

ONTOLOGY LEARNING FOR
SEMANTIC WEB SERVICES

A thesis submitted towards the degree of

Doctor of Philosophy

By

Auhood Alfaries

School of Information Systems, Computing and Mathematics

Brunel University

September 2010

Auhood Alfaries Page II

ABSTRACT

The expansion of Semantic Web Services is restricted by traditional ontology

engineering methods. Manual ontology development is time consuming, expensive and a

resource exhaustive task. Consequently, it is important to support ontology engineers by

automating the ontology acquisition process to help deliver the Semantic Web vision.

Existing Web Services offer an affluent source of domain knowledge for ontology

engineers. Ontology learning can be seen as a plug-in in the Web Service ontology

development process, which can be used by ontology engineers to develop and maintain

an ontology that evolves with current Web Services. Supporting the domain engineer

with an automated tool whilst building an ontological domain model, serves the purpose

of reducing time and effort in acquiring the domain concepts and relations from Web

Service artefacts, whilst effectively speeding up the adoption of Semantic Web Services,

thereby allowing current Web Services to accomplish their full potential

With that in mind, a Service Ontology Learning Framework (SOLF) is developed and

applied to a real set of Web Services. The research contributes a rigorous method that

effectively extracts domain concepts, and relations between these concepts, from Web

Services and automatically builds the domain ontology. The method applies pattern-

based information extraction techniques to automatically learn domain concepts and

relations between those concepts. The framework is automated via building a tool that

implements the techniques. Applying the SOLF and the tool on different sets of services

results in an automatically built domain ontology model that represents semantic

knowledge in the underlying domain.

The framework effectiveness, in extracting domain concepts and relations, is evaluated

by its appliance on varying sets of commercial Web Services including the financial

domain. The standard evaluation metrics, precision and recall, are employed to

determine both the accuracy and coverage of the learned ontology models. Both the

lexical and structural dimensions of the models are evaluated thoroughly. The evaluation

results are encouraging, providing concrete outcomes in an area that is little researched.

Auhood Alfaries Page III

ACKNOWLEDGEMENTS

I would like to acknowledge my deepest gratitude to those who have helped along the

way and influenced the formation of my understanding.

 First, I would like to express my appreciation to my first supervisor Professor

Mark Lycett. It is my great pleasure to acknowledge his invaluable suggestions,

guidance and constant support during my research. I am very grateful to Prof.

Lycett for providing a stimulating environment via the Fluidity research group. It

is my good fortune to have been supervised by him and to have worked and

learned from him.

 I am deeply grateful to my second supervisor Dr. David Bell for his valuable

time, advice and support in all possible ways during my research.

 I am thankful to all my colleagues in SJ128 for the fruitful discussions we had

many times at our desks. Thanks to my dearest colleague Laden Aldin, for her

thoughtful comments and for the good times we had in Brunel University.

 I would like to express my gratitude to my cherished husband, Mosaad. I am so

appreciative for his constant love, understanding and encouragement, for his

taking up the extra responsibilities to our family and bearing the pressure both

from work and home during my PhD. My thanks also go to my children; Fahad,

Omar, Aljoharah and Abdulaziz for their incredible patience and understanding

at times where I had to miss special moments with them.

 Finally, but not least, I would like to thank all of my extended family and friends

for their belief in me. Very special thanks to my beloved mother, Aljoharah. For

her prayers, continuous encouragement and support; and to whom I dedicate this

thesis.

Auhood Alfaries Page IV

PUBLICATIONS

The work in this thesis has led to the following publications:

Alfaries, A., Bell, D. & Lycett, M. 2009, "Ontology Learning for Semantic Web
Services", Proceedings of the 14th Annual UK Association of Information Systems
Conference (UKAIS), Oxford University, Oxford, U.K, 31st March - 01st April, pp. 27-
36.

Alfaries, A., Bell, D. & Lycett, M., “Service Ontology Learning Framework”, work
under review with IEEE Transactions on Services Computing (TSC).

Auhood Alfaries Page V

TABLE OF CONTENTS
ABSTRACT... II	

ACKNOWLEDGEMENTS ... III	

PUBLICATIONS ...IV	

ACRONYMS..XI	

CHAPTER 1 - INTRODUCTION.. 13	

1.1	
 Background to the Problem .. 13	

1.1.1	
 Service Orientation and the Role of Ontology... 13	

1.1.2	
 Ontology Engineering.. 14	

1.2	
 Aims and Objectives:.. 16	

1.3	
 Research Methodology ... 17	

1.4	
 Thesis Overview ... 20	

CHAPTER 2 - LITERATURE REVIEW ... 23	

2.1	
 Introduction... 23	

2.2	
 Achieving Semantic Web Services/ Industry Perspective 24	

2.2.1	
 Agents .. 27	

2.2.2	
 Ontology .. 28	

2.3	
 Tools used for Ontology Development... 32	

2.4	
 Ontology Development Challenge.. 34	

2.5	
 Ontology Learning.. 35	

2.5.1	
 Text-based Ontology Learning Approaches. ... 37	

2.5.2	
 Learning Approaches Based on Semi-structured Data 38	

2.5.3	
 Learning Approaches Based on Structured Data ... 39	

2.6	
 Overview of Ontology Learning Techniques ... 40	

2.6.1	
 Machine Learning Techniques... 40	

2.6.2	
 Statistical Analysis... 41	

2.6.3	
 Linguistic Techniques.. 41	

2.6.4	
 Rule-based Techniques .. 42	

2.7	
 Related Work / Ontology Learning for Web Services.. 43	

2.8	
 Summary... 47	

CHAPTER 3 – DESIGN RESEARCH METHODOLOGY 48	

3.1	
 Introduction... 48	

3.2	
 Design Research Background... 48	

3.3	
 Design as an IS Research methodology.. 51	

3.4	
 Design Research Evaluation ... 54	

3.5	
 Applying Design Research ... 56	

3.6	
 Research Evaluation ... 58	

3.7	
 Research Design Iterations ... 62	

3.8	
 Summary... 69	

CHAPTER 4 - ITERATION I .. 70	

4.1	
 Introduction... 70	

4.2	
 Design Research and Output Artefacts ... 70	

4.2.1	
 Design Research Artefacts... 72	

Auhood Alfaries Page VI

4.3	
 Artefact Building and Development ... 74	

4.3.1	
 Tokenization .. 74	

4.3.2	
 POS Tagging.. 75	

4.3.3	
 Pattern Extraction .. 76	

4.3.4	
 Ontology Building ... 77	

4.4	
 Framework Prototype Implementation ... 77	

4.5	
 Evaluation ... 84	

4.5.1	
 Experimental Data ... 85	

4.5.2	
 STE Performance... 87	

4.5.3	
 Pattern Evaluation.. 89	

4.6	
 Specifying the Learning.. 91	

4.7	
 Summary... 92	

CHAPTER 5 - ITERATION 2.. 94	

5.1	
 Introduction... 94	

5.2	
 Design Research and Output Artefacts ... 95	

5.2.1	
 Design Research Artefacts... 96	

5.3	
 Artefact Building and Development ... 96	

5.3.1	
 Document Pre-processing Phase.. 97	

5.3.2	
 Relation Extraction .. 98	

5.3.3	
 Ontology Building ... 99	

5.3.4	
 Ontology Validation .. 100	

5.4	
 Application and Implementation of SOLF ... 100	

5.4.1	
 Pattern Extraction .. 101	

5.4.2	
 Transformation Rule Development ... 108	

5.4.3	
 Ontology Building ... 110	

5.5	
 Evaluation ... 112	

5.5.1	
 SIP Extraction Process Evaluation .. 112	

5.5.2	
 Precision and Recall Evaluation Measures .. 113	

5.5.3	
 Qualitative Evaluation ... 117	

5.6	
 Specifying the Learning.. 118	

5.7	
 Summary... 119	

CHAPTER 6 - ITERATION 3.. 120	

6.1	
 Introduction... 120	

6.2	
 Design Research and Output Artefacts ... 121	

6.3	
 SOLF Refinement and Gold Standard Evaluation.. 122	

6.3.1	
 Validate Ontology and Amend Patterns .. 124	

6.3.2	
 Incorporating WSDL Structure in SOLF... 124	

6.3.3	
 Ontology Pruning... 129	

6.3.4	
 Experimental Data and Evaluation .. 129	

6.3.5	
 Domain Coverage - Lexical Layer... 131	

6.3.6	
 Non Taxonomic Layer – Structural Evaluation ... 135	

6.3.7	
 Taxonomic Layer – Structural Evaluation... 139	

6.4	
 Domain Expert Evaluation and SOLF Refinement .. 140	

6.5	
 Specifying the learning ... 141	

6.6	
 Summary... 144	

CHAPTER 7 - CONCLUSION .. 146	

7.1	
 Research Summary ... 146	

7.2	
 Contributions and Conclusions... 152	

Auhood Alfaries Page VII

7.3	
 Limitations and Areas for Future Research .. 155	

BIBLIOGRAPHY.. 158	

APPENDICES.. 168	

APPENDIX A	
 - POS TAGGER ... 168	

APPENDIX B	
 - JAPE CODE ... 170	

APPENDIX C	
 - DATA SETS ... 172	

APPENDIX D	
 - EVALUATION SPREAD SHEETS... 183	

Auhood Alfaries Page VIII

List of Figures

Figure 1-1: Thesis Outline ... 22	

Figure 2-1: Web Service Architecture ... 25	

Figure 2-2: Ontology Learning Layer Cake (adopted from Cimiano, 2007)................... 37	

Figure 3-1: A Research Framework (March & Smith 1995)... 49	

Figure 3-2: IS Research Framework (Hevner et al., 2004).. 53	

Figure 3-3: Steps of Design Research (Vashnavi & Kuhler, 2004)................................. 57	

Figure 3-4: Taxonomy of OL Evaluation Approaches .. 59	

Figure 3-5: Research Iterations.. 63	

Figure 4-1: Iteration 1 Overall Framework.. 72	

Figure 4-2: WSDL sample file... 75	

Figure 4-3: Pattern Extraction Process .. 76	

Figure 4-4: Service Term Extraction (STE) .. 77	

Figure 4-5: SOLF Application Pipeline... 79	

Figure 4-6: WSDL POS Model ... 80	

Figure 4-7: JAPE Sample Code ... 83	

Figure 4-9: Snapshot of the Learned Domain Ontology Model 84	

Figure 4-8: JAPE Rule for Concept Creation .. 83	

Figure 4-10: WS2 Precision... 89	

Figure 5-1: Research Iterations.. 95	

Figure 5-2: Service Ontology Learning Framework (SOLF) .. 97	

Figure 5-3: WSDL to OWL SIP Mapping... 99	

Figure 5-4: ANNIC Pattern Extraction Query ... 103	

Figure 5-5: Application Pipeline Processing Steps.. 111	

Figure 5-6: JAPE Rule 1 .. 111	

Figure 5-7: JAPE Transformation Rule 1 .. 111	

Figure 5-8: A Sample of the Learned Domain Ontology Model 112	

Figure 5-9: Pattern Recall Chart .. 115	

Figure 5-10: Concept-Relation Precision Chart... 116	

Figure 6-1: Overall Design Research Iterations Framework ... 122	

Figure 6-2: Service Ontology Learning Framework.. 123	

Figure 6-3: Financial WSDL Code Sample ... 125	

Figure 6-4: Sample Complex Relation JAPE Rule.. 126	

Auhood Alfaries Page IX

Figure 6-5: Complex Relation Transformation Rule ... 127	

Figure 6-6: Sample SOLF Ontology model (Group 2).. 128	

Figure 6-7: Sample of the Financial Learned Ontology (SOLFO)................................ 130	

Figure 6-8: Sample of Lexical Layer Evaluation Model ... 132	

Figure 6-9: NonTP Evaluation Model ... 138	

Figure 6-10: Sample Group 1 (Book) Ontology.. 144	

Figure 0-1: Part-Of-Speech Tags (from GATE user Guide) ... 168	

Figure 0-2: Part-Of-Speech Tags (from GATE User Guide) 169	

Figure 0-3: JAPE code snippet illustrating code for Rules 1-4 170	

Figure 0-4: JAPE Snippet, illustrating code for transformation rules TR3 and TR4 171	

Figure 0-5: Matching WS1 WSDL and XSD Sample ... 172	

Figure 0-6: Financial Ontology Model (Iteration 1) .. 173	

Figure 0-7: Financial Ontology Model (Iteration 2) .. 174	

Figure 0-8: Books Service Sample 1 Snippet .. 175	

Figure 0-9: Books Service Sample 2 Snippet .. 176	

Figure 0-10: Books GSO Snippet .. 177	

Figure 0-11: Books SOLFO Snippet ... 178	

Figure 0-12: Finance Sample 1 Snippet... 179	

Figure 0-13: Finance Sample 2 Snippet... 180	

Figure 0-14: Snippet Of Financial GSO .. 181	

Figure 0-15: Snippet of Financial SOLFO .. 182	

Figure 0-16: Method1-WS2 (XSD) Domain Expert Scoring .. 183	

Figure 0-17: Method1& 2-WS2 (WSDL) Domain Expert Scoring............................... 184	

Figure 0-18: Method3-WS2 (XSD & WSDL) Domain Expert Scoring........................ 185	

Figure 0-19: Iteration 2 Financial Ontology Domain Expert Scoring 186	

Figure 0-20: Iteration 3 Financial Gold Standard Ontology.. 187	

Figure 0-21: Iteration 3 Financial SOLFO Gold Standard Evaluation 188	

Figure 0-22: Iteration 3 Financial SOLFO Gold Standard Evaluation 189	

Auhood Alfaries Page X

List of Tables

Table 2-1: Summarized Ontology Types... 29	

Table 2-2: Summarized Approaches to SWS .. 32	

Table 3-1: Summarized Evaluation Criteria with Artefact Types (Hevner et al., 2004) . 55	

Table 3-2: Design Evaluation Methods (Hevner et al., 2004) ... 56	

Table 3-3: Comparison of OL Evaluation Methods .. 61	

Table 3-4: Research Products Versus Research Processes .. 67	

Table 3-5: Summary of Research Iterations .. 68	

Table 4-1: Iteration Steps – Input Output Model... 73	

Table 4-2 : WSDL Tokenized Model .. 80	

Table 4-3: Pattern Extraction Model ... 81	

Table 4-4: Summarized Generic Patterns .. 82	

Table 4-5: Summary Information Representing Used Web Services.............................. 86	

Table 4-6: WSTM Extracted from WS3.. 87	

Table 4-7: Concept Evaluation Model... 88	

Table 4-8: Default Tokenizer WSDL Model ... 91	

Table 5-1: Iteration Steps Input Output model .. 96	

Table 5-2: Output of WSDL (WS1) Tokenizer Step ... 100	

Table 5-3: Output of the WSDL (WS1) POS Tagger .. 101	

Table 5-4: Web Service 1 Pattern Extraction Model ... 104	

Table 5-5: Web Service 2 Pattern Extraction Model ... 105	

Table 5-6: Web Service 3 Pattern Extraction Model ... 106	

Table 5-7: Relative Frequency of SIP Across Three Web Services 107	

Table 5-8: Pattern Relation-Identification Model.. 108	

Table 5-9: Sample Pattern-Relation Identification Model... 109	

Table 5-10: Summarized Transformation Rules.. 110	

Table 5-11: Pattern Recall Summary... 114	

Table 5-12: Summarized Results for Precision ... 116	

Table 6-1: Formal Definition of SOLF Output Phases... 124	

Table 6-2: Summarised Precision and Recall for Group 1 and Group 2 135	

Table 6-3: Summarized NonTP and NonTR Results... 139	

Table 6-4: Summarized Domain Expert Precision .. 141	

Table 7-1: Design Research Products X Activities ... 149	

Auhood Alfaries Page XI

ACRONYMS

• ANNIC: ANNotations In Context
• API: Application Programme Interface
• ASIUM: Acquisition of Semantic knowLedge Using Machine learning methods
• DAML: DARPA Agent Markup Language
• DOLCE: Descriptive Ontology for Linguistic and Cognitive Engineering
• Design Research: Design Research
• GATE: General Architecture for Text Engineering
• GSO: Gold Standard Ontology
• GUI: Graphic User Interface
• HTML: Hyper Text Markup Language
• HTTP: Hyper Text Transfer Protocol
• IE: Information Extraction
• IRS: Internet Reasoning Service
• JAPE: Java Annotation Pattern Engine
• LATINO: Link Analysis and Text-Mining Toolbox
• LP: Lexical Processing
• LR: Lexical Recall
• ML: Machine Learning
• NLP: Natural Language Processing
• NN: Noun
• NNP: Proper Noun
• NonT: Non-Taxonomic
• NonTR: Non-Taxonomic Recall
• OI: Ontological Improvements
• OL: Ontology Learning
• OLT: Ontology Learning Techniques
• OWL: OWL Web Ontology Language
• OWL-DL: OWL Description Logics
• OWL-full: Version of OWL
• OWLIM: A Semantic Repository
• OWL-Lite: Version of OWL
• OWL-S: Web Ontology Language for Web Services
• POS: Part of Speech
• PSL: Process Specification Language
• RDF: Resource Description Framework
• RPC: Remote Procedure Call
• SAWSDL: Semantic Annotation for Web Service Description Language
• SIP: Structured Interpretation Patterns
• SOA: Service Oriented Architecture
• SOAP: Simple Object Access Protocol
• SOLF: Service Ontology Learning Framework
• SOLFO: SOLF Ontology
• STE: Service Term Extraction
• SUMO: Suggested Upper Merged Ontology
• SWS: Semantic Web Services

Auhood Alfaries Page XII

• SWSF: Semantic Web Services Framework
• SWSO: Semantic Web Services Ontology
• TAO: Transitioning Applications to Ontologies
• TP: Taxonomic Precision
• TR: Transformation Rule
• UDDI: Universal Description, Discovery, and Integration
• UPML: United Problem Solving Method Development Language
• URI: Uniform Resource Identifier
• VB: Verb
• W3C: World Wide Web Consortium
• WebODE: An Ontology Editing Tool
• WS: Web Services
• WSDL: Web Service Description Language
• WSDL-S: Web Service Description Language - Semantic
• WSMF: Web Service Modelling Framework
• WSMO: Web Service Modelling Ontology
• WSMX: Web Service Modelling eXecution Environment
• WSTM: Web Service Term Model
• XML: Extensible Markup Language
• XSD: XML Schema Definition

Auhood Alfaries Page 13 of 189

CHAPTER 1 - INTRODUCTION

1.1 Background to the Problem

1.1.1 Service Orientation and the Role of Ontology

Service Oriented Architecture (SOA) is an emerging architectural approach with the

potential to better accommodate the changing enterprise. SOA unifies business

processes by encapsulating modules as well-defined interoperable services delivering

large applications as a collection of services (Papazoglou & van den Heuvel, 2007).

Currently, Web Services are the predominant technological means of delivering on

the SOA ideal and there is a clear increase in organizational interest in both the

architecture and delivery mechanism (Azoff, 2007; Heffner & Peters, 2008; Martin,

2007a; Tsai et al., 2006; Yu et al., 2008). Recent surveys (Meyer, 2006) indicate that

Web Service creation and application development via Web Services is under way

within 50% and 33% of the US and western European organizations surveyed

respectively. Larger organisations are the primary adopters of SOA, primarily due to

a greater need for integrating applications and services to adapt to dynamically

changing processes.

Though increasing in popularity, several barriers to adoption exist including

organizational complexity, the need for manual intervention and a lack of application

support (such as easy to adopt tools) (Gedda, 2007). In particular, the need for

manual intervention in discovery and adoption stands out as a challenge - Web

Services cannot be automatically discovered and composed as the description of

those services lack the necessary semantics (Martin, 2007b). This point is explicitly

recognized by the Semantic Web community (Berners-Lee, Hendler & Lassila, 2001;

Shadbolt, Hall & Berners-Lee, 2006), who argue that full automation of service

discovery and composition is indispensable and is necessary for dynamic, flexible

and machine understandable services and, as a consequence, an infrastructure that

meets the business ideal (Maedche & Staab, 2003).

Semantic Web Services are introduced to enable automatic service discovery and

composition (Sheth, 2006) by providing the infrastructure that meets the ultimate

Auhood Alfaries Page 14 of 189

business needs. The infrastructure is based on the use of ontologies as the core

component that facilitates the semantic layer. Ontologies, in computer science, are

defined by Studer et al. (1998, p.184) as: “ a formal, explicit specification of a shared

conceptualization.”. Each term in this definition represents an important aspect of

ontologies in providing and catering for the Semantic Web vision. The first part -

formal, explicit specification – of the definition implies that the explicit specification

is described using formal machine readable language, like description logic (Bruijen,

2009). The conceptualisation part provides the abstract view model of the underlying

domain described by the ontology. Finally, the shared aspect provides the

stakeholders with an ability to share an ontological conceptualization commitment

(Bruijen, 2009). Importantly, ontologies are categorized in different types according

to their use. For example top-level ontologies are used to give an abstract view of the

world whereas lower level ontologies are domain specific.

The literature clearly indicates that Web Service domain ontologies are the general

means by which semantics are added to Web Services, therefore, providing a

solution for automating their service tasks. Semantic Web Services benefit from

ontologies in two ways: (1) reasoning facility to automate the Web Service usage

tasks, (2) providing a shared conceptualization of a domain to corporate stakeholders

(Bruijn, 2009). The demand therefore is to develop ontologies from existing services

and to enable those ontologies to adapt and evolve in line with the domain and any

demands made on it (Cuel et al., 2008).

1.1.2 Ontology Engineering

The importance of achieving Semantic Web Services emphasises the need for a

faster and less expensive ontology development process. Manual ontology

acquisition is a tedious, expensive and error prone task that can slow down the

ontology development process (Ding & Foo, 2002; Staab & Maedche, 2001;

Maedche & Staab, 2001). Ontology engineers are generally required to develop a

domain knowledge base using ontologies, and they are also required to ensure that

these ontologies are updated and maintained by extending the knowledge base with

new domain concepts. ‘Ontology learning’ is the term used to refer to automatic or

semi-automatic acquisition of knowledge from different sources of data (Buitelaar,

Cimiano & Magnini, 2007; Zhou, 2007; Buitelaar & Cimiano, 2008). Enormous

Auhood Alfaries Page 15 of 189

power could be added to the Semantic Web by automating the manual knowledge

acquisition process; this process normally involves domain experts mining legacy

systems and underlying documentation in order to harvest domain concepts and

identify taxonomic and non-taxonomic relations between those concepts. Applying

artificial intelligence automated techniques to extract domain knowledge from legacy

systems can certainly assist domain engineers, consequently contributing towards

faster ontology development (Maedche & Staab, 2001).

The goal of ontology learning is to support and facilitate ontology construction.

Ontology learning is a long way from being fully automatic, but it can be effectively

integrated in a wider ontology engineering framework (Zhou, 2007; Buitelaar &

Cimiano, 2008; Maedche & Staab, 2004; Maedche, 2002; Cimiano et al., 2009).

Drawing upon that statement, it is clear that ontology learning can play a key role

towards achieving Semantic Web Services.

A number of ontology learning methods have been introduced over the last few years

(Zhou, 2007; Buitelaar & Cimiano, 2008; Cimiano et al., 2009). These methods are

considered to be general ontology learning methods, and have not been tested or

applied and evaluated on the Web Service domain. Semantic Web Services impose a

special kind of ontology learning application area due to the fact that they contain

both structured and unstructured data (Yu, 2007). Due to the role that ontology

development plays in Semantic Web Services, and the fact that only limited research

has been found in this area, further research on ontology learning techniques that

cater for extracting domain ontologies from Web Services is required.

Several approaches have been proposed to facilitate the automatic extraction of

ontological elements from different types of knowledge sources, ranging from

structured, semi-structured and unstructured sources (Zhou, 2007). An Ontology

Learning (OL) system can be considered as a reverse engineering process where

input data sources are used by the system to learn relevant domain concepts and

relations, and an ontology is produced as an output of the system. OL approaches are

classified according to the data sources used as input to the system (Maedche &

Staab, 2004). The emphases found in the proposed OL approaches, are mainly aimed

at applying OL on unstructured data sources, commonly referred to as textual

Auhood Alfaries Page 16 of 189

sources. Progressing ontology development for Web Services can benefit greatly

from applying current OL techniques on Web Service artefacts and evaluating their

applicability on real data Web Service sources.

With the Semantic Web Services vision and the rapid increase in the number of

available Web Services, here, the research focus is on applying ontology learning

techniques on Web Services artefacts as an application domain of the Semantic Web.

It is important to look intensely into and to investigate the effect of applying OL on

the current Web Service XML-based standards such as SOAP and WSDL, as they

provide a rich source of legacy domain knowledge (Sabou, 2005). Providing

appropriate tools that assist in and automate ontology development - taken in the

large part from ontology learning - is essential for a dynamic service vision to be

realized.

The challenge, therefore, is to develop ontologies from existing services and to

enable those ontologies to adapt and evolve in line with the domain and any demands

made on it (Cuel et al., 2008). Adopting knowledge extraction techniques in the

form of Ontology Learning provides an automated means of dealing with these

issues, as it allows automatic knowledge acquisition from different sources of Web

Services, for the purpose of reducing the cost, time and effort required by ontology

engineers to build domain specific ontologies (Buitelaar, Cimiano & Magnini, 2007).

1.2 Aims and Objectives:

The aim of this research is to automate the ontology development process and to

develop a methodological ontology learning framework tailored for Web Services.

The objectives of the work are to:

1. Review the available ontology learning approaches and tools in order to

provide an understanding of the state-of-the-art of ontology learning and Web

Services.

2. Develop ontology learning techniques for service concept and relation

extraction and to automate these techniques by building a prototype

application to test the applicability of the techniques using real Web Services.

Auhood Alfaries Page 17 of 189

3. Develop a methodological Service Ontology Learning Framework (SOLF)

that incorporates the techniques for concept and relation extraction.

4. Implement a tool that facilitates the framework and evaluates the application

of the framework, and assess the impact of the framework on the state-of-the-

art of ontology learning.

5. Validate the research outcome by testing the generality of the extracted

patterns and rules on services from other domains.

1.3 Research Methodology

Design research is chosen as the research method for executing this research. The

objective of Design Research is to produce a relevant IT based solution to a

significant business problem (Hevner et al., 2004) with a focus on the utility of the

artefact. the approach applies a set of analytical techniques from the problem space

to understand, explain and improve the designed artefact. Design research is

considered both a product and a process. The process incorporates a set of design and

behavioural science activities; build, evaluate, justify and theorise (March & Smith,

1995). The products of Design Research can be classified according to the four-type

product classification (March & Smith, 1995);

 Constructs are sets of concepts used to define the problems and solutions.

 Models are used to describe a real world situation of the design problem and

its solution space.

 Methods are used to provide guidance on how to solve problems using the

constructs and models. They are thought of as methodological tools (March

& Smith, 1995).

 Instantiations are the implementations of constructs, models and methods

allowing actual evaluation, of feasibility and effectiveness, of the Design

Research artefact.

Design research must be applied as a search process for an effective solution,

utilizing and sustaining laws in the problem space. In order to demonstrate the

Auhood Alfaries Page 18 of 189

effectiveness of the solution, rigorous Design Research evaluation methods from the

knowledge space must be executed to evaluate the quality of the artefact (Hevner et

al., 2004). Design Research seeks to achieve an appropriate solution to the design

problem in an iterative knowledge refinement manner, where each iteration executes

build and evaluate cycle, contributing new learning and knowledge that feeds back

into consequent iterations.

Ontology learning as a research area is still young; consequently Design Research is

employed as the research methodology as it allows learning to evolve as the solution

is developed for the problem space (Vaishnavi & Kuechler, 2004). A Design

research process is employed as a problem solving method, whereas a valid IS

research is achieved through an iterative build and evaluate design cycle of a

purposefully designed artefact. The main Design Research phases applied are as

follows;

 Problem Awareness: This involves reviewing the literature to analyse the

availability of ontology learning techniques and confirmed the lack of

automated knowledge acquisition tools in the Semantic Web Services

domain.

 Suggestion: This phase involves introducing a tentative idea of how to

apply suitable knowledge extraction techniques. The learning techniques

are borrowed from the machine learning and natural language processing

disciplines to satisfy the aim of learning ontologies from Web Service

sources.

 Development: The development of the solution will be achieved by

building the design artefact. Here the artefact is a service ontology

learning framework (SOLF). By immersing in the build activity the

researcher achieves an understanding of the problem space raising new

suggestions to improve the next build and evaluate cycle.

 Evaluation: This phase is concerned with the development of an

assessment method or metric to assess the quality and effectiveness of the

designed artefact (March & Smith, 1995). Synthesising the Design

Research evaluation criteria to identify appropriate evaluation methods

and metrics from the problem space has lead to identifying the commonly

Auhood Alfaries Page 19 of 189

applied information extraction metrics, precision and recall, to evaluate

the ontology learning method. The learned ontology model, SOLF, is

evaluated for coverage of the domain and for accuracy.

 Conclusions: This is the final phase of the Design Research cycle,

withdrawn from the learning that emerged from understanding how and

why the solution works in the problem domain when applied to real sets

of services. Limitations of the solution and areas for future work are also

provided in the conclusion of the research.

Applying March & Smith’s (1995) Design Research product classification to

illustrate research contributions leads to identifying the main design artefact as the

development of a Service Ontology Learning methodological Framework (SOLF). In

order to deliver the final SOLF method the research significance lies in building

consequent set of constructs, models, methods and instantiations.. In this research,

framework development follows from executing Build and Evaluate activities. These

activities are executed in an iterative incremental Design Research manner consisting

of three iterations as follows:

 Iteration 1 – Core framework development including service term

extraction technique. Automate the framework by implementing an

application tool and evaluate the technique and tool by applying them on

real sets of Web Services and evaluating the learned ontology model with

the identified evaluation metrics.

 Iteration 2 – Extending the framework to incorporate rule based relation

extraction techniques. This iteration contributes a secondary Design

Research structured interpretation models and a set of transformation

rules. A domain ontology model is also produced representing both

lexical and structural aspects of the learned ontology of the financial

domain.

 Iteration 3 – Validate the framework by applying and evaluating the

extraction method across other domains. The generality of the SOLF and

tool will be demonstrated through comparing evaluation measures for two

different data sets.

Auhood Alfaries Page 20 of 189

The effectiveness of the Design Research problem is in reducing the cost and time of

the ontology development process. An instantiation tool is created and applied to real

case scenarios of Web Services, to illustrate the effectiveness and provide a live

proof of the proposed method (SOLF in this research) and as the means by which

deficiencies and improvements are identified (March & Smith, 1995). Determining

whether progress is made by the extraction method and tool is evaluated by applying

the appropriate metrics from the knowledge base to measure the accuracy and

coverage of the learned domain ontology model.

1.4 Thesis Overview

In achieving the objectives of the work, the thesis is structured as follows:

Chapter 2: Drawing extensively from the literature, this chapter presents a review of

relevant research articles, giving a general background of Semantic Web Services.

Advances and development in the field are also discussed. A broad overview of the

required technologies for the Semantic Web Services is introduced, leading to the

role of ontologies in the Semantic Web Services. The chapter proceeds by discussing

issues and challenges that hamper the ontology development, and by introducing

ontology learning as a step towards a faster Semantic Web vision. A background

discussion of techniques and tools for ontology learning is presented according to

their relevance toward ontology development, and therefore towards Semantic Web

Services. Finally, the chapter presents similar approaches that apply Ontology

Learning techniques on the Web Services application domain, demonstrating the

feasibility and utility of the approach and pointing to the limitations of the state-of-

the-art, thereby highlighting the need for this research.

Chapter 3: This chapter proposes Design Research as the research methodology for

effectively conducting a valid Information Systems research. It then discusses how

Design Research is applied in order to plan and execute the research design problem,

by developing a method and a tool for learning ontologies from Web Services.

Research iterations are identified and research outputs are categorized according to

the Design Research products classification. The chapter discusses issues

surrounding OL evaluation and presents a taxonomy of evaluation approaches in

Auhood Alfaries Page 21 of 189

order to derive an appropriate evaluation framework for assessing the effectiveness

of the developed methodological framework. Finally, the chapter is summarized.

Chapter 4: This chapter presents the first Design Research iteration, tackling the

first task of OL by developing and implementing a service term extraction process.

The steps involved in the service term extraction are explained and an

implementation of the method is detailed. The output of the iteration is presented as a

set of Design Research products. An evaluation of the products is then performed,

and finally the learning outcome and discussion of future improvements is presented.

