "optional": true} 
35 ] 
36 "return":{"type":"number"} 
37 } 
38 } 
39 } 



« P B D L » 
Service Conditional Rules 

m_ 

« I n t e r f a c e » 

PRA Execution Control 

load(framework_context) : ¡nt 

+unload(j : void 

+ runO : ¡nt 

+stop(): void 

« c o m p o n e n t s 

« P R A » 

nSOM Agent 

Service Processor 

Execution Control 

Brokerinq Services 

Framework Services 

« I n t e r f a c e » 
Service Processor 

+ServiceResultProcessor(service_result: byteQ): void 

+ServiceWorkflowProcessor(workflow_context): void 

Fig. 6. UML model of the Perceptual Reasoning Agent. 

a concrete subscription is valid. Every subscription has to be re­
newed by event consumers in order to restart the expiration coun­
ter; otherwise, if the subscription is not renewed and that counter 
is expired, the subscription is automatically removed. 

To define on-demand services, the ' ' e v e n t i n g ' ' attribute has 
to get ' ' f a l s e ' ' value. That is the default value for ' ' even t ­
ing ' ' attribute. 

5.4. Composition and orchestration of pervasive services 

Knowledge Management Subsystem of KASO Middleware is 
able to compose and orchestrate pervasive services from low-level 
resources and simple services by means of complex business pro­
cesses. Composition and orchestration are supported by the Infor­
mation Model of the System (see Section 3.2). The smallest units of 
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Listing 3. <Actlvatlon Rules> section for a composite service related to e-Health. 
l<activation_rules> 
2 
<simple_services> 

<service operation="getECG" runAt=" externalNode::ECG_PRA"/> 
<service operation="getBloodPressure" runAt="externalNode::blood_PRA"/> 
<service operation="getHealthStatus" runAt="localNode::health_PRA"> 

<parameter value="context.ECG"/> 
<parameter value="context.heartRate"/> 

</service> 
<service operation="setDefibrillator" runAt="externalNode::emergency_PRA"> 

3 
4 
5 
6 
7 
9 
10 
11 
12 
13 
14 
15</activation rules> 

</simple_services> 

this Information Model are mapped over low-level resources from 
which simple services can be provided. On the other hand, simple 
services can be aggregated into composite services. Such composi­
tion tasks are carried out by the Orchestrator through its Workflow 
Plan Generator module. 

The KASO Middleware has its own mechanisms to discover both 
high and low-level resources. To this aim, KASO Middleware 
dynamically explores the network for resources; a specific service 
is just activated if necessary resources to compose that service are 
available. The only requirement is to provide a document describ­
ing service composition rules to the Broker. 

A new lightweight XML-based language has been designed in 
order to define composition rules and workflow plans for the 
orchestration of services. That language has been called Pervasive 
Business Definition Language (PBDL). PBDL documents describing 
both composition rules and workflow plans are stored in the Ser­
vice Composition Rules Table and Workflow Plans Table, respectively. 

Let us illustrate a basic service composition through an example 
(see Fig. 7). In this scenario a PRA registers a simple service in order 
to provide an e-Heatlh service. Meanwhile, the Workflow Genera­
tor has found a heart monitor through the Resource Monitor sen­
sor. Finally, the getHeartHate operation is activated and 
exposed by means of (J.IKP protocol. 

The Service Composition Rules Table is made by PBDL documents 
which are structured around two tags: < a c t i v a t i o n _ r u i e s > and 
<service>. < a c t i v a t i o n _ r u i e s > tag is used to describe re­
sources necessary to provide concrete services. <service> tag is 
used to describe business processes managing resources to obtain 
a result from a specific request. If rules in <activation_rules> section 

Listing 4. A workflow plan describing a business process for an e-Health service. 
1 <process name="Set_Emergency_Assistant"> 
2 

<fork> 
<group> 

<se rv i ce opera t ion="ge tBloodPressure" runAt="NodeA: :Blood_PRA" 
con tex t="con tex t " r e tu rnVar="con tex t .b loodPressu re"> 

<parameter va lue="contex t .po l l ingMode" /> 
< / s e rv i ce> 

<se rv i ce operation="getECG" runAt="NodeB::ECG_PRA" 
con tex t="con tex t " re turnVar="context .ECG"/> 

<parameter va lue="contex t .po l l ingMode" /> 
< / s e rv i ce> 

</group> 
</fork> 

are satisfied, i.e. necessary resources to be able to provide such ser­
vice are available, a PBDL document describing the workflow plan 
is created and inserted in the Workflow Plan Table. Regarding PBDL 
documents in Service Composition Rules Table, PBDL documents 
describing workflow plans instantiate the runAt attribute of the 
tag <service> (to a local or external PRA) and removes the 
< a c t i v a t i o n _ r u l e s > sec t ion . 

