
Bringing pervasive embedded networks to the service cloud:
A lightweight middleware approach
Iván Corredor , José F. Martínez, Miguel S. Familiar

A B S T R A C T

The emergence of novel pervasive networks that consist of tiny embedded nodes have reduced the gap
between real and virtual worlds. This paradigm has opened the Service Cloud to a variety of wireless
devices especially those with sensorial and actuating capabilities. Those pervasive networks contribute
to build new context-aware applications that interpret the state of the physical world at real-time. How­
ever, traditional Service-Oriented Architectures (SOA), which are widely used in the current Internet are
unsuitable for such resource-constraint devices since they are too heavy. In this research paper, an inter­
networking approach is proposed in order to address that important issue. The main part of our proposal
is the Knowledge-Aware and Service-Oriented (KASO) Middleware that has been designed for pervasive
embedded networks. KASO Middleware implements a diversity of mechanisms, services and protocols
which enable developers and business processing designers to deploy, expose, discover, compose, and
orchestrate real-world services (i.e. services running on sensor/actuator devices). Moreover, KASO Mid­
dleware implements endpoints to offer those services to the Cloud in a REST manner. Our internetwork­
ing approach has been validated through a real healthcare telemonitoring system deployed in a
sanatorium. The validation tests show that KASO Middleware successfully brings pervasive embedded
networks to the Service Cloud.

1. Introduction

1.1. Motivation

During the last two decades, the Ubiquitous Computing
philosophy has been used in a number of network designs. Such
a concept was introduced by Mark Weiser [1]. Recently, early idea
about Ubiquitous Computing is being broadly applied in the form
of pervasive networks because of two major trends in embedded
devices. First, hardware components are becoming cheaper, more
integrated and powerful due to advances in nanotechnology.
According to the Internet of Things paradigm [2], MEMS (micro-
electro-mechanical) technologies could provide tiny sensor nodes
for communication and computation capabilities that will be able
to interact and cooperate with their surrounding environment.
Secondly, many software companies have become interested in
addressing traditional problems through service-oriented technol­
ogies. The Internet of Service paradigm [3] assumes that simple to
complex computational processes can be accessed in a highly
distributed fashion through standardized interfaces. Typically,

services-oriented technologies focused on creating architectures
to provide services using the Service Cloud, which are made up
powerful elements, e.g. company networks, racks, data base serv­
ers, etc. However, in the past few years we have been facing a
new trend in which the service-oriented systems cross the border
between physical and virtual world, providing great expectancy
over real-world aware applications. The performance of these
kinds of applications heavily depends on an efficient collaboration
of heterogeneous, pervasive and networked embedded devices
among themselves and with business systems [4].

Wireless Sensor and Actuator Networks (WSANs) is a basic pil­
lar in the provision of real-world services. These kinds of networks
are made up of a number of embedded devices using sensors and
actuators. WSANs are able to work autonomously in carrying out
activities as monitoring physical parameters (e.g. temperature,
vibrations, sound, movement, or gases [5]).

Trends indicate that some critical challenges have to be solved
in the Future Internet, mainly to deal with a much more varied
infrastructure, which will need a number of service interactions.
In such manner, new approaches for managing and using mash-
ups of services will have to be proposed. The baselines of those
proposals have to be designed according to a cross-layer vision in
which collaborations in two different planes will be performed;
first, "horizontal" interaction among devices with no human

involvement, and second, "vertical" interaction between devices
and external entities, i.e. applications or services running on other
networks and systems. The latter will be able to directly access
functionalities offered by underlying devices without intervention
of proprietary drivers, or through gateway wrapping approaches
that hide their functionalities. Middleware architectures over the
embedded platforms are necessary in order to optimize "vertical"
communications and facilitate tools to deploy services involving
"horizontal" interactions.

In the Future Internet, real-world services provided by embed­
ded networks will be one of the key challenges. Embedded nodes
will be able to offer those services by using the most broadly used
standards in Service Oriented Computing (SoC) domain: SOAP-
based Web Services or RESTful APIs [6]. The resource costs (in
terms of memory, CPU and bandwidth) necessary to support cur­
rent implementations of Web Services and RESTful architectures
can be done by conventional devices. However, those requirements
are not feasible for embedded networks made up of tiny resource-
constrained nodes. In that sense, the major challenge is to reach
similar capabilities in order to be suitable for those tiny nodes in
a cost effective way.

The early Wireless Sensor Networks were deployed for military
objectives such as vehicle tracking in battlefield. Nowadays,
WSANs are deployed in civil applications: energy harvesting, logis­
tics, security and healthcare, are common applications. The latter
will be a relevant topic to consider in the coming decades. In
2020 and beyond, demand in healthcare will increase because of
aging. Studies performed by The World Health Organization indi­
cate that at least 1 billion of the world population will be 60 years
and over in 2025 and 80% will be residing in developed countries
[8]. According to other reports about the market of WSN [9], from
2005 to 2011, an increase of $4.1 billion will be spent on systems
and services based on WSN. Consequently, development and
deployment in real-world services over embedded devices have
become a relevant research topic and a promising business
opportunity.

1.2. Contributions of this research

According to our experience in developing and deploying real-
world services over WSANs [10], a set of requirements to design
a whole SOA-based architecture for pervasive embedded networks
can be provided:

(a) Reduced Service Overhead: Devices offering real-world ser­
vices usually have very limited resources, so typical ser­
vice-oriented solutions can generate an overload. Those
devices have to implement lightweight mechanisms and
protocols to work according to an optimized service-ori­
ented paradigm.

(b) Reduced cost from discovery mechanisms: Nodes have to be
able to expose their services in a specific repository by using
discovery mechanisms. The discovery process has to comply
the "plug and play" paradigm, which means human inter­
vention will not be needed or reduced to minimum during
this process. Devices should provide minimum information
when registering their services, and are expected to provide
more details in information if necessary.

(c) Resource-aware service orchestration: Context-aware applica­
tions are potential consumers of real-world services. Those
types of applications need complex services involving other
simple services. Dynamic and efficient allocation of
resources has to be performed in order to orchestrate com­
plex real-world services over pervasive embedded networks.
In such manner, mechanisms that explore best combination
of resources have to be designed.

(d) Simple programming paradigm for rapid prototyping: The per­
vasive nature of networks offering real-world services can
hinder the development and deployment of business logic
over the network nodes. Simple and flexible programming
tools have to be provided to developers in order to allow fast
prototyping of complex scenarios based on sensor and actu­
ator networks.

The work presented in this research paper is partially based on
previous existing works that dealt with adapting classical service
approaches to embedded systems [11,12]. The main contribution
of our research is the design, development and evaluation of a mid­
dleware platform that enables Service-Oriented Computing in per­
vasive embedded networks by providing lightweight protocols and
mechanisms making both "horizontal" and "vertical" interactions
easier (see Fig. 1). In such manner, a Knowledge-Aware and Ser­
vice-Oriented Middleware (KASO Middleware) for pervasive
embedded networks is proposed, especially for those managing
sensors and actuators like WSANs. This innovative architecture
complies with the requirements explained above as follows
(requirements from a to d): Every node offers its functionalities by
means of a service paradigm which reduces service overload
(requirement a) regarding typical service-oriented solutions; for
this aim, two paradigms for service dispatching are provided: on-
demand and event-based. In order to enable service discovery with
minimal resource cost (requirement b) a Micro Inter-Knowledge
Protocol (ulKP) that allows providing service exposure and
discovery mechanisms to agents running over KASO Middleware
has been designed. Provision of contextual service through combi­
nations of simple services has been addressed by means of a dis­
tributed, dynamic and resource-aware orchestration engine
(requirement c). Developers are provided with a simple program­
ming environment (requirement d) based on an agent pattern.
The development and deployment of new agents is provided by
means of well-specified development models. Finally, an informa­
tion model describing every system element as well as their
relationship is specified. This information model is mapped over
an ontology, which allows formalizing a representation of the
real-world services and other resources offered by the pervasive
embedded network.

The rest of the paper is organized as follows: Section 2
discusses related work and background emphasizing current
drawbacks to be solved. Section 3 defines the foundation of our
SOA-based architecture for embedded networks. Section 4 de­
scribes the conceptual model of the KASO Middleware architec­
ture. Section 5 shows the development model of KASO
Middleware through examples. Section 6 describes the validation
results of the overall architecture over a real healthcare scenario.
The results of this research and some possible future work are
pointed out in Section 7.

2. Related work and background

Several efforts have been done in order to achieve the
requirements described in the previous section. The diversity of
transactions related to real-world service has increased due to
the introduction of novel context-aware applications that require
more complex contextual information from pervasive embedded
networks. This way, and taking into account the limited resources
of pervasive embedded networks, a number of reasoning mecha­
nisms and protocols have been proposed in recent years. Usually,
those solutions have been addressed in two approaches: (a) in-
network data processing; (b) data processing using a middleware
layer interceding in communication between the pervasive
network and business applications.

o

Access to
Pervasive

Services via
Middleware

User application

i

Service Cloud

Dynamic Discovery of Devices & Services

Direct
access to
Pervasive
Services
deployed

on devices

c
o

o
L .

HI
c
— •o
(1)

+ J

c 0)
i -

O
•

a) u

CD
a»
o

CO

o

o c
a> +*
L.

