ONTOLOGY LEARNING FOR
SEMANTIC WEB SERVICES

A thesis submitted towards the degree of
Doctor of Philosophy

By

Auhood Alfaries

School of Information Systems, Computing and Mathematics

Brunel University

September 2010

ABSTRACT

The expansion of Semantic Web Services is restricted by traditional ontology
engineering methods. Manual ontology development is time consuming, expensive and a
resource exhaustive task. Consequently, it is important to support ontology engineers by
automating the ontology acquisition process to help deliver the Semantic Web vision.
Existing Web Services offer an affluent source of domain knowledge for ontology
engineers. Ontology learning can be seen as a plug-in in the Web Service ontology
development process, which can be used by ontology engineers to develop and maintain
an ontology that evolves with current Web Services. Supporting the domain engineer
with an automated tool whilst building an ontological domain model, serves the purpose
of reducing time and effort in acquiring the domain concepts and relations from Web
Service artefacts, whilst effectively speeding up the adoption of Semantic Web Services,

thereby allowing current Web Services to accomplish their full potential

With that in mind, a Service Ontology Learning Framework (SOLF) is developed and
applied to a real set of Web Services. The research contributes a rigorous method that
effectively extracts domain concepts, and relations between these concepts, from Web
Services and automatically builds the domain ontology. The method applies pattern-
based information extraction techniques to automatically learn domain concepts and
relations between those concepts. The framework is automated via building a tool that
implements the techniques. Applying the SOLF and the tool on different sets of services
results in an automatically built domain ontology model that represents semantic

knowledge in the underlying domain.

The framework effectiveness, in extracting domain concepts and relations, is evaluated
by its appliance on varying sets of commercial Web Services including the financial
domain. The standard evaluation metrics, precision and recall, are employed to
determine both the accuracy and coverage of the learned ontology models. Both the
lexical and structural dimensions of the models are evaluated thoroughly. The evaluation

results are encouraging, providing concrete outcomes in an area that is little researched.

Auhood Alfaries Page II

ACKNOWLEDGEMENTS

I would like to acknowledge my deepest gratitude to those who have helped along the

way and influenced the formation of my understanding.

» First, I would like to express my appreciation to my first supervisor Professor
Mark Lycett. It is my great pleasure to acknowledge his invaluable suggestions,
guidance and constant support during my research. I am very grateful to Prof.
Lycett for providing a stimulating environment via the Fluidity research group. It
is my good fortune to have been supervised by him and to have worked and

learned from him.

* [am deeply grateful to my second supervisor Dr. David Bell for his valuable

time, advice and support in all possible ways during my research.

* | am thankful to all my colleagues in SJ128 for the fruitful discussions we had
many times at our desks. Thanks to my dearest colleague Laden Aldin, for her

thoughtful comments and for the good times we had in Brunel University.

» [would like to express my gratitude to my cherished husband, Mosaad. I am so
appreciative for his constant love, understanding and encouragement, for his
taking up the extra responsibilities to our family and bearing the pressure both
from work and home during my PhD. My thanks also go to my children; Fahad,
Omar, Aljoharah and Abdulaziz for their incredible patience and understanding

at times where I had to miss special moments with them.

* Finally, but not least, I would like to thank all of my extended family and friends
for their belief in me. Very special thanks to my beloved mother, Aljoharah. For
her prayers, continuous encouragement and support; and to whom I dedicate this

thesis.

Auhood Alfaries Page III

PUBLICATIONS

The work in this thesis has led to the following publications:

Alfaries, A., Bell, D. & Lycett, M. 2009, "Ontology Learning for Semantic Web
Services", Proceedings of the 14th Annual UK Association of Information Systems
Conference (UKAIS), Oxford University, Oxford, U.K, 31st March - 01st April, pp. 27-
36.

Alfaries, A., Bell, D. & Lycett, M., “Service Ontology Learning Framework”, work
under review with IEEE Transactions on Services Computing (TSC).

Auhood Alfaries Page IV

TABLE OF CONTENTS

ABSTRACT ccuiiuinniiinsinsnissenssisssnsssssssssssssssssssssssssssasssassssssss II
ACKNOWLEDGEMENTSuuconiiiniinicsninsensesssessesssnssssssssssessssssssssssssssssssssssssssassans 11
PUBLICATIONS ..uuctiiiiiinsnissensisssnssenssssssisssasssssssssss v
ACRONYMS ..uuiiiiiiceisicssisssnssncssessssssnsssissssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssss XI
CHAPTER 1 - INTRODUCTION....ccciivirnuinrunsensanssanssesssnssasssessasssssssessassssssssssasssssssssss 13
1.1 Background to the Problemccccccieiiieiiiiiiiiiiiecieceece e 13
1.1.1 Service Orientation and the Role of Ontology..........ccccceevvveviieencrieenieeennen. 13
1.1.2 Ontology ENINEETING.......c.ccovvieiiiniiieiieiieeiieite ettt seve e 14

1.2 AImS and ObJECHIVES: ..cuviieeiiiieiiieeiieetee et et ete et e e et e e sree e sereeesnseeennseeennns 16
1.3 Research Methodologyccceecuiiiiiiiiiiiieeiiece et 17
| N s T T @ A o4 T U 20
CHAPTER 2 - LITERATURE REVIEWinininensnnsnissisissessssssssssssssssssssnes 23
2 B 013 (016 18 o1 5 10) s FON SRR 23
2.2 Achieving Semantic Web Services/ Industry Perspective.........cccocvevveerieennnnnne. 24
B B N (< 1| £ PP UP P 27
2.2.2 ONLOIOZY weieviieiiiiiieeieeeie ettt ettt et ettt e s e et e st e ebeeeabeenbeeesbeesaenaaeenne 28

2.3 Tools used for Ontology Development...........ccceeevvieeeieeeiieeniieecrie e 32
2.4 Ontology Development Challenge............ccceevcveeriieeiieniieniieiieeie e 34
2.5 Ontology Learning........ccceeecueieeiiieeiieeeiieeeieeestee et et e evae e e e sree e snaeeennnee e 35
2.5.1 Text-based Ontology Learning Approaches.cccceeveeriieriienieeniennnnne. 37
2.5.2 Learning Approaches Based on Semi-structured Data............cccvvveeuveennneen. 38
2.5.3 Learning Approaches Based on Structured Data............ccoccvveriieniieniiennnnnne. 39

2.6 Overview of Ontology Learning Techniquesccccceeveiieiiieinciieciieeeiee e, 40
2.6.1 Machine Learning TeChniquUes...........ccceeviriiiiiiiieniienieeiieeie e 40
2.6.2 Statistical ANALYSIS.....cueeeiuiieiiiieeiie et ettt 41
2.6.3 Linguistic TEChNIQUES......cceeviieiieiiieiieie ettt 41
2.6.4 Rule-based TEChNIQUEScccvieiiiieiiieeciieeee et 42

2.7 Related Work / Ontology Learning for Web Services..........ccceeevvevienieenieennnnnne. 43

B TN 1 11110101 T 1 AU PPPRRUPPPRR 47
CHAPTER 3 — DESIGN RESEARCH METHODOLOGYccvevveerenrersensarsnesaeane 48
R 0 N 0512 (076 10161 5) s SRS 48
3.2 Design Research Background............cccceeviieiiieiiieniiiiieicciceeceeee e 48
3.3 Design as an IS Research methodology..........cccoeeevvieciiiiiiiieiiieceeceeeee e, 51
3.4 Design Research Evaluationcccoeceeiiiiiiiiienieeieeeceeee e 54
3.5 Applying Design ReSearchccceeeoiiieiiiiiiiiiecieeeeeee e 56
3.6 Research Evaluationcccooiiiiiiiiniiiiiiieieesecee et 58
3.7 Research Design Iterationscccueeeviieeeiiiieeiieeciie et 62
3.8 SUIMIMATY .uetiiieiiiieeiie ettt et et e et e et e et e e st e e snaaeesabeeesabeeenaseeenseas 69
CHAPTER 4 - ITERATION L...uucoiiiiiinnninsnnsensaissenssesssssssssssssasssssssasssssssssssssasssssssssss 70
4.1 INEEOAUCTION . ..cutiitiiiieieeit ettt sttt ettt ettt saeene e 70
4.2 Design Research and Output Artefacts........ccceevveeeiieeiiieeiiieecie e 70
4.2.1 Design Research Artefacts........ccceevuieriiiiiienieeiierieeeee e 72

Auhood Alfaries Page V

4.3 Artefact Building and Developmentc.cooieviieiiieniieniienieeeecie e 74

T T B K0 (<53 112 15 10) o AU 74
4.3.2 POS TaZZING.....eiiiiiiiiiieiieiieeieeeite et ste et esite et e steesaeesaeeesbeeseessseesaesnseenns 75
4.3.3 Pattern EXtractioncccoocuieiiieiiiiiieiie et 76
4.3.4 Ontology Buildingccoeeiieiiieiiieiieiieeieee et 77
4.4 Framework Prototype Implementationccceeevcveeeciieeeciiienie e e 77
4.5 EVAIUALION ..o.tiiiiiiiiiiieiec e ettt sttt et 84
4.5.1 Experimental Datacccoveeiiiiieiiieeiiie et 85
4.5.2 STE PerfOormance..........ccoeeueeiiieriieiiieiie ettt esiee et eve e seneene 87
4.5.3 Pattern Evaluation...........coocueiiiiiiiiiiiiiiieeeeeee e 89
4.6 Specifying the Learning...........cccceevueeriiiiiiiiieeiiesie ettt 91
TN 01401 1. 1 ARSI 92
CHAPTER 5 - ITERATION 2...uuiinuiireniecsninsanssesssssssssesssssssssssssasssssssssssssssssssssasssssssssss 94
5.1 INErOQUCTION. ...coiiiiiieiie ettt sttt 94
5.2 Design Research and Output ATtefactS.......ccccveeeuieniiiiiiienieiiieiieeieeee e 95
5.2.1 Design Research Artefacts.........ccceeviieriiiiiriieeriee e 96
5.3 Artefact Building and Development............cccoecieiiiiiienieniiieieceeee e 96
5.3.1 Document Pre-processing Phase..........cccceevviiieriieeniieiiiieeieeeee e 97
5.3.2 Relation EXtractionccceecieeiieiiieiiieiieeieeiesee ettt 98
5.3.3 Ontology Buildingccccvveeiiiieiiieeiieeee et 99
5.3.4 Ontology Validationccceeviiiiiieiiiiiieie et 100
5.4 Application and Implementation of SOLFcccceeviieiiiiiniiiieeeeeeeee e, 100
5.4.1 Pattern EXtractioncccoociieiiieiiieiieie ettt 101
5.4.2 Transformation Rule Developmentccccoevviieeiiiinniiiiieeeieeeee e, 108
543 Ontology Buildingcccoeiieiiiiiiiiiiieiieie e 110
5.5 EVAIUATION ..eoutiiiiiiiie et 112
5.5.1 SIP Extraction Process Evaluationccccoeceeviiiiiienieniieieeiceeee 112
5.5.2 Precision and Recall Evaluation Measures...........ccccceevvveeeciieenciieenneeenen. 113
5.5.3 Qualitative Evaluationccccccoueeeiiiiiiiiiieciie e 117
5.6 Specifying the Learning...........ccceevvveeiiieeiiieiie et 118
5.7 SUIMIMATY .ouviiiiiieiiiie ettt ettt ettt et e ettt e ettt e st e s bt e e sabeeesabeesnabeesaene 119
CHAPTER 6 - ITERATION 3....ccuiiiiiiinrinsinsnicsenssesssissessanssssssssssessssssssssssssssssssssssass 120
0.1 INErOAUCTION.couiiiiiiiiieiie ettt ettt st eebeesneeeneeen 120
6.2 Design Research and Output ArtefactS.........cccveeriieeriieeiiiieiiecceceee e 121
6.3 SOLF Refinement and Gold Standard Evaluation.............cccccoevieniiininniennnens 122
6.3.1 Validate Ontology and Amend Patternscccceevvveevvieiciiencieeeiee e, 124
6.3.2 Incorporating WSDL Structure in SOLFc.cccccoiiiiniiiiiiiiiieie 124
6.3.3 Ontology Pruning.........ccocueeiiiieeiiieeie ettt e 129
6.3.4 Experimental Data and Evaluationc.ccccccoiiniiiiniininninicnicicneee, 129
6.3.5 Domain Coverage - Lexical Layer.........ccccooevveviieeniieeieeeieeeeeeeee e, 131
6.3.6 Non Taxonomic Layer — Structural Evaluation..............ccccoeceviiiiiennnn. 135
6.3.7 Taxonomic Layer — Structural Evaluation............ccccccoeevviviiieniiennineen. 139
6.4 Domain Expert Evaluation and SOLF Refinementc.ccocceeviieninniinnnen. 140
6.5 Specifying the 1€arningccceeeviieeiiieiiiiecie e e 141
0.0 SUITITIATYutieiiiieiiiie et ee ettt ettt et e st e st e e sab e e e bt ee st e e s bt e e sabaeesabeesnaseesanne 144
CHAPTER 7 - CONCLUSION ..ccutiiviinuicrensecssissssssesssissesssessssssssssessssssssssssssssssssssssass 146
7.1 ReSEarch SUMMATYcooiiiiiiiiiiiiieiie ettt ettt sae b e seeeeee 146
7.2 Contributions and ConcClUSIONS.........ccccueereiiieriiieeriieeiee et 152

Auhood Alfaries Page VI

7.3 Limitations and Areas for Future Researchcooovvviviiiiiiiiiiiiieeieeeeee, 155

BIBLIOGRAPHY ...uuuiouirniininennnnnsnensnenssnesssnssnssssssssnsssssssssssssssssssssssssasssssssssssssssssases 158
APPENDICESuuotiiriiitinteneesninnesnsssisssessssssesssessssssssssessassssssassssssssssssssassssssassssssss 168
APPENDIX A - POS TAGGERurrrrnrrnnnnnnensnnnsnnssnnssssesssssssssssasssssssssssans 168
APPENDIX B - JAPE CODEurrrnrenennennnstennesnessesssesssssssssesssssssssassssssss 170
APPENDIX C - DATA SETS aucotertrnrinnnennnensnnnsnensssess 172
APPENDIX D - EVALUATION SPREAD SHEETS.......cooervirvuenrnenncsnessnesannene 183

Auhood Alfaries Page VII

List of Figures

Figure 1-1: Thesis OULINEc..ooviiiiiiiiiiiieieiiceee et 22
Figure 2-1: Web Service ArchiteCtureoovuiiiiieriieiiiiniieiienceieeseeee e 25
Figure 2-2: Ontology Learning Layer Cake (adopted from Cimiano, 2007)................... 37
Figure 3-1: A Research Framework (March & Smith 1995)........ccccceeiiiniiiniiiieee. 49
Figure 3-2: IS Research Framework (Hevner et al., 2004).........ccccceeriieniiniiienienieeene 53
Figure 3-3: Steps of Design Research (Vashnavi & Kuhler, 2004)...........ccocceeiienineen. 57
Figure 3-4: Taxonomy of OL Evaluation Approachesc..ccccceeeveeneriieneenenicneennns 59
Figure 3-5: Research Iterationscooeeviiiiiiiiiiiieiieeeceeeeeee e 63
Figure 4-1: Iteration 1 Overall Framework............coccovieiiriiiniininiiniiiccceceecee 72
Figure 4-2: WSDL sample file.........cooiiiiiiiiiiiiiiiceeeee e 75
Figure 4-3: Pattern EXtraction ProCesscocueviriiriininiiiniiieiicneeieeeenece e 76
Figure 4-4: Service Term Extraction (STE)cooviiieiiiieiiiieieeeeeeeeee e, 77
Figure 4-5: SOLF Application PIpeline..........cccceveriiriiiiniiniiniiiienicceieneee e 79
Figure 4-6: WSDL POS MoOdelooiuiiiiiiiiiiiiieeeeeeeeeee et 80
Figure 4-7: JAPE Sample Codecccooiiiiiriiniiiiiienieciectesteeeeeeee et &3
Figure 4-9: Snapshot of the Learned Domain Ontology Modelcccceviiriiininncen. 84
Figure 4-8: JAPE Rule for Concept Creationccoceevueeeereenenienienieeienieeneseeseenens &3
Figure 4-10: WS2 PreCiSION. ...cccutiiiiiiiiiiieiieie ettt ettt 89
Figure 5-1: Research Iterations........cocuevieruiriiniiiiiieneciectceee et 95
Figure 5-2: Service Ontology Learning Framework (SOLF)cccccooiiiiiniiniiiniinneen. 97
Figure 5-3: WSDL to OWL SIP Mapping.........ccccueeeieeriieriieriienieeieeeeeeniee e eieesveeieens 99
Figure 5-4: ANNIC Pattern EXtraction QUETYccceeevueeniiiiiiiiieniiiieeieeeeeeee e 103
Figure 5-5: Application Pipeline Processing Steps.........cccceevveeevieercieeniieeeie e 111
Figure 5-6: JAPE RUIE 1....oociiiiiiiiiiiiceee ettt 111
Figure 5-7: JAPE Transformation Rule 1.........ccccooiiiiiiiiiieiiieeeeee e, 111
Figure 5-8: A Sample of the Learned Domain Ontology Model............cccceevieriinennene. 112
Figure 5-9: Pattern Recall Chartoccvieiiieeiiieceeeee e 115
Figure 5-10: Concept-Relation Precision Chart.........c.ccooeevuiriienieniniinieneeienieceee 116
Figure 6-1: Overall Design Research Iterations Frameworkccccoocvveviienninnnen. 122
Figure 6-2: Service Ontology Learning Framework............cccccoocvevviienieniiienieniieeieeee. 123
Figure 6-3: Financial WSDL Code Sample.........cccceovieeviieeiiieeieeeeeeeeeeeee e 125
Figure 6-4: Sample Complex Relation JAPE Rule........cccooiviiniininiiniiiiiiiecee 126

Auhood Alfaries Page VIII

Figure 6-5: Complex Relation Transformation Rule............ccccovvieiiniiiiiniiiiniencnee 127
Figure 6-6: Sample SOLF Ontology model (Group 2).......cccceeeeieevcrieeeiieeeiee e 128
Figure 6-7: Sample of the Financial Learned Ontology (SOLFO)........ccccevveeivenennee. 130
Figure 6-8: Sample of Lexical Layer Evaluation Modelccccoeeivieiienciieecieeeee, 132
Figure 6-9: NonTP Evaluation Modelcoceviiiiiiiiiiniiiienieeeeeeeee 138
Figure 6-10: Sample Group 1 (Book) Ontologyc.cceeevieeviiieeiiieeieeeieeeee e, 144
Figure 0-1: Part-Of-Speech Tags (from GATE user Guide)ccccecevvevieeieneenicnnnene. 168
Figure 0-2: Part-Of-Speech Tags (from GATE User Guide)ccceevevveerreeenneeennnen. 169
Figure 0-3: JAPE code snippet illustrating code for Rules 1-4cccccvevveeiiennnen. 170
Figure 0-4: JAPE Snippet, illustrating code for transformation rules TR3 and TR4 171
Figure 0-5: Matching WS1 WSDL and XSD Sampleccccccevieniniinieneniinienenne 172
Figure 0-6: Financial Ontology Model (Iteration 1).........cccceveiiiviieeniieeniieeeiee e 173
Figure 0-7: Financial Ontology Model (Iteration 2)cccecueevieriiieniienieeiieeieeeeeee. 174
Figure 0-8: Books Service Sample 1 SnIpPet......ccceeevieeeiiieeiieinieeeieeeiee e 175
Figure 0-9: Books Service Sample 2 Snippetcocvveecuierieiiienieeiieiieeieeiee e 176
Figure 0-10: BOOKS GSO SNIPPELcceiiiieiiieeiiieeiieeiee ettt e 177
Figure 0-11: Books SOLFO SNIPPetcc.eeeiieriiiiiieiieeieeie ettt 178
Figure 0-12: Finance Sample 1 SnIPPet.......ccccveeeriieeiieeeiieeeiieeeeeeeiee e e 179
Figure 0-13: Finance Sample 2 Snippet........ccocueeiieiieiiiieiieiieieeieeee e 180
Figure 0-14: Snippet Of Financial GSOccooiiiiiiiiiiiieeeeeee e 181
Figure 0-15: Snippet of Financial SOLFOcccoiviiiiiiiiieeeeeee e 182
Figure 0-16: Method1-WS2 (XSD) Domain Expert Scoringcccecveevevveerieeenveennne. 183
Figure 0-17: Method1& 2-WS2 (WSDL) Domain Expert Scoring...........cccceevveenennee. 184
Figure 0-18: Method3-WS2 (XSD & WSDL) Domain Expert Scoring........................ 185
Figure 0-19: Iteration 2 Financial Ontology Domain Expert Scoring............cccceeuenuee. 186
Figure 0-20: Iteration 3 Financial Gold Standard Ontologyc.ccceevvevciieerciveenieenne. 187
Figure 0-21: Iteration 3 Financial SOLFO Gold Standard Evaluation...........c...c.......... 188
Figure 0-22: Iteration 3 Financial SOLFO Gold Standard Evaluation.......................... 189
Auhood Alfaries Page IX

List of Tables

Table 2-1: Summarized ONtologY TYPES....cccciieriieeriieeiie ettt 29
Table 2-2: Summarized Approaches to SWS ... 32
Table 3-1: Summarized Evaluation Criteria with Artefact Types (Hevner et al., 2004). 55
Table 3-2: Design Evaluation Methods (Hevner et al., 2004)cccoeeeeiiiniieeniennene 56
Table 3-3: Comparison of OL Evaluation Methodscccceeviiieniiiiniiiinieeieeeiee 61
Table 3-4: Research Products Versus Research Processes.........cccccvveeveeviineeienicnennene 67
Table 3-5: Summary of Research [terationscccccvevvviieniiieiiieciecce e 68
Table 4-1: Iteration Steps — Input Output Model...........coceeeiiiiiiiiiiiniiiiiieeee 73
Table 4-2 : WSDL Tokenized Modelcoooiiiiiiiiiiiiiiiieceeeeeeeeee e 80
Table 4-3: Pattern Extraction Modelcccoceeviriiniininiiiiicicncccceeesee e 81
Table 4-4: Summarized Generic Patternscccovieiiiiiiiiiiiiiiiieceeeeeee e 82
Table 4-5: Summary Information Representing Used Web Services...........ccecueerueennnnne. 86
Table 4-6: WSTM Extracted from WS3 ..o 87
Table 4-7: Concept Evaluation Model............coooiiiiiiiiiiiiiiieeeeeee e 88
Table 4-8: Default Tokenizer WSDL Model.........ccccoooiiiiiiiiiiiiiiiiiceeee 91
Table 5-1: Iteration Steps Input Output modelccoeviiiiiiiiiiiiii e 96
Table 5-2: Output of WSDL (WS1) Tokenizer Stepccceevveeevveevcieenieeeieeeeiee e, 100
Table 5-3: Output of the WSDL (WS1) POS Tagger.......cceccuveviieniieniieniieiieeieeeeee. 101
Table 5-4: Web Service 1 Pattern Extraction Model..........cccccoooiiiiiiiniiiiniiiee. 104
Table 5-5: Web Service 2 Pattern Extraction Model...........ccccoooieiiiiiiiiniiiiiiniiecen, 105
Table 5-6: Web Service 3 Pattern Extraction Model..........cccccooviiiiiiiiniiiiniiiee. 106
Table 5-7: Relative Frequency of SIP Across Three Web Services.........cccceveevuennnenne. 107
Table 5-8: Pattern Relation-Identification Model............ccccevieriiiinieninniniinceeee, 108
Table 5-9: Sample Pattern-Relation Identification Model.............cccccvveeeiieniiieenieeennen. 109
Table 5-10: Summarized Transformation Rules...........ccceceviiniiiiniiniiniiiceicee, 110
Table 5-11: Pattern Recall SUMMATYc..ccooviieiiiiiiiieeie e 114
Table 5-12: Summarized Results for Precisionccoccevevievieninieninnenicnceieeeee, 116
Table 6-1: Formal Definition of SOLF Output Phases.........c.cccccceeveiienciieniieeeieeeee, 124
Table 6-2: Summarised Precision and Recall for Group 1 and Group 2 135
Table 6-3: Summarized NonTP and NonTR Results.........cccccceeviiiinciiiniiieniieecee e, 139
Table 6-4: Summarized Domain Expert Precisioncccccoeeveeviieniienienieeniienieeeeee. 141
Table 7-1: Design Research Products X ACHVILIESccccveeeveveeeciiieriieeeiieeciee e 149

Auhood Alfaries Page X

ACRONYMS

* ANNIC: ANNotations In Context

* API: Application Programme Interface

* ASIUM: Acquisition of Semantic knowLedge Using Machine learning methods
* DAML: DARPA Agent Markup Language

* DOLCE: Descriptive Ontology for Linguistic and Cognitive Engineering
* Design Research: Design Research

* GATE: General Architecture for Text Engineering
* GSO: Gold Standard Ontology

* GUI: Graphic User Interface

e HTML: Hyper Text Markup Language

* HTTP: Hyper Text Transfer Protocol

* IE: Information Extraction

* IRS: Internet Reasoning Service

* JAPE: Java Annotation Pattern Engine

* LATINO: Link Analysis and Text-Mining Toolbox
* LP: Lexical Processing

* LR: Lexical Recall

* ML: Machine Learning

* NLP: Natural Language Processing

e NN: Noun

e NNP: Proper Noun

* NonT: Non-Taxonomic

* NonTR: Non-Taxonomic Recall

* OI: Ontological Improvements

* OL: Ontology Learning

* OLT: Ontology Learning Techniques

* OWL: OWL Web Ontology Language

* OWL-DL: OWL Description Logics

* OWL-full: Version of OWL

* OWLIM: A Semantic Repository

* OWL-Lite: Version of OWL

* OWL-S: Web Ontology Language for Web Services
* POS: Part of Speech

* PSL: Process Specification Language

* RDF: Resource Description Framework

* RPC: Remote Procedure Call

* SAWSDL: Semantic Annotation for Web Service Description Language
* SIP: Structured Interpretation Patterns

* SOA: Service Oriented Architecture

* SOAP: Simple Object Access Protocol

* SOLF: Service Ontology Learning Framework

* SOLFO: SOLF Ontology

* STE: Service Term Extraction

* SUMO: Suggested Upper Merged Ontology

* SWS: Semantic Web Services

Auhood Alfaries Page XI

* SWSF: Semantic Web Services Framework

* SWSO: Semantic Web Services Ontology

* TAO: Transitioning Applications to Ontologies

* TP: Taxonomic Precision

* TR: Transformation Rule

e UDDI: Universal Description, Discovery, and Integration
e UPML: United Problem Solving Method Development Language
* URI: Uniform Resource Identifier

* VB: Verb

* W3C: World Wide Web Consortium

* WebODE: An Ontology Editing Tool

* WS: Web Services

* WSDL: Web Service Description Language

* WSDL-S: Web Service Description Language - Semantic
* WSMF: Web Service Modelling Framework

* WSMO: Web Service Modelling Ontology

* WSMX: Web Service Modelling eXecution Environment
* WSTM: Web Service Term Model

* XML: Extensible Markup Language

* XSD: XML Schema Definition

Auhood Alfaries

Page XII

CHAPTER 1 -INTRODUCTION

1.1 Background to the Problem

1.1.1 Service Orientation and the Role of Ontology

Service Oriented Architecture (SOA) is an emerging architectural approach with the
potential to better accommodate the changing enterprise. SOA unifies business
processes by encapsulating modules as well-defined interoperable services delivering
large applications as a collection of services (Papazoglou & van den Heuvel, 2007).
Currently, Web Services are the predominant technological means of delivering on
the SOA ideal and there is a clear increase in organizational interest in both the
architecture and delivery mechanism (Azoff, 2007; Heffner & Peters, 2008; Martin,
2007a; Tsai et al., 2006; Yu et al., 2008). Recent surveys (Meyer, 2006) indicate that
Web Service creation and application development via Web Services is under way
within 50% and 33% of the US and western European organizations surveyed
respectively. Larger organisations are the primary adopters of SOA, primarily due to
a greater need for integrating applications and services to adapt to dynamically

changing processes.

Though increasing in popularity, several barriers to adoption exist including
organizational complexity, the need for manual intervention and a lack of application
support (such as easy to adopt tools) (Gedda, 2007). In particular, the need for
manual intervention in discovery and adoption stands out as a challenge - Web
Services cannot be automatically discovered and composed as the description of
those services lack the necessary semantics (Martin, 2007b). This point is explicitly
recognized by the Semantic Web community (Berners-Lee, Hendler & Lassila, 2001;
Shadbolt, Hall & Berners-Lee, 2006), who argue that full automation of service
discovery and composition is indispensable and is necessary for dynamic, flexible
and machine understandable services and, as a consequence, an infrastructure that

meets the business ideal (Maedche & Staab, 2003).

Semantic Web Services are introduced to enable automatic service discovery and

composition (Sheth, 2006) by providing the infrastructure that meets the ultimate

Auhood Alfaries Page 13 of 189

business needs. The infrastructure is based on the use of ontologies as the core
component that facilitates the semantic layer. Ontologies, in computer science, are
defined by Studer et al. (1998, p.184) as: ““ a formal, explicit specification of a shared
conceptualization.”. Each term in this definition represents an important aspect of
ontologies in providing and catering for the Semantic Web vision. The first part -
formal, explicit specification — of the definition implies that the explicit specification
is described using formal machine readable language, like description logic (Bruijen,
2009). The conceptualisation part provides the abstract view model of the underlying
domain described by the ontology. Finally, the shared aspect provides the
stakeholders with an ability to share an ontological conceptualization commitment
(Bruijen, 2009). Importantly, ontologies are categorized in different types according
to their use. For example top-level ontologies are used to give an abstract view of the

world whereas lower level ontologies are domain specific.

The literature clearly indicates that Web Service domain ontologies are the general
means by which semantics are added to Web Services, therefore, providing a
solution for automating their service tasks. Semantic Web Services benefit from
ontologies in two ways: (1) reasoning facility to automate the Web Service usage
tasks, (2) providing a shared conceptualization of a domain to corporate stakeholders
(Bruijn, 2009). The demand therefore is to develop ontologies from existing services
and to enable those ontologies to adapt and evolve in line with the domain and any

demands made on it (Cuel et al., 2008).
1.1.2 Ontology Engineering

The importance of achieving Semantic Web Services emphasises the need for a
faster and less expensive ontology development process. Manual ontology
acquisition is a tedious, expensive and error prone task that can slow down the
ontology development process (Ding & Foo, 2002; Staab & Maedche, 2001;
Maedche & Staab, 2001). Ontology engineers are generally required to develop a
domain knowledge base using ontologies, and they are also required to ensure that
these ontologies are updated and maintained by extending the knowledge base with
new domain concepts. ‘Ontology learning’ is the term used to refer to automatic or
semi-automatic acquisition of knowledge from different sources of data (Buitelaar,

Cimiano & Magnini, 2007; Zhou, 2007; Buitelaar & Cimiano, 2008). Enormous

Auhood Alfaries Page 14 of 189

power could be added to the Semantic Web by automating the manual knowledge
acquisition process; this process normally involves domain experts mining legacy
systems and underlying documentation in order to harvest domain concepts and
identify taxonomic and non-taxonomic relations between those concepts. Applying
artificial intelligence automated techniques to extract domain knowledge from legacy
systems can certainly assist domain engineers, consequently contributing towards

faster ontology development (Maedche & Staab, 2001).

The goal of ontology learning is to support and facilitate ontology construction.
Ontology learning is a long way from being fully automatic, but it can be effectively
integrated in a wider ontology engineering framework (Zhou, 2007; Buitelaar &
Cimiano, 2008; Maedche & Staab, 2004; Maedche, 2002; Cimiano et al., 2009).
Drawing upon that statement, it is clear that ontology learning can play a key role

towards achieving Semantic Web Services.

A number of ontology learning methods have been introduced over the last few years
(Zhou, 2007; Buitelaar & Cimiano, 2008; Cimiano et al., 2009). These methods are
considered to be general ontology learning methods, and have not been tested or
applied and evaluated on the Web Service domain. Semantic Web Services impose a
special kind of ontology learning application area due to the fact that they contain
both structured and unstructured data (Yu, 2007). Due to the role that ontology
development plays in Semantic Web Services, and the fact that only limited research
has been found in this area, further research on ontology learning techniques that

cater for extracting domain ontologies from Web Services is required.

Several approaches have been proposed to facilitate the automatic extraction of
ontological elements from different types of knowledge sources, ranging from
structured, semi-structured and unstructured sources (Zhou, 2007). An Ontology
Learning (OL) system can be considered as a reverse engineering process where
input data sources are used by the system to learn relevant domain concepts and
relations, and an ontology is produced as an output of the system. OL approaches are
classified according to the data sources used as input to the system (Maedche &
Staab, 2004). The emphases found in the proposed OL approaches, are mainly aimed

at applying OL on unstructured data sources, commonly referred to as textual

Auhood Alfaries Page 15 of 189

sources. Progressing ontology development for Web Services can benefit greatly
from applying current OL techniques on Web Service artefacts and evaluating their

applicability on real data Web Service sources.

With the Semantic Web Services vision and the rapid increase in the number of
available Web Services, here, the research focus is on applying ontology learning
techniques on Web Services artefacts as an application domain of the Semantic Web.
It is important to look intensely into and to investigate the effect of applying OL on
the current Web Service XML-based standards such as SOAP and WSDL, as they
provide a rich source of legacy domain knowledge (Sabou, 2005). Providing
appropriate tools that assist in and automate ontology development - taken in the
large part from ontology learning - is essential for a dynamic service vision to be

realized.

The challenge, therefore, is to develop ontologies from existing services and to
enable those ontologies to adapt and evolve in line with the domain and any demands
made on it (Cuel et al., 2008). Adopting knowledge extraction techniques in the
form of Ontology Learning provides an automated means of dealing with these
issues, as it allows automatic knowledge acquisition from different sources of Web
Services, for the purpose of reducing the cost, time and effort required by ontology

engineers to build domain specific ontologies (Buitelaar, Cimiano & Magnini, 2007).

1.2 Aims and Objectives:

The aim of this research is to automate the ontology development process and to

develop a methodological ontology learning framework tailored for Web Services.

The objectives of the work are to:

1. Review the available ontology learning approaches and tools in order to
provide an understanding of the state-of-the-art of ontology learning and Web
Services.

2. Develop ontology learning techniques for service concept and relation
extraction and to automate these techniques by building a prototype

application to test the applicability of the techniques using real Web Services.

Auhood Alfaries Page 16 of 189

3. Develop a methodological Service Ontology Learning Framework (SOLF)
that incorporates the techniques for concept and relation extraction.

4. Implement a tool that facilitates the framework and evaluates the application
of the framework, and assess the impact of the framework on the state-of-the-
art of ontology learning.

5. Validate the research outcome by testing the generality of the extracted

patterns and rules on services from other domains.

1.3 Research Methodology

Design research is chosen as the research method for executing this research. The
objective of Design Research is to produce a relevant IT based solution to a
significant business problem (Hevner et al., 2004) with a focus on the utility of the
artefact. the approach applies a set of analytical techniques from the problem space
to understand, explain and improve the designed artefact. Design research is
considered both a product and a process. The process incorporates a set of design and
behavioural science activities; build, evaluate, justify and theorise (March & Smith,
1995). The products of Design Research can be classified according to the four-type
product classification (March & Smith, 1995);

» Constructs are sets of concepts used to define the problems and solutions.

* Models are used to describe a real world situation of the design problem and

its solution space.

= Methods are used to provide guidance on how to solve problems using the
constructs and models. They are thought of as methodological tools (March

& Smith, 1995).

» Instantiations are the implementations of constructs, models and methods
allowing actual evaluation, of feasibility and effectiveness, of the Design

Research artefact.

Design research must be applied as a search process for an effective solution,

utilizing and sustaining laws in the problem space. In order to demonstrate the

Auhood Alfaries Page 17 of 189

effectiveness of the solution, rigorous Design Research evaluation methods from the
knowledge space must be executed to evaluate the quality of the artefact (Hevner et
al., 2004). Design Research seeks to achieve an appropriate solution to the design
problem in an iterative knowledge refinement manner, where each iteration executes
build and evaluate cycle, contributing new learning and knowledge that feeds back

into consequent iterations.

Ontology learning as a research area is still young; consequently Design Research is
employed as the research methodology as it allows learning to evolve as the solution
is developed for the problem space (Vaishnavi & Kuechler, 2004). A Design
research process is employed as a problem solving method, whereas a valid IS
research is achieved through an iterative build and evaluate design cycle of a
purposefully designed artefact. The main Design Research phases applied are as

follows;

» Problem Awareness: This involves reviewing the literature to analyse the

availability of ontology learning techniques and confirmed the lack of
automated knowledge acquisition tools in the Semantic Web Services

domain.

» Suggestion: This phase involves introducing a tentative idea of how to
apply suitable knowledge extraction techniques. The learning techniques
are borrowed from the machine learning and natural language processing
disciplines to satisfy the aim of learning ontologies from Web Service

Sources.

* Development: The development of the solution will be achieved by
building the design artefact. Here the artefact is a service ontology
learning framework (SOLF). By immersing in the build activity the
researcher achieves an understanding of the problem space raising new

suggestions to improve the next build and evaluate cycle.

= [Evaluation: This phase is concerned with the development of an
assessment method or metric to assess the quality and effectiveness of the
designed artefact (March & Smith, 1995). Synthesising the Design
Research evaluation criteria to identify appropriate evaluation methods

and metrics from the problem space has lead to identifying the commonly

Auhood Alfaries Page 18 of 189

applied information extraction metrics, precision and recall, to evaluate
the ontology learning method. The learned ontology model, SOLF, is

evaluated for coverage of the domain and for accuracy.

* Conclusions: This is the final phase of the Design Research cycle,
withdrawn from the learning that emerged from understanding how and
why the solution works in the problem domain when applied to real sets
of services. Limitations of the solution and areas for future work are also

provided in the conclusion of the research.

Applying March & Smith’s (1995) Design Research product classification to
illustrate research contributions leads to identifying the main design artefact as the
development of a Service Ontology Learning methodological Framework (SOLF). In
order to deliver the final SOLF method the research significance lies in building
consequent set of constructs, models, methods and instantiations.. In this research,
framework development follows from executing Build and Evaluate activities. These
activities are executed in an iterative incremental Design Research manner consisting

of three iterations as follows:

» [teration 1 — Core framework development including service term
extraction technique. Automate the framework by implementing an
application tool and evaluate the technique and tool by applying them on
real sets of Web Services and evaluating the learned ontology model with

the identified evaluation metrics.

» Jteration 2 — Extending the framework to incorporate rule based relation
extraction techniques. This iteration contributes a secondary Design
Research structured interpretation models and a set of transformation
rules. A domain ontology model is also produced representing both
lexical and structural aspects of the learned ontology of the financial

domain.

= [teration 3 — Validate the framework by applying and evaluating the
extraction method across other domains. The generality of the SOLF and
tool will be demonstrated through comparing evaluation measures for two

different data sets.

Auhood Alfaries Page 19 of 189

The effectiveness of the Design Research problem is in reducing the cost and time of
the ontology development process. An instantiation tool is created and applied to real
case scenarios of Web Services, to illustrate the effectiveness and provide a live
proof of the proposed method (SOLF in this research) and as the means by which
deficiencies and improvements are identified (March & Smith, 1995). Determining
whether progress is made by the extraction method and tool is evaluated by applying
the appropriate metrics from the knowledge base to measure the accuracy and

coverage of the learned domain ontology model.

1.4 Thesis Overview

In achieving the objectives of the work, the thesis is structured as follows:

Chapter 2: Drawing extensively from the literature, this chapter presents a review of
relevant research articles, giving a general background of Semantic Web Services.
Advances and development in the field are also discussed. A broad overview of the
required technologies for the Semantic Web Services is introduced, leading to the
role of ontologies in the Semantic Web Services. The chapter proceeds by discussing
issues and challenges that hamper the ontology development, and by introducing
ontology learning as a step towards a faster Semantic Web vision. A background
discussion of techniques and tools for ontology learning is presented according to
their relevance toward ontology development, and therefore towards Semantic Web
Services. Finally, the chapter presents similar approaches that apply Ontology
Learning techniques on the Web Services application domain, demonstrating the
feasibility and utility of the approach and pointing to the limitations of the state-of-
the-art, thereby highlighting the need for this research.

Chapter 3: This chapter proposes Design Research as the research methodology for
effectively conducting a valid Information Systems research. It then discusses how
Design Research is applied in order to plan and execute the research design problem,
by developing a method and a tool for learning ontologies from Web Services.
Research iterations are identified and research outputs are categorized according to
the Design Research products classification. The chapter discusses issues

surrounding OL evaluation and presents a taxonomy of evaluation approaches in

Auhood Alfaries Page 20 of 189

order to derive an appropriate evaluation framework for assessing the effectiveness

of the developed methodological framework. Finally, the chapter is summarized.

Chapter 4: This chapter presents the first Design Research iteration, tackling the
first task of OL by developing and implementing a service term extraction process.
The steps involved in the service term extraction are explained and an
implementation of the method is detailed. The output of the iteration is presented as a
set of Design Research products. An evaluation of the products is then performed,

and finally the learning outcome and discussion of future improvements is presented.

Chapter 5: This chapter presents the implementation of the second Design Research
iteration. Here, the initial framework developed in chapter 4 is refined and extended
by incorporating the relation extraction technique. This chapter contributes a service
relation extraction technique based on a set of structured interpretation patterns. The
output of this chapter is evaluated by applying the extended framework and the tool
on a real set of Web Services. The learned ontology is evaluated by executing a
specifically tailored evaluation framework in order to assess the validity of the

relation extraction process.

Chapter 6: The third research iteration is executed here to improve and validate the
generality of the framework, by applying the framework and the structured
interpretation patterns produced in the previous iteration to different sets of Web
Services. Evaluating the automatically learned ontology model against the gold
standard ontology, measures its completeness and coverage of the underlying
domain. The evaluation is performed and appropriate metrics are used to measure the

ontology precision.

Chapter 7: This chapter concludes the research thesis and presents the contributions
and key findings. Limitations that were learned from applying Design Research to
solve the proposed problem are also explained. An evaluation of the Design Research
process is performed against satisfying the research aim and objectives, highlighting
the research limitations. Lastly, relevant conclusions will be drawn against the degree
to which the proposed approach meets its objectives, while an explanation of the

research limitations suggesting future improvements is presented.