Chapter 5: This chapter presents the implementation of the second Design Research

iteration. Here, the initial framework developed in chapter 4 is refined and extended

by incorporating the relation extraction technique. This chapter contributes a service

relation extraction technique based on a set of structured interpretation patterns. The

output of this chapter is evaluated by applying the extended framework and the tool

on a real set of Web Services. The learned ontology is evaluated by executing a

specifically tailored evaluation framework in order to assess the validity of the

relation extraction process.

Chapter 6: The third research iteration is executed here to improve and validate the

generality of the framework, by applying the framework and the structured

interpretation patterns produced in the previous iteration to different sets of Web

Services. Evaluating the automatically learned ontology model against the gold

standard ontology, measures its completeness and coverage of the underlying

domain. The evaluation is performed and appropriate metrics are used to measure the

ontology precision.

Chapter 7: This chapter concludes the research thesis and presents the contributions

and key findings. Limitations that were learned from applying Design Research to

solve the proposed problem are also explained. An evaluation of the Design Research

process is performed against satisfying the research aim and objectives, highlighting

the research limitations. Lastly, relevant conclusions will be drawn against the degree

to which the proposed approach meets its objectives, while an explanation of the

research limitations suggesting future improvements is presented.

Auhood Alfaries Page 22 of 189

A thesis outline diagram is created in Figure 1-1 in order to provide an abstract level

structure that maps the Design Research iterations to the thesis chapters and the

research objectives.

Figure 1-1: Thesis Outline

Auhood Alfaries Page 23 of 189

CHAPTER 2 - LITERATURE REVIEW

2.1 Introduction

Research in accomplishing a decentralised knowledge representation across

applications can be achieved by Web Services, which provide an effective way of

allowing interoperability across platforms, organizations and operating systems. This

chapter looks at the state-of-the-art of current Web Services and discusses how the

Semantic Web capacity can bring a new dimension into e-business through current

Web Service standards. Literature has shown that by adding semantics into Web

Services, automation of enterprise cooperation can be achieved. This chapter reviews

the relevant research literature on achieving Semantic Web Services, ontology

development challenges are discussed and suggestions on how to improve the

ontology development process from the literature are introduced. Existing Web

Service sources offer a good starting point for ontology learning and a pragmatic way

forward in developing semantics for existing assets. Automating the knowledge

acquisition process from different Web sources is discussed and analysed for the

purpose of developing an effective approach for adding semantics onto the current

Web.

This chapter is structured as follows. Section 2.2 describes a general review of Web

Services, introducing the need for adding semantics and the requirements for

embedding semantics into Web Services. Section 2.3 presents a broad overview of

tools and languages used for ontology engineering. Section 2.4 discusses the

challenge of manual ontology development. Section 2.5 presents ontology learning

as a way for advancing the ontology development bottleneck and reviews existing

literature to present the most important approaches in the field. Section 2.6 classifies

existing ontology learning approaches in relation to the techniques applied, and the

disciplines from which these techniques are borrowed. Section 2.7 introduces the

application of ontology learning in Web Services standards, detailing current work in

the area and highlighting issues and challenges and suggesting improvements.

Auhood Alfaries Page 24 of 189

2.2 Achieving Semantic Web Services/ Industry Perspective

Service Oriented Architecture (SOA) is an emerging architectural approach with the

potential to better accommodate changing enterprise requirements. SOA unifies

business processes by encapsulating modules as well-defined interoperable services

delivering large applications as a collection of services (Papazoglou & van den

Heuvel, 2007). Currently, Web Services are the predominant technological means of

delivering on the SOA ideal and there is a clear increase in organizational interest in

both the architecture and delivery mechanism (Azoff, 2007; Heffner & Peters, 2008;

Martin, 2007a; Tsai et al., 2006; Yu et al., 2008). Recent surveys, for example Meyer

(2006), indicate that Web Service creation and application development using Web

Services is under way within 50% and 33% of the US and Western European

organizations surveyed respectively. Larger organizations are the primary adopters of

SOA, primarily due to a greater need for integrating applications and services to

adapt to dynamically changing processes.

Web Services are a collection of application programs that can be accessed remotely

using the Web. Therefore, they provide distributed applications with the limitation

that these organizations have to follow Web Service standards using Hyper Text

Transfer Protocol (HTTP). Once these standards are followed applications can

achieve interoperability via the Web (Yu, 2007). Lee, however, suggests that the

challenge for the Web is to incorporate a more decentralized knowledge

representation system. Semanticising knowledge bases can minimize the need for

common standards, hence the Web capacity to achieve the goal of decentralized

knowledge representation across applications is greater. In a business environment

this implies automatic cooperation between enterprises (Fensel & Bussler, 2002),

which is a highly valued goal across organizations (Martin, 2007b; Bruijn et al.,

2009).

The literature also identifies a number of technologies for facilitating Web Services

that are also essential to cater for SWS. Some of the most commonly adopted

standards are SOAP, WSDL and UDDI.

 SOAP (Simple Object Access Protocol) is a lightweight protocol for

exchanging structured information in a decentralized environment (W3C).

Auhood Alfaries Page 25 of 189

 WSDL (Web Services Description Language) is an XML-based language

used for describing the Web Services.

 UDDI (Universal Description, Discovery, and Integration) is an XML-

based registry for worldwide businesses. This service registry is used for

service lookup, listing available services and their providers. The UDDI

acts as a ‘yellow pages’ for published services (Berners-Lee, Hendler &

Lassila, 2001).

Figure 2-1 illustrates key components, roles and operations in a Web Service

environment. Service providers use the Web Service Description Language (WSDL)

to provide a syntactic description of service interfaces. Service providers and service

requesters are provided with SOAP standards, e.g., as a mechanism for

communication description. These two standards are sufficient for enabling the two

parties to share and invoke services remotely, but only with a predefined agreement

between the provider and the requester. The third component is the service registry

(UDDI), which is used to provide a list of businesses and the services they provide.

This service registry is unable to achieve its full potential, however, due to the fact

that service location, selection and composition (usage tasks) requires extensive

human struggle (Bruijn et al., 2009).

Figure 2-1: Web Service Architecture

Service composition involves service lookup and selection in addition to the act of

composing. Although there is an increase in popularity, several barriers to adoption

Auhood Alfaries Page 26 of 189

exist including organizational complexity, the need for manual intervention and a

lack of application support (such as easy to adopt tools) (Gedda, 2007). In particular,

the need for manual intervention in discovery and adoption stands out as a challenge

- Web Services cannot be automatically discovered and composed as the description

of those services is not rich enough in its semantics (Martin, 2007a).

Delivering semantics into Web Services can be achieved through annotating a Web

Service description to a suitable ontology (Sheth, Verma & Gomadam, 2006) – this

is the basis of the so called Semantic Web Services (SWS) (Bruijn et al., 2009). This

point is explicitly recognized by the Semantic Web community (Berners-Lee,

Hendler & Lassila, 2001; Shadbolt, Hall & Berners-Lee, 2006) , who argue that full

automation of service discovery and composition is indispensable and is necessary

for dynamic, flexible and machine understandable services and, as a consequence, an

infrastructure that meets the business ideal (Maedche & Staab, 2003). Embedding

semantics on to Web Services implies automation of Web Service tasks, primarily

service discovery, execution and composition (McIlraith, Son & Zeng, 2001) .

Without the full automation of Web Service tasks (Fensel & Bussler, 2002; Studer,

Grimm & Abecker, 2007), Internet-based e-commerce will not reach its full potential

in economic extensions of trading relationships. A number of approaches proposed

for SWS rely on using ontologies as a core component (Martin, 2007a; Lara et al.,

2004; Shafiq, 2007; Bell et al., 2007). As an example, the semantic Web Service

framework, introduced by Medjahed, Bouguettaya & Elmagarmid, (2003) uses

ontologies for describing semantic and syntactic features of a Web Service and

presents a set of compatibility rules for automating service composition. By enabling

dynamic and scalable cooperation between different systems and organizations

(Davies, Studer & Warren, 2006; Bruijn et al., 2009), the significant impact of the

SWS on many Web areas, such as e-Commerce and Enterprise Application

Integration, becomes clear.

Services allow organizations to communicate data without the intimate knowledge of

each other's IT systems behind the firewall, requiring human intervention in the

communication process. Distinctively, SWS are a means for businesses to

dynamically communicate with each other and with clients (Papazoglou & van den

Auhood Alfaries Page 27 of 189

Heuvel, 2007; Yu et al., 2008; Martin, 2007b; Bruijn et al., 2009; Sabou & Pan,

2007) whilst overcoming the manual human intervention bottleneck.

Moving towards the Semantic Web can be conceptualized as a semantic layer being

added on to the current Web. It intends to give current Web pages a well-defined

machine understandable meaning (Berners-Lee, Hendler & Lassila, 2001; Fensel &

Bussler, 2002; Medjahed, Bouguettaya & Elmagarmid, 2003; McIlraith, Son & Zeng,

2001). SWS is one important application of the Semantic Web, whereby it intends to

provide semantic description to current Web Services, and thereby facilitate the

dynamic composition of Web Services. Even though the proposed Web Service

standards are essential for Web Services, they are not sufficient to provide the full

potential of Web Service (Fensel & Bussler, 2002), due to the fact that the service

functionality description is limited to human interpretation to locate, select and

compose the service. Consequently, there are certain main components that need to

be used in order for the Semantic Web and SWS to evolve. The following sub

sections gives a general overview of the core SWS components examining their

relevance and how far these components have come to existence, and to what extent

they can be applied to date.

2.2.1 Agents

Agents are user-generated code that can be used to surf the Web in order to answer a

particular question or collect information. Currently agents are implemented

specifically to cater for and access certain Web sites, i.e. a typical agent is assessed

by a human (implementer) to connect and interact with the correct Web site. It would

be much more beneficial if software agents were written generically as they would

then be able to understand and interpret relevant web sites dynamically. To be able to

do so, agents need to be able to use the semantic feature of Web pages in order to

understand the pages and to perform tasks accordingly (Berners-Lee, Hendler &

Lassila, 2001).

The literature elucidates that agents play an important operational role in the

Semantic Web in general, and more specifically in SWS (Berners-Lee, Hendler &

Lassila, 2001; McIlraith, Son & Zeng, 2001; Sycara et al., 2004; Gibbins, Harris &

Shadbolt, 2004). Sycara et al. (2004) introduce the use of a middle agent broker, used

Auhood Alfaries Page 28 of 189

as part of the discovery and mediation mechanism between agents and Web Services.

A broker is an important component of Web Service infrastructure as it acts as

mediator and service discovery simultaneously. This approach implies that the broker

will require a semantic layer to operate on, in order to provide the translation

required if the requester and provider are using different languages. Hence, the

broker acts as the intermediary to execute a request and sends the response to the

requester. This implies that the requester will have a lack of knowledge regarding the

service provider. Even though this broker seems tempting, if used, the SWS might

lack decentralization. The alternative approach would be to use the matchmaker

middle agent for service discovery, and allow the service provider and the requester

to handle the translation process, in which case decentralization is expected (Sycara

et al., 2004). In each of these two approaches ontologies are employed to provide

agents with the required semantic information.

2.2.2 Ontology

Ontologies are the general means by which semantics are added into Web Services

(Sheth, Verma & Gomadam, 2006; Akkiraju et al., 2005; Burstein et al., 2005),

providing the required semantic layer for agents to operate on. Ultimately, ontologies

form a vital component for recognising the SWS. Fensel and Bussler (2002) define

ontologies as a formal consensual specification of conceptualization, which can be

used to provide a shared and common understanding of a given domain, and is a way

of defining concepts and the relationships between them. Ontologies here refer to the

computational ontologies, the countable noun (an ontology), as implied in the

computer science field (Guarino, 1998; Guarino, Oberle & Staab, 2009)..

The literature clearly identifies that Ontologies form an important component of the

Semantic Web (Martin, 2007a; Lara et al., 2004; Shafiq, 2007; Bell et al., 2007). A

simple example that illustrates its use is when two communicating organizations

refer to the same concept using different names; then if one application needs to

access the databases of both organizations, it needs to be able to recognise that those

two concepts refer to the same subject. Therefore, this system may need to refer to an

ontology file that defines concepts using a logic-based machine-readable format so

that the machines would be able to resolve the name mismatch and infer whether the

two concepts share the same semantics.

Auhood Alfaries Page 29 of 189

Ontology types can be classified by different criteria. The most prevalent are

generality and level of detail (Guarino, 1998; Guarino, Oberle & Staab, 2009).

Ontology types based on the level of generality as summarized in Table 2-1 are:

 Top-level ontologies

 Domain ontologies

 Task-based ontologies

 Application ontologies; where ontologies are used to represent a

conceptualization of a specific domain and a specific task

Table 2-1: Summarized Ontology Types

Ontology type Description Example

Top level ontologies

(Foundational ontologies)

Specification of a

conceptualization based on

linguistics independent of

domain specific concepts

 SUMO
(http://www.ontologyportal.
org/)

 DOLCE (http://www.loa-
cnr.it/DOLCE.html)

Domain ontologies Provides domain specific

model describing domain

concepts and relations

 Financial system domain

 Life science domain

Task-based ontologies

(Generic ontologies)

Describes concepts that are

specific for a task

 Web Service: WSMO

 OWL-S

Application ontologies Combines domain and task

specific ontologies

 Describing a banking
service in the financial
domain using domain
ontologies and OWL-S

Ontologies are classified by Gomez-Perez, Fernandez-Lopez & Corcho (2003) into

two types (according to the level of details of specifications between terms):

 Lightweight ontologies are domain models that include taxonomic hierarchy and

properties between concepts.

Auhood Alfaries Page 30 of 189

 Heavyweight ontologies are domain models that add more detail to lightweight

ontologies by adding axioms and constraints to explicate terms.

The SWS domain ontologies provide the semantics of business data, processes and

services. Ontology allows logic-based reasoning by machines – a necessary step in

automating the process of service discovery and composition. This research is

concerned with the development of domain specific ontology (referred to in some

literature as application ontology) (Guarino, 2009).

Ontologies consist of taxonomies and a set of inference rules (Berners-Lee, Hendler

& Lassila, 2001), which can be used to derive the meaning and relationship among

objects. This meaning can then be applied during data exchange to result in a more

appropriate interpretation for both parties involved. By describing service

information using formal languages like description logic, machine processable

reasoning capabilities can be used to enable the automation of Web Service usage

tasks (Bruijn et al., 2009). For this reason research interests are widening in the

ontological engineering community, producing new methods and techniques to assist

in the automatic knowledge acquisition process from existing data sources (Gomez &

Manzano, 2004; Gasevic, Kaviani & Milanovic, 2009).

A number of proposed approaches seek to add semantics to Web Services either as a

formal ontology as in WSMO and OWL-S (Lara et al., 2004; Shafiq, 2007), or by

annotating WSDL files with one of the aforementioned formal ontologies as

proposed in SAWSDL (Al Asswad, de Cesare & Lycett, 2009). Fensel and Bussler

(2002) propose a conceptual Web Service Modelling Framework (WSMF) for

developing, describing and composing Web Services. In WSMF, ontologies are

presented as an essential element required for the development of a Semantic Web

Service framework. Another proposed ontology-based framework for the automatic

composition of Web Services is introduced by (Medjahed, Bouguettaya &

Elmagarmid, 2003); this contribution focuses on three main steps towards automatic

Web Services. The first is a composability model which checks whether two services

can interact with each other. The second is an automatic generation of composite

services. The third step is a prototype implementation and experiment.

Auhood Alfaries Page 31 of 189

Table 2-2 summarizes the main approaches and presents a general comparison

between them as reviewed in Bruijn et al. (2009), Al Asswad, de Cesare & Lycett

(2009) and Cabral et al. (2004). A general Semantic Web Service infrastructure

categorizes three main elements (Cabral et al., 2004):

1. Usage activities: Define functional requirements that should be supported by
any SWS framework.

2. Architecture: Defines components required to undertake the usage

activities.

3. Service ontology: Aggregates all concept models that describe SWS. The

ontology also contains the knowledge-level model that describes and supports

service discovery and composition.

Service ontologies integrate information defined by SWS standards such as UDDI

and WSDL with related domain knowledge. This information described by the

service ontology can be distributed in different levels of ontologies (Sheth, Verma &

Gomadam, 2006); Business level, Physical level and Conceptual level. Service

ontology is required to describe the capabilities and restrictions of the service by

providing a semantic description for the following service information:

 Functional capabilities

 Inputs/Outputs

 Preconditions/post conditions

 Non-functional capabilities such as category, cost and quality of service

 Provider related information such as company name, address, task or goal

related information

 Domain knowledge defining, e.g. the type of service inputs

Auhood Alfaries Page 32 of 189

Table 2-2: Summarized Approaches to SWS

Approach

OWL-S WSMO IRS SWSF SAWSDL

Stands
for

Web
Ontology
Language for
Web
Services

Web Service
Modelling
Ontology

Internet
Reasoning
Service

Semantic Web
Services
Framework

 Semantic
Annotation
for WSDL

DAML-S WSMF UPML SWSO WSDL-S Based on
(DARPA
Agent
Markup
Language)

(Web Service
Modelling
Framework)

(United
Problem
Solving
Method
Development
Language)

Semantic Web
Services
Ontology

Web Service
Description
Language -
Semantic

Execution
Platform

Works with
Protégé as
Plug-in
Editor.

WSMX (Java) N/A N/A N/A

Concept Agent
oriented
approach to
SWS.
Provides
ontology for
describing
Web Service
capability.

Business
oriented
approach to
SWS, focus
on set of e-
commerce
requirements
for WS
including trust
and security.

Knowledge-
based
approach
evolved from
reusable
knowledge
components.

Based on
Process
Specification
Language
(PSL),
supports
reasoning
over service
description

Lightweight
Web Service
description
that extends
WSDL and
can be
mapped to
another task
ontology like
WSMO

Example
Citation

(Martin et al.,
2004)

(Fensel &
Bussler,
2002)

(Motta et al.,
2003)

(Battle et al.,
2005)

(Farrell &
Lausen,
2007)

An ontology that can be used to describe the functional and non-functional aspects of

the Web Service domain remains very expensive to develop, since it has to be

derived from business data using domain expert knowledge. Current generic

ontologies (the so called Task ontologies), like OWL-S (Sycara et al., 2004), attempt

to provide service descriptions at different levels but still need to be linked with

domain specific ontologies that describe domain specific concepts and relations. The

literature emphasises the use of ontologies as a main component in all of the

proposed Semantic Web Service approaches and also that ontology development

remains a restricting bottleneck.

2.3 Tools used for Ontology Development

Defining ontologies for SWS requires the use of an appropriate language that

provides the capability to describe concepts and relations. A number of ontology

Auhood Alfaries Page 33 of 189

languages and supporting tools are evolving rapidly. Resource Description

Framework (RDF) is the first knowledge description standard introduced for the

Semantic Web, RDF is the basic building block for supporting the Semantic Web

(Yu, 2007) and is based on XML: It uses triples consisting of resource, property and

statements to formulate the knowledge that machines can understand (Berners-Lee,

Hendler & Lassila, 2001). RDF is extended and followed by a series of ontology

languages. The first extension to RDF was the RDFschema (RDFS), but the

RDFschema lacks the ability to express complex and richer relationships between

classes. The RDFschema is extended to cater for the new features by adding new

constructs for expressiveness, thereby leading to a richer ontology language. Hence,

a new Web Ontology Language (OWL) (Antoniou & Harmelen, 2009) emerged in

three different forms; OWL-Lite, OWL-DL and OWL-full. The different forms were

introduced by the W3C as different sublanguages that vary in the expressiveness of

the modelling primitives offered and the reasoning capabilities in each form.

Typically the choice is made by the user based on the tradeoffs between the

expressive power and the efficient reasoning support made in each OWL

sublanguage.

Moving on from OWL, there was the need to express Web Services semantic

features to allow for the automatic discovery, invocation and composition of Web

Services, hence OWL-S was introduced as a Web Service description language with

the semantic capability (Sycara et al., 2004) to assist in those tasks. OWL-S is

structured into three main parts:

 Profile: This part provides the description of the Web Service

capabilities.

 Process model: The service provider describes its computation, makes it

publicly available and provides an interaction protocol used between the

provider and a requester

 Grounding: This part provides a description of simple process

transformation into remote procedure call

Ontology development, however, remains a wide-open research area in which a

number of tools and methods have been introduced for the manual acquisition and

Auhood Alfaries Page 34 of 189

construction of ontology models. For example On-To-Knowledge, a process-oriented

methodology for introducing and maintaining ontology-based knowledge

management systems (Staab et al., 2001). This process is supported by a Tool

(OntoEdit). The proposed approaches are considered ontology-engineering tools,

developed to manage the construction and visualisation of ontologies, with some

differences such as the degree of compatibility, availability of query engines and

reasoners. Taniar and Rahayu (2006) state that the most cited ontology-editing tools

are OntoEdit, Protégé-2000 and WebODE. Some of the tools are open source and

have matured, enabling wider research and a number of plug-ins to be made

available. Protégé is an open source ontology development environment and supports

different OWL forms. Providing visual support and offering different reasoning and

inferencing capabilities, through a number of plug-ins, makes Protégé a preferable

ontology development candidate for most of the current research.

2.4 Ontology Development Challenge

Currently, domain ontologies are developed manually through collaboration between

highly skilled domain experts and ontology engineers. By its very nature, ontology

building is therefore an expensive and time consuming task that lacks the appropriate

automated knowledge acquisition support tools (Buitelaar & Cimiano, 2008). In all

of the proposed ontology development approaches, manual knowledge extraction

from legacy systems and conceptually modelling this knowledge remains a

bottleneck, that provides a considerable barrier to adopting SWS, consequently

preventing Web Services from reaching their full potential (Martin, 2007a; Martin,

2007b; Gedda, 2007).

The challenge in achieving the SWS is, therefore, to develop ontologies from

existing services. Thereby, enabling those ontologies to adapt and evolve in line with

the domain and any demands made on it (Cuel et al.2008). Existing Web Service

sources offer a good starting point for ontology learning (Sabou et al., 2005) and a

pragmatic way forward in developing semantics for existing assets. This avenue is

not well explored however. Adopting knowledge extraction techniques in the form of

Ontology Learning provides an automated means of dealing with the manual

ontology extraction and building, as it allows automatic knowledge acquisition from

Auhood Alfaries Page 35 of 189

different sources of Web content for the purpose of facilitating the process of

ontology development (Buitelaar, Cimiano & Magnini, 2007).

Web Services need to be described at different levels; therefore, for ontology

engineers to build ontologies that represent faithfully the knowledge embedded in

these services, it is important to expose the new legacy systems available in different

parts of the Web Services.

The literature highlights the importance of a faster ontology development process.

Manual ontology acquisition is a tedious expensive task that can slow down

knowledge acquisition (Maedche & Staab, 2001). Ontology learning can be used as

an important step in an ontology development cycle. It could add an enormous power

to the Semantic Web by contributing towards low cost ontology development

(Maedche & Staab, 2001).

2.5 Ontology Learning

Ontology Learning (OL) is an automated or semi-automated process in which

ontological elements such as concepts and relations are extracted automatically from

different resources (Buitelaar & Cimiano, 2008). Ontology learning is still a long

way from being fully automatic, but is now considered as a plug-in in the ontology

development cycle (Maedche & Staab, 2001; Buitelaar & Cimiano, 2008; Staab &

Studer, 2004; Shamsfard & Barforoush, 2003). Ultimately, it can be used to support

ontology engineers in defining the conceptual model of a particular domain

(Buitelaar & Cimiano, 2008).

Cimiano (2007) suggests an ontology learning layer cake (as shown in Figure 2-2),

contributing to a better understanding of the OL tasks. This ontology learning layer

cake as proposed by Cimiano (2007) can be used to classify an OL approach

according to the task that it aims at. These tasks are described below:

• Term extraction, as shown in Figure 1, is the first task of an ontology learning

system. The task here is to determine the relevant phrases and terms for a specific

domain. Typically, a textual corpus is used as the input for term extraction.

Auhood Alfaries Page 36 of 189

• Synonym discovery consists of finding synonym words for concepts. Here two

words are regarded as synonymic if they share a common meaning. This

definition is similar to the synsets in WordNet, and WordNet is commonly used

for this purpose.

• Concept formation is defined, for ontology learning, as a set of triples

consisting of concept intension, extension and lexical realization in a corpus.

Concept extensions are defined as a set of instances for a concept. Whereas

concept intensions represent a shallow description of the concepts which could be

taken from a dictionary. The lexical realization is the term defining the concept

from the corpus.

• Concept hierarchies involve putting each concept in the correct place in a

hierarchy. This is considered to be an important task in the ontology learning

process, since it provides the taxonomic layer of the ontology.

• Relations learning involves finding relationships among concepts. There are

different types of relations, for example, in the case of binary relations

appropriate domain and range have to be identified. These types of relations are

commonly referred to as non-taxonomic relations (Cimiano. 2007).

• Rules are concerned with the axiomatic definition of concepts. The task in this

layer is to learn the rules that apply for concepts and relations. For example, there

is a need to learn which pairs of concepts are disjoint, or to learn whether a

relation is symmetric or non-symmetric.

The OL tasks are ordered in the way that each layer is built depending on the output

of the lower layer, i.e. a concepts hierarchy learning task can only be achieved if the

appropriate concepts are first extracted. The same applies for the relations learning

task. Any OL methodology typically follows the layers conceptual dependency

(Cimiano et al., 2009).

Auhood Alfaries Page 37 of 189

Figure 2-2: Ontology Learning Layer Cake (adopted from Cimiano, 2007)

In broad terms, Ontology Learning (OL) is grounded in a combination of Ontology

Learning Techniques (OLT). Most of these techniques are drawn from well-

established disciplines such as Machine Learning (ML), Natural Language

Processing (NLP) and statistical-based learning (see Gomez & Manzano 2004; Zhou

2007; and Buitelaar & Cimiano 2008, for review). Each of these approaches are

mainly aimed at learning the concept, relation and concept hierarchy tasks in the

layer cake, but none of the proposed approaches yet tackles all of the tasks

indentified in the layer cake, requiring human validation or involvement in the

ontology development process (i.e. they are considered as being semi-automatic

ontology learning and still a long way from being fully automatic).

2.5.1 Text-based Ontology Learning Approaches.

This section explores the learning methods and tools used mainly to learn ontologies

from textual unstructured data. Generally, ontology learning can be regarded to some

extent as a reverse engineering process. The challenge of ontology learning from text

is to derive meaningful concepts, on the basis of the usage of certain words in the

text, and to represent them in a hierarchical organization. These approaches usually

involve applying a mixture of knowledge engineered rule-based techniques and

machine learning techniques in order to learn relations and concepts, thus enabling

concepts to be interpreted by defining their relation to other concepts in the form of

logical axioms (Cimiano, 2007).

Auhood Alfaries Page 38 of 189

Different learning approaches have been introduced over the last few years that

support ontology engineers in developing domain ontologies semi-automatically

from textual sources. To name a few, Text-to-Onto (Maedche & Volz, 2001), OntoLt

(Buitelaar, Olejnik & Sintek, 2004) and OntoLift (Volz et al., 2003) are all aimed at

extracting ontological knowledge from textual sources by applying a mixture of

knowledge extraction and text-mining techniques. These approaches can be further

classified according to the type of techniques used and in some cases a mixture of

more than one can be adopted as discussed in Section 2.6. A number of survey

papers and reviews present comparisons between OL textual-based approaches (e.g.,

Gomez & Manzano, 2004; Zhou, 2007). Each approach shows only limited success

(Pivk, Cimiano & Sure, 2005; Pivk et al., 2007), however, and they are far from

being capable of tackling all of the tasks in the OL layer cake.

2.5.2 Learning Approaches Based on Semi-structured Data

Here, semi-structured data sources are used to refer to documents that have a mixture

of text and template structure, such as tables or XML/HTML schema

(Antonacopoulos & Hu, 2004). HTML tables would be considered as semi-

structured data since they usually contain a mixture of tabular structure and text

(Jung, Kang & Kwon, 2007). Web tables have a tabular structure and an internal

hierarchical semantic layer. A number of approaches are proposed that attempt to

extract ontology knowledge from data sources that are categorized as semi-structured

documents.

Jung, Kang & Kwon, (2007) present an approach that is mainly based on mapping

different types of table schemata that are extracted from Web documents belonging

to the same domain, into a domain ontology. This approach mainly aims at

constructing domain ontologies by combining table schemata extracted from tables

belonging to a specific domain where hierarchical clustering is applied for the

construction of domain ontologies. Similar work aimed at semi-structured sources

was introduced in Pivk, Cimiano & Sure, (2005) and improved by Pivk et al. (2007).

This approach analyses the different characteristics of a table and converts the

outcome to an F-logic frame. The approach can be considered as a starting point

towards extracting ontologies from table structures. This work is limited to being

useful as a means of ontology population rather than ontology learning, however.

Auhood Alfaries Page 39 of 189

Approaches that fall under this category are all aimed at mapping the structure

(schemata) of a Web document into an ontological hierarchy/taxonomy, but neglect

the domain knowledge available as text in such sources. An approach that is targeted

at extracting knowledge from document structures as well as from knowledge

embedded in the text is therefore required. Web Service artefact sources are rich in

semi-structured sources, and if any progress is to be made in domain ontology

development for Web Services, it is vital that this area rigorously explored.

2.5.3 Learning Approaches Based on Structured Data

Structured data in this case is used to refer to data which are highly structured and

mostly generated from databases. Relational databases are considered to be an

essential component in modern Information Systems. Therefore, relational database

schemata are considered to be a significant source for ontology extraction. In these

types of data sources, data is stored based on logical schemas which provide some

conceptualization about the domain in which the given information system operates.

Ontologies have been used for mediation between different databases. These types of

approaches can be considered as mapping approaches (Li, Du & Wang, 2005), since

most of the concepts and relations would already be described in legacy systems.

An interesting method that can be adopted in an ontology learning process can be

inferred from Johannesson (1994). In this approach, a method was introduced to

extract a conceptual schema from a relational schema. Basically the challenging task

was to map concepts and relations from the relational databases conceptual level into

an ontological representation. This method can be applied to create a middle model

representation of the relational database; an example of an ontology learning

approach that applies a middle model as the method is presented by Kashyap (1999).

Another approach, introduced by Pan & Pan (2006) which is basically a framework

for the data-mining process, is based on using an ontology repository to integrate

domain knowledge. Other approaches which are aimed at OL from structured

sources by applying learning rules in order to map relational database elements into

ontological elements are presented in Li, Du & Wang (2005) and An et al. (2007).

A number of tools and approaches have been developed for this purpose, including

RDBToOnto (Cerbah, 2008) and OntoLift (Volz et al., 2003). In the latter tool the

Auhood Alfaries Page 40 of 189

lifting process tries to capture the semantics of the databases by mapping relations to

concepts and attributes to roles in the ontology model. Of note, all of the proposed

OL approaches apply learning techniques borrowed from existing information

extraction and artificial intelligence disciplines. The techniques predominantly

applied are discussed in the following section.

2.6 Overview of Ontology Learning Techniques

This section introduces commonly used techniques in ontology learning, classified

according to the disciplines from which these techniques are borrowed (Maedche &

Staab, 2004). There are a number of surveys and comparison articles on the state-of-

the-art in ontology learning (Maedche & Staab, 2001; Shamsfard & Barforoush,

2003; Gomez & Manzano, 2004; Zhou, 2007) each of which provide different

comparison criteria. A broad overview of each learning discipline is given in the

following subsections.

2.6.1 Machine Learning Techniques

Machine Learning (ML) techniques are used to automatically detect and recognize

specific patterns and regularities in example data (Cimiano, 2007), which are then

used to make predictions. ML is based on induction or generalization using sample

data, with learning typically classified as supervised and unsupervised. Supervised

learning requires manually tagged training data and is based on an understanding of

the tasks that data are applied to and a given learning paradigm. A popular

supervised classifier example is the weather example (Witten & Frank, 2002), where

training data is represented as vectors for input data and target values represent

outputs, as illustrated in the three given training sets:

(sunny,not-windy,warm) play outside.

(rainy,windy,cold) do not play outside.

(rainy,windy,warm)  play.