_̂ c
o
o
TO
1 -

(D

8 »
CO ro

o
t
>

Collaborating objects
(Horizontal Interaction/Internet of Things)

Fig. 1. Integration of pervasive networks into the service cloud of the future internet.

In-network data processing is general procedure for gathering
data and routing through the network in order to optimize the re­
sources of the network, particularly from the point of view of en­
ergy consumption that optimizes the system lifetime [13]. In this
respect, a number of researches were performed during the past
decade such as those related to aggregation, metadata negotiation
or data fusion [14-18]. However, in most cases, in-network pro­
cessing is specifically designed for a single type of tasks and very
often it is not generic enough to support multiple services de­
manded by the current context-aware applications that deal with
a variety of objectives.

An alternative to early ad hoc approaches is to support and pro­
vide a diversity of functionalities through a well-specified applica­
tion-level interface while taking advantage of in-network data
processing background. This proposal can be achieved by using
middleware platforms that allow developers to deploy applications
disregarding low-level issues (e.g. resource allocation, node topol­
ogy, routing, etc). A middleware-based paradigm enables an easy
development of novel sensing-based applications as well as its
deployment and maintenance in pervasive networks [19].

Some interesting proposals have been found in the literature re­
lated to middleware approaches for embedded devices. For in­
stance, RUNES project (Reconfigurable, Ubiquitous, Networked
Embedded System) [20] tries to solve the common challenges
(mostly maintenance) using a component-based programming
model. Another approach, MiLAN (Middleware Linking Applica­
tions and Networks) [21] allows the applications to specify their
QoS needs and adjust the network characteristics to increase
WSN lifetime while still meeting those requirements. In spite of
early efforts in middleware for embedded platforms, it still shows
some unacceptable drawbacks for current SOA-based pervasive
networks. Data aggregation is the only in-network data processing
performed by those middleware proposals. Furthermore, network
node dynamic behavior and node mobility are not clearly sup­
ported. They impede the development of more robust and general-
ist environments that are needed in order to support service-
oriented paradigms.

Big efforts have been done in order to model high level contex­
tual information and translate it in order to be used in a service-
oriented manner. Those service-oriented approaches are usually

achieved through three phases managing the contextual informa­
tion: discovery, acquisition and reasoning. An early approach for this
issue can be found in [22]. That proposal is based on a middleware
platform for contextual agents. This middleware is designed to
make up an execution framework suitable for agents in ubiquitous
computing environments, allowing the use of various reasoning
tools like first order logic and temporal logic to process contextual
information. More recent approaches like [23] and [24] provide
frameworks to hide the platform heterogeneity by means of inter­
faces of its various components. In [23] and [25] contextual infor­
mation is tagged semantically and mapped into ontologies. Those
semantic mechanisms allow discovering and processing contextual
information in the network. According to service-oriented comput­
ing paradigms, the semantic information models are necessary to
integrate pervasive embedded networks into the Service Cloud.
However, those models have to be standardized and become gen­
eric enough so as to describe a wide range of domains.

Service-oriented approaches described above solve issues such
as context information acquisition, classification and processing.
However, their major drawback arises when dealing with high dy­
namic environments. Unlike traditional Internet services, real-
world services are provided by embedded and resources-con­
strained devices. These devices create high dynamic environments
where services can appear, vanish, and re-appear. According to this
specific characteristic, it is necessary to use mechanisms and pro­
tocols to discover devices and services, as well as their effective
management. It could seem a good idea to implement SOA stan­
dards to solve this issue; however, these standards were designed
taking into account service deployed on static and no resource lim­
ited networks e.g. WS-* specifications.

A proposal to adapt SOA standards to pervasive embedded net­
works has been presented in [11]. This proposal deploys Web ser­
vices directly over embedded devices by using the Web Service
Description Language (WSDL) [7]. Moreover, it uses SOAP over
UDP in order to achieve high performance in service transactions
as well as WS-Eventing [26] to enable integration with Web service
based on Internet applications. However, this proposal introduces
too much overhead when using WSDL to describe services, as well
as SOAP as application protocol, since both use XML which is a
redundant language. Using more lightweight languages that con­
sider limited resources of embedded devices e.g. JavaScript Object
Notation (JSON) [27] can solve this issue.

Another proposal to implement Web services in embedded de­
vices is SOCRADES [28]. Its major goal is to assist the developers to
the discovery of real-world services by means of the Real-World
Service Discovery and Provisioning Process (RSDPP). The access
to real-world service is achieved by deploying two alternative ap­
proaches in gateways: Device Profile for Web Services (DPWS) [29]
and Representational State Transfer (REST) APIs [6]. SOCRADES
seems a good global solution to provide real-world services
through pervasive embedded networks; however, the processes
carried out to deploy and discover services over the embedded net­
work have not been completely specified enough from developer's
point of view.

The approaches previously described have positively contrib­
uted to the State of the Art of SOA-based pervasive embedded net­
works; although, there are many issues to be solved in this field
yet. Firstly, lightweight information models have to be designed.
We propose the use of JSON to describe services and tag contextual
information. This offers less semantic redundancy than XML lan­
guage, which can better performance by saving computing re­
sources and bandwidth. Secondly, a development model for rapid
prototyping in embedded networks does not successfully address
this point. Our proposal aims a framework to model and deploy
agents similar to the Plain Old Java Objects (POJOs), which allows
rapid deployment and reusability. This development model en­

ables an easy integration and maintenance of loosely coupled
software parts. Moreover, underlying mechanisms and protocols
to discover and orchestrate services have been designed in order
to hide resource allocation issues to developers, creating an
Internetworking environment without the need of application
gateways.

The following sections do not aim to provide a comparison
between our approach and other proposals that enable internet­
working capabilities; rather, the objective is to present an original
SOA-based proposal for pervasive embedded networks and an
evaluation that helps comparing it with other service-oriented
solutions.

3. General principles of the architecture

One of the major foundations of KASO Middleware is a set of
Knowledge Management (KM) services that depends on an Infor­
mation Model of the System. This Information Model is handled
to expose network resources in a service-oriented manner in order
to achieve the major challenge of our research: to narrow the gap
between pervasive embedded networks and the Service Cloud.

In this section, the general principles of the KASO Middleware
architecture are explained. These principles are based on the fol­
lowing points: a basic deployment infrastructure over which perva­
sive service will be deployed and run; the Information Model in
order to define an abstract representation of the System environ­
ment; Perceptual Reasoning Agents which are logical units imple­
menting business processes to provide pervasive services; and
external entities, i.e. user applications and external services, which
are deployed over conventional networks taking advantage of per­
vasive services.

3.1. Basic Deployment Infrastructure

The basic deployment infrastructure is made up of various types
of hardware devices deployed around specific spaces. These de­
vices range from wireless embedded nodes, to Gateways. Fig. 2
shows a scheme of this deployment infrastructure. As shown,
nodes in the embedded network play three roles: (i) Sensor and
Actuator (SA), (ii) Contextual (C), and (iii) Sink. SA Nodes offer sim­
ple services that are discovered and orchestrated on C Nodes. Sink
Nodes collect descriptions of these services and transmit them di­
rectly to the Gateway. Furthermore, there are application servers
running on the Gateway which enable performing any service
transaction over pervasive services offered by the embedded
network.

Sensors and actuators connected to the nodes of the WSAN will
allow providing a number of real-world services (e.g. environmen­
tal measurements and HVAC of a building).

3.2. Information Model of the System

An Information Model of the System has been designed in order
to describe both low-level resources (e.g. sensors, actuators, mem­
ory, battery, etc.), and high-level resources (simple and composite
services, service composition rules and workflow plans). Data char­
acterizing such resources is stored in Knowledge Bases; this data
generates instantiations of the Information Model of the System.

Knowledge Bases (KB) are distributed between the devices of
the overall System (see Fig. 3). The KBs are planned in different ta­
bles which are explained in following sections. In this base scheme
there are three kinds of KBs:

Mote Knowledge Base is deployed on Sensor and Actuator nodes
(motes) and stores information about simple services, service com-

Wireless Embedded Netowork

External Service
User Application^ A

s
Service
Cloud

Gate way/App. Server

Fig. 2. The Basic Deployment Infrastructure.

System Knowledge Base

Meta-data for storing structure
description

i • Ontology instance data

(CNode)

Contextual Knowledge Base

Service description from $A Nodes
Composite service description
Service composition rules
Workflow plans

SA Node I *
Mote Knowledge Base

f "Simple services a'éscrípt.íbñ
i» Service composition rules
¡» Workflow plans
r Low-level resources

Fig. 3. Knowledge Bases mapped over the infrastructure devices.

position rules and workflow plans to manage the orchestration of
simple services and available physical resources.

Contextual Knowledge Base is deployed on Contextual nodes and
stores information about simple and composite services, service
composition rules and workflow plans to manage the orchestration
of composite services.

System Knowledge Base is deployed on Gateways and collects
semantic pieces in order to generate the Information Model of
the whole embedded network.

As previously described, the repository on the top of the hierar­
chy is deployed on the Gateway that interconnects the embedded
network with the Service Cloud. This KB is intended to be struc­
tured as ontology over a RDF/OWL 2 [30,31] document.