Auhood Alfaries Page 21 of 189

A thesis outline diagram is created in Figure 1-1 in order to provide an abstract level
structure that maps the Design Research iterations to the thesis chapters and the

research objectives.

Aim:
The need for av d, less tol P in order to achieve the full
| of web services directed the aim of this research towards automating the ontology
Chapter 1 development process by developing a methodol | ontology learning framework tailored for
Research Aim and Web Services.
Objectives , Objectives:
1. Review ontology learning approaches and tools.
2. Develop techniques for service concept and relation extraction.
3. Develop a Service Ontology Learning Framework (SOLF) that incorporates the
techniques.
4. Implement a tool that facnlimes SOLF and evaluates it.
5. Validate the r by testing the method and tool on real web services.
Gaps:
Review: - Web Service lacks machine readable semantics.
- Semantic Web Services (SWS). |~ Web Service tasks lack automation.
Chapter 2 - Web Service Technologies. - Ontology Dwolppmont Is_slow and expensive. Ac[\lm
Literature Review , - How ontologies are built for WS. |~ Ot:’toloqy Learr;fling Techniques are general and | Obj. 1’_
- Ontology Learning Techniques. not domain specific. N 4
- Ontology Learning Approaches. | OL is not _zallored specrﬁc?lly for YVS artefact.
- Web Service OL Requirements, |- WS contains legacy domain specific
information.
g::::.;: - Design Research as a research methodology. Underpins
Methodology ‘—» - Identify how the DR applied for the research. Obj. 2-5
- Identify research iterations. o~
Chapter 4 - Develop the Core Service Ontology Learning Framework
Itpratlon 1: (SOLF).
Service Termand | Output | - Service Term Extraction Process.
Concept Artefacts - Develop an instantiation prototype system using GATE. 3
Extraction - Eval the term extraction process using financial web
services.
?Leaming Outcome—l
Chapter 5 - Extended SOLF to target relation extraction.
Iteration 2: - Structured Interpretation Pattern Extraction Process.
Relation Extraction | Output » |- Transformation Rule Extraction Process. s Achieves |
(taxonomic & non- Artefacts - Instantiation prototype application using GATE. Obj. 2-5 ‘
taxonomic) - Evaluate SOLF using financial web services. o~
iuaming Outcome————
Chapter 6 - An improved methodol 1 fr k - SOLF.
. Iteration 3: Output >» | A generlc set of relation extraction patterns (SIP). J
Validate and Refine ¢, 01 - A generic set of transformation rules (TR).
SOLF - An ontology learning tool that incorporates SIP and TRs.
-D in model ontologies learned by SOLF.
Leamning Ouloome—I
Research contributions and future work.
Chapter 7 - Methodological Framework (SOLF).
Conclusi - Relation and patterns extraction process.
- An ontology learning tool.

Auhood Alfaries

Figure 1-1: Thesis Outline

Page 22 of 189

CHAPTER 2 - LITERATURE REVIEW

2.1 Introduction

Research in accomplishing a decentralised knowledge representation across
applications can be achieved by Web Services, which provide an effective way of
allowing interoperability across platforms, organizations and operating systems. This
chapter looks at the state-of-the-art of current Web Services and discusses how the
Semantic Web capacity can bring a new dimension into e-business through current
Web Service standards. Literature has shown that by adding semantics into Web
Services, automation of enterprise cooperation can be achieved. This chapter reviews
the relevant research literature on achieving Semantic Web Services, ontology
development challenges are discussed and suggestions on how to improve the
ontology development process from the literature are introduced. Existing Web
Service sources offer a good starting point for ontology learning and a pragmatic way
forward in developing semantics for existing assets. Automating the knowledge
acquisition process from different Web sources is discussed and analysed for the
purpose of developing an effective approach for adding semantics onto the current

Web.

This chapter is structured as follows. Section 2.2 describes a general review of Web
Services, introducing the need for adding semantics and the requirements for
embedding semantics into Web Services. Section 2.3 presents a broad overview of
tools and languages used for ontology engineering. Section 2.4 discusses the
challenge of manual ontology development. Section 2.5 presents ontology learning
as a way for advancing the ontology development bottleneck and reviews existing
literature to present the most important approaches in the field. Section 2.6 classifies
existing ontology learning approaches in relation to the techniques applied, and the
disciplines from which these techniques are borrowed. Section 2.7 introduces the
application of ontology learning in Web Services standards, detailing current work in

the area and highlighting issues and challenges and suggesting improvements.

Auhood Alfaries Page 23 of 189

2.2 Achieving Semantic Web Services/ Industry Perspective

Service Oriented Architecture (SOA) is an emerging architectural approach with the
potential to better accommodate changing enterprise requirements. SOA unifies
business processes by encapsulating modules as well-defined interoperable services
delivering large applications as a collection of services (Papazoglou & van den
Heuvel, 2007). Currently, Web Services are the predominant technological means of
delivering on the SOA ideal and there is a clear increase in organizational interest in
both the architecture and delivery mechanism (Azoff, 2007; Heftner & Peters, 2008;
Martin, 2007a; Tsai et al., 2006; Yu et al., 2008). Recent surveys, for example Meyer
(2006), indicate that Web Service creation and application development using Web
Services is under way within 50% and 33% of the US and Western European
organizations surveyed respectively. Larger organizations are the primary adopters of
SOA, primarily due to a greater need for integrating applications and services to

adapt to dynamically changing processes.

Web Services are a collection of application programs that can be accessed remotely
using the Web. Therefore, they provide distributed applications with the limitation
that these organizations have to follow Web Service standards using Hyper Text
Transfer Protocol (HTTP). Once these standards are followed applications can
achieve interoperability via the Web (Yu, 2007). Lee, however, suggests that the
challenge for the Web is to incorporate a more decentralized knowledge
representation system. Semanticising knowledge bases can minimize the need for
common standards, hence the Web capacity to achieve the goal of decentralized
knowledge representation across applications is greater. In a business environment
this implies automatic cooperation between enterprises (Fensel & Bussler, 2002),
which is a highly valued goal across organizations (Martin, 2007b; Bruijn et al.,

2009).

The literature also identifies a number of technologies for facilitating Web Services
that are also essential to cater for SWS. Some of the most commonly adopted

standards are SOAP, WSDL and UDDI.

* SOAP (Simple Object Access Protocol) is a lightweight protocol for

exchanging structured information in a decentralized environment (W3C).

Auhood Alfaries Page 24 of 189

= WSDL (Web Services Description Language) is an XML-based language

used for describing the Web Services.

= UDDI (Universal Description, Discovery, and Integration) is an XML-
based registry for worldwide businesses. This service registry is used for
service lookup, listing available services and their providers. The UDDI
acts as a ‘yellow pages’ for published services (Berners-Lee, Hendler &

Lassila, 2001).

Figure 2-1 illustrates key components, roles and operations in a Web Service
environment. Service providers use the Web Service Description Language (WSDL)
to provide a syntactic description of service interfaces. Service providers and service
requesters are provided with SOAP standards, e.g., as a mechanism for
communication description. These two standards are sufficient for enabling the two
parties to share and invoke services remotely, but only with a predefined agreement
between the provider and the requester. The third component is the service registry
(UDDI), which is used to provide a list of businesses and the services they provide.
This service registry is unable to achieve its full potential, however, due to the fact
that service location, selection and composition (usage tasks) requires extensive

human struggle (Bruijn et al., 2009).

Service description

'Service Registry WSDL)
(UDDI) e
Service x URI
Service y URI
Service z URI
Gy T (=)
Requester Interact Provider
(SOAP)

Figure 2-1: Web Service Architecture

Service composition involves service lookup and selection in addition to the act of

composing. Although there is an increase in popularity, several barriers to adoption

Auhood Alfaries Page 25 of 189

exist including organizational complexity, the need for manual intervention and a
lack of application support (such as easy to adopt tools) (Gedda, 2007). In particular,
the need for manual intervention in discovery and adoption stands out as a challenge
- Web Services cannot be automatically discovered and composed as the description

of those services is not rich enough in its semantics (Martin, 2007a).

Delivering semantics into Web Services can be achieved through annotating a Web
Service description to a suitable ontology (Sheth, Verma & Gomadam, 2006) — this
is the basis of the so called Semantic Web Services (SWS) (Bruijn et al., 2009). This
point is explicitly recognized by the Semantic Web community (Berners-Lee,
Hendler & Lassila, 2001; Shadbolt, Hall & Berners-Lee, 2006) , who argue that full
automation of service discovery and composition is indispensable and is necessary
for dynamic, flexible and machine understandable services and, as a consequence, an
infrastructure that meets the business ideal (Maedche & Staab, 2003). Embedding
semantics on to Web Services implies automation of Web Service tasks, primarily

service discovery, execution and composition (Mcllraith, Son & Zeng, 2001) .

Without the full automation of Web Service tasks (Fensel & Bussler, 2002; Studer,
Grimm & Abecker, 2007), Internet-based e-commerce will not reach its full potential
in economic extensions of trading relationships. A number of approaches proposed
for SWS rely on using ontologies as a core component (Martin, 2007a; Lara et al.,
2004; Shafiq, 2007; Bell et al., 2007). As an example, the semantic Web Service
framework, introduced by Medjahed, Bouguettaya & Elmagarmid, (2003) uses
ontologies for describing semantic and syntactic features of a Web Service and
presents a set of compatibility rules for automating service composition. By enabling
dynamic and scalable cooperation between different systems and organizations
(Davies, Studer & Warren, 2006; Bruijn et al., 2009), the significant impact of the
SWS on many Web areas, such as e-Commerce and Enterprise Application

Integration, becomes clear.

Services allow organizations to communicate data without the intimate knowledge of
each other's IT systems behind the firewall, requiring human intervention in the
communication process. Distinctively, SWS are a means for businesses to

dynamically communicate with each other and with clients (Papazoglou & van den

Auhood Alfaries Page 26 of 189

Heuvel, 2007; Yu et al., 2008; Martin, 2007b; Bruijn et al., 2009; Sabou & Pan,

2007) whilst overcoming the manual human intervention bottleneck.

Moving towards the Semantic Web can be conceptualized as a semantic layer being
added on to the current Web. It intends to give current Web pages a well-defined
machine understandable meaning (Berners-Lee, Hendler & Lassila, 2001; Fensel &
Bussler, 2002; Medjahed, Bouguettaya & Elmagarmid, 2003; Mcllraith, Son & Zeng,
2001). SWS is one important application of the Semantic Web, whereby it intends to
provide semantic description to current Web Services, and thereby facilitate the
dynamic composition of Web Services. Even though the proposed Web Service
standards are essential for Web Services, they are not sufficient to provide the full
potential of Web Service (Fensel & Bussler, 2002), due to the fact that the service
functionality description is limited to human interpretation to locate, select and
compose the service. Consequently, there are certain main components that need to
be used in order for the Semantic Web and SWS to evolve. The following sub
sections gives a general overview of the core SWS components examining their
relevance and how far these components have come to existence, and to what extent

they can be applied to date.
2.21 Agents

Agents are user-generated code that can be used to surf the Web in order to answer a
particular question or collect information. Currently agents are implemented
specifically to cater for and access certain Web sites, i.e. a typical agent is assessed
by a human (implementer) to connect and interact with the correct Web site. It would
be much more beneficial if software agents were written generically as they would
then be able to understand and interpret relevant web sites dynamically. To be able to
do so, agents need to be able to use the semantic feature of Web pages in order to
understand the pages and to perform tasks accordingly (Berners-Lee, Hendler &

Lassila, 2001).

The literature elucidates that agents play an important operational role in the
Semantic Web in general, and more specifically in SWS (Berners-Lee, Hendler &
Lassila, 2001; Mcllraith, Son & Zeng, 2001; Sycara et al., 2004; Gibbins, Harris &
Shadbolt, 2004). Sycara et al. (2004) introduce the use of a middle agent broker, used

Auhood Alfaries Page 27 of 189

as part of the discovery and mediation mechanism between agents and Web Services.
A broker is an important component of Web Service infrastructure as it acts as
mediator and service discovery simultaneously. This approach implies that the broker
will require a semantic layer to operate on, in order to provide the translation
required if the requester and provider are using different languages. Hence, the
broker acts as the intermediary to execute a request and sends the response to the
requester. This implies that the requester will have a lack of knowledge regarding the
service provider. Even though this broker seems tempting, if used, the SWS might
lack decentralization. The alternative approach would be to use the matchmaker
middle agent for service discovery, and allow the service provider and the requester
to handle the translation process, in which case decentralization is expected (Sycara
et al., 2004). In each of these two approaches ontologies are employed to provide

agents with the required semantic information.
2.2.2 Ontology

Ontologies are the general means by which semantics are added into Web Services
(Sheth, Verma & Gomadam, 2006; Akkiraju et al., 2005; Burstein et al., 2005),
providing the required semantic layer for agents to operate on. Ultimately, ontologies
form a vital component for recognising the SWS. Fensel and Bussler (2002) define
ontologies as a formal consensual specification of conceptualization, which can be
used to provide a shared and common understanding of a given domain, and is a way
of defining concepts and the relationships between them. Ontologies here refer to the
computational ontologies, the countable noun (an ontology), as implied in the

computer science field (Guarino, 1998; Guarino, Oberle & Staab, 2009)..

The literature clearly identifies that Ontologies form an important component of the
Semantic Web (Martin, 2007a; Lara et al., 2004; Shafiq, 2007; Bell et al., 2007). A
simple example that illustrates its use is when two communicating organizations
refer to the same concept using different names; then if one application needs to
access the databases of both organizations, it needs to be able to recognise that those
two concepts refer to the same subject. Therefore, this system may need to refer to an
ontology file that defines concepts using a logic-based machine-readable format so
that the machines would be able to resolve the name mismatch and infer whether the

two concepts share the same semantics.

Auhood Alfaries Page 28 of 189

Ontology types can be classified by different criteria. The most prevalent are
generality and level of detail (Guarino, 1998; Guarino, Oberle & Staab, 2009).

Ontology types based on the level of generality as summarized in Table 2-1 are:
= Top-level ontologies

= Domain ontologies

» Task-based ontologies

= Application ontologies; where ontologies are used to represent a

conceptualization of a specific domain and a specific task

Table 2-1: Summarized Ontology Types

Ontology type

Description

Example

Top level ontologies

(Foundational ontologies)

Specification of a
conceptualization based on
linguistics independent of

domain specific concepts

SUMO
(http://www.ontologyportal.
org/)

DOLCE (http://www.loa-
cnr.it/DOLCE.html)

Domain ontologies

Provides domain specific
model describing domain

concepts and relations

Financial system domain

Life science domain

Task-based ontologies

(Generic ontologies)

Describes concepts that are

specific for a task

Web Service: WSMO

OWL-S

Application ontologies

Combines domain and task

specific ontologies

Describing a banking
service in the financial
domain using domain
ontologies and OWL-S

Ontologies are classified by Gomez-Perez, Fernandez-Lopez & Corcho (2003) into

two types (according to the level of details of specifications between terms):

= Lightweight ontologies are domain models that include taxonomic hierarchy and

properties between concepts.

Auhood Alfaries

Page 29 of 189

= Heavyweight ontologies are domain models that add more detail to lightweight

ontologies by adding axioms and constraints to explicate terms.

The SWS domain ontologies provide the semantics of business data, processes and
services. Ontology allows logic-based reasoning by machines — a necessary step in
automating the process of service discovery and composition. This research is
concerned with the development of domain specific ontology (referred to in some

literature as application ontology) (Guarino, 2009).

Ontologies consist of taxonomies and a set of inference rules (Berners-Lee, Hendler
& Lassila, 2001), which can be used to derive the meaning and relationship among
objects. This meaning can then be applied during data exchange to result in a more
appropriate interpretation for both parties involved. By describing service
information using formal languages like description logic, machine processable
reasoning capabilities can be used to enable the automation of Web Service usage
tasks (Bruijn et al., 2009). For this reason research interests are widening in the
ontological engineering community, producing new methods and techniques to assist
in the automatic knowledge acquisition process from existing data sources (Gomez &

Manzano, 2004; Gasevic, Kaviani & Milanovic, 2009).

A number of proposed approaches seek to add semantics to Web Services either as a
formal ontology as in WSMO and OWL-S (Lara et al., 2004; Shafiq, 2007), or by
annotating WSDL files with one of the aforementioned formal ontologies as
proposed in SAWSDL (Al Asswad, de Cesare & Lycett, 2009). Fensel and Bussler
(2002) propose a conceptual Web Service Modelling Framework (WSMF) for
developing, describing and composing Web Services. In WSMF, ontologies are
presented as an essential element required for the development of a Semantic Web
Service framework. Another proposed ontology-based framework for the automatic
composition of Web Services is introduced by (Medjahed, Bouguettaya &
Elmagarmid, 2003); this contribution focuses on three main steps towards automatic
Web Services. The first is a composability model which checks whether two services
can interact with each other. The second is an automatic generation of composite

services. The third step is a prototype implementation and experiment.

Auhood Alfaries Page 30 of 189

Table 2-2 summarizes the main approaches and presents a general comparison
between them as reviewed in Bruijn et al. (2009), Al Asswad, de Cesare & Lycett
(2009) and Cabral et al. (2004). A general Semantic Web Service infrastructure

categorizes three main elements (Cabral et al., 2004):

1. Usage activities: Define functional requirements that should be supported by
any SWS framework.

2. Architecture: Defines components required to undertake the usage
activities.

3. Service ontology: Aggregates all concept models that describe SWS. The
ontology also contains the knowledge-level model that describes and supports

service discovery and composition.

Service ontologies integrate information defined by SWS standards such as UDDI
and WSDL with related domain knowledge. This information described by the
service ontology can be distributed in different levels of ontologies (Sheth, Verma &
Gomadam, 2006); Business level, Physical level and Conceptual level. Service
ontology is required to describe the capabilities and restrictions of the service by

providing a semantic description for the following service information:

* Functional capabilities

» Inputs/Outputs

= Preconditions/post conditions

* Non-functional capabilities such as category, cost and quality of service

» Provider related information such as company name, address, task or goal

related information

* Domain knowledge defining, e.g. the type of service inputs

Auhood Alfaries Page 31 of 189

Table 2-2: Summarized Approaches to SWS

Approach OWL-S WSMO IRS SWSF SAWSDL
Stands Web Web Service Internet Semantic Web Semantic
for Ontology Modelling Reasoning Services Annotation
Language for Ontology Service Framework for WSDL
Web
Services

Based on DAML-S WSMF UPML SWSO WSDL-S
(DARPA (Web Service (United Semantic Web | Web Service
Agent Modelling Problem Services Description
Markup Framework) Solving Ontology Language -
Language) Method Semantic

Development
Language)

Execution | Works with WSMX (Java) | N/A N/A N/A

Platform Protégé as
Plug-in
Editor.

Concept Agent Business Knowledge- Based on Lightweight
oriented oriented based Process Web Service
approach to approach to approach Specification description
SWS. SWS, focus evolved from Language that extends
Provides on set of e- reusable (PSL), WSDL and
ontology for commerce knowledge supports can be
describing requirements components. reasoning mapped to
Web Service for WS over service another task
capability. including trust description ontology like

and security. WSMO

Example (Martin et al., (Fensel & (Motta et al., (Battle et al., (Farrell &

Citation 2004) Bussler, 2003) 2005) Lausen,

2002) 2007)

An ontology that can be used to describe the functional and non-functional aspects of

the Web Service domain remains very expensive to develop, since it has to be

derived from business data using domain expert knowledge. Current generic

ontologies (the so called Task ontologies), like OWL-S (Sycara et al., 2004), attempt

to provide service descriptions at different levels but still need to be linked with

domain specific ontologies that describe domain specific concepts and relations. The

literature emphasises the use of ontologies as a main component in all of the

proposed Semantic Web Service approaches and also that ontology development

remains a restricting bottleneck.

2.3 Tools used for Ontology Development

Defining ontologies for SWS requires the use of an appropriate language that

provides the capability to describe concepts and relations. A number of ontology

Auhood Alfaries

Page 32 of 189

languages and supporting tools are evolving rapidly. Resource Description
Framework (RDF) is the first knowledge description standard introduced for the
Semantic Web, RDF is the basic building block for supporting the Semantic Web
(Yu, 2007) and is based on XML.: It uses triples consisting of resource, property and
statements to formulate the knowledge that machines can understand (Berners-Lee,
Hendler & Lassila, 2001). RDF is extended and followed by a series of ontology
languages. The first extension to RDF was the RDFschema (RDFS), but the
RDFschema lacks the ability to express complex and richer relationships between
classes. The RDFschema is extended to cater for the new features by adding new
constructs for expressiveness, thereby leading to a richer ontology language. Hence,
a new Web Ontology Language (OWL) (Antoniou & Harmelen, 2009) emerged in
three different forms; OWL-Lite, OWL-DL and OWL-full. The different forms were
introduced by the W3C as different sublanguages that vary in the expressiveness of
the modelling primitives offered and the reasoning capabilities in each form.
Typically the choice is made by the user based on the tradeoffs between the
expressive power and the efficient reasoning support made in each OWL

sublanguage.

Moving on from OWL, there was the need to express Web Services semantic
features to allow for the automatic discovery, invocation and composition of Web
Services, hence OWL-S was introduced as a Web Service description language with
the semantic capability (Sycara et al., 2004) to assist in those tasks. OWL-S is

structured into three main parts:

* Profile: This part provides the description of the Web Service

capabilities.

* Process model: The service provider describes its computation, makes it
publicly available and provides an interaction protocol used between the

provider and a requester

» Grounding: This part provides a description of simple process

transformation into remote procedure call

Ontology development, however, remains a wide-open research area in which a

number of tools and methods have been introduced for the manual acquisition and

Auhood Alfaries Page 33 of 189

construction of ontology models. For example On-To-Knowledge, a process-oriented
methodology for introducing and maintaining ontology-based knowledge
management systems (Staab et al., 2001). This process is supported by a Tool
(OntoEdit). The proposed approaches are considered ontology-engineering tools,
developed to manage the construction and visualisation of ontologies, with some
differences such as the degree of compatibility, availability of query engines and
reasoners. Taniar and Rahayu (2006) state that the most cited ontology-editing tools
are OntoEdit, Protégé-2000 and WebODE. Some of the tools are open source and
have matured, enabling wider research and a number of plug-ins to be made
available. Protégé is an open source ontology development environment and supports
different OWL forms. Providing visual support and offering different reasoning and
inferencing capabilities, through a number of plug-ins, makes Protégé a preferable

ontology development candidate for most of the current research.

2.4 Ontology Development Challenge

Currently, domain ontologies are developed manually through collaboration between
highly skilled domain experts and ontology engineers. By its very nature, ontology
building is therefore an expensive and time consuming task that lacks the appropriate
automated knowledge acquisition support tools (Buitelaar & Cimiano, 2008). In all
of the proposed ontology development approaches, manual knowledge extraction
from legacy systems and conceptually modelling this knowledge remains a
bottleneck, that provides a considerable barrier to adopting SWS, consequently
preventing Web Services from reaching their full potential (Martin, 2007a; Martin,
2007b; Gedda, 2007).

The challenge in achieving the SWS is, therefore, to develop ontologies from
existing services. Thereby, enabling those ontologies to adapt and evolve in line with
the domain and any demands made on it (Cuel et al.2008). Existing Web Service
sources offer a good starting point for ontology learning (Sabou et al., 2005) and a
pragmatic way forward in developing semantics for existing assets. This avenue is
not well explored however. Adopting knowledge extraction techniques in the form of
Ontology Learning provides an automated means of dealing with the manual

ontology extraction and building, as it allows automatic knowledge acquisition from

Auhood Alfaries Page 34 of 189

different sources of Web content for the purpose of facilitating the process of

ontology development (Buitelaar, Cimiano & Magnini, 2007).

Web Services need to be described at different levels; therefore, for ontology
engineers to build ontologies that represent faithfully the knowledge embedded in
these services, it is important to expose the new legacy systems available in different

parts of the Web Services.

The literature highlights the importance of a faster ontology development process.
Manual ontology acquisition is a tedious expensive task that can slow down
knowledge acquisition (Maedche & Staab, 2001). Ontology learning can be used as
an important step in an ontology development cycle. It could add an enormous power
to the Semantic Web by contributing towards low cost ontology development

(Maedche & Staab, 2001).

2.5 Ontology Learning

Ontology Learning (OL) is an automated or semi-automated process in which
ontological elements such as concepts and relations are extracted automatically from
different resources (Buitelaar & Cimiano, 2008). Ontology learning is still a long
way from being fully automatic, but is now considered as a plug-in in the ontology
development cycle (Maedche & Staab, 2001; Buitelaar & Cimiano, 2008; Staab &
Studer, 2004; Shamsfard & Barforoush, 2003). Ultimately, it can be used to support
ontology engineers in defining the conceptual model of a particular domain

(Buitelaar & Cimiano, 2008).

Cimiano (2007) suggests an ontology learning layer cake (as shown in Figure 2-2),
contributing to a better understanding of the OL tasks. This ontology learning layer
cake as proposed by Cimiano (2007) can be used to classify an OL approach

according to the task that it aims at. These tasks are described below:

* Term extraction, as shown in Figure 1, is the first task of an ontology learning
system. The task here is to determine the relevant phrases and terms for a specific

domain. Typically, a textual corpus is used as the input for term extraction.

Auhood Alfaries Page 35 of 189

* Synonym discovery consists of finding synonym words for concepts. Here two
words are regarded as synonymic if they share a common meaning. This
definition is similar to the synsets in WordNet, and WordNet is commonly used

for this purpose.

* Concept formation is defined, for ontology learning, as a set of triples
consisting of concept intension, extension and lexical realization in a corpus.
Concept extensions are defined as a set of instances for a concept. Whereas
concept intensions represent a shallow description of the concepts which could be
taken from a dictionary. The lexical realization is the term defining the concept

from the corpus.

* Concept hierarchies involve putting each concept in the correct place in a
hierarchy. This is considered to be an important task in the ontology learning

process, since it provides the taxonomic layer of the ontology.

* Relations learning involves finding relationships among concepts. There are
different types of relations, for example, in the case of binary relations
appropriate domain and range have to be identified. These types of relations are

commonly referred to as non-taxonomic relations (Cimiano. 2007).

* Rules are concerned with the axiomatic definition of concepts. The task in this
layer is to learn the rules that apply for concepts and relations. For example, there
is a need to learn which pairs of concepts are disjoint, or to learn whether a

relation is symmetric or non-symmetric.

The OL tasks are ordered in the way that each layer is built depending on the output
of the lower layer, i.e. a concepts hierarchy learning task can only be achieved if the
appropriate concepts are first extracted. The same applies for the relations learning
task. Any OL methodology typically follows the layers conceptual dependency
(Cimiano et al., 2009).

Auhood Alfaries Page 36 of 189

Axioms and rules Rules

held-By(Domain:Bank, Rang: Customer) Relations

Account <c Savings Account,

Account <c Financial Service Concept Hierarchies

c:= company, where ¢ is an ontological Concepts
entity
{ Company, Organisation, Corporate } Synonyms
Company, Contract, Date, Account Terms

Figure 2-2: Ontology Learning Layer Cake (adopted from Cimiano, 2007)

In broad terms, Ontology Learning (OL) is grounded in a combination of Ontology
Learning Techniques (OLT). Most of these techniques are drawn from well-
established disciplines such as Machine Learning (ML), Natural Language
Processing (NLP) and statistical-based learning (see Gomez & Manzano 2004; Zhou
2007; and Buitelaar & Cimiano 2008, for review). Each of these approaches are
mainly aimed at learning the concept, relation and concept hierarchy tasks in the
layer cake, but none of the proposed approaches yet tackles all of the tasks
indentified in the layer cake, requiring human validation or involvement in the
ontology development process (i.e. they are considered as being semi-automatic

ontology learning and still a long way from being fully automatic).
2.5.1 Text-based Ontology Learning Approaches.

This section explores the learning methods and tools used mainly to learn ontologies
from textual unstructured data. Generally, ontology learning can be regarded to some
extent as a reverse engineering process. The challenge of ontology learning from text
is to derive meaningful concepts, on the basis of the usage of certain words in the
text, and to represent them in a hierarchical organization. These approaches usually
involve applying a mixture of knowledge engineered rule-based techniques and
machine learning techniques in order to learn relations and concepts, thus enabling
concepts to be interpreted by defining their relation to other concepts in the form of

logical axioms (Cimiano, 2007).

Auhood Alfaries Page 37 of 189

Different learning approaches have been introduced over the last few years that
support ontology engineers in developing domain ontologies semi-automatically
from textual sources. To name a few, Text-to-Onto (Maedche & Volz, 2001), OntoLt
(Buitelaar, Olejnik & Sintek, 2004) and OntoLift (Volz et al., 2003) are all aimed at
extracting ontological knowledge from textual sources by applying a mixture of
knowledge extraction and text-mining techniques. These approaches can be further
classified according to the type of techniques used and in some cases a mixture of
more than one can be adopted as discussed in Section 2.6. A number of survey
papers and reviews present comparisons between OL textual-based approaches (e.g.,
Gomez & Manzano, 2004; Zhou, 2007). Each approach shows only limited success
(Pivk, Cimiano & Sure, 2005; Pivk et al., 2007), however, and they are far from
being capable of tackling all of the tasks in the OL layer cake.

2.5.2 Learning Approaches Based on Semi-structured Data

Here, semi-structured data sources are used to refer to documents that have a mixture
of text and template structure, such as tables or XML/HTML schema
(Antonacopoulos & Hu, 2004). HTML tables would be considered as semi-
structured data since they usually contain a mixture of tabular structure and text
(Jung, Kang & Kwon, 2007). Web tables have a tabular structure and an internal
hierarchical semantic layer. A number of approaches are proposed that attempt to
extract ontology knowledge from data sources that are categorized as semi-structured

documents.

Jung, Kang & Kwon, (2007) present an approach that is mainly based on mapping
different types of table schemata that are extracted from Web documents belonging
to the same domain, into a domain ontology. This approach mainly aims at
constructing domain ontologies by combining table schemata extracted from tables
belonging to a specific domain where hierarchical clustering is applied for the
construction of domain ontologies. Similar work aimed at semi-structured sources
was introduced in Pivk, Cimiano & Sure, (2005) and improved by Pivk et al. (2007).
This approach analyses the different characteristics of a table and converts the
outcome to an F-logic frame. The approach can be considered as a starting point
towards extracting ontologies from table structures. This work is limited to being

useful as a means of ontology population rather than ontology learning, however.

Auhood Alfaries Page 38 of 189

Approaches that fall under this category are all aimed at mapping the structure
(schemata) of a Web document into an ontological hierarchy/taxonomy, but neglect
the domain knowledge available as text in such sources. An approach that is targeted
at extracting knowledge from document structures as well as from knowledge
embedded in the text is therefore required. Web Service artefact sources are rich in
semi-structured sources, and if any progress is to be made in domain ontology

development for Web Services, it is vital that this area rigorously explored.
2.5.3 Learning Approaches Based on Structured Data

Structured data in this case is used to refer to data which are highly structured and
mostly generated from databases. Relational databases are considered to be an
essential component in modern Information Systems. Therefore, relational database
schemata are considered to be a significant source for ontology extraction. In these
types of data sources, data is stored based on logical schemas which provide some
conceptualization about the domain in which the given information system operates.
Ontologies have been used for mediation between different databases. These types of
approaches can be considered as mapping approaches (Li, Du & Wang, 2005), since

most of the concepts and relations would already be described in legacy systems.

An interesting method that can be adopted in an ontology learning process can be
inferred from Johannesson (1994). In this approach, a method was introduced to
extract a conceptual schema from a relational schema. Basically the challenging task
was to map concepts and relations from the relational databases conceptual level into
an ontological representation. This method can be applied to create a middle model
representation of the relational database; an example of an ontology learning
approach that applies a middle model as the method is presented by Kashyap (1999).
Another approach, introduced by Pan & Pan (2006) which is basically a framework
for the data-mining process, is based on using an ontology repository to integrate
domain knowledge. Other approaches which are aimed at OL from structured
sources by applying learning rules in order to map relational database elements into

ontological elements are presented in Li, Du & Wang (2005) and An et al. (2007).

A number of tools and approaches have been developed for this purpose, including

RDBToOnto (Cerbah, 2008) and OntoLift (Volz et al., 2003). In the latter tool the

Auhood Alfaries Page 39 of 189

lifting process tries to capture the semantics of the databases by mapping relations to
concepts and attributes to roles in the ontology model. Of note, all of the proposed
OL approaches apply learning techniques borrowed from existing information
extraction and artificial intelligence disciplines. The techniques predominantly

applied are discussed in the following section.

2.6 Overview of Ontology Learning Techniques

This section introduces commonly used techniques in ontology learning, classified
according to the disciplines from which these techniques are borrowed (Maedche &
Staab, 2004). There are a number of surveys and comparison articles on the state-of-
the-art in ontology learning (Maedche & Staab, 2001; Shamsfard & Barforoush,
2003; Gomez & Manzano, 2004; Zhou, 2007) each of which provide different
comparison criteria. A broad overview of each learning discipline is given in the

following subsections.
2.6.1 Machine Learning Techniques

Machine Learning (ML) techniques are used to automatically detect and recognize
specific patterns and regularities in example data (Cimiano, 2007), which are then
used to make predictions. ML is based on induction or generalization using sample
data, with learning typically classified as supervised and unsupervised. Supervised
learning requires manually tagged training data and is based on an understanding of
the tasks that data are applied to and a given learning paradigm. A popular
supervised classifier example is the weather example (Witten & Frank, 2002), where
training data is represented as vectors for input data and target values represent

outputs, as illustrated in the three given training sets:

(sunny,not-windy,warm)—> play outside.
(rainy,windy,cold) =>do not play outside.
(rainy,windy,warm) - play.

These training sets can then be used by the learner to infer certain rules (or mapping
functions) such as: IF temperature = warm THEN play. In contrast, unsupervised
learning does not require any training data and is mostly applied in discovering
taxonomic relationships among concepts in order to classify them into meaningful

categories (Witten & Frank, 2002). Importantly, it is this latter type of ML that is

Auhood Alfaries Page 40 of 189

commonly applied in the OL field (Cimiano, 2007). For example, clustering can be
applied in unsupervised ML and is basically aimed at grouping similar objects in the
data set. If hierarchal clustering is used then groups are organised in a hierarchal
structure. A comprehensive review of all available ML approaches and methods is

presented in Gomez & Manzano (2004).
2.6.2 Statistical Analysis

A statistical analysis model is usually represented as a network that indicates the
probabilistic dependencies between terms (Zhou, 2007). Generally, the statistical
information computed from observed frequencies of the term within a corpus is used
to detect new concepts and relations relevant to the domain represented in the
underlying corpus. A technique used here is frequency analysis of word repetition.
Other methods include: (a) Naive Bayes (Sanderson & Croft, 1999) which is used for
learning classifications; and (b) statistical hypotheses testing, which is used for

testing whether or not two concepts occur more frequently together (Cimiano, 2007).
2.6.3 Linguistic Techniques

Natural Language Processing (NLP) techniques are typically applied as a pre-
processing step in any OL system, in which textual input data is semantically
analysed and transformed into tagged output using a sequence of pipelined steps.
Popular techniques applied for the pre-processing step include tokenization, part of
speech tagging, stemming and lemmatization (Buitelaar, Cimiano & Magnini, 2007).
Tokenization, for example, is used to identify words and sentences within texts.
Typically, with unstructured text this activity involves using obvious word separators
including spaces, full stops and commas to split sentences into tokens. Part of speech
tagging implies differentiating syntactic categories such as nouns, verbs and adverbs
that lead on to semantic analysis. In broad terms, these syntactic techniques are able
to identify different ontological elements, with proper nouns, for example, being
used to identify instances. The pre-processing step is essential for all OL approaches,
especially if the source data is a textual document (Maedche & Staab, 2001). A
number of the learning approaches apply linguistic techniques have been previously
discussed, which are summarized and compared in Gomez & Manzano (2004), Zhou

(2007) and Cimiano (2007).

Auhood Alfaries Page 41 of 189

2.6.4 Rule-based Techniques

Rule-based techniques typically involve matching predefined rules or heuristic
patterns in order to extract relative ontological elements, mostly terms and relations.
In the OL application area these techniques usually rely on knowledge engineers to
identify lexical patterns and hand-crafted rules as applied in Text-To-Onto (Maedche
& Volz, 2001). Rule-based techniques are widely applied as pattern-based matching
information extraction methods. These methods are widely used for the extraction
and transformation of concepts and relations from unstructured sources (Buitelaar &

Cimiano, 2008; Cimiano, 2007; Borislav et al., 2004).

Lexico-syntactic patterns as introduced by Hearst (1992), are often applied in
relation extraction from textual sources, e.g. finding semantic relations between noun
phrases in the text can be achieved by finding matches to lexico-syntactic patterns in

the form of regular expressions as in the following pattern:

NPy such as ..{NP;,NP,.. (and|or) }..NP,

Here, a noun phrase (NP) is identified as a hyponym within a corpus — one example
being animal and horse. Hearst’s (1992) work aims at identifying patterns leading to
hyponymy relation extraction. Examples of how this work has been extended and
applied include: First, identifying patterns that target taxonomic knowledge
(Iwanska, Mata & Kruger, 2000). Second, extracting part-of relations (Berland &
Charniak, 1999). Third, investigating texts surrounding images (Ahmad et al., 2003).

Lexical syntactic pattern identification has been widely reported (Buitelaar &
Cimiano, 2008; Cimiano, 2007; Borislav et al., 2004; Giovannetti, Marchi &
Montemagni, 2008), including syntactic patterns in OL from specific Web Service
domains. Such patterns are applied extensively in OL from unstructured sources of
Web Services as proposed by Sabou (2005). The rule-based techniques are widely
applied in information extraction providing accurate and promising results leading to
increased precision (Cimiano, 2007; Buitelaar & Cimiano, 2008; Giovannetti,
Marchi & Montemagni, 2008). These pattern-based techniques are classified as

knowledge engineering approaches requiring domain engineers to analyse the textual

Auhood Alfaries Page 42 of 189

sources to identify patterns and engineer transformation rules, in which the difficulty

remains in finding the patterns that frequently and unfailingly denote the relation.

Unsurprisingly, there is often a significant overlap between these disciplines in
practice. For example, statistical techniques are combined with machine learning and
classified as such in some literature (Cimiano, 2007). Linguistic-based methods are
commonly applied with statistical approaches to calculate the relevance of the
concept to the given domain, these methods include techniques based on linguistic
patterns, pattern-based extraction, methods that measures the semantic relativeness
between terms within a domain, etc. (Gomez & Manzano, 2004; Cimiano, 2007;
Zhou, 2007). In some approaches a combination of all three types are applied. Text-
To-Onto (Maedche & Volz, 2001) and OntoLearn (Navigli & Velardi, 2004), for
example, use statistical techniques applied with machine learning algorithms. Other
approaches combine linguistic analyses methods and machine learning algorithms,
including OntoLt (Buitelaar, Olejnik & Sintek, 2004) and ASIUM (Gacitua &
Sawyer, 2008).

One important point of note, however, is that it is clear that most comparative
surveys compare text-based approaches and that there is little work focusing on
comparing learning from unstructured sources versus learning from structured
sources. Web Service sources resemble a specific domain in which an effective OL
approach needs to be tailored to cater for the specific nature of these sources. This
tailoring involves applying a combination of techniques, including a pre-processing
step to produce syntactically analysed data, followed by the application of an
efficient combination of ML and statistical techniques that are applicable in the Web
Service domain. Determining a suitable OL technique applicable on the Semantic

Web Service sources is discussed in the next section.

2.7 Related Work / Ontology Learning for Web Services

Very little work exists that aims at ontology learning from Web Service sources.
Work found on OL from Web Service sources can be classified in two forms; the
first is one that investigates structural aspects of structured sources. The second form

is work that is aimed at learning from textual sources of Web Services. It is clear that

Auhood Alfaries Page 43 of 189

most of the OL approaches are based on the general OL framework presented by

Maedche & Staab (2001).

In light of this, the approach introduced by Sabou et al. (2005) applies NLP to textual
description, and therefore learns Web Service ontologies from textual descriptions
attached to implementation files (i.e., Javadoc). Noun phrases and service
functionality are learnt from verbs by applying a prepossessing pipeline on textual
descriptions of Web Services. Linguistic techniques are then applied in order to
extract syntactic patterns and apply dependency parsing. The limitation of this work
is that it is confined to Javadoc files, which are not a common means of description
in Web Services (Guo et al., 2007). The focus on extracting concepts and service
functionality from textual description only, whilst ignoring the structural aspect of
the Javadoc file, can be improved and extended by considering other Web Service

sources, such as structured sources as in WSDL and XSD documents.

On the other hand, using the structural aspect of Web Service sources that maps
WSDL schema onto ontologies are attempted in some approaches, such as the
method proposed by ASIUM (Faure & Nédellec, 1998); nevertheless, the relation
extraction is restricted to learning taxonomic relations from the WSDL structure
only. This can limit the learning to service functionality rather than the domain
specific non-taxonomic relations. These relations implicitly exist in the method
names or input/output parameter names in WSDL and XSD files. This area still

needs to be explored and is mainly addressed by this research.

Capturing the relationships between WSDL elements and transforming them into
ontological concepts and relationships, by looking only at simple pattern detection, is
shallowly attempted in Guo et al. (2007), where a limited number of simple
transformation rules are applied only on the source WSDL documents. Although
WSDL documents provide important application level service descriptions, they
alone are not sufficient for OL as: (a) They provide technical descriptions only; and
(b), in many cases Web Services use XSD files to provide data type definitions. The
need to include other Web Service resources in the OL process is therefore an
important one that has not yet been achieved. Most work of this nature is aimed at

Web Service matching rather than the domain ontology learning itself.

Auhood Alfaries Page 44 of 189

Other reported work that attempts to combine different input sources to learn domain
ontology i1s Latino (Bontcheva & Sabou, 2006). The method applied in Latino is
based on creating a document network ontology where concepts are learned from
classes in Java code. This work is potentially useful as a conceptual search in a
search engine like Google. The method does not apply any pattern-based knowledge

extraction to extract text in semi-structured sources.