Composition and orchestration of composite services are per­
formed by C Nodes (see Section 3.2). This process takes place when 
a C-PRA registers a composite service in the System. Activation 
procedures for composite services are carried out in the same 
way as those for simple services, but taking into account simple 
services instead of low-level resources. The latter issue is illus­
trated in Listing 3. 

In Listing 3, the activation requirements to activate composite 
services are defined within the section <ac t iva t ion_ru ie s> . 
The business process orchestrating simple services, which are 
aggregated to a composite service, is described in a workflow 
plan. 

Listing 4 shows a workflow plan for a hypothetical composite 
service (Set_Emergency_Assistant) which would be activated 
by activation rules shown in Listing 3. In Listing 4, the first tag is 
<fork>, which has two groups (tagged as <group>) in the body. 
It divides the workflow and parallel invokes getBioodPressure 
and getECG operations that are provided by PRAs running on dif­
ferent nodes (Biood_PHA on Node A, and ECG_PBA on Node B, 
respectively). Then, ge tHea i thS ta tus operation of the 
Heaith_PHA running on local Node is invoked. Finally, if current 
health status of the patient is critical, the operation se tDef ib r -

3 
4 
5 
E 
7 
e 
9 
10 
11 
12 
13 
14 
15 
16 

n 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 </process> 

<service operation="getHealthStatus" context="context" 
returnVar="context.currentHealthStatus" runAt="localNode::Health_PRA" 
<parameter value="context.bloodPressure"/> 
<parameter value="context.ECG"/> 

</service> 

<if test="{context. currentHealthStatus == context. critical} "> 
<service operation="setDefibrillator" runAt="NodeC::Emergency_PRA" 
context="context"/> 
</if> 
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Fig. 8. Messages Interchanged by uIKP. 

i i i a t o r provided by Emergency_PHA that is loaded in Node C is 
invoked. 

The management of the memory allocated for service work­
flows is performed by the Workflow Contextualizing of the Orches-
trator; that management includes the collection and storage of 
returned values from invocation to operations, partial invocations 
to ServiceWorkflowProcessor(workflow_context) method 
of the specific PRA every time an operation returns a value, and 
frees memory when the service workflow is finished, between 
other tasks. 

5.5. Exposure of pervasive services 

tures. Three roles are managed by (iIKP: SA Nodes work as service 
targets, Sink Nodes work as service clients and C Nodes have a 
combined behavior (service client or service target). Message inter­
changed by (J.IKP are shown in Fig. 8. 

Initially, SA Nodes and C nodes send multicast Hello messages 
(1) to expose services they can provide when joining the network. 
Hello messages can be sent again during runtime in order to up­
date the service profile stored in KB of other nodes. This usually 
happens when a new service is activated into the node. SA Nodes 
and C Nodes may also receive multicast Resolve messages (2) to 
find a particular service at any time and send a unicast Resolve-
Match message (3) if some of their services are the searched ones. 
Finally, before a node leaves the network, it sends a multicast Bye 
message (4) in order to remove information from KBs regarding to 
its services. 

A Semantic Engine running on the Gateway translates every SMD 
document into a RDF model. Those information pieces are used to 
build the System's ontology, which is structured in OWL. The Sys­
tem's ontology is evolved according to the reception of SMDs and 
stored in the System KB of the Gateway. 

Fig. 9 it is shown a proposal based on a synergy between 
embedded networks and RESTful [6] architectures. This approach 
allows exposing pervasive services deployed in the embedded net­
work as Web services in WSDL 2.0 documents. Those WSDL 2.0 
documents are automatically generated by means of a parsing pro­
cess from an instance of the System's ontology. 