These training sets can then be used by the learner to infer certain rules (or mapping

functions) such as: IF temperature = warm THEN play. In contrast, unsupervised

learning does not require any training data and is mostly applied in discovering

taxonomic relationships among concepts in order to classify them into meaningful

categories (Witten & Frank, 2002). Importantly, it is this latter type of ML that is

Auhood Alfaries Page 41 of 189

commonly applied in the OL field (Cimiano, 2007). For example, clustering can be

applied in unsupervised ML and is basically aimed at grouping similar objects in the

data set. If hierarchal clustering is used then groups are organised in a hierarchal

structure. A comprehensive review of all available ML approaches and methods is

presented in Gomez & Manzano (2004).

2.6.2 Statistical Analysis

A statistical analysis model is usually represented as a network that indicates the

probabilistic dependencies between terms (Zhou, 2007). Generally, the statistical

information computed from observed frequencies of the term within a corpus is used

to detect new concepts and relations relevant to the domain represented in the

underlying corpus. A technique used here is frequency analysis of word repetition.

Other methods include: (a) Naïve Bayes (Sanderson & Croft, 1999) which is used for

learning classifications; and (b) statistical hypotheses testing, which is used for

testing whether or not two concepts occur more frequently together (Cimiano, 2007).

2.6.3 Linguistic Techniques

Natural Language Processing (NLP) techniques are typically applied as a pre-

processing step in any OL system, in which textual input data is semantically

analysed and transformed into tagged output using a sequence of pipelined steps.

Popular techniques applied for the pre-processing step include tokenization, part of

speech tagging, stemming and lemmatization (Buitelaar, Cimiano & Magnini, 2007).

Tokenization, for example, is used to identify words and sentences within texts.

Typically, with unstructured text this activity involves using obvious word separators

including spaces, full stops and commas to split sentences into tokens. Part of speech

tagging implies differentiating syntactic categories such as nouns, verbs and adverbs

that lead on to semantic analysis. In broad terms, these syntactic techniques are able

to identify different ontological elements, with proper nouns, for example, being

used to identify instances. The pre-processing step is essential for all OL approaches,

especially if the source data is a textual document (Maedche & Staab, 2001). A

number of the learning approaches apply linguistic techniques have been previously

discussed, which are summarized and compared in Gomez & Manzano (2004), Zhou

(2007) and Cimiano (2007).

Auhood Alfaries Page 42 of 189

2.6.4 Rule-based Techniques

Rule-based techniques typically involve matching predefined rules or heuristic

patterns in order to extract relative ontological elements, mostly terms and relations.

In the OL application area these techniques usually rely on knowledge engineers to

identify lexical patterns and hand-crafted rules as applied in Text-To-Onto (Maedche

& Volz, 2001). Rule-based techniques are widely applied as pattern-based matching

information extraction methods. These methods are widely used for the extraction

and transformation of concepts and relations from unstructured sources (Buitelaar &

Cimiano, 2008; Cimiano, 2007; Borislav et al., 2004).

Lexico-syntactic patterns as introduced by Hearst (1992), are often applied in

relation extraction from textual sources, e.g. finding semantic relations between noun

phrases in the text can be achieved by finding matches to lexico-syntactic patterns in

the form of regular expressions as in the following pattern:

NP0 such as ..{NP1,NP2.. (and|or) }..NPn

Here, a noun phrase (NP) is identified as a hyponym within a corpus – one example

being animal and horse. Hearst’s (1992) work aims at identifying patterns leading to

hyponymy relation extraction. Examples of how this work has been extended and

applied include: First, identifying patterns that target taxonomic knowledge

(Iwanska, Mata & Kruger, 2000). Second, extracting part-of relations (Berland &

Charniak, 1999). Third, investigating texts surrounding images (Ahmad et al., 2003).

Lexical syntactic pattern identification has been widely reported (Buitelaar &

Cimiano, 2008; Cimiano, 2007; Borislav et al., 2004; Giovannetti, Marchi &

Montemagni, 2008), including syntactic patterns in OL from specific Web Service

domains. Such patterns are applied extensively in OL from unstructured sources of

Web Services as proposed by Sabou (2005). The rule-based techniques are widely

applied in information extraction providing accurate and promising results leading to

increased precision (Cimiano, 2007; Buitelaar & Cimiano, 2008; Giovannetti,

Marchi & Montemagni, 2008). These pattern-based techniques are classified as

knowledge engineering approaches requiring domain engineers to analyse the textual

Auhood Alfaries Page 43 of 189

sources to identify patterns and engineer transformation rules, in which the difficulty

remains in finding the patterns that frequently and unfailingly denote the relation.

Unsurprisingly, there is often a significant overlap between these disciplines in

practice. For example, statistical techniques are combined with machine learning and

classified as such in some literature (Cimiano, 2007). Linguistic-based methods are

commonly applied with statistical approaches to calculate the relevance of the

concept to the given domain, these methods include techniques based on linguistic

patterns, pattern-based extraction, methods that measures the semantic relativeness

between terms within a domain, etc. (Gomez & Manzano, 2004; Cimiano, 2007;

Zhou, 2007). In some approaches a combination of all three types are applied. Text-

To-Onto (Maedche & Volz, 2001) and OntoLearn (Navigli & Velardi, 2004), for

example, use statistical techniques applied with machine learning algorithms. Other

approaches combine linguistic analyses methods and machine learning algorithms,

including OntoLt (Buitelaar, Olejnik & Sintek, 2004) and ASIUM (Gacitua &

Sawyer, 2008).

One important point of note, however, is that it is clear that most comparative

surveys compare text-based approaches and that there is little work focusing on

comparing learning from unstructured sources versus learning from structured

sources. Web Service sources resemble a specific domain in which an effective OL

approach needs to be tailored to cater for the specific nature of these sources. This

tailoring involves applying a combination of techniques, including a pre-processing

step to produce syntactically analysed data, followed by the application of an

efficient combination of ML and statistical techniques that are applicable in the Web

Service domain. Determining a suitable OL technique applicable on the Semantic

Web Service sources is discussed in the next section.

2.7 Related Work / Ontology Learning for Web Services

Very little work exists that aims at ontology learning from Web Service sources.

Work found on OL from Web Service sources can be classified in two forms; the

first is one that investigates structural aspects of structured sources. The second form

is work that is aimed at learning from textual sources of Web Services. It is clear that

Auhood Alfaries Page 44 of 189

most of the OL approaches are based on the general OL framework presented by

Maedche & Staab (2001).

In light of this, the approach introduced by Sabou et al. (2005) applies NLP to textual

description, and therefore learns Web Service ontologies from textual descriptions

attached to implementation files (i.e., Javadoc). Noun phrases and service

functionality are learnt from verbs by applying a prepossessing pipeline on textual

descriptions of Web Services. Linguistic techniques are then applied in order to

extract syntactic patterns and apply dependency parsing. The limitation of this work

is that it is confined to Javadoc files, which are not a common means of description

in Web Services (Guo et al., 2007). The focus on extracting concepts and service

functionality from textual description only, whilst ignoring the structural aspect of

the Javadoc file, can be improved and extended by considering other Web Service

sources, such as structured sources as in WSDL and XSD documents.

On the other hand, using the structural aspect of Web Service sources that maps

WSDL schema onto ontologies are attempted in some approaches, such as the

method proposed by ASIUM (Faure & Nédellec, 1998); nevertheless, the relation

extraction is restricted to learning taxonomic relations from the WSDL structure

only. This can limit the learning to service functionality rather than the domain

specific non-taxonomic relations. These relations implicitly exist in the method

names or input/output parameter names in WSDL and XSD files. This area still

needs to be explored and is mainly addressed by this research.

Capturing the relationships between WSDL elements and transforming them into

ontological concepts and relationships, by looking only at simple pattern detection, is

shallowly attempted in Guo et al. (2007), where a limited number of simple

transformation rules are applied only on the source WSDL documents. Although

WSDL documents provide important application level service descriptions, they

alone are not sufficient for OL as: (a) They provide technical descriptions only; and

(b), in many cases Web Services use XSD files to provide data type definitions. The

need to include other Web Service resources in the OL process is therefore an

important one that has not yet been achieved. Most work of this nature is aimed at

Web Service matching rather than the domain ontology learning itself.

Auhood Alfaries Page 45 of 189

Other reported work that attempts to combine different input sources to learn domain

ontology is Latino (Bontcheva & Sabou, 2006). The method applied in Latino is

based on creating a document network ontology where concepts are learned from

classes in Java code. This work is potentially useful as a conceptual search in a

search engine like Google. The method does not apply any pattern-based knowledge

extraction to extract text in semi-structured sources.

Given the aim of automatically learning ontologies from Web Services, this review

illustrates two main points:

 There is a need to clarify and address the demands on OL in light of the mix of

(semi-) structured elements that typically accompany Web Services.

 There is a need to investigate the appropriate mix(es) of OL techniques in

meeting those demands.

Both points are illustrated in Figure 2-3 – highlighting a need to identify techniques

for effectively combining a range of Web Service software artefacts with appropriate

OL methods.

Figure 2-3: Ontology Leaning from Web Service Source Artefacts

Auhood Alfaries Page 46 of 189

The choice of an ontology learning strategy, whether it is bottom-up or top down,

can be identified based on the data sources and domain (Zhou, 2007). Web Service

sources are diverse in a number of areas, containing both structured and unstructured

data and generating both static and dynamic sources. WSDL and XSD files are

examples of static data sources, with WSDL files providing a usable source of

service interface information, including inputs, output and basic service

functionality. SOAP messages, dynamically generated by Web Services and client

applications in use, contain instances of server requests issued by clients and

instances of service responses issued by service providers. Messages are created

when a service is invoked and are an example of a dynamic source. Extending the

work by Guo et al. (2007) to include XSD schema and SOAP messages may offer a

number of interesting opportunities – revealing additional concepts and relations

through more complex transformation rules. For example, WSDL structures may be

transformed into ontological relationships, elements are analysed so that the

“message : parts” relationship is transformed into “has property”. Applying similar,

but more extensive, transformation rules to XSD and SOAP may result in more

effective methods. Possible opportunities include: (1) domain specific rules, (2)

advanced source document pre-processing heuristics and (3) source document

bootstrapping approaches. WSDL files alone are typically limited to only providing a

technical description of the underlying service.

Support for a variation in Web Service style is also appropriate. When interpreting

document style Web Services, a major part of the service description is found within

the referenced XSD schema (Curbera et al., 2002). Interpreting the underlying

schema in unison with other Web Service artefacts would result in a considerable

increase in the number of identified concepts (when compared to interpreting WSDL

in isolation). Moving beyond the service description and exploring dynamic SOAP

analysis allows executing services to be interpreted and opens further avenues for

ontology learning. Service invocation and messaging, via SOAP messages, provides

related instance data for each service description. It is this instance data that has the

potential to provide opportunities for revealing additional relations, axioms and

patterns (Daga et al., 2005).

Auhood Alfaries Page 47 of 189

Current OL approaches are in the most part general, and need to be specialised to

cater for both the technology of the Web Service domain and the business domain in

which these services operate. Identifying efficient learning techniques that are

applicable in the Web Service domain is a challenging task. Learning techniques

from different paradigms need to be combined and tested on varied sources in order

to identify effective multidisciplinary techniques aimed at ontology learning from

Web Service artefacts. A number of research questions arise and can be categorized

according to Web Service source documents, pre-processing requirements and

Ontology learning techniques. In order for any progress to be made in achieving the

SWS, domain ontologies need to adopt and evolve with legacy systems, dealing with

current Web Services standards.

2.8 Summary

The literature has illustrated the need for Semantic Web Services, indicating the

realization of the importance of Web Services and its capability of reaching its full

potential through the SWS. Understanding the varieties of Web Service sources and

analysing the role of OL in the Semantic Web have provided a deeper understanding

of the need to apply OL on Web Services in order to advance the SWS uptake. The

literature review classified OL techniques and approaches and identified applicability

on different data sources. It is clearly confirmed in the literature that ontology

development is a costly and time consuming process, requiring the services of highly

qualified expertise both in ontology engineering and the domain of interest. A wide

spread adoption of ontology development can be very difficult to achieve. Ontology

learning can assist in this direction by introducing some sort of semi-automatic

knowledge extraction that can be used by ontology engineers for speeding up the

process of ontology construction (Davies, Studer & Warren, 2006). Web Service

artefacts form a vital source of domain knowledge. For progress to be made in the

SWS, it is fundamental to rigorously explore OL from these sources. Since most of

the research is carried out on ontology learning from text, there has been less work

completed on mixing techniques and developing ontology learning methods for

combining Web Service data sources. Consequently, combining OL techniques and

approaches that deals with the differing characteristics of these Web Service sources

remains an open research area.

Auhood Alfaries Page 48 of 189

CHAPTER 3 – DESIGN RESEARCH METHODOLOGY

3.1 Introduction

In any given discipline the research community agrees upon the set of systematic

activities considered suitable to the production and validation of knowledge. In a

multidisciplinary paradigm like Information Systems there exist a number of

research methods. These methods differ in fundamental ways, among them the

phases employed, techniques, philosophical aims and structure of those phases. This

chapter investigates and presents Design Research as the chosen methodology to

execute this research, detailing the phases, techniques and philosophical background

behind Design Research. Design Research employs a set of techniques to implement

research in Information Systems. Normally this entails analysing the use and

potential of the designed artefact. Discussing Design Research as a valid and

legitimate IS research demonstrates the justification behind choosing Design

Research as the framework that guides the research execution.

In this chapter, Section 3.2 introduces the background to Design Research with

reasoning behind the validity of design as a research method. Design Research in

general as a methodology for Information systems research is described in Section

3.3, giving a broad review of major Design Research frameworks in IS and detailing

the main strategy in those frameworks. Section 3.4 presents Design Research

evaluation criteria associated with Design Research artefacts and typical evaluation

methods. While Section 3.5 presents the design plan for this thesis and explains how

Design Research is applied for the execution of the research, Section 3.6 introduces

the research evaluation giving a general background of OL evaluation. Section 3.7

illustrates the three Design Research iterations for the thesis, and finally, section 3.8

summarizes the chapter.

3.2 Design Research Background

Information Systems design is defined as “the purposeful organization of resources

to accomplish a goal”, (Hevner et al., 2004). It is important to discuss how design

can be incorporated as a research method. Hevner et al. (2004) categorize research as

Auhood Alfaries Page 49 of 189

an innovative way of solving a problem, where Edelson (2002) and Winter (2008)

distinguish Design Research by the generality of the proposed solution in a sense that

it can be applied to a wider class of situations therefore leading to design science.

Simon (1996) makes a valid differentiation between behavioural science and design

science, in unfolding the science of the artificial, Simon introduced the notion of an

artefact, viewed as a link between the inner and outer environment in the search for a

solution that fulfils the desired goal in the search for a satisfactory design rather than

an optimal one. Design is a learning process through which the underlying artefact

development process is observed differently and learned from.

Design Research as presented by March & Smith (1995) marked a new research era

where it enabled research to achieve both relevance and effectiveness by combining

research output (product) and research processing (activities) from behavioural and

design science in a two-dimensional framework, as presented in Figure 3-1. The four

research activities drawn from design science and natural science are Build,

Evaluate, Justify and Theorize. These four processes are applied in IT research to

produce different types of artefacts; constructs, models, methods and instantiations,

and these artefacts are employed to ensure the utility and efficiency of the produced

Information System. Design Research achieves an optimal solution to the design

problem in an iterative knowledge refinement manner.

Figure 3-1: A Research Framework (March & Smith 1995)

Categorising design artefacts using March and Smith’s (1995) research outputs

classification can help in identifying an appropriate procedure to build, evaluate,

Auhood Alfaries Page 50 of 189

theorize and justify the research. The four types of research artefacts are described

below.

• Constructs: Constructs are sets of concepts or vocabulary that form specialized

knowledge within a domain; they are used to define problems and solutions

(Hevner et al., 2004).

• Models: Models use constructs to describe a real world situation of the design

problem and its solution space (Hevner et al., 2004); models can be used to

express relationships between constructs (March & Smith, 1995).

• Methods: Methods are a set of steps that defines the solution space. They

provide guidance on how to solve problems using the constructs and the models.

Methods can be thought of as methodological tools that are created by design

science and applied by natural scientist (March & Smith, 1995).

• Instantiation: Instantiations are the implementation of constructs, models or

methods within a working system. They prove the feasibility and effectiveness of

the models, methods and constructs allowing actual evaluation (March & Smith,

1995). Instantiation plays an important role in enabling researchers to learn about

the working artefact in a real world scenario. As Newell & Simon (1976) explain,

the significance of instantiations is providing a better understanding of the

problem domain and consequently to offer better solutions.

According to Owen (1998) and Takeda, Veerkamp & Yoshikawa (1990), knowledge

can be generated and accumulated through a process that iterates through knowledge

using and knowledge building activities. Consequently, design is considered as a

process, and the steps involved in the design process are clearly identified by

Vaishnavi & Kuechler (2004). Design can be employed as a research that generates

knowledge. A number of research attempts to link theories and design to justify

Design as a research approach leading to theories (Brown, 1992; Kelly & Lesh,

2000) while others attempt to put emphasis on the learning aspect of Design

Research and identify types of learning that can evolve when a researcher emerges in

the design process as demonstrated by Edelson (2002).

Auhood Alfaries Page 51 of 189

A general Design Research methodology that incorporates five phases of design and

motivates an iterative design cycle in which learning is a key attribute is proposed by

Vaishnavi & Kuechler (2004) adopted from Takeda, Veerkamp & Yoshikawa

(1990). Problem awareness in this method is the initial step in Design Research,

followed by a suggestion, producing a proposal and a tentative design. The third step

is artefact development that may result in learning and improvement being fed back

through circumscription into the first step. The fourth and most important step is the

evaluation of an artefact, in which performance measures from the knowledge base

could be applied to test the utility of the artefact in the problem domain. The fifth

step is the conclusion, which involves highlighting the results of the Design Research

adding knowledge to the solution space or feeding back to consequent cycles.

Nunamaker, Chen & Purdin, (1990) agree that system development (artefact

construction) is considered as a research methodology that can lead to an improved,

and more effective design when applied in conjunction with other research

methodologies, whilst at the same time making a rigour contribution to knowledge.

 In accordance with utility and truth as two important aims of Design Research and

behavioural science respectively, Design Research is proposed by March & Smith

(1995) and Hevner et al. (2004) as a research framework where IT research can occur

by integrating two complementary disciplines. The first of these is behavioural

science where research is more focused on theorize and justify, and the second is

design science research, where the research is more focused on the build and

evaluate process.

3.3 Design as an IS Research methodology

Design Research frameworks attempt to provide the IS community with a Design

Research methodology (Hevner et al., 2004; Nunamaker, Chen & Purdin, 1990/91;

March & Smith, 1995). In those attempts, a common process is an iterative design

cycle employed as a problem solving process where a valid IS research is achieved

through the building and evaluation of purposefully designed artefacts. Importantly,

research in Information Systems (IS) is not any different from any other research.

where Blake (1978) defined research as “…systematic, intensive study directed

toward fuller scientific knowledge of the subject studied”. IS Research is considered

a multi-inter-related disciplinary field, made up of social and natural sciences

Auhood Alfaries Page 52 of 189

management and engineering, bound by an overlap in methods of research, in which

continued improvement is necessary to meet the complicated dual nature of the IS

field (Nunamaker, Chen & Purdin, 1990/91; Purao, 2002).

A typical research in Information Technology is one that is commonly categorized as

one of two types; the first being a knowledge using action where research is aimed at

improving IT performance, whilst the second type is a knowledge producing action

where the research is aimed at understanding the nature of IT (March & Smith,

1995). In both cases IS research takes place as a juncture connecting people,

organizations and technology, therefore, IS definitely incorporates IT research.

Simon (1996) made a clear distinction between natural science and science of the

artificial (design science), where the first is concerned with naturally occurring

phenomenon whilst the second relates to artificial human made artefacts. With this

distinction being made clear, it has led the IS community to realize and justify the

need for design as a research discipline that combines the two (Hevner et al., 2004;

Edelson, 2002; Winter, 2008; Nunamaker, Chen & Purdin, 1990/91; March & Smith,

1995).

Design Research (Design Research) as an Information Systems valid research

methodology, is formulated by integrating two complementing disciplines (design

and behavioural science), in a way that provides the means by which an IS researcher

engages in designing an artefact, hence the design science aspect, while at the same

time learning is emphasized during the development process, therefore, the

implication of utility on people and organization, and hence the behavioural science

aspect (Hevner et al., 2004). In design science research, truth and utility are

considered to be vital elements, gained through an implicit cycle between design

science and behavioural science, where truth is provided by IS theories and utility is

provided by IS artefacts (Hevner et al., 2004). The design cycle is executed in an

iterative incremental process that can be initiated by simple conceptualization

providing the necessary learning that feeds into consequent iterations, where the final

iteration results in an improved product that satisfies the problem requirements and

constraints. An earlier Design Research framework presented by Nunamaker, Chen

& Purdin (1990/91) that connects aspects of design and design science. In their

Auhood Alfaries Page 53 of 189

framework, Nunamaker, Chen and Purdin (1990/91) assign system development a

central role in the research life cycle, again showing an integrated approach that

includes design science as a core component in an Information Systems

methodological research framework. The process for conducting the research is left

for the researcher to infer

Hevner et al. (2004) on the other hand propose a descriptive Design Research

framework as illustrated in Figure 3-2 that satisfies both natural science and design

science. Research rigour can be achieved by effectively applying knowledge

(theories) from the knowledge base to develop and build an IS artefact, while

relevance can be accomplished by assessing whether the artefact satisfies business

needs. The justify-evaluate process is used to assess the artefact applicability in the

appropriate environment.

Figure 3-2: IS Research Framework (Hevner et al., 2004)

In Hevner et al. (2004) a concise IS research framework is presented and used to

induce Design Research methodological guidelines that can be followed to identify,

execute and evaluate IS research. Build and evaluate are considered to be an iterative

process through which both method and product are carefully assessed by the

Auhood Alfaries Page 54 of 189

researcher and used to assess and refine the developed product. This evaluate process

typically applies measures from the knowledge base to assess the utility, efficacy and

quality of the designed artefact. Hevner et al. (2004) proposes a set of evaluation

methods that can be used to evaluate the designed artefact discussed in the next

section.

3.4 Design Research Evaluation

Evaluating a Design Research artefact is a vital phase; its importance resides in the

need to determine artefact performance and measure progress according to well-

defined metrics (March & Smith, 1995). Assessing the progress made in the problem

space when the artefact is built to perform a specific task demonstrates its utility, and

therefore, validates the research. On the other hand, evaluation plays a fundamental

role on iterative research (design science) where knowledge generated from the

evaluation phase can be fed back into consequent iterations. Hence, developing

appropriate evaluation metrics to assess artefact performance for proving the

evaluation criteria (March & Smith, 1995) is critical. Here an evaluation criteria of

the so called quality attribute is identified based on artefact type as proposed by

March & Smith (1995), and is summarized in Table 3-1. Generally, evaluation is

concerned with answering the important question “How well does the artefact

work?” (March & Smith, 1995). This can be answered by applying a suitable

evaluation metric or measure from the knowledge base, thereby proving the

appropriate evaluation criteria. For example, a search algorithm instantiation in the

information extraction field can be evaluated by a mathematical metric such as

precision and recall (Hevner et al., 2004). Therefore, these metrics can be used to

prove the efficiency and effectiveness of the algorithm.

Auhood Alfaries Page 55 of 189

Table 3-1: Summarized Evaluation Criteria with Artefact Types (Hevner et al.,
2004)

Artefact Type Evaluation Criteria

Constructs Completeness, simplicity, elegance, understandability and ease of
use.

Model Fidelity with real world phenomena, completeness, level of detail,
robustness and internal consistency.

Method Operationality (ability of others to efficiently use the method),
efficiency, generality and ease of use.

Instantiations Efficiency, effectiveness and impact on an environment and its
users.

Once the evaluation metrics and criteria are identified an empirical work is applied

(March & Smith, 1995), where an evaluation method is chosen appropriately. Hevner

et al. (2004) emphasize that the selection of the evaluation method should be

carefully considered, and when matched with the suitable artefact and evaluation

metric evaluation methodologies are typically withdrawn from the knowledge base.

An inclusive set of evaluation methodologies is summarized in Table 3-2, adopted

from Hevner et al. (2004). The classifications represent the most common evaluation

methods from which a suitable method/s can be applied based on the type of artefact

and the evaluation metrics used.

Auhood Alfaries Page 56 of 189

Table 3-2: Design Evaluation Methods (Hevner et al., 2004)

Design Research Evaluation Method Types and their Description

Case Study: Study artefact in depth in business environment. 1. Observational

 Field Study: Monitor use of artefact in multiple projects.

Static Analysis: Examine structure of artefact for static qualities
(e.g., complexity).

Architecture Analysis: Study fit of artefact into technical IS
architecture.

Optimization: Demonstrate inherent optimal properties of artefact
or provide optimality bounds on artefact behaviour.

2. Analytical

Dynamic Analysis: Study artefact in use for dynamic qualities
(e.g., performance).

Controlled Experiment: Study artefact in controlled environment
for qualities (e.g., usability).

3. Experimental

Simulation: Execute artefact with artificial data.

Functional (Black Box) Testing: Execute artefact interfaces to
discover failures and identify defects.

4. Testing

Structural (White Box) Testing: Perform coverage testing of some
metric (e.g., execution paths) in the artefact implementation.

Informed Argument: Use information from the knowledge base
(e.g., relevant research) to build a convincing argument for the
artefact’s utility.

5. Descriptive

Scenarios: Construct detailed scenarios around the artefact to
demonstrate its utility.

3.5 Applying Design Research

The research contribution is the development of a methodological ontology learning

framework for SWS and a tool resulting from instantiating the framework. To meet

the research aim, Design Research is adopted from Vaishnavi & Kuechler (2004) as

an overall research methodology. March & Smith’s (1995) research products

classification is adopted to illustrate the research output. Research products are

identified in the form of constructs, models, methods and instantiations. The Design

Research methodology employed for developing the research artefacts is an iterative

design cycle (build and evaluate). In design science build is concerned with the

development of the artefact, and evaluation is concerned with the development of an

assessment method or metric to assess the quality and effectiveness of the artefact in

its context (March & Smith, 1995). The main design artefact is a methodological

Auhood Alfaries Page 57 of 189

ontology learning framework, an iterative process involving the five design process

steps; awareness, suggestion, development, evaluation and conclusion, as elaborated

upon in Figure 3-3.

An Awareness of the problem was achieved in Chapter 2. This involves reviewing

the literature and analysing existing ontology learning techniques, in addition to

recognising the importance of faster ontology development for SWS. It also

incorporates finding suitable ontology learning techniques appropriate for developing

an ontology learning framework (as detailed in Chapter 2), by comparing existing

OL approaches and highlighting weaknesses.

Suggestion involves introducing a tentative idea of how the problem might be solved

by signifying appropriate learning techniques (Alfaries, Bell & Lycett, 2009). This

step forms Iteration 1, which develops an appropriate service term and concept

extraction method, and then new suggestions arise for relation extraction in

consequent iterations. As new knowledge is gained during development and

evaluation of the developed method, new suggestions from the build and evaluate

cycles are used to initiate subsequent iterations.

 Figure 3-3: Steps of Design Research (Vashnavi & Kuhler, 2004)

Auhood Alfaries Page 58 of 189

Development is carried out by building the research artefact as an ontology learning

framework (SOLF). The framework consists of phases and steps that adopt the

relevant machine learning and NLP techniques. SOLF is aimed to automate domain

knowledge extraction from Web Services and the building of a domain specific

ontology. SOLF is subsequently automated by creating an instantiation as an

ontology learning tool.

Evaluation is carried out through an evaluation strategy that measures the

effectiveness of the research based on the significant performance improvement of

the developed framework over existing ontology learning methods and approaches.

An evaluation of the automatically learned domain ontology against manually

produced gold standard ontology in order to illustrate the effectiveness of the method

is performed. Evaluation is carried out using Design Research evaluation criteria to

examine the efficiency and generality of the framework. Automating the process of

applying the method (SOLF) on a realistic Web Service scenario taken from the

financial domain, resulted in the development of a tool that served as an instantiation

of SOLF. Evaluating the efficiency and effectiveness of the tool developed as an

instantiation of SOLF is also performed. This tool is used to validate SOLF in an

experimental evaluation over different set of Web Services and gold standard in

iteration three.

Conclusion is where the research output is summarized and the results of the

evaluation are identified and future improvement is highlighted towards improving

ontology learning from Web Services.

3.6 Research Evaluation

Two common evaluation metrics for Design Research are novelty and effectiveness

(Edelson, 2002). The novelty of this work lies in developing a new framework

model, designed to extract ontological knowledge from Web Service artefacts and

bring Web Services to their full potential. In evaluating the novelty and effectiveness

of the research, Design Research artefacts will need to be formally evaluated to

determine whether progress have been made in the ontology development process

within the Web Service domain.

Auhood Alfaries Page 59 of 189

The effectiveness of this framework is in reducing the cost and time of the ontology

development process. When the research objective is to achieve intelligent

behaviour, instantiations are used to illustrate the effectiveness and provide a live

proof of the proposed method (SOLF in this research). It is the means by which

deficiencies and improvements are identified (March & Smith, 1995). Determining

whether progress is made in the OL requires applying the appropriate metrics from

the knowledge base. Due to the fact that OL is a new machine learning application

domain, as yet there is no optimal evaluation framework for ontology learning

approaches (Dellschaft & Staab, 2008). Typically, OL evaluation methods can be

classified according to the different scenarios into two main evaluating methods

[ibid]. Those methods are mainly aimed at evaluating structural and functional

aspects of an OL method. The evaluation methods can primarily be classified in two

main types: (1) quality assurance during ontology engineering, which can be further

classified into task-based, corpus-based or criteria-based evaluation approaches as

depicted in Figure 3-4, and (2) comparing OL algorithms which can be either manual

evaluation by a domain expert or Gold Standard-based evaluation.

Figure 3-4: Taxonomy of OL Evaluation Approaches

Auhood Alfaries Page 60 of 189

Evaluation approaches can be further subcategorized according to the measure used

and what they intend to measure in terms of the functional and structural aspects as

summarised in Table 3-3. Generally speaking, precision and recall are the end

metrics used when evaluating OL approaches either by gold standard or manual

evaluation by domain expert. Here the evaluation is performed over a subset of real

world commercial services. The qualitative measures are borrowed from the

information extraction field, applied here to measure the accuracy and precision of

automatically extracted information in comparison with manual extraction.

Auhood Alfaries Page 61 of 189

Table 3-3: Comparison of OL Evaluation Methods

The evaluation framework for this research is a combined method of experimental

and testing simulation using real data, in which SOLF is tested on real data (Web

Services) and a detailed scenario is constructed to formulate the evaluation of the

output ontological model. Qualitative evaluation measures such as precision and

recall are applied to evaluate the model using gold standard-based evaluation and

domain expert manual evaluation. Recall is used to measure the number of correctly

identified concepts by the system as follows:

Auhood Alfaries Page 62 of 189

For example, if 10 concepts are identified manually in the corpus and the system has

automatically identified 7 of these 10 then 70% would be the recall figure. An ideal

scenario for recall calculation is to either use a gold standard ontology (existing

ontology) or use a domain expert to extract concepts and relations manually from the

input sources upfront (pre-create an ontology). Evaluation using gold standard and

automatically produced ontology can be misleading however. Typically, an exact

match is employed to compare and produce the results as a binary decision of

correctness. When attempting a complex business area (such as that found in global

banking) it is not possible to deploy a domain expert on all input sources. This is due

in part to the size of the input sources and variation in these domains. It is feasible,

however, to utilize domain expert knowledge to evaluate concepts and relations

produced by SOLF. Therefore, a hybrid approach has been adopted in order to better

account for the domain complexity and availability of evaluative artefacts. The

domain expert participates in evaluating the extracted concepts and relations,

combined with a similarity-based evaluation for calculating the recall metric between

Reference (manually extracted concepts) and Response (the output of SOLF); the

reference ontology is one produced manually for the same Web Services by previous

work.

Precision is used to measure the accuracy of the obtained concepts as:

 where the number of correctly extracted

concept is divided by the total number of automatically extracted concepts by the

learning algorithm. For example, if SOLF found a total of 10 concepts, 8 of which

are correct then the precision is 8/10 = 80%. Precision is calculated here with the aid

of a domain expert in order to evaluate the learned relations more directly.