3.3. Perceptual Reasoning Agents

KASO Middleware is designed from an agent paradigm called Per­
ceptual Reasoning Agents (PRAs). PRAs are deployed both in SA Nodes
and C Modes according to the network hierarchy; they are called M-
PRAs and C-PRAs, respectively. A programming model has been de­
signed to facilitate the development and deployment of those PRAs
into the execution environment of the KASO Middleware.

Among other facilities, the KASO Middleware provides develop­
ers a common API to register PRAs in the system which allows
hiding the complexity of underlying mechanisms, e.g. service
discovery, resources allocation, orchestration and other control
operations.

3.4. External entities

Internetworking mechanisms implemented by KASO Middle­
ware allows external entities to access pervasive services offered
by the embedded network. These services are mapped over stan­
dardized REST Web services, which are described and exposed
through a WSDL 2.0 document [7].

Internetworking functionalities implemented by KASO Middle­
ware allows performing actions over every level of a pervasive
embedded network by invoking standard Web services. In Section
5.6, the Web service method encapsulation used by KASO Middle­
ware is shown through an example. External entities have access
to: (a) low-level resources by setting up parameters on hardware
components (e.g. radio signal strength, behavior of sensors and
actuators); (b) middleware level to control the life-cycle of PRAs
(e.g. load/unload and start/stop them); (c) information modeling
level to augment or restrict the Information Model of the System.

In this section, principles of KASO Middleware architecture are
explained. In the following sections, specific features of KASO Mid­
dleware architecture are explained. Those features are the corner­
stone in providing Knowledge Management services from data
collected by sensors and actuators nodes and offering this knowl­
edge by means of SOA mechanisms.

4. Design specifications of the Knowledge-Aware and Service-
Oriented Middleware

4.1. Architecture overview

KASO Middleware architecture takes advance from SOA ap­
proaches that have become very popular in the current Internet
[32-34]. Moreover, semantic models defining ontologies [30,31]
have been taken into account in order to design Knowledge Man­

agement services. Fig. 4 shows a block diagram of subsystems
making up KASO Middleware architecture.

KASO Middleware is based on a layered architecture in which
each subsystem encapsulates different functionalities. Each of these
layers is explained in the following sections. Firstly, the Multi-func­
tional Embedded Layer, which is common to most approaches for
pervasive embedded networks, is explained. Secondly, the middle­
ware layer, which provides services-oriented and Knowledge Man­
agement capabilities to the embedded environment, is pointed out.

4.2. Multi-functional Embedded Layer

The Multi-functional Embedded Layer is the lowest layer of the
architecture. In this layer, the hardware platform, which consists
of a variety of hardware modules (e.g. CPU, radio, memory, etc.),
is located. Recently, many products for Wireless Sensor and Actu­
ator Networks have emerged, in both commercial sector [35,36]
and open-source sector [37,38].

A Real-Time Operating System, which manages most of the pro­
cesses running at low-level, is implemented in this layer. Its major
aim is to hide the hardware heterogeneity from higher layers. Several
open-source OS for wireless embedded devices such as TinyOS [39],
Contiki [40] or LiteOS [41], have consolidated as valuable solutions.

The Network Protocol layer uses mechanisms and protocols for
transmitting packets in a multi-hop communication taking into ac­
count some essential factors as network topology, energy consump­
tion, and QoS requirements [42-44]. Moreover, standardized
routing protocols have to be considered, as those implemented in
61owpan [45] and uIP [46], in order to guarantee compatibility with
external conventional network, e.g. LANs or Internet.

The Multi-functional Embedded Layer provides basic functional­
ities, which are complemented by a middleware layer. This mid­
dleware layer was designed keeping in mind the major objective

&
<*v

* i e<

* &

S®

Perceptual Reasoning Agents

: S
< :

KASO API
>

o
£

CO

§
£

Knowledge
Management Services

. — _ -V

Network Protocol ' i
*. *\

Real-Time Operating System

Hardware Platform

¥\

Fig. 4. Subsystems making up KASO Middleware architecture.

of this research: to provide Knowledge Management functional­
ities in a service-oriented framework. Major features of this mid­
dleware layer are explained in the following section.

4.3. Middleware layer

The middleware layer is made up of three subsystems. Fig. 5
shows each one of these subsystems.

The main subsystem offers Framework Services which create an
execution environment to control the life-cycle of components and
agents. The Query Service allows PRAs and external services to request
information about specific parameters by using a limited set of SQL
queries. The Runtime Manager Service is in charge of load/unload
and star/stop components and PRAs. The Security Service offers proce­
dures and algorithms to manage various security issues, majorly
those regarding information ciphering and service access permis­
sions. The In-node Configuration Service allows setting up parameters
at low-level such as allocation of resources (e.g. memory).

The second subsystem provides Communication Services. These
services are distributed in three modules enabling low-level re­
source discovery, service exposure and discovery, and internet­
working communications. The first module implements Resource
Monitor. This module provides mechanisms to establish bidirec­
tional communication with physical resources of the node by
means of OS primitive callings.

Two modules complement the device communication function­
alities in this middleware approach. Each one of them implements
application protocols: Micro Inter-Knowledge Protocol (u.IKP) and
Compressed HTTP over PANs (CHOPAN) [47]. uIKP offers service dis­
covery mechanisms to nodes belonging to the same embedded net­
work. (J.IKP is based on a subset of WS-Discovery standard [48].
Furthermore, a REST endpoint is implemented based on the CHO­
PAN protocol specification. CHOPAN is designed from a binary
specification of HTTP with the aim of saving bandwidth and energy
consumption in resource-constraint embedded networks. An adap­
tation layer is necessary in order to translate CHOPAN messages
into compatible format for KASO Middleware.

One of the major contributions of this research comes from the
subsystem providing Knowledge Management Services (KMS). The

business logic behind KMS is implemented by a Broker and an
Orchestrator of services. The function of Brokers and Orchestrators
depends on the Information Model of the System and its instanti­
ations which are stored in Knowledge Bases (KB) (see Section 3.2).
The Broker implements an API that is offered to developers of PRAs
in order to register services in the System. Table 1 shows this API.

API shown above hides low-level issues to developers; they
have to be only aware of managing simple and composite services,
which will be offered by PRAs. The Broker requires three parame­
ters in order to be able to manage a service; two descriptive docu­
ments (Service Description and Service Composition Rules) and a
structure that controls two callback methods (see Table 1).

Orchestrator mechanisms need a set of Service Composition Rules
stored in the KB. This kind of documents indicates which resources
have to be allocated so as to provide a service as well as how that
service has to be orchestrated is case of being activated. This pro­
cess is explained in depth in Section 5.4.

5. Programming pervasive services for embedded networks

In this section, the main tools to program pervasive services by
means of the development of Perceptual Reasoning Agents are ex­
plained. Explanations are illustrated with real-world examples in
order to facilitate its comprehension; to this end, a healthcare appli­
cation based on Wireless Sensor and Actuator Networks (WSANs)
has been used as reference. This section finishes with a proposal
to interconnect a KASO-based WSAN with the Service Cloud.

5.1. Discovery and mapping of low-level resources

Before KASO Middleware can offer pervasive services, it has to
be aware of low-level resources in the node platform, majorly
those with sensorial and actuation capabilities. Those resources
are locally discovered by means of Resource Monitor of the Commu­
nication subsystem. Knowledge Management subsystem models
every low-level resource like sensors or actuators. In order to mod­
el such low-level resources, a lightweight description language is
proposed: the Sensor and Actuator Mapping Description (SAMD).

Listing 1. A SAMP document to describe low-level resources related to a healthcare scenario.

l <
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30]

"sensors":{ //Defines a list of sensors connected to the node and its capabilities,
"battery": { //Battery is defined as a sensor.

"unit":"volts", //Defines representation units of the sensor,
"accuracy": "0.2", //Defines the accuracy of the sensorial hardware,
"resolution": "0.001", //Defines the resolution of sensor samples,
"eventing":{"bySamplingPeriod", "byThreshold"} //Define event-based behavior.

),
"Heart_Monitor":{

"unit":{"beat_per_second"},
"accuracy": "2",
"resolution": "1",
"eventing": {"bySamplingPeriod", "byThreshold"}

},
"Sphygmomanometer":{

"unit": "mmHg",
"accuracy": "1",
"resolution": "2",
"eventing" : { "byThreshold" }

>
},

"actuators":{ //Defines a list of actuators connected to the node and its capabilities,
"defibrillator":{

"actions":[//Defines a list of available actions
//Configuration attributes (minValue, matfValue and resolution)are defined for each action.

{"name":"defibrillation", "minValue":"5", "maxValue":"400", "resolution":"1"},
1

)
)

Table 1
API offered by the Broker.

PRA_ID=registerPRA(Service_Description,

Service_Composition_Rules, Service_Processor)

deregisterPRA(PRA_ID)

updatePRA(PRA_ID, Service_Description,

Composition_Rules)

This method registers PRAs into the System by means of its three gears: description of services
provided by such PRA, composition rules for those services, and a structure consisting of two callback
methods to receive final results from service request and partial results from a service workflow that
has to be controlled by the PRA.
This method deregisters a PRA from the System.
This method updates information about a registered PRA.