The embedded network uses the Micro Inter-Knowledge Proto­
col (uJKP) in order to expose and discover pervasive services de­
fined in SMD documents. The (J.IKP is a reduced specification of 
the WS-Discovery standard [48] used by DPWS; however, (J.IKP is 
not still compatible with those traditional Web service architec-

5.6. Requests for pervasive services 

When finishing exposition and discovery procedures, PRAs and 
external entities can access to pervasive services that are provided 
by the embedded network. These services are accessed through 
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Fig. 10. Message Interchange during a service transaction in our Internetworking approach. 

The Gateway is in charge of receiving service requests and per­
forms some translations, e.g. SOAP messages are translated into 
JSON format. Moreover, HTTP header fields are translated into a 
binary format according to CHOPAN specification, which can be 
interpreted by REST endpoints of each node. After this processing, 
CHOPAN PDUs are routed to the specific node which has to provide 
results to those service requests. 

An example of a service transaction is shown in the Fig. 10. The 
' ' H e a i t h S t a t u s ' ' service that is described in Listings 3 and 4 is 
used in this example. In this use case, medical staff can monitor pa­
tients by means of a WSAN which exposes its services to the Cloud 
Service. Pervasive services are described in a WSDL 2.0. Those ser­
vices can be accessed through REST methods by using traditional 
devices as PDAs or Laptops. 

"¿r-oifc 

Fig. 11. On the top, a TelosB node; on the bottom, the top face of a SSB. 

6. Validation of the KASO Middleware architecture 

The motivation scenario to validate KASO Middleware architec­
ture was focused on a set of healthcare applications. The necessary 
deployments were performed in the Sanatorium Versmé in Birsto-
nas, Lithuania. In this scenario a KASO-based WSAN was integrated 
in a hypothetical Service Cloud. Since the major aim of this section 
is to show the validation results of the KASO Middleware, explana­
tions are mainly about results of the tests performed over the 
WSAN. 

6.1. The embedded network infrastructure 

HTTP methods {GET, PUT, POST and DELETE) according to RESTful 
mechanisms. Services interfaces are obtained through a WSDL 
2.0 document. 

The healthcare scenario was aimed taking into account three 
points: (i) surveillance of the Sanatorium's perimeter, (ii) tracking 
of patients and medical staff, (iii) and monitoring of critical vital 

http://inni.vsan.org/CojitxKodeC/
http://vuww.wsan.org
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Fig. 13. A Virtual Perimeter Node deployed on the Sanatorium perimeter. 

signs. The deployed System was able to provide services in order to 
manage almost every non-common and emergency situation 
regarding healthcare and safety in Versmé Sanatorium. The de­
ployed infrastructure is shown in Fig. 12. 

The WSAN deployed around the Sanatorium area was made up 
of SA nodes with different roles offering different services. The 
hardware platform chosen for the WSAN deployment was the 
Crossbow TelosB [50]. TelosB's features are 16 bits RISC processor 
(MSP430 microcontroller), wireless interface (IEEE 802.15.4), 
48Kb of Flash memory, 16Kb of Configuration EEPROM, and 
10 Kb of RAM. The energy supply of this platform is by means of 
2 AA batteries. An additional hardware module was used, a Smart 
Sensor Board (SSB). The SSB was designed to connect a number of 
sensors and actuators through the USART interface of TelosB nodes 
(Fig. 11). 
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Fig. 14. ROM footprint of the overall architecture. 
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Table 2 
Event-based services and corresponding PRAs. 

Service name 

Suitable 
environment 

Perimeter 
intrusion 

Health 
emergency 

Technical 
supervision 

Provider PRA 

Statistical monitoring 
C-PRA 
Surveillance M-PRA 

Critical monitoring 
M-PRA 
Technical M-PRA 

Event trigger 

Average temperature threshold 
of an area 
No authorized person crosses 
the Sanatorium perimeter 
Heart rate of a patient passes a 
threshold 
Energy level of batteries passes 
a min threshold 

Table 3 
On-demand services and corresponding PRAs. 