3.7 Research Design Iterations

Design Research is performed through iterative design cycles, which can be

improvement iterations or improvement and incremental iterations (Hevner et al.,

Auhood Alfaries Page 63 of 189

2004). This research is implemented as iterative incremental iterations where each

iteration (see below) is used to extend and refine the design problem (SOLF).

1. Develops the core ontology learning framework. Ontology is automatically

learned as a set of domain specific concepts, automatically extracted from

Web Service sources.

2. The second iteration refines the framework and extends it by developing

techniques to automatically extract ontological relations between the

extracted concepts.

3. Finally, the third iteration refines the SOLF by generalizing and validating the

developed structure interpretation patterns (SIP) and transformation rules

(TR).

Three design iterations are used to deliver the final artefact as illustrated in Figure

3-5. In each iteration the artefact refinement process is formed as a mini Design

Research cycle of build and evaluate, following Vashnavi & Kuhler’s (2004)

design cycle steps.

Figure 3-5: Research Iterations

Interestingly, Design Research motivates knowledge generation as part of the design

problem, here new awareness is generated and suggestions are made during the build

Auhood Alfaries Page 64 of 189

and evaluate cycle. The learning outcome for each iteration is used to refine the

explanatory hypothesis and feeds back into subsequent iterations.

The main Design Research outcome is the development of a methodological

framework (SOLF), where framework is defined in the Oxford dictionary as “a basic

structure underlying a system, concept, or text: the theoretical framework of political

sociology”. Methodology is defined by Checkland (1981) as “a set of principles of

method, which in any particular situation has to be reduced to a method uniquely

suited to that particular situation”. SOLF incorporates aspects of both a methodology

and a framework.

Iteration 1:

This iteration aims at analysing, understanding and testing the applicability of

existing ontology learning techniques, more specifically textual-based information

extraction techniques on Web Service semi-structured sources. This is achieved by

comparing and testing similar approaches on Web Service artefacts (WSDL and

XSD documents). The output of this iteration is a set of constructs that identify the

appropriate OL techniques. An initial Service Ontology Learning Framework

(SOLF) consisting of a Service Term Extraction (STE) phase and an ontology

building method. A prototype application is created as an instantiation of SOLF. The

method is evaluated for its operationality, efficiency, generality and ease of use, by

applying it using the instantiated application on a real set of financial Web Services.

A domain ontology model is produced as an output artefact from this iteration

consisting of a set of domain concepts. The learned ontology model is evaluated for

fidelity, completeness and level of detail by using an evaluation framework that

compares the produced ontology model with models from other approaches.

Iteration 2:

This iteration aims at applying the learning from the first Iteration to improve and

extend the developed SOLF. The SOLF improvement includes extending the concept

pattern extraction to relation extraction. It also includes developing a method for

identifying transformation rules. The ontology model from the first iteration is a set

of automatically extracted domain specific concepts without any relations between

Auhood Alfaries Page 65 of 189

them. This iteration applies an unsupervised pattern-based relation extraction method

to learn relations between those concepts. The method is aimed at finding patterns

between concepts formulating a rule-based pattern extraction process from Web

Service artefacts, mainly WSDL and XSD files. The application of this process to the

set of Web Services contributed a number of secondary Design Research products

including constructs, models and methods as illustrated in Table 3-5. A domain

ontology model is automatically learned by the improved and refined SOLF. The

learned model now consists of domain concepts and taxonomic and non-taxonomic

relations between these concepts. A number of SIP patterns as well as a set of TRs;

models also considered secondary Design Research output of the iteration.

The evaluative framework for this iteration is aimed at evaluating the efficiency and

operationality of the method (SOLF), by applying the instantiated application on real

Web Services from the financial business domain. Evaluating the completeness and

level of detail of the learned ontology is based on employing the evaluation metrics

precision and recall. Precision here is calculated by scoring the learned relations and

concepts by a domain expert and pattern recall is calculated manually by comparing

the learned concepts to a previously created manual ontology (Gold Standard).

Iteration 3:

The aim in this iteration is towards validating, improving and extending SOLF to

include more specific domain relations. Applying the SIP and TR on other sets of

Web Services to test the generality of SIP and TR produced by the previous iteration,

facilitates validating the patterns and extending them to add new ones and refine

SOLF. This iteration uses the learning (formed by evaluate, theorize and justify

activities), shaped by Iteration 2, to suggest improvement of the models (SIP) and the

TR and SOLF method. This leads to developing the final products of the research

consisting of a Web Service ontology learning methodological framework (SOLF), a

set of SIP patterns, and a set of TRs and an ontology model representing the

underlying domain.

Applying SOLF to real Web Services results in a number of secondary Design

Research products including constructs, models, methods and instantiations.

Measuring significant improvement of the research requires careful evaluation in

Auhood Alfaries Page 66 of 189

order to prove efficiency (March & Smith, 1995) and assess the progress made in the

problem domain is done by applying the developed products into real Web Service

artefacts and applying OL evaluation methods. The research significance lies in

building consequent constructs, models, methods and instantiations addressing the

same service ontology learning task. March and Smith’s (1995) 16 cell Design

Research grid relating a product to a process, is used to highlight and summarize the

overall products and processes of the research in an integrated and coherent

framework as Table 3-4 illustrates the first activity is meant to provide an

understanding and proper explanation of how or why the Design Research products

works within a live experiment using real case scenarios (here financial domain Web

Services) and the second activity serves to prove or disprove the theory scientifically.

Iteration 1 and Iteration 2 are mainly design science, those build and evaluate

activities are considered by the research alongside each of the four Design Research

product types in those chapters.

Theorize and justify as identified by March & Smith (1995), are mainly behavioural

science activities, where, theorizing the SOLF implies understanding how and why it

can be applied in real case scenarios. And Justification of SOLF implies proving its

applicability across different sets of Web Service domains. Therefore theorize and

justify, are only reflected upon in Chapter 6.

Auhood Alfaries Page 67 of 189

Table 3-4: Research Products Versus Research Processes

Research Activities

 Build Evaluate Theorize Justify

Constructs

Extraction of Terms (STE).
Learning Framework for
Services (SOLF).
Patterns for Term
Extraction Process.
Pattern for relation
Extraction (SIP).
Rules for Transforming
Patterns (TR).

Completeness.
Simplicity.
Elegance.
Ease of use.

Models

Model for Term Extraction
Process.
Model for the Learning
Framework (SOLF).
SIP Patterns.
Set of Rules (TR).
Domain Ontology Model.

Fidelity.
Completeness.
Level of detail.
Robustness.
Internal
consistency.

Methods

Term Extraction Process
(STEP).
SIP Extraction Process.
TR Development Process.
SOLF Framework.

Operationality
Efficiency
Generality
Ease of use

R
es

ea
rc

h
O

ut
pu

ts

Instantiation
SOLF Application. Effectiveness

Efficiency
Impact on
environment

Are reflected upon in
Chapter 6 & 7.

 Executing the research in a Design Research incremental iterative manner enabled

learning to emerge from the first iteration by applying and testing techniques from

the knowledge base on Web Services. Table 3-5 summarizes the three Design

Research iterations illustrating the objectives and output artefacts of each. Research

iterations are described in more detail in the following chapters.

Auhood Alfaries Page 68 of 189

Table 3-5: Summary of Research Iterations

Iteration Activities Output Artefact Type

A. Test existing approaches
and compares them (part of
obj. 1).

Identified appropriate Natural
Language processing
techniques.

Constructs.

B. Develop an automated
process for service term
extraction process (part of
obj. 2 & 3).

Service Term Extraction
Pattern process.

Method.

Model.

C. Automate method by
building a prototype
application to test STE
using a real case scenario
from the financial domain
(part of obj. 2).

STE Application.

Ontology building algorithm.

Instantiation.

D. Evaluate STE by
comparing it to other similar
approaches (obj. 4).

Ontology as a set of domain
concepts.

Model.

1.

E. Suggest an improvement
and extension of existing
techniques.

List of requirements to
improve the approach in the
next iteration.

Theories.

A. Develop a relation
extraction method for Web
Service artefacts (part of
obj. 2 & 3).

A structured interpretation
pattern process (SIP).
Transformation Rule (TR)
Extraction Process.

Constructs.

Method.

B. Extend the prototype
application to include
relation extraction (part of
obj. 4).

A set of Structured
Interpretation Patterns (SIP).
A set of Transformation
Rules (TR).

Model.

Instantiation.

C. Evaluate the improved
framework (part of obj. 4).

Ontology representing
financial domain using
sample services.

Model.

2.

D. Suggest an improvement
and extend existing relation
extraction patterns.

Suggestions for future
improvements.

Theories.

A. Validate research by
testing SIP patterns and
SOLF application on other
Web Services (obj. 5).

Extended set of SIP.

Extended set of TR.

Model.

B. Extend SOLF and
application (part of obj. 3 &
4).

Improved SOLF. Method.

Instantiation.

3.

C. Evaluate SOLF. Domain Ontology. Model.

Auhood Alfaries Page 69 of 189

3.8 Summary

 This chapter set out the research methodology in accordance with the tenets of

Design Research. The methodology is executed in five Design Research steps as

adopted from Vaishnavi & Kuechler (2004): (1) Problem awareness, (2) suggestion

of suitable OL techniques from the knowledge space, (3) development of the main

Design Research artefact (SOLF), (4) evaluation of the artefact is based synthesising

Design Research evaluation methods to the OL field and (5) conclusions. In order to

achieve the research aim and objectives the research is executed in three incremental

Design Research iterations. Each of the iteration is used to build and evaluate a set of

artefacts aimed at the OL task from the Web Services domain. In the first iteration a

pattern based service term extraction method is developed and evaluated on real Web

Services. The second stage extends the method to include relation extraction

techniques. And finally the third iteration proves SOLF by applying the learning

method and tool to other application domain to prove it generality. Hevner’s (2004)

Design Research products classification is adopted to illustrate the research outputs

produced from iteration. The Research products are identified in the form of

consequent constructs, models, methods and instantiations.

An OL evaluation taxonomy and background illustrates that efficiency of OL

approaches is determined by assessing the accuracy and coverage of the

automatically leaned ontology model. Accordingly, two main evaluation scenarios

are typically applied; first is a gold standard based scenario, the second is a domain

expert evaluation. These two evaluation methods are commonly applied to compute

the standard metrics precision and recall.

Auhood Alfaries 70 of 189

CHAPTER 4 - ITERATION I

4.1 Introduction

This iteration addresses the term extraction task of the ontology learning layer cake

(Cimiano, 2007, p.23). Different NLP techniques for term extraction are applied on Web

Service resources, more specifically WSDL and XSD files. Term extraction implies

applying linguistic pre-processing techniques. As discussed in Chapter 2, these

techniques are commonly applied on unstructured documents. This chapter applies an

innovative pattern based term extraction method, that applies pre-processing techniques,

which are normally used on textual data sources, on semi-structured Web Service

sources, namely WSDL and XSD files. The development of an application prototype as

an instantiation artefact is used to evaluate the method and apply it on the financial Web

Services taken from commercial organisations.

The rest of the chapter is organised as follows. To begin with, Section 4.2 discusses how

Design Research is applied for this iteration. Design Research artefacts are identified

along with the iteration plan and research products. Section 4.3 introduces the building

stage of the Design Research problem, presenting a method for service term extraction

and explaining the steps involved in the method. Section 4.4 develops a prototype that

implements the suggested method and presents the outcome of applying the prototype on

sample files from the financial domain. Section 4.5 presents the experimental data and

evaluates the iteration outputs and the method. Finally the research concludes in Section

4.6 by discussing the iteration feedback and presenting the learning outcome. The

chapter is summarized in Section 4.7.

4.2 Design Research and Output Artefacts

This iteration applies Design Research as a miniature iterative process through which

learning of the problem space is achieved through artefact development and evaluation.

A method can be seen as a set of steps that can be followed to accomplish a certain task

Auhood Alfaries 71 of 189

(March & Smith, 1995). Here, a method for Service Term Extraction (STE) is proposed,

an instantiation is then developed as a prototype that implements the STE method. This

iteration is used to produce an initial Service Ontology Learning Framework (SOLF)

comprising the STE and an ontology building algorithm. As illustrated in Figure 4-1, an

iterative cycle of artefact building, development and evaluation is employed, adopted

and based on the general methodology of Design Research by Vaishnavi & Kuechler

(2004).

As discussed in Chapter 2, a number of Web Service sources characteristics are

identified that necessitate the development of a tailored OL process to deal with the

special characteristics of Web Service resources. The applicability of term extraction

techniques, commonly used with unstructured data sources, on WS semi-structured

sources, requires analysis and testing to determine their tailoring ability to extract

semantic information. It is the aim of this iteration to adopt and modify existing learning

techniques that deal with these semi-structured sources using real examples taken from

the financial Web Service domain. A typically applied OL scenario (Maynard, Li &

Peters, 2008) starts with term extraction as a first step. This iteration targets term

extraction as a pre-processing stage involving a sequence of NLP techniques. This stage

is considered as a starting point to provide an understanding and an experimentation

environment for the Design Research cycle and OL framework to evolve.

Term Extraction involves applying information extraction techniques to extract possible

terms from Web Service resources. Identifying words that are possible candidates for

concepts and relationships in the underlying context implies collecting and analysing

available Web Service resources and employing text analysis techniques to them.

Auhood Alfaries 72 of 189

 Figure 4-1: Iteration 1 Overall Framework

The novelty of this method is that it is applied on semi-structured data sources consisting

of XML files. Pattern based term extraction is commonly applied on unstructured textual

sources (Buitelaar & Cimiano, 2008). The innovation of this approach is to adopt and

apply pattern based term extraction to extract knowledge from technical semi-structured

sources.

4.2.1 Design Research Artefacts

The aim of this iteration is to develop the core SOLF that embodies the service term

extraction (STE) technique, automates the technique and evaluates the process. The

technique involves applying a process consisting of a sequence of steps and results in a

number of outputs. As illustrated in Table 4-1, each step applies a natural language

processing method on an input artefact and results in an output that is used as input for

the next step. Applying the methods in the consequent steps results in a pipeline process,

which is then implemented as a pipeline application using the GATE development

environment.

Auhood Alfaries 73 of 189

This iteration extends the pattern based knowledge extraction in two ways: First, a

dynamic process for deriving term extraction patterns. Applying this process on the

sample set of services contributes a set of patterns. Second, applying the patterns on the

WSDL and XSD sources of industrial Web Services to evaluate the extraction outcome.

Table 4-1: Iteration Steps – Input Output Model

Steps Method Input Artefact Output Artefact

1. Develop WSDL and
XSD model tokenizer
method.

WSDL & XSD
Tokenizer

WSDL & XSD
files

WSDL & XSD-Term
Model

2. Decide a suitable
Part Of Speech (POS)
identifier method for
WSDL and XSD
models.

POS Tagger WSDL/XSD-
Term Model POS-Term Model

3. Identify concept
patterns for concept
extraction from WSDL
and XSD models.

Pattern Term
Extraction
Process

POS-Term
Model

Pattern Term
Extraction Models

4. Build Service Term
Extraction (STE)
method.

Build GATE
Application

Web Service
Artefacts

Prototype Application
(using GATE)

Evaluation of the iteration is aimed at evaluating the following output artefacts:

 The initial STE method is evaluated using the instantiation prototype created

as a GATE application pipeline, in which real Web Service resources are

used.

 The Concept and Relation Pattern Model; which links tokenised concepts via

relationships, are evaluated by running the method on the real case example

and ensuring that all relevant names are picked up by the identified patterns.

The Lucena Data Store viewer is a GATE plug-in typically used for analysis

and testing of the results over the real Web Services.

 Evaluating the learned ontology model involves the evaluation of the quality

of the STE method by measuring the coverage and precision of the learned

concepts.

Auhood Alfaries 74 of 189

4.3 Artefact Building and Development

The Building stage involves problem awareness and suggestion. This implies identifying

the initial steps for the process and explaining what each step involves. This stage

involves reviewing and analysing existing OL approaches, finding suitable techniques

for WSDL and XSD files, and suggesting appropriate tools and techniques. Testing

current similar work enabled a deeper understanding of the limitations of current

approaches and suggested improvements to overcome the limitation on current

approaches, which has eventually led to identifying appropriate techniques and tools for

concept and term extraction from WS sources. Term extraction involves applying

document pre-processing techniques to allow for lexical and semantic analyses of the

input sources. This is achieved by applying a tokenization step followed by a POS

tagging.

4.3.1 Tokenization

Pre-processing involves tokenization as a first step. Default tokenizers are designed to

parse natural language text using typical tokenization techniques, which are reliant on

assuming that token separators are based on natural language separators like spaces,

commas, full stops, etc; whereas, Web Service sources are semi-structured and in some

cases, like WSDL and XSD files, relevant ontological concepts can be found only in tag

names. Figure 4-2 shows a sample WSDL file illustrating the structure and character of

the content of a WSDL document, e,g a sample line of a WSDL is <xs:element

name="checkInDate">. In such cases tokenization should be based on

capitalization of the first letter. By analyzing Web Service sources, it can be clearly seen

that the name attributes are a common venue for ontological concepts. In this example 3

tokens can be extracted using capitalization of the first letter.

Another naming scheme that can be found in such sources is <xs:element

name="company_search_response"> in which an underscore character is used

as a token separator. For this kind of text a tokenizer is implemented to deal with these

cases. The WSDL and XSD tokenizer is adopted from the GATE built-in default

tokenizer and modified to suit the described characteristics. Tokenization produces a

tokenized WSDL and XSD model, in which restrictions to limit the extracted concepts,

Auhood Alfaries 75 of 189

relies on lexical analysis of the document and deriving patterns based on tokens lexical

category.

<xs:complexType name="CheckAvailability">

<xs:sequence>

<xs:element name="checkInDate" type="xs:date"/>

<xs:element name="checkOutDate" type="xs:date"/>

<xs:element name="roomType" type="xs:string"/>

</xs:sequence>

</xs:complexType>

Figure 4-2: WSDL sample file

4.3.2 POS Tagging

Applying shallow semantic analysis involves categorizing words based on their

meaning, and a POS tagger serves this purpose. Part Of Speech (POS) Tagging involves

identifying and adding parts of speech tags to the WSDL tokenized model, i.e.

identifying verbs, nouns, adjectives and other parts of speech for each token. POS

tagging is a step commonly applied as a second step on unstructured sources (Maynard,

Li & Peters, 2008; Sabou, 2005) as part of the term extraction process. Since WSDL and

XSD contain semi-structured data, words that appear in operation names such as

“checkAvailability” are considered to be the only source of domain information

available in these sources. Therefore, this information needs to be analysed and

examined for domain concept extraction. The tokenized terms need to be tagged by

applying a POS tagger, which will identify the type of each word using their basic

dictionary meaning regardless of their context. Hence, check should be identified, as a

verb and Availability should be tagged as a noun.

Off-the-shelf techniques are sufficient for this purpose. The Brill-style tagger, offered by

GATE, uses basic Part-of-Speech information, and is selected as the POS tagger method

employed for this step (Cunningham et al., 2002). A POS tagged WSDL model enables

the researcher to identify patterns of concepts and relations based on semantic analysis

of the words identified by the POS tagger.

Auhood Alfaries 76 of 189

4.3.3 Pattern Extraction

Rule-based information extraction uses domain specific handcrafted rules that describe

patterns to be matched. This step involves finding appropriate patterns that detect

concept related terms in WSDL elements, for example, the name attribute in the WSDL

line <xs:complexType name="CheckAvailability">.

CheckAvailability provides the most likely domain concepts; therefore the

ultimate goal would be to identify patterns that will extract all such WSDL entries. All

possible patterns can be identified by following an iterative pattern identification

process, as depicted in Figure 4-3; the process is based on analyzing the commonly

applied naming convention used in method names, input and output parameters and

discovering all of the possible pattern combinations based on the semantic and syntactic

analysis information produced by previous step, in order to ensure that all of the possible

patterns in the WSDL and XML files are identified and therefore extracted. The process

starts by identifying an initial set of patterns, analyzing the pattern matches on WSDL

and XSD files, evaluating their coverage and detecting any missing patterns, and adding

new patterns if required. This process stops when no more new patterns were found in

the chosen sample files.

Figure 4-3: Pattern Extraction Process

Given the interest here of extracting domain knowledge rather than service functionality,

the concepts identification query employed is based on identifying different forms of

nouns in Web Service sources (WSDL and XSD). Therefore, this step leads to

identifying patterns for extracting service concepts based on extracting matches to

different types of nouns as classified by the POS tagger. Appendix A contains a list of

POS tags used by the GATE Brill tagger.

Auhood Alfaries 77 of 189

4.3.4 Ontology Building

This step involves bootstrapping the concepts identified in the input sources to construct

a lexical layer of the domain ontology model. The model is produced using a Web

ontology language commonly supported by most ontology editors. The output is a

lightweight ontology that represents the domain covered by the input semi-structured

data sources. Concepts identified by the patterns in the previous step are matched and

annotated using regular expression matching (Bontcheva et al., 2004), and then

ontological concepts are created according to the annotated terms in the service artefacts.

4.4 Framework Prototype Implementation

The search for a well established open source tool that can be used for Term extraction

has lead to choosing GATE 5.0 beta version. GATE stands for General Architecture for

Text Engineering, and provides the researcher with an integrated infrastructure for

experimentation with modifiable built-in tools for Computational Linguistics, Natural

Language Processing (NLP) and language engineering (GATE User Guide 2008).

Figure 4-4: Service Term Extraction (STE)

Auhood Alfaries 78 of 189

The GATE platform is chosen as it provides a flexible platform with the required

language engineering and ontology building tools, for example:

 The use of off-the-shelf NLP techniques.

 A Java Annotation Pattern Engine (JAPE) (Cunningham et al., 2002) that

facilitates the development of pattern identification rules and TRs.

 The GATE Ontology API (Bontcheva et al., 2004) based on the OWLIM

model, which supports the OWL-Lite standard (see

http://www.w3.org/TR/owl-features/).

The developed application reads a corpus of WSDL files and runs a sequence of

processing resources over the corpus, extracting concepts from the input files. It then

produces an ontology as an output of the system. The algorithm is based on pattern

matching using JAPE regular expression matching; first, a JAPE file that finds and

annotates concepts in the input documents, then another JAPE file finds the annotated

concept and creates the ontological concept accordingly. Figure 4-5 illustrates a snapshot

of the prototype implementation of the STE application pipeline.

GATE Processing Resources (PR) are specifically tailored for the needs and

requirements of an application domain. In this case GATE PR are modified to the

requirements of the underlying WSDL and XSD files. Service Term Extraction in this

research applies a sequence of processes over Web Service artefacts. A pipeline

application is created in GATE that performs Term Extraction as the first stage of any

OL system. The pipeline consists of a number of GATE’s Processing Resources (PR),

reflecting the steps described in this section; the first PR is the WSDL and XSD

tokenizer, which is implemented to deal with the characteristics of these sources, as

discussed earlier in this chapter.

Auhood Alfaries 79 of 189

Figure 4-5: SOLF Application Pipeline

First, a WSDL tokenizer is developed to tokenize the input files into simple tokens,

dealing with compound words and tokenizing WS1 phrases such as

“unwindTradeExtResponse” into four distinct tokens instead of one. Table 4-2

illustrates a WSDL tokenised model representing a sample output of a WSDL tokeniser

step, where each word is identified as a token. This table is used to analyse the output of

the tokenizer. It can be clearly seen that the tokenization of the element

name="roomType" produced two tokens that are very good concept candidates.

Auhood Alfaries 80 of 189

Table 4-2 : WSDL Tokenized Model
No. Document ID Annot. set Left Context Word

Tokens
Right

context
192 hotelWsdlTst___12416

19854614___2774
Tokens element name="check In Date" type="

193 hotelWsdlTst___12416
19854614___2774

Tokens element name="check Out Date" type="

194 hotelWsdlTst___12416
19854614___2774

Tokens name="checkIn Date " type="xs

195 hotelWsdlTst___12416
19854614___2774

Tokens name="checkOut Date " type="xs

196 hotelWsdlTst___12416
19854614___2774

Tokens element name="room Type " type="xs

197 hotelWsdlTst___12416
19854614___2774

Tokens Type name="t Check Availability">
\f

198 hotelWsdlTst___12416
19854614___2774

Tokens name="tCheck Availability "> \f1

The second step requires applying POS tagger that identifies the POS of each token.

ANNIE POS tagger, which is based on the Brill tagger (Cunningham et al., 2002), is

applied for implementing this step, adding part of speech tags to each token as a new

feature. The output from this phase, as Table 4-3 illustrates, enables patterns to be

identified based on the category feature added here. For example, the POS tag of each

token in the phrase “unwindTradeExtResponse” is added as a category feature,

where Trade is tagged as NNP, and denotes a singular proper noun according to the

ANNIE POS tagger. Other tags such as NN and VB would have a different meaning,

where the first is used to denote a singular or mass noun and the second denotes a verb

in its base form (Cunningham et al., 2002). Figure 4-6 illustrates a snapshot taken from

GATE GUI, in which a category feature “VB” is added to the string token “Approve”.

The category feature is assigned different values such as VB (Verb), NN (Noun) or NNP

(Proper Noun) according to the Part of Speech type of each token.

Figure 4-6: WSDL POS Model

Auhood Alfaries 81 of 189

Thirdly, a Pattern Extraction process follows, that identifies concept extraction patterns.

ANNIC (ANNotations In Context) plug-in, is a GATE plug-in that offers applying

pattern extraction using the Lucena Data Viewer tool (Aswani et al., 2005). ANNIC is

used in this step to view and analyse the output of the lexical and semantic analysis

steps, and the results are exported to an html file. The initial pattern is drawn from

Cimiano (2007) and Hearst (1992) as VB + Noun (verb followed by one noun, e.g.

CancelTrade or GetTrade).

Table 4-3 illustrates the Lucena Data Viewer model of the identified patterns for a

sample WSDL file. Following the process illustrated in Figure 4-3 Using ANNIC

enabled instantaneous evaluation and refinement of patterns. A sample table produced

that represents a VB+NNP+NNP pattern model. Notice that the

“GetCreditDefault” that appears in the pattern column matches the

VB+NNP+NNP pattern. This illustrates that all element names in Web Service sources

that match the identified patterns are extracted automatically by the system. The aim of

this step is to identify all of the possible patterns that will lead to candidate ontological

concepts.

Table 4-3: Pattern Extraction Model
No. Document ID Annotation

Set
Left Context Pattern Right Context

1 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromSingleDay"

2 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromSingleDayB
y

3 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromSingleDayB
y

4 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromMultipleDay
s"

5 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapFromMultipleDay
sBy

6 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapForDateRangeBy

7 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapByTargetSystemT
rade

8 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetCreditDefault SwapBySummitTradeId

9 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ GetTradeAudit History" style="

10 Trdport2___12363550
59316___2719

Tokens /tradecapture/wsdl/ CreateDefaultedTrade " style="document

:: :: :: :: :: ::
21 Trdport2___12363550

59316___2719
Tokens ="impl:to DoBlotterRequest " name="to

22 Trdport2___12363550
59316___2719

Tokens ="impl:to DoBlotterResponse " name="to

Auhood Alfaries 82 of 189

Table 4-4 represents a set of identified patterns that can be used to determine relevant

phrases as terms and is therefore applied by an ontological transformation process to

transform automatically extracted terms to ontological concepts.

Table 4-4: Summarized Generic Patterns

Pattern Pattern Match Sample

Verb + Noun CancelRequest

Verb + Noun + Noun (2 or
more nouns up to 10) DoBlotterRequest

Noun + Noun + Noun (2 or
more nouns up to 10) PendingRefEntities

Building the pattern for regular expression matching is achieved using JAPE

Transducers (Cunningham et al., 2002; Bontcheva et al., 2004). These transducers are

developed to perform rule-based pattern extraction. Rule definition is carried out using

regular expressions over annotations. A JAPE rule consists of two parts, as illustrated in

Figure 4-7; the left hand side (LHS) and the right hand side (RHS). The LHS of the rule

(shown to the left of the arrow in the Figure 4-7) identifies the patterns to be matched

based on information generated by the previous steps (tokenization and POS tagging).

The RHS of the JAPE rule identifies the annotation set to be created for the text that

matches the pattern on the LHS. The result of executing this JAPE rule on the input files

is that each token that matches the pattern is annotated with a concept annotation.

Another JAPE rule is then created to find annotated concepts in the text and create

ontological concepts accordingly. The ontology is created using the GATE OWLIM

API.

Auhood Alfaries 83 of 189

Figure 4-7: JAPE Sample Code

The second JAPE file is created to add new concepts, as they are found, to the existing

ontology, as illustrated in Figure 4-8.

Executing the application pipeline on a corpus of Web Services consisting of WSDL and

XSD files produced an ontology model representing the financial Web Services

employed for the experiment. The model represents the automatically created financial

ontology model. Figure 4-9 depicts a snapshot of the produced ontology as the final

product of the application.

Figure 4-8: JAPE Rule for Concept Creation

Auhood Alfaries 84 of 189

Figure 4-9: Snapshot of the Learned Domain Ontology Model

4.5 Evaluation

Instantiations can be viewed as existing implementations, and are used to evaluate

constructs, models and methods (March & Smith, 1995). For meeting the objectives of

this iteration, a prototype system was developed and implemented that operationalized

the proposed method using GATE 5.0 beta1 version. Evaluation of this iteration is

achieved through assessing the performance of the system in extracting domain relevant

terms, consequently leading to domain concepts. Importantly, the information extraction

performed here is ontology-based information extraction that needs to be evaluated

differently from normal IE in the sense that, misclassifying a term as a concept rather

than a relation is preferable to misidentifying the term in the first place (Maynard, Li &

Peters, 2008).

Commonly applied IE metrics are precision and recall. As discussed in Chapter 3, these

metrics are used to evaluate the accuracy and coverage of the learned ontology model.

Precision and recall are typically calculated either by comparing outputs to manually

extracted data, or by involving a domain expert. The expert role is in validating the

accuracy of the extracted terms, concept by concept, i.e. to evaluate the learned concepts

and relations by presenting them to a human assessor who can verify their correctness

and relevance to the domain using a certain grade given to different concepts (Cimiano

Auhood Alfaries 85 of 189

2007). Here, precision is used to assess the accuracy of the STE calculated according to

the formula:

Where NoOfCorrectConcepts is the number of scored concepts validated as correct by

the domain expert, and TotalNoOfConcepts is the total number of concepts extracted by

the system.

4.5.1 Experimental Data

Due to the large size and commonality of the structure and content of WSDL and XSD

files, a decision was made to use a realistic number that would allow practical and

accurate evaluation when presented to a domain expert. Therefore, three Web Services

are taken from the financial domain. The Web Services are used to evaluate the Design

Research output artefacts outlined in Section 4.2. The WSDL and XSD files are grouped

and categorized according to the Web Service to which each files belongs.

A summary of the Web Service resources used for this iteration is presented in Table 4-

5. The details of the three ‘real world’ Web Services are described below, though some

details are omitted for reasons of confidentiality. Each service differs in its complexity

and style, both in the Web Service usage and the specific design decisions taken by the

respective development groups:

• Trading (WS1). This Web Service provides an interface from the Front and Middle

offices (traders and risk managers) to a back office processing system. The interface

provides access to core trade data as well as market specific measures that are added

to the trade over its life (i.e. affecting its risk profile). The Trading Web Service

follows a document binding style and consists of 774 lines and its size is 30506

bytes.

• Matching engine (WS2). This Web Service supports a fixed income business with

Bond and Repo product types, in particular, processes where a trader and salesman

enter separate trade details, which are subsequently matched and integrated. The

Auhood Alfaries 86 of 189

matching process is carried out by this service. The Matching Engine Web Service

has a smaller description than the Trading Web Service, consisting of 64 lines and

with a size of 2086 bytes. Primarily the interface is being a document that is detailed

in the associated schema XSD files. This service adopts an RPC Web Service style.

• Credit service (WS3). This Web Service is part of a trading system that supports a

range of derivative instruments. The system is used globally by various trading

departments. The service again follows a document-based binding style and consists

of 423 lines and has a size of 40434 bytes.

Table 4-5: Summary Information Representing Used Web Services

Web Service Name No. Of WSDL files No. Of XSD files Total No. of lines
(WSDL Code

only)
Web Service 1
TradePort

1 6 774

Web Service 2
MatchingEngine

1 10 64

Web Service 3
SOLService

1 N/A 423

Given the size and the structure of these files manual extraction is time consuming,

expensive and inapplicable; therefore, a more appropriate and practical evaluation

strategy is designed for evaluating the coverage and accuracy of the extracted terms. The

adopted evaluation strategy is aimed at evaluating the performance of the implemented

STE method against similar research efforts and targets the gaps discussed in Chapter 2.