Given the aim of automatically learning ontologies from Web Services, this review

illustrates two main points:

» There is a need to clarify and address the demands on OL in light of the mix of

(semi-) structured elements that typically accompany Web Services.

= There is a need to investigate the appropriate mix(es) of OL techniques in

meeting those demands.

Both points are illustrated in Figure 2-3 — highlighting a need to identify techniques
for effectively combining a range of Web Service software artefacts with appropriate

OL methods.

Source Documents

SOAP Software Docum- L
lessages Models entation

Pre-processing

4L

Ontology Learning

4 L

D

Figure 2-3: Ontology Leaning from Web Service Source Artefacts

Auhood Alfaries Page 45 of 189

The choice of an ontology learning strategy, whether it is bottom-up or top down,
can be identified based on the data sources and domain (Zhou, 2007). Web Service
sources are diverse in a number of areas, containing both structured and unstructured
data and generating both static and dynamic sources. WSDL and XSD files are
examples of static data sources, with WSDL files providing a usable source of
service interface information, including inputs, output and basic service
functionality. SOAP messages, dynamically generated by Web Services and client
applications in use, contain instances of server requests issued by clients and
instances of service responses issued by service providers. Messages are created
when a service is invoked and are an example of a dynamic source. Extending the
work by Guo et al. (2007) to include XSD schema and SOAP messages may offer a
number of interesting opportunities — revealing additional concepts and relations
through more complex transformation rules. For example, WSDL structures may be
transformed into ontological relationships, elements are analysed so that the
“message : parts” relationship is transformed into “has property”. Applying similar,
but more extensive, transformation rules to XSD and SOAP may result in more
effective methods. Possible opportunities include: (1) domain specific rules, (2)
advanced source document pre-processing heuristics and (3) source document
bootstrapping approaches. WSDL files alone are typically limited to only providing a

technical description of the underlying service.

Support for a variation in Web Service style is also appropriate. When interpreting
document style Web Services, a major part of the service description is found within
the referenced XSD schema (Curbera et al., 2002). Interpreting the underlying
schema in unison with other Web Service artefacts would result in a considerable
increase in the number of identified concepts (when compared to interpreting WSDL
in isolation). Moving beyond the service description and exploring dynamic SOAP
analysis allows executing services to be interpreted and opens further avenues for
ontology learning. Service invocation and messaging, via SOAP messages, provides
related instance data for each service description. It is this instance data that has the
potential to provide opportunities for revealing additional relations, axioms and

patterns (Daga et al., 2005).

Auhood Alfaries Page 46 of 189

Current OL approaches are in the most part general, and need to be specialised to
cater for both the technology of the Web Service domain and the business domain in
which these services operate. Identifying efficient learning techniques that are
applicable in the Web Service domain is a challenging task. Learning techniques
from different paradigms need to be combined and tested on varied sources in order
to identify effective multidisciplinary techniques aimed at ontology learning from
Web Service artefacts. A number of research questions arise and can be categorized
according to Web Service source documents, pre-processing requirements and
Ontology learning techniques. In order for any progress to be made in achieving the
SWS, domain ontologies need to adopt and evolve with legacy systems, dealing with

current Web Services standards.

2.8 Summary

The literature has illustrated the need for Semantic Web Services, indicating the
realization of the importance of Web Services and its capability of reaching its full
potential through the SWS. Understanding the varieties of Web Service sources and
analysing the role of OL in the Semantic Web have provided a deeper understanding
of the need to apply OL on Web Services in order to advance the SWS uptake. The
literature review classified OL techniques and approaches and identified applicability
on different data sources. It is clearly confirmed in the literature that ontology
development is a costly and time consuming process, requiring the services of highly
qualified expertise both in ontology engineering and the domain of interest. A wide
spread adoption of ontology development can be very difficult to achieve. Ontology
learning can assist in this direction by introducing some sort of semi-automatic
knowledge extraction that can be used by ontology engineers for speeding up the
process of ontology construction (Davies, Studer & Warren, 2006). Web Service
artefacts form a vital source of domain knowledge. For progress to be made in the
SWS, it is fundamental to rigorously explore OL from these sources. Since most of
the research is carried out on ontology learning from text, there has been less work
completed on mixing techniques and developing ontology learning methods for
combining Web Service data sources. Consequently, combining OL techniques and
approaches that deals with the differing characteristics of these Web Service sources

remains an open research area.

Auhood Alfaries Page 47 of 189

CHAPTER 3 — DESIGN RESEARCH METHODOLOGY

3.1 Introduction

In any given discipline the research community agrees upon the set of systematic
activities considered suitable to the production and validation of knowledge. In a
multidisciplinary paradigm like Information Systems there exist a number of
research methods. These methods differ in fundamental ways, among them the
phases employed, techniques, philosophical aims and structure of those phases. This
chapter investigates and presents Design Research as the chosen methodology to
execute this research, detailing the phases, techniques and philosophical background
behind Design Research. Design Research employs a set of techniques to implement
research in Information Systems. Normally this entails analysing the use and
potential of the designed artefact. Discussing Design Research as a valid and
legitimate IS research demonstrates the justification behind choosing Design

Research as the framework that guides the research execution.

In this chapter, Section 3.2 introduces the background to Design Research with
reasoning behind the validity of design as a research method. Design Research in
general as a methodology for Information systems research is described in Section
3.3, giving a broad review of major Design Research frameworks in IS and detailing
the main strategy in those frameworks. Section 3.4 presents Design Research
evaluation criteria associated with Design Research artefacts and typical evaluation
methods. While Section 3.5 presents the design plan for this thesis and explains how
Design Research is applied for the execution of the research, Section 3.6 introduces
the research evaluation giving a general background of OL evaluation. Section 3.7
illustrates the three Design Research iterations for the thesis, and finally, section 3.8

summarizes the chapter.

3.2 Design Research Background

Information Systems design is defined as “the purposeful organization of resources
to accomplish a goal”, (Hevner et al., 2004). It is important to discuss how design

can be incorporated as a research method. Hevner et al. (2004) categorize research as

Auhood Alfaries Page 48 of 189

an innovative way of solving a problem, where Edelson (2002) and Winter (2008)
distinguish Design Research by the generality of the proposed solution in a sense that

it can be applied to a wider class of situations therefore leading to design science.

Simon (1996) makes a valid differentiation between behavioural science and design
science, in unfolding the science of the artificial, Simon introduced the notion of an
artefact, viewed as a link between the inner and outer environment in the search for a
solution that fulfils the desired goal in the search for a satisfactory design rather than
an optimal one. Design is a learning process through which the underlying artefact

development process is observed differently and learned from.

Design Research as presented by March & Smith (1995) marked a new research era
where it enabled research to achieve both relevance and effectiveness by combining
research output (product) and research processing (activities) from behavioural and
design science in a two-dimensional framework, as presented in Figure 3-1. The four
research activities drawn from design science and natural science are Build,
Evaluate, Justify and Theorize. These four processes are applied in IT research to
produce different types of artefacts; constructs, models, methods and instantiations,
and these artefacts are employed to ensure the utility and efficiency of the produced
Information System. Design Research achieves an optimal solution to the design

problem in an iterative knowledge refinement manner.

Research Activities

Build Evaluate Theorize Justify

Constructs

w

=

2.

=1 Model
o
<=

= Methods
5]

w

L

a4

Instantiation

Figure 3-1: A Research Framework (March & Smith 1995)

Categorising design artefacts using March and Smith’s (1995) research outputs

classification can help in identifying an appropriate procedure to build, evaluate,

Auhood Alfaries Page 49 of 189

theorize and justify the research. The four types of research artefacts are described

below.

* Constructs: Constructs are sets of concepts or vocabulary that form specialized
knowledge within a domain; they are used to define problems and solutions

(Hevner et al., 2004).

* Models: Models use constructs to describe a real world situation of the design
problem and its solution space (Hevner et al., 2004); models can be used to

express relationships between constructs (March & Smith, 1995).

* Methods: Methods are a set of steps that defines the solution space. They
provide guidance on how to solve problems using the constructs and the models.
Methods can be thought of as methodological tools that are created by design
science and applied by natural scientist (March & Smith, 1995).

* Instantiation: Instantiations are the implementation of constructs, models or
methods within a working system. They prove the feasibility and effectiveness of
the models, methods and constructs allowing actual evaluation (March & Smith,
1995). Instantiation plays an important role in enabling researchers to learn about
the working artefact in a real world scenario. As Newell & Simon (1976) explain,
the significance of instantiations is providing a better understanding of the

problem domain and consequently to offer better solutions.

According to Owen (1998) and Takeda, Veerkamp & Yoshikawa (1990), knowledge
can be generated and accumulated through a process that iterates through knowledge
using and knowledge building activities. Consequently, design is considered as a
process, and the steps involved in the design process are clearly identified by
Vaishnavi & Kuechler (2004). Design can be employed as a research that generates
knowledge. A number of research attempts to link theories and design to justify
Design as a research approach leading to theories (Brown, 1992; Kelly & Lesh,
2000) while others attempt to put emphasis on the learning aspect of Design
Research and identify types of learning that can evolve when a researcher emerges in

the design process as demonstrated by Edelson (2002).

Auhood Alfaries Page 50 of 189

A general Design Research methodology that incorporates five phases of design and
motivates an iterative design cycle in which learning is a key attribute is proposed by
Vaishnavi & Kuechler (2004) adopted from Takeda, Veerkamp & Yoshikawa
(1990). Problem awareness in this method is the initial step in Design Research,
followed by a suggestion, producing a proposal and a tentative design. The third step
is artefact development that may result in learning and improvement being fed back
through circumscription into the first step. The fourth and most important step is the
evaluation of an artefact, in which performance measures from the knowledge base
could be applied to test the utility of the artefact in the problem domain. The fifth
step is the conclusion, which involves highlighting the results of the Design Research
adding knowledge to the solution space or feeding back to consequent cycles.
Nunamaker, Chen & Purdin, (1990) agree that system development (artefact
construction) is considered as a research methodology that can lead to an improved,
and more effective design when applied in conjunction with other research

methodologies, whilst at the same time making a rigour contribution to knowledge.

In accordance with utility and truth as two important aims of Design Research and
behavioural science respectively, Design Research is proposed by March & Smith
(1995) and Hevner et al. (2004) as a research framework where IT research can occur
by integrating two complementary disciplines. The first of these is behavioural
science where research is more focused on theorize and justify, and the second is
design science research, where the research is more focused on the build and

evaluate process.

3.3 Design as an IS Research methodology

Design Research frameworks attempt to provide the IS community with a Design
Research methodology (Hevner et al., 2004; Nunamaker, Chen & Purdin, 1990/91;
March & Smith, 1995). In those attempts, a common process is an iterative design
cycle employed as a problem solving process where a valid IS research is achieved
through the building and evaluation of purposefully designed artefacts. Importantly,
research in Information Systems (IS) is not any different from any other research.
where Blake (1978) defined research as “...systematic, intensive study directed
toward fuller scientific knowledge of the subject studied”. IS Research is considered

a multi-inter-related disciplinary field, made up of social and natural sciences

Auhood Alfaries Page 51 of 189

management and engineering, bound by an overlap in methods of research, in which
continued improvement is necessary to meet the complicated dual nature of the IS

field (Nunamaker, Chen & Purdin, 1990/91; Purao, 2002).

A typical research in Information Technology is one that is commonly categorized as
one of two types; the first being a knowledge using action where research is aimed at
improving IT performance, whilst the second type is a knowledge producing action
where the research is aimed at understanding the nature of IT (March & Smith,
1995). In both cases IS research takes place as a juncture connecting people,

organizations and technology, therefore, IS definitely incorporates IT research.

Simon (1996) made a clear distinction between natural science and science of the
artificial (design science), where the first is concerned with naturally occurring
phenomenon whilst the second relates to artificial human made artefacts. With this
distinction being made clear, it has led the IS community to realize and justify the
need for design as a research discipline that combines the two (Hevner et al., 2004;
Edelson, 2002; Winter, 2008; Nunamaker, Chen & Purdin, 1990/91; March & Smith,
1995).

Design Research (Design Research) as an Information Systems valid research
methodology, is formulated by integrating two complementing disciplines (design
and behavioural science), in a way that provides the means by which an IS researcher
engages in designing an artefact, hence the design science aspect, while at the same
time learning is emphasized during the development process, therefore, the
implication of utility on people and organization, and hence the behavioural science
aspect (Hevner et al., 2004). In design science research, truth and utility are
considered to be vital elements, gained through an implicit cycle between design
science and behavioural science, where truth is provided by IS theories and utility is
provided by IS artefacts (Hevner et al., 2004). The design cycle is executed in an
iterative incremental process that can be initiated by simple conceptualization
providing the necessary learning that feeds into consequent iterations, where the final
iteration results in an improved product that satisfies the problem requirements and
constraints. An earlier Design Research framework presented by Nunamaker, Chen

& Purdin (1990/91) that connects aspects of design and design science. In their

Auhood Alfaries Page 52 of 189

framework, Nunamaker, Chen and Purdin (1990/91) assign system development a
central role in the research life cycle, again showing an integrated approach that
includes design science as a core component in an Information Systems
methodological research framework. The process for conducting the research is left

for the researcher to infer

Hevner et al. (2004) on the other hand propose a descriptive Design Research
framework as illustrated in Figure 3-2 that satisfies both natural science and design
science. Research rigour can be achieved by effectively applying knowledge
(theories) from the knowledge base to develop and build an IS artefact, while
relevance can be accomplished by assessing whether the artefact satisfies business
needs. The justify-evaluate process is used to assess the artefact applicability in the

appropriate environment.

Environment |Relevance IS Research Rigor |Knowledge Base
People Foundations
*Roles Develop/Build *Theories
-Capabilitigs . *Theories *Frameworks
*Characteristics *Artifacts *Instruments

: : *Constructs
Organizations Business Applicable Models
+Strategies Needs Knowledge | .\ethods

*Structure & Culture Assess Refine *Instantiations
*Processes

Methodologies
Technology Justify/Evaluate «Data Analysis
*Infrastructure *Analytical Techniques
+Applications +Case Study *Formalisms
*Communications *Experimental *Measures
Architecture *Field Study +Validation Criteria
*Development *Simulation
Capabilities

Application in the Additions to the
Appropriate Environment Knowledge Base

Figure 3-2: IS Research Framework (Hevner et al., 2004)

In Hevner et al. (2004) a concise IS research framework is presented and used to
induce Design Research methodological guidelines that can be followed to identify,
execute and evaluate IS research. Build and evaluate are considered to be an iterative

process through which both method and product are carefully assessed by the

Auhood Alfaries Page 53 of 189

researcher and used to assess and refine the developed product. This evaluate process
typically applies measures from the knowledge base to assess the utility, efficacy and
quality of the designed artefact. Hevner et al. (2004) proposes a set of evaluation
methods that can be used to evaluate the designed artefact discussed in the next

section.

3.4 Design Research Evaluation

Evaluating a Design Research artefact is a vital phase; its importance resides in the
need to determine artefact performance and measure progress according to well-
defined metrics (March & Smith, 1995). Assessing the progress made in the problem
space when the artefact is built to perform a specific task demonstrates its utility, and
therefore, validates the research. On the other hand, evaluation plays a fundamental
role on iterative research (design science) where knowledge generated from the
evaluation phase can be fed back into consequent iterations. Hence, developing
appropriate evaluation metrics to assess artefact performance for proving the
evaluation criteria (March & Smith, 1995) is critical. Here an evaluation criteria of
the so called quality attribute is identified based on artefact type as proposed by
March & Smith (1995), and is summarized in Table 3-1. Generally, evaluation is
concerned with answering the important question “How well does the artefact
work?” (March & Smith, 1995). This can be answered by applying a suitable
evaluation metric or measure from the knowledge base, thereby proving the
appropriate evaluation criteria. For example, a search algorithm instantiation in the
information extraction field can be evaluated by a mathematical metric such as
precision and recall (Hevner et al., 2004). Therefore, these metrics can be used to

prove the efficiency and effectiveness of the algorithm.

Auhood Alfaries Page 54 of 189

Table 3-1: Summarized Evaluation Criteria with Artefact Types (Hevner et al.,
2004)

Artefact Type Evaluation Criteria

Constructs Completeness, simplicity, elegance, understandability and ease of
use.
Model Fidelity with real world phenomena, completeness, level of detall,

robustness and internal consistency.

Method Operationality (ability of others to efficiently use the method),
efficiency, generality and ease of use.

Instantiations Efficiency, effectiveness and impact on an environment and its
users.

Once the evaluation metrics and criteria are identified an empirical work is applied
(March & Smith, 1995), where an evaluation method is chosen appropriately. Hevner
et al. (2004) emphasize that the selection of the evaluation method should be
carefully considered, and when matched with the suitable artefact and evaluation
metric evaluation methodologies are typically withdrawn from the knowledge base.
An inclusive set of evaluation methodologies is summarized in Table 3-2, adopted
from Hevner et al. (2004). The classifications represent the most common evaluation
methods from which a suitable method/s can be applied based on the type of artefact

and the evaluation metrics used.

Auhood Alfaries Page 55 of 189

Table 3-2: Design Evaluation Methods (Hevner et al., 2004)

Design Research Evaluation Method Types and their Description

1. Observational Case Study: Study artefact in depth in business environment.

Field Study: Monitor use of artefact in multiple projects.

2. Analytical Static Analysis: Examine structure of artefact for static qualities
(e.g., complexity).

Architecture Analysis: Study fit of artefact into technical IS
architecture.

Optimization: Demonstrate inherent optimal properties of artefact
or provide optimality bounds on artefact behaviour.

Dynamic Analysis: Study artefact in use for dynamic qualities
(e.g., performance).

3. Experimental Controlled Experiment: Study artefact in controlled environment
for qualities (e.g., usability).

Simulation: Execute artefact with artificial data.

4. Testing Functional (Black Box) Testing: Execute artefact interfaces to
discover failures and identify defects.

Structural (White Box) Testing: Perform coverage testing of some
metric (e.g., execution paths) in the artefact implementation.

5. Descriptive Informed Argument: Use information from the knowledge base
(e.g., relevant research) to build a convincing argument for the
artefact’s utility.

Scenarios: Construct detailed scenarios around the artefact to
demonstrate its utility.

3.5 Applying Design Research

The research contribution is the development of a methodological ontology learning
framework for SWS and a tool resulting from instantiating the framework. To meet
the research aim, Design Research is adopted from Vaishnavi & Kuechler (2004) as
an overall research methodology. March & Smith’s (1995) research products
classification is adopted to illustrate the research output. Research products are
identified in the form of constructs, models, methods and instantiations. The Design
Research methodology employed for developing the research artefacts is an iterative
design cycle (build and evaluate). In design science build is concerned with the
development of the artefact, and evaluation is concerned with the development of an
assessment method or metric to assess the quality and effectiveness of the artefact in

its context (March & Smith, 1995). The main design artefact is a methodological

Auhood Alfaries Page 56 of 189

ontology learning framework, an iterative process involving the five design process
steps; awareness, suggestion, development, evaluation and conclusion, as elaborated

upon in Figure 3-3.

Knowledge Process Logical
Flows Steps Formalism
Awarness of
. Problem
Suggestion > Abduction

Circumscription

[Development

> Deduction

— Evaluation
Operation and
Goal Knowledge
| I

Conclusion

Figure 3-3: Steps of Design Research (Vashnavi & Kuhler, 2004)

An Awareness of the problem was achieved in Chapter 2. This involves reviewing
the literature and analysing existing ontology learning techniques, in addition to
recognising the importance of faster ontology development for SWS. It also
incorporates finding suitable ontology learning techniques appropriate for developing
an ontology learning framework (as detailed in Chapter 2), by comparing existing

OL approaches and highlighting weaknesses.

Suggestion involves introducing a tentative idea of how the problem might be solved
by signifying appropriate learning techniques (Alfaries, Bell & Lycett, 2009). This
step forms Iteration 1, which develops an appropriate service term and concept
extraction method, and then new suggestions arise for relation extraction in
consequent iterations. As new knowledge is gained during development and
evaluation of the developed method, new suggestions from the build and evaluate

cycles are used to initiate subsequent iterations.

Auhood Alfaries Page 57 of 189

Development is carried out by building the research artefact as an ontology learning
framework (SOLF). The framework consists of phases and steps that adopt the
relevant machine learning and NLP techniques. SOLF is aimed to automate domain
knowledge extraction from Web Services and the building of a domain specific
ontology. SOLF is subsequently automated by creating an instantiation as an

ontology learning tool.

Evaluation is carried out through an evaluation strategy that measures the
effectiveness of the research based on the significant performance improvement of
the developed framework over existing ontology learning methods and approaches.
An evaluation of the automatically learned domain ontology against manually
produced gold standard ontology in order to illustrate the effectiveness of the method
is performed. Evaluation is carried out using Design Research evaluation criteria to
examine the efficiency and generality of the framework. Automating the process of
applying the method (SOLF) on a realistic Web Service scenario taken from the
financial domain, resulted in the development of a tool that served as an instantiation
of SOLF. Evaluating the efficiency and effectiveness of the tool developed as an
instantiation of SOLF is also performed. This tool is used to validate SOLF in an
experimental evaluation over different set of Web Services and gold standard in

iteration three.

Conclusion is where the research output is summarized and the results of the
evaluation are identified and future improvement is highlighted towards improving

ontology learning from Web Services.

3.6 Research Evaluation

Two common evaluation metrics for Design Research are novelty and effectiveness
(Edelson, 2002). The novelty of this work lies in developing a new framework
model, designed to extract ontological knowledge from Web Service artefacts and
bring Web Services to their full potential. In evaluating the novelty and effectiveness
of the research, Design Research artefacts will need to be formally evaluated to
determine whether progress have been made in the ontology development process

within the Web Service domain.

Auhood Alfaries Page 58 of 189

The effectiveness of this framework is in reducing the cost and time of the ontology
development process. When the research objective is to achieve intelligent
behaviour, instantiations are used to illustrate the effectiveness and provide a live
proof of the proposed method (SOLF in this research). It is the means by which
deficiencies and improvements are identified (March & Smith, 1995). Determining
whether progress is made in the OL requires applying the appropriate metrics from
the knowledge base. Due to the fact that OL is a new machine learning application
domain, as yet there is no optimal evaluation framework for ontology learning
approaches (Dellschaft & Staab, 2008). Typically, OL evaluation methods can be
classified according to the different scenarios into two main evaluating methods
[ibid]. Those methods are mainly aimed at evaluating structural and functional
aspects of an OL method. The evaluation methods can primarily be classified in two
main types: (1) quality assurance during ontology engineering, which can be further
classified into task-based, corpus-based or criteria-based evaluation approaches as
depicted in Figure 3-4, and (2) comparing OL algorithms which can be either manual

evaluation by a domain expert or Gold Standard-based evaluation.

OL Evaluation
1.Structural
2.Functional

Comparing OL Algorithms Quality Assurance During
Ontology Engineering

l—'ﬁ [lI 1

Gold Standard Manual Eval. Task-based Corpus-based Criteria-based
0 (Human Expert) Approaches Approaches Approaches
J
||
|

[1

. Taxonomic Non Taxonomic
‘ Lexical Layer } Layer ‘ Relations
J

l—%

‘Local MeasuresJ {Global Measures

Figure 3-4: Taxonomy of OL Evaluation Approaches

Auhood Alfaries Page 59 of 189

Evaluation approaches can be further subcategorized according to the measure used
and what they intend to measure in terms of the functional and structural aspects as
summarised in Table 3-3. Generally speaking, precision and recall are the end
metrics used when evaluating OL approaches either by gold standard or manual
evaluation by domain expert. Here the evaluation is performed over a subset of real
world commercial services. The qualitative measures are borrowed from the
information extraction field, applied here to measure the accuracy and precision of

automatically extracted information in comparison with manual extraction.

Auhood Alfaries Page 60 of 189

Table 3-3: Comparison of OL Evaluation Methods

Evaluation by
Human Experts.

extracted information is
correct.

more human experts to
mark correct terms (i. e. the
precision is measured)

Method/ Purpose/ Description & Pros. Cons.
Scenarios Evaluation Purpose
criteria
A. Quality Consistent, Structural and Whether it improves the
Assurance Complete, Functional dimension | task the ontology is
During Ontology : : : engineered to cater for.
Engineering Concise and of ontologies and their
Expandable. usability profile.
A.1. Task-based Functional dimension. | Information Retrieval Improving results in | No specmc measures
Approaches metrics. task-based defined.
Because every task-based | evaluation is most
evaluation is individual, no Jimportant goal.
finite set of well-suited
measures can be defined.
A.2. Corpus- Coverage of domain. Compare ont. With textual | Use of natural Can't be used, if learning
based content corpus representing | language algorithm is similar (based
Approaches domain using IE & OLTs. techniques to on NLP or rule based).
extract list of term
then compare it
with ontology.
A.3. Criteria- Measures how far ont. Can be fully
based adheres to a certain 1. Average depth of paths automatic
Approaches criteria; By measuring: | from root to leaf nodes. evaluation.
1.Structure.
2.More sophisticated 2. Define measures Can be
measures (e.g. sophisticated
philosophical taxonomy) partially automatic
e.g. OntoClean.
B. Compare OL | Measures Structural and Precision and recall used to | Can be used to Depending on the scenario.
Algorithm quality of OL Functional aspects. By |measure the coverage and |improve a Learning Ji.e. B.1 or B.2 (see below)
algorithm. comparing input with accuracy for both cases (1 JAlgorithm.
output By: &2)
1. Domain expert.
2. Gold standard.
[B.1. Manual Judges how far the Ont. is presented to one or Subjective to human expert.

Impossible to measure
recall.

1. Lexical layer.

2.Term recall (Lexi. Recall)
and Fmeasure

2.Taxonomic layer

1.Local measures
(compares the similarity of
the positions of two
concepts in the learned and
the reference hierarchy-
taxonomic precision and
recall).

2.Global measures (by
averaging the results of the
local measure for concept
pairs from the reference and
the learned ontology).

3. Non taxonomic
relations

Local and Global
Measures.

standard created
only once and used
thereafter.

[B.2. Gold Compare onto. With 1.Term precision (Lexical Can be used to Where to get or how to
Standard based idealized previously precision), directly measure create such a gold
approaches. created gold standard; prec. & recall. Gold]standard? Again

subjective to Human expert.
Can be expensive if more
experts involved.

To ensure less subjectivity-
more than one domain
expert should be involved in
the design of the Gold
Standard.

The evaluation framework for this research is a combined method of experimental
and testing simulation using real data, in which SOLF is tested on real data (Web
Services) and a detailed scenario is constructed to formulate the evaluation of the
output ontological model. Qualitative evaluation measures such as precision and
recall are applied to evaluate the model using gold standard-based evaluation and
domain expert manual evaluation. Recall is used to measure the number of correctly

identified concepts by the system as follows:

Auhood Alfaries Page 61 of 189

correctlyExtractedConcepts

recall =
totalAvailableConcepts

For example, if 10 concepts are identified manually in the corpus and the system has
automatically identified 7 of these 10 then 70% would be the recall figure. An ideal
scenario for recall calculation is to either use a gold standard ontology (existing
ontology) or use a domain expert to extract concepts and relations manually from the
input sources upfront (pre-create an ontology). Evaluation using gold standard and
automatically produced ontology can be misleading however. Typically, an exact
match is employed to compare and produce the results as a binary decision of
correctness. When attempting a complex business area (such as that found in global
banking) it is not possible to deploy a domain expert on all input sources. This is due
in part to the size of the input sources and variation in these domains. It is feasible,
however, to utilize domain expert knowledge to evaluate concepts and relations
produced by SOLF. Therefore, a hybrid approach has been adopted in order to better
account for the domain complexity and availability of evaluative artefacts. The
domain expert participates in evaluating the extracted concepts and relations,
combined with a similarity-based evaluation for calculating the recall metric between
Reference (manually extracted concepts) and Response (the output of SOLF); the
reference ontology is one produced manually for the same Web Services by previous

work.

Precision is used to measure the accuracy of the obtained concepts as:

.. correctlyExtractedConcepts
precision = where the number of correctly extracted
totalExtractedConcepts

concept is divided by the total number of automatically extracted concepts by the
learning algorithm. For example, if SOLF found a total of 10 concepts, 8 of which
are correct then the precision is 8/10 = 80%. Precision is calculated here with the aid

of a domain expert in order to evaluate the learned relations more directly.

3.7 Research Design Iterations

Design Research is performed through iterative design cycles, which can be

improvement iterations or improvement and incremental iterations (Hevner et al.,

Auhood Alfaries Page 62 of 189

2004). This research is implemented as iterative incremental iterations where each

iteration (see below) is used to extend and refine the design problem (SOLF).

1. Develops the core ontology learning framework. Ontology is automatically
learned as a set of domain specific concepts, automatically extracted from
Web Service sources.

2. The second iteration refines the framework and extends it by developing
techniques to automatically extract ontological relations between the
extracted concepts.

3. Finally, the third iteration refines the SOLF by generalizing and validating the
developed structure interpretation patterns (SIP) and transformation rules
(TR).

Three design iterations are used to deliver the final artefact as illustrated in Figure

3-5. In each iteration the artefact refinement process is formed as a mini Design

Research cycle of build and evaluate, following Vashnavi & Kuhler’s (2004)

design cycle steps.

Artefact
Quality &

Iteration 3

Validate &
Improve
SOLF

Build
Evaluate

Iteration 2

Extend SOLF
By Relation
Extraction

Evaluate

Iteration 1

Core OL
Framework
Development

Evaluate

Time
Line

Figure 3-5: Research Iterations

Interestingly, Design Research motivates knowledge generation as part of the design

problem, here new awareness is generated and suggestions are made during the build

Auhood Alfaries Page 63 of 189

and evaluate cycle. The learning outcome for each iteration is used to refine the

explanatory hypothesis and feeds back into subsequent iterations.

The main Design Research outcome is the development of a methodological
framework (SOLF), where framework is defined in the Oxford dictionary as “a basic
structure underlying a system, concept, or text: the theoretical framework of political
sociology”. Methodology is defined by Checkland (1981) as “a set of principles of
method, which in any particular situation has to be reduced to a method uniquely
suited to that particular situation”. SOLF incorporates aspects of both a methodology

and a framework.

Iteration 1:

This iteration aims at analysing, understanding and testing the applicability of
existing ontology learning techniques, more specifically textual-based information
extraction techniques on Web Service semi-structured sources. This is achieved by
comparing and testing similar approaches on Web Service artefacts (WSDL and
XSD documents). The output of this iteration is a set of constructs that identify the
appropriate OL techniques. An initial Service Ontology Learning Framework
(SOLF) consisting of a Service Term Extraction (STE) phase and an ontology
building method. A prototype application is created as an instantiation of SOLF. The
method is evaluated for its operationality, efficiency, generality and ease of use, by
applying it using the instantiated application on a real set of financial Web Services.
A domain ontology model is produced as an output artefact from this iteration
consisting of a set of domain concepts. The learned ontology model is evaluated for
fidelity, completeness and level of detail by using an evaluation framework that

compares the produced ontology model with models from other approaches.

Iteration 2:

This iteration aims at applying the learning from the first Iteration to improve and
extend the developed SOLF. The SOLF improvement includes extending the concept
pattern extraction to relation extraction. It also includes developing a method for
identifying transformation rules. The ontology model from the first iteration is a set

of automatically extracted domain specific concepts without any relations between

Auhood Alfaries Page 64 of 189

them. This iteration applies an unsupervised pattern-based relation extraction method
to learn relations between those concepts. The method is aimed at finding patterns
between concepts formulating a rule-based pattern extraction process from Web
Service artefacts, mainly WSDL and XSD files. The application of this process to the
set of Web Services contributed a number of secondary Design Research products
including constructs, models and methods as illustrated in Table 3-5. A domain
ontology model is automatically learned by the improved and refined SOLF. The
learned model now consists of domain concepts and taxonomic and non-taxonomic
relations between these concepts. A number of SIP patterns as well as a set of TRs;

models also considered secondary Design Research output of the iteration.

The evaluative framework for this iteration is aimed at evaluating the efficiency and
operationality of the method (SOLF), by applying the instantiated application on real
Web Services from the financial business domain. Evaluating the completeness and
level of detail of the learned ontology is based on employing the evaluation metrics
precision and recall. Precision here is calculated by scoring the learned relations and
concepts by a domain expert and pattern recall is calculated manually by comparing

the learned concepts to a previously created manual ontology (Gold Standard).
Iteration 3:

The aim in this iteration is towards validating, improving and extending SOLF to
include more specific domain relations. Applying the SIP and TR on other sets of
Web Services to test the generality of SIP and TR produced by the previous iteration,
facilitates validating the patterns and extending them to add new ones and refine
SOLF. This iteration uses the learning (formed by evaluate, theorize and justify
activities), shaped by Iteration 2, to suggest improvement of the models (SIP) and the
TR and SOLF method. This leads to developing the final products of the research
consisting of a Web Service ontology learning methodological framework (SOLF), a
set of SIP patterns, and a set of TRs and an ontology model representing the

underlying domain.

Applying SOLF to real Web Services results in a number of secondary Design
Research products including constructs, models, methods and instantiations.

Measuring significant improvement of the research requires careful evaluation in

Auhood Alfaries Page 65 of 189

order to prove efficiency (March & Smith, 1995) and assess the progress made in the
problem domain is done by applying the developed products into real Web Service
artefacts and applying OL evaluation methods. The research significance lies in
building consequent constructs, models, methods and instantiations addressing the
same service ontology learning task. March and Smith’s (1995) 16 cell Design
Research grid relating a product to a process, is used to highlight and summarize the
overall products and processes of the research in an integrated and coherent
framework as Table 3-4 illustrates the first activity is meant to provide an
understanding and proper explanation of how or why the Design Research products
works within a live experiment using real case scenarios (here financial domain Web
Services) and the second activity serves to prove or disprove the theory scientifically.
Iteration 1 and Iteration 2 are mainly design science, those build and evaluate
activities are considered by the research alongside each of the four Design Research

product types in those chapters.

Theorize and justify as identified by March & Smith (1995), are mainly behavioural
science activities, where, theorizing the SOLF implies understanding how and why it
can be applied in real case scenarios. And Justification of SOLF implies proving its
applicability across different sets of Web Service domains. Therefore theorize and

justify, are only reflected upon in Chapter 6.

Auhood Alfaries Page 66 of 189

Research Outputs

Table 3-4: Research Products Versus Research Processes

Research Activities

Build

Evaluate

Theorize Justify

Extraction of Terms (STE).

Completeness.

Learning Framework for Simplicity.
Services (SOLF). Elegance.
Patterns for Term Ease of use.
Extraction Process.
Constructs .
Pattern for relation
Extraction (SIP).
Rules for Transforming
Patterns (TR).
Model for Term Extraction Fidelity.
Process. Completeness.
Model for the Learning Level of detail.
Models Framework (SOLF). Robustness.
SIP Patterns. Internal
Set of Rules (TR). consistency.
Domain Ontology Model.
Term Extraction Process Operationality
(STEP). Efficiency
Methods SIP Extraction Process. Generality
TR Development Process. Ease of use
SOLF Framework.
SOLF Application. Effectiveness
Instantiation Efficiency
Impact on

environment

Are reflected upon in
Chapter 6 & 7.

Executing the research in a Design Research incremental iterative manner enabled
learning to emerge from the first iteration by applying and testing techniques from
the knowledge base on Web Services. Table 3-5 summarizes the three Design
Research iterations illustrating the objectives and output artefacts of each. Research

iterations are described in more detail in the following chapters.

Auhood Alfaries Page 67 of 189

Table 3-5: Summary of Research Iterations

Iteration Activities Output Artefact Type
1. A. Test existing approaches Identified appropriate Natural Constructs.
and compares them (part of Language processing
obj. 1). techniques.
B. Develop an automated Service Term Extraction Method.
process for service term Pattern process.
extraction process (part of Model.
obj. 2 & 3).
C. Automate method by STE Application. Instantiation.
building a prototype
application to test STE Ontology building algorithm.
using a real case scenario
from the financial domain
(part of obj. 2).
D. Evaluate STE by Ontology as a set of domain Model.
comparing it to other similar concepts.
approaches (obj. 4).
E. Suggest an improvement List of requirements to Theories.
and extension of existing improve the approach in the
techniques. next iteration.
2, A. Develop a relation A structured interpretation Constructs.
extraction method for Web pattern process (SIP).
Service artefacts (part of | Transformation Rule (TR) Method.
obj. 2 & 3). Extraction Process.
B. Extend the prototype A set of Structured Model.
application to include Interpretation Patterns (SIP).
relation extraction (part of | A setof Transformation Instantiation.
obj. 4). Rules (TR).
C. Evaluate the improved Ontology representing Model.
framework (part of obj. 4). financial domain using
sample services.
D. Suggest an improvement Suggestions for future Theories.
and extend existing relation improvements.
extraction patterns.
3. A. Validate research by Extended set of SIP. Model.
testing SIP patterns and
SOLF application on other Extended set of TR.
Web Services (obj. 5).
B. Extend SOLF and Improved SOLF. Method.
application (part of obj. 3 &
4). Instantiation.
C. Evaluate SOLF. Domain Ontology. Model.
Auhood Alfaries Page 68 of 189

3.8 Summary

This chapter set out the research methodology in accordance with the tenets of
Design Research. The methodology is executed in five Design Research steps as
adopted from Vaishnavi & Kuechler (2004): (1) Problem awareness, (2) suggestion
of suitable OL techniques from the knowledge space, (3) development of the main
Design Research artefact (SOLF), (4) evaluation of the artefact is based synthesising
Design Research evaluation methods to the OL field and (5) conclusions. In order to
achieve the research aim and objectives the research is executed in three incremental
Design Research iterations. Each of the iteration is used to build and evaluate a set of
artefacts aimed at the OL task from the Web Services domain. In the first iteration a
pattern based service term extraction method is developed and evaluated on real Web
Services. The second stage extends the method to include relation extraction
techniques. And finally the third iteration proves SOLF by applying the learning
method and tool to other application domain to prove it generality. Hevner’s (2004)
Design Research products classification is adopted to illustrate the research outputs
produced from iteration. The Research products are identified in the form of

consequent constructs, models, methods and instantiations.

An OL evaluation taxonomy and background illustrates that efficiency of OL
approaches is determined by assessing the accuracy and coverage of the
automatically leaned ontology model. Accordingly, two main evaluation scenarios
are typically applied; first is a gold standard based scenario, the second is a domain
expert evaluation. These two evaluation methods are commonly applied to compute

the standard metrics precision and recall.

Auhood Alfaries Page 69 of 189

CHAPTER 4 -ITERATION |

4.1 Introduction

This iteration addresses the term extraction task of the ontology learning layer cake
(Cimiano, 2007, p.23). Different NLP techniques for term extraction are applied on Web
Service resources, more specifically WSDL and XSD files. Term extraction implies
applying linguistic pre-processing techniques. As discussed in Chapter 2, these
techniques are commonly applied on unstructured documents. This chapter applies an
innovative pattern based term extraction method, that applies pre-processing techniques,
which are normally used on textual data sources, on semi-structured Web Service
sources, namely WSDL and XSD files. The development of an application prototype as
an instantiation artefact is used to evaluate the method and apply it on the financial Web

Services taken from commercial organisations.

The rest of the chapter is organised as follows. To begin with, Section 4.2 discusses how
Design Research is applied for this iteration. Design Research artefacts are identified
along with the iteration plan and research products. Section 4.3 introduces the building
stage of the Design Research problem, presenting a method for service term extraction
and explaining the steps involved in the method. Section 4.4 develops a prototype that
implements the suggested method and presents the outcome of applying the prototype on
sample files from the financial domain. Section 4.5 presents the experimental data and
evaluates the iteration outputs and the method. Finally the research concludes in Section
4.6 by discussing the iteration feedback and presenting the learning outcome. The

chapter is summarized in Section 4.7.

4.2 Design Research and Output Artefacts

This iteration applies Design Research as a miniature iterative process through which
learning of the problem space is achieved through artefact development and evaluation.

A method can be seen as a set of steps that can be followed to accomplish a certain task

Auhood Alfaries 70 of 189

(March & Smith, 1995). Here, a method for Service Term Extraction (STE) is proposed,
an instantiation is then developed as a prototype that implements the STE method. This
iteration is used to produce an initial Service Ontology Learning Framework (SOLF)
comprising the STE and an ontology building algorithm. As illustrated in Figure 4-1, an
iterative cycle of artefact building, development and evaluation is employed, adopted
and based on the general methodology of Design Research by Vaishnavi & Kuechler
(2004).

As discussed in Chapter 2, a number of Web Service sources characteristics are
identified that necessitate the development of a tailored OL process to deal with the
special characteristics of Web Service resources. The applicability of term extraction
techniques, commonly used with unstructured data sources, on WS semi-structured
sources, requires analysis and testing to determine their tailoring ability to extract
semantic information. It is the aim of this iteration to adopt and modify existing learning
techniques that deal with these semi-structured sources using real examples taken from
the financial Web Service domain. A typically applied OL scenario (Maynard, Li &
Peters, 2008) starts with term extraction as a first step. This iteration targets term
extraction as a pre-processing stage involving a sequence of NLP techniques. This stage
is considered as a starting point to provide an understanding and an experimentation

environment for the Design Research cycle and OL framework to evolve.

Term Extraction involves applying information extraction techniques to extract possible
terms from Web Service resources. Identifying words that are possible candidates for
concepts and relationships in the underlying context implies collecting and analysing

available Web Service resources and employing text analysis techniques to them.

Auhood Alfaries 71 of 189

Artefact

Quality 4
Iteration 3
o | Vaidate& | &
5 Improve 2
@ SOLF Z
Iteration 2
T A
[}
- |Extend SOLF| &
. 5 By Relation 2
Iteration 1 0 Extraction 3

P

Core OL
Framework
Development

Build
Evaluate

R

Time
Line

Figure 4-1: Iteration 1 Overall Framework

The novelty of this method is that it is applied on semi-structured data sources consisting
of XML files. Pattern based term extraction is commonly applied on unstructured textual
sources (Buitelaar & Cimiano, 2008). The innovation of this approach is to adopt and
apply pattern based term extraction to extract knowledge from technical semi-structured

sources.
4.2.1 Design Research Artefacts

The aim of this iteration is to develop the core SOLF that embodies the service term
extraction (STE) technique, automates the technique and evaluates the process. The
technique involves applying a process consisting of a sequence of steps and results in a
number of outputs. As illustrated in Table 4-1, each step applies a natural language
processing method on an input artefact and results in an output that is used as input for
the next step. Applying the methods in the consequent steps results in a pipeline process,
which is then implemented as a pipeline application using the GATE development

environment.