Perceptual Reasoning Agents

PRAÍ PRA 2 PRAn

£ KASOAPJ y
KASO Middleware

Knowledge Base

Knowledge Management Services

Broker

Agent
Register

Service
Request
Manager

-
Orchestrator

Workflow Plan
Generator

Workflow
Contcxtualizing

Communication Services

Micro Inter-Knowledge
Protocol

' Adaptation Layer

(CHOPAN
I (REST Endpoinl)

Fig. 5. Detailed diagram of KASO Middleware subsystems.

An example of SAMD document is shown in Listing 1.

SAMD documents describe parameters such as representation
unit (' ' u n i t ' ') , asynchronous behavior (' ' e v e n t i n g ' ') or sen­
sorial accuracy (' ' a c c u r a c y ' ') can be described.

Low-level resources are discovered through protocols managed
by the Resource Monitor during node's bootstrapping process and
runtime. Finally, a SAMD document is instantiated with semantic
description about low-level resources and stored in the Contextual
Resources Table of the Knowledge Base.

5.2. Specifications of the Perceptual Reasoning Agent

Perceptual Reasoning Agent (PRA) specification is based on two
characteristics: independency from the platform, and reusability in
multiple kinds of scenarios. A specific programming model is pro­
posed to expedite design, develop, and deploy PRAs while consum­
ing few low-level resources (e.g. low footprints and CPU use).

The development of PRA is tackled by means of a model-driven
approach. This way, a UML (Unified Modeling Language) model is
designed as a PRA template to be used by developers. That interface
facilitates a seamlessly management and scheduling of the PRA's
lifecycle by Framework and Knowledge Management subsystems.
The UML model is illustrated in Fig. 6.

The PRA's life-cycle can be manage through control methods:
l o a d () , r u n () , s t o p () and u n l o a d (). An invocation to l o a d
() method allows instantiating a copy of the Framework context.
Moreover, when invocating load () method, two semantic struc­
tures, which are related to services provided by the PRA, are
instantiated: the first one (Service Description) describes the service
itself; the second one (Service Composition Rules) describes how the
service has to be composed and orchestrated. After an invocation
to run () method, PRAs are registered into the System by means
a calling to registerPHA () method of the Broker API. This step
establishes a service point between the PRA and the Knowledge
Management Subsystem. When nodes are being shutdown, PRAs
running on them are deregistered and semantic structures regard-

ing services are liberated from the KB; Such operations are per­
formed by means of invocations to s top () and unload ()
methods.

5.3. Register of pervasive services

As explained in Section 4.3, when registering PRA services,
developers have to perform an invocation to the method r e g i s -
terPHA () of the Broker's API. Such method needs several param­
eters to complete a registration, among others, a service
description document. That document has to be written according
to the Service Mapping Description (SMD) [49]. SMD documents are
compact, simple and readable; they are represented as aJSON Object
describing specific features of Web services. The Broker collects
and stores every SMD document in the Service Description Table
of the Knowledge Base. Listing 2 shows an example of a service
description document based on SMD.

The JSON schema of the SMD has been extended in order to im­
prove service-oriented capabilities of the KASO Middleware fo­
cused on discovery, composition and dispatching mechanisms. This
way, three new attributes have been added to the original schema
of the SMD: "exposure", "composition" and "eventing". The
definition of these attributes is mandatory; if they do not exist in
the SMD document, default values will be obtained.

The "exposure" attribute is defined to manage service discov­
ery by means of the (J.IKP protocol. This attribute can get the fol­
lowing values:

• "LevelO": Services are not exposed to any entity of the system.
This is the default value.

• "Leveii": Services are exposed to other entities of the embed­
ded network, i.e. other SA and C nodes.

• "Levei2": Services are exposed to entities making up the whole
system.

The ' ' composi t ion ' ' attribute indicates if a simple service
can be composed and orchestrated into a workflow. This attribute
can get ' ' t r u e ' ' or ' ' f a l s e ' ' value. If it is instantiated to
' ' f a l s e' ' value, the service will not be able to be aggregated into
a composite service. Such pervasive services are intended to be
atomically invocated. The default value for the ' ' composi t ion ' '
attribute is ' ' f a l s e ' ' .

The ' ' even t ing ' ' attribute defines two models of service dis­
patching mechanisms: on-demand and event-based. Furthermore,
two methods are supported for event-based services, which are
available through values assigned to ' ' e v e n t i n g ' ' attribute.
Those values are the following ones:

• ' ' byThresho id ' ' : Events are thrown when results of service
procedures comply specific threshold conditions defined in a
subscription. This kind of subscriptions use two parameters to
define threshold conditions: "operator", which permitted val­
ues are "equal", "more Than" and " l e s s Than"; and "value",
that defines the value from which the threshold is defined.

• "by Sampling P e r i o d ' ' : Events are thrown when finishing a
period of time defined in the subscription. This kind of subscrip­
tions uses the "period" attribute in order to define the sam­
pling period to throw results to event consumers.

Event subscriptions are also defined by the ' ' e x p i r a t i o n ' '
attribute. This attribute indicates the period of time during which

Listing 2. Service description for a healthcare application based on the SMD proposal.
if
2 "transport": "REST", //The service request should be sent using
3 //standard HTTP methods (GET, POST, PUT and DELETE).
4 "envelope": "URL", //The response should be value returned from the method call.
5 "target": "/eHealthPRA", //Defines the URL to connect the service.

"SMDVersion": "2.1",
"exposure": "level2", //Defines the exposure level of the service. To be used by uXKP.

8
9 "services": {
10 "BloodPressure": { //Definition of an event-based service
11 "composition": false, //Defines availability to be aggregated in composite services.
12 "eventing": "byThreshoid", //Defines event-based behavior.
13 "parameters": [
14 //Defines parameter for the subscription to events.
15 {"name":"operator", "type": "string"},
16 {"name":"value", "type": "number"},
17 {"name":"expiration", "type": "number"},
18]
19 "additionalParameters": [
20 //Defines Additional parameter for the subscription to events.
21 {"name": "operator", "type": "string"}
22 {"name":"value", "type": "number")
23]
24 "return":{"type": "number"}
25 },
26 "getHeartRate": { //Definition of an on-demand service.
27 //Redefines the transport and envelope for this specific service.
28 "transport": "POST", //It uses POST as the transport.
29 "envelope": "JSON", //It uses JSON object as the envelope.

"composition": true,
31 "parameters": [
32 {"name": "mode", "type": "string"},
33 {"name": "minThreshold", "type": "integer", "optional": true},
34 {"name": "maxThreshold", "type": "integer", "optional": true}
35]
36 "return":{"type":"number"}
37 }
38 }
39 }

« P B D L »
Service Conditional Rules

m_

« I n t e r f a c e »

PRA Execution Control

load(framework_context) : ¡nt

+unload(j : void

+ runO : ¡nt

+stop(): void

« c o m p o n e n t s

« P R A »

nSOM Agent

Service Processor

Execution Control

Brokerinq Services

Framework Services

« I n t e r f a c e »
Service Processor

+ServiceResultProcessor(service_result: byteQ): void

+ServiceWorkflowProcessor(workflow_context): void

Fig. 6. UML model of the Perceptual Reasoning Agent.

a concrete subscription is valid. Every subscription has to be re­
newed by event consumers in order to restart the expiration coun­
ter; otherwise, if the subscription is not renewed and that counter
is expired, the subscription is automatically removed.

To define on-demand services, the ' ' e v e n t i n g ' ' attribute has
to get ' ' f a l s e ' ' value. That is the default value for ' ' even t ­
ing ' ' attribute.

5.4. Composition and orchestration of pervasive services

Knowledge Management Subsystem of KASO Middleware is
able to compose and orchestrate pervasive services from low-level
resources and simple services by means of complex business pro­
cesses. Composition and orchestration are supported by the Infor­
mation Model of the System (see Section 3.2). The smallest units of

E-Heal th PRA (T) R E a ¡ s t e r E-Hcalth Scrv. V

Broker J ^ _ K
2) 7ldíl~5ervíce"DescnptTon

fC
Agent

Register 2 ^ Add Compos i t ion Rules

Service Description

ulKP
iz

Expose E-Health Serv.
Service Composition Rules

Hello/Mulücast-» SMD
describing E-Health. Serv,

Orchestrator

W o r k f l o w Plan
Generator

WS'A'N"

0 /

SZ

BDPL Document
>| : <?3tnil version="l . 0" encoding="UTF-8,-?>

2 <proceas name=H,EHealth_PFUV>
<activation_rules>

<lowlevel_re source s>
<s«nsor naa»""Heart_Monitor">

</lowlevel_resources>
</activation_ruleo>
<service nan>e="EHealth"
operation="getHeartRate" rwiAt™"local: :"/>

Workflow Plan

BDPL Document
<?jtrnl ve rs ion= ' l .0" eneoding="UTF-8"?>

2 <process context_id="EHealth_PRA">
<service nama="EHealth"

operation="getHeartRate"
runAt»"local::EHealth_PRA ,r/>

E </process>

Low-Level Resources

"HeartMonitor":|
"unit" : { "beat_j>er_second"},
"accuracy": "2",
"resolution": "1",
"eventing": {"bySamplingFeriod

Fig. 7. Procedures to activate and expose a simple service to provide e-Health.