The evaluation is performed against an unstructured approach and another structured

approach (based on WSDL only), in order to determine the validity of the STE in

extracting the required terms. Then a domain expert, with experience in working with

financial banking industry, is used to validate the concepts and calculate the precision

according to their scoring of correct concepts. Lastly, analysing the results of the

evaluation leads to reaching a conclusion and learning from the developed artefact for

future improvements of the method for the next iteration.

Auhood Alfaries 87 of 189

4.5.2 STE Performance

Due to the fact that this research is aimed at ontology related term extraction, only

candidate terms are considered for evaluation. The evaluation of term extraction in this

iteration is carried out using the GATE plug-in the Lucena Data Viewer that enabled the

analysis of the extracted terms using pattern recognition and determining the domain

coverage of the method. Tokenization produces all file contents as Tokens, in which case

symbols and tags are tokenised, and for this stage are considered irrelevant due to the

fact that they only present XML code. To filter out irrelevant Tokens from the Tokenised

WSDL and XSD model, a self-evident pattern is applied for the purpose of producing

the Web Service Term Model (WSTM). A query is formulated using JAPE patterns

(GATE 5.0 User Guide 2008) that is based on pattern extraction in order to extract

relevant terms for the purpose of evaluating the STE system. Relevant terms can only be

words that are either verbs or nouns. Therefore, the applied query to produce the WSTM

is given below:

{Token.kind=="word",Token.category=="NN"}|{Token.kind=="wor
d",Token.category=="NNP"}|{Token.kind=="word",Token.categor
y=="VB"}

The output produced from executing the query containing the STE pattern is uniquely

filtered and a WSTM is produced for each service accordingly. A sample of the WSTM

is illustrated in Table 4-6, and represents the WSTM for WS3. A full list of extracted

terms can be found in Appendix D.

Table 4-6: WSTM Extracted from WS3

Concept
List 1

Concept
List 2

Coupon series
Date currency

Sequence bloomberg
Target ticker
Curve issuer
Market issue

Guarantor summit
Maturity org

Redemption equity
Obligation credit

The sample files are run three times using three term extraction methods taken from

three different approaches. In line with the literature review, the first approach is taken

Auhood Alfaries 88 of 189

from previous work by Sabou (2005), which employs unstructured term extraction

techniques. The second approach employs semi-structured tokenization but is applied

only to WSDL files, i.e. it doesn’t include any XSD files. The third method uses the STE

term extraction method, as developed in this iteration. The STE method targets gaps

found in both approaches and therefore the results are expected to be better than the

other two approaches chosen for this evaluation in terms of providing better coverage of

the domain concepts and increased accuracy in concept extraction.

The produced result representing the evaluation model consists of three columns

representing the extracted concepts from each method, which are analyzed and then

presented to the domain expert for validation. Table 4-7 represents a concept evaluation

model, which gives an overview of the experimental settings used for evaluation.

Analyzing the outcome of this model revealed that better extraction performance was

achieved with the STE method, due to a number of reasons: (1) although Method 1

produced more terms, most of the terms were compound terms that were unlikely to

serve as domain concepts. (2) Method 2 improved the term extraction over Method 1 in

the sense that those terms were better suited as candidate domain concepts, but are

quantitatively less than the terms produced using Method 3. (3) Method 3 provided

better domain coverage since it produced an improved intensive list of terms that are

more likely to serve as domain concepts.

Table 4-7: Concept Evaluation Model

 Web Service XSD only WSDL only Both
Web Service 1 Terms: 2598

Unique: 283
Terms: 2574
Unique: 172

Terms: 5172
Unique: 455

Web Service 2 Terms: 2397
Unique: 149

Terms: 181
Unique: 44

Terms: 2578
Unique: 193

Method 1
Default

Tokeniser

Web Service 3 N/A Terms: 3090
Unique: 247

Terms: 3090
Unique: 247

Web Service 1 N/A Terms: 3670
Unique: 112

Terms: 3670
Unique: 112

Web Service 2 N/A Terms: 203
Unique: 47

Terms: 203
Unique: 47

Method 2
Based on

WSDL files
only

Web Service 3 N/A Terms: 4741
Unique: 183

Terms: 4741
Unique: 183

Web Service 1 Terms: 3887
Unique: 239

Terms: 3670
Unique: 112

Terms: 7557
Unique: 351

Web Service 2 Terms: 2924
Unique: 126

Terms: 203
Unique: 47

Terms: 3127
Unique: 173

STE
Method

(Improved
version of 1

and 2) Web Service 3 N/A Terms: 4741
Unique: 183

Terms: 4741
Unique: 183

Auhood Alfaries 89 of 189

Now, to determine whether the extracted concepts forms a good source for building

lexical layer of domain ontology. Evaluation measures need to be calculated based on

expert scoring of each automatically extracted concept. Therefore, for practical reasons,

this procedure is performed only on WS2. A WSTM (as illustrated in Table 4-6) is

presented to the domain expert to score each concept. The scoring system employed, is a

lenient system in the sense that each concept is scored with 1, 0.5 or 0, such that 1

indicates a correct concept, 0 indicates that it is an incorrect domain concept, and half-

weight indicates partially correct concepts. The results of the domain expert evaluation

have shown an improvement with the STE method over the other two approaches. The

summarized precision is presented in Figure 4-10, and illustrates a 67% precision for the

STE method.

Figure 4-10: WS2 Precision

4.5.3 Pattern Evaluation

The evaluation at this stage will involve coverage and specificity of patterns, ensuring

that they cover all existing concepts and relations in the Web Service artefacts. The

process followed embodies the notion of saturation in grounded theory (Bernstein,

1999), where the cyclic pattern extraction process ensured the refinement and

identification of new patterns. This process has lead to the discovery that all candidate

Auhood Alfaries 90 of 189

terms in the input files are classified mainly into either noun or verb. Here, a verb is

more likely to determine service functionality. ANNIC provided instantaneous

evaluation of pattern extraction and evaluation (Maynard, Li & Peters, 2008). ANNIC is

used to replace the identified pattern with live validation on the tokenised WSDL and

XSD models. All of the identified patterns are tested directly on the input models to

ensure pattern coverage of all existing concepts and relations in the source files.

Completeness is evaluated by comparing the ANNIC results of the identified matched

patterns against all of the element names that exist in the source data files, automatically

extracting all of the element names. The sample output is illustrated in Table 4-8; the

table is produced by executing the query on ANNIC that results in producing all of the

element names before any tokenization is performed on them, thereby ensuring that the

researcher has a list of all element names that exist in the source files, which are then

used to validate the pattern extraction process.

Auhood Alfaries 91 of 189

Table 4-8: Default Tokenizer WSDL Model
No Document ID Annotation

Set
Left

Conte
xt

Pattern Right
Context

1 WSDL_WS1___124
3994895541___928

4

Tokens _ Query "

2 WSDL_WS1___124
3994895541___928

4

Tokens _ Request "

3 WSDL_WS1___124
3994895541___928

4

Tokens _ Response "

4 WSDL_WS1___124
3994895541___928

4

Tokens _ Response "

5 WSDL_WS1___124
3994895541___928

4

Tokens _ Request "

6 WSDL_WS1___124
3994895541___928

4

Tokens _ Query "

7 WSDL_WS1___124
3994895541___928

4

Tokens : InsertTradeRequest "

8 WSDL_WS1___124
3994895541___928

4

Tokens : MirrorTradeRequest "

9 WSDL_WS1___124
3994895541___928

4

Tokens : AmendTradeRequest "

10 WSDL_WS1___124
3994895541___928

4

Tokens : CancelTradeRequest "

11 WSDL_WS1___124
3994895541___928

4

Tokens : MatureTradeRequest "

12 WSDL_WS1___124
3994895541___928

4

Tokens : SingleDayTradeQueryRequest "

13 WSDL_WS1___124
3994895541___928

4

Tokens : SingleDayTradeQueryRequestByTradeDate "

14 WSDL_WS1___124
3994895541___928

4

Tokens : MultipleDayTradeQueryRequest "

15 WSDL_WS1___124
3994895541___928

4

Tokens : MultipleDayTradeQueryRequestByTradeDat
e

"

16 WSDL_WS1___124
3994895541___928

4

Tokens : DateRangeTradeQueryRequestByTradeDat
e

"

17 WSDL_WS1___124
3994895541___928

4

Tokens : TargetSystemTradeIdQueryRequest "

18 WSDL_WS1___124
3994895541___928

4

Tokens : SummitTradeIdQueryRequest "

19 WSDL_WS1___124
3994895541___928

4

Tokens : TradeAuditHistoryRequest "

20 WSDL_WS1___124
3994895541___928

4

Tokens : VerifyTradeRequest "

4.6 Specifying the Learning

By evaluating the output of this iteration, the automatically extracted terms from each

source revealed some motivating conclusions;

• The extracted list of terms presented to the ontology engineer forms a high-density

list of domain specific concepts that would be harder to extract from textual sources.

Auhood Alfaries 92 of 189

• The domain concepts are very likely to be linked by non-taxonomic relations.

Linking pattern structures to relations can lead to an effective way of extracting these

relations automatically, which could result in an effective relations extraction from

software artefacts, and would be very desirable to the ontology engineer. A list of

condensed domain concepts is extracted automatically and presented to the domain

engineer.

• Concept extraction as defined by Cimiano (2007) and Buitelaar, Cimiano & Magnini

(2005) requires finding a concept extension (a set of concept instances), which can

be found in SOAP messages. It is noticed from the output of this iteration that

concept extraction can be emphasised by extracting the instance data from SOAP

messages since they have information regarding service execution. Therefore, they

are a suitable venue for the instance data.

• It is significant at this stage to build concept hierarchies linking the extracted

concepts by taxonomic relations. It is observed from analysing the output from the

STE method that some patterns can successfully lead to specific relations. Therefore,

identifying patterns leading to concept hierarchies is an essential improvement to the

system and require a new iteration to be initiated.

4.7 Summary

This iteration was intended to develop a service term extraction method by applying

NLP techniques. The STE method is used to develop an initial SOLF that builds an

initial ontology model consisting of automatically extracted domain concepts, has

provided a conceptual understanding of IE constructs and their applicability on the OL,

by demonstrating the feasibility of automatic ontology acquisition especially when the

data sources are software artefacts like WSDL and XSD files. The contribution made

here is the development of an initial ontology learning method. The method applies IE

techniques, and starts by applying syntactic analysis as a pre-processing stage. The pre-

processing is then used to identify patterns and perform concepts extraction based on the

identified pattern. The process is automated by building a prototype application in

GATE that implements the steps identified in the framework.

Auhood Alfaries 93 of 189

As a result of processing WSDL and XSD files, a list of concepts are automatically

identified within these input files. The developed SOLF and the tool are evaluated by

comparing the outputs to other similar methods. The outcome of this iteration illustrates

that there is a sufficient amount of domain specific concepts in WSDL and XSD files

that can be effectively extracted automatically by the STE method, since manual

ontology acquisition from domain is a daunting task, engineers can benefit greatly from

the lexical ontology model produced by the proposed OL approach. Automatically

extracted service concepts can be used as a starting point in an ontology development

process. There is a need to further investigate how to extract relations between these

concepts, to allow for the automatic extraction of ontological relations between the

identified domain concepts. Identifying patterns for concept and relation extraction is

brought forward for the next Design Research iteration.

Auhood Alfaries 94 of 189

CHAPTER 5 - ITERATION 2

5.1 Introduction

Relation and concept taxonomy extraction forms two important layers of the ontology

learning layer cake (as detailed in Chapter 2). Most OL research targets relation learning

that is often from unstructured data sources. The aim of this iteration is to refine the

SOLF developed in Chapter 4 by extending the framework to include techniques for

concept taxonomy and relation extraction, where the research focus is to extract relations

from Web Service artefacts that are classified as semi-structured data sources.

Extending the pattern-based ontology learning in Chapter 4 to include pattern-based

relation learning can be achieved by applying a Structured Interpretation Patterns (SIP)

extraction process. Here patterns are identified based on the output produced by applying

the steps in Iteration 1, as presented in Chapter 4. Syntactically and semantically

analyzed documents produced by the previous iteration are used as input to the SIP

extraction process in this iteration. These SIP patterns are then integrated into the service

ontology-learning framework (SOLF), by applying specifically tailored transformation

rules to automatically produce ontological relations depicted in attributes and concept

taxonomies. SOLF is instantiated in an ontology learning tool that can be used to learn a

domain ontology model from Web Service artefacts.

This chapter is structured as follows. Section 5.2 provides the research design and the

research outputs of this iteration. Section 5.3 presents the building and development of

the design artefact (SOLF) – illustrating and detailing the newly incorporated relation

extraction technique; including a rigorous pattern extraction method and the

transformation rules development process followed by the last 2 steps of the framework;

ontology building and ontology validation. Section 5.4 describes the implemented SOLF

tool illustrating the application of each of the framework steps using a sample set of

financial Web Services. Section 5.5 illustrates the evaluation of the research outputs

using the appropriate evaluation metrics, with details of the experimental settings. The

learning outcome of this iteration is presented in section 5.6 and finally the chapter is

summarized in section 5.7.

Auhood Alfaries 95 of 189

5.2 Design Research and Output Artefacts

The purpose of this Design Research iteration is to build a relation extraction technique

and incorporate the technique in SOLF. Relation extraction involves finding semantic

relations between concepts. As noted in Chapter 2, two commonly applied Information

Extraction approaches, related to relation extraction, are rule-based and machine

learning IE systems. The first is based on the manual design of lexical patterns, which

relies on implementing pattern-matching algorithms over linguistic annotations. The

second type of IE system is the machine-learning system, in which the system is trained

over manually annotated data to automatically learn new rules. This chapter proposes a

method for the relation extraction task based on the first approach due to its simplicity

and accuracy when rules are designed for specific domains (Sabou, 2005b; Cimiano et

al., 2005).

Figure 5-1: Research Iterations

Auhood Alfaries 96 of 189

5.2.1 Design Research Artefacts

This iteration introduces an automatic approach to apply pattern-based IE techniques to

learn semantic relations between concepts in the semi-structured Web Service data

sources (WSDL and XSD files), ultimately improving the developed framework (as

discussed in Chapter 4) to include the ontological relation extraction technique. To

achieve the aim of the research, this iteration executes the following steps (see Table 5-

1).

Table 5-1: Iteration Steps Input Output model

Steps Method Input Artefact Output Artefact

1. Identify
Structured
Interpretation
Patterns (SIP)

SIP Extraction
Process

POS-Term
Model

SIP (Models)

& (Method)

2. Develop
transformation
rules

TR
Development

Process
SIP Models TRs (Models)

3. Refine and
extend SOLF by
incorporating
Relation
Extraction
Process (REP)

Service Term
Extraction

Framework
OLD SOLF

Improved SOLF

(Method)

 4. Develop a
prototype tool that
implements SOLF

Build GATE
Application

Web Service
Artefacts

Prototype Application
(Instantiation)

5.3 Artefact Building and Development

This section presents the building and development of a refined SOLF as illustrated in

Figure 5-2. Each step in the SOLF is further described in the following subsections

which integrate STE and the Relation Extraction process to learn a domain ontology

model representing the underlying domain. The methodological framework using real

sample set of financial Web Services. The application of SOLF on the sample set of

services is detailed and demonstrated in the following subsections.

Auhood Alfaries 97 of 189

Figure 5-2: Service Ontology Learning Framework (SOLF)

5.3.1 Document Pre-processing Phase

In this opening phase, the Web Service artefacts are pre-processed by applying Natural

Language Processing (NLP) techniques in order to linguistically analyze the input

sources. This phase employs pre-processing as presented and discussed in Chapter 3.

The tokenizer splits these 297 semi-structured files (WSDL and XSD) in the same

manner as detailed in Alfaries, Bell & Lycett (2009). Application of these techniques

enables rule-based extraction methods to be used on textual sources (Maedche & Volz,

2001; Maedche & Staab, 2004; Gacitua, Sawyer & Rayson, 2008; Gacitua & Sawyer,

2008).

Auhood Alfaries 98 of 189

5.3.2 Relation Extraction

The relation extraction technique adopted here is a pattern based relation extraction that

targets both taxonomic and non-taxonomic relations. The technique requires the careful

identification of patterns and transformation rules as described in the following sub

sections.

Pattern Extraction Process

A particular relation can be automatically extracted by applying a set of structure

interpretation patterns to identify that relation. In this phase language engineers/analysts

identify relationships between concepts and identify associated patterns – known as

Structured Interpretation Patterns (SIP). SIP are found in element and method names

within the program code: They are similar to lexical syntactic patterns in IE in that they

are based on the syntactic analysis of the corpus and they differ in the fact that they are

not formed out of normal textual data sources. Here, patterns are identified using an

efficient automated process based on the frequency analysis of automatically extracted

terms.

The automated process is aimed at accurately deriving patterns (determined by pattern

recurrence) that, when applied in a rule-based OL algorithm, results in higher precision.

Identifying patterns extracted from semi-structured data sources, where domain

knowledge exists, adopts Hearst’s (1992) criteria and term frequency analysis.

Transformation Rule Development

This phase involves developing a set of Transformation Rules (TR), which are used to

identify an appropriate ontological element for each SIP identified in the pattern

extraction phase. For example, a subclass TR can be applied to map a term such as

“MatchingEnginePort” to concepts and relations in OWL ontology. An

illustration is provided in Figure 5-3.

Auhood Alfaries 99 of 189

Figure 5-3: WSDL to OWL SIP Mapping

It is important to emphasize that rule development is likely to lead to different mapping

possibilities depending on the underlying domain of study. TR development thus follows

an automated process that aims to ensure optimal accuracy and limits subjective

analysis. The process is capable of identifying the most appropriate mapping between

the patterns and the underlying ontological element.

5.3.3 Ontology Building

Ontology building involves bootstrapping SIP and TRs by applying an appropriate rule-

based pattern-matching algorithm. That algorithm searches for and annotates relations

and concepts in the input sources and creates the corresponding ontological elements

according to the TRs developed in the previous phase.

Auhood Alfaries 100 of 189

5.3.4 Ontology Validation

A domain expert is typically used to validate and modify the resulting domain ontology

and filter out any irrelevant relations or concepts. The user is then able to view the

automatically generated ontology and make any further changes or amendment to the

rules or ontology.

A prototype implementation of SOLF in action, described in the next section, is created

in GATE, General Architecture for Text Engineering (Cunningham et al., 2002), which

provided the required development environment for implementing the SOLF tool. A set

of three real-world Web Services taken from the financial domain are used for the

pattern extraction, testing and evaluation of the framework. The chosen services (and

their underlying descriptions) vary in complexity and style and are described in more

detail in Section 4.5.1.

5.4 Application and Implementation of SOLF

Here, the same set of Web Services introduced in section 4.5 is used for the pattern and

TR extraction process, where pre-processing is first performed consisting of two steps

that are both implemented in GATE as two processing resources in the application

pipeline. First, a WSDL tokenizer is developed to tokenize the input files into simple

tokens, dealing with compound words and tokenizing WS1 phrases, such as

“unwindTradeExtResponse”, into four distinct tokens instead of one. As Table 2

illustrates the output of a WSDL tokenizer step, where each word is identified as a token.

Table 5-2: Output of WSDL (WS1) Tokenizer Step

Annotation Features

Token {kind=word, length=6, orth=lowercase, string=unwind}

Token {kind=word, length=5, orth=upperInitial, string=Trade}

Token {kind=word, length=3, orth=upperInitial, string=Ext}

Token {kind=word, length=8, orth=upperInitial, string=Response}

Auhood Alfaries 101 of 189

The second step uses the ANNIE POS tagger (Cunningham et al., 2002), adding part of

speech tags to each token as a new feature. The output from this phase, as Table 5-3

illustrates, enables a pattern to be identified based on the category feature added here.

For example, the POS tag of each token in the phrase

“unwindTradeExtResponse” is added as a category feature, where Trade is

tagged as NNP, as it denotes a singular proper noun according to the ANNIE POS tagger.

Other tags such as NN and VB would have a different meaning, where the first is used

to denote a singular or mass noun and the second denotes a verb in its base form

(Cunningham et al., 2002).

Table 5-3: Output of the WSDL (WS1) POS Tagger

Annotation Features

Token {category=VB, kind=word, length=6, orth=lowercase, string=unwind}

Token {category=NNP, kind=word, length=5, orth=upperInitial, string=Trade}

Token {category=NNP, kind=word, length=3, orth=upperInitial, string=Ext}

Token {category=NNP, kind=word, length=8, orth=upperInitial,
string=Response}

5.4.1 Pattern Extraction

The approach adopted in order to improve the effectiveness of semi-structured artefact

processing is now introduced. Each WSDL file is lexically analyzed by the previous

phase, producing candidate terms with POS tags added to each term. Patterns are

identified using these POS tags (initially ordering patterns by frequency). Typically, the

identification of patterns starts by following a heuristic approach as detailed in previous

research (Hearst, 1992; Berland & Charniak, 1999; Guo et al., 2007; Sabou, 2005a). The

process is aimed at ensuring accuracy, specificity and coverage of patterns in a semi-

structured data source as in WSDL or XSD files. The rationale behind SIP is to identify

patterns that can be applied in a pattern matching based OL algorithm to extract suitable

concepts and their taxonomic and non-taxonomic relations.

Auhood Alfaries 102 of 189

Initially, patterns are discovered by querying the underlying text, using GATE’s ANNIC

plug-in. The tool provides enhanced querying of input files with more flexibility than a

simple search - especially if the files have been pre-processed, thereby allowing the

search to be based on part-of-speech tags. Automating the pattern extraction process

involves employing ANNIC and frequency analysis to produce a Web Service pattern

extraction model for each service. Here, ANNIC is used to perform a live analysis and

test each pattern directly on the input sources enabling the specificity and coverage to be

assessed almost instantly (Maynard, Li & Peters, 2008).

The pattern extraction process consists of three main steps that are applied to all of the

WSDL files that describe the services used for this experiment. Firstly, a generic query

was written in ANNIC that produces a sequence of compound words extracted from the

input sources. It is clearly noticeable that candidate domain concepts can be found in

element names in WSDL files. The obvious query that returns all possible patterns from

these element names would be a generic query that matches any sequence of words.

Following the pattern extraction process proposed in Chapter 4 has lead to the following

query, which is executed, on all Web Services as given below:

({Token.kind = word}) + 11.

This query extracts up to eleven tokens of type word (i.e. a sequence of letters followed

by a word terminator). The output of this step is used to assess the coverage and

preciseness of the overall extracted patterns by running the same query for each of the

Web Services. Since WSDL files are a form of software artefact, it became very obvious

from the preliminary analysis that candidate concepts and relations typically appear as a

sequence of word tokens, e.g. operation names such as SingleDayTrade or

VerifyTrade. All other text is XML related tags and symbols.

Secondly, the output from the first step is analysed to derive patterns corresponding to a

semantic structure interpretation for each service. The frequency analysis of patterns is

calculated as the number of occurrences of each pattern in each of the input sources.

Consequently, a pattern extraction model is required for each service and is detailed in

the next section. This is achieved by implementing a more specific query that produces

matches of almost all-possible candidate patterns. This is directed from the analysis of

Auhood Alfaries 103 of 189

the output from the previous step. The result set is then exported as an html file to be

filtered and analyzed in order to decide frequent patterns in each WSDL document. The

executed ANNIC query for this step is shown in Figure 5-4.

({Token.kind=="word",Token.category=="VB"}|{Token.kind=="word",Toke
n.category=="VBG"}|{Token.kind=="word",Token.category=="VBP"})* 3

({Token.kind=="word",Token.category=="NNP"}|{Token.kind=="word",Tok
en.category=="NN"}|{Token.kind=="word",Token.category=="NNS"})*3

Figure 5-4: ANNIC Pattern Extraction Query

This query returns matches to compound noun phrases, formed of any sequence of verbs

and nouns (up to three). For practicality of analysis and evaluation purposes it was

decided to limit the query in this step to find up to 3 tokens of each type (verb and noun).

In WS1, a total number of 29 unique patterns were found, some of which were

frequently repeated giving a total sum of 383 occurrences in the WSDL file. A snapshot

of the pattern extraction model for this service is produced in Table 5-4. In the matching

engine (WS2), the pattern extraction in Table 5-5 shows less complex and fewer patterns

- but similar in type to Web Service 1, patterns are found to be relatively frequent.

Processing the WSDL file for the matching engine Web Service produced a total of 83

phrases (patterns matched) and a total number of 18 patterns. The Credit service is

recognized to be a complex Web Service due to the fact that it contains more complex

and varied functionality, resulting in more complex patterns than the other two Web

Services. A phrase can be composed of up to 11 terms. The pattern extraction model for

this service is shown in Table 5-6.

Auhood Alfaries 104 of 189

Table 5-4: Web Service 1 Pattern Extraction Model
Filtered Pattern

Matches Pattern Count

tradecapture NN 67
VerifyTrade NNP+NNP 63

ICTML NNP 63
SingleDayTrade NNP+NNP+NNP 47

summitTrade NN+NNP 19
verifyTradeRequest VB+NNP+NNP 16

security policy NN+NN 16
DateRangeTrade NN+NNP+NNP 11

amend VB 10
CPAssign NNP+NN 10
GetTrade VB+NNP 9
services NNS 9

TradeIdQuery NNP+NN+NNP 8
TimeTradeDate NNP+NNP+NN 6

mirrorTradeResponse VBP+NNP+NNP 4
GetCreditDefaultSwap VB+NNP+NNP+NNP 4

targetNamespace VBP+NNP 3
mature VBP 3

summitTradeId NN+NNP+NN 3
encodingStyle VBG+NN 2

Using VBG 2
UsingPolicy wsdl VBG+NNP+NN 1

UsingPolicy VBG+NNP 1
using security policy VBG+NN+NN 1

GetTradeAuditHistory VB+NNP+NNP+NN 1
address location VB+NN 1

ServiceName Name NNP+NN+NN 1
schema xmlns NN+NNS 1

operation soapAction NN+NN+NNP 1
Total Matches 29 Total No. of patterns = 29 Sum = 383

Auhood Alfaries 105 of 189

Table 5-5: Web Service 2 Pattern Extraction Model

Sample Pattern Matches Pattern Frequency

body NN 39
Action NNP 10

body namespace NN+NN 9
definitions NNS 5
EnginePort NNP+NNP 3
portType NN+NNP 3
encoding VBG 2

Type name NNP+NN 2
doRequestResponse VBP+NNP+NNP 1

doRequest VBP+NNP 1
do VBP 1

encodingStyle VBG+NN 1
address location VB+NN 1

address VB 1
definitions xmlns NNS+NNS 1

MatchingEnginePort NNP+NNP+NNP 1
part xmlns NN+NNS 1

portType name NN+NNP+NN 1
Total Matches = 18 Total No. of patterns = 18 Sum = 83

Auhood Alfaries 106 of 189

Table 5-6: Web Service 3 Pattern Extraction Model

Sample Pattern Matches Pattern Frequency
solservice NN 100

Upload NNP 93
EntityType NNP+NNP 61

NameCredit NN+NNP 53
UploadCurveException NNP+NNP+NNP 46

BloombergId NNP+NN 41
CouponDate NN+NN 34

defaultObligationName NN+NNP+NN 16
NameCreditCurve NN+NNP+NNP 16
CreditCurveName NNP+NNP+NN 13

BloombergIdResponse NNP+NN+NNP 12
obligations NNS 11

approvePortfolio VB+NNP 5
approveBasketCreditCurve VB+NNP+NNP+NNP 5

owning VBG 5
schema targetNamespace NN+NN+NNP 4

approveBasketCredit VB+NNP+NNP 4
owningTrader VBG+NNP 4

ObligationsDescribors NNS+NNP 3
approve VB 3

pendingCurvesRequest VBG+NNP+NNP 3
eportingGroupName NNP+NN 2

REDPairId NNP+NN+NN 2
docsEntityType NNS+NNP+NNP 2

SettleDate VB+NN 2
pendingRefEntitiesRequest VBG+NNP+NNP+NNP 2

useParagonRatings NN+NNP+NNS 1
ParagonRatings NNP+NNS 1

approveSingleName VB+NNP+NN 1
approveSingleNameCredit VB+NNP+NN+NNP 1

target VBP 1
targetNamespace VBP+NNP 1

Total Matches =32 Total No. of patterns
= 32 Sum=548

After analyzing each of the Web Services a Third step is undertaken, generalizing

patterns over the sample Web Services by deriving the average relative frequency of

each pattern across the three Web Services. Pattern frequency is used to ensure the

discovery of as many instances of a relation. Due to the varying size and nature of the

Web Services, a relative frequency is identified for the three Web Services for the most

frequent patterns.

Auhood Alfaries 107 of 189

Table 5-7: Relative Frequency of SIP Across Three Web Services

 Frequency Relative-Frequency

WS1 WS2 WS3 Pattern
 WS1 WS2 WS3

Freq./229 Freq./25 Freq./33
5

NNP+NNP 63 3 61 27.51% 12.00% 18.21%
NN+NNP 19 3 53 8.30% 12.00% 15.82%

NNP+NNP+NNP 47 N/A 46 20.52% N/A 13.73%

NNP+NN 10 2 41 4.37% 8.00% 12.24%

NN+NN 16 9 34 6.99% 36.00% 10.15%

NN+NNP+NN 0 N/A 16 N/A N/A 4.78%

NN+NNP+NNP 11 N/A 16 4.80% N/A 4.78%

NNP+NNP+NN 6 N/A 13 2.62% N/A 3.88%

NNP+NN+NNP 8 N/A 12 3.49% N/A 3.58%

VB+NNP 9 N/A 5 3.93% N/A 1.49%

VB+NNP+NNP 16 N/A N/A 6.99% N/A N/A

VBP+NNP+NNP 4 N/A N/A 1.75% N/A N/A

VB+NNP+NNP+NNP 4 N/A 5 1.75% N/A 1.49%

Table 5-7 summarizes the relative frequency. Due to the specificity of the financial

domain and to ensure coverage and generality of the SIP the following criteria are

adopted:

• The top 10 frequently occurring patterns are chosen.

• Patterns that occur only once are ignored.

• Patterns that represent a single term are eliminated since they only represent

concepts not relationships.

To select the top 10 frequent patterns, the relative pattern frequency is calculated across

the three Web Services according to the formula:

Auhood Alfaries 108 of 189

Relative Pattern Frequency = , where PO is the number of occurrences of a pattern

and TP is the total number of all patterns excluding the one-term pattern. Applying this

formula has resulted in generating a relative pattern frequency as illustrated in Table 5-7.

From this table the top patterns can then be selected for TR development as detailed in

the next step. This will ensure that the patterns selected lead to relation extraction based

on frequency analysis.

5.4.2 Transformation Rule Development

A particular ontological relation can be automatically extracted using the previously

identified patterns to represent a particular relation. The output of the previous pattern

extraction phase is analyzed and relations for each pattern are identified by the

researcher and validated by a domain expert. For this process, a pattern relation

identification model is generated for each of the patterns as exemplified in Table 5-8.

Deciding a suitable transformation rule for each pattern is critical. Transformation rules

are the result of implementing appropriate codified mappings between the pattern and

the ontological relation/element that can be extracted. To ensure accuracy of the

transformation rules, an automated extraction process is followed.

Table 5-8: Pattern Relation-Identification Model

Pattern Matches Relation Pattern Total
Matches

portType name
ieldCurveId

efEntityName
currencyISOCode
issuerLegalName

guarantorLegalName
couponCurrencyName

couponFreqName
couponAccrualDate
industrySectorName

industrySectorId
parentLegalName

refEntityId
defaultObligationName

defaultObligationId
ratingTierId

NN Has-A
(NNP+NN)

NN+NNP+NN

16

This process involves identifying specific relations and finding patterns that indicate its

existence. The research targets the two popular ontological relations has-A and

Auhood Alfaries 109 of 189

subClass-of. Here taxonomic relations are identified as subclass relations,

representing the taxonomic layer of ontology models. Non-taxonomic relations are

relations that are used to represent a relation between two concepts, where one is the

domain and the other is the range (Cimiano, 2007, p.10). For the purpose of fully

automating the extraction process, a decision was made to identify those relations with

has-A relations and to associate the domain and range with the relation name.