Auhood Alfaries 72 of 189

This iteration extends the pattern based knowledge extraction in two ways: First, a
dynamic process for deriving term extraction patterns. Applying this process on the
sample set of services contributes a set of patterns. Second, applying the patterns on the

WSDL and XSD sources of industrial Web Services to evaluate the extraction outcome.

Table 4-1: Iteration Steps — Input Output Model

Steps Method Input Artefact Output Artefact

;('S%exqe;gzlvt\c’)skgh Z""e”rd WSDL & XSD | WSDL & XSD WSDL & XSD-Term
Tokenizer files Model

method.

2. Decide a suitable

Part Of Speech (POS))

identifier method for POS Tagger \'ll'vesrr[r)1L|</|XoSdzl POS-Term Model

WSDL and XSD

models.

3. Identify concept

patterns for concept Paét)t((:rgc;li's:]m POS-Term Pattern Term

extraction from WSDL Process Model Extraction Models

and XSD models.

‘é‘x ?r:ggoieg%;erm Build GATE Web Service | Prototype Application

method Application Artefacts (using GATE)

Evaluation of the iteration is aimed at evaluating the following output artefacts:

* The initial STE method is evaluated using the instantiation prototype created
as a GATE application pipeline, in which real Web Service resources are

used.

= The Concept and Relation Pattern Model; which links tokenised concepts via
relationships, are evaluated by running the method on the real case example
and ensuring that all relevant names are picked up by the identified patterns.
The Lucena Data Store viewer is a GATE plug-in typically used for analysis

and testing of the results over the real Web Services.

» Evaluating the learned ontology model involves the evaluation of the quality
of the STE method by measuring the coverage and precision of the learned

concepts.

Auhood Alfaries 73 of 189

4.3 Artefact Building and Development

The Building stage involves problem awareness and suggestion. This implies identifying
the initial steps for the process and explaining what each step involves. This stage
involves reviewing and analysing existing OL approaches, finding suitable techniques
for WSDL and XSD files, and suggesting appropriate tools and techniques. Testing
current similar work enabled a deeper understanding of the limitations of current
approaches and suggested improvements to overcome the limitation on current
approaches, which has eventually led to identifying appropriate techniques and tools for
concept and term extraction from WS sources. Term extraction involves applying
document pre-processing techniques to allow for lexical and semantic analyses of the

input sources. This is achieved by applying a tokenization step followed by a POS
tagging.

4.3.1 Tokenization

Pre-processing involves tokenization as a first step. Default tokenizers are designed to
parse natural language text using typical tokenization techniques, which are reliant on
assuming that token separators are based on natural language separators like spaces,
commas, full stops, etc; whereas, Web Service sources are semi-structured and in some
cases, like WSDL and XSD files, relevant ontological concepts can be found only in tag
names. Figure 4-2 shows a sample WSDL file illustrating the structure and character of
the content of a WSDL document, e,g a sample line of a WSDL is <xs:element
name="checkInDate"> In such cases tokenization should be based on
capitalization of the first letter. By analyzing Web Service sources, it can be clearly seen
that the name attributes are a common venue for ontological concepts. In this example 3

tokens can be extracted using capitalization of the first letter.

Another naming scheme that can be found in such sources is <xs:element
name="company search response"> in which an underscore character is used
as a token separator. For this kind of text a tokenizer is implemented to deal with these
cases. The WSDL and XSD tokenizer is adopted from the GATE built-in default
tokenizer and modified to suit the described characteristics. Tokenization produces a

tokenized WSDL and XSD model, in which restrictions to limit the extracted concepts,

Auhood Alfaries 74 of 189

relies on lexical analysis of the document and deriving patterns based on tokens lexical

category.

<xs:complexType name="CheckAvailability">
<xs:sequence>

<xs:element name="checklnDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
</xs:sequence>

</xs:complexType>

Figure 4-2: WSDL sample file

4.3.2 POS Tagging

Applying shallow semantic analysis involves categorizing words based on their
meaning, and a POS tagger serves this purpose. Part Of Speech (POS) Tagging involves
identifying and adding parts of speech tags to the WSDL tokenized model, i.e.
identifying verbs, nouns, adjectives and other parts of speech for each token. POS
tagging is a step commonly applied as a second step on unstructured sources (Maynard,
Li & Peters, 2008; Sabou, 2005) as part of the term extraction process. Since WSDL and
XSD contain semi-structured data, words that appear in operation names such as
“checkAvailability” are considered to be the only source of domain information
available in these sources. Therefore, this information needs to be analysed and
examined for domain concept extraction. The tokenized terms need to be tagged by
applying a POS tagger, which will identify the type of each word using their basic
dictionary meaning regardless of their context. Hence, check should be identified, as a

verb and Availability should be tagged as a noun.

Oft-the-shelf techniques are sufficient for this purpose. The Brill-style tagger, offered by
GATE, uses basic Part-of-Speech information, and is selected as the POS tagger method
employed for this step (Cunningham et al., 2002). A POS tagged WSDL model enables
the researcher to identify patterns of concepts and relations based on semantic analysis

of the words identified by the POS tagger.

Auhood Alfaries 75 of 189

4.3.3 Pattern Extraction

Rule-based information extraction uses domain specific handcrafted rules that describe
patterns to be matched. This step involves finding appropriate patterns that detect
concept related terms in WSDL elements, for example, the name attribute in the WSDL
line <xs:complexType name="CheckAvailability">.
CheckAvailability provides the most likely domain concepts; therefore the
ultimate goal would be to identify patterns that will extract all such WSDL entries. All
possible patterns can be identified by following an iterative pattern identification
process, as depicted in Figure 4-3; the process is based on analyzing the commonly
applied naming convention used in method names, input and output parameters and
discovering all of the possible pattern combinations based on the semantic and syntactic
analysis information produced by previous step, in order to ensure that all of the possible
patterns in the WSDL and XML files are identified and therefore extracted. The process
starts by identifying an initial set of patterns, analyzing the pattern matches on WSDL
and XSD files, evaluating their coverage and detecting any missing patterns, and adding
new patterns if required. This process stops when no more new patterns were found in

the chosen sample files.

Identify new set of
patterns

Evaluate patterns
on sample WSDL
files

Evaluate patterns
of XSD files

Figure 4-3: Pattern Extraction Process

Given the interest here of extracting domain knowledge rather than service functionality,
the concepts identification query employed is based on identifying different forms of
nouns in Web Service sources (WSDL and XSD). Therefore, this step leads to
identifying patterns for extracting service concepts based on extracting matches to
different types of nouns as classified by the POS tagger. Appendix A contains a list of
POS tags used by the GATE Brill tagger.

Auhood Alfaries 76 of 189

4.3.4 Ontology Building

This step involves bootstrapping the concepts identified in the input sources to construct
a lexical layer of the domain ontology model. The model is produced using a Web
ontology language commonly supported by most ontology editors. The output is a
lightweight ontology that represents the domain covered by the input semi-structured
data sources. Concepts identified by the patterns in the previous step are matched and
annotated using regular expression matching (Bontcheva et al., 2004), and then

ontological concepts are created according to the annotated terms in the service artefacts.

Source Code Tokenizer

POS Tagger

Service Term Pattern
Extraction

Service Term
Extraction

Ontology Building

N

Ontology)

Figure 4-4: Service Term Extraction (STE)

4.4 Framework Prototype Implementation

The search for a well established open source tool that can be used for Term extraction
has lead to choosing GATE 5.0 beta version. GATE stands for General Architecture for
Text Engineering, and provides the researcher with an integrated infrastructure for
experimentation with modifiable built-in tools for Computational Linguistics, Natural

Language Processing (NLP) and language engineering (GATE User Guide 2008).

Auhood Alfaries 77 of 189

The GATE platform is chosen as it provides a flexible platform with the required

language engineering and ontology building tools, for example:
» The use of off-the-shelf NLP techniques.

*= A Java Annotation Pattern Engine (JAPE) (Cunningham et al., 2002) that

facilitates the development of pattern identification rules and TRs.

= The GATE Ontology API (Bontcheva et al., 2004) based on the OWLIM
model, which supports the OWL-Lite standard (see
http://www.w3.org/TR/owl-features/).

The developed application reads a corpus of WSDL files and runs a sequence of
processing resources over the corpus, extracting concepts from the input files. It then
produces an ontology as an output of the system. The algorithm is based on pattern
matching using JAPE regular expression matching; first, a JAPE file that finds and
annotates concepts in the input documents, then another JAPE file finds the annotated
concept and creates the ontological concept accordingly. Figure 4-5 illustrates a snapshot

of the prototype implementation of the STE application pipeline.

GATE Processing Resources (PR) are specifically tailored for the needs and
requirements of an application domain. In this case GATE PR are modified to the
requirements of the underlying WSDL and XSD files. Service Term Extraction in this
research applies a sequence of processes over Web Service artefacts. A pipeline
application is created in GATE that performs Term Extraction as the first stage of any
OL system. The pipeline consists of a number of GATE’s Processing Resources (PR),
reflecting the steps described in this section; the first PR is the WSDL and XSD
tokenizer, which is implemented to deal with the characteristics of these sources, as

discussed earlier in this chapter.

Auhood Alfaries 78 of 189

O & ik @ 2

]

G GATE f % JapeTestAppl | “ conceptiD 4w Ws2Ws3-rdfxmlon...
v #‘E Applications
. Loaded Processing resources Selected Processing resources
327 JapeTestAppl Name Type | |Name Type
- S
v 928 Language Resources $ DefaultTokenizer ANNIE English Tokeniser [Q Document Reset PR 00028 Document Reset PR

.'. e $ WsdITokenizer ANNIE English Tokenise.

.l. Ws2Ws3-rdfxmlonto.owl 000 @ #3 ANNIE Sentence Splitter 0002A ANNIE Sentence Splitter

p POS T: ANNIE POS T:
v 3 Processing Resources @ agger agger
@ % conceptiD Jape Transducer

“*7 OntologyBuilder

‘ X pem 4
@ pos Tagger

#® ANNIE Sentence Splitter_00(

T WadiTokenizer

ﬁDe!aullTokenlzer (= =) e = =) <>
7% conceptiD -
‘ Corpus: |_<none> I
D t Reset PR_00028B
(9 Pocument Reset PR Runtime P for the "O; iider” Jape T
Datastores Name Type |Required Value
[——————— I
L& . 2 (2) inputASName ~ String Tokens [[l
s] L] X 3 ontology Onlology [.-. Ontology :
=) s
{2) outputASName String Tokens [v
I =) <>
(" Run this Application)
[serial Application Editor)

Ontology loaded in 0.231 seconds

Figure 4-5: SOLF Application Pipeline

First, a WSDL tokenizer is developed to tokenize the input files into simple tokens,
dealing with compound words and tokenizing WS1 phrases such as
“unwindTradeExtResponse” into four distinct tokens instead of one. Table 4-2
illustrates a WSDL tokenised model representing a sample output of a WSDL tokeniser
step, where each word is identified as a token. This table is used to analyse the output of
the tokenizer. It can be clearly seen that the tokenization of the element

name="roomType " produced two tokens that are very good concept candidates.

Auhood Alfaries 79 of 189

Table 4-2 : WSDL Tokenized Model

No. Document ID Annot. set Left Context Word Right
Tokens context
192 hotelWsdITst__ 12416 Tokens element name="check In Date" type="
19854614 2774
193 hotelWsdITst__ 12416 Tokens element name="check Out Date" type="
19854614 2774
194 hotelWsdITst___ 12416 Tokens name="checklin Date " type="xs
19854614 2774
195 hotelWsdITst___ 12416 Tokens name="checkOut Date " type="xs
19854614 2774
196 hotelWsdITst__ 12416 Tokens element name="room Type " type="xs
19854614 2774
197 hotelWsdITst__ 12416 Tokens Type name="t Check Availability">
19854614 2774 \f
198 hotelWsdITst___ 12416 Tokens name="tCheck Availability ">\f1
19854614 2774

The second step requires applying POS tagger that identifies the POS of each token.
ANNIE POS tagger, which is based on the Brill tagger (Cunningham et al., 2002), is
applied for implementing this step, adding part of speech tags to each token as a new
feature. The output from this phase, as Table 4-3 illustrates, enables patterns to be
identified based on the category feature added here. For example, the POS tag of each
token in the phrase “unwindTradeExtResponse” is added as a category feature,
where Trade is tagged as NNP, and denotes a singular proper noun according to the
ANNIE POS tagger. Other tags such as NN and VB would have a different meaning,
where the first is used to denote a singular or mass noun and the second denotes a verb
in its base form (Cunningham et al., 2002). Figure 4-6 illustrates a snapshot taken from
GATE GUI, in which a category feature “VB” is added to the string token “Approve”.
The category feature is assigned different values such as VB (Verb), NN (Noun) or NNP

(Proper Noun) according to the Part of Speech type of each token.

Type |Set |Start |End |Id Features

Token Tokens 35526 35535 14066 {category=NN, kind=word, length=9, orth=lowercase, string=operation}
Token Tokens 35536 35540 14068 {category=NN, kind=word, length=4, orth=lowercase, string=name}
Token Tokens 35540 35541 14069 {category=SYM, kind=symbol, length=1, string==)

Token Tokens 35541 35542 14070 {category=", kind=punctuation, length=1, string="}

M M m {category=VB, kind=word, length=7, orth=lowercase, string=approve}
Token Tokens 35549 55 14072 {category=NNP, kind=word, length=6, orth=upperinitial, string=Single}
Token Tokens 3555 59 14073 {category=NN, kind=word, length=4, orth=upperinitial, string=Name}
Token Tokens 3555

3

53

9 35565 14074 {category=NNP, kind=word, length=6, orth=upperinitial, string=Credit)
Token Tokens 35565 3
03
3

70 14075 {category=NNP, kind=word, length=5, orth=upperinitial, string=Curve}
Token Tokens 3557 71 14076 {category=", kind=punctuation, length=1, string=") m
Token Tokens 35571 72 14077 {category=NN, kind=symbol, length=1, string=>}
Token Tokens 35579 35580 14085 {category=NN, kind=symbol, length=1, string=<)
Token Tokens 35580 35588 14086 (category=NN, kind=word, length=8, orth=lowercase, string=wsdlsoap}

LRI AR AR
IR IR IR s

AFEAA AEEAS 4ABAT

12565 Annotations (1selected)

Figure 4-6: WSDL POS Model

Auhood Alfaries 80 of 189

Thirdly, a Pattern Extraction process follows, that identifies concept extraction patterns.
ANNIC (ANNotations In Context) plug-in, is a GATE plug-in that offers applying
pattern extraction using the Lucena Data Viewer tool (Aswani et al., 2005). ANNIC is
used in this step to view and analyse the output of the lexical and semantic analysis
steps, and the results are exported to an html file. The initial pattern is drawn from
Cimiano (2007) and Hearst (1992) as VB + Noun (verb followed by one noun, e.g.
CancelTrade or GetTrade).

Table 4-3 illustrates the Lucena Data Viewer model of the identified patterns for a
sample WSDL file. Following the process illustrated in Figure 4-3 Using ANNIC
enabled instantaneous evaluation and refinement of patterns. A sample table produced

that represents a VB+NNP+NNP pattern model. Notice that the

“GetCreditDefault” that appears in the pattern column matches the

VB+NNP+NNP pattern. This illustrates that all element names in Web Service sources
that match the identified patterns are extracted automatically by the system. The aim of

this step is to identify all of the possible patterns that will lead to candidate ontological

concepts.
Table 4-3: Pattern Extraction Model
No. Document ID Annotation Left Context Pattern Right Context
Set

1 [Trdport2___ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromSingleDay"
59316__ 2719

2 [Trdport2___ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromSingleDayB
59316___ 2719 y

3 Trdport2__ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromSingleDayB
59316__ 2719 y

4 ITrdport2__ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromMultipleDay
59316__ 2719 s"

5 Trdport2__ 12363550 Tokens Jtradecapture/wsdl/ GetCreditDefault SwapFromMultipleDay
59316__ 2719 sBy

6 [Trdport2___ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault SwapForDateRangeBy
59316__ 2719

7 [Trdport2___ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault SwapByTargetSystemT
59316__ 2719 rade

8 [Trdport2__ 12363550 Tokens /tradecapture/wsdl/ GetCreditDefault [SwapBySummitTradeld
59316__ 2719

9 [Trdport2__ 12363550 Tokens Jtradecapture/wsdl/ GetTradeAudit History" style="
59316__ 2719

10 [Trdport2__ 12363550 Tokens Jtradecapture/wsdl/ CreateDefaultedTrade " style="document
59316__ 2719

21 [Trdport2__ 12363550 Tokens ="impl:to DoBlotterRequest " name="to
59316__ 2719

22 [Trdport2__ 12363550 Tokens ="impl:to DoBlotterResponse " name="to
59316__ 2719

Auhood Alfaries 81 of 189

Table 4-4 represents a set of identified patterns that can be used to determine relevant
phrases as terms and is therefore applied by an ontological transformation process to

transform automatically extracted terms to ontological concepts.

Table 4-4: Summarized Generic Patterns

Pattern Pattern Match Sample

Verb + Noun CancelRequest

Verb + Noun + Noun (2 or

DoBI R
more nouns up to 10) oBlotterRequest

Noun + Noun + Noun (2 or

more nouns up to 10) PendingRefEntities

Building the pattern for regular expression matching is achieved using JAPE
Transducers (Cunningham et al., 2002; Bontcheva et al., 2004). These transducers are
developed to perform rule-based pattern extraction. Rule definition is carried out using
regular expressions over annotations. A JAPE rule consists of two parts, as illustrated in
Figure 4-7; the left hand side (LHS) and the right hand side (RHS). The LHS of the rule
(shown to the left of the arrow in the Figure 4-7) identifies the patterns to be matched
based on information generated by the previous steps (tokenization and POS tagging).
The RHS of the JAPE rule identifies the annotation set to be created for the text that
matches the pattern on the LHS. The result of executing this JAPE rule on the input files
is that each token that matches the pattern is annotated with a concept annotation.
Another JAPE rule is then created to find annotated concepts in the text and create
ontological concepts accordingly. The ontology is created using the GATE OWLIM
API.

Phase: locationcontextl
Input: Lookup Token Tokens
Options: control = applet
//rule identifies concepts of type NN or NNP
Rule: ConceptIdentificationl
Priority:50
(
{Token.kind == word, Token.category == NNP} |

{Token.kind == word, Token.category == NNPS} |
{Token.kind == word, Token.category == NN}
) :concept

-->:concept.Concept = {rule= "ConceptIdentificationl" }

Auhood Alfaries 82 of 189

Figure 4-7: JAPE Sample Code

The second JAPE file is created to add new concepts, as they are found, to the existing

ontology, as illustrated in Figure 4-8.

// Concept ID creation Rule

Rule: ConceptID
({ConceptID}) :relationIden
-=>

:relationIden{
Annotation thelInstance = (Annotation)relationIdenAnnots.iterator () .next();

//get the concept strings from the features of Annot
String Concept = thelnstance.getFeatures () .get("ConceptString").toString() ;

// Create URI for the new concept
gate.creole.ontology.OURI classURI = ontology.createOURI (

http://example.com/classes# + Concept);

// Add new concept to ontology
gate.creole.ontology.OClass Concept = ontology.addOClass (domclassURI) ;

Figure 4-8: JAPE Rule for Concept Creation

Executing the application pipeline on a corpus of Web Services consisting of WSDL and
XSD files produced an ontology model representing the financial Web Services
employed for the experiment. The model represents the automatically created financial
ontology model. Figure 4-9 depicts a snapshot of the produced ontology as the final
product of the application.

Auhood Alfaries 83 of 189

G ® %P 8 =2
G catE ; Messages #* JapeTestAppl _ ~ concepliD o't Ws2Ws3-rdfx
v %Apphmuons

3% JapeTestappl

.7
v 928 Language Resources

P ws2wis3-rdfxmionto.owl_00022

HEu/ie/e/e/ea/a/x|]]-

Classes & Instances Properties

Classes and Instances

W Resource Information
B Credit
URI

Credit
hitp:i/example.com/classes#Credit

N & Approval 1 TYPE Ontology Class
v ¥k Processing Resources B Approve } >
e B Basket ! >
conceptiD B Coupon i ;
& Document Reset PR_00028 B Cred) >
c '
& oaastores W e } >
B Engine ! ¥ Property Types
B Entity ! & comment [ALL RESOURCES]
B Index ! @ isDefinedBy [ALL RESOURCES)
B Matching : ® label [ALL RESOURCES]
B Obligation) & seeAlso [ALL RESOURCES)]
B Pending ’ @ versioninfo [ALL RESOURCES]
& Port : >
& Portfolio ! >
B Ref !
B Response l
B Upload
B air
» B bloomberg
:' T‘ x B country
B coupon
W currency
B curve
B default
B ef -

W guarantor b 4

f ‘GATE Ontology Editor Initialisation Parameters

Figure 4-9: Snapshot of the Learned Domain Ontology Model

4.5 Evaluation

Instantiations can be viewed as existing implementations, and are used to evaluate
constructs, models and methods (March & Smith, 1995). For meeting the objectives of
this iteration, a prototype system was developed and implemented that operationalized
the proposed method using GATE 5.0 betal version. Evaluation of this iteration is
achieved through assessing the performance of the system in extracting domain relevant
terms, consequently leading to domain concepts. Importantly, the information extraction
performed here is ontology-based information extraction that needs to be evaluated
differently from normal IE in the sense that, misclassifying a term as a concept rather
than a relation is preferable to misidentifying the term in the first place (Maynard, Li &

Peters, 2008).

Commonly applied IE metrics are precision and recall. As discussed in Chapter 3, these
metrics are used to evaluate the accuracy and coverage of the learned ontology model.
Precision and recall are typically calculated either by comparing outputs to manually
extracted data, or by involving a domain expert. The expert role is in validating the
accuracy of the extracted terms, concept by concept, i.e. to evaluate the learned concepts
and relations by presenting them to a human assessor who can verify their correctness

and relevance to the domain using a certain grade given to different concepts (Cimiano

Auhood Alfaries 84 of 189

2007). Here, precision is used to assess the accuracy of the STE calculated according to

the formula:

NoOf CorrectConcept:
TotalNoOf Concepts

precision =

Where NoOfCorrectConcepts is the number of scored concepts validated as correct by
the domain expert, and TotalNoOfConcepts is the total number of concepts extracted by

the system.
4.5.1 Experimental Data

Due to the large size and commonality of the structure and content of WSDL and XSD
files, a decision was made to use a realistic number that would allow practical and
accurate evaluation when presented to a domain expert. Therefore, three Web Services
are taken from the financial domain. The Web Services are used to evaluate the Design
Research output artefacts outlined in Section 4.2. The WSDL and XSD files are grouped

and categorized according to the Web Service to which each files belongs.

A summary of the Web Service resources used for this iteration is presented in Table 4-
5. The details of the three ‘real world’ Web Services are described below, though some
details are omitted for reasons of confidentiality. Each service differs in its complexity
and style, both in the Web Service usage and the specific design decisions taken by the

respective development groups:

* Trading (WSI). This Web Service provides an interface from the Front and Middle
offices (traders and risk managers) to a back office processing system. The interface
provides access to core trade data as well as market specific measures that are added
to the trade over its life (i.e. affecting its risk profile). The Trading Web Service
follows a document binding style and consists of 774 lines and its size is 30506

bytes.

* Matching engine (WS2). This Web Service supports a fixed income business with
Bond and Repo product types, in particular, processes where a trader and salesman

enter separate trade details, which are subsequently matched and integrated. The

Auhood Alfaries 85 of 189

matching process is carried out by this service. The Matching Engine Web Service
has a smaller description than the Trading Web Service, consisting of 64 lines and
with a size of 2086 bytes. Primarily the interface is being a document that is detailed

in the associated schema XSD files. This service adopts an RPC Web Service style.

* Credit service (WS3). This Web Service 1s part of a trading system that supports a
range of derivative instruments. The system is used globally by various trading
departments. The service again follows a document-based binding style and consists

of 423 lines and has a size of 40434 bytes.

Table 4-5: Summary Information Representing Used Web Services

Web Service Name No. Of WSDL files No. Of XSD files Total No. of lines
(WSDL Code

only)

Web Service 1 1 6 774

TradePort

Web Service 2 1 10 64

MatchingEngine

Web Service 3 1 N/A 423

SOLService

Given the size and the structure of these files manual extraction is time consuming,
expensive and inapplicable; therefore, a more appropriate and practical evaluation
strategy is designed for evaluating the coverage and accuracy of the extracted terms. The
adopted evaluation strategy is aimed at evaluating the performance of the implemented
STE method against similar research efforts and targets the gaps discussed in Chapter 2.
The evaluation is performed against an unstructured approach and another structured
approach (based on WSDL only), in order to determine the validity of the STE in
extracting the required terms. Then a domain expert, with experience in working with
financial banking industry, is used to validate the concepts and calculate the precision
according to their scoring of correct concepts. Lastly, analysing the results of the
evaluation leads to reaching a conclusion and learning from the developed artefact for

future improvements of the method for the next iteration.

Auhood Alfaries 86 of 189

4.5.2 STE Performance

Due to the fact that this research is aimed at ontology related term extraction, only
candidate terms are considered for evaluation. The evaluation of term extraction in this
iteration is carried out using the GATE plug-in the Lucena Data Viewer that enabled the
analysis of the extracted terms using pattern recognition and determining the domain
coverage of the method. Tokenization produces all file contents as Tokens, in which case
symbols and tags are tokenised, and for this stage are considered irrelevant due to the
fact that they only present XML code. To filter out irrelevant Tokens from the Tokenised
WSDL and XSD model, a self-evident pattern is applied for the purpose of producing
the Web Service Term Model (WSTM). A query is formulated using JAPE patterns
(GATE 5.0 User Guide 2008) that is based on pattern extraction in order to extract
relevant terms for the purpose of evaluating the STE system. Relevant terms can only be
words that are either verbs or nouns. Therefore, the applied query to produce the WSTM

is given below:

{Token.kind=="word", Token.category=="NN"} | {Token.kind=="wor
d", Token.category=="NNP"} | {Token.kind=="word", Token.categor
y==HVBH }

The output produced from executing the query containing the STE pattern is uniquely
filtered and a WSTM is produced for each service accordingly. A sample of the WSTM
is illustrated in Table 4-6, and represents the WSTM for WS3. A full list of extracted

terms can be found in Appendix D.

Table 4-6: WSTM Extracted from WS3

Concept Concept
List 1 List 2
Coupon series
Date currency
Sequence bloomberg
Target ticker
Curve issuer
Market issue
Guarantor summit
Maturity org
Redemption equity
Obligation credit

The sample files are run three times using three term extraction methods taken from

three different approaches. In line with the literature review, the first approach is taken

Auhood Alfaries 87 of 189

from previous work by Sabou (2005), which employs unstructured term extraction
techniques. The second approach employs semi-structured tokenization but is applied
only to WSDL files, i.e. it doesn’t include any XSD files. The third method uses the STE
term extraction method, as developed in this iteration. The STE method targets gaps
found in both approaches and therefore the results are expected to be better than the
other two approaches chosen for this evaluation in terms of providing better coverage of

the domain concepts and increased accuracy in concept extraction.

The produced result representing the evaluation model consists of three columns
representing the extracted concepts from each method, which are analyzed and then
presented to the domain expert for validation. Table 4-7 represents a concept evaluation
model, which gives an overview of the experimental settings used for evaluation.
Analyzing the outcome of this model revealed that better extraction performance was
achieved with the STE method, due to a number of reasons: (1) although Method 1
produced more terms, most of the terms were compound terms that were unlikely to
serve as domain concepts. (2) Method 2 improved the term extraction over Method 1 in
the sense that those terms were better suited as candidate domain concepts, but are
quantitatively less than the terms produced using Method 3. (3) Method 3 provided
better domain coverage since it produced an improved intensive list of terms that are

more likely to serve as domain concepts.

Table 4-7: Concept Evaluation Model

Web Service XSD only WSDL only Both
Method1 Web Service 1 Terms: 2598 Terms: 2574 Terms: 5172
Default Unique: 283 Unique: 172 Unique: 455
Tokeniser =~ Web Service 2 Terms: 2397 Terms: 181 Terms: 2578
Unique: 149 Unique: 44 Unique: 193
Web Service 3 N/A Terms: 3090 Terms: 3090
Unique: 247 Unique: 247
Method 2 Web Service 1 N/A Terms: 3670 Terms: 3670
Based on Unique: 112 Unique: 112
WSDL files Web Service 2 N/A Terms: 203 Terms: 203
only Unique: 47 Unique: 47
Web Service 3 N/A Terms: 4741 Terms: 4741
Unique: 183 Unique: 183
STE Web Service 1 Terms: 3887 Terms: 3670 Terms: 7557
Method Unique: 239 Unique: 112 Unique: 351
(Improved ~ Web Service 2 Terms: 2924 Terms: 203 Terms: 3127
version of 1 Unique: 126 Unique: 47 Unique: 173
and 2) Web Service 3 N/A Terms: 4741 Terms: 4741
Unique: 183 Unique: 183
Auhood Alfaries 88 of 189

Now, to determine whether the extracted concepts forms a good source for building
lexical layer of domain ontology. Evaluation measures need to be calculated based on
expert scoring of each automatically extracted concept. Therefore, for practical reasons,
this procedure is performed only on WS2. A WSTM (as illustrated in Table 4-6) is
presented to the domain expert to score each concept. The scoring system employed, is a
lenient system in the sense that each concept is scored with 1, 0.5 or 0, such that 1
indicates a correct concept, 0 indicates that it is an incorrect domain concept, and half-
weight indicates partially correct concepts. The results of the domain expert evaluation
have shown an improvement with the STE method over the other two approaches. The
summarized precision is presented in Figure 4-10, and illustrates a 67% precision for the

STE method.

Precision
K Precision 66.76%
55.32%
44.56%
1 | | | | |
M1 M2 M3
“ Precision 44.56% 55.32% 66.76%

Figure 4-10: WS2 Precision

4.5.3 Pattern Evaluation

The evaluation at this stage will involve coverage and specificity of patterns, ensuring
that they cover all existing concepts and relations in the Web Service artefacts. The
process followed embodies the notion of saturation in grounded theory (Bernstein,
1999), where the cyclic pattern extraction process ensured the refinement and

identification of new patterns. This process has lead to the discovery that all candidate

Auhood Alfaries 89 of 189

terms in the input files are classified mainly into either noun or verb. Here, a verb is
more likely to determine service functionality. ANNIC provided instantaneous
evaluation of pattern extraction and evaluation (Maynard, Li & Peters, 2008). ANNIC is
used to replace the identified pattern with live validation on the tokenised WSDL and
XSD models. All of the identified patterns are tested directly on the input models to
ensure pattern coverage of all existing concepts and relations in the source files.
Completeness is evaluated by comparing the ANNIC results of the identified matched
patterns against all of the element names that exist in the source data files, automatically
extracting all of the element names. The sample output is illustrated in Table 4-8; the
table is produced by executing the query on ANNIC that results in producing all of the
element names before any tokenization is performed on them, thereby ensuring that the
researcher has a list of all element names that exist in the source files, which are then

used to validate the pattern extraction process.

Auhood Alfaries 90 of 189

Table 4-8: Default Tokenizer WSDL Model

No Document ID Annotation Left Pattern Right
Set Conte Context
xt
1 WSDL_WS1___124 Tokens Query "
3994895541928 -
4
2 WSDL_WS1___124 Tokens _ Request "
3994895541928
4
3 WSDL_WS1__124 Tokens Response "
3994895541928 -
4
4 WSDL_WS1___124 Tokens Response "
3994895541928 -
4
5 WSDL_WS1__124 Tokens Request "
3994895541928 -
4
6 WSDL_WS1__124 Tokens Query m
3994895541928 -
4
7 WSDL_WS1__124 Tokens : InsertTradeRequest "
3994895541928
4
F) WSDL_WS1___124 Tokens : MirrorTradeRequest "
3994895541928
4
9 WSDL_WS1___ 124 Tokens : AmendTradeRequest "
3994895541928
4
10 WSDL_WS1___ 124 Tokens : CancelTradeRequest "
3994895541__ 928
4
11 WSDL_WS1___124 Tokens : MatureTradeRequest "
3994895541928
4
12 WSDL_WS1___ 124 Tokens : SingleDayTradeQueryRequest "
3994895541928
4
13 WSDL_WS1___124 Tokens : pingleDayTradeQueryRequestByTradeDate "
3994895541928
4
14 WSDL_WS1___124 Tokens : MultipleDayTradeQueryRequest "
3994895541928
4
15 WSDL_WS1__124 Tokens . MultipleDayTradeQueryRequestByTradeDat "
3994895541928
7 e
16 WSDL_WS1__124 Tokens : pateRangeTradeQueryRequestByTradeDat "
3994895541928
A e
17 WSDL_WS1__124 Tokens : TargetSystemTradeldQueryRequest "
3994895541928
4
18 WSDL_WS1___ 124 Tokens : SummitTradeldQueryRequest "
3994895541928
4
19 WSDL_WS1__ 124 Tokens : TradeAuditHistoryRequest "
3994895541928
4
20 WSDL_WS1__124 Tokens : VerifyTradeRequest "
3994895541928
4

4.6 Specifying the Learning

By evaluating the output of this iteration, the automatically extracted terms from each

source revealed some motivating conclusions;

» The extracted list of terms presented to the ontology engineer forms a high-density

list of domain specific concepts that would be harder to extract from textual sources.

Auhood Alfaries 91 of 189

* The domain concepts are very likely to be linked by non-taxonomic relations.
Linking pattern structures to relations can lead to an effective way of extracting these
relations automatically, which could result in an effective relations extraction from
software artefacts, and would be very desirable to the ontology engineer. A list of
condensed domain concepts is extracted automatically and presented to the domain

engineer.

* Concept extraction as defined by Cimiano (2007) and Buitelaar, Cimiano & Magnini
(2005) requires finding a concept extension (a set of concept instances), which can
be found in SOAP messages. It is noticed from the output of this iteration that
concept extraction can be emphasised by extracting the instance data from SOAP
messages since they have information regarding service execution. Therefore, they

are a suitable venue for the instance data.

* It is significant at this stage to build concept hierarchies linking the extracted
concepts by taxonomic relations. It is observed from analysing the output from the
STE method that some patterns can successfully lead to specific relations. Therefore,
identifying patterns leading to concept hierarchies is an essential improvement to the

system and require a new iteration to be initiated.

4.7 Summary

This iteration was intended to develop a service term extraction method by applying
NLP techniques. The STE method is used to develop an initial SOLF that builds an
initial ontology model consisting of automatically extracted domain concepts, has
provided a conceptual understanding of IE constructs and their applicability on the OL,
by demonstrating the feasibility of automatic ontology acquisition especially when the
data sources are software artefacts like WSDL and XSD files. The contribution made
here is the development of an initial ontology learning method. The method applies IE
techniques, and starts by applying syntactic analysis as a pre-processing stage. The pre-
processing is then used to identify patterns and perform concepts extraction based on the
identified pattern. The process is automated by building a prototype application in

GATE that implements the steps identified in the framework.

Auhood Alfaries 92 of 189

As a result of processing WSDL and XSD files, a list of concepts are automatically
identified within these input files. The developed SOLF and the tool are evaluated by
comparing the outputs to other similar methods. The outcome of this iteration illustrates
that there is a sufficient amount of domain specific concepts in WSDL and XSD files
that can be effectively extracted automatically by the STE method, since manual
ontology acquisition from domain is a daunting task, engineers can benefit greatly from
the lexical ontology model produced by the proposed OL approach. Automatically
extracted service concepts can be used as a starting point in an ontology development
process. There is a need to further investigate how to extract relations between these
concepts, to allow for the automatic extraction of ontological relations between the
identified domain concepts. Identifying patterns for concept and relation extraction is

brought forward for the next Design Research iteration.

Auhood Alfaries 93 of 189

CHAPTER 5 -ITERATION 2

5.1 Introduction

Relation and concept taxonomy extraction forms two important layers of the ontology
learning layer cake (as detailed in Chapter 2). Most OL research targets relation learning
that is often from unstructured data sources. The aim of this iteration is to refine the
SOLF developed in Chapter 4 by extending the framework to include techniques for
concept taxonomy and relation extraction, where the research focus is to extract relations

from Web Service artefacts that are classified as semi-structured data sources.

Extending the pattern-based ontology learning in Chapter 4 to include pattern-based
relation learning can be achieved by applying a Structured Interpretation Patterns (SIP)
extraction process. Here patterns are identified based on the output produced by applying
the steps in Iteration 1, as presented in Chapter 4. Syntactically and semantically
analyzed documents produced by the previous iteration are used as input to the SIP
extraction process in this iteration. These SIP patterns are then integrated into the service
ontology-learning framework (SOLF), by applying specifically tailored transformation
rules to automatically produce ontological relations depicted in attributes and concept
taxonomies. SOLF is instantiated in an ontology learning tool that can be used to learn a

domain ontology model from Web Service artefacts.

This chapter is structured as follows. Section 5.2 provides the research design and the
research outputs of this iteration. Section 5.3 presents the building and development of
the design artefact (SOLF) — illustrating and detailing the newly incorporated relation
extraction technique; including a rigorous pattern extraction method and the
transformation rules development process followed by the last 2 steps of the framework;
ontology building and ontology validation. Section 5.4 describes the implemented SOLF
tool illustrating the application of each of the framework steps using a sample set of
financial Web Services. Section 5.5 illustrates the evaluation of the research outputs
using the appropriate evaluation metrics, with details of the experimental settings. The
learning outcome of this iteration is presented in section 5.6 and finally the chapter is

summarized in section 5.7.

Auhood Alfaries 94 of 189

5.2 Design Research and Output Artefacts

The purpose of this Design Research iteration is to build a relation extraction technique
and incorporate the technique in SOLF. Relation extraction involves finding semantic
relations between concepts. As noted in Chapter 2, two commonly applied Information
Extraction approaches, related to relation extraction, are rule-based and machine
learning IE systems. The first is based on the manual design of lexical patterns, which
relies on implementing pattern-matching algorithms over linguistic annotations. The
second type of IE system is the machine-learning system, in which the system is trained
over manually annotated data to automatically learn new rules. This chapter proposes a
method for the relation extraction task based on the first approach due to its simplicity
and accuracy when rules are designed for specific domains (Sabou, 2005b; Cimiano et

al., 2005).

Artefact
Quality 4

Iteration 3

o | vaidates | F

i S Improve =

Iteration 2 a SOLF 3
]
Extend SOLF ®
By Relation 2
Extraction =

Iteration 1

| v
Build

Core OL
Framework
Development

Build

—P
P Evaluat]

>
Time
Line

Figure 5-1: Research Iterations

Auhood Alfaries 95 of 189

5.2.1 Design Research Artefacts

This iteration introduces an automatic approach to apply pattern-based IE techniques to
learn semantic relations between concepts in the semi-structured Web Service data
sources (WSDL and XSD files), ultimately improving the developed framework (as
discussed in Chapter 4) to include the ontological relation extraction technique. To

achieve the aim of the research, this iteration executes the following steps (see Table 5-
1).

Table 5-1: Iteration Steps Input Qutput model

Steps Method Input Artefact Output Artefact
1. Identify
Structured SIP Extraction POS-Term SIP (Models)
Interpretation Process Model & (Method)
Patterns (SIP)
2. Develop TR
transformation Development SIP Models TRs (Models)
rules Process
3. Refine and
extend SOLF by .
. . Service Term Improved SOLF
noorporating Extraction OLD SOLF g

. Framework (Method)
Extraction
Process (REP)
4. Develop a
prototype tool that Build GATE Web Service Prototype Application
implements SOLF Application Artefacts (Instantiation)

5.3 Artefact Building and Development

This section presents the building and development of a refined SOLF as illustrated in
Figure 5-2. Each step in the SOLF is further described in the following subsections
which integrate STE and the Relation Extraction process to learn a domain ontology
model representing the underlying domain. The methodological framework using real
sample set of financial Web Services. The application of SOLF on the sample set of

services is detailed and demonstrated in the following subsections.

Auhood Alfaries 96 of 189

WSDL XSD
o | I |

Source Code Tokenizer

POS Tagger

g 3

Pattern Extraction Process

Preprocessing

Transformation Rule
Development

Relation
Extraction

Ontology Building

Ontology Validation

N

- Ontology

Figure 5-2: Service Ontology Learning Framework (SOLF)

5.3.1 Document Pre-processing Phase

In this opening phase, the Web Service artefacts are pre-processed by applying Natural
Language Processing (NLP) techniques in order to linguistically analyze the input
sources. This phase employs pre-processing as presented and discussed in Chapter 3.
The tokenizer splits these 297 semi-structured files (WSDL and XSD) in the same
manner as detailed in Alfaries, Bell & Lycett (2009). Application of these techniques
enables rule-based extraction methods to be used on textual sources (Maedche & Volz,
2001; Maedche & Staab, 2004; Gacitua, Sawyer & Rayson, 2008; Gacitua & Sawyer,
2008).

Auhood Alfaries 97 of 189

5.3.2 Relation Extraction

The relation extraction technique adopted here is a pattern based relation extraction that
targets both taxonomic and non-taxonomic relations. The technique requires the careful
identification of patterns and transformation rules as described in the following sub

sections.

Pattern Extraction Process

A particular relation can be automatically extracted by applying a set of structure
interpretation patterns to identify that relation. In this phase language engineers/analysts
identify relationships between concepts and identify associated patterns — known as
Structured Interpretation Patterns (SIP). SIP are found in element and method names
within the program code: They are similar to lexical syntactic patterns in IE in that they
are based on the syntactic analysis of the corpus and they differ in the fact that they are
not formed out of normal textual data sources. Here, patterns are identified using an
efficient automated process based on the frequency analysis of automatically extracted

terms.

The automated process is aimed at accurately deriving patterns (determined by pattern
recurrence) that, when applied in a rule-based OL algorithm, results in higher precision.
Identifying patterns extracted from semi-structured data sources, where domain

knowledge exists, adopts Hearst’s (1992) criteria and term frequency analysis.
Transformation Rule Development

This phase involves developing a set of Transformation Rules (TR), which are used to
identify an appropriate ontological element for each SIP identified in the pattern
extraction phase. For example, a subclass TR can be applied to map a term such as
“MatchingEnginePort” to concepts and relations in OWL ontology. An

illustration is provided in Figure 5-3.