Listing 3. <Actlvatlon Rules> section for a composite service related to e-Health.
l<activation_rules>
2
<simple_services>

<service operation="getECG" runAt=" externalNode::ECG_PRA"/>
<service operation="getBloodPressure" runAt="externalNode::blood_PRA"/>
<service operation="getHealthStatus" runAt="localNode::health_PRA">

<parameter value="context.ECG"/>
<parameter value="context.heartRate"/>

</service>
<service operation="setDefibrillator" runAt="externalNode::emergency_PRA">

3
4
5
6
7
9
10
11
12
13
14
15</activation rules>

</simple_services>

this Information Model are mapped over low-level resources from
which simple services can be provided. On the other hand, simple
services can be aggregated into composite services. Such composi­
tion tasks are carried out by the Orchestrator through its Workflow
Plan Generator module.

The KASO Middleware has its own mechanisms to discover both
high and low-level resources. To this aim, KASO Middleware
dynamically explores the network for resources; a specific service
is just activated if necessary resources to compose that service are
available. The only requirement is to provide a document describ­
ing service composition rules to the Broker.

A new lightweight XML-based language has been designed in
order to define composition rules and workflow plans for the
orchestration of services. That language has been called Pervasive
Business Definition Language (PBDL). PBDL documents describing
both composition rules and workflow plans are stored in the Ser­
vice Composition Rules Table and Workflow Plans Table, respectively.

Let us illustrate a basic service composition through an example
(see Fig. 7). In this scenario a PRA registers a simple service in order
to provide an e-Heatlh service. Meanwhile, the Workflow Genera­
tor has found a heart monitor through the Resource Monitor sen­
sor. Finally, the getHeartHate operation is activated and
exposed by means of (J.IKP protocol.

The Service Composition Rules Table is made by PBDL documents
which are structured around two tags: < a c t i v a t i o n _ r u i e s > and
<service>. < a c t i v a t i o n _ r u i e s > tag is used to describe re­
sources necessary to provide concrete services. <service> tag is
used to describe business processes managing resources to obtain
a result from a specific request. If rules in <activation_rules> section

Listing 4. A workflow plan describing a business process for an e-Health service.
1 <process name="Set_Emergency_Assistant">
2

<fork>
<group>

<se rv i ce opera t ion="ge tBloodPressure" runAt="NodeA: :Blood_PRA"
con tex t="con tex t " r e tu rnVar="con tex t .b loodPressu re">

<parameter va lue="contex t .po l l ingMode" />
< / s e rv i ce>

<se rv i ce operation="getECG" runAt="NodeB::ECG_PRA"
con tex t="con tex t " re turnVar="context .ECG"/>

<parameter va lue="contex t .po l l ingMode" />
< / s e rv i ce>

</group>
</fork>

are satisfied, i.e. necessary resources to be able to provide such ser­
vice are available, a PBDL document describing the workflow plan
is created and inserted in the Workflow Plan Table. Regarding PBDL
documents in Service Composition Rules Table, PBDL documents
describing workflow plans instantiate the runAt attribute of the
tag <service> (to a local or external PRA) and removes the
< a c t i v a t i o n _ r u l e s > sec t ion .

Composition and orchestration of composite services are per­
formed by C Nodes (see Section 3.2). This process takes place when
a C-PRA registers a composite service in the System. Activation
procedures for composite services are carried out in the same
way as those for simple services, but taking into account simple
services instead of low-level resources. The latter issue is illus­
trated in Listing 3.

In Listing 3, the activation requirements to activate composite
services are defined within the section <ac t iva t ion_ru ie s> .
The business process orchestrating simple services, which are
aggregated to a composite service, is described in a workflow
plan.

Listing 4 shows a workflow plan for a hypothetical composite
service (Set_Emergency_Assistant) which would be activated
by activation rules shown in Listing 3. In Listing 4, the first tag is
<fork>, which has two groups (tagged as <group>) in the body.
It divides the workflow and parallel invokes getBioodPressure
and getECG operations that are provided by PRAs running on dif­
ferent nodes (Biood_PHA on Node A, and ECG_PBA on Node B,
respectively). Then, ge tHea i thS ta tus operation of the
Heaith_PHA running on local Node is invoked. Finally, if current
health status of the patient is critical, the operation se tDef ib r -

3
4
5
E
7
e
9
10
11
12
13
14
15
16

n
18
19
20
21
22
23
24
25
26
27 </process>

<service operation="getHealthStatus" context="context"
returnVar="context.currentHealthStatus" runAt="localNode::Health_PRA"
<parameter value="context.bloodPressure"/>
<parameter value="context.ECG"/>

</service>

<if test="{context. currentHealthStatus == context. critical} ">
<service operation="setDefibrillator" runAt="NodeC::Emergency_PRA"
context="context"/>
</if>

Swscir.-'ArtiiHlnr Nnrt»
• • - • ' • ' • • - " • • • : : ' : -

^ ' - - '•>'»'•*

0 ' HellaWulticsst

:)ResclvefMultirast

©ResolveMatch/Unicasi

©Bye/MuNicast

0 HellaWulticast

©ResolvsiMulticasl

(T)Reso!veMatctVUnic3si

—
(3) By&Wullicas!

Fig. 8. Messages Interchanged by uIKP.

i i i a t o r provided by Emergency_PHA that is loaded in Node C is
invoked.

The management of the memory allocated for service work­
flows is performed by the Workflow Contextualizing of the Orches-
trator; that management includes the collection and storage of
returned values from invocation to operations, partial invocations
to ServiceWorkflowProcessor(workflow_context) method
of the specific PRA every time an operation returns a value, and
frees memory when the service workflow is finished, between
other tasks.

5.5. Exposure of pervasive services

tures. Three roles are managed by (iIKP: SA Nodes work as service
targets, Sink Nodes work as service clients and C Nodes have a
combined behavior (service client or service target). Message inter­
changed by (J.IKP are shown in Fig. 8.

Initially, SA Nodes and C nodes send multicast Hello messages
(1) to expose services they can provide when joining the network.
Hello messages can be sent again during runtime in order to up­
date the service profile stored in KB of other nodes. This usually
happens when a new service is activated into the node. SA Nodes
and C Nodes may also receive multicast Resolve messages (2) to
find a particular service at any time and send a unicast Resolve-
Match message (3) if some of their services are the searched ones.
Finally, before a node leaves the network, it sends a multicast Bye
message (4) in order to remove information from KBs regarding to
its services.

A Semantic Engine running on the Gateway translates every SMD
document into a RDF model. Those information pieces are used to
build the System's ontology, which is structured in OWL. The Sys­
tem's ontology is evolved according to the reception of SMDs and
stored in the System KB of the Gateway.

Fig. 9 it is shown a proposal based on a synergy between
embedded networks and RESTful [6] architectures. This approach
allows exposing pervasive services deployed in the embedded net­
work as Web services in WSDL 2.0 documents. Those WSDL 2.0
documents are automatically generated by means of a parsing pro­
cess from an instance of the System's ontology.

The embedded network uses the Micro Inter-Knowledge Proto­
col (uJKP) in order to expose and discover pervasive services de­
fined in SMD documents. The (J.IKP is a reduced specification of
the WS-Discovery standard [48] used by DPWS; however, (J.IKP is
not still compatible with those traditional Web service architec-

5.6. Requests for pervasive services

When finishing exposition and discovery procedures, PRAs and
external entities can access to pervasive services that are provided
by the embedded network. These services are accessed through

Ethernet

(RESTful Clients)

Bluetooth

^
HTTP(Reque£t/R8sponse)

1

Service Cloud

RESTful Web Services
~ KASÓ Service's-

HTTP(Request/
Response)

J^-J REST

—v c Server

CHOPAN(RequesVResponse)

Client
Application 1

t

Client
Application n

T
HTTP(Request/Responsé)

ervice Cloud

t

,

WSAN KB

WSAN Ontology
(RDF/OWL)

—t

WDSL Document
i

Service Exposure
WDSURESTful

t
Reasoning Engine

Inferencing
+ Network API

X

Semantic Engine

• - Sii ink Node

added Embedded
Network 1

Service Exposure \

Embedded
Network 2

Embedded
Network D

Fig. 9. An Internetworking approach based on RESTful technologies.

V WSAN \
fe A (IEEE 802.15.4) *,

«
• ECG

^ ^
O — j Z / ^ c Slnl(

/ (Contextual) N(Mte Gateway

Service Cloud

NMÍ Í B ISA]:
• Blood Pressure
• C.-!.::. ill ilo,

WDSL 2.0 (eHealtfi Service}

Interface

Binding

Service

ElaalthStatus

HTTP

http:// inni.vsan.org/CojitxKodeC/

Message Interchange for a Request to eHealth Service

© HTTP [GET /ContxNodeC/HealthStatus HTTP/1.1
Host: vuww.wsan.org]

@ C H O P A N [POST /ContxNodeC/HealthStatus
{"method ": "gelHealth Status",
params":["byThreshold", Health<normal],"id"="x"}]

CHOPAN | POST /nodeXf(a) ECG, (b)BloodPressure
(xx) {"method": "getECG", "getBloodPressure"
V Ü * ' "params":"polling_mode", "¡d"="y")]

/7~\ CHOPAN H"result":{(a)"volts".|b)"mmHg)":X}}
KlJ ,»id"=»y"> I

© CHOPAN | {"result": {"Health": X) ,"id"="x"}]

©
HTTP [HTTP/1 X 200 OK

Content-Type: text/plain; charset=ISO-B859-1
device; ContextualNodeC
resource: /ContxNodeC/HealthStatus
method: GET <?xml version="1.0" encodlng="UTF-8"7>

<wsan id="wsan">
<servlceResponse value="getHealthStatus">

<origin ¡d="ContxNodeC'7>
<payload ld="Health" value="X"/>

<se rviceRespo n se/>
<wsan/>

]

Fig. 10. Message Interchange during a service transaction in our Internetworking approach.