Service name Provider PRA Returned result 
Environmental 

monitoring 

Health status 

Technical 
control 

Statistical 
Monitoring 
C-PRA 

Critical 
Monitoring 
M-PRA 
Technical M 
PRA 

Instantaneous average humidity 
level of an area 

General patient's health status according 
to several parameters: blood pressure, 
body temperature and heart rate. 

Instantaneous energy level and RAM 
occupied. 
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Fig. 16. Service availability in four test cases. 

TelosB is a very resource-constrained platform compared to 
more recent like Imote2 [51] or Sun Spot [36]. Taking into account 
such restrictions, the testing on memory footprint, latency and 
availability carried out with this type of nodes are decisive to check 
the feasibility of the KASO Middleware in embedded devices. 

Tiny OS 2.0 [39] and 61owpan [45] protocol were implemented 
in the Multi-functional Embedded Layer (see Fig. 4). The interface 
between KASO Middleware and hardware platform was well ad­
dressed through the event-driven paradigm used by Tiny OS. Net­
working services were also appropriately managed by means of the 
61owpan protocol; its major advantage was the provision of inter­
networking capabilities to the System, which improves interaction 
between the WSAN and external networks. 

The WSAN infrastructure was made up of five kinds of nodes. 
Each one played a specific role within the network (see Fig. 12): 

• Virtual Perimeter Node: A Virtual Perimeter was deployed around 
the Sanatorium. Nodes making up such perimeter (Fig. 13) were 
supplied with GSN PATROL-701 Passive Infrared Sensors (PIR) 
[52]. Surveí/íance M-PRA was running on Virtual Perimeter Nodes. 
These agents were able to detect perimeter crossings and identify 
the person crossing the perimeter, i.e. patients or medical staff. 
For this purpose, a personal Id was provided by a Bracelet Node, 
which uniquely identified each user. 

• Bracelet Node: This kind of node was worn by both patients and 
medical staff. They integrated two biomedical sensors: heart-
monitor and body temperature. The major objective of the 
Bracelet Node was to monitor vital signs of patients while guar­
anteeing their privacy. By using bracelet nodes, the patients' 
mobility is notably improved since medical staff can monitor 
patients' health status wherever they are. 

• Services provided by Bracelet Nodes were managed by Critical 
Monitoring M-PRAs which were able to collect data from bio­
medical sensor and to infer the patient's health status. This Crit­
ical Monitoring service could operate under two mechanisms: 
on-demand or event-based. 

• Intermediate Node: This kind of node was deployed all around 
the Sanatorium area. Their main objective was to monitor sev­
eral environment parameters by using three automation sen­
sors: temperature, humidity and light. From the data 
extracted with those sensors, some inferences could be per­
formed e.g. if it is advisable for patients go out to take a walk 
depending on their profile which is determined by their kind 
of illness or comfort preferences. 

• The monitoring of environment parameter was carried out by 
Environmental Monitoring M-PRAs running on Intermediate 
Nodes. 

• Contextual Node: The aim of Contextual Nodes was to discover 
simple service in its neighborhood in order to aggregate them 
into a workflow plan and activate some composite service 
(e.g. max/min and average of temperature measurements). 
These functionalities were provided by a Statistical Monitoring 
C-PRA. 

• Sink Node and Gateway: These infrastructure components are 
essential pieces to interconnect the WSAN with external net­
works. The only objective of Sink Nodes was to resend informa­
tion from the WSAN to the Gateway through a USB port. On the 
other hand, the Gateway is in charge of collecting semantic 
information from the WSAN and building the System ontology 
based on OWL, as well as to manage service transactions for 
those services deployed on the WSAN. 

6.2. Validation results 

A set of test was planned according to the specific infrastructure 
used in the deployment and the use cases of the System. The Sys-



tern deployment was made up of 106 SA Nodes and 21 C Nodes. 
Moreover, 20 patients and 5 medical staff of the Sanatorium Vers-
mé contributed to perform these validation tests since they pro­
vided valuable support in order to carry out some of the 
validation tests. 

6.2.1. Memory footprint 
Firstly, the footprint of a full implementation of the KASO Mid­

dleware architecture over the TelosB platform is analyzed. A node 
profile consisting of 1 C-PRA (Statistical Monitoring) and 2 M-PRA 
(Surveillance and Environmental Monitoring) are taken as refer­
ence. This profile creates a demanding execution environment, 
which is useful to measure the impact of KASO Middleware archi­
tecture in a real deployment scenario. 