There are some cases where more than one relation may apply, thus requiring a decision

by the researcher as to the best fit for the patterns. For example, “CreditCurve” is a

match for a pattern of type NNP-NNP, where both cases of relation may apply. The

decision as to best fit was made based on the work of Hearst (1992) on pattern discovery

criteria: that is, to choose the relation that covers most of the matches of a single pattern.

So for the case above, although both relations are valid, the one that most accurately

represents most matches is subclass (see Table 5-9).

Table 5-9: Sample Pattern-Relation Identification Model

Sample Matches Possible Relation Pattern
CreditCurve subClass
EntityRequest subClass/has-A
EntitiesResponse subClass/has-A
ApprovalException subClass
PendingEntity subClass
PortfolioCredit subClass
IndexCredit subClass
ApproveBasket subClass
PendingCurves subClass
ApprovePortfolio subClass
ApproveSingle subClass
ApproveIndex subClass
CurvesType has-A

NNP+NNP

A number of patterns are found to have conflicting relations for the matches they

represent. In some of these cases the conflicting terms are found to be non-domain terms

- typically these words are found to be Web Services keywords such as Request or

Response (e.g. “EntityRequest”) that matches the pattern NNP-NNP. Therefore,

some form of filtering is required to deal with this issue. For these cases, conflicting

relations for a single pattern are encountered, in which it is found that it most likely that

Auhood Alfaries 110 of 189

the match will be covered by a more complex pattern, for example, “CurveUpload” is

matched by 2 patterns - NNP-NNP, NNP-NNP-NNP in “CreditCurveUpload”. This

can be dealt with by processing the complex patterns first in order to ensure that these

concepts will be created according to the more appropriate rule (i.e. more complex

pattern). In order to apply these criteria for each of the three Web Services the following

transformation rules are identified. Ontological relations are manually identified by the

researcher and validated by a domain expert. The implemented transformation rules are

summarized in Table 5-10.

Table 5-10: Summarized Transformation Rules

Rule Pattern Relation Sample OWL Construct

R1 NN+NN Has-a CouponDate Coupon has-a Date

R2 NN+NNP+NN Has-a issuerLegalName Issuer has-a LegalName

R3 NNP+NNP+NNP Has-a BasketCreditCurve Basket has-a
CreditCurve

R4 NNP+NNP subClass CreditCurve CreditCurve SubClassof
Curve

5.4.3 Ontology Building

Now that concepts and relations have been identified, it is possible to produce an explicit

representation in ontological form. Ontology building is undertaken by implementing a

GATE pipeline (see Figure 5-5) consisting of a sequence of JAPE transducers that apply

a pattern-based matching algorithm to find and annotate concepts and relations, and then

create the appropriate OWL construct accordingly. A JAPE transducer is created for

each rule and another is created for each TR in the order illustrated in Figure 5-5. First a

JAPE transducer implements the first rule (R1), as illustrated in Figure 5-6, and finds

and annotates the pattern NN-NN with the appropriate tag. In this JAPE rule, domain

and range concepts are annotated as such and a has-A rule is created. Then, a second

JAPE Transducer performs the associated transformation rule, (see Figure 5-7) then

finds that where the object property is created to represent the has-A relation that two

OWL concepts are created, if they do not already exist, which are then associated with

the newly created relation, thereby resulting in an OWL ontology model to be produced

accordingly. See Appendix A for the remaining JAPE files.

Auhood Alfaries 111 of 189

Figure 5-5: Application Pipeline Processing Steps

Figure 5-6: JAPE Rule 1

JAPE Transformation Rule1

Rule: TransRule1

({RelationIden}):relationIden

 -->

:relationIden{Annotation theInstance =
(Annotation)relationIdenAnnots.iterator().next();

 String kind = theInstance.getFeatures().get("domain").toString();

 gate.creole.ontology.OURI classURI =

ontology.createOURI("http://example.com/classes#" + kind);

 gate.creole.ontology.OClass oClass = ontology.addOClass(classURI);}

 Figure 5-7: JAPE Transformation Rule 1

JAPE Rule 1

{({Token.kind==word,Token.category == NN}):domain

({Token.kind==word,Token.category == NN}):range

):hasA

 -->

:hasA.RelationIden={domain=:domain.Token.string,range=:range.Token.string,relati
on=

"hasA-Rule1"},

:domain.Domain = {rule="Rule1 C1has-aC2"},

:range.Range = {rule="Rule1 C1has-aC2"}

Auhood Alfaries 112 of 189

The output produced in this phase is an OWL ontology consisting of concepts and

taxonomic relations (subClass) between class and subclass concepts. Non-taxonomic

relations (has-A) are also created between domain and range concepts using the GATE

Ontology API. A sample snapshot, as presented in Figure 5-8, is visualised using

Protégé 4.1, where straight arrow lines are used to symbolize taxonomic relations

between concepts and dotted arrow lines correspond to the has-A relation between

domain and range concepts

Figure 5-8: A Sample of the Learned Domain Ontology Model

5.5 Evaluation

An instantiation of the framework was developed using the GATE GUI as a prototype

tool that enabled live evaluation of SOLF on the real set of Web Services (as presented

in Section 4.5.1).

5.5.1 SIP Extraction Process Evaluation

The evaluation is carried out to evaluate the generality of the produced patterns. Clearly,

the frequency of the patterns and their being apparent in all three Web Services implies

generality. Due to the different nature and complexity of the chosen Web Services and

each being from the same domain, this fact ensures that if a pattern appears at the top of

the list of each Web Service then it should be a generic pattern in other Web Services.

The Domain expert and ontology engineers are involved in this process to assist in the

Auhood Alfaries 113 of 189

pattern extraction process and to evaluate the results of relation identification for each

pattern in the TR step.

The SIP Patterns are evaluated for their coverage and preciseness, to ensure that the

patterns cover all available terms in the corpus. The output produced from step1, as

discussed in Section 5.4.1, produces all possible phrases from the data source, and by

comparing that output with the output extracted using the identified patterns from step 1

should lead to the missing unidentified phrases that are available in the corpus. The

Domain expert and the ontology engineer are used to validate the patterns and the

extraction process thereby ensuring accuracy of the patterns. Applying the Brill tagger

(offered by GATE) enabled a fully automatic tagging of tokens leading to accurate

extraction. Although some inaccuracy occurred due to the fact that this POS tagger

usually uses context information to detect the POS of a word, here only compound terms

are identified as nouns and some nouns are identified as verbs. These are rare cases

detected by the domain expert during validation, e.g. as in targetNamespace where

target is tagged as a verb rather than as a noun. In such cases a minor error rate is

expected, as the POS tagger applied is an off-the-shelf one that is mainly developed for

textual sources.

5.5.2 Precision and Recall Evaluation Measures

As noted in Chapter 3, metrics for evaluating the learned ontology for its coverage and

accuracy are borrowed from the IE field. These metrics are typically applied to evaluate

automatically extracted information in comparison with manual extraction (Van

Rijsbergen, 1979). Recall is used to measure the number of correctly identified concepts

by the system for example, if 10 concepts are identified manually in the corpus and the

system has automatically identified 7 of these 10 then 70% would be the recall figure.

An ideal benchmark scenario for recall calculation is to use either a gold standard

ontology (existing ontology) or a domain expert to extract concepts and relations

manually from the input sources upfront (pre-create an ontology). Evaluation using a

gold standard and automatically produced ontology can be misleading however (Sabou,

2005). Typically, an exact match is employed to compare and produce the results as a

binary decision of correctness. When attempting a complex business area (such as that

found in global banking) it is not possible to deploy a domain expert on all input sources.

Auhood Alfaries 114 of 189

This is due in part to the size of the input sources (in this case three software artefact

files consisting of over 1200 lines of code). It is feasible, however, to utilize domain

expert knowledge to evaluate concepts and relations produced by SOLF. Therefore, a

hybrid approach has been adopted in order to better account for the domain complexity

and availability of evaluative artefacts. The domain expert participates in evaluating the

extracted concepts and relations, combined with a similarity-based evaluation for

calculating the recall metric, between Reference (manually extracted concepts) and

Response (the output of SOLF) the reference ontology is one that was produced

manually for the same Web Services by previous work (Bell, Ludwig & Lycett, 2007).

It is noted that only four patterns are implemented due to time restrictions, which has

limited the coverage of the produced model to cover fewer domain concepts than there

are available. Consequently, it would only be reasonable to compare the learned

ontology with a similar ontology covering the same part of the input sources. Therefore,

the reference ontology is used to calculate pattern recall rather than a general recall. The

evaluation here is designed to create the domain ontology in an incremental iterative

manner. First, an ontology is created by executing the first pattern then the recall of this

is calculated forming the first pattern recall. A second run is to incorporate the second

pattern extraction to the first ontology and again the recall for the first and second

pattern is calculated and so on. Adding one pattern extraction at a time, and calculating

the recall each time a new pattern is added leads to evaluate how recall increases, as

more patterns are included in the extraction process.

Table 5-11: Pattern Recall Summary

Patterns Recall

Pattern 1 4.8%

Pattern 1&2 9.1%

Pattern 1,2&3 20.6%

Pattern 1,2,3&4 30.3%

Auhood Alfaries 115 of 189

Figure 5-9: Pattern Recall Chart

Pattern recall is used to measure the number of concepts extracted from the corpus using

the 4 patterns described earlier. Unsurprisingly, it is clear from the results presented in

Figure 5-9 and Table 5-11 that recall increased as more patterns are added to the

extraction process. Pattern 1 extracted 4.8% of the correct concepts, Pattern 2 increased

the number of correct concepts to 9.1%, Pattern 3 further increased the number of

concepts to 20.6% and lastly Pattern 4 reached 30.3% of correct domain concepts. It is

clearly evident that Patterns 3 and 4 produced more concepts than Patterns 1 and 2; this

could be related to the fact that patterns for implementation are randomly chosen for

running the experiment on the four implemented rules. An interesting observation is that

patterns that generate high recall might not necessarily generate high precision, and vice

versa. In examining pattern recall and precision, it is clear that pattern-based ontology-

learning leads to higher precision and lower recall. It is likely that the results would

improve by implementing additional patterns to increase overall recall. It should be

noted, however, that this research has targeted higher frequency patterns. More

complex, less frequent patterns may yield some interesting results, i.e increased

precision.

Auhood Alfaries 116 of 189

Table 5-12: Summarized Results for Precision

 Domain Range SuperClass SubClass

Total
Concepts

55 67 39 56

Correct
Concepts

43 41 20 37

Precision
%

78.18 61.19 51.28 66.07

Figure 5-10: Concept-Relation Precision Chart

The results produced for this purpose are a list of domain and range concepts that

represent has-A relations and a further list of super-class and sub-class relations. The

domain expert then scored each list to represent domain, range, super- and sub- classes,

identifying the correct and incorrect concepts in each list. See Table 5-12 and Figure 5-

10 for the summarized results (See Appendix D for full list of scored concepts).

Running the prototype application over the three Web Services also revealed some

insights regarding eliminating some of the spurious matches that might lead to WSDL

related terms rather than domain terms. For example, the extracted pattern NN-NN was

Auhood Alfaries 117 of 189

produced as a result of <wsdl:part name="amendTradeRequest"...> - part

name being detected. These WSDL specific concepts were discarded.

5.5.3 Qualitative Evaluation

A qualitative evaluation for OL (Sabou, 2005) is one that assesses the sufficiency of

ontology as a conceptualization of a certain domain. In addition to the quantitative

evaluation, several interesting insights have arisen from deriving and executing the

pattern extraction process (and subsequently confirmed by a domain expert during the

quantitative evaluation). Due to the complex nature and complexity of the chosen Web

Services and the domain in which they reside, commonality in domain terminology

ensures that if a pattern appears popular in each Web Service then it is likely to be a

generic pattern in other Web Services. The systematic way in which patterns were

derived ensures an ongoing evaluative process. The frequency of each pattern with

distinct Web Services also indicates a measure of generality.

The extraction process was an iterative evaluative process in its formation from

undertaking the process steps. Patterns are evaluated for their coverage and preciseness

as they are identified, in order to balance between specificity and coverage of patterns.

ANNIC has enabled the testing and assessment of pattern coverage almost

instantaneously (allowing micro-level tests to drive process adaption). To ensure the

patterns cover all available relations in the corpus, the output produced from initial

queries produces all possible phrases from the data sources. Comparing this output with

the output extracted using the identified patterns has lead to the identification of missing

phrases that are available within the corpus.

The precision of concept extraction achieved here (78%) is considered promising when

compared to the results of Sabou (2005), who achieved up to 54% extractable concepts

from service description in Javadoc files. It would seem natural, however, to combine

methods in a complementary manner - both the methods themselves and the source

software artefacts (WSDL, Javadoc, Schema etc.). It is claimed that pattern-based

extraction approaches typically achieve low recall and higher precision (Cimiano et al.,

2005). The approach presented here has the potential to overcome the low recall

drawback due to the fact that patterns are automatically extracted by applying frequency

analysis to ensure patterns with higher frequency are used for relation extraction.

Auhood Alfaries 118 of 189

5.6 Specifying the Learning
The learning outcome of this iteration is as follows:

It is observed that patterns that appeared with high frequency in large WSDL files (i.e.

those that did not have an accompanying XSD) did not appear at all in other Web

Services, which raises an important question about the effect of the type and size of the

WSDL on the pattern extraction process (weighting of patterns), and more specifically

on the correlation between frequency/popularity and precision. This can be addressed by

applying the extracted patterns on another set of Web Services (including different types

of WSDL and including XSD files). Investigating the effect of the WSDL file size and

style on the pattern extraction process is therefore and important area to investigate.

The existence of one pattern as part of another more complex pattern, i.e. NNP-NNP is

part of NNP-NNP-NNP, which might lead to having to make a choice as to which one is

more appropriate. Hence, the observation in TR development, that when a pattern

contradicts a relation suitable for other matches of the same pattern, leads to the fact that

the pattern either consists of WSDL keywords rather than domain concept, or the fact

that the pattern is part of another more complex pattern.

In order to take this research forward, the following issues initiates a new Design

Research iteration:

 The generality of the extracted SIP patterns and TRs across different domain needs

further examination. i.e. test the applicability of SOLF and the extracted patterns

from Iteration 2 on different domains using a sample set of Web Services.

 More complex patterns need to be included. In this iteration only up to 3-term

patterns were extracted. It is established that in more complex services patterns of up

to 11 terms exist. Complex patterns have less frequency and might therefore reveal

more important/specific relations. Including more complex patterns, as part of the

learning process might enable wider coverage of relations and concepts.

 The possibility of generalizing existing patterns needs further investigation, i.e. NN,

NNP and NNS are all different types of nouns. Is it possible to include these under the

one category of type NOUN? - i.e. will the same patterns give the same results?

Auhood Alfaries 119 of 189

 Identifying more domain specific relations needs further analyses and investigation.

Relations identified are: subclass and has-A relations. Is it possible to define

patterns that will lead to more specific relations? Will more complex patterns lead to

more specific relations?

 The ability to incorporate WSDL structure with SOLF, to identifying and add new

domain specific relations needs to be tested. Is it possible to use the WSDL structure

to lead to other relations?, e.g. to attribute the relation has-A between complex

types and sub-elements.

5.7 Summary

The work here presents a Service Ontology Learning Framework (SOLF), the core

aspect of which extracts Structured Interpretation Patterns (SIP). These patterns are used

to automate the acquisition of ontological concepts and the relations between those

concepts. Identifying patterns is an important step that requires rigour, and the use of the

framework ensures accuracy, generality and coverage of SIP. Three real-world Web

Services from global banking systems were used for pattern extraction and rule

development as the means to evaluate the framework. The output of the SOLF process is

an automatically generated OWL domain ontology, which presents a number of financial

domain concepts extracted from the Web Services.

It can be seen that the automatically learned ontology, moves beyond basic taxonomy –

extracting and relating concepts at a number of levels. Evaluation of applying SOLF of

the set of services used for pattern extraction raised a number of issues that direct further

improvements. More importantly, the precision achieved by the Domain expert

evaluation directs the next framework improvement towards testing the generality of the

extracted SIP and TRs across other domains. This requires a applying a more rigorous

independent evaluation measures to prove the generality and effectiveness of SOLF.

Auhood Alfaries 120 of 189

CHAPTER 6 - ITERATION 3

6.1 Introduction

Automatically extracting domain specific non-taxonomic relations is one of the

challenging tasks of OL (Weichselbraun, Wohlgenannt & Scharl, 2010; Snow, Jurafsky

& Ng, 2006; Manine, Alponse & Bessières, P, 2008). The results achieved in the last

iteration from applying the SOLF framework on the sample set of financial Web

Services further developed a SOLF tool, a set of SIP patterns and transformation rules

that can be applied to extract taxonomic and non-taxonomic relations. The automatically

extracted SIP patterns from WSDL files of the sample set of services. This chapter aims

at proving SOLF and generalizing the SIP patterns and the transformation rules by

validating and evaluating their applicability across other domains. This involves a

thorough evaluation of the taxonomic and non-taxonomic relation extraction, requiring a

set of carefully selected Web Services with gold standard ontology specifically built for

those services. The literature, as discussed in Chapter 3 presents theoretical definitions

for performing non-taxonomic evaluation measures, such as the taxonomic and non-

taxonomic overlap, but lacks the illustration of how these measures can be practically

applied (Velardi et al., 2005; Cimiano, 2007; Dellschaft & Staab, 2008). This iteration

contributes a detailed practical evaluation addressing the different layers of ontology.

The chapter is structured as follows. Section 6.2 presents how Design Research is

applied to execute this iteration as two evaluative mini iterations. Section 6.3 describes

the first mini iteration that applies a gold standard based evaluation on the dataset. A

refined and extended SOLF is presented that incorporates new relations extraction

technique. Then evaluation measures are applied to evaluate different aspects of the

ontology models. Section 6.4 presents the domain expert evaluation of the learned

models. The learning outcome of this iteration is discussed in section 6.5. Finally the

chapter summary is presented in Section 6.6.

Auhood Alfaries 121 of 189

6.2 Design Research and Output Artefacts

The learning outcome of Chapter 5 has directed the SOLF improvement in this iteration

towards proving its efficiency across other domains. In essence providing the theoretical

ground for the research to illustrate how and why the approach proposed in the SOLF

can provide an efficient solution to the problem space. The application of SOLF on the

set of Web Services from which the patterns and transformation rules were extracted,

achieved the promising precision cover of up to 79% in the previous iteration.

Intuitively, in order to take this research to the next level, it is vital to validate the

generality of the SOLF tool and the developed SIP patterns by understanding how and

why they are applicable across other domains. This iteration aims at developing and

applying a more rigorous evaluation framework that satisfies OL evaluation criteria as

suggested by Dellschaft & Staab (2008). An iterative Design Research process is aimed

at developing a thorough evaluation of the research. As Ontology learning is considered

a recent research area where the knowledge base is still raw, the evaluation poses a

challenging task as the knowledge base lacks well-defined practical evaluation methods.

Therefore, Design Research iterative process forms a suitable method to expose and

develop a practical and thorough evaluation method. The process executed here involves

two mini Design Research iterations. The purpose of this iteration as a whole is to

effectively utilize SOLF to learn domain ontology models from new sets of Web

Services. Evaluating the OL approach is achieved by applying rigorous evaluation

measures and methods from the knowledge base as presented in Chapter 3.

The first mini iteration executes a build and evaluate cycle suggesting new refinement to

the research artefacts (SOLF and patterns). Two sets of Web Services (Books and

Financial domains) are operated on by SOLF, producing two automatically built domain

models. The sets of services are accompanied by manually built gold standard ontology

(GSO). Those GSO models are developed specifically for the accompanying service by

other research projects (ISLAB and LSDIS). In both cases the GSO are built for the task

of service matching. A gold standard based evaluation method is applied to evaluate the

automatically built SOLF ontology (SOLFO). The evaluation criteria are to determine

the preciseness (accuracy) and coverage of the learned SOLF ontology at three different

levels; (1) Lexical Layer, (2) Taxonomic layer and (3) Non-taxonomic layer. The

evaluation metrics of precision and recall are again applied. Precision and recall metrics

Auhood Alfaries 122 of 189

are applied to evaluate each of the three layers of the SOLFO model. For example

lexical precision is implemented to evaluate the accuracy of the lexical layer of SOLFO

as detailed in the following section. As there is no clearly defined practical way of

calculating those measures this iteration makes another Design Research contribution in

the form of an evaluation model for the Non-taxonomic relation evaluation.

Figure 6-1: Overall Design Research Iterations Framework

6.3 SOLF Refinement and Gold Standard Evaluation

A preliminary analysis of applying the SOLF on the new sets of services has identified

the need to extend it to adopt relations embedded in the WSDL structure. Hence, the first

improvement to SOLF would be to allow for amending the pattern extraction and

transformation rules to incorporate the WSDL structure. Hence, the final refined SOLF

is illustrated in Figure 6-2.

Auhood Alfaries 123 of 189

Figure 6-2: Service Ontology Learning Framework

The new improved steps are discussed in more detail in the next subsections, where the

first improvement is to improve the validate ontology step and refine the patterns step to

allow new patterns to be developed and added as required and as decided by the domain

engineer. The second improvement is to employ an ontology pruning step allowing

domain expert interaction to improve and finalize the ontology. The final refined

framework can be summarized in five main phases, as illustrated in Table 6-1. The table

presents a formal definition of the output of each phase.

Auhood Alfaries 124 of 189

Table 6-1: Formal Definition of SOLF Output Phases

6.3.1 Validate Ontology and Amend Patterns

Incorporating ‘validate and amend’ step in SOLF enables going back to pattern

extraction step to add new patterns. The pipeline can be regenerated to incorporate new

patterns and rules to extract new concepts and relations and add them to the ontology

model. This step is necessary to allow for the flexibility of the framework and enable the

ontology engineer to go back to the pattern extraction phase to add new patterns and

create new TR. Adding this step after the ontology building allows the developer to

validate the ontology first and consider adding new patterns or removing rules if

necessary.

6.3.2 Incorporating WSDL Structure in SOLF

An initial pattern analysis was performed using the ANNIC GATE plugin to get an

insight into discovering links between the patterns and structure. The WSDL structure is

therefore analysed to discover new relations. The obvious pattern structure is the

complex type structure, which might reveal an object property relation linking domain

and range concepts with a has-A relation. This resulted in the identification of new

patterns and creation of the necessary JAPE code to identify and create the has-A

Auhood Alfaries 125 of 189

relation as an OWL object property. The new relation links complex types and their

inner elements, e.g. MarketNews and Time as illustrated in Figure 6-3. In some Web

Services where complex patterns are used less frequently, the WSDL structure, between

the complex type name and the sequence elements, revealed an important relation

addition to SIP extractions.

Figure 6-3: Financial WSDL Code Sample

The adding of JAPE transducers to implement patterns to map the complex type

structural aspects of WSDL is implemented as an important extension of the relation

extraction phase. This involves creating new constructs to parse the WSDL files and

annotate complex types and attributes as Domain and Range concepts. This is achieved

by adding the necessary JAPE rules to the SOLF tool. The first JAPE rule is designed to

first parse the WSDL files and identify the name attribute in the complex type tag as the

domain concept, and then identify the inner elements name as the range of the relation.

The JAPE rules added to SOLF tool are illustrated in Figure 6-4.

Auhood Alfaries 126 of 189

Figure 6-4: Sample Complex Relation JAPE Rule

Another JAPE rule is added to perform the transformation from the complex type

(WSDL structure) in order to formulate an owl object property representing the has-A

relation between the complex type name attribute and the inner elements. The developed

rule is presented in Figure 6-5.

Auhood Alfaries 127 of 189

Figure 6-5: Complex Relation Transformation Rule

Auhood Alfaries 128 of 189

A sample ontology model is automatically built, as illustrated in Figure 6-6, using

SOLF. The model illustrates the integration achieved by the improved framework; SOLF

integrates the SIP pattern based extraction techniques and structural techniques,

revealing valuable structural additions between the domain concepts. Here, ontology

engineers can benefit from the variety of automatically extracted relations from the

structured WS artifacts, where both taxonomic and non-taxonomic relations are

automatically extracted and added to the domain ontology representing the underlying

Web Services. Here, as the diagram illustrates, the concept News and its subclasses

StockNews and MarketNews are successfully extracted using SIP patterns.

Extending SOLF to cater for the structural aspect of WSDL and XSD resulted in new

object properties (has-A) being added to the ontology model. These additions are

illustrated by the new dotted arrows linking MarketNews to new concepts like

Source, Time and Headline. Another interesting observation from the sample

produced in Figure 6-6, is that new concepts are revealed that are domain specific and

subject to deep domain expert understanding of the underlying domain. For example,

High is a domain concept in the financial domain that represent different types of

subclasses. The concept and its subclasses, such as DayHigh and WeekHigh, are

automatically learned by SOLF.

Figure 6-6: Sample SOLF Ontology model (Group 2)

Auhood Alfaries 129 of 189

6.3.3 Ontology Pruning

Validation of the learned model requires the expertise of both domain experts and

ontology engineers. The process presents an initial domain ontology model consisting of

both lexical and structural layers to the domain expert for manual validation.

Importantly, this phase enables the expert feedback to direct the restructuring of the

pipeline by the ontology engineer where necessary. An Ontology Pruning step is needed

to allow the ontology engineers to filter out any irrelevant concepts or relations. Domain

experts can apply this step in either a strict or lenient manner. The pruning strategy

applied here is a strategy that eliminates concepts that are not domain specific, such as

Web Service keywords or XML tags. It is noted by the domain expert that there are

duplication in concepts. Where these concepts differ only spelling or abbreviation. These

concepts can only be removed if the domain expert decides that they refer to the same

concept. A basic pruning step would include eliminating the duplicate concepts that vary

in case letters, such as Publisher and publisher. It is important that the pruning step is

carefully executed in order to allow the domain expert to learn synonyms and concept

extensions during the pruning step.

6.3.4 Experimental Data and Evaluation

The evaluation of the first mini-iteration is to measure the learned model for accuracy

and coverage of the underlying domain. The evaluation of this iteration follows a gold

standard based evaluation method as noted in Section 6.2. This type of evaluation is

typically based on performing a manual comparison between the learned ontology

(SOLFO) and the gold standard ontology (GSO) (Dellschaft & Staab, 2008). The

evaluation is performed at three different layers, as applied and detailed in the next

subsections. The measures applied here are carefully designed to be independent of each

other, based on Dellschaft & Staab (2008) suggested evaluation criteria.

Auhood Alfaries 130 of 189

Figure 6-7: Sample of the Financial Learned Ontology (SOLFO)

An ideal scenario in which to perform the experiment is to be able to find real sets of

services with accompanying Gold standards ontology models built specifically to

represent the services. Since ontology development is still a difficult and expensive task

these sets are not widely available. Two sets of services from different domains (Books

and Financial) are used for this experiment because they were made available by

previous research. Each set consists of 5 Web Services and a gold standard ontology

model built for those Web Services. The steps followed to prepare the data for the

evaluation are:

 Create a corpus consisting of 5 Web Services in GATE

 Run the SOLF application with the existing SIP and TRs produced from the previous

iteration. (Here, use original pipeline first, then add the complex relation JAPE files)

 Save the automatically learned ontology by the system as an owl file.

 Create a table that consists of two columns, representing the Gold standard ontology

(GSO) and the SOLF ontology (SOLFO) respectively. This step ensures a practical

way of managing the evaluation of the different layers of the ontology model.

Auhood Alfaries 131 of 189

The first data set (Group1) represents 5 Books Services and an accompanying GSO the

sample set of services and the ontology are provided in Appendix C. The second data set

(Group 2) represents 5 stock exchange financial services and an accompanying ontology,

again as a GSO (see Appendix C for the set of web financial services and the GSO). It is

clearly indicated in the literature that two ontologies can be compared at three different

levels: (1) lexical layer evaluation, (2) taxonomic relation evaluation and (3) non-

taxonomic evaluation. The first is used to determine the similarity of the two ontologies

at the lexicon level (concepts). The second and third are used to determine the structural

similarity of the two ontologies. In the following section precision and recall are used to

indicate the accuracy and coverage of the learned ontology (SOLFO) by comparing it to

the gold standard ontology (GSO).

Generally, the precision and recall metrics are used to measure the performance of the

OL approach, where precision is used to judge the accuracy of the learned ontology

model and recall is used to judge the coverage of the domain by the learned ontology

model as there is no exact method or guidelines for how to actually calculate those

measures. The suggested method by Dellschaft & Staab (2008) is that the gold standard

based evaluation is the ideal scenario. In the next subsections the GSO is used as a

benchmark for scoring the accuracy of concepts and relations.

6.3.5 Domain Coverage - Lexical Layer

SOLF performance is determined by evaluating the domain coverage of the lexical layer.

The lexical precision (LP) and lexical recall (LR) are calculated according to the

following definition as adopted from Dellschaft & Staab (2008):

 (1)

Where O is an ontology, C is the set of concepts, SOLFO is the ontology learned by

SOLF and GSO is the gold standard ontology.

 (2)

Auhood Alfaries 132 of 189

The F1 measure is normally used to give a summarized value of precision and recall.

 (3)

The comparison is carried out manually as the sample evaluation model illustrates in

Figure 6-8. This model is used to identify correct, incorrect and total number of concepts

in each model. Then the precision and recall are produced accordingly. The model is

used to manually analyse each concept in the learned ontology against its existence in

the Gold Standard Ontology (GSO). As the figure illustrates, the first and second

columns represent the list of pruned SOLFO concepts. The third column represents the

set of concepts from the GSO. Here, it is important to understand that the lexical layer

represents the set of all concepts of an ontology, including super and subclasses

regardless of their position in the concept hierarchy. For illustration purposes the

subclass concepts are right justified in each column.

Auhood Alfaries 133 of 189

Applying the LP and LR, as defined in formula (1) - (3), on the sets of Web Services

chosen for the experiment, produced the results that are summarized in Table 6-2 (See

appendix D for evaluation sheets). The results illustrate a lexical precision of 37% and

lexical recall of 57% for the group 1 (Books) Web Services. The results are much

improved for the group 2 (Financial) Web Services. As with prior iterations, it is

possible that this is an indication that implementing more patterns would yield higher

recall.

Figure 6-8: Sample of Lexical Layer Evaluation Model

Auhood Alfaries 134 of 189

The low precision can be clearly justified by a number of reasons:

More concepts appear in the SOLFO than the GSO, highlighting the question of whether

the GSO has all of the possible domain concepts, i.e. there could be several concepts that

are correct but not counted as such, because they do not exist in the GSO. It can be clear

that the SOLFO has brought new concepts from the input sources that were not present

in the GSO. These new concepts could be important new additions that have been

missed by the GSO. For example in the book services data set, LoginName and

Customeraccount are concepts that exist only in SOLFO (See Figure 6-8 shown

highlighted in blue text). Nevertheless they appear to be valid domain concepts.

Therefore, another method of evaluation may be viable to judge the accuracy of those

concepts, which might result in an increased precision value.

Some concepts that appear in SOLFO can lead to service functionality or functional

hierarchy as addressed by other research (Sabou, 2005) such as DoKeywordSearch or

GetBookInfor. This is clearly not the aim of the learning algorithm proposed here,

which is to build a domain ontology rather than a service functionality ontology.

Nonetheless this observation can lead to further research in that direction.

The researcher performed the pruning step superficially to the best of their domain

knowledge, i.e. pruning only trivial non domain concepts or duplications which differ in

spelling. A stricter pruning step can lead to higher precision. The results of how pruning

can increase precision are clearly shown in other research, as in Sabou (2005).

Significantly, the aim of SOLF is to semi automate the ontology development process

for Web Services, where it can be used as a plugin tool by ontology engineers or domain

experts (Buitelaar, Cimiano & Magnini, 2007). This highlights the importance of a

domain coverage evaluation and a domain expert evaluation in order to judge and

validate the newly extracted concepts by SOLF. It is important, at this point, to

remember that only partial rules were implemented for the purpose of implementing the

SOLF tool. Therefore, it would be pertinent to implement and test other rules in the

future, as this might lead to higher recall.

Auhood Alfaries 135 of 189

It is interesting to compare our results with other OL approaches. Where Rule-based OL

normally leads to higher precision and lower recall as shown by Sabou (2005), here the

SOLF has managed to achieve a higher recall. This leads to the important observation

that the SIP extraction process yielded a higher pattern recall performance, which is of

particular relevance for domain engineers when building ontologies for Web Services by

using existing legacy systems and software artefacts (Buitelaar, Cimiano & Magnini,

2007), thereby proving the adequacy of SOLF to be embedded in an ontology

engineering process.