The Gateway is in charge of receiving service requests and per­
forms some translations, e.g. SOAP messages are translated into
JSON format. Moreover, HTTP header fields are translated into a
binary format according to CHOPAN specification, which can be
interpreted by REST endpoints of each node. After this processing,
CHOPAN PDUs are routed to the specific node which has to provide
results to those service requests.

An example of a service transaction is shown in the Fig. 10. The
' ' H e a i t h S t a t u s ' ' service that is described in Listings 3 and 4 is
used in this example. In this use case, medical staff can monitor pa­
tients by means of a WSAN which exposes its services to the Cloud
Service. Pervasive services are described in a WSDL 2.0. Those ser­
vices can be accessed through REST methods by using traditional
devices as PDAs or Laptops.

"¿r-oifc

Fig. 11. On the top, a TelosB node; on the bottom, the top face of a SSB.

6. Validation of the KASO Middleware architecture

The motivation scenario to validate KASO Middleware architec­
ture was focused on a set of healthcare applications. The necessary
deployments were performed in the Sanatorium Versmé in Birsto-
nas, Lithuania. In this scenario a KASO-based WSAN was integrated
in a hypothetical Service Cloud. Since the major aim of this section
is to show the validation results of the KASO Middleware, explana­
tions are mainly about results of the tests performed over the
WSAN.

6.1. The embedded network infrastructure

HTTP methods {GET, PUT, POST and DELETE) according to RESTful
mechanisms. Services interfaces are obtained through a WSDL
2.0 document.

The healthcare scenario was aimed taking into account three
points: (i) surveillance of the Sanatorium's perimeter, (ii) tracking
of patients and medical staff, (iii) and monitoring of critical vital

http://inni.vsan.org/CojitxKodeC/
http://vuww.wsan.org

Intermediate
Node

Contextual
Node

Types of Nodes

4 ^ *
SA Node C Node S i n k N o d e

Type of Links
IEEE 802.15.2

Wired

Wl-fi

f Sink |̂ y~^^\
I Node J (Gateway J

Fig. 12. The scenario infrastructure deployed to validate KASO Middleware architecture.

Fig. 13. A Virtual Perimeter Node deployed on the Sanatorium perimeter.

signs. The deployed System was able to provide services in order to
manage almost every non-common and emergency situation
regarding healthcare and safety in Versmé Sanatorium. The de­
ployed infrastructure is shown in Fig. 12.

The WSAN deployed around the Sanatorium area was made up
of SA nodes with different roles offering different services. The
hardware platform chosen for the WSAN deployment was the
Crossbow TelosB [50]. TelosB's features are 16 bits RISC processor
(MSP430 microcontroller), wireless interface (IEEE 802.15.4),
48Kb of Flash memory, 16Kb of Configuration EEPROM, and
10 Kb of RAM. The energy supply of this platform is by means of
2 AA batteries. An additional hardware module was used, a Smart
Sensor Board (SSB). The SSB was designed to connect a number of
sensors and actuators through the USART interface of TelosB nodes
(Fig. 11).

r~

L

i Agent Register
i Service Request Manager
i Workflow Contextualizing
i Workflow PEan Generator
i Framewcrk+Communication Subsystems

Fig. 14. ROM footprint of the overall architecture.

Service
Descriptions

%

Service
Composition

Rules

7%

Fig. 15. RAM footprint of the Knowledge Base.

Contextual
Resources

4%

Table 2
Event-based services and corresponding PRAs.

Service name

Suitable
environment

Perimeter
intrusion

Health
emergency

Technical
supervision

Provider PRA

Statistical monitoring
C-PRA
Surveillance M-PRA

Critical monitoring
M-PRA
Technical M-PRA

Event trigger

Average temperature threshold
of an area
No authorized person crosses
the Sanatorium perimeter
Heart rate of a patient passes a
threshold
Energy level of batteries passes
a min threshold

Table 3
On-demand services and corresponding PRAs.

Service name Provider PRA Returned result
Environmental

monitoring

Health status

Technical
control

Statistical
Monitoring
C-PRA

Critical
Monitoring
M-PRA
Technical M
PRA

Instantaneous average humidity
level of an area

General patient's health status according
to several parameters: blood pressure,
body temperature and heart rate.

Instantaneous energy level and RAM
occupied.

100

ao

**°
~i7°

• 50

30

20 B
10 15 20 25

Accesible Services

• Eve nt-based services • On-demand se rvices

Fig. 16. Service availability in four test cases.

TelosB is a very resource-constrained platform compared to
more recent like Imote2 [51] or Sun Spot [36]. Taking into account
such restrictions, the testing on memory footprint, latency and
availability carried out with this type of nodes are decisive to check
the feasibility of the KASO Middleware in embedded devices.

Tiny OS 2.0 [39] and 61owpan [45] protocol were implemented
in the Multi-functional Embedded Layer (see Fig. 4). The interface
between KASO Middleware and hardware platform was well ad­
dressed through the event-driven paradigm used by Tiny OS. Net­
working services were also appropriately managed by means of the
61owpan protocol; its major advantage was the provision of inter­
networking capabilities to the System, which improves interaction
between the WSAN and external networks.

The WSAN infrastructure was made up of five kinds of nodes.
Each one played a specific role within the network (see Fig. 12):

• Virtual Perimeter Node: A Virtual Perimeter was deployed around
the Sanatorium. Nodes making up such perimeter (Fig. 13) were
supplied with GSN PATROL-701 Passive Infrared Sensors (PIR)
[52]. Surveí/íance M-PRA was running on Virtual Perimeter Nodes.
These agents were able to detect perimeter crossings and identify
the person crossing the perimeter, i.e. patients or medical staff.
For this purpose, a personal Id was provided by a Bracelet Node,
which uniquely identified each user.

• Bracelet Node: This kind of node was worn by both patients and
medical staff. They integrated two biomedical sensors: heart-
monitor and body temperature. The major objective of the
Bracelet Node was to monitor vital signs of patients while guar­
anteeing their privacy. By using bracelet nodes, the patients'
mobility is notably improved since medical staff can monitor
patients' health status wherever they are.

• Services provided by Bracelet Nodes were managed by Critical
Monitoring M-PRAs which were able to collect data from bio­
medical sensor and to infer the patient's health status. This Crit­
ical Monitoring service could operate under two mechanisms:
on-demand or event-based.

• Intermediate Node: This kind of node was deployed all around
the Sanatorium area. Their main objective was to monitor sev­
eral environment parameters by using three automation sen­
sors: temperature, humidity and light. From the data
extracted with those sensors, some inferences could be per­
formed e.g. if it is advisable for patients go out to take a walk
depending on their profile which is determined by their kind
of illness or comfort preferences.

• The monitoring of environment parameter was carried out by
Environmental Monitoring M-PRAs running on Intermediate
Nodes.

• Contextual Node: The aim of Contextual Nodes was to discover
simple service in its neighborhood in order to aggregate them
into a workflow plan and activate some composite service
(e.g. max/min and average of temperature measurements).
These functionalities were provided by a Statistical Monitoring
C-PRA.

• Sink Node and Gateway: These infrastructure components are
essential pieces to interconnect the WSAN with external net­
works. The only objective of Sink Nodes was to resend informa­
tion from the WSAN to the Gateway through a USB port. On the
other hand, the Gateway is in charge of collecting semantic
information from the WSAN and building the System ontology
based on OWL, as well as to manage service transactions for
those services deployed on the WSAN.

6.2. Validation results

A set of test was planned according to the specific infrastructure
used in the deployment and the use cases of the System. The Sys-

tern deployment was made up of 106 SA Nodes and 21 C Nodes.
Moreover, 20 patients and 5 medical staff of the Sanatorium Vers-
mé contributed to perform these validation tests since they pro­
vided valuable support in order to carry out some of the
validation tests.

6.2.1. Memory footprint
Firstly, the footprint of a full implementation of the KASO Mid­

dleware architecture over the TelosB platform is analyzed. A node
profile consisting of 1 C-PRA (Statistical Monitoring) and 2 M-PRA
(Surveillance and Environmental Monitoring) are taken as refer­
ence. This profile creates a demanding execution environment,
which is useful to measure the impact of KASO Middleware archi­
tecture in a real deployment scenario.

The footprint analysis was performed according to the used and
available memory both in ROM and RAM. Fig. 14 shows the per­
centage of used memory according to the total ROM available in
TelosB platform i.e. 48 Kb.