The footprint analysis was performed according to the used and 
available memory both in ROM and RAM. Fig. 14 shows the per­
centage of used memory according to the total ROM available in 
TelosB platform i.e. 48 Kb. 

As it can be seen in previous Figure the footprint of the KASO 
Middleware in ROM takes 36% of the total, and the PRAs, which 
were running on such node, needed 13%. The Multi-Functional 
Embedded Layer consisting of Tiny OS 2.0 and 61owpan required 
22% of the ROM. The remaining 29% of the ROM (more than 
14 Kb) was available to future improvements of the KASO Middle­
ware architecture as well to deploy new PRAs on the node. Since 
the PRA programming model was designed to optimize memory 
such remain memory space can be enough to deploy around 4 C-
PRAs and 6 M-PRAs. 

Moreover, the footprint of the Knowledge Base of that node in 
RAM during run-time is analyzed. The results of the footprint in 
RAM are shown in Fig. 15. 

The overall architecture used for this test consumed 63% of the 
total RAM i.e. 10 Kb. This footprint allowed reaching good general 
performance since the free RAM (37%) was enough in order to 
manage service workflow contexts, service request tables or inter­
nal buffers for 61owpan. 

6.2.2. Availability and Latency 
The availability and latency of the system was tested by deploy­

ing PRAs all around the WSAN's nodes which provided services by 
means of two paradigms: event-based and on-demand. 

The services deployed by PRAs were the ones shown in Tables 2 
and 3. 

Tests to measure both availability and latency were carried out 
by sending requests to event-based and on-demand services from 
user terminals of the medical staff (PDAs or laptops). Four scenar­
ios were designed to analyze availability and latency of services. 
Those four scenarios were designed according to a number of 

accessible services (10, 15, 20 and 25, respectively), for both 
event-based and on-demand services. During tests, service re­
quests were randomly sent from 5 user terminals for 7 h. Results 
of these test cases are shown in Fig. 16 and Fig. 17. 

For on-demand services, availability level was correctly ob­
tained from service results returned in the specific terminal. For 
event-based services, availability level was obtained considering 
events correctly received from those expected to be received in a 
concrete situation. 

Both tests showed high service availability in general. Availabil­
ity level was particularly reduced in two cases: When the WSAN 
dealt with 25 event-based services, the availability decreased 
slightly to 98%; on the other hand, when the WSAN had to deal 
with 15 on-demand services, the availability decreased to 96%. In 
wireless embedded networks, it is difficult to find factors produc­
ing the fall of service availability from values near to 100%. In de­
scribed cases, the main problem comes from the pervasive 
services own nature deployed on embedded nodes. Usually, when 
on-demand services are requested, the node blocks resources re­
lated to the specific service for short periods of time (e.g. when 
providing humidity monitoring service, humidity sensors are 
blocked for 0.5 s). During those periods of time, on-demand ser­
vices are unavailable to dispatch more requests. Once service result 
is obtained, it is only returned to the requester entity. Similarly, 
event-based services block node resources when they are perform­
ing operations; however, results obtained from those kind of ser­
vice (events) can be simultaneously dispatched to more than one 
requester, i.e. to those all have subscribed to that service. In most 
cases, this situation explains the higher availability of event-based 
services in embedded networks. 

The analysis observed from lantency tests also provided better 
behavior for event-based services. In this case, the results are di­
rectly related to the traffic traveling through the network: the 
more the packets are transmitted by nodes, the more the latency 
is due to the overload of network buffers (both Tx and Rx). This 
factor has to be especially taken into account when using so 
bandwidth-constrained devices as IEEE 802.15.4 compliant 
platforms. It can conclude that to use one-way traffic paradigms, 
like the ones based on events, are more advisable than using re­
quest-reply paradigms since the traffic can be reduced more than 
40%. 

According to the results previously shown, we concluded that 
on-demand services must be only used in specific situations (e.g. 
health emergencies) in order not to block the node resources for 
long periods of time. Business process designers should plan ser­
vice workflows to reach a good event-based strategy according to 
the applications requirements, particularly in those cases in which 
the System has to manage critical events, e.g. in deployments for 
hospitals. 
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Fig. 17. Latency in four test cases. Fig. 18. Energy consumption of three nodes. 