Table 6-2: Summarised Precision and Recall for Group 1 and Group 2

Group 1:

Books
Services

Group 2:

Financial Services

GSO Total Concepts 44 171

SOLFO Total Concepts 66 247

Lexical Precision (LP) 38% 43%

Lexical Recall (LR) 57% 63%

F1 Measure 45.45% 51.20%

It is important, therefore, to explore the nature of the Gold Standard Ontology (GSO).

The gold standard is developed to perform the task of service matching. Hence, here it is

used as a benchmark mainly for calculating the recall, which is not often possible for

domain experts to produce manually. Accordingly, applying the precision and recall

metrics by using the GSO can only give an accurate evaluative insight in regard to the

recall, whereas precision should be more accurate if produced by using the domain

expert scoring. The higher recall validates the SOLF in a way that demonstrates its

ability to automatically extract concepts.

6.3.6 Non Taxonomic Layer – Structural Evaluation

As indicated in Chapter 3, the non-taxonomic relations refer to semantic relations linking

domain and range concepts, usually mapped in OWL as an object properties. (NonT)

layer evaluation is not well defined in the literature. Although there exist some attempt

to define those measures based on precision and recall as non-taxonomic precision

Auhood Alfaries 136 of 189

(NonTP) and non-taxonomic recall (NonTR) (Dellschaft & Staab, 2008; Buitelaar,

Cimiano & Magnini, 2007), none of these actually illustrate how to calculate those

measures. The majority of the evaluation attempts perform only lexical layer evaluation

and omit the structural evaluation as in Sabou (2005). Therefore, this iteration

contributes in this area. Design Research is employed to develop a practical detailed

evaluation model that executes a gold standard based evaluation method, and shows the

detailed steps of how the results are calculated.

NonTP and NonTR are generally defined, as the intersection of the non-taxonomic

relations between the GSO and the SOLFO, as follows:

 (4)

where NonTP is the non-taxonomic precision and R is the set of non-taxonomic

relations.

 (5)

 where NonTR is the non-taxonomic recall.

Performing NonT relation evaluation is used to measure the structural aspects of the

learned model. It is found to be a significant and complicated procedure that needs to be

carefully designed and executed to ensure accurate evaluation. Since presenting

information is fundamental, therefore, comparing relations between SOLFO and GSO

was a difficult time consuming task and could not be easily performed without

presenting the information in a comparative visual model. Applying a trial and error

strategy resulted in developing an effective, easy to use evaluation model that allows

visual identification of overlapping relations. The evaluation here is designed to satisfy

Dellschaft & Staab’s (2008) evaluation criteria, that is to ensure that the influence of one

dimension of error doesn’t exceed one measure; i.e, the influence of the lexical precision

evaluation on taxonomic and non-taxonomic layers is minimized by combining different

evaluation methods, that is the measures should be applied to minimize the dependency

Auhood Alfaries 137 of 189

between lexical layer evaluation measure and the non-taxonomic evaluation. The

following criteria are applied when implementing the NonT evaluation model, as shown

in Figure 6-9:

 An evaluation model is developed that ensures the adequacy and accuracy in

calculating the global taxonomic precision. This is achieved by modelling the

local NonT intersection between the learned ontology and the gold standard

ontology using an evaluation model that allows visual interpretation of the local

and taxonomic overlap. The sample model is presented in Figure 6-9. As the

significance of this research lies in relation extraction, it is essential to

thoroughly evaluate this aspect of the learning approach.

 The local NonTP values are calculated so that the influence of the lexical

precision evaluation measure is minimized. Therefore the common set of

concepts is preferred over the learned ontology set of concepts

when determining the NonT relations overlap.

 The first column of the model represents the list of concepts in the learned

SOLFO. The header row represents a list of range only concepts. Generally, each

cell is divided into three sub-cells to represent the presence (indicated by 1) or

absence of a relation between the intersecting concepts Ci and Cj, where Ci

refers to the ith concept in the domain set and Cj refers to the jth concept in the

range set. The first sub cell of an intersection represents whether a relation exists

in the SOLFO, the second sub-cell represents whether the relation exist in the

GSO, and the third sub-cell is used to calculate the intersection, i.e the local

NonT overlap (highlighted in green in Figure 6-9). This model is used to

calculate the global NonT overlap as the sum of all NonT overlaps.

Auhood Alfaries 138 of 189

Figure 6-9: NonTP Evaluation Model

The model presents a measurable impact of people’s understanding allowing for visual

identification of where relations are condensed according to the GSO and SOLFO.

Where, consecutive one’s in a row shows that the relation exists in both models. Visual

deduction of precision and recall is possible.

The result for the NonTP and NonTR are calculated for the two sets of data using the

proposed evaluation model. The summarized results are presented in Table 6-3

illustrating similar precision of 49% and 50% for the two datasets respectively. A very

high recall is also achieved for the two datasets of 95% and 100%, which clearly

validates the completeness of the pattern extraction process in selecting higher frequency

patterns. The results achieved by the SOLF are encouraging when compared to other

work (40% relation precision achieved by (Ciminao, 2007 p. 138). The fact that only

some of the patterns are implemented could be an explanation for not achieving a higher

Auhood Alfaries 139 of 189

recall in the lexical layer evaluation. It is apparent from the recall evaluation results

produced in Chapter 5 and the results achieved here, that implementing more patterns

might increase the precision and recall dramatically.

It is important for this evaluation to consider the presence of other NonT relations, which

are not part of the GSO. Although some of these relations can be counted as correct, they

are not included here due to the fact that the evaluation method here is a gold standard

based evaluation. This clearly indicates that if the learned ontology does not reflect the

gold standard, it does not necessarily imply that the learned ontology is inaccurate, as

also noted by Sabou (2005). On the other hand, these new concepts and relations might

lead ontology engineers to identify important new relations to the domain. Therefore,

further evaluation requiring the domain expert to validate these relations, by scoring

each and every relation, is vital to calculate the precision of the ontology faithfully. The

precision values indicate that the SOLF proved to have a reasonably accurate relation

extraction rates as compared to other research, 20% and 40% for Sabou (2005) and

Cimiano (2007) respectively, thereby demonstrating that SOLF can effectively assist

domain engineers in the ontology development process.

Table 6-3: Summarized NonTP and NonTR Results

Group 1:
Books Web

Services

Group 2:
Financial Web

Services

GSO Total Non Taxonomic Relations 20 89

SOLFO Total Non Taxonomic
Relations 39 175

NonTP 49% 50%

NonTR 95% 100%

F1 Measure 64.5% 67.4%

6.3.7 Taxonomic Layer – Structural Evaluation

The taxonomic layer evaluation of the first group (Books WS) revealed no correlation

between the two taxonomies. Interestingly from the produced SOLFO model that there

exists a valid hierarchy in SOLFO that did not exist in the GSO. For example, subclasses

of String concept in GSO, such as Author and keyword, does not really correlate to

similar relation in SOLFO. Whereas clearly, there appears to be conflicts between what

Auhood Alfaries 140 of 189

is represented and the representation, due in large to the fact that the GSO was built to

perform the task of service matching, whereas the SOLFO model is built to

conceptualize the underlying domain more faithfully. Subsequently, performing a

taxonomic evaluation for the financial Web Services appeared to be an excessive

process. This indicates that there are obvious differences between the ontology models;

consequently, a more accurate precision evaluation measure would be to perform a

domain expert evaluation of the taxonomic layer to effectively determine the accuracy of

the taxonomic relation extraction.

6.4 Domain Expert Evaluation and SOLF Refinement

The GSO contains less non-taxonomic relations and fewer concepts. The learned

ontology contains more taxonomic and non-taxonomic relations. Therefore, calculating

the precision using the domain expert in scoring the correct relations would result in

higher precision, but recall would be impossible to calculate, since it would require the

domain expert to analyse the input sources and manually extract all available concepts

and relations. Analysis of the results revealed that there are new concepts in the learned

ontology, SOLFO; interestingly the GSO missed these concepts. Sabou (2005) defines

the new concepts as Ontological Improvements

On the other hand, evaluation measures should be chosen so that they are independent of

each other (Dellschaft & Staab, 2008). Here, an expert evaluation is used to evaluate the

structural layer of the learned ontology to produce the taxonomic and non-taxonomic

precision. This involves assessing the usefulness of the extracted relations, by allowing

a domain expert to carry a concept-by-concept analysis to judge the newly extracted

concepts and relations. In this case the domain expert knowledge is used to score the

new concepts as well as the relations, and judge whether the new concepts are either

correct or spurious.

Lexical Precision =

Taxonomic Precision =

Auhood Alfaries 141 of 189

Non Taxonomic Precision =

Table 6-4: Summarized Domain Expert Precision

The results produced in this iteration clearly indicate that evaluation methods can be

effectively combined to produce more accurate evaluation measures, where the domain

expert evaluation can be applied effectively to determine the accuracy of the learned

ontology. On the other hand the gold standard based evaluation can be used efficiently to

evaluate the domain coverage of the learned ontology, i.e. the gold standard based

evaluation can be used to calculate lexical and structural recall, whereas the domain

expert evaluation method can be used to calculate lexical and structural precision more

effectively. Here a pruning step is performed to remove any technical or WSDL related

subclassing by performing a quick scan “and eliminate”, of redundant relations, in the

financial domain case. Although, the pruning is performed superficially, it is clearly seen

that the pruning step increased the precision in both data sets adding an extra 20%

precision. Which can be considered relatively good compared to the small time and

effort required to prune the relations.

6.5 Specifying the learning

The primarily points of learning are:

Group 1: Books
Web Services

Group 2: Finance
Web Services

SOLFO Total Taxonomic
Relations 19 78

SOLFO Pruned Taxonomic
Relations 10 50

Taxonomic precision 21% 42.31%

Taxonomic Precision
(Pruned) 40% 66%

Auhood Alfaries 142 of 189

 Verb relations may lead to identifying the functional service hierarchy in OL from

textual sources (Sabou et al., 2005); Verb terms in SIP e.g

CalculateInterestRate or GenerateInterestPayments. A number of

OL approaches adopt the hypothesis that ontological relations are mostly represented

by verbs within an argument, for learning from textual sources (Völker, Haase &

Hitzler, 2008; Sabou et al., 2005; Navigli & Velardi, 2008). A preliminary analysis

to adopt the verb to relation hypothesis has lead to identifying functionality hierarchy

rather than domain concepts hierarchy. Following this line and the fact that lower

frequency SIP patterns consist of verb terms followed by nouns (the learning

outcome of Iteration 2), this direction can be further investigated to learn domain

specific relations through implementing the more complex SIP patterns.

 Different kinds of information appear in different parts of the Web Service. As the

learning indicates from Iteration 1. For some cases, where the service contains

accompanying XSD files, the XSD files might be potential venues for domain

specific concepts. It is essential to include these as inputs for the system as analysing

the SIP extracted from the XSD files is potentially an important extension to the

pattern extraction steps in SOLF (Papazoglou & van den Heuvel, 2007; Sabou &

Pan, 2007).

 Domain specific information is distributed in different parts of a Web Service

according to the structure of the Web Service. Relating structure to SIP may lead to

different ontological domain specific relations (Alfaries, Bell & Lycett, 2009; Yu et

al., 2008; Bell et al., 2007; Sabou & Pan, 2007).

 It is clearly evident that there are duplications, which can be dealt with at different

stages of the OL life cycle. A first option would be to introduce a pruning step at

different stages of the ontology learning life cycle; i.e involving the user at an earlier

stage to resolve name mismatches before the ontology was actually built can result in

higher accuracy. The same argument applies if the concepts are pruned in a stricter

manner, after they are extracted but before they are added to the ontology as new

concepts. Then the mapping and ontology building is based on unified names for the

concepts, thereby eliminating most of the duplicity created in the relations and

concepts. This could potentially result in achieving a higher precision ontology, as

illustrated in the sample taken from the Books ontology (Group 1) in Figure 6-10.

Auhood Alfaries 143 of 189

Here book as a concept and information related to book like author, title etc. is

modelled more than once. The domain expert can easily eliminate this duplication,

i.e. the learned ontology model may serve ontology engineers in a powerful way,

linking concepts in different ways can bring different modelling possibilities to the

domain engineer attention. A second option would be to include other NLP

techniques such as a lemmatizer or stemmer step in order to eliminate the

redundancy before concept creation. Lemmatizer and stemmers are normally used

for the purpose of getting the basic form of the word. This step can be seen as a

filtering step that can be definitely applied as a pre-processing step. A third

refinement would be to apply techniques that are usually employed to perform

deeper ontology merging to accurately check for the existence concepts before they

are added into the ontology, since SOLF checks for the existence of concepts before

adding them based on exact string matching. This behaviour is expected since the

system automatically builds the ontology and the user is involved in the pruning

stage. On the other hand, the domain expert identified that this can be an important

advantage of the system, since it extracts all of the possible concepts, depending on

the naming and spelling used in the Web Service. At the end of the process,

however, it is clear that these concepts are the same and can therefore be merged into

one. Hence, integrating the SOLF with ontology matching techniques before the new

concepts are added to the ontology is a desirable improvement that should lead to

eliminating the majority of the redundant concepts. This should also reduce the effort

of the ontology engineer in the pruning step.

 Synonym learning is an OL task, as illustrated in the OL layer cake. Cimiano (2007

p.24) regards two concepts as synonyms if they share a common meaning. An

interesting observation made by the domain expert is that multiple names used to

represent the same concept can be the best fit for the synonym learning task.

Synonyms can be easily modelled as equivalent classes in OWL. The pattern-based

extraction process applied in SOLF, extracted concepts and possible synonyms that

are made available for the domain experts for them to make into equivalent classes.

The domain expert can easily identify the synonyms during the pruning step.

Alternatively some concepts are found to be good candidates for identifying lexicons

of a concept as identified by Cimiano (2007 p.22).

Auhood Alfaries 144 of 189

Figure 6-10: Sample Group 1 (Book) Ontology

 The evaluation of the learned ontology against the gold standard required the

manual identification of correct and incorrect concepts. In the lexical layer

case it was a simple task of concept-by-concept comparison, taking up to 2

working days for the books ontology, and another 5 working days for the

financial services, since the ontology consists of 247 concepts. The amount of

time and effort required to perform the non-taxonomic layer evaluation was

extremely time-consuming, since there is no direct way of performing the

comparison automatically. Although the developed evaluation model allowed

for accuracy, and visualised the evaluation analysis by representing the

compared relations in adjacent cells, it required long, condensed working

hours to complete the evaluation for both sets, taking up to two whole weeks

to produce the NonTP and NonTR final results.

6.6 Summary

The chapter validates the theory of this research, that SOLF is capable of automatically

extracting domain knowledge, including concepts and semantic relations, from Web

Service artefacts by applying pattern based IE techniques. This iteration contributes an

improved service ontology learning framework and tool. A formal definition of the

output of the phases consisting the framework is provided. Another main contribution of

Auhood Alfaries 145 of 189

this chapter is a thorough evaluation process to prove the SOLF, despite having to

overcome the problem of the OL evaluation. This iteration combines two OL evaluation

methods effectively. The evaluation method is illustrated through the application of a

detailed experiment and has demonstrated that there is enough domain knowledge in

Web Service artefacts, from which an initial ontology can effectively be learned. The

approach adopted in the SOLF proved to be efficient in extracting domain concepts and

linking them with relations based on pattern-based information extraction techniques,

thus proving reasonable preciseness and coverage. Domain expert evaluation proved that

the automatically learned ontology recommends a new set of additions, including

taxonomic and non-taxonomic relations that can be used to supplement the manual

ontology. Overall, the method proved efficiency by introducing new relations and

concepts that had not been included in the GSO. Finally, the learning that emerged from

this iteration highlights a number of issues and challenges that can be employed to direct

future research.

Auhood Alfaries 146 of 189

CHAPTER 7 - CONCLUSION

7.1 Research Summary

Web Services typically contain domain knowledge that can be semantically annotated

through the use of domain ontologies. These domain ontologies are considered to be the

standard form of providing shared knowledge representation, providing a solution to

more widespread of functional interoperability via SWS (Buitelaar, Cimiano & Magnini,

2007). Manual ontology development, however, is an expensive, time consuming and

error prone process, requiring the services of highly qualified expertise, both in ontology

engineering and in the domain of interest (Staab & Maedche, 2001; Ding & Foo, 2002).

Therefore, the widespread adoption of ontology development can be very difficult to

achieve in practice. Given the vital role that the Semantic Web can play in achieving the

full potential of Web Services, a faster, less expensive ontology development process is

clearly required (Medjahed, Bouguettaya & Elmagarmid, 2003; Davies, Studer &

Warren, 2006).

To make Semantic Web Services a practical reality, ontologies need to evolve from

sources with embedded business knowledge - Web Service artefacts. Consequently, this

thesis has sought to assisting ontology engineers in building and maintaining low cost

domain ontologies from Web Services. This aim was achieved by developing a service

ontology learning framework to automatically extract ontological knowledge from

existing legacy systems. The objectives as set out in chapter 1 are summarised below:

Objective 1: Review the available OL approaches to provide an understanding of the

state-of-the-art of ontology learning and Web Services.

Objective 2: Develop ontology learning techniques for service concept and relation

extraction and to automate these techniques by building a prototype application to test

the applicability of the techniques using real Web Services.

Objective 3: Develop a methodological Service Ontology Learning Framework (SOLF)

that incorporates the techniques for concept and relation extraction.

Auhood Alfaries 147 of 189

Objective 4: The implementation of a tool that facilitates the framework and evaluating

the application of the framework, by assessing its impact on the state-of-the-art of

ontology learning.

Objective 5: Validate the research outcome by testing the generality of the extracted

patterns and rules on other sets of services representing varying domains.

In achieving the aim and objectives of the work, Chapter 2 reviewed the varieties of

Web Service sources and the applicable techniques for each source by providing an

understanding of the theory and practice of currently available OL techniques. In the

context of this research, the literature provided the basis for proving how OL can assist

in faster, less expensive ontology development processes (Buitelaar, Cimiano &

Magnini, 2007; Zhou, 2007; Buitelaar & Cimiano, 2008). Although applying OL

techniques is predominantly limited to learning from textual sources, the Web Service

application domain contains a mixture of structured and unstructured sources, where the

available sources are predominantly categorised as semi-structured. Current research is

mainly focused on learning from textual sources; there has been much less work

completed on developing techniques and tailoring ontology learning methods aimed at

semi-structured sources (Buitelaar, Cimiano & Magnini, 2005; Zhou, 2007).

Interestingly those semi-structured sources represent domain knowledge embedded in

technical, rich sources of data (Sabou, 2005). Consequently, an opportunity for

contribution lies in introducing automatic knowledge extraction techniques to extract

domain specific concepts and semi-automating ontology development (Davies, Studer &

Warren, 2006).

Chapter 3 set out the means for achieving the objectives via Design Research. This

approach provides a means by which to engage in the design problem - providing the

necessary learning to improve the proposed solution, whilst, at the same time enriching

the solution space with the Design Research output. The main Design Research artefact

is a service ontology learning methodological framework (SOLF). The overall research

methodology is executed as Design Research incremental iterations, where each of the

three iterations forms a design problem that executes the build and evaluates design

activities (Vaishnavi & Kuechler, 2004). The iterations were designed such that;

Iteration 1 develops the core framework including a service term extraction technique,

Auhood Alfaries 148 of 189

Iteration 2 extends the framework by adding a relation extraction method, and Iteration 3

validates and generalises the design artefact by applying the SOLF on other sets of

carefully selected Web Services with an accompanying gold standard ontology. Given

that the literature review demonstrated limited understanding and work in the problem

space, Design Research is particularly appropriate, allowing an iterative learning process

to feed ongoing understanding of the design problem. More specifically in the case of

the OL field, evaluation is identified as an important stage at the end of each cycle.

Practical evaluation methods are not yet well defined, thereby posing another learning

challenge in the knowledge space.

The products of Design Research included constructs, methods and models in order to

facilitate the framework development. The build and evaluate design activities are

applied in incremental iterations to build and effectively evaluate each of the Design

Research products as illustrated in Table 7-1. The evaluation for the Design Research

products is achieved by synthesising the Design Research evaluation criteria, as the table

illustrates, to create the suitable evaluation method derived from the OL knowledge base

as presented in Chapter 3. The evaluation demonstrates the successful application of

each product in the final SOLF method and tool.

Auhood Alfaries 149 of 189

Table 7-1: Design Research Products X Activities

 Research Activities

 Build Evaluate Theorize Justify

Constructs

STE
SOLF
SIP
TR

Completeness
Simplicity
Ease of Use

Explain why and
how constructs
work by employing
them to describe
real case scenarios
(addressed in Ch5)

Prove that
constructs work
scientifically by
applying them in
models and
methods
(addressed in Ch4,
5 & 6)

Model

STE
SOLF
SIP
TR
SOLF
Domain Ontology

Fidelity
Completeness
Internal
Consistency

Adapting theories
from the current OL
discipline, and
Hypothesising that
those models are
true
(achieved by
theorising SOLF in
Ch 6)

Test the models
on a real life
example to prove
them
(addressed in Ch4,
5 & 6)

Methods

STE Process
SIP Process
TR Development
Process
SOLF Framework

Operationality
Efficiency
Generality
Ease of Use

Explain why and
how methods are
applied using real
WSs
(achieved in Ch5
&6)

Prove the methods
work formally by
instantiating them
using real
examples
(achieved Ch 6)

R
es

ea
rc

h
O

ut
pu

ts

Instantiation SOLF Application

Effectiveness
Efficiency
Impact on
Environment

Understanding how
and why application
works across other
domains
(achieved in Ch6)

Prove that SOLF
works by testing it
across different
domains.
(achieved in Ch6)

Chapter 4 described the first iteration, which concentrated on developing a service term

extraction technique based on NLP methods. The STE technique was used to build the

core SOLF, by automatically extracting an initial ontology model consisting of

automatically extracted domain concepts. An initial set of constructs, models and a

method was built and evaluated, meeting Objectives 2, 4 and part of Objectives 1 and 3.

The service term extraction technique formed the pre-processing stage of the learning

framework. The first stage laid out the foundation of the ontology learning framework

Auhood Alfaries 150 of 189

by accomplishing the first ontology learning task. The rule-based IE technique applied,

started by applying syntactic analysis as a pre-processing stage to identify patterns and

perform concepts extraction based on the identified pattern. The successful automation

of the method was achieved through building a prototype application in GATE that

implemented the steps identified in the framework. As a result of processing WSDL and

XSD files, a list of concepts were automatically identified within these input files,

contributing another Design Research product in the form of an initial financial domain

ontology model representing the sample set of services.

This early form of SOLF and tool were evaluated by comparing the output to other term

extraction methods, where the learning outcome of the first iteration directed the next

iteration towards adding structure to form another dimension of the domain model. This

observation highlighted the need to further investigate how to extract relations between

these concepts and initiated another Design Research iteration that is to allow for the

automatic extraction of ontological relations between the identified concepts.

Chapter 5 extends SOLF with a pattern-based relation extraction technique. This second

iteration contributes another set of Design Research products facilitating the extraction

of relations based on identifying Structured Interpretation Patterns (SIP). The structural

aspect of domain ontology was learned through applying a rule based IE approach,

where identifying patterns is an important step that requires rigour and use of the

framework to ensure accuracy, generality and coverage of SIP. Transformation rules

were used to identify mappings between SIP patterns and OWL constructs. Three real-

world Web Services from global banking systems were used for pattern extraction and

transformation rule development to demonstrate the completeness, efficiency and

effectiveness of SOLF.

An instantiation of SOLF as a prototype tool was developed and used to prove and

evaluate the framework. The output of the SOLF process was an automatically generated

OWL domain ontology, which presented a number of financial domain concepts

extracted from the Web Services. It was clearly visible that the automatically built

domain model moved beyond basic taxonomy – extracting and relating concepts at a

number of levels. More importantly, the approach provided integrated knowledge

(represented by the individual WSDL documents) from a number of services across a

Auhood Alfaries 151 of 189

group of banks. It was clear at end of the second iteration (Chapter 5) that in order to

justify and theorize the SOLF a further iteration was required to take the research to the

next level, by proving that SOLF is practically applicable across other domains.

Chapter 6 addressed all of the research objectives, showing that the SOLF is capable of

automatically extracting domain knowledge from WS artefacts. The extraction included

concepts and semantic relations from Web Service artefacts garnered by applying

pattern-based IE techniques. The SOLF has demonstrated that there is enough domain

knowledge in Web Service artefacts from which an initial ontology can effectively be

learned. The approach adopted in the SOLF proved the efficiency in extracting domain

concepts and linking them with relations based on pattern-based information extraction

techniques. The automatically learned ontology recommended new sets of additions,

including new domain concepts and relations, which could be used to enhance and

update the manual ontology. Overall, the method proved efficiency by introducing new

relations and concepts that were not included in the GSO.

This last iteration used the learning produced by evaluate, theorize and justify activities

from 2, to suggest improvements for the models (SIP and TR) and the SOLF method.

This led to producing the final products of the research, consisting of a Web Service

ontology learning methodological framework (SOLF), including a formal definition of

the output of the phases that constitute the framework, a set of SIP patterns and a set of

TRs. Applying the SOLF on the two groups of the selected Web Services resulted in

another set of Design Research products (ontology models).

Besides overcoming the challenge of the OL evaluation, this iteration combines two OL

evaluation methods effectively. The evaluation method is illustrated by its application in

a detailed experiment. The gold standard based evaluation method is complemented with

a domain expert evaluation to judge the taxonomic layer. The integrated evaluation

proved that the automatically learned ontology recommends a new set of additions,

including taxonomic and non-taxonomic relations that can be used to supplement the

manual ontology.

 A deeper understanding of how and why the SOLF works was achieved in the last

iteration, by performing a thorough evaluation that enabled knowledge and learning to

Auhood Alfaries 152 of 189

emerge whilst the SOLF was applied and allowed to be refined iteratively. Finally, the

learning that emerged from the third iteration highlighted a number of issues and

challenges that could be employed to direct future research.

7.2 Contributions and Conclusions

Research contributions are categorized according to Design Research product

classification (March & Smith, 1995). In overall terms, the major contribution is a novel

OL approach that applies textual IE techniques to automatically extract knowledge from

semi-structured Web Service sources, mainly WSDL and XSD files. Within the

literature, a number of proposed classifiers apply rule-based algorithms that identify

different types of taxonomic and non-taxonomic relations. Recent relation learning

approaches that showed success can be found in Cimiano (2007); Buitelaar, Cimiano &

Magnini (2007); Sabou & Pan (2007); Buitelaar & Cimiano (2008). All of these

approaches, however, are aimed at learning from textual sources. WSDL and XSD are

semi-structured data sources, thereby posing an even greater challenge for domain

experts to be able to read and manually extract knowledge from such sources.

More specifically, the main research contributions and their value are detailed below:

 The SOLF methodological framework (method) is the main contribution made

by this research and can be applied in different scenarios in an ontology

development lifecycle. Typically, in other OL approaches, pattern-based OL is

applied as a first step in a more integrated ontology development process.

Therefore, this approach has the potential to be integrated as a first step of a more

complex ontology engineering process. The SOLF can be used to automatically

extract semantic information from Web Service artefacts and is capable of

building a domain ontology model representing the knowledge embedded in

semi-structured Web Service sources. The SOLF targets different ontology

learning tasks; (1) Domain Concept Extraction, (2) Concept taxonomy and (3)

Non-taxonomic relations.

 The SIP extraction process (method) is a novel generic method that enables

pattern extraction from Web Services artefacts. This method contributes a

generic structured interpretation pattern extraction process that can be effectively

Auhood Alfaries 153 of 189

applied in a rule-based IE algorithm to identify and extract semantic relations

from semi-structured software artefacts. The literature typically applies a

heuristic pattern extraction strategy as per Cimiano (2007) and Sabou (2005),

which normally apply generic patterns that result in lower recall. The method

contributed by this research is a systematic, frequency based, pattern extraction

process. The process is aimed at extracting high frequency patterns from the

corpus, thereby guaranteeing higher recall.

 The TR development process (method) is an effective method that can be

easily applied to identify semantic relations in SIP patterns. The process was

aimed at developing a set of transformation rules that can be easily applied in a

rule-based ontology building algorithm to automatically map SIP patterns to

semantic relations. Transformation rule development is a novel method

specifically tailored to map compound words in Web Services sources to a

suitable OWL relation. The efficiency of this method was demonstrated by the

non-taxonomic F1-Measure value of 67% achieved in Iteration 3, which is

considered promising compared to the similar measure of 33% obtained by

Cimiano (2007, p.114).

 The SOLF tool (Instantiation) is an application prototype that implements the

SOLF, the set of SIP patterns and the transformation rules (TRs). The tool can be

generally applied to efficiently extract domain specific concepts and relations

from Web Service artefacts successfully producing an initial domain ontology

model. The learned model can be easily pruned and modified by domain

engineers. The generality and effectiveness of the SOLF tool in extracting non-

taxonomic relations, is clearly demonstrated by achieving similar evaluation

results for both data sets, achieving an F1-Measure of 64% and 67% for the

Books and Financial Web Services respectively.

 More general learning over the course of the research: First, for the rigorous

evaluation of the SOLF, a practical evaluation framework is contributed in

Chapter 6 to prove the validity and generality of the SOLF across other domains.

The evaluation constitutes a detailed step-by-step evaluation method that

integrates gold standard based and domain expert evaluation as illustrated in

Auhood Alfaries 154 of 189

chapter 6. The evaluation framework is designed to effectively provide an

understanding of why and how the OL method works and to prove SOLF utility

in OL for building domain specific Web Service ontology. The non-taxonomic

evaluation framework applied contributes a rigorous visual structural evaluation

model.

Second, an evaluation taxonomy and model; the need for an effective evaluation

model surfaced from the evaluation taxonomy, and its background illustrates the

typically applied evaluation metrics for OL approaches. Accordingly, an

evaluation framework based on precision and recall is selected in order to

evaluate the research products, providing another contribution as detailed and

theorized in Chapter 6. The comprehensive evaluation method is designed to

ensure efficient and effective evaluation of the structural and lexical aspects of an

OL approach. The model details a process for calculating local and global non-

taxonomic precision and recall as defined in Dellschaft & Staab (2008).

Third, the STE method is a service term extraction method that can be applied to

extract candidate domain concepts representing the underlying domain. The

method showed improved performance compared to other approaches, when

extracting domain concepts from Web Service artefacts (WSDL and XSD files).

The method provided better domain coverage by producing a rich list of terms

that are more likely to serve as domain concepts as representing semi-structured

data sources. The extracted list of terms presented to the ontology engineer forms

a high-density list of domain specific concepts that would be harder to extract

from textual sources. The method proved efficient in concept term extraction by

achieving 67% precision as demonstrated by the evaluation in Iteration 1.

Fourth, A set of SIP patterns and TRs models are contributed which can be

expanded to form a library of SIP patterns. Once a set of patterns and TRs are

available the tool can be applied to any set of WS to learn a first cut domain

ontology model easily, allowing ontology engineers to adopt and amend patterns

according to domain needs. The effectiveness of these models and TRs are

illustrated by the similarity of precision and recall results achieved when applied

to two different sets of services each representing different domains. On the other

Auhood Alfaries 155 of 189

hand, the SOLF learned models certainly represent the domain more faithfully by

introducing new additions to the GSO. This is demonstrated by the domain

expert evaluation results of the taxonomic layer evaluation of the two groups of

services, where a precision of up to 66% is achieved.

7.3 Limitations and Areas for Future Research

Though the research has made a number of valuable contributions to the ontology

learning domain both in the process and the tools, a number of limitations and challenges

may be noted:

• The SOLF can be considered an initial machine learning algorithm, in which manual

pattern extraction is the main extraction technique for automatically learning

ontological relations. Supervised machine learning algorithms (Buitelaar & Cimiano,

2008) require manually trained data to initiate the automatic learning process -which

can be considered a drawback in supervised learning approaches. The approach

presented by the SOLF would benefit greatly from applying machine learning

algorithms to learn these patterns. From one perspective, machine learning can be

used to learn new SIP patterns, where the contributed patterns in this research can

serve as the training data for the algorithm. From a second perspective the output

ontology model produced here can in itself be used as training data and allow the ML

algorithm to learn new ontology models when applied to new set of services.