As it can be seen in previous Figure the footprint of the KASO
Middleware in ROM takes 36% of the total, and the PRAs, which
were running on such node, needed 13%. The Multi-Functional
Embedded Layer consisting of Tiny OS 2.0 and 61owpan required
22% of the ROM. The remaining 29% of the ROM (more than
14 Kb) was available to future improvements of the KASO Middle­
ware architecture as well to deploy new PRAs on the node. Since
the PRA programming model was designed to optimize memory
such remain memory space can be enough to deploy around 4 C-
PRAs and 6 M-PRAs.

Moreover, the footprint of the Knowledge Base of that node in
RAM during run-time is analyzed. The results of the footprint in
RAM are shown in Fig. 15.

The overall architecture used for this test consumed 63% of the
total RAM i.e. 10 Kb. This footprint allowed reaching good general
performance since the free RAM (37%) was enough in order to
manage service workflow contexts, service request tables or inter­
nal buffers for 61owpan.

6.2.2. Availability and Latency
The availability and latency of the system was tested by deploy­

ing PRAs all around the WSAN's nodes which provided services by
means of two paradigms: event-based and on-demand.

The services deployed by PRAs were the ones shown in Tables 2
and 3.

Tests to measure both availability and latency were carried out
by sending requests to event-based and on-demand services from
user terminals of the medical staff (PDAs or laptops). Four scenar­
ios were designed to analyze availability and latency of services.
Those four scenarios were designed according to a number of

accessible services (10, 15, 20 and 25, respectively), for both
event-based and on-demand services. During tests, service re­
quests were randomly sent from 5 user terminals for 7 h. Results
of these test cases are shown in Fig. 16 and Fig. 17.

For on-demand services, availability level was correctly ob­
tained from service results returned in the specific terminal. For
event-based services, availability level was obtained considering
events correctly received from those expected to be received in a
concrete situation.

Both tests showed high service availability in general. Availabil­
ity level was particularly reduced in two cases: When the WSAN
dealt with 25 event-based services, the availability decreased
slightly to 98%; on the other hand, when the WSAN had to deal
with 15 on-demand services, the availability decreased to 96%. In
wireless embedded networks, it is difficult to find factors produc­
ing the fall of service availability from values near to 100%. In de­
scribed cases, the main problem comes from the pervasive
services own nature deployed on embedded nodes. Usually, when
on-demand services are requested, the node blocks resources re­
lated to the specific service for short periods of time (e.g. when
providing humidity monitoring service, humidity sensors are
blocked for 0.5 s). During those periods of time, on-demand ser­
vices are unavailable to dispatch more requests. Once service result
is obtained, it is only returned to the requester entity. Similarly,
event-based services block node resources when they are perform­
ing operations; however, results obtained from those kind of ser­
vice (events) can be simultaneously dispatched to more than one
requester, i.e. to those all have subscribed to that service. In most
cases, this situation explains the higher availability of event-based
services in embedded networks.

The analysis observed from lantency tests also provided better
behavior for event-based services. In this case, the results are di­
rectly related to the traffic traveling through the network: the
more the packets are transmitted by nodes, the more the latency
is due to the overload of network buffers (both Tx and Rx). This
factor has to be especially taken into account when using so
bandwidth-constrained devices as IEEE 802.15.4 compliant
platforms. It can conclude that to use one-way traffic paradigms,
like the ones based on events, are more advisable than using re­
quest-reply paradigms since the traffic can be reduced more than
40%.

According to the results previously shown, we concluded that
on-demand services must be only used in specific situations (e.g.
health emergencies) in order not to block the node resources for
long periods of time. Business process designers should plan ser­
vice workflows to reach a good event-based strategy according to
the applications requirements, particularly in those cases in which
the System has to manage critical events, e.g. in deployments for
hospitals.

Accesible Services

I Event-based services • On-demand services

6 8 10

Time (Day)

Perimeter
Node

Contextual
Node

Bracelet
Node

Fig. 17. Latency in four test cases. Fig. 18. Energy consumption of three nodes.

6.2.3. Energy consumption
A complete study about energy consumption using this valida­

tion scenario could be complex and extensive because of its heter­
ogeneous consisting of a great variety of nodes and services.
Therefore, a brief analysis of energy consumption is described in
this section. To this end, three nodes of the WSAN in order to sam­
ple their respective battery levels for 20 days have been taken and
are mentioned as follows:

• A Virtual Perimeter Node exposing simple services to provide
environmental measurements and presence events produced
around the Sanatorium perimeter.

• A Contextual Node exposing a contextual service to provide
aggregated environmental measurements.

• A Bracelet node worn by a patient and exposing critical moni­
toring services.

Each of these nodes was supplied with 2 Ni-MH batteries char­
acterized by a nominal charge of 2400 mAh at 1.2 V.

The energy consumption results are shown in the Fig. 18.
The Bracelet Node was the first to run out of battery (day 13th)

which was changed on the 14th day. The Contextual Node run out
on the 17th day, and their batteries were not changed. The Virtual
Perimeter Node was still working when the test was done. From
the test results, it could be concluded that the node lifetime was
directly related to the number of service requests it dispatched;
however, there were other factors that contributed to the node life­
time, e.g. number of sensors being managed by the node or number
of packet forwarded by the network protocol. The first factor af­
fected majorly to the Bracelet Node because of the number of bio­
medical sensors it had to control and the criticity of the service it
provided. The second factor mostly affected the Contextual Node
since it was deployed in a place near the Sink node. This is always
a critical point in multi-hop networks as WSANs since packets
from all around the network converge in order to be routed to
the Sink node. The deployment of alternative sink nodes is usually
a good solution to balance traffic since it allows providing better
performance and a longer lifetime to the nodes deployed on those
regions of the network.

7. Conclusion and future work

This research paper describes a novel middleware architecture
for embedded networks, called Knowledge-Aware and Service-Ori­
ented Middleware (KASO Middleware). The major aim of KASO Mid­
dleware is to integrate embedded networks in the future Service
Cloud which will provide pervasive and real-world services (i.e.
those related to sensors and actuators) to achieve high perfor­
mance of the Internet of Things paradigm. KASO Middleware is
made up of three major subsystems: Framework, Communications
and Knowledge Management. Those subsystems allow managing
pervasive services provided by an new agent paradigm called Per­
ceptual Reasoning Agent (PRA). PRA-based programming model is
provided to developers in order to ease design and deployment
of services in pervasive embedded networks. PRAs provide services
by means of SOA mechanisms which allow managing pervasive
services according to following phases: (i) register, (ii) exposure
and discovery, (iii) composition and (iv) orchestration.

KASO Middleware was subjected to a test-bed based on a WSAN
infrastructure. The WSAN infrastructure was designed to support a
healthcare telemonitoring application and was deployed in a San­
atorium. This real deployment allowed performing many valuable
tests in order to validate major features of KASO Middleware archi­
tecture. From those validation tests, some strong points were
found in KASO Middleware. Its footprint over TelosB platform

was considerably acceptable since a full implementation of the
proposed architecture left free memory in order to allow future
improvements and extensions of the architecture. Moreover, good
behavior was observed in service availability and latency majorly
related to event-based services.

A future research in order to solve weak points of the KASO
Middleware architecture is planned. Such research will focus on
improving the semantics describing some important aspects of
the System as low-level resources, pervasive services, service com­
position and business processes. The major objective of this future
work is to design a lightweight language founded on Notation 3
syntax (subject-predicate-object) encapsulated over JSON docu­
ments as well as specific ontology to properly describe all the
important aspects previously mentioned. Reaching better footprint
and energy consumption in the architecture have also been taken
into account. To this end, service management issues and size of
documents that describe low-level resources, services, service
composition rules and workflow plans will be optimized so as to
achieve better performance.

Acknowledgments

This work was supported in part by the European Commission
under the IST-034642 U.SWN: Solving Major Problems in Micro
Sensorial Networks research project within the Sixth Framework
Programme (FP6) (http://www.uswn.eu); and under the ITEA
2-08005 DiYSE: Do-it-Yourself Smart Experiences (http://www.
diyse.org).

References

[1] M. Weiser, Hot topics: ubiquitous computing, IEEE Computer 71 (1993) 72.
¡2] M. Conner, Sensors empower the "Internet of Things", EDN 32 (2010) 38.
¡3] Z. Brayan, Benefits of service oriented architecture (SOA), University of Applied

Science of Northwestern Switzerland, School of Business, 2009.
[4] P.J. Marrón, S. Karnouskos, D. Minder, Research Roadmap on

Cooperating Objects, Office for Official Publications of the European
Communities, 2009.

[5] M. Friedemann, The design space of wireless sensor networks, IEEE Wireless
Communications 3 (2004) 54-61.

[6] Fielding, Roy Thomas, Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine,
2000.

[7] R. Chinnici, J-J. Moreau, A. Ryman, S. Weerawarana, WSDL 2.0: a W3C
Recommendation, 2007.

[8] World Health Organization, Global age-friendly cities, 2007.
[9] M. Hatlet, D. Gurganious, C. Chi, M. Ritter, WSN for Smart Industries. OnWorld

Study, 2007.
[10] J.F. Martínez et al., Composition and deployment of e-Health services over

Wireless Sensor Networks, Mathematical and Computer Modelling Journal 53
(2010) 485-503.

[11] N.B. Priyantha, A. Kansal, M. Goraczko, F. Zhao, Tiny Web Services: Design and
Implementation of Interoperable and Evolvable Sensor Networks, in:
Proceedings of Sixth Conf. Embedded Network Sensor Systems, ACM, 2008,
pp. 253-266.