6.2.3. Energy consumption 
A complete study about energy consumption using this valida­

tion scenario could be complex and extensive because of its heter­
ogeneous consisting of a great variety of nodes and services. 
Therefore, a brief analysis of energy consumption is described in 
this section. To this end, three nodes of the WSAN in order to sam­
ple their respective battery levels for 20 days have been taken and 
are mentioned as follows: 

• A Virtual Perimeter Node exposing simple services to provide 
environmental measurements and presence events produced 
around the Sanatorium perimeter. 

• A Contextual Node exposing a contextual service to provide 
aggregated environmental measurements. 

• A Bracelet node worn by a patient and exposing critical moni­
toring services. 

Each of these nodes was supplied with 2 Ni-MH batteries char­
acterized by a nominal charge of 2400 mAh at 1.2 V. 

The energy consumption results are shown in the Fig. 18. 
The Bracelet Node was the first to run out of battery (day 13th) 

which was changed on the 14th day. The Contextual Node run out 
on the 17th day, and their batteries were not changed. The Virtual 
Perimeter Node was still working when the test was done. From 
the test results, it could be concluded that the node lifetime was 
directly related to the number of service requests it dispatched; 
however, there were other factors that contributed to the node life­
time, e.g. number of sensors being managed by the node or number 
of packet forwarded by the network protocol. The first factor af­
fected majorly to the Bracelet Node because of the number of bio­
medical sensors it had to control and the criticity of the service it 
provided. The second factor mostly affected the Contextual Node 
since it was deployed in a place near the Sink node. This is always 
a critical point in multi-hop networks as WSANs since packets 
from all around the network converge in order to be routed to 
the Sink node. The deployment of alternative sink nodes is usually 
a good solution to balance traffic since it allows providing better 
performance and a longer lifetime to the nodes deployed on those 
regions of the network. 

7. Conclusion and future work 

This research paper describes a novel middleware architecture 
for embedded networks, called Knowledge-Aware and Service-Ori­
ented Middleware (KASO Middleware). The major aim of KASO Mid­
dleware is to integrate embedded networks in the future Service 
Cloud which will provide pervasive and real-world services (i.e. 
those related to sensors and actuators) to achieve high perfor­
mance of the Internet of Things paradigm. KASO Middleware is 
made up of three major subsystems: Framework, Communications 
and Knowledge Management. Those subsystems allow managing 
pervasive services provided by an new agent paradigm called Per­
ceptual Reasoning Agent (PRA). PRA-based programming model is 
provided to developers in order to ease design and deployment 
of services in pervasive embedded networks. PRAs provide services 
by means of SOA mechanisms which allow managing pervasive 
services according to following phases: (i) register, (ii) exposure 
and discovery, (iii) composition and (iv) orchestration. 

KASO Middleware was subjected to a test-bed based on a WSAN 
infrastructure. The WSAN infrastructure was designed to support a 
healthcare telemonitoring application and was deployed in a San­
atorium. This real deployment allowed performing many valuable 
tests in order to validate major features of KASO Middleware archi­
tecture. From those validation tests, some strong points were 
found in KASO Middleware. Its footprint over TelosB platform 

was considerably acceptable since a full implementation of the 
proposed architecture left free memory in order to allow future 
improvements and extensions of the architecture. Moreover, good 
behavior was observed in service availability and latency majorly 
related to event-based services. 

A future research in order to solve weak points of the KASO 
Middleware architecture is planned. Such research will focus on 
improving the semantics describing some important aspects of 
the System as low-level resources, pervasive services, service com­
position and business processes. The major objective of this future 
work is to design a lightweight language founded on Notation 3 
syntax (subject-predicate-object) encapsulated over JSON docu­
ments as well as specific ontology to properly describe all the 
important aspects previously mentioned. Reaching better footprint 
and energy consumption in the architecture have also been taken 
into account. To this end, service management issues and size of 
documents that describe low-level resources, services, service 
composition rules and workflow plans will be optimized so as to 
achieve better performance. 
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