Auhood Alfaries 98 of 189

WSDL SIP OWL Constructs

<part xmins:partns="http://www.w3.0rg/2001/

XMLSchema" " i
type="partns:string" Taken from "http://
name="result"> www.w3.org/TR/owl-

</part> o features/"
</message> NN-NN

<portType name="MatchingEnginePort"> 1- Class

opemfon names"doRaquest> | NNP-NNP-NNP | 2- Subclass of

<loperation> 3- Property

</portType> VB-NNP-NNP 4- SubpropertyOf

<binding type="tns:MatchingEnginePort" . 5- Domain

<soapibinding style="rpc" 6- Range
transport="http://schemas.xmlsoap.org/soap/

http">

_~ Engine
[—_
\subclass
| Port)
Matching " e
Engine has-a

Figure 5-3: WSDL to OWL SIP Mapping

It is important to emphasize that rule development is likely to lead to different mapping
possibilities depending on the underlying domain of study. TR development thus follows
an automated process that aims to ensure optimal accuracy and limits subjective
analysis. The process is capable of identifying the most appropriate mapping between

the patterns and the underlying ontological element.
5.3.3 Ontology Building

Ontology building involves bootstrapping SIP and TRs by applying an appropriate rule-
based pattern-matching algorithm. That algorithm searches for and annotates relations
and concepts in the input sources and creates the corresponding ontological elements

according to the TRs developed in the previous phase.

Auhood Alfaries 99 of 189

5.3.4 Ontology Validation

A domain expert is typically used to validate and modify the resulting domain ontology
and filter out any irrelevant relations or concepts. The user is then able to view the
automatically generated ontology and make any further changes or amendment to the

rules or ontology.

A prototype implementation of SOLF in action, described in the next section, is created
in GATE, General Architecture for Text Engineering (Cunningham et al., 2002), which
provided the required development environment for implementing the SOLF tool. A set
of three real-world Web Services taken from the financial domain are used for the
pattern extraction, testing and evaluation of the framework. The chosen services (and
their underlying descriptions) vary in complexity and style and are described in more

detail in Section 4.5.1.

5.4 Application and Implementation of SOLF

Here, the same set of Web Services introduced in section 4.5 is used for the pattern and
TR extraction process, where pre-processing is first performed consisting of two steps
that are both implemented in GATE as two processing resources in the application
pipeline. First, a WSDL tokenizer is developed to tokenize the input files into simple
tokens, dealing with compound words and tokenizing WS1 phrases, such as
“unwindTradeExtResponse”, into four distinct tokens instead of one. As Table 2

illustrates the output of a WSDL tokenizer step, where each word is identified as a token.

Table 5-2: Output of WSDL (WS1) Tokenizer Step

Annotation Features

Token {kind=word, length=6, orth=lowercase, string=unwind}
Token {kind=word, length=5, orth=upperlnitial, string=Trade}
Token {kind=word, length=3, orth=upperlnitial, string=Ext}
Token {kind=word, length=8, orth=upperinitial, string=Response}

Auhood Alfaries 100 of 189

The second step uses the ANNIE POS tagger (Cunningham et al., 2002), adding part of
speech tags to each token as a new feature. The output from this phase, as Table 5-3
illustrates, enables a pattern to be identified based on the category feature added here.
For example, the POS tag of each token in the phrase
“unwindTradeExtResponse” is added as a category feature, where Trade is
tagged as NNP, as it denotes a singular proper noun according to the ANNIE POS tagger.
Other tags such as NN and VB would have a different meaning, where the first is used
to denote a singular or mass noun and the second denotes a verb in its base form

(Cunningham et al., 2002).

Table 5-3: Output of the WSDL (WS1) POS Tagger

Annotation Features

Token {category=VB, kind=word, length=6, orth=lowercase, string=unwind}

Token {category=NNP, kind=word, length=5, orth=upperlnitial, string=Trade}

Token {category=NNP, kind=word, length=3, orth=upperlnitial, string=Ext}

Token {category=NNP, kind=word, length=8, orth=upperinitial,
string=Response}

5.4.1 Pattern Extraction

The approach adopted in order to improve the effectiveness of semi-structured artefact
processing is now introduced. Each WSDL file is lexically analyzed by the previous
phase, producing candidate terms with POS tags added to each term. Patterns are
identified using these POS tags (initially ordering patterns by frequency). Typically, the
identification of patterns starts by following a heuristic approach as detailed in previous
research (Hearst, 1992; Berland & Charniak, 1999; Guo et al., 2007; Sabou, 2005a). The
process is aimed at ensuring accuracy, specificity and coverage of patterns in a semi-
structured data source as in WSDL or XSD files. The rationale behind SIP is to identify
patterns that can be applied in a pattern matching based OL algorithm to extract suitable

concepts and their taxonomic and non-taxonomic relations.

Auhood Alfaries 101 of 189

Initially, patterns are discovered by querying the underlying text, using GATE’s ANNIC
plug-in. The tool provides enhanced querying of input files with more flexibility than a
simple search - especially if the files have been pre-processed, thereby allowing the
search to be based on part-of-speech tags. Automating the pattern extraction process
involves employing ANNIC and frequency analysis to produce a Web Service pattern
extraction model for each service. Here, ANNIC is used to perform a live analysis and
test each pattern directly on the input sources enabling the specificity and coverage to be

assessed almost instantly (Maynard, Li & Peters, 2008).

The pattern extraction process consists of three main steps that are applied to all of the
WSDL files that describe the services used for this experiment. Firstly, a generic query
was written in ANNIC that produces a sequence of compound words extracted from the
input sources. It is clearly noticeable that candidate domain concepts can be found in
element names in WSDL files. The obvious query that returns all possible patterns from
these element names would be a generic query that matches any sequence of words.
Following the pattern extraction process proposed in Chapter 4 has lead to the following

query, which is executed, on all Web Services as given below:

({Token.kind = word}) + 11.

This query extracts up to eleven tokens of type word (i.e. a sequence of letters followed
by a word terminator). The output of this step is used to assess the coverage and
preciseness of the overall extracted patterns by running the same query for each of the
Web Services. Since WSDL files are a form of software artefact, it became very obvious
from the preliminary analysis that candidate concepts and relations typically appear as a
sequence of word tokens, e.g. operation names such as SingleDayTrade or

VerifyTrade. All other text is XML related tags and symbols.

Secondly, the output from the first step is analysed to derive patterns corresponding to a
semantic structure interpretation for each service. The frequency analysis of patterns is
calculated as the number of occurrences of each pattern in each of the input sources.
Consequently, a pattern extraction model is required for each service and is detailed in
the next section. This is achieved by implementing a more specific query that produces

matches of almost all-possible candidate patterns. This is directed from the analysis of

Auhood Alfaries 102 of 189

the output from the previous step. The result set is then exported as an html file to be
filtered and analyzed in order to decide frequent patterns in each WSDL document. The

executed ANNIC query for this step is shown in Figure 5-4.

({Token.kind=="word",Token.category=="VB"} | {Token.kind=="word", Toke
n.category=="VBG"} | {Token.kind=="word", Token.category=="VBP"})* 3

({Token.kind=="word",Token.category=="NNP"} | {Token.kind=="word", Tok
en.category=="NN"} | {Token.kind=="word", Token.category=="NNS"})*3

Figure 5-4: ANNIC Pattern Extraction Query

This query returns matches to compound noun phrases, formed of any sequence of verbs
and nouns (up to three). For practicality of analysis and evaluation purposes it was
decided to limit the query in this step to find up to 3 tokens of each type (verb and noun).
In WSI, a total number of 29 unique patterns were found, some of which were
frequently repeated giving a total sum of 383 occurrences in the WSDL file. A snapshot
of the pattern extraction model for this service is produced in Table 5-4. In the matching
engine (WS2), the pattern extraction in Table 5-5 shows less complex and fewer patterns
- but similar in type to Web Service 1, patterns are found to be relatively frequent.
Processing the WSDL file for the matching engine Web Service produced a total of 83
phrases (patterns matched) and a total number of 18 patterns. The Credit service is
recognized to be a complex Web Service due to the fact that it contains more complex
and varied functionality, resulting in more complex patterns than the other two Web
Services. A phrase can be composed of up to 11 terms. The pattern extraction model for

this service is shown in Table 5-6.

Auhood Alfaries 103 of 189

Table 5-4: Web Service 1 Pattern Extraction Model

Filte“;ed Pattern Pattern Count
atches
tradecapture NN 67
VerifyTrade NNP+NNP 63
ICTML NNP 63
SingleDayTrade NNP+NNP+NNP 47
summitTrade NN+NNP 19
verifyTradeRequest VB+NNP+NNP 16
security policy NN+NN 16
DateRangeTrade NN+NNP+NNP 11
amend VB 10
CPAssign NNP+NN 10
GetTrade VB+NNP 9
services NNS 9
TradeldQuery NNP+NN+NNP 8
TimeTradeDate NNP+NNP+NN 6
mirrorTradeResponse VBP+NNP+NNP 4
GetCreditDefaultSwap VB+NNP+NNP+NNP 4
targetNamespace VBP+NNP 3
mature VBP 3
summitTradeld NN+NNP+NN 3
encodingStyle VBG+NN 2
Using VBG 2
UsingPolicy wsdl VBG+NNP+NN 1
UsingPolicy VBG+NNP 1
using security policy VBG+NN+NN 1
GetTradeAuditHistory VB+NNP+NNP+NN 1
address location VB+NN 1
ServiceName Name NNP+NN+NN 1
schema xmins NN+NNS 1
operation soapAction NN+NN+NNP 1
Total Matches 29 Total No. of patterns = 29 Sum = 383

Auhood Alfaries 104 of 189

Table 5-5: Web Service 2 Pattern Extraction Model

Auhood Alfaries

Sample Pattern Matches Pattern Frequency
NN 39
NNP 10
body namespace NN+NN 9
NNS 5
NNP+NNP 3
NN+NNP 3
VBG 2
NNP+NN 2
doRequestResponse VBP+NNP+NNP 1
VBP+NNP 1
VBP 1
encodingStyle VBG+NN 1
address location VB+NN 1
VB 1
definitions xmins NNS+NNS 1
MatchingEnginePort NNP+NNP+NNP 1
NN+NNS 1
portType name NN+NNP+NN 1

Total Matches = 18 Total No. of patterns = 18 Sum = 83

105 of 189

Table 5-6: Web Service 3 Pattern Extraction Model

Sample Pattern Matches Pattern Frequency
solservice NN 100
Upload NNP 93
EntityType NNP+NNP 61
NameCredit NN+NNP 53
UploadCurveException NNP+NNP+NNP 46
Bloombergld NNP+NN 41
CouponDate NN+NN 34
defaultObligationName NN+NNP+NN 16
NameCreditCurve NN+NNP+NNP 16
CreditCurveName NNP+NNP+NN 13
BloombergldResponse NNP+NN+NNP 12
obligations NNS 11
approvePortfolio VB+NNP 5
approveBasketCreditCurve VB+NNP+NNP+NNP 5
owning VBG 5
schema targetNamespace NN+NN+NNP 4
approveBasketCredit VB+NNP+NNP 4
owningTrader VBG+NNP 4
ObligationsDescribors NNS+NNP 3
approve VB 3
pendingCurvesRequest VBG+NNP+NNP 3
eportingGroupName NNP+NN 2
REDPairld NNP+NN+NN 2
docsEntityType NNS+NNP+NNP 2
SettleDate VB+NN 2
pendingRefEntitiesRequest | VBG+NNP+NNP+NNP 2
useParagonRatings NN+NNP+NNS 1
ParagonRatings NNP+NNS 1
approveSingleName VB+NNP+NN 1
approveSingleNameCredit VB+NNP+NN+NNP 1
target VBP 1
targetNamespace VBP+NNP 1
Total Matches =32 Total No; c;fzpatterns Sum=548

After analyzing each of the Web Services a Third step is undertaken, generalizing
patterns over the sample Web Services by deriving the average relative frequency of
each pattern across the three Web Services. Pattern frequency is used to ensure the
discovery of as many instances of a relation. Due to the varying size and nature of the
Web Services, a relative frequency is identified for the three Web Services for the most

frequent patterns.

Auhood Alfaries 106 of 189

Table 5-7: Relative Frequency of SIP Across Three Web Services

Frequency Relative-Frequency
Pattern wWs1 WS2 WSs3
wWs1 WS2 Ws3 Freq./33
Freq./229 Freq./25 5
NNP+NNP 63 3 61 27.51% 12.00% 18.21%
NN+NNP 19 3 53 8.30% 12.00% 15.82%
NNP+NNP+NNP 47 N/A 46 20.52% N/A 13.73%
NNP+NN 10 2 41 4.37% 8.00% 12.24%
NN-+NN 16 9 34 6.99% 36.00% 10.15%
NN+NNP+NN 0 N/A 16 N/A N/A 4.78%
NN+NNP+NNP 11 N/A 16 4.80% N/A 4.78%
NNP+NNP+NN 6 N/A 13 2.62% N/A 3.88%
NNP+NN+NNP 8 N/A 12 3.49% N/A 3.58%
VB+NNP 9 N/A 5 3.93% N/A 1.49%
VB+NNP+NNP 16 N/A N/A 6.99% N/A N/A
VBP+NNP+NNP 4 N/A N/A 1.75% N/A N/A
VB+NNP+NNP+NNP 4 N/A 5 1.75% N/A 1.49%

Table 5-7 summarizes the relative frequency. Due to the specificity of the financial
domain and to ensure coverage and generality of the SIP the following criteria are

adopted:

* The top 10 frequently occurring patterns are chosen.

» Patterns that occur only once are ignored.

* Patterns that represent a single term are eliminated since they only represent

concepts not relationships.

To select the top 10 frequent patterns, the relative pattern frequency is calculated across

the three Web Services according to the formula:

Auhood Alfaries 107 of 189

PO
Relative Pattern Frequency = ﬁ, where PO is the number of occurrences of a pattern
and TP is the total number of all patterns excluding the one-term pattern. Applying this
formula has resulted in generating a relative pattern frequency as illustrated in Table 5-7.
From this table the top patterns can then be selected for TR development as detailed in
the next step. This will ensure that the patterns selected lead to relation extraction based

on frequency analysis.
5.4.2 Transformation Rule Development

A particular ontological relation can be automatically extracted using the previously
identified patterns to represent a particular relation. The output of the previous pattern
extraction phase is analyzed and relations for each pattern are identified by the
researcher and validated by a domain expert. For this process, a pattern relation
identification model is generated for each of the patterns as exemplified in Table 5-8.
Deciding a suitable transformation rule for each pattern is critical. Transformation rules
are the result of implementing appropriate codified mappings between the pattern and
the ontological relation/element that can be extracted. To ensure accuracy of the

transformation rules, an automated extraction process is followed.

Table 5-8: Pattern Relation-Identification Model

Total

Pattern Matches Relation Pattern
Matches

portType name
ieldCurveld
efEntityName
currencylSOCode
issuerLegalName
guarantorLegalName (’;l\ll\lilgflflﬁ) NN+NNP+NN 16
couponCurrencyName
couponFreqgName
couponAccrualDate
industrySectorName
industrySectorld
parentLegalName
refEntityld
defaultObligationName
defaultObligationld
ratingTierld

This process involves identifying specific relations and finding patterns that indicate its

existence. The research targets the two popular ontological relations has-A and

Auhood Alfaries 108 of 189

subClass-of. Here taxonomic relations are identified as subclass relations,
representing the taxonomic layer of ontology models. Non-taxonomic relations are
relations that are used to represent a relation between two concepts, where one is the
domain and the other is the range (Cimiano, 2007, p.10). For the purpose of fully
automating the extraction process, a decision was made to identify those relations with

has-A relations and to associate the domain and range with the relation name.

There are some cases where more than one relation may apply, thus requiring a decision
by the researcher as to the best fit for the patterns. For example, “CreditCurve” is a
match for a pattern of type NNP-NNP, where both cases of relation may apply. The
decision as to best fit was made based on the work of Hearst (1992) on pattern discovery
criteria: that is, to choose the relation that covers most of the matches of a single pattern.
So for the case above, although both relations are valid, the one that most accurately

represents most matches is subclass (see Table 5-9).

Table 5-9: Sample Pattern-Relation Identification Model

Sample Matches Possible Relation Pattern
CreditCurve subClass
EntityRequest subClass/has-A
EntitiesResponse subClass/has-A
ApprovalException subClass
PendingEntity subClass
PortfolioCredit subClass NNP+NNP
IndexCredit subClass
ApproveBasket subClass
PendingCurves subClass
ApprovePortfolio subClass
ApproveSingle subClass
Approvelndex subClass
CurvesType has-A

A number of patterns are found to have conflicting relations for the matches they
represent. In some of these cases the conflicting terms are found to be non-domain terms
- typically these words are found to be Web Services keywords such as Request or
Response (e.g. “EntityRequest”) that matches the pattern NNP-NNP. Therefore,
some form of filtering is required to deal with this issue. For these cases, conflicting
relations for a single pattern are encountered, in which it is found that it most likely that

Auhood Alfaries 109 of 189

the match will be covered by a more complex pattern, for example, “CurveUpload” is
matched by 2 patterns - NNP-NNP, NNP-NNP-NNP in “CreditCurveUpload’. This
can be dealt with by processing the complex patterns first in order to ensure that these
concepts will be created according to the more appropriate rule (i.e. more complex
pattern). In order to apply these criteria for each of the three Web Services the following
transformation rules are identified. Ontological relations are manually identified by the
researcher and validated by a domain expert. The implemented transformation rules are

summarized in Table 5-10.

Table 5-10: Summarized Transformation Rules

Rule Pattern Relation Sample OWL Construct
R1 NN+NN Has-a Couponbate Coupon has-a Date
R2 NN+NNP+NN Has-a issuerLegalName Issuer has-a LegalName
R3 NNP+NNP+NNP | Has-a BasketCreditCurve | pagyet has-a
CreditCurve
R4 NNP+NNP subClass | CreditCurve 8reditCurve SubClassof
urve

5.4.3 Ontology Building

Now that concepts and relations have been identified, it is possible to produce an explicit
representation in ontological form. Ontology building is undertaken by implementing a
GATE pipeline (see Figure 5-5) consisting of a sequence of JAPE transducers that apply
a pattern-based matching algorithm to find and annotate concepts and relations, and then
create the appropriate OWL construct accordingly. A JAPE transducer is created for
each rule and another is created for each TR in the order illustrated in Figure 5-5. First a
JAPE transducer implements the first rule (R1), as illustrated in Figure 5-6, and finds
and annotates the pattern NN-NN with the appropriate tag. In this JAPE rule, domain
and range concepts are annotated as such and a has-A rule is created. Then, a second
JAPE Transducer performs the associated transformation rule, (see Figure 5-7) then
finds that where the object property is created to represent the has-A relation that two
OWL concepts are created, if they do not already exist, which are then associated with
the newly created relation, thereby resulting in an OWL ontology model to be produced

accordingly. See Appendix A for the remaining JAPE files.

Auhood Alfaries 110 of 189

GATE Pipeline Appin

Wsdl Tokenizer
ANNIE POS Tagger

JAPE Transducer
Rule1

JAPE Transducer

Transformation
Rule1
WSDL

JAPE Transducer
Rule4

JAPE Transducer
Transformation
Rule4

Figure 5-5: Application Pipeline Processing Steps

JAPE Rule 1

{({Token.kind==word, Token.category == NN}):domain
({Token.kind==word, Token.category == NN}):range

) thasA

——>

:hasA.RelationIden={domain=:domain.Token.string,range=:range.Token
on=

.string,relati
"hasA-Rulel"},
:domain.Domain = {rule="Rulel Clhas-aC2"},

:range.Range = {rule="Rulel Clhas-aC2"}

Figure 5-6: JAPE Rule 1

JAPE Transformation Rulel

Rule: TransRulel
({RelationIden}):relationIden

—-—>

:relationIden{Annotation theInstance =
(Annotation)relationIdenAnnots.iterator().next();

String kind = theInstance.getFeatures().get("domain").toString();
gate.creole.ontology.OURI classURI =

ontology.createOURI("http://example.com/classes#" + kind);

gate.creole.ontology.0OClass oClass = ontology.addOClass(classURI);}

Figure 5-7: JAPE Transformation Rule 1

Auhood Alfaries 111 of 189

The output produced in this phase is an OWL ontology consisting of concepts and
taxonomic relations (subClass) between class and subclass concepts. Non-taxonomic
relations (has-A) are also created between domain and range concepts using the GATE
Ontology API. A sample snapshot, as presented in Figure 5-8, is visualised using
Protégé 4.1, where straight arrow lines are used to symbolize taxonomic relations
between concepts and dotted arrow lines correspond to the has-A relation between

domain and range concepts

[epae] [OfficerCode]
* & EntityCredit / :
,
ey " * @ Thing
* & IndexCredit N : =
e . L * & PortfolioCredit

" BaskeCreat YT

- . CurveExt

Ouyabxis * @ DefaultSwap _
Lo]

Figure 5-8: A Sample of the Learned Domain Ontology Model

5.5 Evaluation

An instantiation of the framework was developed using the GATE GUI as a prototype
tool that enabled live evaluation of SOLF on the real set of Web Services (as presented

in Section 4.5.1).
5.5.1 SIP Extraction Process Evaluation

The evaluation is carried out to evaluate the generality of the produced patterns. Clearly,
the frequency of the patterns and their being apparent in all three Web Services implies
generality. Due to the different nature and complexity of the chosen Web Services and
each being from the same domain, this fact ensures that if a pattern appears at the top of
the list of each Web Service then it should be a generic pattern in other Web Services.

The Domain expert and ontology engineers are involved in this process to assist in the

Auhood Alfaries 112 of 189

pattern extraction process and to evaluate the results of relation identification for each

pattern in the TR step.

The SIP Patterns are evaluated for their coverage and preciseness, to ensure that the
patterns cover all available terms in the corpus. The output produced from stepl, as
discussed in Section 5.4.1, produces all possible phrases from the data source, and by
comparing that output with the output extracted using the identified patterns from step 1
should lead to the missing unidentified phrases that are available in the corpus. The
Domain expert and the ontology engineer are used to validate the patterns and the
extraction process thereby ensuring accuracy of the patterns. Applying the Brill tagger
(offered by GATE) enabled a fully automatic tagging of tokens leading to accurate
extraction. Although some inaccuracy occurred due to the fact that this POS tagger
usually uses context information to detect the POS of a word, here only compound terms
are identified as nouns and some nouns are identified as verbs. These are rare cases
detected by the domain expert during validation, e.g. as in targetNamespace where
target is tagged as a verb rather than as a noun. In such cases a minor error rate is
expected, as the POS tagger applied is an off-the-shelf one that is mainly developed for

textual sources.
5.5.2 Precision and Recall Evaluation Measures

As noted in Chapter 3, metrics for evaluating the learned ontology for its coverage and
accuracy are borrowed from the IE field. These metrics are typically applied to evaluate
automatically extracted information in comparison with manual extraction (Van
Rijsbergen, 1979). Recall is used to measure the number of correctly identified concepts
by the system for example, if 10 concepts are identified manually in the corpus and the
system has automatically identified 7 of these 10 then 70% would be the recall figure.
An ideal benchmark scenario for recall calculation is to use either a gold standard
ontology (existing ontology) or a domain expert to extract concepts and relations
manually from the input sources upfront (pre-create an ontology). Evaluation using a
gold standard and automatically produced ontology can be misleading however (Sabou,
2005). Typically, an exact match is employed to compare and produce the results as a
binary decision of correctness. When attempting a complex business area (such as that

found in global banking) it is not possible to deploy a domain expert on all input sources.

Auhood Alfaries 113 of 189

This is due in part to the size of the input sources (in this case three software artefact
files consisting of over 1200 lines of code). It is feasible, however, to utilize domain
expert knowledge to evaluate concepts and relations produced by SOLF. Therefore, a
hybrid approach has been adopted in order to better account for the domain complexity
and availability of evaluative artefacts. The domain expert participates in evaluating the
extracted concepts and relations, combined with a similarity-based evaluation for
calculating the recall metric, between Reference (manually extracted concepts) and
Response (the output of SOLF) the reference ontology is one that was produced
manually for the same Web Services by previous work (Bell, Ludwig & Lycett, 2007).

It is noted that only four patterns are implemented due to time restrictions, which has
limited the coverage of the produced model to cover fewer domain concepts than there
are available. Consequently, it would only be reasonable to compare the learned
ontology with a similar ontology covering the same part of the input sources. Therefore,
the reference ontology is used to calculate pattern recall rather than a general recall. The
evaluation here is designed to create the domain ontology in an incremental iterative
manner. First, an ontology is created by executing the first pattern then the recall of this
is calculated forming the first pattern recall. A second run is to incorporate the second
pattern extraction to the first ontology and again the recall for the first and second
pattern is calculated and so on. Adding one pattern extraction at a time, and calculating
the recall each time a new pattern is added leads to evaluate how recall increases, as

more patterns are included in the extraction process.

Table 5-11: Pattern Recall Summary

Patterns Recall
Pattern 1 4.8%
Pattern 1&2 9.1%
Pattern 1,2&3 20.6%
Pattern 1,2,3&4 30.3%

Auhood Alfaries 114 of 189

Pattern Recall

Recall
\

Patterns

Figure 5-9: Pattern Recall Chart

Pattern recall is used to measure the number of concepts extracted from the corpus using
the 4 patterns described earlier. Unsurprisingly, it is clear from the results presented in
Figure 5-9 and Table 5-11 that recall increased as more patterns are added to the
extraction process. Pattern 1 extracted 4.8% of the correct concepts, Pattern 2 increased
the number of correct concepts to 9.1%, Pattern 3 further increased the number of
concepts to 20.6% and lastly Pattern 4 reached 30.3% of correct domain concepts. It is
clearly evident that Patterns 3 and 4 produced more concepts than Patterns 1 and 2; this
could be related to the fact that patterns for implementation are randomly chosen for
running the experiment on the four implemented rules. An interesting observation is that
patterns that generate high recall might not necessarily generate high precision, and vice
versa. In examining pattern recall and precision, it is clear that pattern-based ontology-
learning leads to higher precision and lower recall. It is likely that the results would
improve by implementing additional patterns to increase overall recall. It should be
noted, however, that this research has targeted higher frequency patterns. More
complex, less frequent patterns may yield some interesting results, i.e increased

precision.

Auhood Alfaries 115 of 189

Table 5-12: Summarized Results for Precision

Domain Range SuperClass SubClass
Total 55 67 39 56
Concepts
Correct 43 41 20 37
Concepts
Precision 78.18 61.19 51.28 66.07
%

Concept-Relation Precision

Concept category

Precision

Figure 5-10: Concept-Relation Precision Chart

The results produced for this purpose are a list of domain and range concepts that
represent has-A relations and a further list of super-class and sub-class relations. The
domain expert then scored each list to represent domain, range, super- and sub- classes,
identifying the correct and incorrect concepts in each list. See Table 5-12 and Figure 5-

10 for the summarized results (See Appendix D for full list of scored concepts).

Running the prototype application over the three Web Services also revealed some
insights regarding eliminating some of the spurious matches that might lead to WSDL

related terms rather than domain terms. For example, the extracted pattern NN-NN was

Auhood Alfaries 116 of 189

produced as a result of <wsdl:part name="amendTradeRequest"...> - part

name being detected. These WSDL specific concepts were discarded.
5.5.3 Qualitative Evaluation

A qualitative evaluation for OL (Sabou, 2005) is one that assesses the sufficiency of
ontology as a conceptualization of a certain domain. In addition to the quantitative
evaluation, several interesting insights have arisen from deriving and executing the
pattern extraction process (and subsequently confirmed by a domain expert during the
quantitative evaluation). Due to the complex nature and complexity of the chosen Web
Services and the domain in which they reside, commonality in domain terminology
ensures that if a pattern appears popular in each Web Service then it is likely to be a
generic pattern in other Web Services. The systematic way in which patterns were
derived ensures an ongoing evaluative process. The frequency of each pattern with

distinct Web Services also indicates a measure of generality.

The extraction process was an iterative evaluative process in its formation from
undertaking the process steps. Patterns are evaluated for their coverage and preciseness
as they are identified, in order to balance between specificity and coverage of patterns.
ANNIC has enabled the testing and assessment of pattern coverage almost
instantaneously (allowing micro-level tests to drive process adaption). To ensure the
patterns cover all available relations in the corpus, the output produced from initial
queries produces all possible phrases from the data sources. Comparing this output with
the output extracted using the identified patterns has lead to the identification of missing

phrases that are available within the corpus.

The precision of concept extraction achieved here (78%) is considered promising when
compared to the results of Sabou (2005), who achieved up to 54% extractable concepts
from service description in Javadoc files. It would seem natural, however, to combine
methods in a complementary manner - both the methods themselves and the source
software artefacts (WSDL, Javadoc, Schema etc.). It is claimed that pattern-based
extraction approaches typically achieve low recall and higher precision (Cimiano et al.,
2005). The approach presented here has the potential to overcome the low recall
drawback due to the fact that patterns are automatically extracted by applying frequency

analysis to ensure patterns with higher frequency are used for relation extraction.

Auhood Alfaries 117 of 189

5.6 Specifying the Learning

The learning outcome of this iteration is as follows:

It is observed that patterns that appeared with high frequency in large WSDL files (i.e.
those that did not have an accompanying XSD) did not appear at all in other Web
Services, which raises an important question about the effect of the type and size of the
WSDL on the pattern extraction process (weighting of patterns), and more specifically
on the correlation between frequency/popularity and precision. This can be addressed by
applying the extracted patterns on another set of Web Services (including different types
of WSDL and including XSD files). Investigating the effect of the WSDL file size and

style on the pattern extraction process is therefore and important area to investigate.

The existence of one pattern as part of another more complex pattern, i.e. NNP-NNP is
part of NNP-NNP-NNP, which might lead to having to make a choice as to which one is
more appropriate. Hence, the observation in TR development, that when a pattern
contradicts a relation suitable for other matches of the same pattern, leads to the fact that
the pattern either consists of WSDL keywords rather than domain concept, or the fact

that the pattern is part of another more complex pattern.

In order to take this research forward, the following issues initiates a new Design

Research iteration:

» The generality of the extracted SIP patterns and TRs across different domain needs
further examination. i.e. test the applicability of SOLF and the extracted patterns

from Iteration 2 on different domains using a sample set of Web Services.

= More complex patterns need to be included. In this iteration only up to 3-term
patterns were extracted. It is established that in more complex services patterns of up
to 11 terms exist. Complex patterns have less frequency and might therefore reveal
more important/specific relations. Including more complex patterns, as part of the

learning process might enable wider coverage of relations and concepts.

= The possibility of generalizing existing patterns needs further investigation, i.e. NN,
NNP and NNS are all different types of nouns. Is it possible to include these under the

one category of type NOUN? - i.e. will the same patterns give the same results?

Auhood Alfaries 118 of 189

» Identifying more domain specific relations needs further analyses and investigation.
Relations identified are: subclass and has-A relations. Is it possible to define
patterns that will lead to more specific relations? Will more complex patterns lead to

more specific relations?

» The ability to incorporate WSDL structure with SOLF, to identifying and add new
domain specific relations needs to be tested. Is it possible to use the WSDL structure
to lead to other relations?, e.g. to attribute the relation has-A between complex

types and sub-elements.

5.7 Summary

The work here presents a Service Ontology Learning Framework (SOLF), the core
aspect of which extracts Structured Interpretation Patterns (SIP). These patterns are used
to automate the acquisition of ontological concepts and the relations between those
concepts. Identifying patterns is an important step that requires rigour, and the use of the
framework ensures accuracy, generality and coverage of SIP. Three real-world Web
Services from global banking systems were used for pattern extraction and rule
development as the means to evaluate the framework. The output of the SOLF process is
an automatically generated OWL domain ontology, which presents a number of financial

domain concepts extracted from the Web Services.

It can be seen that the automatically learned ontology, moves beyond basic taxonomy —
extracting and relating concepts at a number of levels. Evaluation of applying SOLF of
the set of services used for pattern extraction raised a number of issues that direct further
improvements. More importantly, the precision achieved by the Domain expert
evaluation directs the next framework improvement towards testing the generality of the
extracted SIP and TRs across other domains. This requires a applying a more rigorous

independent evaluation measures to prove the generality and effectiveness of SOLF.

Auhood Alfaries 119 of 189

CHAPTER 6 - ITERATION 3

6.1 Introduction

Automatically extracting domain specific non-taxonomic relations is one of the
challenging tasks of OL (Weichselbraun, Wohlgenannt & Scharl, 2010; Snow, Jurafsky
& Ng, 2006; Manine, Alponse & Bessieres, P, 2008). The results achieved in the last
iteration from applying the SOLF framework on the sample set of financial Web
Services further developed a SOLF tool, a set of SIP patterns and transformation rules
that can be applied to extract taxonomic and non-taxonomic relations. The automatically
extracted SIP patterns from WSDL files of the sample set of services. This chapter aims
at proving SOLF and generalizing the SIP patterns and the transformation rules by
validating and evaluating their applicability across other domains. This involves a
thorough evaluation of the taxonomic and non-taxonomic relation extraction, requiring a
set of carefully selected Web Services with gold standard ontology specifically built for
those services. The literature, as discussed in Chapter 3 presents theoretical definitions
for performing non-taxonomic evaluation measures, such as the taxonomic and non-
taxonomic overlap, but lacks the illustration of how these measures can be practically
applied (Velardi et al., 2005; Cimiano, 2007; Dellschaft & Staab, 2008). This iteration

contributes a detailed practical evaluation addressing the different layers of ontology.

The chapter is structured as follows. Section 6.2 presents how Design Research is
applied to execute this iteration as two evaluative mini iterations. Section 6.3 describes
the first mini iteration that applies a gold standard based evaluation on the dataset. A
refined and extended SOLF is presented that incorporates new relations extraction
technique. Then evaluation measures are applied to evaluate different aspects of the
ontology models. Section 6.4 presents the domain expert evaluation of the learned
models. The learning outcome of this iteration is discussed in section 6.5. Finally the

chapter summary is presented in Section 6.6.

Auhood Alfaries 120 of 189

6.2 Design Research and Output Artefacts

The learning outcome of Chapter 5 has directed the SOLF improvement in this iteration
towards proving its efficiency across other domains. In essence providing the theoretical
ground for the research to illustrate how and why the approach proposed in the SOLF
can provide an efficient solution to the problem space. The application of SOLF on the
set of Web Services from which the patterns and transformation rules were extracted,
achieved the promising precision cover of up to 79% in the previous iteration.
Intuitively, in order to take this research to the next level, it is vital to validate the
generality of the SOLF tool and the developed SIP patterns by understanding how and
why they are applicable across other domains. This iteration aims at developing and
applying a more rigorous evaluation framework that satisfies OL evaluation criteria as
suggested by Dellschaft & Staab (2008). An iterative Design Research process is aimed
at developing a thorough evaluation of the research. As Ontology learning is considered
a recent research area where the knowledge base is still raw, the evaluation poses a
challenging task as the knowledge base lacks well-defined practical evaluation methods.
Therefore, Design Research iterative process forms a suitable method to expose and
develop a practical and thorough evaluation method. The process executed here involves
two mini Design Research iterations. The purpose of this iteration as a whole is to
effectively utilize SOLF to learn domain ontology models from new sets of Web
Services. Evaluating the OL approach is achieved by applying rigorous evaluation

measures and methods from the knowledge base as presented in Chapter 3.

The first mini iteration executes a build and evaluate cycle suggesting new refinement to
the research artefacts (SOLF and patterns). Two sets of Web Services (Books and
Financial domains) are operated on by SOLF, producing two automatically built domain
models. The sets of services are accompanied by manually built gold standard ontology
(GSO). Those GSO models are developed specifically for the accompanying service by
other research projects (ISLAB and LSDIS). In both cases the GSO are built for the task
of service matching. A gold standard based evaluation method is applied to evaluate the
automatically built SOLF ontology (SOLFO). The evaluation criteria are to determine
the preciseness (accuracy) and coverage of the learned SOLF ontology at three different
levels; (1) Lexical Layer, (2) Taxonomic layer and (3) Non-taxonomic layer. The

evaluation metrics of precision and recall are again applied. Precision and recall metrics

Auhood Alfaries 121 of 189

are applied to evaluate each of the three layers of the SOLFO model. For example
lexical precision is implemented to evaluate the accuracy of the lexical layer of SOLFO
as detailed in the following section. As there is no clearly defined practical way of
calculating those measures this iteration makes another Design Research contribution in

the form of an evaluation model for the Non-taxonomic relation evaluation.

Artefact
Quality 4

Iteration 3

Validate &
Improve
SOLF

Build
Evaluate

Iteration 2

.

o | ExtendSOLF| &
5 By Relation =
@ Extraction Z
Iteration 1
] Core OL %
E Framework 2
Development D

>
-

Time
Line

Figure 6-1: Overall Design Research Iterations Framework

6.3 SOLF Refinement and Gold Standard Evaluation

A preliminary analysis of applying the SOLF on the new sets of services has identified
the need to extend it to adopt relations embedded in the WSDL structure. Hence, the first
improvement to SOLF would be to allow for amending the pattern extraction and
transformation rules to incorporate the WSDL structure. Hence, the final refined SOLF

is illustrated in Figure 6-2.

Auhood Alfaries 122 of 189

Source Code Tokenizer

POS Tagger

E 2

Pattern Extraction Process

Preprocessing

Relation
Extraction

Transformation Rule
Development

¥

Ontology Building

Pattern Amendement and
Pruning

N

Ontology
=

Building &
Validation

Figure 6-2: Service Ontology Learning Framework

The new improved steps are discussed in more detail in the next subsections, where the
first improvement is to improve the validate ontology step and refine the patterns step to
allow new patterns to be developed and added as required and as decided by the domain
engineer. The second improvement is to employ an ontology pruning step allowing
domain expert interaction to improve and finalize the ontology. The final refined
framework can be summarized in five main phases, as illustrated in Table 6-1. The table

presents a formal definition of the output of each phase.

Auhood Alfaries 123 of 189

Table 6-1: Formal Definition of SOLF Output Phases

Phase Name Description Output

1 Pre-processing | Apply linguistic T is a set of tokens, that is
Phase techniques on Web T ={t: tis tagged with POS}.

Service artifacts.
C={c: cis a concept C O} where O
is an ontology.

2 Pattern Automated Structure S={s: s is a pattern for a concept ¢
Extraction Interpretation Pattern (where ¢ € C}.

Extraction Process.

3 Transformation | Develop TR={f:S— R}where R={r: 4 a
Rule transformationrules | term with two concept ¢,,c, such
Development for each pattern. thatc, Rc,}.

4 Ontology Apply rule based O0=(C,<,,R) Asdefined by
Building pattern-matching Cimiano (2007),

algorithm to Where <, is a semi-upper lattice on
automatically build C with top element root,, called
ontology. concept hierarchy or taxonomy.

5 Ontology Allow user to prune Oy={0: O is user pruned}.
Validation and and modify ontology.

Pruning

6.3.1 Validate Ontology and Amend Patterns

Incorporating ‘validate and amend’ step in SOLF enables going back to pattern
extraction step to add new patterns. The pipeline can be regenerated to incorporate new
patterns and rules to extract new concepts and relations and add them to the ontology
model. This step is necessary to allow for the flexibility of the framework and enable the
ontology engineer to go back to the pattern extraction phase to add new patterns and
create new TR. Adding this step after the ontology building allows the developer to
validate the ontology first and consider adding new patterns or removing rules if

necessary.
6.3.2 Incorporating WSDL Structure in SOLF

An initial pattern analysis was performed using the ANNIC GATE plugin to get an
insight into discovering links between the patterns and structure. The WSDL structure is
therefore analysed to discover new relations. The obvious pattern structure is the
complex type structure, which might reveal an object property relation linking domain
and range concepts with a has-A relation. This resulted in the identification of new

patterns and creation of the necessary JAPE code to identify and create the has-A

Auhood Alfaries 124 of 189

relation as an OWL object property. The new relation links complex types and their
inner elements, e.g. MarketNews and Time as illustrated in Figure 6-3. In some Web
Services where complex patterns are used less frequently, the WSDL structure, between
the complex type name and the sequence elements, revealed an important relation

addition to SIP extractions.

\%

<s:complexType name="MarketNews"
<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="Headline"/>
<s:element minOccurs="0" maxOccurs="1" name="Time"/>
<s:element minOccurs="0" maxOccurs="1" name="Source" />
<s:element minOccurs="0" maxOccurs="1" name="Url"/>
<s:element minOccurs="0" maxOccurs="1" name="Summary"/>

</s:sequence>
</s:complexType>

Figure 6-3: Financial WSDL Code Sample

The adding of JAPE transducers to implement patterns to map the complex type
structural aspects of WSDL is implemented as an important extension of the relation
extraction phase. This involves creating new constructs to parse the WSDL files and
annotate complex types and attributes as Domain and Range concepts. This is achieved
by adding the necessary JAPE rules to the SOLF tool. The first JAPE rule is designed to
first parse the WSDL files and identify the name attribute in the complex type tag as the
domain concept, and then identify the inner elements name as the range of the relation.

The JAPE rules added to SOLF tool are illustrated in Figure 6-4.

Auhood Alfaries 125 of 189

Phase: ComplexRelation

Input: Token Tokens COTag InnerElement SeqTag
Options: control = applet

Macro: EndElementTag

Rule: fullElementTag

Priority: 50

(
//Finds the name attribute of the complexType tag

((({COTag}
{Token.string == "name"}
{Token.string == "="}
{Token.kind == punctuation})
({Token.kind == word}):className
({Token.kind == punctuation}
{Token.string == ">"})
({Token.kind == punctuation}
{Token.string == ">"})
({coTag}
{Token.string == ">"})))
({SeqTag})
// This looks for the first element.
(({InnerElement}
({Token.kind == word}
) :telementAttl
{Token.kind == punctuation}

(EndElementTag)?
minmax)?

(

({Token.kind == punctuation})?