[12] W. Drytkiewicz, I. Radusch, S. Arbanowski, R Popescu-Zeletin, PREST: A REST-
Based Protocol for Pervasive Systems, in: Proceedings of Int'l Conf. Mobile Ad-
Hoc and Sensor Systems, IEEE, 2004, pp. 340-348.

[13] L Gomez, L. Laube, A. Sorniotty, K. Wrona, Secure and trusted in-network data
processing in wireless sensor networks, Journal of Information Assurance and
Security 2 (2007) 189-199.

[14] C. Intanagonwiwat et al., Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Network, in: Proceedings of 6th annual
international conference on Mobile computing and networking, ACM, Boston,
2000, pp. 56-67.

[15] W. Heinzelman, J. Kulik, B. Balakrishnan, Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks, in: Proceedings of 5th annual
international conference on Mobilen computing and networking, ACM, Seattle,
1999, pp. 174-185.

[16] J. Kulik, W. Heinzelman, H. Blakrishnan, Negotiation-based Protocols for
Disseminating Information in Wireless Sensor Networks, Wireless Networks,
Springer, 2002. pp. 169-185.

[17] C. Chih-Min, H. Tzu-Ying, Design of Structure-Free and Energy-Balanced Data
Aggregation in Wireless Sensor Networks, in: Proceedings of 11th IEEE
International Conference on High Performance Computing and
Communications, IEEE, Washington, 2009, pp. 222-229.

http://www.uswn.eu
http://www
http://diyse.org

[18

[19

[20

[21

[22

[23

[24

[25

[26
[27
[28

[29

[30
[31

[32
[33

[34

[35
[36

[37
[38

[39

[40

[41

[42

[43

F. Xiufang, X. Zhanwei, A Neural Data Fusion Algorithm in Wireless Sensor
Network, in: Proceedings of Pacific-Asia Conference on Circuits,
Communications and Systems, Chengdu, 2009, pp. 54-57.
K. Romer, C. Kasten, F. Mattern, Middleware challenges for wireless
sensor networks, Mobile Computing and Communication Review 2 (2002)
59-61.
F. Oldewurtel, J. Riihijarvi, K. Rerkrai, P. Mahonen, The RUNES Architecture for
Reconfigurable Embedded and Sensor Networks, in: Proceedings of 3th
conference of Sensor Technologies and Application, Athens, 2009, pp. 109-
116.
W. Heinzelman, A. Murphy, H. Carvalho, M. Perillo, Middleware to
Support Sensor Network Applications, IEEE Network Magazine 18 (2004) 6-
14.
A. Ranganathan, R.H. Campbell, Use of ontologies in a pervasive
computing environment, Vol. 18, Cambridge University Press, London, 2003.
pp. 209-220.
I. Mudasser, B.L Hock, W. Wenqiang, Y. Yuxia, A Service-Oriented Model
for Semantics-based Data Management in Wireless Sensor Networks, in:
Proceedings of International Conference on Advanced Information Networking
and Applications Workshops, Bradford, 2009, pp. 395-400.
A. Taherkordi, Q, Le-Trung, R. Rouvoy, F. Eliassen, WiSeKit: A Distributed
Middleware to Support Application-Level Adaptation in Sensor Networks, in:
Proceedings of 9th IFIP International Conference on Distributed Applications
and Interoperable Systems, 2009, pp. 44-58.
M. Lionel et al., Semantic Sensor Net: An Extensible Framework,
International Journal of Ad Hoc and Ubiquitous Computing (2009)
157-167.
D. Box et al., WS-Eventing, W3C Member Submission, (2006).
JSON specification, (2010) URL: "<http://www.json.org/>".
G. Dominique, V. Trifa, S. Karnouskos, P. Spiess, D. Savio, Interacting with the
SOA-based internet of things: discovery, query, selection, and on-demand
provisioning of web services, IEEE Transactions on Services Computing 3
(2010) 223-235.
D. Dan, M. Antoine, Devices Profile for Web Services (DPWS) Version 1.1.
OASIS, 2009.
RDF Core Working Group, Resource Description Framework (RDF), 2004.
S. Peter F. Patel, P. Bijan, Boris Motik (Eds.), OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax, W3C Recommendation,
2009.
Microsoft Corporation, DCOM Technical Overview, 2010.
Object Management Group, Catalog of OMG CORBA®/IIOP® Specifications,
2010.
R. Fielding, R. Taylor, Principled design of the modern web architecture, ACM
Transactions on Internet Technology 2 (2002) 115-150.
Crossbow Technology, Inc., (2010) URL: "<http://www.xbow.com>".
SunSpot. Sun Microsystems, Inc., (2010) URL: "<http://
www.sunspotworld.com/>".
Arduino, (2010) URL: "<http://www.arduino.cc/>".
WaspMote, Libelium Comunicaciones Distribuidas S.L., (2010) URL: "<http://
www.libelium.com/>".
W. Munawar, M.H. Alizai, 0. Landsiedel, K. Wehrle, Dynamic TinyOS: Modular
and Transparent Incremental Code-Updates for Sensor Networks, in:
Proceedings of IEEE International Conference on Communications, 2010, pp.
1-6.
A. Dunkels, B. Gronvall, T. Voigt, Contiki - a lightweight and flexible operating
system for tiny networked sensors, in: Proceedings of 29th Annual IEEE
International Conference on Local Computer Networks, 2004, pp. 455-462.
OJng Cao, T. Abdelzaher, J. Stankovic, Tian He, The LiteOS Operating System:
Towards Unix-Like Abstractions for Wireless Sensor Networks, in: Proceedings
of International Conference on Information Processing in Sensor Networks,
2008, pp. 233-244.
J.F. Martinez et al., Trade-Off Between Performance and Energy Consumption
in Wireless Sensor Networks, in: Proceedings of 2th International Workshop
on Self-Organizing System, 2007, pp. 264-271.
He Tian, J.A. Stankovic, L. Chenyang, T. Abdelzaher, SPEED: a stateless protocol
for real-time communication in sensor networks, in: Proceedings of 23rd
International Conference on Distributed Computing Systems, 2003, pp. 46-55.

[44] F. Emad, L. Chang-Gun, E. Ekici, MMSPEED: Multipath Multi-SPEED Protocol
for QpS Guarantee of Reliability and Timeliness in Wireless Sensor Networks,
IEEE Transaction on Mobile Computing 5 (2006) 738-754.

[45] Internet Engineering Task Force (IETF), IPv6 over Low power WPAN (61owpan),
2010 URL: "<http://datatracker.ietf.org/wg/61owpan/charter/>".

[46] A. Dunkels, Full TCP/IP for 8-bit architectures, in: Proceedings of the 1st
international conference on mobile systems, applications and services, New
York, 2003, pp. 85-98.

[47] Internet Engineering Task Force (IETF), Chopan - Compressed HTTP Over PANs,
2009, URL: "<http://tools.ietf.org/html/draft-frank-61owpan-chopan-00>".

[48] OASIS, Web Services Dynamic Discovery (WS-Discovery) Version 1.1, 2010.
[49] Proposal by anonymous author, Service Mapping Description Proposal, (2008)

URL: "<http://groups.google.com/group/json-schema/web/service-mapping-
description-proposal>".

[50] Crossbow Corporation, Inc. TelosB specification, 2010.
[51] Crossbow Corporation, Inc. Imote2 specification, 2010.
[52] GSN Corporation, Inc. PATROL-701 PIR device, 2010.

Iván Corredor is a Ph.D. candidate and a researcher of
the Department of Engineering and Telematics Archi­
tectures (DIATEL) at Technical University of Madrid
(UPM). He received the B.Sc. degree in Telecommuni­
cations Engineering in 2007 and M.Sc. in Service Engi­
neering for Information Society in 2009, both at the
UPM. His research interests include design of service-
oriented architectures for embedded networks and
knowledge management for the Internet of Things.

Dr. José F. Martinez received his Ph.D. degree in Tele­
matics Engineering from the Technical University of
Madrid (UPM), Spain in 2001. He is an Associate Pro­
fessor in the Department of Engineering and Telematics
Architectures (DIATEL) of the same University. His main
areas of interest and expertise are new services for
wireless sensor networks, service management,
advanced software architectures, component-based
distributed applications, and telematics services for
next-generation Internet.

Miguel S. Familiar is a graduate student at Technical
University of Madrid (UPM). He received the B.Sc.
degree in Telecommunications Engineering with hon­
ours in 2009, and is currently working towards his M.Sc.
in Telematics Engineering at the Universidad Carlos III
de Madrid. He is member of the Department of Engi­
neering and Telematics Architectures (DIATEL) at the
UPM. His research interests include next-generation
networks and services, including service-oriented
computing, and middleware systems for mobile, ad-hoc
sensor and dynamic networks.

http://www.json.org/
http://www.xbow.com
http://
http://www.sunspotworld.com/
http://www.arduino.cc/
http://
http://www.libelium.com/
http://datatracker.ietf.org/wg/61owpan/charter/
http://tools.ietf.org/html/draft-frank-61owpan-chopan-00
http://groups.google.com/group/json-schema/web/service-mapping