({Token.string == "/"})

({Token.string == ">"})

)?
y:attl
) :complexRelation
-—>
:complexRelation.ComplexRelaion = {rule = "ComplexRelation", Class =
:className.Token.string , Attribute=:elementAttl.Token.string },
tattl.Attl ={ Class = :className.Token.string,

Attribute=:elementAttl.Token.string},

Figure 6-4: Sample Complex Relation JAPE Rule

Another JAPE rule is added to perform the transformation from the complex type

(WSDL structure) in order to formulate an owl object property representing the has-A

relation between the complex type name attribute and the inner elements. The developed

rule is presented in Figure 6-5.

Auhood Alfaries 126 of 189

Phase: RuleNNNN
Input: Attl
Options: control = applet
// Complex Type Transformation Rule
Rule: ComplxTypeTR
({Attl}):relationIden
—-—>
:relationIden{
System.err.println("Hello ComplexTypeTransRule");
Annotation theInstance =
(Annotation)relationIdenAnnots.iterator().next();
//get the domain and range strings from the features of Annot
String domain =
theInstance.getFeatures().get("Class").toString();
String range =
theInstance.getFeatures().get("Attribute").toString();
String hasA = "-Has-A-" ;
String Oproperty = domain + hasA + range;
// Create URI for domain and range 24
gate.creole.ontology.OURI domclassURI =
ontology.createOURI("http://example.com/classes#" + domain);
gate.creole.ontology.OURI rngclassURI =
ontology.createOURI("http://example.com/classes#" + range);
// Add domain and range concept to ontology
gate.creole.ontology.0OClass Domain =
ontology.addOClass(domclassURI);
gate.creole.ontology.0OClass Range
ontology.addOClass(rngclassURI);
//check if property exist then
gate.creole.ontology.ObjectProperty xxx =
ontology.getObjectProperty(ontology.createOURI("http://example.com/c
lasses#" + Oproperty));
if (xxx==null)

{

// Create Domain and Range Sets and add Domain and Range
classes

Set<gate.creole.ontology.OClass> theDomain = new
HashSet<gate.creole.ontology.OClass>();
Set<gate.creole.ontology.OClass> theRange = new

HashSet<gate.creole.ontology.OClass>();

theDomain.add(Domain); // the class you have for the
domain

theRange.add(Range) ; // the class you have for the range

ontology.addObjectProperty (
// create the URI for the new property:
ontology.createOURI("http://example.com/classes#" +

Oproperty),

theDomain,
theRange);
}
else
{ Set<gate.creole.ontology.OResource> theDomain=

xxX.getDomain();
theDomain.add(Domain);
Set<gate.creole.ontology.OResource> theRange= xxx.getRange();
theRange.add(Range) ;

System.err.println("hello object property has A exist");

b}

Figure 6-5: Complex Relation Transformation Rule

Auhood Alfaries 127 of 189

A sample ontology model is automatically built, as illustrated in Figure 6-6, using
SOLF. The model illustrates the integration achieved by the improved framework; SOLF
integrates the SIP pattern based extraction techniques and structural techniques,
revealing valuable structural additions between the domain concepts. Here, ontology
engineers can benefit from the variety of automatically extracted relations from the
structured WS artifacts, where both taxonomic and non-taxonomic relations are
automatically extracted and added to the domain ontology representing the underlying
Web Services. Here, as the diagram illustrates, the concept News and its subclasses
StockNews and MarketNews are successfully extracted using SIP patterns.
Extending SOLF to cater for the structural aspect of WSDL and XSD resulted in new
object properties (has-A) being added to the ontology model. These additions are
illustrated by the new dotted arrows linking MarketNews to new concepts like
Source, Time and Headline. Another interesting observation from the sample
produced in Figure 6-6, is that new concepts are revealed that are domain specific and
subject to deep domain expert understanding of the underlying domain. For example,
High is a domain concept in the financial domain that represent different types of
subclasses. The concept and its subclasses, such as DayHigh and WeekHigh, are

automatically learned by SOLF.

[@ QuoteHigh l
— /
["" o QuoteData I /
- A [o WeekHigh]
Tl =z
i e
oo b 8 "
/ E & = DayHigh
A
/// S 7’--'—’
- W il _[f GrowthHigh]
ot

Figure 6-6: Sample SOLF Ontology model (Group 2)

Auhood Alfaries 128 of 189

6.3.3 Ontology Pruning

Validation of the learned model requires the expertise of both domain experts and
ontology engineers. The process presents an initial domain ontology model consisting of
both lexical and structural layers to the domain expert for manual validation.
Importantly, this phase enables the expert feedback to direct the restructuring of the
pipeline by the ontology engineer where necessary. An Ontology Pruning step is needed
to allow the ontology engineers to filter out any irrelevant concepts or relations. Domain
experts can apply this step in either a strict or lenient manner. The pruning strategy
applied here is a strategy that eliminates concepts that are not domain specific, such as
Web Service keywords or XML tags. It is noted by the domain expert that there are
duplication in concepts. Where these concepts differ only spelling or abbreviation. These
concepts can only be removed if the domain expert decides that they refer to the same
concept. A basic pruning step would include eliminating the duplicate concepts that vary
in case letters, such as Publisher and publisher. It is important that the pruning step is
carefully executed in order to allow the domain expert to learn synonyms and concept

extensions during the pruning step.
6.3.4 Experimental Data and Evaluation

The evaluation of the first mini-iteration is to measure the learned model for accuracy
and coverage of the underlying domain. The evaluation of this iteration follows a gold
standard based evaluation method as noted in Section 6.2. This type of evaluation is
typically based on performing a manual comparison between the learned ontology
(SOLFO) and the gold standard ontology (GSO) (Dellschaft & Staab, 2008). The
evaluation is performed at three different layers, as applied and detailed in the next
subsections. The measures applied here are carefully designed to be independent of each

other, based on Dellschaft & Staab (2008) suggested evaluation criteria.

Auhood Alfaries 129 of 189

* @ CalcEuroOptionP /
iceCall
/ * & CalcAmericanOpt
\ s ionPriceCall
* & CalcAmericanOpt N / A=
ionPricePut N AP
= | [T *+ & CalcEuroOptionP
- ricePut

b \\
e A 7 \\ ¥ & Headline l

- =T
- M % MarketNews

A
4 — @ XigniteNews
A 0 ReutersMarket

/
* @ Lookupltem

Figure 6-7: Sample of the Financial Learned Ontology (SOLFO)

An ideal scenario in which to perform the experiment is to be able to find real sets of
services with accompanying Gold standards ontology models built specifically to
represent the services. Since ontology development is still a difficult and expensive task
these sets are not widely available. Two sets of services from different domains (Books
and Financial) are used for this experiment because they were made available by
previous research. Each set consists of 5 Web Services and a gold standard ontology
model built for those Web Services. The steps followed to prepare the data for the

evaluation are:
= Create a corpus consisting of 5 Web Services in GATE

* Run the SOLF application with the existing SIP and TRs produced from the previous

iteration. (Here, use original pipeline first, then add the complex relation JAPE files)
= Save the automatically learned ontology by the system as an owl file.

= Create a table that consists of two columns, representing the Gold standard ontology
(GSO) and the SOLF ontology (SOLFO) respectively. This step ensures a practical

way of managing the evaluation of the different layers of the ontology model.

Auhood Alfaries 130 of 189

The first data set (Groupl) represents 5 Books Services and an accompanying GSO the
sample set of services and the ontology are provided in Appendix C. The second data set
(Group 2) represents 5 stock exchange financial services and an accompanying ontology,
again as a GSO (see Appendix C for the set of web financial services and the GSO). It is
clearly indicated in the literature that two ontologies can be compared at three different
levels: (1) lexical layer evaluation, (2) taxonomic relation evaluation and (3) non-
taxonomic evaluation. The first is used to determine the similarity of the two ontologies
at the lexicon level (concepts). The second and third are used to determine the structural
similarity of the two ontologies. In the following section precision and recall are used to
indicate the accuracy and coverage of the learned ontology (SOLFO) by comparing it to
the gold standard ontology (GSO).

Generally, the precision and recall metrics are used to measure the performance of the
OL approach, where precision is used to judge the accuracy of the learned ontology
model and recall is used to judge the coverage of the domain by the learned ontology
model as there is no exact method or guidelines for how to actually calculate those
measures. The suggested method by Dellschaft & Staab (2008) is that the gold standard
based evaluation is the ideal scenario. In the next subsections the GSO is used as a

benchmark for scoring the accuracy of concepts and relations.
6.3.5 Domain Coverage - Lexical Layer

SOLF performance is determined by evaluating the domain coverage of the lexical layer.
The lexical precision (LP) and lexical recall (LR) are calculated according to the

following definition as adopted from Dellschaft & Staab (2008):

‘CSOLFO N CGSO ‘

LP(Os0170:0550) = (1)

‘CSOLF (] ’

Where O is an ontology, C is the set of concepts, SOLFO is the ontology learned by
SOLF and GSO is the gold standard ontology.

‘CSOLFO N C‘GSO ‘

LR(OSOLFO’OGSO) = ‘ C |
GSO (2)

Auhood Alfaries 131 of 189

The F1 measure is normally used to give a summarized value of precision and recall.

2% LP(Oso1r0+0550) ™ LR(O50,10,0650)
LP(Oy41r0+0650) + LR(Oy0, 10,0550) (3)

F I(OSOLFO’OGSO) =

The comparison is carried out manually as the sample evaluation model illustrates in
Figure 6-8. This model is used to identify correct, incorrect and total number of concepts
in each model. Then the precision and recall are produced accordingly. The model is
used to manually analyse each concept in the learned ontology against its existence in
the Gold Standard Ontology (GSO). As the figure illustrates, the first and second
columns represent the list of pruned SOLFO concepts. The third column represents the
set of concepts from the GSO. Here, it is important to understand that the lexical layer
represents the set of all concepts of an ontology, including super and subclasses
regardless of their position in the concept hierarchy. For illustration purposes the

subclass concepts are right justified in each column.

Auhood Alfaries 132 of 189

Lexical Layer Evaluation Model

Pruned SOLFO Pruned SOLF Continued GSO
Account infoResponse |Availability
subAccount |Search Book
Array KeywordSearch [Category
BookArray BookService |Chapter
ChapterArray [ServiceWSS CoverImage
Author Status Currency
Availability Title Description
Binding Type DiscountPercent
Book Vendorprice Editor
LookyBook infoVendorprice |1d
BookInfoResponseType BookInfo ImageUrl!
Chapter BookInfoVendorprice Inventory
CustomerAccount format KeywordSearch
CustomerSubAccount imgUrl Marc
Default name Money
FormDefault|numpages Name
DiscountPrice page Ontology
DoKeywordSearch price PagesNumber
DoKeywordSearchEx pricePrefix PricePrefix
Edition Property
GetBookInforByISBN siteUrl PublicationDate
GetBookInforByISBNRespons{source PublicationPlace
GetBookInforByISBNResult [timestamp Restriction
Getlnfo toc Seq
ISBN ShortDescription
SiteUrl
InfoService Source
Information Status
Keyword String
LoginName Author
Looky DeliveryDate
Marc edition
Password FiveStarRating
LoginPassword Format
Place Isbn
PublicationPlace Keyword
PublicationDate Price
Publisher PublicationData
Request Publisher
BookRequest Title
CategoryRequest Subject
Response TableOfContents
BookResponse TimeStamp
CategoryResponse Vendor

Total Concepts = 66

Total Concepts = 44

Figure 6-8: Sample of Lexical Layer Evaluation Model

Applying the LP and LR, as defined in formula (1) - (3), on the sets of Web Services
chosen for the experiment, produced the results that are summarized in Table 6-2 (See
appendix D for evaluation sheets). The results illustrate a lexical precision of 37% and
lexical recall of 57% for the group 1 (Books) Web Services. The results are much
improved for the group 2 (Financial) Web Services. As with prior iterations, it is

possible that this is an indication that implementing more patterns would yield higher

recall.

Auhood Alfaries

133 of 189

The low precision can be clearly justified by a number of reasons:

More concepts appear in the SOLFO than the GSO, highlighting the question of whether
the GSO has all of the possible domain concepts, i.e. there could be several concepts that
are correct but not counted as such, because they do not exist in the GSO. It can be clear
that the SOLFO has brought new concepts from the input sources that were not present
in the GSO. These new concepts could be important new additions that have been
missed by the GSO. For example in the book services data set, LoginName and
Customeraccount are concepts that exist only in SOLFO (See Figure 6-8 shown
highlighted in blue text). Nevertheless they appear to be valid domain concepts.
Therefore, another method of evaluation may be viable to judge the accuracy of those

concepts, which might result in an increased precision value.

Some concepts that appear in SOLFO can lead to service functionality or functional
hierarchy as addressed by other research (Sabou, 2005) such as DoKeywordSearch or
GetBookInfor. This is clearly not the aim of the learning algorithm proposed here,
which is to build a domain ontology rather than a service functionality ontology.

Nonetheless this observation can lead to further research in that direction.

The researcher performed the pruning step superficially to the best of their domain
knowledge, i.e. pruning only trivial non domain concepts or duplications which differ in
spelling. A stricter pruning step can lead to higher precision. The results of how pruning

can increase precision are clearly shown in other research, as in Sabou (2005).

Significantly, the aim of SOLF is to semi automate the ontology development process
for Web Services, where it can be used as a plugin tool by ontology engineers or domain
experts (Buitelaar, Cimiano & Magnini, 2007). This highlights the importance of a
domain coverage evaluation and a domain expert evaluation in order to judge and
validate the newly extracted concepts by SOLF. It is important, at this point, to
remember that only partial rules were implemented for the purpose of implementing the
SOLF tool. Therefore, it would be pertinent to implement and test other rules in the

future, as this might lead to higher recall.

Auhood Alfaries 134 of 189

It is interesting to compare our results with other OL approaches. Where Rule-based OL
normally leads to higher precision and lower recall as shown by Sabou (2005), here the
SOLF has managed to achieve a higher recall. This leads to the important observation
that the SIP extraction process yielded a higher pattern recall performance, which is of
particular relevance for domain engineers when building ontologies for Web Services by
using existing legacy systems and software artefacts (Buitelaar, Cimiano & Magnini,
2007), thereby proving the adequacy of SOLF to be embedded in an ontology

engineering process.

Table 6-2: Summarised Precision and Recall for Group 1 and Group 2

Group 1: Group 2:
Books
Services Financial Services
GSO Total Concepts 44 171
SOLFO Total Concepts 66 247
Lexical Precision (LP) 38% 43%
Lexical Recall (LR) 57% 63%
F1 Measure 45.45% 51.20%

It is important, therefore, to explore the nature of the Gold Standard Ontology (GSO).
The gold standard is developed to perform the task of service matching. Hence, here it is
used as a benchmark mainly for calculating the recall, which is not often possible for
domain experts to produce manually. Accordingly, applying the precision and recall
metrics by using the GSO can only give an accurate evaluative insight in regard to the
recall, whereas precision should be more accurate if produced by using the domain
expert scoring. The higher recall validates the SOLF in a way that demonstrates its

ability to automatically extract concepts.
6.3.6 Non Taxonomic Layer — Structural Evaluation

As indicated in Chapter 3, the non-taxonomic relations refer to semantic relations linking
domain and range concepts, usually mapped in OWL as an object properties. (NonT)
layer evaluation is not well defined in the literature. Although there exist some attempt

to define those measures based on precision and recall as non-taxonomic precision

Auhood Alfaries 135 of 189

(NonTP) and non-taxonomic recall (NonTR) (Dellschaft & Staab, 2008; Buitelaar,
Cimiano & Magnini, 2007), none of these actually illustrate how to calculate those
measures. The majority of the evaluation attempts perform only lexical layer evaluation
and omit the structural evaluation as in Sabou (2005). Therefore, this iteration
contributes in this area. Design Research is employed to develop a practical detailed
evaluation model that executes a gold standard based evaluation method, and shows the

detailed steps of how the results are calculated.

NonTP and NonTR are generally defined, as the intersection of the non-taxonomic

relations between the GSO and the SOLFO, as follows:

‘Rsowo ﬂR(;so‘
NonTP = —F———
‘RS()LFO‘ (4)

where NonTP is the non-taxonomic precision and R is the set of non-taxonomic

relations.

NonTR = Rsorr0 N Reso|
’RGSO ‘)

where NonTR is the non-taxonomic recall.

Performing NonT relation evaluation is used to measure the structural aspects of the
learned model. It is found to be a significant and complicated procedure that needs to be
carefully designed and executed to ensure accurate evaluation. Since presenting
information is fundamental, therefore, comparing relations between SOLFO and GSO
was a difficult time consuming task and could not be easily performed without
presenting the information in a comparative visual model. Applying a trial and error
strategy resulted in developing an effective, easy to use evaluation model that allows
visual identification of overlapping relations. The evaluation here is designed to satisfy
Dellschaft & Staab’s (2008) evaluation criteria, that is to ensure that the influence of one
dimension of error doesn’t exceed one measure; i.e, the influence of the lexical precision
evaluation on taxonomic and non-taxonomic layers is minimized by combining different

evaluation methods, that is the measures should be applied to minimize the dependency

Auhood Alfaries 136 of 189

between lexical layer evaluation measure and the non-taxonomic evaluation. The
following criteria are applied when implementing the NonT evaluation model, as shown

in Figure 6-9:

* An evaluation model is developed that ensures the adequacy and accuracy in
calculating the global taxonomic precision. This is achieved by modelling the
local NonT intersection between the learned ontology and the gold standard
ontology using an evaluation model that allows visual interpretation of the local
and taxonomic overlap. The sample model is presented in Figure 6-9. As the
significance of this research lies in relation extraction, it is essential to

thoroughly evaluate this aspect of the learning approach.

= The local NonTP values are calculated so that the influence of the lexical

precision evaluation measure is minimized. Therefore the common set of

concepts CsorroNCoso is preferred over the learned ontology set of concepts

when determining the NonT relations overlap.

= The first column of the model represents the list of concepts in the learned
SOLFO. The header row represents a list of range only concepts. Generally, each
cell is divided into three sub-cells to represent the presence (indicated by 1) or
absence of a relation between the intersecting concepts Ci and Cj, where Ci
refers to the i™ concept in the domain set and Cj refers to the jth concept in the
range set. The first sub cell of an intersection represents whether a relation exists
in the SOLFO, the second sub-cell represents whether the relation exist in the
GSO, and the third sub-cell is used to calculate the intersection, i.e the local
NonT overlap (highlighted in green in Figure 6-9). This model is used to

calculate the global NonT overlap as the sum of all NonT overlaps.

Auhood Alfaries 137 of 189

c2 Range Concept
C1
a
8 B B 5o
Cumaume Varge ...lu-uw [o <_CJ 8 <_c3 O (_:) ©
: T T T O o 5 D h o Ne)
R .t E Q o I= 0] L0 L_jl- 7))
- e @© (14 w (14 o o O (D
’ ’ . .0 . ' g = 9 S = w
1 1 | . J D — N o °
1l 1l n -+
R EIET R
e
P LR !
+ » - -+
4P ——s
4 R - S— 7 T B A
Lty -
- - b - R . +
’ L » amd L | L * 4 s 4 '] T
- - -— - - -
s . - L I] » . .] '
et + : |-
- - . + - 4 . . 4 . ‘. 4
+ - »v—;—- + + + * + —r—t—r—t +
+ - D - . + - “+ - +
’ . » L 4 L ' ’ ' » L ' ’ . r L A | ’ + v L '
- — - - 4 ’ ’ . . » ’ ’ (3 - L] ’ . ‘ . ‘ . - . ‘ 4 »
- ﬁj—'——q - —— - + - - - + r—t—e— 4 -
+ - . - b . . - e . . . i 3 + - - - “+ - e . + -
* * . P * 4 ' 4 L ammn + ' 2 4 e ' 2 4 - * + 2 T * T *
- - - - - - - -
’ ’ . + ’ » . » 1] ’ > . 1] ’ . 4 . ' » + * 1] ‘ »
'l - L - oo . 4 13 - . ‘ $ ‘ - - . $ b4 4 - - R . 4 - . o - ‘ 4
—t r—r— r—r—rt +— + - 1 r—r—t—r—t 1

Figure 6-9: NonTP Evaluation Model

The model presents a measurable impact of people’s understanding allowing for visual
identification of where relations are condensed according to the GSO and SOLFO.
Where, consecutive one’s in a row shows that the relation exists in both models. Visual

deduction of precision and recall is possible.

The result for the NonTP and NonTR are calculated for the two sets of data using the
proposed evaluation model. The summarized results are presented in Table 6-3
illustrating similar precision of 49% and 50% for the two datasets respectively. A very
high recall is also achieved for the two datasets of 95% and 100%, which clearly
validates the completeness of the pattern extraction process in selecting higher frequency
patterns. The results achieved by the SOLF are encouraging when compared to other
work (40% relation precision achieved by (Ciminao, 2007 p. 138). The fact that only

some of the patterns are implemented could be an explanation for not achieving a higher

Auhood Alfaries 138 of 189

recall in the lexical layer evaluation. It is apparent from the recall evaluation results
produced in Chapter 5 and the results achieved here, that implementing more patterns

might increase the precision and recall dramatically.

It is important for this evaluation to consider the presence of other NonT relations, which
are not part of the GSO. Although some of these relations can be counted as correct, they
are not included here due to the fact that the evaluation method here is a gold standard
based evaluation. This clearly indicates that if the learned ontology does not reflect the
gold standard, it does not necessarily imply that the learned ontology is inaccurate, as
also noted by Sabou (2005). On the other hand, these new concepts and relations might
lead ontology engineers to identify important new relations to the domain. Therefore,
further evaluation requiring the domain expert to validate these relations, by scoring
each and every relation, is vital to calculate the precision of the ontology faithfully. The
precision values indicate that the SOLF proved to have a reasonably accurate relation
extraction rates as compared to other research, 20% and 40% for Sabou (2005) and
Cimiano (2007) respectively, thereby demonstrating that SOLF can effectively assist

domain engineers in the ontology development process.

Table 6-3: Summarized NonTP and NonTR Results

Group 1: Group 2:
Books Web Financial Web
Services Services
GSO Total Non Taxonomic Relations 20 89
SOLF_O Total Non Taxonomic 39 175
Relations
NonTP 49% 50%
NonTR 95% 100%
F1l Measure 64.5% 67.4%

6.3.7 Taxonomic Layer — Structural Evaluation

The taxonomic layer evaluation of the first group (Books WS) revealed no correlation
between the two taxonomies. Interestingly from the produced SOLFO model that there
exists a valid hierarchy in SOLFO that did not exist in the GSO. For example, subclasses
of String concept in GSO, such as Author and keyword, does not really correlate to

similar relation in SOLFO. Whereas clearly, there appears to be conflicts between what

Auhood Alfaries 139 of 189

is represented and the representation, due in large to the fact that the GSO was built to
perform the task of service matching, whereas the SOLFO model is built to
conceptualize the underlying domain more faithfully. Subsequently, performing a
taxonomic evaluation for the financial Web Services appeared to be an excessive
process. This indicates that there are obvious differences between the ontology models;
consequently, a more accurate precision evaluation measure would be to perform a
domain expert evaluation of the taxonomic layer to effectively determine the accuracy of

the taxonomic relation extraction.

6.4 Domain Expert Evaluation and SOLF Refinement

The GSO contains less non-taxonomic relations and fewer concepts. The learned
ontology contains more taxonomic and non-taxonomic relations. Therefore, calculating
the precision using the domain expert in scoring the correct relations would result in
higher precision, but recall would be impossible to calculate, since it would require the
domain expert to analyse the input sources and manually extract all available concepts
and relations. Analysis of the results revealed that there are new concepts in the learned
ontology, SOLFO; interestingly the GSO missed these concepts. Sabou (2005) defines

the new concepts as Ontological Improvements

On the other hand, evaluation measures should be chosen so that they are independent of
each other (Dellschaft & Staab, 2008). Here, an expert evaluation is used to evaluate the
structural layer of the learned ontology to produce the taxonomic and non-taxonomic
precision. This involves assessing the usefulness of the extracted relations, by allowing
a domain expert to carry a concept-by-concept analysis to judge the newly extracted
concepts and relations. In this case the domain expert knowledge is used to score the
new concepts as well as the relations, and judge whether the new concepts are either

correct or spurious.

Correct + NewConcepts
AllConcepts

Lexical Precision =

Correct...Subclass...Relations
All...Subclass...Relations

Taxonomic Precision =

Auhood Alfaries 140 of 189

Correct...nonTaxonomic ...Re lations

Non Taxonomic Precision = - -
All...nonTaxonomic...Re lations

Table 6-4: Summarized Domain Expert Precision

Group 1: Books| Group 2: Finance
Web Services Web Services

SOLFp Total Taxonomic 19 78
Relations
SOLFO Pruned Taxonomic

. 10 50
Relations
Taxonomic precision 21% 42.31%
Taxonomic Precision o o
(Pruned) 40% 66%

The results produced in this iteration clearly indicate that evaluation methods can be
effectively combined to produce more accurate evaluation measures, where the domain
expert evaluation can be applied effectively to determine the accuracy of the learned
ontology. On the other hand the gold standard based evaluation can be used efficiently to
evaluate the domain coverage of the learned ontology, i.e. the gold standard based
evaluation can be used to calculate lexical and structural recall, whereas the domain
expert evaluation method can be used to calculate lexical and structural precision more
effectively. Here a pruning step is performed to remove any technical or WSDL related
subclassing by performing a quick scan “and eliminate”, of redundant relations, in the
financial domain case. Although, the pruning is performed superficially, it is clearly seen
that the pruning step increased the precision in both data sets adding an extra 20%
precision. Which can be considered relatively good compared to the small time and

effort required to prune the relations.

6.5 Specifying the learning

The primarily points of learning are:

Auhood Alfaries 141 of 189

= Verb relations may lead to identifying the functional service hierarchy in OL from
textual sources (Sabou et al., 2005); Verb terms in SIP e.g
CalculateInterestRate or GenerateInterestPayments. A number of
OL approaches adopt the hypothesis that ontological relations are mostly represented
by verbs within an argument, for learning from textual sources (Volker, Haase &
Hitzler, 2008; Sabou et al., 2005; Navigli & Velardi, 2008). A preliminary analysis
to adopt the verb to relation hypothesis has lead to identifying functionality hierarchy
rather than domain concepts hierarchy. Following this line and the fact that lower
frequency SIP patterns consist of verb terms followed by nouns (the learning
outcome of Iteration 2), this direction can be further investigated to learn domain

specific relations through implementing the more complex SIP patterns.

» Different kinds of information appear in different parts of the Web Service. As the
learning indicates from Iteration 1. For some cases, where the service contains
accompanying XSD files, the XSD files might be potential venues for domain
specific concepts. It is essential to include these as inputs for the system as analysing
the SIP extracted from the XSD files is potentially an important extension to the
pattern extraction steps in SOLF (Papazoglou & van den Heuvel, 2007; Sabou &
Pan, 2007).

= Domain specific information is distributed in different parts of a Web Service
according to the structure of the Web Service. Relating structure to SIP may lead to
different ontological domain specific relations (Alfaries, Bell & Lycett, 2009; Yu et
al., 2008; Bell et al., 2007; Sabou & Pan, 2007).

= It is clearly evident that there are duplications, which can be dealt with at different
stages of the OL life cycle. A first option would be to introduce a pruning step at
different stages of the ontology learning life cycle; i.e involving the user at an earlier
stage to resolve name mismatches before the ontology was actually built can result in
higher accuracy. The same argument applies if the concepts are pruned in a stricter
manner, after they are extracted but before they are added to the ontology as new
concepts. Then the mapping and ontology building is based on unified names for the
concepts, thereby eliminating most of the duplicity created in the relations and
concepts. This could potentially result in achieving a higher precision ontology, as

illustrated in the sample taken from the Books ontology (Group 1) in Figure 6-10.

Auhood Alfaries 142 of 189

Here book as a concept and information related to book like author, title etc. is
modelled more than once. The domain expert can easily eliminate this duplication,
1.e. the learned ontology model may serve ontology engineers in a powerful way,
linking concepts in different ways can bring different modelling possibilities to the
domain engineer attention. A second option would be to include other NLP
techniques such as a lemmatizer or stemmer step in order to eliminate the
redundancy before concept creation. Lemmatizer and stemmers are normally used
for the purpose of getting the basic form of the word. This step can be seen as a
filtering step that can be definitely applied as a pre-processing step. A third
refinement would be to apply techniques that are usually employed to perform
deeper ontology merging to accurately check for the existence concepts before they
are added into the ontology, since SOLF checks for the existence of concepts before
adding them based on exact string matching. This behaviour is expected since the
system automatically builds the ontology and the user is involved in the pruning
stage. On the other hand, the domain expert identified that this can be an important
advantage of the system, since it extracts all of the possible concepts, depending on
the naming and spelling used in the Web Service. At the end of the process,
however, it is clear that these concepts are the same and can therefore be merged into
one. Hence, integrating the SOLF with ontology matching techniques before the new
concepts are added to the ontology is a desirable improvement that should lead to
eliminating the majority of the redundant concepts. This should also reduce the effort

of the ontology engineer in the pruning step.

*= Synonym learning is an OL task, as illustrated in the OL layer cake. Cimiano (2007
p.24) regards two concepts as synonyms if they share a common meaning. An
interesting observation made by the domain expert is that multiple names used to
represent the same concept can be the best fit for the synonym learning task.
Synonyms can be easily modelled as equivalent classes in OWL. The pattern-based
extraction process applied in SOLF, extracted concepts and possible synonyms that
are made available for the domain experts for them to make into equivalent classes.
The domain expert can easily identify the synonyms during the pruning step.
Alternatively some concepts are found to be good candidates for identifying lexicons

of a concept as identified by Cimiano (2007 p.22).

Auhood Alfaries 143 of 189

+
* @ bookinfoVendorp gﬁ‘BWk'nfOBY'S
rice

} = Getinfo
* & bookinfo V 7

| il

|

/ : * & Bookinformation
I ” . "

L utho

| @Book. |-————————"

* o InfoResponse

Figure 6-10: Sample Group 1 (Book) Ontology

= The evaluation of the learned ontology against the gold standard required the
manual identification of correct and incorrect concepts. In the lexical layer
case it was a simple task of concept-by-concept comparison, taking up to 2
working days for the books ontology, and another 5 working days for the
financial services, since the ontology consists of 247 concepts. The amount of
time and effort required to perform the non-taxonomic layer evaluation was
extremely time-consuming, since there is no direct way of performing the
comparison automatically. Although the developed evaluation model allowed
for accuracy, and visualised the evaluation analysis by representing the
compared relations in adjacent cells, it required long, condensed working
hours to complete the evaluation for both sets, taking up to two whole weeks

to produce the NonTP and NonTR final results.

6.6 Summary

The chapter validates the theory of this research, that SOLF is capable of automatically
extracting domain knowledge, including concepts and semantic relations, from Web
Service artefacts by applying pattern based IE techniques. This iteration contributes an
improved service ontology learning framework and tool. A formal definition of the

output of the phases consisting the framework is provided. Another main contribution of

Auhood Alfaries 144 of 189

this chapter is a thorough evaluation process to prove the SOLF, despite having to
overcome the problem of the OL evaluation. This iteration combines two OL evaluation
methods effectively. The evaluation method is illustrated through the application of a
detailed experiment and has demonstrated that there is enough domain knowledge in
Web Service artefacts, from which an initial ontology can effectively be learned. The
approach adopted in the SOLF proved to be efficient in extracting domain concepts and
linking them with relations based on pattern-based information extraction techniques,
thus proving reasonable preciseness and coverage. Domain expert evaluation proved that
the automatically learned ontology recommends a new set of additions, including
taxonomic and non-taxonomic relations that can be used to supplement the manual
ontology. Overall, the method proved efficiency by introducing new relations and
concepts that had not been included in the GSO. Finally, the learning that emerged from
this iteration highlights a number of issues and challenges that can be employed to direct

future research.

Auhood Alfaries 145 of 189

CHAPTER 7 - CONCLUSION

7.1 Research Summary

Web Services typically contain domain knowledge that can be semantically annotated
through the use of domain ontologies. These domain ontologies are considered to be the
standard form of providing shared knowledge representation, providing a solution to
more widespread of functional interoperability via SWS (Buitelaar, Cimiano & Magnini,
2007). Manual ontology development, however, is an expensive, time consuming and
error prone process, requiring the services of highly qualified expertise, both in ontology
engineering and in the domain of interest (Staab & Maedche, 2001; Ding & Foo, 2002).
Therefore, the widespread adoption of ontology development can be very difficult to
achieve in practice. Given the vital role that the Semantic Web can play in achieving the
full potential of Web Services, a faster, less expensive ontology development process is
clearly required (Medjahed, Bouguettaya & Elmagarmid, 2003; Davies, Studer &
Warren, 2006).

To make Semantic Web Services a practical reality, ontologies need to evolve from
sources with embedded business knowledge - Web Service artefacts. Consequently, this
thesis has sought to assisting ontology engineers in building and maintaining low cost
domain ontologies from Web Services. This aim was achieved by developing a service
ontology learning framework to automatically extract ontological knowledge from

existing legacy systems. The objectives as set out in chapter 1 are summarised below:

Objective 1: Review the available OL approaches to provide an understanding of the

state-of-the-art of ontology learning and Web Services.

Objective 2: Develop ontology learning techniques for service concept and relation
extraction and to automate these techniques by building a prototype application to test

the applicability of the techniques using real Web Services.

Objective 3: Develop a methodological Service Ontology Learning Framework (SOLF)

that incorporates the techniques for concept and relation extraction.

Auhood Alfaries 146 of 189

Objective 4: The implementation of a tool that facilitates the framework and evaluating
the application of the framework, by assessing its impact on the state-of-the-art of

ontology learning.

Objective 5: Validate the research outcome by testing the generality of the extracted

patterns and rules on other sets of services representing varying domains.

In achieving the aim and objectives of the work, Chapter 2 reviewed the varieties of
Web Service sources and the applicable techniques for each source by providing an
understanding of the theory and practice of currently available OL techniques. In the
context of this research, the literature provided the basis for proving how OL can assist
in faster, less expensive ontology development processes (Buitelaar, Cimiano &
Magnini, 2007; Zhou, 2007; Buitelaar & Cimiano, 2008). Although applying OL
techniques is predominantly limited to learning from textual sources, the Web Service
application domain contains a mixture of structured and unstructured sources, where the
available sources are predominantly categorised as semi-structured. Current research is
mainly focused on learning from textual sources; there has been much less work
completed on developing techniques and tailoring ontology learning methods aimed at
semi-structured sources (Buitelaar, Cimiano & Magnini, 2005; Zhou, 2007).
Interestingly those semi-structured sources represent domain knowledge embedded in
technical, rich sources of data (Sabou, 2005). Consequently, an opportunity for
contribution lies in introducing automatic knowledge extraction techniques to extract
domain specific concepts and semi-automating ontology development (Davies, Studer &

Warren, 2006).

Chapter 3 set out the means for achieving the objectives via Design Research. This
approach provides a means by which to engage in the design problem - providing the
necessary learning to improve the proposed solution, whilst, at the same time enriching
the solution space with the Design Research output. The main Design Research artefact
is a service ontology learning methodological framework (SOLF). The overall research
methodology is executed as Design Research incremental iterations, where each of the
three iterations forms a design problem that executes the build and evaluates design
activities (Vaishnavi & Kuechler, 2004). The iterations were designed such that;

Iteration 1 develops the core framework including a service term extraction technique,

Auhood Alfaries 147 of 189

Iteration 2 extends the framework by adding a relation extraction method, and Iteration 3
validates and generalises the design artefact by applying the SOLF on other sets of
carefully selected Web Services with an accompanying gold standard ontology. Given
that the literature review demonstrated limited understanding and work in the problem
space, Design Research is particularly appropriate, allowing an iterative learning process
to feed ongoing understanding of the design problem. More specifically in the case of
the OL field, evaluation is identified as an important stage at the end of each cycle.
Practical evaluation methods are not yet well defined, thereby posing another learning

challenge in the knowledge space.

The products of Design Research included constructs, methods and models in order to
facilitate the framework development. The build and evaluate design activities are
applied in incremental iterations to build and effectively evaluate each of the Design
Research products as illustrated in Table 7-1. The evaluation for the Design Research
products is achieved by synthesising the Design Research evaluation criteria, as the table
illustrates, to create the suitable evaluation method derived from the OL knowledge base
as presented in Chapter 3. The evaluation demonstrates the successful application of

each product in the final SOLF method and tool.

Auhood Alfaries 148 of 189

Table 7-1: Design Research Products X Activities

Research Activities

Build Evaluate Theorize Justify
Prove that
Explain why and constructs work
STE ..
how constructs scientifically by
SOLF Completeness work by employin applying them in
Constructs | SIP Simplicity Y empioymng | appiyms
them to describe models and
TR Ease of Use .
real case scenarios | methods
(addressed in ChS5) | (addressed in Ch4,
5&6)
Adapting theories
@ STE N fr.om t}.le current OL Test the models
s SOLF Fidelity discipline, and .
= T on a real life
& SIP Completeness Hypothesising that example to brove
5 Model TR Internal those models are P p
= SOLF Consistenc true them
© . y . (addressed in Ch4,
= Domain Ontology (achieved by 5 & 6)
% theorising SOLF in
~ Ch 6)
STE Process Explain why and Prove the methods
SIP Process Operationality how methods are work formally by
TR Development | Efficiency applied using real instantiating them
Methods . .
Process Generality WSs using real
SOLF Framework | Ease of Use (achieved in Ch5 examples
&6) (achieved Ch 6)
. Understanding how | Prove that SOLF
Effectiveness ° L
Efficiency and why application | works by testing it
Instantiation | SOLF Application works across other | across different
Impact on . .
Environment domains domains.
(achieved in Ch6) (achieved in Ch6)

Chapter 4 described the first iteration, which concentrated on developing a service term

extraction technique based on NLP methods. The STE technique was used to build the

core SOLF, by automatically extracting an initial ontology model consisting of

automatically extracted domain concepts. An initial set of constructs, models and a

method was built and evaluated, meeting Objectives 2, 4 and part of Objectives 1 and 3.

The service term extraction technique formed the pre-processing stage of the learning

framework. The first stage laid out the foundation of the ontology learning framework

Auhood Alfaries

149 of 189

by accomplishing the first ontology learning task. The rule-based IE technique applied,
started by applying syntactic analysis as a pre-processing stage to identify patterns and
perform concepts extraction based on the identified pattern. The successful automation
of the method was achieved through building a prototype application in GATE that
implemented the steps identified in the framework. As a result of processing WSDL and
XSD files, a list of concepts were automatically identified within these input files,
contributing another Design Research product in the form of an initial financial domain

ontology model representing the sample set of services.

This early form of SOLF and tool were evaluated by comparing the output to other term
extraction methods, where the learning outcome of the first iteration directed the next
iteration towards adding structure to form another dimension of the domain model. This
observation highlighted the need to further investigate how to extract relations between
these concepts and initiated another Design Research iteration that is to allow for the

automatic extraction of ontological relations between the identified concepts.

Chapter 5 extends SOLF with a pattern-based relation extraction technique. This second
iteration contributes another set of Design Research products facilitating the extraction
of relations based on identifying Structured Interpretation Patterns (SIP). The structural
aspect of domain ontology was learned through applying a rule based IE approach,
where identifying patterns is an important step that requires rigour and use of the
framework to ensure accuracy, generality and coverage of SIP. Transformation rules
were used to identify mappings between SIP patterns and OWL constructs. Three real-
world Web Services from global banking systems were used for pattern extraction and
transformation rule development to demonstrate the completeness, efficiency and

effectiveness of SOLF.

An instantiation of SOLF as a prototype tool was developed and used to prove and
evaluate the framework. The output of the SOLF process was an automatically generated
OWL domain ontology, which presented a number of financial domain concepts
extracted from the Web Services. It was clearly visible that the automatically built
domain model moved beyond basic taxonomy — extracting and relating concepts at a
number of levels. More importantly, the approach provided integrated knowledge

(represented by the individual WSDL documents) from a number of services across a

Auhood Alfaries 150 of 189

group of banks. It was clear at end of the second iteration (Chapter 5) that in order to
justify and theorize the SOLF a further iteration was required to take the research to the

next level, by proving that SOLF is practically applicable across other domains.

Chapter 6 addressed all of the research objectives, showing that the SOLF is capable of
automatically extracting domain knowledge from WS artefacts. The extraction included
concepts and semantic relations from Web Service artefacts garnered by applying
pattern-based IE techniques. The SOLF has demonstrated that there is enough domain
knowledge in Web Service artefacts from which an initial ontology can effectively be
learned. The approach adopted in the SOLF proved the efficiency in extracting domain
concepts and linking them with relations based on pattern-based information extraction
techniques. The automatically learned ontology recommended new sets of additions,
including new domain concepts and relations, which could be used to enhance and
update the manual ontology. Overall, the method proved efficiency by introducing new

relations and concepts that were not included in the GSO.

This last iteration used the learning produced by evaluate, theorize and justify activities
from 2, to suggest improvements for the models (SIP and TR) and the SOLF method.
This led to producing the final products of the research, consisting of a Web Service
ontology learning methodological framework (SOLF), including a formal definition of
the output of the phases that constitute the framework, a set of SIP patterns and a set of
TRs. Applying the SOLF on the two groups of the selected Web Services resulted in

another set of Design Research products (ontology models).

Besides overcoming the challenge of the OL evaluation, this iteration combines two OL
evaluation methods effectively. The evaluation method is illustrated by its application in
a detailed experiment. The gold standard based evaluation method is complemented with
a domain expert evaluation to judge the taxonomic layer. The integrated evaluation
proved that the automatically learned ontology recommends a new set of additions,
including taxonomic and non-taxonomic relations that can be used to supplement the

manual ontology.

A deeper understanding of how and why the SOLF works was achieved in the last

iteration, by performing a thorough evaluation that enabled knowledge and learning to

Auhood Alfaries 151 of 189

emerge whilst the SOLF was applied and allowed to be refined iteratively. Finally, the
learning that emerged from the third iteration highlighted a number of issues and

challenges that could be employed to direct future research.

7.2 Contributions and Conclusions

Research contributions are categorized according to Design Research product
classification (March & Smith, 1995). In overall terms, the major contribution is a novel
OL approach that applies textual IE techniques to automatically extract knowledge from
semi-structured Web Service sources, mainly WSDL and XSD files. Within the
literature, a number of proposed classifiers apply rule-based algorithms that identify
different types of taxonomic and non-taxonomic relations. Recent relation learning
approaches that showed success can be found in Cimiano (2007); Buitelaar, Cimiano &
Magnini (2007); Sabou & Pan (2007); Buitelaar & Cimiano (2008). All of these
approaches, however, are aimed at learning from textual sources. WSDL and XSD are
semi-structured data sources, thereby posing an even greater challenge for domain

experts to be able to read and manually extract knowledge from such sources.

More specifically, the main research contributions and their value are detailed below:

* The SOLF methodological framework (method) is the main contribution made
by this research and can be applied in different scenarios in an ontology
development lifecycle. Typically, in other OL approaches, pattern-based OL is
applied as a first step in a more integrated ontology development process.
Therefore, this approach has the potential to be integrated as a first step of a more
complex ontology engineering process. The SOLF can be used to automatically
extract semantic information from Web Service artefacts and is capable of
building a domain ontology model representing the knowledge embedded in
semi-structured Web Service sources. The SOLF targets different ontology
learning tasks; (1) Domain Concept Extraction, (2) Concept taxonomy and (3)

Non-taxonomic relations.

* The SIP extraction process (method) is a novel generic method that enables
pattern extraction from Web Services artefacts. This method contributes a

generic structured interpretation pattern extraction process that can be effectively

Auhood Alfaries 152 of 189

applied in a rule-based IE algorithm to identify and extract semantic relations
from semi-structured software artefacts. The literature typically applies a
heuristic pattern extraction strategy as per Cimiano (2007) and Sabou (2005),
which normally apply generic patterns that result in lower recall. The method
contributed by this research is a systematic, frequency based, pattern extraction
process. The process is aimed at extracting high frequency patterns from the

corpus, thereby guaranteeing higher recall.

* The TR development process (method) is an effective method that can be
easily applied to identify semantic relations in SIP patterns. The process was
aimed at developing a set of transformation rules that can be easily applied in a
rule-based ontology building algorithm to automatically map SIP patterns to
semantic relations. Transformation rule development is a novel method
specifically tailored to map compound words in Web Services sources to a
suitable OWL relation. The efficiency of this method was demonstrated by the
non-taxonomic F1-Measure value of 67% achieved in Iteration 3, which is
considered promising compared to the similar measure of 33% obtained by

Cimiano (2007, p.114).

= The SOLF tool (Instantiation) is an application prototype that implements the
SOLF, the set of SIP patterns and the transformation rules (TRs). The tool can be
generally applied to efficiently extract domain specific concepts and relations
from Web Service artefacts successfully producing an initial domain ontology
model. The learned model can be easily pruned and modified by domain
engineers. The generality and effectiveness of the SOLF tool in extracting non-
taxonomic relations, is clearly demonstrated by achieving similar evaluation
results for both data sets, achieving an F1-Measure of 64% and 67% for the

Books and Financial Web Services respectively.

* More general learning over the course of the research: First, for the rigorous
evaluation of the SOLF, a practical evaluation framework is contributed in
Chapter 6 to prove the validity and generality of the SOLF across other domains.
The evaluation constitutes a detailed step-by-step evaluation method that

integrates gold standard based and domain expert evaluation as illustrated in

Auhood Alfaries 153 of 189

chapter 6. The evaluation framework is designed to effectively provide an
understanding of why and how the OL method works and to prove SOLF utility
in OL for building domain specific Web Service ontology. The non-taxonomic
evaluation framework applied contributes a rigorous visual structural evaluation

model.

Second, an evaluation taxonomy and model; the need for an effective evaluation
model surfaced from the evaluation taxonomy, and its background illustrates the
typically applied evaluation metrics for OL approaches. Accordingly, an
evaluation framework based on precision and recall is selected in order to
evaluate the research products, providing another contribution as detailed and
theorized in Chapter 6. The comprehensive evaluation method is designed to
ensure efficient and effective evaluation of the structural and lexical aspects of an
OL approach. The model details a process for calculating local and global non-

taxonomic precision and recall as defined in Dellschaft & Staab (2008).

Third, the STE method is a service term extraction method that can be applied to
extract candidate domain concepts representing the underlying domain. The
method showed improved performance compared to other approaches, when
extracting domain concepts from Web Service artefacts (WSDL and XSD files).
The method provided better domain coverage by producing a rich list of terms
that are more likely to serve as domain concepts as representing semi-structured
data sources. The extracted list of terms presented to the ontology engineer forms
a high-density list of domain specific concepts that would be harder to extract
from textual sources. The method proved efficient in concept term extraction by

achieving 67% precision as demonstrated by the evaluation in Iteration 1.

Fourth, A set of SIP patterns and TRs models are contributed which can be
expanded to form a library of SIP patterns. Once a set of patterns and TRs are
available the tool can be applied to any set of WS to learn a first cut domain
ontology model easily, allowing ontology engineers to adopt and amend patterns
according to domain needs. The effectiveness of these models and TRs are
illustrated by the similarity of precision and recall results achieved when applied

to two different sets of services each representing different domains. On the other

Auhood Alfaries 154 of 189

hand, the SOLF learned models certainly represent the domain more faithfully by
introducing new additions to the GSO. This is demonstrated by the domain
expert evaluation results of the taxonomic layer evaluation of the two groups of

services, where a precision of up to 66% is achieved.

7.3 Limitations and Areas for Future Research

Though the research has made a number of valuable contributions to the ontology
learning domain both in the process and the tools, a number of limitations and challenges

may be noted:

* The SOLF can be considered an initial machine learning algorithm, in which manual
pattern extraction is the main extraction technique for automatically learning
ontological relations. Supervised machine learning algorithms (Buitelaar & Cimiano,
2008) require manually trained data to initiate the automatic learning process -which
can be considered a drawback in supervised learning approaches. The approach
presented by the SOLF would benefit greatly from applying machine learning
algorithms to learn these patterns. From one perspective, machine learning can be
used to learn new SIP patterns, where the contributed patterns in this research can
serve as the training data for the algorithm. From a second perspective the output
ontology model produced here can in itself be used as training data and allow the ML

algorithm to learn new ontology models when applied to new set of services.

* Chapter 4 noted that the concept learning task as defined by Cimiano (2007) and
Buitelaar, Cimiano & Magnini (2005) consists of finding concept extensions (a set of
concept instances), intensions and lexical realization in the corpus. SOLF has
successfully extracted lexical realisations of concepts from the WSDL files, such as
Book and Author. Identifying certain instances of book or author leads to
identifying concept extensions referred to in the literature as ontology population.
SOAP messages, as discussed in Chapter 2, contain information about service
invocation. Where instances of Books and Authors can be found. This area is not

explored in this research and can be further investigated.

* Chapter 5 noted several limitations. First, it is observed that patterns that appeared

with high frequency in large WSDL files (i.e. those that did not have an
Auhood Alfaries 155 of 189

accompanying XSD) did not appear at all in other Web Services, which raises an
important question about the effect of the type and size of the WSDL on the pattern
extraction process (weighting of patterns), and more specifically on the correlation
between frequency/popularity and precision. This can be addressed by applying the
extracted patterns on another set of Web Services (including different types of
WSDL and including XSD files). Investigating the effect of the WSDL file size and
style on the pattern extraction process is therefore an important area to investigate.
Second, the existence of one pattern as part of another more complex pattern, i.e.
NNP-NNP is part of NNP-NNP-NNP, might lead to having to make a choice as to
which one is more appropriate. Third, more complex patterns can be included. In this
iteration only up to 3-term patterns were extracted. It is established that in more
complex services patterns of up to 9 terms exist. Complex patterns have less
frequency and might therefore reveal more important/specific relations. Including
more complex patterns and analysing how this benefits the recall is highly
recommended. Fourth, the possibility of generalizing existing patterns needs further
investigation, i.e. NN, NNP and NNS are all different types of nouns. Is it possible to
include these under the one category of type NOUN? - i.e. will the same patterns
give the same results?. Finally, identifying more domain specific relations needs
further analyses and investigation. Relations identified are: subclass and has-A
relations. The possibility of defining patterns that will lead to more specific relations

is recommended.

= Chapter 6 also noted several areas in which the approach may be improved. First,
verb relations may lead to identifying the functional service hierarchy in OL from
textual sources (Sabou et al., 2005); Verb terms in SIP e.g CalculateInterestRate or
GeneratelnterestPayments. Those structures were not exposed by this research due to
the fact that the extraction process was based on frequency analysis. Therefore,
higher pattern frequency is used as the selection criteria. But it was clearly evident
that there are fewer pattern starts with verbs tokens, those patterns can be
investigated and analysed in more detail. Second, Different kinds of information
appear in different parts of the Web Service. As the learning indicates from Iteration
1. Domain specific information is distributed in different parts of a Web Service
according to the structure of the Web Service. Relating structure to SIP may lead to

different ontological domain specific relations (Alfaries, Bell & Lycett, 2009; Yu et

Auhood Alfaries 156 of 189

al., 2008; Bell et al., 2007; Sabou & Pan, 2007). Third, the learned ontology model
showed a number of duplicate concepts appearing to be representing the same
concepts but differ in the names, although this seems to be of advantage to the
domain engineer, highlighting different names or illustrating different structural
possibilities. These duplications need to be dealt with at different stages of the OL
life cycle. Investigating applying lemmatizers or ontology matching techniques
would be beneficial. On the other hand investigating how Synonym learning task

might benefit from these duplications would be advantageous.

» Unexpectedly, the evaluation of the learned ontology against the gold standard was a
time consuming task. Which required the manual identification of correct and
incorrect concepts. In the lexical layer case it was a simple task of concept-by-
concept comparison, taking up to 2 working days for the books ontology, and
another 5 working days for the financial services, since the ontology consists of 247
concepts. The amount of time and effort required to perform the non-taxonomic layer
evaluation was time-consuming, since there is no direct way of performing the
comparison automatically. An automated evaluation tool that can be used to compare

two ontology models at the different evaluation levels would be beneficial.

Auhood Alfaries 157 of 189

BIBLIOGRAPHY

Ahmad, K., Tariq, M., Vrusias, B., & Handy, C. 2003. Corpus-based thesaurus
construction for image retrieval in specialist domains. In Proceedings of the 25th
European Conference on Advances in Information Retrieval (ECIR), Pisa, Italy, April
14-16pp. 502-510.

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A. & Verma,
K. 2005, "Web Service Semantics-WSDL-S", W3C Member Submission, [Online].
Available at: http://www.w3.org/Submission/WSDL-S/ (accessed on 24/8/2009).

Al Asswad, M.M., de Cesare, S. & Lycett, M. 2009, "Toward a Research Agenda for
Semi-Automatic Annotation of Web Services", International Conference on
Informatics and Semiotics in Organisations (ICISO) - IFIP WGS8.1 Working
Conference.

Alfaries, A., Bell, D. & Lycett, M. 2009, "Ontology Learning for Semantic Web
Services", Proceedings of the 14th Annual UK Association of Information Systems
Conference (UKAIS), Oxford University, Oxford, U.K, 31st March - O1st April, pp.
27-36.

An, YJ., Geller, J., Wu, Y.T. & Chun, S. 2007, "Automatic Generation of Ontology
from the Deep Web", 18th International Conference on Database and Expert Systems
Applications, Regensburg, 3-7 Sept. 2007 pp. 470-474.

Antonacopoulos, A. & Hu, J. 2004, “Web Document Analysis: Challenges and
Oppertunities” Google Book Search [Homepage of World Scientific Press], [Online].
Available:
http://books.google.com/books?id=ubs2mwNIHnEC&printsec=frontcover&sig=ACfU
3U1r5r0cV5dWuAhUUvxYFJOLNpZHXQ (accessed on 9/4/2008).

Antoniou, G. & van Harmelen, F. 2009, “Web Ontology Language: OWL”, in S. Staab
and R. Studer (eds.), Handbook on Ontologies, International Handbooks on
Information Systems, Berlin/Heidelberg: Springer-Verlag, pp.91-110.

Aswani, N., Tablan, V., Bontcheva, K. & Cunningham, H. 2005, "Indexing and
Querying Linguistic Metadata and Document Content", Fifth International Conference
on Recent Advances in Natural Language Processing Borovets, Bulgaria.

Azoff, M. 2007, Application Development End-User Survey, Butler Group.

Bell, D., de Cesare, S., lacovelli, N., Lycett, M. & Merico, A. 2007, "A framework for
deriving Semantic Web Services", Information Systems Frontiers, vol. 9, no. 1, pp.
69-84.

Berland, M., & Charniak, E. (1999). Finding parts in very large corpora. In Proceedings
of the 37th Annual Meeting of the Association For Computational Linguistics.
Association for Computational Linguistics, Morristown, NJ, pp. 57-64

Auhood Alfaries 158 of 189

Berners-Lee, T., Hendler, J. & Lassila, O. 2001, "The Semantic Web - A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities", Scientific American, vol. 284, no. 5, pp. 34-43.

Bernstein, D.S. 1999, "On bridging the theory/practice gap", IEEE Control Systems
Magazine ,vol. 19, no. 6, pp. 64-70.

Blake, S.P. 1978, Managing for responsive research and development, W N. Freeman &
Co. San Francisco.

Bontcheva, K. & Sabou, M. 2006, Learning Ontologies from Software Artifacts:

Exploring and Combining Multiple Sources, EU-IST Strategic Targeted Research
Project (STREP) IST-2004-026460 TAO, Sheffield, UK.

Borislav, P., Atanas, K., Damyan, O., Dimitar, M. & Angel, K. 2004, "KIM — a semantic
platform for information extraction and retrieval", Natural Language Engineering,
vol. 10, no. 3-4, pp. 375-392.

Brown, A.L. 1992, "Design experiments: Theoretical and methodological challenges in
creating complex interventions in classroom settings", Journal of the learning
sciences, vol.2,no. 2, pp. 141-178.

Bruijn, J.d., Kerrigan, M., Zaremba, M. & Fensel, D. 2009, “Semantic Web Services”, in
S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks on
Information Systems, Berlin/Heidelberg, Springer-Verlag, pp. 617-636.

Buitelaar, P. & Cimiano, P. (eds) 2008, Ontology Learning and Population: Bridging
the Gap between Text and Knowledge, Amsterdam, The Netherlands, IOS Press.

Buitelaar, P., Cimiano, P. & Magnini, B. 2005, "Ontology Learning from Text: An
Overview" in Ontology Learning From Text: Methods, Evaluation and Applications,
B.P. Buitelaar, P. Cimiano & B. Magnini (eds.), Amsterdam, Netherlands: IOS Press,

pp. 3.

Buitelaar, P., Cimiano, P. & Magnini, B. (eds) 2007, Ontology Learning From Text:
Methods,Evaluation and Applications, 2nd edn., Netherland: IOS Press

Buitelaar, P., Olejnik, D. & Sintek, M. 2004, "A Protege Plug-In for Ontology
Extraction from Text Based on Linguistic Analysis", Proceedings of the 1st European
Semantic Web Symposium (ESWS), Heraklion, Greece, 10-12 May 2004, PP. 31-44.

Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M.N., Paolucci, M., Sheth,
AP. & Williams, S. 2005, "A Semantic Web Services Architecture", IEEE Internet
Computing, vol. 9,no. 5, pp. 72-81.

Cabral, L., Domingue, J., Motta, E., Payne, T. & Hakimpour, F. 2004, "Approaches to
Semantic Web Services: an Overview and Comparisons", 1st European Semantic Web
Symposium, Heraklion, Greece, May10-12, pp. 225-239.

Cerbah, F. 2008, "Learning highly structured semantic repositories from relational
databases: the RDBToOnto tool", ESWC'08: Proceedings of the 5th European

Auhood Alfaries 159 of 189

semantic web conference on the semantic web, Tenerife, Canary Islands, Spain, June
1-5, pp. 777-781.

Checkland, P.B. 1981. Systems Thinking, Systems Practice. Chichester, UK. John Wiley
& Sons. 330 pp.

Cimiano, P., Maedche, A., Staab, S. & Volker, J. 2009, “Ontology Learning”, S. Staab
and R. Studer (eds.) Handbook on Ontologies, International Handbooks on
Information Systems, Berlin/Heidelberg, Springer-Verlag, pp. 245-267.

Cimiano, P. 2007, Ontology Learning and Population from Text: Algorithms, Evaluation
and Applications. New York: Springer.

Cimiano, P., Pivk, A., Schmidt-Thieme, L. & Staab, S. 2005, "Learning taxonomic
relations from heterogeneous sources of evidence", in P. Buitelaar, P. Cimiano & B.
Magnini (eds.), Ontology Learning from Text: Methods, evaluation and applications,
Frontiers in Artificial Intelligence, IOS Press vol. 123, July, 2005, pp. 59-73.

Cuel, R., Delteil, A., Louis, V. & Rizzi, C. "The Technology Roadmap of the Semantic
Web", Knowledge Web, [Online], Available: http://knowledgeweb.semanticweb.org.
(Accessed on November 2008).

Cunningham, H., Maynard, D., Bontcheva, K. & Tablan, V. 2002, "GATE: A
framework and graphical development environment for robust NLP tools and
applications", Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. & Weerawarana, S. 2002,
"Unraveling the Web Services web: an introduction to SOAP, WSDL, and UDDI",
IEEE Internet Computing, vol. 6, no. 2, pp. 86-93.

Daga, A., de Cesare, S.d., Lycett, M. & Partridge, C. 2005, "An Ontological Approach
for Recovering Legacy Business Content", IEEE Computer Society , Washington, DC,
USA, pp. 224.

Davies, J., Studer, R. & Warren, P. 2006, Semantic web Technologies Trends and
Research in Ontology-based Systems, John Wiley & Sons, Ltd.

Dellschaft, K. & Staab, S. 2008, "Strategies for the Evaluation of Ontology Learning", in
P. Buitelaar & P. Cimiano (eds.) Bridging the Gap between Text and Knowledge

Selected Contributions to Ontology Learning and Population from Text Amsterdam.
IOS Press.

Ding, Y. & Foo, S. 2002, "Ontology research and development. Part I - a review of
ontology generation", Journal of Information Science, vol. 28, no. 2, pp. 123-136.

Edelson, D. 2002, "Commentary: Design Research: What We Learn When We Engage
in Design", Journal of the Learning Sciences, vol. 11, no. 1, pp. 105.

Auhood Alfaries 160 of 189

Faure, D. & Nédellec, C. 1998, "ASIUM: Learning sub categorization frames and
restrictions of selection", Proceedings of 10th Conference on Machine Learning
(ECML 98): Workshop on Text Mining, Germany, Chemnitz, pp. 410-417.

Farrell, J., & Lausen, H. 2007, “Semantic annotations for WSDL and XML schema”.
W3C Recommendation 28 August 2007. [Online] Available:
http://www.w3.org/TR/sawsdl/ (Accessed on September 2008).

Fensel, D. & Bussler, C. 2002, "The Web Service modeling framework WSMF",
Electronic Commerce Research and Applications, vol. 1,no. 2, pp. 113-137.

Gacitua, R. & Sawyer, P. 2008, “Ensemble Methods for Ontology Learning - An
Empirical Experiment to Evaluate Combinations of Concept Acquisition Techniques”,

Seventh IEEE/ACIS International Conference on Computer and Information Science,
Portland, OR, 14-16 May 2008, pp. 328-333.

Gacitua, R., Sawyer, P. & Rayson, P. 2008, "A flexible framework to experiment with
ontology learning techniques", Knowledge-Based Systems, vol. 21, no. 3, pp. 192-199.

Gasevic, D., Kaviani, N. & Milanovic, M. 2009, “Ontologies and Software
Engineering”, S. Staab and R. Studer (eds.), Handbook on Ontologies, International
Handbooks on Information Systems, Berlin/Heidelberg: Springer-Verlag, pp. 593-615.

Gedda, R. 02/10/2007 16:39:35-last update, SOA Uptake Still Split A Mid Market
Confusion [Homepage of Computerworld], [Online]. Available:
http://www .computerworld.com.au/index.php/id; 1744558846 (19/11/2008).

Gibbins, N., Harris, S. & Shadbolt, N. 2004, "Agent-based Semantic Web Services",
Web Semantics: Science, Services and Agents on the World Wide Web, vol. 1, no. 2,
pp- 141-154.

Giovannetti, E., Marchi, S. & Montemagni, S. 2008, "Combining Statistical Techniques
and Lexico-Syntactic Patterns for Semantic Relations Extraction from Text",
Proceedings of the 5th Workshop on Semantic Web Applications and Perspectives
(SWAP) Rome, Italy, 15-17 December. pp. 10.

Gomez-Perez, A. & Manzano, M., D. 2004, "An overview of methods and tools for

ontology learning from texts", Knowledge Engineering Review, vol. 19, no. 3, pp.
187-212.

Gomez-Perez, A., Fernandez-Lopez, M. & Corcho, O. 2003, "Ontological Engineering."
Advanced Information and Knowledge Processing. Berlin/Heidelberg: Springer.

Gruber, T.R. 1993, "A Translation Approach to Portable Ontology Specifications",
Knowledge Acquisition, vol. 5, no. 2, pp. 199-220.

Guarino, N. 1998, "Formal ontology in information systems", In N. Guarino, (ed.),
Proceedings of FOIS98. FOIS, 10S Press, pp. 3—15.

Auhood Alfaries 161 of 189

Guarino, N., Oberle, D. & Staab, S. 2009, “What Is an Ontology?”. in S. Staab and R.
Studer (eds.), Handbook on Ontologies, International Handbooks on Information
Systems, Berlin/Heidelberg : Springer-Verlag, pp.1-17.

Guo, H., Ivan, A., Akkiraju, R. & Goodwin, R. 2007, "Learning ontologies to improve
the quality of automatic Web Service matching", IEEE International Conference on
Web Services, Salt Lake City, UT, 9-13 July, pp. 118-125.

Hearst, M.A. 1992, "Automatic acquisition of hyponyms from large text corpora",
Proceedings of the 14th conference on Computational linguistics, Association for
Computational Linguistics Morris town, NJ, USA, Vol. 2, pp. 539-545.

Heffner, R. & Peters, A. 2008, Topic Overview: Service-Oriented Architecture For
CIOs, Forrester.

Hevner, AR., March, S.T., Park, J. & Ram, S. 2004, "Design science in information
systems research", MIS Quarterly: Management Information Systems, vol. 28, no. 1,
pp. 75-105.

Hristoskova, A., Volckaert, B., Turck, F.D. and Dhoedt, B. 2010, "Design of a
Framework for Automated Service Mashup Creation and Execution Based on
Semantic Reasoning", International Conference on Internet and Web Applications and
Services, Barcelona, 9-15 May, pp. 149-154.

Iwanska, L., Mata, N. & Kruger, K. 2000, "Fully Automatic Acquisition of Taxonomic
Knowledge from Large Corpora of Texts: Limited-Syntax Knowledge Representation
System based on Natural Language", In L.M. Iwanksa and S.C. Shapiro (ed.), Natural
Language Processing and Knowledge Processing, MIT/AAAI Press, pp. 335.

Johannesson, P. 1994, "A method for transforming relational schemas into conceptual

schemas", Proceedings 10th International Conference Data Engineering, Piscataway,
N.J: IEEE Press, pp. 190-201.

Jung, S., Kang, M. & Kwon, H. 2007, "Constructing Domain Ontology Using Structural
and Semantic Characteristics of Web-Table Head", Lecture Notes In Computer
Science, vol. 4570, pp. 665-674.

Kashyap, V. 1999, "Design and creation of ontologies for environmental information
retrieval", Proceedings of the 12th workshop on knowledge acquisition, modelling and
management, KAW’99, Banff, Canada. October 1999.

Kelly, A.EE. & Lesh, R.A. 2000, Handbook of research design in mathematics and
science education, Mahwah/US, Lawrence Erlbaum Associates Inc.

Lara, R., Roman, D., Polleres, A. & Fensel, D. 2004, "A conceptual comparison of
WSMO and OWL-S", in Zhang, L.-J.; Jeckle, M. Hrsg (eds.), Web Services: Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, vol. 3250, pp. 254-269.

Li, M., Du, X.Y. & Wang, S. 2005, "Learning Ontology from Relational Database", In:
The 4th International Conference on Machine Learning and Cybernetics, IEEE
explorer, Guangzhou, China, pp. 3410-3415.

Auhood Alfaries 162 of 189

Maedche, A. & Staab, S. 2001, "Ontology learning for the semantic web", IEEE
Intelligent Systems and Their Applications, vol. 16, no. 2, pp. 72-79.

Maedche, A. & Volz, R. 2001, "The ontology extraction and maintenance framework
text-to-onto", Proceedings of the ICDM’01 Workshop on Integrating Data Mining and
Knowledge Management, IEEE International Conference on Data Mining, California.

Maedche, A. & Staab, S. 2004, "Ontology learning" in S Stabb and R Studer (eds.)
HandBook on Ontologies, International Handbooks on Information Systems Series.
Berlin: Springer. pp. 173-190.

Maedche, A. 2002, Ontology learning for the Semantic Web, Boston, Kluwer Academic
Publishers.

Maedche, A. & Staab, S. 2003, "Services on the Move: Towards P2P-Enabled Semantic
Web Services" in: Proceedings of the 10th International Conference on Information
Technology and Travel & Tourism, ENTER 2003, Helsinki, Finland, 29th-31st
January, pp. 124-133.

Manine, A., Alponse, E. and Bessieres, P. (2008), Information Extraction as an Ontology
Population Task and Its Application to Genic Interactions, 20th IEEE International
Conference on Tools with Artificial Intelligence, vol 2, pp 74-81

March, S. & Smith, G. 1995, "Design and natural science research on information
technology", Decision Support Systems, vol. 15, no. 4, pp. 251-266.

Martin, D. et al. OWL-S: Semantic markup for Web Services. W3C Member
Submission 22 November 2004. [On line] Available at:
http://www.w3.org/Submission/OWL-S/ (Accessed: August 2009).

Martin, D. 2007a, "Semantic Web Services, Part 1", IEEE Intelligent Systems, vol. 22,
no. 5, pp. 12-17.

Martin, D. 2007b, "Semantic Web Services, Part 2", IEEE Intelligent Systems, vol. 22,
no. 6, pp. 8-15.

Maynard, D., Li, Y. & Peters, W. 2008, "NLP Techniques for Term Extraction and
Ontology Population", in P. Buitelaar & P. Cimiano (edt.) Ontology Learning and
Population: Bridging the Gap between Text and Knowledge, Amsterdam, The
Netherlands: IOS Press, pp. 107-127.

Mcllraith, S.A., Son, T.C. & Zeng, H.L. 2001, "Semantic Web Services", IEEE
Intelligent Systems & Their Applications, vol. 16, no. 2, pp. 46-53.

Medjahed, B., Bouguettaya, A. & Elmagarmid, A. 2003, "Composing Web Services on
the Semantic Web", VIdb Journal, vol. 12, no. 4, pp. 333-351.

Meyer, M. 2006, The adoption of SOA among US and Western European enterprises
(Customer Focus), Butler Group.

Auhood Alfaries 163 of 189

Motta, E., Domingue, J., Cabral, L., Gaspari, M., 2003, “IRS-II: A Framework and
Infrastructure for Semantic Web Services”, The Semantic Web - ISWC 2003: Lecture
Notes in Computer Science, Berlin / Heidelberg: Springer, Vol. 2870, pp. 306-318

Navigli, R. & Velardi, P. 2004, "Learning Domain Ontologies from Document
Warehouses and Dedicated Web Sites", Computational Linguistics, vol. 30, no. 2, pp.
151-179.

Navigli, R. & Velardi, P. 2008, "From Glossaries to Ontologies: Extracting Semantic
Structure from Textual Definitions" in P. Buitellar & P. Cimiano (eds.) Ontology
Learning and Population: Bridging the Gap between Text and Knowledge,
Amsterdam: IOS Press, The Netherlands, pp. 71-87

Newell, A. & Simon, H.A. 1976, "Computer science as empirical inquiry: symbols and
search", Communications of the ACM, vol. 19, no. 3, pp. 113-126.

Niles, I. & Pease, A. 2001, "Towards a standard upper ontology", FOIS '01: Proceedings
of the International Conference on Formal Ontology in Information Systems ACM,
New York, NY, USA, pp. 2-9.

Nunamaker Jr., J.F, Chen, M. & Purdin, T.D.M. (1990/91). "Systems development in
information systems research", Journal of Management Information Systems, vol. 7,
no. 3, pp. 89-106.

Owen, C.L. 1998, "Design Research: building the knowledge base", Design Studies, vol.
19, no. 1, pp. 9-20.

Pan, D. & Pan, Y. 2006, "Using Ontology Repository to Support Data Mining",
Intelligent Control and Automation, 2006,(WCICA 2006): The Sixth World Congress
vol. 2, June 2006, pp. 5947-5951.

Papazoglou, M. & van den Heuvel, W. 2007, "Service oriented architectures:
approaches, technologies and research issues", The VLDB Journal, vol. 16, no. 3, pp.
389-415.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, M., Kifer, M.,
Martin, D., Mcllraith, S., McGuinness, D., Jianwen ,S., Said, T., “Semantic Web Service
framework”. W3C Member Submission 9 September 2005. [Online] Available at:
http://www.w3.org/Submission/SWSF/ (Accessed in November 2008).

Pivk, A. Cimiano, P. Sure,Y. 2005, "From tables to frames", Web Semantics, vol. 3, no.
2-3, pp. 132.

Pivk, A., Cimiano, P., Sure, Y., Gams, M., Rajkovi¢, V. & Studer, R. 2007,
"Transforming arbitrary tables into logical form with TARTAR", Data & Knowledge
Engineering, vol. 60, no. 3, pp. 567-595.

Purao, S. 2002, Design Research in the technology of information systems: Truth or
dare. Unpublished paper available at www.purao.ist.psu.edu/working-papers/dare-
purao.pdf

Auhood Alfaries 164 of 189

Reed, S. & Lenat, D. 2002, "Mapping Ontologies into Cyc", Proceedings of American
Association for Artificial Intelligence (AAAI). Technical Report WS-02-11, pp.1-7.
[Online] Available at: https://www.aaai.org/Papers/Workshops/2002/WS-02-
11/WS02-11-010.pdf (Accessed in June 2010).

Sabou, M. & Pan, J. 2007, "Towards semantically enhanced web service repositories",
Journal of Web Semantics, vol. 5, no. 2, pp. 142-150.

Sabou, M., Wroe, C., Goble, C. & Stuckenschmidt, H. 2005, "Learning domain
ontologies for semantic web service descriptions", Journal of Web Semantics, vol. 3,
no. 4, pp. 340-365.

Sabou, M. 2005, "Learning web service ontologies: an automatic extraction method and
its evaluation", in P. Buitelaar, P. Cimiano & B. Magnini (eds.) Ontology Learning
from Text: Methods, evaluation and applications, Amsterdam, Netherlands: 10S
Press, pp. 125-139.

Sanderson, M. & Croft, B. 1999, "Deriving concept hierarchies from text", Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM , pp. 206-213.

Shadbolt, N., Hall, W. & Berners-Lee, T. 2006, "The Semantic Web revisited", IEEE
Intelligent Systems, vol. 21, no. 3, pp. 96-101.

Shafiq, O. 2007, “Investigating Semantic Web Service Execution Environments: A
Comparison between WSMX and OWL-S Tools”. 2nd International Conference on
Internet and Web Applications and Services (ICIW '07), Morne,13-19 May , pp. 31-
37.

Shamsfard, M. & Barforoush, A.A. 2003, "The state of the art in ontology learning: a

framework for comparison", Knowledge Engineering Review, vol. 18, no. 4, pp. 293-
316.

Sheth, A., Verma, K. & Gomadam, K. 2006, "Semantics to energize the full services
spectrum", Communications of the ACM, vol. 49,no. 7, pp. 55-61.

Simon, H.A. 1996, The Sciences of the Artificial (3rd ed.), Cambridge, MA: MIT Press.

Snow, R., Jurafsky, D. & Ng, A.Y. 2006, "Semantic taxonomy induction from
heterogenous evidence", Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the ACL, Sydney,
Australia, July 17-18,_pp. 801-808.

Staab, S. & Maedche, A. 2001, "Knowledge portals: Ontologies at work", Al MAG, vol.
22,1no0. 2, pp. 63-75.

Staab, S., Studer, R., Schnurr, H. & Sure, Y. 2001, "Knowledge processes and
ontologies", IEEE Intelligent Systems, vol. 16, no. 1, pp. 26-34.

Staab, S. & Studer, R. (eds) 2004, Handbook on Ontologies. International Handbooks on
Information Systems. Berlin/Heidelberg: Springer-Verlag.

Auhood Alfaries 165 of 189

Staab, S. & Studer, R. 2009, Handbook on ontologies, International Handbooks on
Information Systems, Second Edition, Berlin/Heidelberg: Springer-Verlag.

Studer, R., Grimm, S. & Abecker, A. 2007, Semantic Web Services Concepts,
Technologies, and Applications, Springer-Verlag, Berlin/Heidelberg.

R. Studer, R. Benjamins, and D. Fensel. “Knowledge engineering: Principles and
methods”. Data & Knowledge Engineering,25,n0 1-2, pp. 161-198, 1998.

Sycara, K., Paolucci, M., Soudry, J. & Srinivasan, N. 2004, "Dynamic discovery and
coordination of agent-based Semantic Web Services", IEEE Internet Computing, vol.
8,no. 3, pp. 66-73.

Takeda, H., Veerkamp, P. & Yoshikawa, H. 1990, "Modeling design process", Al
magazine, vol. 11, no. 4, pp. 37.

Tsai, W.T., Malek, M., Chen, Y. & Bastani, F. 2006, "Perspectives on service-oriented
computing and service-oriented system engineering", Proceedings - Second IEEE
International Symposium on Service-Oriented System Engineering, SOSE 2006,
Shanghai, China, 25-26 October, pp. 3-8.

Van Rijsbergen, C.J. 1979, Information retrieval (2nd edn.), London, Butterworth.

Vaishnavi, V. and Kuechler, W. (2004/5). “Design Research in Information Systems”
January 20, 2004, [Online] Available at: URL:http://desrist.org/design-research-in-
information-systems. (August 16, 2009).

Velardi, P., Navigli, R., Cucchiarelli, A., Neri, F., Buitelaar, P., Cimiano, P. & Magnini,
B. 2005, "Evaluation of OntoLearn, a methodology for automatic learning of domain
ontologies", in P. Buitelaar, P. Cimiano & B. Magnini (eds.) Ontology Learning from
Text: Methods, evaluation and applications, Amsterdam, Netherlands: IOS Press, pp.
92-106.

Volker, J., Haase, P. & Hitzler, P. 2008, "Learning Expressive Ontologies" in P.
Buitellar & P. Cimiano (eds.) Ontology Learning and Population: Bridging the Gap
between Text and Knowledge, 10S Press, pp. 45-67.

Volz, R., Handschuh, S., Staab, S. & Studer, R. 2003, "OntoLiFT Demonstrator”
WonderWeb: Ontology Infrastructure for the Semantic Web", IST Project 2001-33052

WonderWeb. [Online] Available at:
http://wonderweb.semanticweb.org/deliverables/documents/D11.pdf (Accessed
February 2009).

Wang, X.H. 2004, Ontology based context modeling and reasoning using OWL,
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, Singapore, Singapore, 14-17 March, pp. 18-22.

Weichselbraun, A., Wohlgenannt, G. & Scharl, A. 2010, "Refining non-taxonomic
relation labels with external structured data to support ontology learning", Data &
Knowledge Engineering, vol. In Press, Corrected Proof.

Auhood Alfaries 166 of 189

Winter, R. 2008, "Design science research in Europe", European Journal of Information
Systems, vol. 17,n0. 5, pp. 470-475.

Witten, I.H. & Frank, E. 2002, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, ACM, New York, USA.

Yu, L. 2007, Introduction to the Semantic Web and Semantic Web Services, Boca Raton,
FL Chapman & Hall/CRC.

Yu, Q., Liu, X., Bouguettaya, A. & Medjahed, B. 2008, "Deploying and Managing Web
Services: issues, solutions, and directions", The VLDB Journal The International

Journal on Very Large Data Bases, vol. 17, no. 3, pp. 537-572.

Zhou, L. 2007, "Ontology learning: state of the art and open issues", Information
Technology and Management (Bussum), vol. 8, no. 3, pp. 241 (12 pages).

Auhood Alfaries 167 of 189

APPENDICES

Appendix A - POS tagger

A.1 Hepple Part-of-Speech Tags used by GATE POS tagger.

Part-of-Speech Tags used in the
Hepple Tagger

CC - coordinating conjunction: "and”. "but™, "nor”, "er”, "yet”, plus. minus, less, times
(multiplication). over (division). Also "for” (because) and “so” (i.e.. "so that™).

CD - cardinal number

DT - determiner: Articles including "a”. "an”, "every”, "no”, "the”, "another™, "any”,
"some”, "those™.

EX - existential there: Unstressed "there” that triggers inversion of the inflected verb and
the logical subject; "There was a party in progress”.

FW - foreign word

IN - preposition or subordinating conjunction

JJ - adjective: Hyphenated compounds that are used as modifiers; happy-go-lucky.

JIR - adjective - comparative: Adjectives with the comparative ending "-er” and a compar-
ative meaning. Sometimes "more” and "less”.

LIS - adjective - superlative: Adjectives with the superlative ending "-est”™ (and “worst”).
Sometimes "most” and "least”.

JISS - -unknown-, but probably a variant of JJS

-LRB- - -unknown-

LS - list item marker: Numbers and letters used as identifiers of items in a list.

MD - modal: All verbs that don’t take an "-¢" ending in the third person singular
present: “can”, "ecould”. "dare”. "may”. "might”. "must”, "ought”. "shall”. “should”, "will",
Twould”.

NN - noun - singular or mass

NNP - proper noun - singular: All words in names usually are capitalized but titles might
not be.

NNPS - proper noun - plural: All words in names usually are capitalized but titles might
not be.

NNS - noun - plural

NP - proper noun - singular

Figure 0-1: Part-Of-Speech Tags (from GATE user Guide)

Auhood Alfaries 168 of 189

ML Configuration 382

NPS - proper noun - plural

PDT - predeterminer: Determinerlike elements preceding an article or possessive pronoun;
"all/PDT his marbles”, "quite/PDT a mess™.

POS - possesive ending: Nouns ending in 7's” or "™
PP - personal pronoun

PRPRS - unknown-, but probably possessive pronoun

PRP - unknown-, but probably possessive pronoun

PRPS - unknown, but probably possessive pronoun.such as "my”, "your”, "his”, "his”, "its”,
“one’s”, "our”, and "their”.

RB - adverb: most words ending in "-ly". Also "quite”, "too”, "very” . "enough”, "indeed”,
“not”, "-n’t", and " never”.

RBR - adverb - comparative: adverbs ending with "-er” with a comparative meaning.

RBS - adverb - superlative

RP - particle: Mostly monosyllabic words that also double as directional adverbs.
STAART - start state marker (used internally)

SYM - symbol: technical symbols or expressions that aren’'t English words.

TO - literal to

UH - interjection: Such as “my”. “oh”, “please”. "uh”, "well”, “yes"”.

VBD - verb - past tense: includes conditional form of the verb "to be™; "If I were/VBD
rich...”.

VBG - verb - gerund or present participle

VBN - verb - past participle

VBP - verb - non-3rd person singular present

VB - verb - base form: subsumes imperatives, infinitives and subjunctives.

VBZ - verb - 3rd person singular present

WDT - wh-determiner

WP$ - possesive wh-pronoun: includes “whose™

WP - wh-pronoun: includes “what™. "who”, and "whom™.

WRB - wh-adverl: includes “how”. “where™, “why”. Includes “when” when used in a tem-
poral sense.

Figure 0-2: Part-Of-Speech Tags (from GATE User Guide)

Auhood Alfaries 169 of 189

Appendix B - JAPE code

B.1 JAPE files created for each rule and transformation rule.

main3.jape Rule1-NN-NN.jape
* 3
* main.jope * Rulel86-NN-NN. jape
* * TR is the some as TR1
Auhood Alfaries 25-narch-2610 * 9-June-2018
* *
*/ *
multiphase: MainGrammar *7
Phases:
Rule1-NN-NN Phase: RuleINNNN

Input: Lookup Token Tokens SpaceToken
Options: control = applet

Rule2-NN-NNP-NN
Rule3-NNP-NNP-NNP
Rule4-NNP-NNP
TransfRulel

2

//rule identifies concepts of type NN or NN
Rule: hash

(
word, Token.category
word, Token.categor:

({Token.kind
({Token.kind

):ihasA

-
ash.RelationldenRl ={relation="hasA-

"Rulel Clhas-aC2"},
ulel Clhas-aC2"}

jonain.Donain = {rul
' irange.Range = {rule="

1
1
1

NN}):donain
NN}):irange

Rule3-NNP-NNP-NNP.jape

I

* Rule3-NNP-NNP-NNP . jope

*

[E " 21-0ct-2089
*

*

*

*

oken Tokens SpaceToken
Options: control = applet

//rule identifies concepts of type NNP-NNP-NNP
Rule: has

({Token.kind

(({Token.kind
({Token.kind

| Yirange

| ythash

word, Token.category
word, Token.category
= word, Token.category

NNP}) :domain
NNP}):rangel
NNP}) srange2

Rulel”,domain= :domain.Token.string,range= :range.Token.string},

-
:has i = {relation="hasA-Rul
donain= :donain.Token.string,range:
:domain.Domain = {rule="Rule3 Clhas-aC2"}
irange.Range = {rule="Rule3 Clhas-aC2"}

,
ranget . Token.string,range2= :range2.Token.string},

T-NNZNN 3R
Rule4-NNP-NNP.jape

¥

Ruled-NNP-NNP . jope:

Al

, 21-0ct-2009

* % % % % %y

*

Phase: Rule4hNPNNP
Input: Lookup Token Tokens SpaceToken
Options: control = applet

//rule identifies concepts of type NNP-NNP
Rule: subClass

NNP}) :subl
NP)ssuper

({Token.kind
{ {Token.kind
JisubClass

ord, Token.category
ord, Token.category

{ = {relation="subClass—Ruled" ,
super= :super .Token.string,subl= :subl.Token.string,sub2= :super .Token.string},
ssuper = {rule="Rule4 C2superclass"},

:subl.Subclass = {rule="Rule4 CiC2subclass"}

10 lina 071

Rule2-NN-NNP-NN.jape
} x
1% Rule2-NN-NNP-NN. jape
) *
u * Auhood Alfaries 21-Oct-2009
L

L*

L Phase: RuleZNNNNPHN
1 Inpuf Lookup Token Tokens SpaceToken
i Options: control = applet

Ll //rule identifies concepts of type NN-NNP-NN

il Rutz: hasA

u ({Token.kind == word, Token.category

1 { ({Token.kind ord, Token.category =:

E ({Token.kind == word, Token.category == NN}):range2
Jirange

)):hash

1

qd
H thasA.RelationldenR2 = {relation="hasA-Rule2",

donain= :donain.Token.string,rangel= :rangel.Token.string,range2=:range2.Token.string},

rdonain.Domain = {rul
|, ironge.Range = {rule=

ulez Clhas-aC2"},
ule2 Clhas-aC2"}

Figure 0-3: JAPE code snippet illustrating code for Rules 1-4

Auhood Alfaries

170 of 189

®eno L

jape

TransfRule4.jape

7+
* TRule3-NN-NN. jape
*

* huhoad Alfaries, Feb-2810

RuleNNNN
RelationIdenR3
Options: control = applet

/¢ Transfornation of Rulel - NN-NN

Rule: TransRule3
({Relationldenk3}):relationlden
-
srelationlden{
Annotation thelnstance = (Annotation)relationldendnnats.iterator().next();
//get the donain and range strings from the features of Annot
String donain = thelnstance.getFeatures().get("donain"). toString();
String range = thelnstance.getFeatures().get("rangel").toString() + thelnstance.getFeatures().get
("range2").tostring();
String hasd = "-Hos-A-" 3
String Oproperty. = donain + hash + range;

/¢ Create URI for domain and range 24
gate.creole.ontology.OURT donclassURI = ontology.createOURI("http://exanple.con/classes#" + domain);
gate.creole.ontology .OURI ontology.create0URI("http://exanp le.con/classes#’ + range);

ac,

/¢ dd domain and range concept to ontology
gate.creole.ontology.0Class Domain = ontology.add0C lass{d
gate.creole.ontology.0Class Range = ontology.add0Class(yy

//check if property exist then
gate.creole.ontology .ObjectProperty xxx = ontology.getObjectProperty(ontology .createOURI("http://exanple .con/

classes#' + ;

/¢ Create Domain and Range Sets and add Domain and Range classes
Setgate.creole.ontology.0Class> theDonain = new HashSet<gate.creole.ontology.0Class=();
Set<gate.creole.ontology.0Class> theRange = new HashSet<gate.creole.ontology.0Class>();
theDonain.add(Donain); // the class you have for the domain
theRange.add(Range); // the class you have for the range

ontology .addObjectProperty(
/¢ create the URI for the new property:

ontology ("http://exanpl lasses#" + Oproperty),
thebonain,
theRange);
else
{ Setgate.creole.ontology.OResources theDonain= xcx.getbonain();
theDonain..add(Donain);
Set<gate.creole.ontology.OResource> theRange= xxx.getRange();
theRange .add(Range);
Systen.err.printin("hello cbject property has A exist");
i

|

/¥
* Rule4-NNP-NNP . jape
*

Feb-2610

* duhood, Al
*

*
*
X/

Phase: Rule4NNPNNP
Input: RelationIdenR4
Options: control = applet

/¢ Transfornation of Ruled - NNP-NNP

Rule: TransRuled

({Relationldenk4}):relationlden
-

srelationlden{

-

String kind = thelnstance.getFeatures().get("super").tostring();
String subl = thelnstance.getFeatures().get("subl").toString();
String sub2 = thelnstance.getFeatures().get("sub2").toString();
String sub = subl + subZ;

iterator().next();

/¢ need to check whether class exist first then create the OURI and add it to ontology.

gate.creole.ontology . OURT superClassURT = ontology.createOURI("http://exanple.con/classes#" + kind);
qat ontology.OClass - ontology.getOCla s
if (superClass == null)
/¢ create OURI for the superclass and add class to ontology.
= ontology.add0Ca RI);

reol uperCla: uperClassURI)

uperCla: uperCla

BE

In{"class \"" + kind + "\" does not exist ..ond just added!");

}

/¢ need to check whether subClass exist first then create the OURI and add it to ontology.
gate.creole.ontology .OURT subClassURI = ontology.createOURI("http://exanple.con/classes#" + sub);
gate.creole.ontology.0Class subClass = ontology.getOClass(subClassURI);
if (subClass == null) {

/¢ create OURI for the subclass and add class to ontology.

subClass = ontology.add0Class(subClassURT);
System.err.printin('class \"" + sub + "\" does not exist.. and just created!");

}

/7 Create subclass relation between the 2 classes.
superC lass.addSubC lass(subClass);

"}
/¢ cateh (Exception e){
st itin("Exception catched");
//ignore this for now

Figure 0-4: JAPE Snippet, illustrating code for transformation rules TR3 and TR4

Auhood Alfaries

171 of 189

Appendix C - Data Sets

C.1 First set sample: Financial Web Services and the SOLF
learned ontology model (Used for Iteration 1 and 2)

Matching.xsd

Type name= >
sequences

inston:MatchingContext" />

g2

Juer />
orceMatch” />
"forceNoNatch” />

</xsdcl
sd:sequences

inston :MatchingRequest” />

sequences
<xsd:element name="context" type="winston:MatchingContext"/>

abstract="true"/>

sd:elenent nane="salesTradeld"

<sd:elenent name="traderTradeld"
type="winston:Identif ier"/>

</ X3
</xsd:complexContent>

Type nane="ForceT
<sd:conplexContent>

bast
equences
<xsd:element nome="salesTradeld"

<xsd:element name="traderTradeld"
type="winston:Identifier"/>

Type nane="ForceT >
conp lexContent

base="ui i >
<sd:choices
<xsdzelenent nane="salesTradeld"

type="winston:Identifier"/>
<sd:elenent name="traderTradeld"
type="winston:Identifier"/>

</xsd:choices
</xsd:extension>
</xsd:complexContent;

|| MatchingEngine.wsdl
S0apT.

TEtp://Schenas .xi [500p .org

p
“http:/ e u3.0rg/2003/85/s00p-encoding”
/4 .OpENUr i .0Tg/2802/84/ysd | /conversation/”

X hitp://schenas .xmlsoap .org/usdl /"
targetNanespace="winston">

doRequest”>
="http://ww.u3.0rg/2001/ XML Schena”

e:
<iessage nane="doRequestResponse">
;| "http://uw.3.0r/2081/XLSchena”

</messages>
<portType name="MatchingEnginePort">
<operation name="doRequest'>
<input message: ioRequest ">
</input>
<output message

::doRequestResponse”>

</outputs
</operations
</portTypes
<binding type="tns:MatchingEnginePort"
MatchingEnginePort s

7

inding style="y
transport="http://schenas .xnlsoap .org/soap/http"s
</soap:binding>

<operation name="doRequest">
<soop:operation style="rpc"

soapAction="">
</soap:operations
<input>
<soap :body nanespace="winston"
encodingsty le="http://schenas .xm| soap .org/soap/encoding/"
use="encoded">
</soap:body>
</inputs
outputs
<soap :body nanespace="winston"
encodingSty le="http://schenas .xnlsoap.org/soap/encoding/"
use="encoded">
</soap:bodys
</output>
</operationx
</binding>
service

4
]
g
3

:MatchingEnginePort”
<soap:address location="http:// lonlxwebhost3:9581/vinston/natching/MatchingEngine" s
</soap:address>

</ports

v u </services

</def initions>

e ————

Figure 0-5: Matching WS1 WSDL and XSD Sample

Auhood Alfaries

172 of 189

< [@owl (http:/ /www.w3.0rg/2002/07/owl) m 8 qQ

—{ Active Ontology ~ Entities -~ Classes ' Object Properties = Data Properties ~ Individuals =~ OWLViz = DL Query OntoGraf]—

[-Class hierarchy. | ~ Class hierarchy Ginferred) | 1 N sages]
| L |
Class hierarchy: DEEE Annotations: [[=]0]E]

%@ ﬁ Annotations

© Approval =
@ Approve
@ Basket
@ Coupon
@ Cred
@ Credit
@ Curve
@ Engine
@ Entity
@ lIndex
O List
@ Matching
@ Obligation
@ Ontology
@ Pending
@ Port
@ Portfolio
» ©Property
©Ref
» @Resource
@ Response
@ Statement
@ Upload
@air
© bloomberg
@ country
@ coupon
@ currency
@ curve
@ default
Oef
@ guarantor
Dield
@industry
Dissue

Description: DEEE

Equivalent classes

Superclasses

Inherited anonymous classes

Members

Keys

Disjoint classes

4| >

No Reasoner set [Show Inferences 4

Figure 0-6: Financial Ontology Model (Iteration 1)

Auhood Alfaries 173 of 189

[u:e ni;g l?{’i’ Cman'Nm\e[@ EntiiesCurves PCTﬁt J(_l @ Basket],_.[® B;sketCredit [+ @ Binding l,, ,{ﬂ. CurveExts
T — I

—~— \< 4
ke I N, 7
t\lv N .\\3\\ /
T o e T
=7 \L \ R <,

[& ApproveBasket } ;urves N ° mniplenay\l'ﬂ. Defﬂ;llSww ”i. App;w:
: ~ :

T NN ~
. g oo S
,‘4{. Ny A
% > ~
S0 <
' _\\ - ~e_
1 SSNg ~

|
F. A:uit | lﬂ. EntityCredit I @ Curve] | @ Time] I @ IndexCredit I @ SingleDay ” @ CurveType F. CurveExt
N P Py
/_,B«JT’ i\\‘&\, \ ™~
B e = - g i
[i. Day I/{ F. Coupon] ;I W CreditCurves |. Attachment F. CreditCurve I @ YieldCurve H_E. CurveRequest F. CurveResponse

* @ AccruaiDate PJ. RequestType I @ %Iﬁ?l I @ UploadCurve

Figure 0-7: Financial Ontology Model (Iteration 2)

Auhood Alfaries 174 of 189

C.1 C.2 Second set sample: Books Web Services, SOLFO and
GSO (lteration 3)

‘@00 | | bookService.wsdl

fusdl:def initions xmlns:bs="http://upb.de/cs/ag-engels/Bookstore"

"http 1/ /schemas .xm Lsoap .org/y: soap/"
"y

"http i/ wew w3 .0rg/2001/%MLSchema” targetMamespace="http://upb.de/cs/ag-engels/

</xsd:elenent>
<xsd:element name="Book">

</xsd:elements
| <x3d:element maxOccurs="1" minOccurs="1" name="EditorList">
<xsd:comp lexType>

type="bs:Person">

<xsd:element maxOccurs="1" minOccurs="1" name="Price">
<x3d:comp lexType>

|
|
|
|
1
|
|
| </xsd:element=
|
|
|
|
|
|
|

</xsd:extension=
</xsd:simpleContent=
</x3d:comp lexTypes
</xsd:elements
‘ </xsd:sequencex>

‘ </xsd:element>
:comp lexType name="Person">

:string"/>
{:string" />

name="ForeName" type:
1" name="LastName" type=

1" minOccurs=

Figure 0-8: Books Service Sample 1 Snippet

Auhood Alfaries 175 of 189

(S NON&) | | bookinfoport.wsdl

T

<s:element minOccurs="8" maxOccurs="1" name="Availability" type="s:string" /=
<s:element minOccurs="1" maxOccurs="1" name="ListPrice" type="s:double" /=
<s:element minOccurs="1" maxOccurs="1" name="DiscountPercent" type="s:double" /=
</sisequences
</sicomp lexType=

Figure 0-9: Books Service Sample 2 Snippet

Auhood Alfaries 176 of 189

[+ @ TableOfContents

\
® Money \
* @ Keyword N\
@ PublicationPlac ~
. .
\\
~
‘ S S
\\ ~
~ ~ e
el SR8 ﬁ

~,

Figure 0-10: Books GSO Snippet

Auhood Alfaries 177 of 189

Vendogrica s
== e

@ Stams

(azeee]

Figure 0-11: Books SOLFO Snippet

Auhood Alfaries 178 of 189

(Iteration 3)

®NoO

 service3Stock.wsdl

C.2 C.3 Third set sample: Financial services, SOLFO and GSO

<s:icomp lexType

<3 iSequence:
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element
:element

name="StockInfo"=

minOccurs="@a"
minOccurs="@"
minOccurs="@"
minOccurs="@"
minOccurs="@"
minOccurs="@a"
minOccurs="@a"
minOccurs="@a"
minOccurs="@"
minOccurs="@"
minOccurs="@"
min0ccurs="@a"
min0ccurs="@a"
minOccurs="@a"
minOccurs="@a"
minOccurs="@"
minOccurs="@"

maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"

name="Error" type="s@:Err" /=
name="Symbol" type="s:string" /=
name="Name" type="s:string" /=
name="Quotelpen" type="s:string" />
name="QuoteLast" type="s:string" /=
name="QuoteVYolume" type="s:string" />
name="QuoteChange" type="s:string" /=
name="QuotePercentChange" type="s:string" /=
name="QuoteDate" type="s:string" /=
name="QuoteTime" type="s:string" /=
name="QuoteHigh" type="s:string" />
name="QuoteLow" type="s:istring" /=
name="FiftyTwolWeekHigh" type="s:string" /=
name="FiftyTwolWeekLow" type="s:string" /=
name="PE" type="s:string" /=
name="DivPerShare" type="s:string" /=

—

name="NAY" type="s:string" />

BOHBOHLOHLOBHBHBHOHHHDLD

:element minOccurs="8" maxOccurs="1" name="PrevNAY" type="s:string" />

:element minOccurs="8" maxOccurs="1" name="Status" type="s:string" />
</si1sequences
</s:comp lexType:=

<s:complexType name="Err"=
<5 1sequences
<s:element minOccurs="8"
<s:element minOccurs="@"
<s:element minOccurs="@"
</s1sequences
</s:comp lexType=
<s:element name="GetMutualInfo"=
<s:icomp lexType:=
<3 1sequences
<s:element minOccurs="8" maxOccurs="1"
<s:element minOccurs="8" maxOccurs="1"
</s1sequences
</s:comp lexType=
</s:element=
<3:element name="GetMutualInfoResponse"=
<z :comp lexType:s>
<S5 1sequences
<s:element minOccurs="8" maxOccurs="1"
</sisequence:
</sicomp lexType=
</s:element=
<3:element name="GetInternationalStockInfo"=
<z :comp lexType:s>
<S5 1sequences
<s:element minOccurs="8" maxOccurs="1"
<s:element minOccurs="8" maxOccurs="1"
</sisequence:
</scomp lexTypes
</s:element=
<s:element name="GetInternationalStockInfoResponse"=
<s:comp lexType=
<5 1sequences
<s:element minOccurs="8" maxOccurs="1" name="GetInternationalStockInfoResult"
type="s@:5tockInfo" /=
</s:1sequences
</s:comp lexTypes

Lo lanant

maxOccurs="1"
maxOccurs="1"
maxOccurs="1"

name="Desc" type="s:string" /=
name="Number" type="s:string" /=
name="Location" type="s:string" /=

name="Ticker" type="s:string" /=

name="LicenseKey" type="s:string" /=

name="GetMutualInfoResult" type="s8:StockInfo" /=

name="Ticker" type="s:string" /=
name="LicenseKey" type="s:string" /=

Figure 0-12: Finance Sample 1 Snippet

Auhood Alfaries 179 of 189

0o | | servicel7.wsdl

<s:schema elementFormDefault="qualified" targetNamespace="http:/ www.xignhite.com/services/" >
<3:element name="Lookup">
<5 :comp lexTypes
<3 1Sequences
<s:element minOccurs="8" maxOccurs="1" name="Name" type="s:string" /=

<s:element minOccurs="1" maxOccurs=
</sisequence:
</s:comp lexType:=
</s:elements
<s:simpleType name="LookupType"=
<s:restriction base="s:string">
<s:enumeration value="Stock" />
<s:enumeration value="Fund" /=
<s:enumeration value="Index" />
</sirestriction=
</sisimpleTypes>
<3:element name="LookupResponse"x
<5 :comp lexTypes
<3 1Sequences
<s:element minOccurs="@" maxOccurs="1" name="LookupResult" type="s@:Array0fLookupltem" /=
</s 15equUEnce:
</s:complexType=
</s:elements
<s:comp lexType name="Array0fLookupltem"=
<3 1Sequences

1" name="Type" type="s8:LookupType" /=

</s1sequence:
</scomp lexTypes
<s:comp lexType name="LookupItem"=
<3 1Sequences
<s:element minOccurs="@" maxOccurs="1" name="Name" type="s:string" /=
<s:element minOccurs="@" maxOccurs="1" name="Symbol" type="s:istring" />
<s:element minOccurs="@" name="Market" type="s:string" /=
<s:element minOccurs="8" maxOccurs="1" name="CategoryOrIndustry" type="s:string" /=
</sisequence:>
</s:comp lexTypes
<s:element name="LookupStock"=
<5 :comp lexTypes
<3 1Sequences
<s:element minOccurs="8" maxOccurs="1" name="Name" type="s:string" /=
</sisequence:
</s:comp lexType:=
</s:elements
<3:element name="LookupStockResponse"=
<5 :comp lexTypes
<3 1Sequences
<s:element minOccurs="@" maxOccurs="1" name="LookupStockResult" type="s@:ArrayOfLookupltem" /=
</s 15eqUEnCe:
</s:complexTypes
</s:elements
<s:element name="LookupFund"=
<5 :comp lexTypes
<3 1Sequences
<3:element minOccurs="@" maxOccurs="1" name="Name" type="s:string" /=

Figure 0-13: Finance Sample 2 Snippet

Auhood Alfaries 180 of 189

Figure 0-14: Snippet Of Financial GSO

Auhood Alfaries 181 of 189

@ HeadineCount

/

* g FundSoap

1/
7 / lzI I
- ,,7@79/1
]
vy /N
WA ‘";“""
*l o StockGrowthStat | o
e
g @ Fund
7
& Company /
! - /
IINC

/
/2.9 /

/

/

* @ GetStockHeadlin

L)
4 &
g
=
~—n
-
~
\\\
g

~

»|
g \
-
~ -
‘-\h\s
=
e
~—
~

|
5

3 ~
N T

-
-~
~
~
~
~
~

“@ Default
I

~

¥ @ MarketNewsllem
'/
/

@ EarningAnnounce
1§

'@ Roliing

*l @ AverageDaily

I I\i

Figure 0-15: Snippet of Financial SOLFO

Auhood Alfaries 182 of 189

Appendix D - Evaluation Spread Sheets

D.1 Iteration 1 Evaluation Sheets

Domain Expert (D.E.) Evaluation of Iteration 1: The following tables illustrate the Web

Service Term Model (WSTM) for Web Service 2, for the three methods as described in

Chapter 4.

WSTM-WS2-Method1

No. |XSD-Concepts D.E. Score No. XSD-Concepts D.E. Score No. XSD-Concepts D.E. Score
1 name 1 52 traderTrade 1 103 MatchingRequestHeader 0
2 value 1 53 matchInfo 0 104 MatchingResponseHeader 0
3 base 1 54 updatedTraderTrade 1 105 MatchingBroadcastHeader 0
4 schemalocation 0 55 closeMatch 0 106 MatchingRequestBody 0
5 targetNamespace 0 56 validate 1 107 QueryTradeMatchStatusRequ 0
6 version 0 57 insertRule 1 108 ForceTradeMatchRequestBod| 0
7 WWW 0 58 updatRule 1 109 ForceTradeNoMatchRequestB 0
8 xsd 0 59 deleteRule 1 110 RematchTradesRequestBody 0
9 xml 0 60 evalData 0.5 111 AttemptTradeMatchRequestB 0
10 [lehman 0 61 Thing 1 112 MatchingResponseBody 0
11 http 0 62 rosetta 0 113 ForceTradeMatchResponseBo 0
12 [History 1 63 field 1 114 ForceTradeNoMatchResponsg 0
13 |header 1 64 dateTime 1 115 QueryTradeMatchStatusResp) 0
14 |winston 0 65 success 1 116 AttemptTradeMatchResponsg 0
15 |body 0 66 tradeld 1 117 RematchTradesResponseBod 0
16 |logQuery 0 67 domain 1 118 MatchingBroadcastBody 0
17 |tradeMatchingContext| 0 68 org 1 119 TradeMatchBroadcastBody 0
18 |tradeValidationConte: 0 69 attributeFormDefault 0 120 MatchStatus 0
19 |datald 1 70 elementFormDefault 0 121 TradeMatchStatus 0
20 [startDate 1 71 element 1 122 MatchedInfo 1
21 |endDate 1 72 date 1 123 TradeMatchedInfo 0
22 |rule 1 73 sequence 1 124 TradeNotMatchedInfo 0
23 |id 1 74 complexType 0 125 MatchingContext 1
24 |failCode 1 75 schema 0 126 ValidationRequestHeader 0
25 |failMessage 1 76 simpleType 0 127 ValidationResponseHeader 0
26 |context 1 77 restriction 1 128 ValidationRequestBody 0
27 |severity 1 78 maxLength 1 129 TradeValidateRequestBody 0
28 |evalType 1 79 boolean 1 130 ValidationResponseBody 0
29 |defintion 1 80 enumeration 0 131 TradeValidateResponseBody 0
30 |path 1 81 complexContent 0 132 ValidationContext 1
31 |type 1 82 extension 1 133 AdminRequestHeader 0
32 |TRADE 0.5 83 choice 1 134 AdminResponseHeader 0
33 |productType 1 84 string 0 135 AdminRequestBody 0
34 |envelope 0 85 anyType 0 136 RuleAdminRequestBody 0
35 |validationResponse 0 86 positivelnteger 1 137 AdminResponseBody 0
36 |validationRequest 0 87 Pattern 1 138 RuleAdminResponseBody 0
37 |matchingResponse 0 88 UTF- 0 139 SimpleTrade 1
38 |matchingRequest 0 89 HistoryRequestHeader 0 140 TradeValidationLog 1
39 |matchingBroadcast 0 90 HistoryResponseHeader 0 141 TradeMatchinglLog 1
40 [historyResponse 0 91 HistoryRequestBody 0 142 KeyValuePair 1
41 historyRequest 0 92 HistoryResponseBody 0 143 XMLSchema 0
42 [adminResponse 0 93 WARNING 1 144 VALIDATION 1
43 [adminRequest 1 94 COMPLEX 1 145 MATCHING 1
44 |forceMatch 0 95 SIMPLE 1 146 Identifier 1
45 [forceNoNatch 0 96 LOOKUP 1 147 HistoryLog 1
46 [rematch 0 97 RuleContext 1 148 log 1
47 |attemptMatch 0 98 TradeRuleContext 1 149 live 1
48 request 1 99 CDS 1|Total 149 71
49 |salesTradeld 1 100 CDO 1
50 |traderTradeld 1 101 Errors 1
51 |salesTrade 1 102 Standard 1

Auhood Alfaries

Figure 0-16: Method1-WS2 (XSD) Domain Expert Scoring

183 of 189

WSTM-WS2-Method1

WSTM-WS2-Method?2 l

No. WSDL-Concepi D.E. Score No. WSDL-Concept|D. E. Scoring|
1 location 1 1 location 1
2 style 1 2 style 1
3 namespace 0 3 namespace 0
4 version 0 4 version 1
5 WWW 0 5 WWW 0
6 lonlxwebhost 0 6 lonIxwebhost 0
7 targetNamespad 0 7 target 1
8 use 1 8 use 1
9 message 1 9 chema 1
10 part 1 10 message 1
11 portType 0 11 part 1
12 operation 1 12 port 0
13 input 1 13 operation 1
14 output 1 14 input 1
15 soap 0 15 output 1
16 service 1 16 soap 0
17 port 0 17 service 1
18 xml 0 18 xml 0
19 type 1 19 type 1
20 name 1 20 name 1
21 winston 0 21 winston 0
22 http 0 22 http 0
23 doRequest 0 23 string 1
24 string 1 24 result 1
25 doRequestRespd 0 25 rpc 0
26 result 1 26 wsdl 0
27 rpc 0 27 org 1
28 wsdl 0 28 transport 1
29 org 1 29 xmlsoap 0
30 transport 0 30 body 1
31 soapAction 0 31 reliability 1
32 xmlsoap 0 32 enc 1
33 body 0 33 mime 0
34 reliability 1 34 conversation 0
35 enc 0 35 openuri 0
36 encodingStyle 0 36 w 0
37 mime 0 37 wsr 0
38 conversation 0 38 soapenc 0
39 openuri 0 39 conv 0
40 w 0 40 Request 1
41 WSr 0 41 Engine 0
42 soapenc 0 42 UTF 0
43 conv 0 43 Matching 1
44 UTF- 0 44 XMLS 0

Total 44 15 45 Response 1
46 Action 1
47 address 1
Total 26
Figure 0-17: Method1& 2-WS2 (WSDL) Domain Expert Scoring
Auhood Alfaries 184 of 189

WSTM-WS2-Method3 [WSTM-WS2-Method3

No. |XSD-Concepts |D. E. scorirn No. XSD-Concepts |D. E. scoringJ No. |WSDL-Concepts|D. E. Scorin
1 location 1 65 min 0.5 1 location 1
2 style 1 66 credit 1 2 |style 1
3 namespace 0 67 fid 0 3 |namespace 0
4 name 1 68 transport 0 4 |version 1
5 value 1 69 xmlsoap 0 5 [www 0
6 base 0 70 reliability 1 6 |lonlxwebhost 0
7 schema 1 71 enc 0 7 |target 1
8 target 1 72 element 1 8 |use 1
9 version 1 73 mime 0 9 chema 1
10 |www 0 74 conversation 0 10 |message 1
11 |lonlxwebhost 0 75 w 0 11 |part 1
12 |use 1 76 openuri 0 12 |port 0
13 [chema 1 77 wsr 0 13 |operation 1
14 [Id 1 78 soapenc 0 14 [input 1
15 |Rule 1 79 conv 0 15 |output 1
16 [Date 1 80 sequence 1 16 |soap 0
17 |xsd 0 81 choice 1 17 |[service 1
18 |message 1 82 extension 1 18 |xml 0
19 |part 1 83 restriction 1 19 [type 1
20 |port 0 84 boolean 0 20 |name 1
21 [|operation 1 85 enumeration 1 21 [winston 0
22 |input 1 86 22 |http 0
23 |output 1 87 Pattern 1 23 |[string 1
24 [soap 0 88 Response 1 24 [result 1
25 [service 1 89 Content 1 25 [rpc 0
26 |xml 0 90 Time 1 26 |wsdl 0
27 |[type 1 91 Data 1 27 |org 1
28 [lehman 0 92 Log 1 28 [transport 1
29 [http 0 93 Status 1 29 [xmlsoap 0
30 |History 1 94 Info 1 30 |[body 1
31 |header 0 95 Engine 1 31 |reliability 1
32 |winston 0 96 Broadcast 0 32 |enc 1
33 |body 1 97 Length 1 33 |mime 0
34 |trade 1 98 Matching 1 34 [conversation 0
35 [end 1 99 Matched 1 35 [openuri 0
36 [string 1 100 Match 1 36 |w 0
37 |result 1 101 Code 1 37 |wsr 0
38 [rpc 0 102 Trades 1 38 [soapenc 0
39 |updat 1 103 UTF 0 39 [conv 0
40 |context 1 104 ERROR 1 40 |Request 1
41 |severity 0 105 WARNING 1 41 |Engine 0
42 |eval 0.5 106 COMPLEX 1 42 |UTF 0
43 |defintion 1 107 LOOKUP 1 43 [Matching 1
44 |path 1 108 CDS 1 44 |XMLS 0
45 |product 1 109 CDO 1 45 |Response 1
46 |query 1 110 Errors 1 46 [Action 1
47 |force 1 111 Standard 1 47 |address 1
48 [rematch 0 112 XMLS 0 48 47 26
49 |attempt 1 113 Form 1 0.6676301
50 [request 1 114 Default 1 66.76%
51 [trader 1 115 Natch 0
52 [validate 1 116 Pair 1
53 |envelope 0 117 Occurs 1
54 [validation 1 118 Action 1
55 [admin 1 119 Identifier 1
56 |success 1 120 Key 1
57 |rosetta 0 121 start 1
58 |Thing 1 122 insert 1
59 |Simple 1 123 delete 1
60 |field 1 124 live 1
61 |max 0.5 125 fail 1
62 |wsdl 0 126 close 1
63 |org 1 127 address 1
64 |tc 0 Total 126 89.5

Figure 0-18: Method3-WS2 (XSD & WSDL) Domain Expert Scoring

Auhood Alfaries 185 of 189

D.2 Iteration 2 Evaluation Sheets

SuperClass SubClass Domain Only Range Only
Match Score |Match Score |Match Score|Match Score
Abb X Amend air X AccrualDate
Attachment X Approval Amend AuditHistory
Audit Approve Approval BasketCredit
Basket Assign Approve CreditCurve
Binding X Basket Assign CurrencyName
Code Blotter Basket CurveException [X
Credit Cancel bloomberg CurveExt
Curve Cred S Cancel CurveExts
Curves Credit country Curveld
Day Curve coupon CurveRequest
Default Curves Cred S CurveResponse
Describor X Day Credit S CurvesRequest
Describors X Defaulted currency CurveType
Drill X Endpoint X curve CurveUpload X
Engine X Entities Day Date
Entities Entity default DayServer
Entity Exception X Defaulted DayTrade
Event Ext S ef X DefaultSwap
Exception X Exts S Entity DescriborsType
Ext X Fire X guarantor DescriborType
Index Index ield X EnginePort X
Legal Insert Index EntitiesCredit
Message X Matching industry EntitiesRequest | X
Port s? Mature Insert ? EntitiesResponse | x
Portfolio Mirror issue EntityCredit
Query ? Multiple issuer EntityCurve
Ref s Novate loomberg X Entityld
Reference Obligation Matching EntityName
Request X Officer Mature EntityRequest X
Response X Pending maturity EntityResponse | X
Server X Policy Mirror EntityRetrieval |X
Single X Poll Multiple EntityUpload X
Soap X Port s? Novate EventType
System X Portfolio Obligation ExceptionFault | X
Time Qte X org ? ExceptionType [x
Token ? Query ? owner ExtRequest X
Trade Range parent ExtResponse X
Type Ref S Pending ExtTrade
WSR X Request X Poll X FreqName
39 Reset Port 1d
Retrieval X Portfolio IndexCredit
Security Qte X ISOCode
Server X Range LegalName
Single X rating Name
Soap X ref Obligationld
Static Server X ObligationName
Summit Single X PortfolioCredit
System X summit PortSoap X
Target ? supplement RefEntities
Token ? Target X RefEntity
Trade trade RequestExt
Unwind Unwind RequestType X
Upload X Upload Sectorld
Username Verify SectorName
Verify 55 ServerExt X
Yield ServerResponse [X
56 SoapBinding X
SystemTrade X
Tierld
Score Meaning TimeTrade
X not exist TradeExt ?
blank yes Tradeld X
S Synonym/ Abreviated TradeQuery ?
? Not sure TradeRequest X
TradeResponse |X
TradeServer ?
67

Figure 0-19: Iteration 2 Financial Ontology Domain Expert Scoring

Auhood Alfaries

186 of 189

D.3 Iteration 3 Lexical Layer Evaluation Sheets

LSDIS_Finance.owl: GoldStandard Ontology
Class-Levell,2 Class-Level3,4&5 98 |Option
1 |AmericanOptionPut 99 mericanStyleOption
2 |AverageDailyVolume 100 CallOption
3 |Briefing 101 ConventionalOption
4 [CallResult 102 EquityOption
5 [Category 103 [iropeanStyleOption
6 |Certificate 104 IndexOption
7 Financiallnstrument 105 Leaps
8 [ChangeMeasure 106 OptionStrategy
9 AnnualChange 107 SingleOption
10 DailyChange 108 SpreadOption
11 |ChangePercent 109 PutOption
12 |Company 110 StockOption
13 |Content 111 [Ordering
14 [Contract 112 Call
15 FinancialAccount 113 AmericanPriceC
16 CorporateAccount 114 EuroPriceCall
17 nterestBearingAccoun| 115 [PerShareDivision
18 SavingsAccount| 116 |PerShareEarn
19 MoneyMarket| 117 [PreviousCls
20 MoneyMarket 118 |PriceEasningRatio
21 TraditionalSavingsAccou| 119 |Procedure
22 DepositAccount 120 Index
23 SavingsAccount| 121 InflationIndex
24 MoneyMarket| 122 StockIndex
25 InterestBearingAccoul| 123 [QuoteChange
26 SavingsAccount 124 [QuoteDate
27 MoneyMarket| 125 [QuoteVolume
28 LiabilityAccount 126 [RegulatoryProcess
29 CreditAccount 127 Audit
30 Loan 128 Prospectuslssuance
31 PersonalAccount 129 pctionAuthorization
32 Financial contract 130 CardCodeVerific
33 |CusipStock 131 CheckProcessin
34 |Date 132 PinEntry
35 [DayHight 133|Rho
36 [DayLow 134 [RiskFreeRate
37 |Delta 135 [RollingMeanMean
38 | Description 136 [RollingStddevMean
39 |DividendAmountsList 137 [RollingStddevStddev
40 |DividendTimesList 138 (Sigma
41 |EarningAnnouncement 139 [Source
42 [EndDate 140 [SplitRatio
43 | EpsEstimate 141 [StartDate
44 |Error 142 [StationaryArtifact
45 | EuroOptionPut 143 AtmMachine
46 |ExercisePrice 144 [Status
47 |FiftytwoWeekHigh 145 [Stddev
48 |FiftytwoWeekLow 146 [StockChange
49 |FiftytwoWeekRange 147 [StockGrowthStatistics
50 [FinancialTransaction 148 |StockHeadlines
51| AutomaticTransaction 149 |StockInformation
52 ComercialService 150 [StockLookup
53 FinancialService 151 |StockNews
54 OpeningAnAccount 152 [StockPrice
55 Investing 153 [StockVolume
56 NonQualifiedInvestme 154 |Summary
57 QualifiedInvestment 155 [Symbol
58 Liquidation 156 [Text
59 OpeningAnAccount 157 BankStatement
60 Payment 158 Bill
61 Prepayment 159 CreditCardBill
62 Refinancing 160 EquityStatement
63 Rollover 161 jecuritiesStatement
64 SecuritiesTransaction 162 |Theta
65 StockQuote 163 [Ticker
66 [StockMarketTransaction 164 |TimeMeasure
67 Withdrawl 165 TimeDuration
68 |FundLookup 166 Timelnterval
69 |Gama 167 TimePosition
70 [GrowthStatisticsHistorical 168 |Title
71 |HeadlineCount 169 [Type
72 |HighGrowth 170 |Url
73 |HighQuote 171 [Vega
74 |HistoryMonths
75 |IntentionalPRocess
76 |ItemLookup
77 |LastPrice
78 |LastQuote
79 |LastTradeAmount
80 |LicenceKey
81 |Location
82 |Lookup
83 |LookupResult
84 [LowGrowth
85 [LowQuote
86 | MarketCap
87 [MarketNews
88 | MarketNewsItem
89 |Mean
90 | Message
91 |Name
92 [Nav
93 [Number
94 | Offering
95 LoanCommitment
96 |OpenAmount
97 [OpenQuote

Figure 0-20: Iteration 3 Financial Gold Standard Ontology

Auhood Alfaries

187 of 189

SOLFO: Financial Ontology Produced |
from 5 WS Given from Muhammad Research with GSO

Concepts-Levell &2 51 [Desc Y

1 [Aires N 52 |Details N

2 BuenossAires |N 53 [Dev Y

3 |Amount N 54 StdDev Y

4 OpenAmount|Y 55 [Dividend Y

5 TradeAmount|Y 56 [DividendAmountList N

6 | AmountList N 57 [DividendTimelList N

7 [Announcement Y 58 [EPSEstimate Y

8 |AnnouncementDate Y 59 |Earning Y

9 [AnnouncementTime N 60 |EarningAnnouncement Y
10 |Announcements N 61 |Err Y
11 |AnnouncementsResult N 62 |Error Y
12 |AsOfDate N 63 [QuoteError N
13 |Briefing Y 64 |Euro Y
14 |Briefings y 65 CalEuro|N
15 |Calc n 66 |EuroOption Y
16 |CalcAmericanOptionPriceCall N 67 |Free Y
17 |CalcAmericanOptionPriceCallRes|N 68 RiskFree |Y
18| CalcAmericanOptionPricePut N 69 [FreeRate Y
19 |CalcAmericanOptionPricePutResgN 70 |FromDate N
20 | CalcEuroOptionPriceCall N 71 |Fund Y
21 [CalcEuroOptionPriceCallRespons{N 72 [LookupFund Y
22 [CalcEuroOptionPricePut N 73 [FundHttp N
23 | CalcEuroOptionPricePutResponsg N 74 |FundResponse N
24 [Calculator N 75 [FundSoap N
25 ([Call Y 76 [Gamma N
26 PriceCall |Y 77 [GetCUSIPFund N
27 [CallHttp N 78 [GetCUSIPFundResponse N
28 |CallResponse N 79 | GetCUSIPFundResult N
29 [CallResult Y 80 | GetCUSIPStock N
30 [CallSoap N 81 |GetCUSIPStockResponse N
31 |Cap Y 82 [GetCUSIPStockResult N
32 MktCap|Y 83 [GetEarningAnnouncements N
33 [CategoryOrIndustry N 84 |GetGrowthStatistics Y
34 |Change Y 85 |GetGrowthStatisticsHistorical Y
35 QuoteChange|Y 86 |GetInternationalStockInfo N
36 StockChange|Y 87 |GetMutuallnfo N
37 |Charts N 88 |GetQuickQuoteResponse N
38 BigCharts|N 89 |GetQuickQuoteResult N
39|ClIs Y 90 |GetQuote N
40 PrefCls |N 91 [GetQuoteDataSet N
41 [Company Y 92 |GetReutersMarketNewsDetails |N
42 |Content Y 93 |GetSplitRatio N
43 [Daily Y 94 [GetStockHeadlines N
44 AverageDaily [Y 95 |GetStockInfo N
45 [Data N 96 [Growth Y
46 QuoteData [N 97 StockGrowth |Y
47 [Date Y 98 |Headline Y
48 [Default N 99 [HeadlineCount Y
49 FormDefault|N 100 |Headlines Y
50 [Delta Y 101 StockHeadlines Y
102 |High Y 155 |Nav y
103 DayHigh|Y 156 PrevNAV [n
104 GrowthHigh|Y 157 |[Name y
105 QuoteHigh|Y 158 |News Y
106 WeekHigh [N 159 MarketNews |y
107 [Historical Y 160 StockNews |y
108 |Html n 161 XigniteNews |n
109 |Http n 162 |NewsHttp n
110 AnnouncementsHttp[n 163 |Newsltem Y
111 BriefingHttp |n 164 |NewsSoap n
112 BriefingsHttp |n 165 |Number y
113 CalculatorHttp [n 166 |Open Y
114 DetailsHttp |n 167 QuoteOpen |n
115 HeadlinesHttp|n 168 |Option y
116 HistoricalHttp |n 169 |Post n
117 LookupHttp [n 170 HttpPost [n
118 QuoteHttp [n 171 |Price Y
119 |Important n 172 ExcersicePrice|n
120 |ImportantMessageResonse n 173 OptionPrice|n
121 |ImportantMessageResult n 174 StockPrice |y
122|Info n 175 |Pricing n
123 Mutuallnfo [n 176 |Quick n
124 StockInfo|n 177 |Quote Y
125 [InfoHttp n 178 FastQuote[n
126 |InfoResponse n 179 QuickQuote|n

Figure 0-21: Iteration 3 Financial SOLFO Gold Standard Evaluation

Auhood Alfaries

188 of 189

127

InfoSoap

180

StockQuote

128

International

181

Range

129

Item

182

WeekRange

130

LookupItem

183

Ratio

131

Key

184

SplitRaio

132

LicenceKey

185

RatioHttp

133

LastPrice

186

RationResponse

134

LastTradeAmount

187

RationSoap

135

LastTradeDateTime

188

Reference

136

Location

189

Response

137

Lookup

190

AnnouncementResponse

138

Low

191

BriefingRespnse

139

DayLow

192

BriefingsRespnse

140

GrowthLow

193

ClassResponse

141

QuotelLow

194

DetailsResponse

142

WeekLow

195

HeadlinesResponse

143

Market

196

HistoricalResponse

144

ReutersMarket

197

LookupResponse

145

MarketNewsItem

198

QuoteResponse

146

Mean

199

Result

147

MeanOfRollingMean

200

Reuters

148

Message

201

Rho

149

ImportantMessage

202

Risk

150

MessageHttp

203

RiskFreeRate

151

MessageResponse

204

Rolling

152

MessageSoap

205

Security

153

MonthsOfHistory

206

XigniteSecurity

154

Mutual

207

SecurityHttp

S| |<K[<XK[3|X|=3[5|5|3|3|35|5|3|53|35 5|55 XXX

208

209

SecuritySoap

210

Set

211

DataSet

212

Sigma

213

Soap

214

AnnouncementsSoap

215

BriefingSoap

216

BriefingsSoap

217

CalculatorSoap

218

ClassSoap

219

DetailsSoap

220

HistoricalSoap

221

LookupSoap

222

QuoteSaop

223

Source

224

Split

225

Std

226

RollingStd

227

StdDevOfRollingMean

228

Stock

229

InternationalStock

230

LookupStock

231

StockGrowthStatistics

232

StockHttp

233

StockResponse

234

StockSoap

235

StockVolume

236

Summary

237

Symbol

238

StockSymbol

239

Symbols

240

StockSymbols

241

Text

242

Theta

243

Ticker

244

Time

245

QuoteTime

246

TimesList

247

Title

248

ToDate

249

Type

250

LookupType

251

Url

252

Vega

253

Xignite

254

tock

255

und

SIOIKKITKITKIX[FIKKKKIZITIPKIKKIEI3IKI3I13IK¥I3|X¥I<I<K[=3|3|3|3|3|3[33(3 <753 |53|53|53 |37 [53[53 3K K K7 |X¥I¥XIX¥XIXKI<K K K K KILI|L|<]|>3]|>

Figure 0-22: Iteration 3 Financial SOLFO Gold Standard Evaluation

Auhood Alfaries

189 of 189