• Chapter 4 noted that the concept learning task as defined by Cimiano (2007) and

Buitelaar, Cimiano & Magnini (2005) consists of finding concept extensions (a set of

concept instances), intensions and lexical realization in the corpus. SOLF has

successfully extracted lexical realisations of concepts from the WSDL files, such as

Book and Author. Identifying certain instances of book or author leads to

identifying concept extensions referred to in the literature as ontology population.

SOAP messages, as discussed in Chapter 2, contain information about service

invocation. Where instances of Books and Authors can be found. This area is not

explored in this research and can be further investigated.

• Chapter 5 noted several limitations. First, it is observed that patterns that appeared

with high frequency in large WSDL files (i.e. those that did not have an

Auhood Alfaries 156 of 189

accompanying XSD) did not appear at all in other Web Services, which raises an

important question about the effect of the type and size of the WSDL on the pattern

extraction process (weighting of patterns), and more specifically on the correlation

between frequency/popularity and precision. This can be addressed by applying the

extracted patterns on another set of Web Services (including different types of

WSDL and including XSD files). Investigating the effect of the WSDL file size and

style on the pattern extraction process is therefore an important area to investigate.

Second, the existence of one pattern as part of another more complex pattern, i.e.

NNP-NNP is part of NNP-NNP-NNP, might lead to having to make a choice as to

which one is more appropriate. Third, more complex patterns can be included. In this

iteration only up to 3-term patterns were extracted. It is established that in more

complex services patterns of up to 9 terms exist. Complex patterns have less

frequency and might therefore reveal more important/specific relations. Including

more complex patterns and analysing how this benefits the recall is highly

recommended. Fourth, the possibility of generalizing existing patterns needs further

investigation, i.e. NN, NNP and NNS are all different types of nouns. Is it possible to

include these under the one category of type NOUN? - i.e. will the same patterns

give the same results?. Finally, identifying more domain specific relations needs

further analyses and investigation. Relations identified are: subclass and has-A

relations. The possibility of defining patterns that will lead to more specific relations

is recommended.

 Chapter 6 also noted several areas in which the approach may be improved. First,

verb relations may lead to identifying the functional service hierarchy in OL from

textual sources (Sabou et al., 2005); Verb terms in SIP e.g CalculateInterestRate or

GenerateInterestPayments. Those structures were not exposed by this research due to

the fact that the extraction process was based on frequency analysis. Therefore,

higher pattern frequency is used as the selection criteria. But it was clearly evident

that there are fewer pattern starts with verbs tokens, those patterns can be

investigated and analysed in more detail. Second, Different kinds of information

appear in different parts of the Web Service. As the learning indicates from Iteration

1. Domain specific information is distributed in different parts of a Web Service

according to the structure of the Web Service. Relating structure to SIP may lead to

different ontological domain specific relations (Alfaries, Bell & Lycett, 2009; Yu et

Auhood Alfaries 157 of 189

al., 2008; Bell et al., 2007; Sabou & Pan, 2007). Third, the learned ontology model

showed a number of duplicate concepts appearing to be representing the same

concepts but differ in the names, although this seems to be of advantage to the

domain engineer, highlighting different names or illustrating different structural

possibilities. These duplications need to be dealt with at different stages of the OL

life cycle. Investigating applying lemmatizers or ontology matching techniques

would be beneficial. On the other hand investigating how Synonym learning task

might benefit from these duplications would be advantageous.

 Unexpectedly, the evaluation of the learned ontology against the gold standard was a

time consuming task. Which required the manual identification of correct and

incorrect concepts. In the lexical layer case it was a simple task of concept-by-

concept comparison, taking up to 2 working days for the books ontology, and

another 5 working days for the financial services, since the ontology consists of 247

concepts. The amount of time and effort required to perform the non-taxonomic layer

evaluation was time-consuming, since there is no direct way of performing the

comparison automatically. An automated evaluation tool that can be used to compare

two ontology models at the different evaluation levels would be beneficial.

Auhood Alfaries 158 of 189

BIBLIOGRAPHY

Ahmad, K., Tariq, M., Vrusias, B., & Handy, C. 2003. Corpus-based thesaurus
construction for image retrieval in specialist domains. In Proceedings of the 25th
European Conference on Advances in Information Retrieval (ECIR), Pisa, Italy, April
14-16pp. 502–510.

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A. & Verma,
K. 2005, "Web Service Semantics-WSDL-S", W3C Member Submission, [Online].
Available at: http://www.w3.org/Submission/WSDL-S/ (accessed on 24/8/2009).

Al Asswad, M.M., de Cesare, S. & Lycett, M. 2009, "Toward a Research Agenda for
Semi-Automatic Annotation of Web Services", International Conference on
Informatics and Semiotics in Organisations (ICISO) - IFIP WG8.1 Working
Conference.

Alfaries, A., Bell, D. & Lycett, M. 2009, "Ontology Learning for Semantic Web
Services", Proceedings of the 14th Annual UK Association of Information Systems
Conference (UKAIS), Oxford University, Oxford, U.K, 31st March - 01st April, pp.
27-36.

An, Y.J., Geller, J., Wu, Y.T. & Chun, S. 2007, "Automatic Generation of Ontology
from the Deep Web", 18th International Conference on Database and Expert Systems
Applications, Regensburg, 3-7 Sept. 2007 pp. 470-474.

Antonacopoulos, A. & Hu, J. 2004, “Web Document Analysis: Challenges and
Oppertunities” Google Book Search [Homepage of World Scientific Press], [Online].
Available:
http://books.google.com/books?id=ubs2mwNlHnEC&printsec=frontcover&sig=ACfU
3U1r5r0cV5dWuAhUUvxYFJ0LNpZHXQ (accessed on 9/4/2008).

Antoniou, G. & van Harmelen, F. 2009, “Web Ontology Language: OWL”, in S. Staab
and R. Studer (eds.), Handbook on Ontologies, International Handbooks on
Information Systems, Berlin/Heidelberg: Springer-Verlag, pp.91-110.

Aswani, N., Tablan, V., Bontcheva, K. & Cunningham, H. 2005, "Indexing and
Querying Linguistic Metadata and Document Content", Fifth International Conference
on Recent Advances in Natural Language Processing Borovets, Bulgaria.

Azoff, M. 2007, Application Development End-User Survey, Butler Group.

Bell, D., de Cesare, S., Iacovelli, N., Lycett, M. & Merico, A. 2007, "A framework for
deriving Semantic Web Services", Information Systems Frontiers, vol. 9, no. 1, pp.
69-84.

Berland, M., & Charniak, E. (1999). Finding parts in very large corpora. In Proceedings
of the 37th Annual Meeting of the Association For Computational Linguistics.
Association for Computational Linguistics, Morristown, NJ, pp. 57-64

Auhood Alfaries 159 of 189

Berners-Lee, T., Hendler, J. & Lassila, O. 2001, "The Semantic Web - A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities", Scientific American, vol. 284, no. 5, pp. 34-43.

Bernstein, D.S. 1999, "On bridging the theory/practice gap", IEEE Control Systems
Magazine , vol. 19, no. 6, pp. 64-70.

Blake, S.P. 1978, Managing for responsive research and development, W.N. Freeman &
Co. San Francisco.

Bontcheva, K. & Sabou, M. 2006, Learning Ontologies from Software Artifacts:
Exploring and Combining Multiple Sources, EU-IST Strategic Targeted Research
Project (STREP) IST-2004-026460 TAO, Sheffield, UK.

Borislav, P., Atanas, K., Damyan, O., Dimitar, M. & Angel, K. 2004, "KIM – a semantic
platform for information extraction and retrieval", Natural Language Engineering,
vol. 10, no. 3-4, pp. 375-392.

Brown, A.L. 1992, "Design experiments: Theoretical and methodological challenges in
creating complex interventions in classroom settings", Journal of the learning
sciences, vol. 2, no. 2, pp. 141-178.

Bruijn, J.d., Kerrigan, M., Zaremba, M. & Fensel, D. 2009, “Semantic Web Services”, in
S. Staab and R. Studer (eds.), Handbook on Ontologies, International Handbooks on
Information Systems, Berlin/Heidelberg, Springer-Verlag, pp. 617-636.

Buitelaar, P. & Cimiano, P. (eds) 2008, Ontology Learning and Population: Bridging
the Gap between Text and Knowledge, Amsterdam, The Netherlands, IOS Press.

Buitelaar, P., Cimiano, P. & Magnini, B. 2005, "Ontology Learning from Text: An
Overview" in Ontology Learning From Text: Methods, Evaluation and Applications,
B.P. Buitelaar, P. Cimiano & B. Magnini (eds.), Amsterdam, Netherlands: IOS Press,
pp. 3.

Buitelaar, P., Cimiano, P. & Magnini, B. (eds) 2007, Ontology Learning From Text:
Methods,Evaluation and Applications, 2nd edn., Netherland: IOS Press

Buitelaar, P., Olejnik, D. & Sintek, M. 2004, "A Protege Plug-In for Ontology
Extraction from Text Based on Linguistic Analysis", Proceedings of the 1st European
Semantic Web Symposium (ESWS), Heraklion, Greece, 10-12 May 2004, PP. 31-44.

Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M.N., Paolucci, M., Sheth,
A.P. & Williams, S. 2005, "A Semantic Web Services Architecture", IEEE Internet
Computing, vol. 9, no. 5, pp. 72-81.

Cabral, L., Domingue, J., Motta, E., Payne, T. & Hakimpour, F. 2004, "Approaches to
Semantic Web Services: an Overview and Comparisons", 1st European Semantic Web
Symposium, Heraklion, Greece, May10-12, pp. 225-239.

Cerbah, F. 2008, "Learning highly structured semantic repositories from relational
databases: the RDBToOnto tool", ESWC'08: Proceedings of the 5th European

Auhood Alfaries 160 of 189

semantic web conference on the semantic web, Tenerife, Canary Islands, Spain, June
1-5, pp. 777-781.

Checkland, P.B. 1981. Systems Thinking, Systems Practice. Chichester, UK. John Wiley
& Sons. 330 pp.

Cimiano, P., Maedche, A., Staab, S. & Volker, J. 2009, “Ontology Learning”, S. Staab
and R. Studer (eds.) Handbook on Ontologies, International Handbooks on
Information Systems, Berlin/Heidelberg, Springer-Verlag, pp. 245-267.

Cimiano, P. 2007, Ontology Learning and Population from Text: Algorithms, Evaluation
and Applications. New York: Springer.

Cimiano, P., Pivk, A., Schmidt-Thieme, L. & Staab, S. 2005, "Learning taxonomic
relations from heterogeneous sources of evidence", in P. Buitelaar, P. Cimiano & B.
Magnini (eds.), Ontology Learning from Text: Methods, evaluation and applications,
Frontiers in Artificial Intelligence, IOS Press vol. 123, July, 2005, pp. 59–73.

Cuel, R., Delteil, A., Louis, V. & Rizzi, C. "The Technology Roadmap of the Semantic
Web", Knowledge Web, [Online], Available: http://knowledgeweb.semanticweb.org.
(Accessed on November 2008).

Cunningham, H., Maynard, D., Bontcheva, K. & Tablan, V. 2002, "GATE: A
framework and graphical development environment for robust NLP tools and
applications", Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. & Weerawarana, S. 2002,
"Unraveling the Web Services web: an introduction to SOAP, WSDL, and UDDI",
IEEE Internet Computing, vol. 6, no. 2, pp. 86-93.

Daga, A., de Cesare, S.d., Lycett, M. & Partridge, C. 2005, "An Ontological Approach
for Recovering Legacy Business Content", IEEE Computer Society , Washington, DC,
USA, pp. 224.

Davies, J., Studer, R. & Warren, P. 2006, Semantic web Technologies Trends and
Research in Ontology-based Systems, John Wiley & Sons, Ltd.

Dellschaft, K. & Staab, S. 2008, "Strategies for the Evaluation of Ontology Learning", in
P. Buitelaar & P. Cimiano (eds.) Bridging the Gap between Text and Knowledge
Selected Contributions to Ontology Learning and Population from Text Amsterdam:
IOS Press.

Ding, Y. & Foo, S. 2002, "Ontology research and development. Part I - a review of
ontology generation", Journal of Information Science, vol. 28, no. 2, pp. 123-136.

Edelson, D. 2002, "Commentary: Design Research: What We Learn When We Engage
in Design", Journal of the Learning Sciences, vol. 11, no. 1, pp. 105.

Auhood Alfaries 161 of 189

Faure, D. & Nédellec, C. 1998, "ASIUM: Learning sub categorization frames and
restrictions of selection", Proceedings of 10th Conference on Machine Learning
(ECML 98): Workshop on Text Mining, Germany, Chemnitz, pp. 410-417.

Farrell, J., & Lausen, H. 2007, “Semantic annotations for WSDL and XML schema”.
W3C Recommendation 28 August 2007. [Online] Available:
http://www.w3.org/TR/sawsdl/ (Accessed on September 2008).

Fensel, D. & Bussler, C. 2002, "The Web Service modeling framework WSMF",
Electronic Commerce Research and Applications, vol. 1, no. 2, pp. 113-137.

Gacitua, R. & Sawyer, P. 2008, “Ensemble Methods for Ontology Learning - An
Empirical Experiment to Evaluate Combinations of Concept Acquisition Techniques”,
Seventh IEEE/ACIS International Conference on Computer and Information Science,
Portland, OR, 14-16 May 2008, pp. 328-333.

Gacitua, R., Sawyer, P. & Rayson, P. 2008, "A flexible framework to experiment with
ontology learning techniques", Knowledge-Based Systems, vol. 21, no. 3, pp. 192-199.

Gasevic, D., Kaviani, N. & Milanovic, M. 2009, “Ontologies and Software
Engineering”, S. Staab and R. Studer (eds.), Handbook on Ontologies, International
Handbooks on Information Systems, Berlin/Heidelberg: Springer-Verlag, pp. 593-615.

Gedda, R. 02/10/2007 16:39:35-last update, SOA Uptake Still Split A Mid Market
Confusion [Homepage of Computerworld], [Online]. Available:
http://www.computerworld.com.au/index.php/id;1744558846 (19/11/2008).

Gibbins, N., Harris, S. & Shadbolt, N. 2004, "Agent-based Semantic Web Services",
Web Semantics: Science, Services and Agents on the World Wide Web, vol. 1, no. 2,
pp. 141-154.

Giovannetti, E., Marchi, S. & Montemagni, S. 2008, "Combining Statistical Techniques
and Lexico-Syntactic Patterns for Semantic Relations Extraction from Text",
Proceedings of the 5th Workshop on Semantic Web Applications and Perspectives
(SWAP) Rome, Italy, 15-17 December. pp. 10.

Gomez-Perez, A. & Manzano, M., D. 2004, "An overview of methods and tools for
ontology learning from texts", Knowledge Engineering Review, vol. 19, no. 3, pp.
187-212.

Gomez-Perez, A., Fernandez-Lopez, M. & Corcho, O. 2003, "Ontological Engineering."
Advanced Information and Knowledge Processing. Berlin/Heidelberg: Springer.

Gruber, T.R. 1993, "A Translation Approach to Portable Ontology Specifications",
Knowledge Acquisition, vol. 5, no. 2, pp. 199-220.

Guarino, N. 1998, "Formal ontology in information systems", In N. Guarino, (ed.),
Proceedings of FOIS98. FOIS, IOS Press, pp. 3–15.

Auhood Alfaries 162 of 189

Guarino, N., Oberle, D. & Staab, S. 2009, “What Is an Ontology?”. in S. Staab and R.
Studer (eds.), Handbook on Ontologies, International Handbooks on Information
Systems, Berlin/Heidelberg : Springer-Verlag, pp.1-17.

Guo, H., Ivan, A., Akkiraju, R. & Goodwin, R. 2007, "Learning ontologies to improve
the quality of automatic Web Service matching", IEEE International Conference on
Web Services, Salt Lake City, UT, 9-13 July, pp. 118-125.

Hearst, M.A. 1992, "Automatic acquisition of hyponyms from large text corpora",
Proceedings of the 14th conference on Computational linguistics, Association for
Computational Linguistics Morris town, NJ, USA, Vol. 2, pp. 539-545.

Heffner, R. & Peters, A. 2008, Topic Overview: Service-Oriented Architecture For
CIOs, Forrester.

Hevner, A.R., March, S.T., Park, J. & Ram, S. 2004, "Design science in information
systems research", MIS Quarterly: Management Information Systems, vol. 28, no. 1,
pp. 75-105.

Hristoskova, A., Volckaert, B., Turck, F.D. and Dhoedt, B. 2010, "Design of a
Framework for Automated Service Mashup Creation and Execution Based on
Semantic Reasoning", International Conference on Internet and Web Applications and
Services, Barcelona, 9-15 May, pp. 149-154.

Iwanska, L., Mata, N. & Kruger, K. 2000, "Fully Automatic Acquisition of Taxonomic
Knowledge from Large Corpora of Texts: Limited-Syntax Knowledge Representation
System based on Natural Language", In L.M. Iwanksa and S.C. Shapiro (ed.), Natural
Language Processing and Knowledge Processing, MIT/AAAI Press, pp. 335.

Johannesson, P. 1994, "A method for transforming relational schemas into conceptual
schemas", Proceedings 10th International Conference Data Engineering, Piscataway,
N.J: IEEE Press, pp. 190-201.

Jung, S., Kang, M. & Kwon, H. 2007, "Constructing Domain Ontology Using Structural
and Semantic Characteristics of Web-Table Head", Lecture Notes In Computer
Science, vol. 4570, pp. 665-674.

Kashyap, V. 1999, "Design and creation of ontologies for environmental information
retrieval", Proceedings of the 12th workshop on knowledge acquisition, modelling and
management, KAW’99, Banff, Canada. October 1999.

Kelly, A.E. & Lesh, R.A. 2000, Handbook of research design in mathematics and
science education, Mahwah/US, Lawrence Erlbaum Associates Inc.

Lara, R., Roman, D., Polleres, A. & Fensel, D. 2004, "A conceptual comparison of
WSMO and OWL-S", in Zhang, L.-J.; Jeckle, M. Hrsg (eds.), Web Services: Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, vol. 3250, pp. 254-269.

Li, M., Du, X.Y. & Wang, S. 2005, "Learning Ontology from Relational Database", In:
The 4th International Conference on Machine Learning and Cybernetics, IEEE
explorer, Guangzhou, China, pp. 3410–3415.

Auhood Alfaries 163 of 189

Maedche, A. & Staab, S. 2001, "Ontology learning for the semantic web", IEEE
Intelligent Systems and Their Applications, vol. 16, no. 2, pp. 72-79.

Maedche, A. & Volz, R. 2001, "The ontology extraction and maintenance framework
text-to-onto", Proceedings of the ICDM’01 Workshop on Integrating Data Mining and
Knowledge Management, IEEE International Conference on Data Mining, California.

Maedche, A. & Staab, S. 2004, "Ontology learning" in S Stabb and R Studer (eds.)
HandBook on Ontologies, International Handbooks on Information Systems Series.
Berlin: Springer. pp. 173-190.

Maedche, A. 2002, Ontology learning for the Semantic Web, Boston, Kluwer Academic
Publishers.

Maedche, A. & Staab, S. 2003, "Services on the Move: Towards P2P-Enabled Semantic
Web Services" in: Proceedings of the 10th International Conference on Information
Technology and Travel & Tourism, ENTER 2003, Helsinki, Finland, 29th-31st
January, pp. 124-133.

Manine, A., Alponse, E. and Bessières, P. (2008), Information Extraction as an Ontology
Population Task and Its Application to Genic Interactions, 20th IEEE International
Conference on Tools with Artificial Intelligence, vol 2, pp 74-81

March, S. & Smith, G. 1995, "Design and natural science research on information
technology", Decision Support Systems, vol. 15, no. 4, pp. 251-266.

Martin, D. et al. OWL-S: Semantic markup for Web Services. W3C Member
Submission 22 November 2004. [On line] Available at:
http://www.w3.org/Submission/OWL-S/ (Accessed: August 2009).

Martin, D. 2007a, "Semantic Web Services, Part 1", IEEE Intelligent Systems, vol. 22,
no. 5, pp. 12-17.

Martin, D. 2007b, "Semantic Web Services, Part 2", IEEE Intelligent Systems, vol. 22,
no. 6, pp. 8-15.

Maynard, D., Li, Y. & Peters, W. 2008, "NLP Techniques for Term Extraction and
Ontology Population", in P. Buitelaar & P. Cimiano (edt.) Ontology Learning and
Population: Bridging the Gap between Text and Knowledge, Amsterdam, The
Netherlands: IOS Press, pp. 107-127.

McIlraith, S.A., Son, T.C. & Zeng, H.L. 2001, "Semantic Web Services", IEEE
Intelligent Systems & Their Applications, vol. 16, no. 2, pp. 46-53.

Medjahed, B., Bouguettaya, A. & Elmagarmid, A. 2003, "Composing Web Services on
the Semantic Web", Vldb Journal, vol. 12, no. 4, pp. 333-351.

Meyer, M. 2006, The adoption of SOA among US and Western European enterprises
(Customer Focus), Butler Group.

Auhood Alfaries 164 of 189

Motta, E., Domingue, J., Cabral, L., Gaspari, M., 2003, “IRS–II: A Framework and
Infrastructure for Semantic Web Services”, The Semantic Web - ISWC 2003: Lecture
Notes in Computer Science, Berlin / Heidelberg: Springer, Vol. 2870, pp. 306-318

Navigli, R. & Velardi, P. 2004, "Learning Domain Ontologies from Document
Warehouses and Dedicated Web Sites", Computational Linguistics, vol. 30, no. 2, pp.
151-179.

Navigli, R. & Velardi, P. 2008, "From Glossaries to Ontologies: Extracting Semantic
Structure from Textual Definitions" in P. Buitellar & P. Cimiano (eds.) Ontology
Learning and Population: Bridging the Gap between Text and Knowledge,
Amsterdam: IOS Press, The Netherlands, pp. 71-87

Newell, A. & Simon, H.A. 1976, "Computer science as empirical inquiry: symbols and
search", Communications of the ACM, vol. 19, no. 3, pp. 113-126.

Niles, I. & Pease, A. 2001, "Towards a standard upper ontology", FOIS '01: Proceedings
of the International Conference on Formal Ontology in Information Systems ACM,
New York, NY, USA, pp. 2-9.

Nunamaker Jr., J.F, Chen, M. & Purdin, T.D.M. (1990/91). "Systems development in
information systems research", Journal of Management Information Systems, vol. 7,
no. 3, pp. 89-106.

Owen, C.L. 1998, "Design Research: building the knowledge base", Design Studies, vol.
19, no. 1, pp. 9-20.

Pan, D. & Pan, Y. 2006, "Using Ontology Repository to Support Data Mining",
Intelligent Control and Automation, 2006,(WCICA 2006): The Sixth World Congress
vol. 2, June 2006, pp. 5947-5951.

Papazoglou, M. & van den Heuvel, W. 2007, "Service oriented architectures:
approaches, technologies and research issues", The VLDB Journal, vol. 16, no. 3, pp.
389-415.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, M., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Jianwen ,S., Said, T., “Semantic Web Service
framework”. W3C Member Submission 9 September 2005. [Online] Available at:
http://www.w3.org/Submission/SWSF/ (Accessed in November 2008).

Pivk, A. Cimiano, P. Sure,Y. 2005, "From tables to frames", Web Semantics, vol. 3, no.
2-3, pp. 132.

Pivk, A., Cimiano, P., Sure, Y., Gams, M., Rajkovič, V. & Studer, R. 2007,
"Transforming arbitrary tables into logical form with TARTAR", Data & Knowledge
Engineering, vol. 60, no. 3, pp. 567-595.

Purao, S. 2002, Design Research in the technology of information systems: Truth or
dare. Unpublished paper available at www.purao.ist.psu.edu/working-papers/dare-
purao.pdf

Auhood Alfaries 165 of 189

Reed, S. & Lenat, D. 2002, "Mapping Ontologies into Cyc", Proceedings of American
Association for Artificial Intelligence (AAAI). Technical Report WS-02-11, pp.1-7.
[Online] Available at: https://www.aaai.org/Papers/Workshops/2002/WS-02-
11/WS02-11-010.pdf (Accessed in June 2010).

Sabou, M. & Pan, J. 2007, "Towards semantically enhanced web service repositories",
Journal of Web Semantics, vol. 5, no. 2, pp. 142-150.

Sabou, M., Wroe, C., Goble, C. & Stuckenschmidt, H. 2005, "Learning domain
ontologies for semantic web service descriptions", Journal of Web Semantics, vol. 3,
no. 4, pp. 340-365.

Sabou, M. 2005, "Learning web service ontologies: an automatic extraction method and
its evaluation", in P. Buitelaar, P. Cimiano & B. Magnini (eds.) Ontology Learning
from Text: Methods, evaluation and applications, Amsterdam, Netherlands: IOS
Press, pp. 125-139.

Sanderson, M. & Croft, B. 1999, "Deriving concept hierarchies from text", Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM , pp. 206-213.

Shadbolt, N., Hall, W. & Berners-Lee, T. 2006, "The Semantic Web revisited", IEEE
Intelligent Systems, vol. 21, no. 3, pp. 96-101.

Shafiq, O. 2007, “Investigating Semantic Web Service Execution Environments: A
Comparison between WSMX and OWL-S Tools”. 2nd International Conference on
Internet and Web Applications and Services (ICIW '07), Morne,13-19 May , pp. 31-
37.

Shamsfard, M. & Barforoush, A.A. 2003, "The state of the art in ontology learning: a
framework for comparison", Knowledge Engineering Review, vol. 18, no. 4, pp. 293-
316.

Sheth, A., Verma, K. & Gomadam, K. 2006, "Semantics to energize the full services
spectrum", Communications of the ACM, vol. 49, no. 7, pp. 55-61.

Simon, H.A. 1996, The Sciences of the Artificial (3rd ed.), Cambridge, MA: MIT Press.

Snow, R., Jurafsky, D. & Ng, A.Y. 2006, "Semantic taxonomy induction from
heterogenous evidence", Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the ACL, Sydney,
Australia, July 17-18, pp. 801-808.

Staab, S. & Maedche, A. 2001, "Knowledge portals: Ontologies at work", AI MAG, vol.
22, no. 2, pp. 63-75.

Staab, S., Studer, R., Schnurr, H. & Sure, Y. 2001, "Knowledge processes and
ontologies", IEEE Intelligent Systems, vol. 16, no. 1, pp. 26-34.

Staab, S. & Studer, R. (eds) 2004, Handbook on Ontologies. International Handbooks on
Information Systems. Berlin/Heidelberg: Springer-Verlag.

Auhood Alfaries 166 of 189

Staab, S. & Studer, R. 2009, Handbook on ontologies, International Handbooks on
Information Systems, Second Edition, Berlin/Heidelberg: Springer-Verlag.

Studer, R., Grimm, S. & Abecker, A. 2007, Semantic Web Services Concepts,
Technologies, and Applications, Springer-Verlag, Berlin/Heidelberg.

R. Studer, R. Benjamins, and D. Fensel. “Knowledge engineering: Principles and
methods”. Data & Knowledge Engineering, 25, no 1–2, pp. 161–198, 1998.

Sycara, K., Paolucci, M., Soudry, J. & Srinivasan, N. 2004, "Dynamic discovery and
coordination of agent-based Semantic Web Services", IEEE Internet Computing, vol.
8, no. 3, pp. 66-73.

Takeda, H., Veerkamp, P. & Yoshikawa, H. 1990, "Modeling design process", AI
magazine, vol. 11, no. 4, pp. 37.

Tsai, W.T., Malek, M., Chen, Y. & Bastani, F. 2006, "Perspectives on service-oriented
computing and service-oriented system engineering", Proceedings - Second IEEE
International Symposium on Service-Oriented System Engineering, SOSE 2006,
Shanghai, China, 25-26 October, pp. 3-8.

Van Rijsbergen, C.J. 1979, Information retrieval (2nd edn.), London, Butterworth.

Vaishnavi, V. and Kuechler, W. (2004/5). “Design Research in Information Systems”
January 20, 2004, [Online] Available at: URL:http://desrist.org/design-research-in-
information-systems. (August 16, 2009).

Velardi, P., Navigli, R., Cucchiarelli, A., Neri, F., Buitelaar, P., Cimiano, P. & Magnini,
B. 2005, "Evaluation of OntoLearn, a methodology for automatic learning of domain
ontologies", in P. Buitelaar, P. Cimiano & B. Magnini (eds.) Ontology Learning from
Text: Methods, evaluation and applications, Amsterdam, Netherlands: IOS Press, pp.
92–106.

Völker, J., Haase, P. & Hitzler, P. 2008, "Learning Expressive Ontologies" in P.
Buitellar & P. Cimiano (eds.) Ontology Learning and Population: Bridging the Gap
between Text and Knowledge, IOS Press, pp. 45-67.

Volz, R., Handschuh, S., Staab, S. & Studer, R. 2003, "OntoLiFT Demonstrator”
WonderWeb: Ontology Infrastructure for the Semantic Web", IST Project 2001-33052
WonderWeb. [Online] Available at:
http://wonderweb.semanticweb.org/deliverables/documents/D11.pdf (Accessed
February 2009).

Wang, X.H. 2004, Ontology based context modeling and reasoning using OWL,
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, Singapore, Singapore, 14-17 March, pp. 18-22.

Weichselbraun, A., Wohlgenannt, G. & Scharl, A. 2010, "Refining non-taxonomic
relation labels with external structured data to support ontology learning", Data &
Knowledge Engineering, vol. In Press, Corrected Proof.

Auhood Alfaries 167 of 189

Winter, R. 2008, "Design science research in Europe", European Journal of Information
Systems, vol. 17, no. 5, pp. 470-475.

Witten, I.H. & Frank, E. 2002, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, ACM, New York, USA.

Yu, L. 2007, Introduction to the Semantic Web and Semantic Web Services, Boca Raton,
FL Chapman & Hall/CRC.

Yu, Q., Liu, X., Bouguettaya, A. & Medjahed, B. 2008, "Deploying and Managing Web
Services: issues, solutions, and directions", The VLDB Journal The International
Journal on Very Large Data Bases, vol. 17, no. 3, pp. 537-572.

Zhou, L. 2007, "Ontology learning: state of the art and open issues", Information
Technology and Management (Bussum), vol. 8, no. 3, pp. 241 (12 pages).

Auhood Alfaries 168 of 189

APPENDICES

Appendix A - POS tagger

A.1 Hepple Part-of-Speech Tags used by GATE POS tagger.

Figure 0-1: Part-Of-Speech Tags (from GATE user Guide)

Auhood Alfaries 169 of 189

Figure 0-2: Part-Of-Speech Tags (from GATE User Guide)

Auhood Alfaries 170 of 189

Appendix B - JAPE code

B.1 JAPE files created for each rule and transformation rule.

Figure 0-3: JAPE code snippet illustrating code for Rules 1-4

Auhood Alfaries 171 of 189

Figure 0-4: JAPE Snippet, illustrating code for transformation rules TR3 and TR4

Auhood Alfaries 172 of 189

Appendix C - Data Sets

C.1 First set sample: Financial Web Services and the SOLF
learned ontology model (Used for Iteration 1 and 2)

Figure 0-5: Matching WS1 WSDL and XSD Sample

Auhood Alfaries 173 of 189

Figure 0-6: Financial Ontology Model (Iteration 1)

Auhood Alfaries 174 of 189

Figure 0-7: Financial Ontology Model (Iteration 2)

Auhood Alfaries 175 of 189

C.1 C.2 Second set sample: Books Web Services, SOLFO and

GSO (Iteration 3)

Figure 0-8: Books Service Sample 1 Snippet

Auhood Alfaries 176 of 189

Figure 0-9: Books Service Sample 2 Snippet

Auhood Alfaries 177 of 189

Figure 0-10: Books GSO Snippet

Auhood Alfaries 178 of 189

Figure 0-11: Books SOLFO Snippet

Auhood Alfaries 179 of 189

C.2 C.3 Third set sample: Financial services, SOLFO and GSO

(Iteration 3)

Figure 0-12: Finance Sample 1 Snippet

Auhood Alfaries 180 of 189

Figure 0-13: Finance Sample 2 Snippet

Auhood Alfaries 181 of 189

Figure 0-14: Snippet Of Financial GSO

Auhood Alfaries 182 of 189

Figure 0-15: Snippet of Financial SOLFO

Auhood Alfaries 183 of 189

Appendix D - Evaluation Spread Sheets

D.1 Iteration 1 Evaluation Sheets

Domain Expert (D.E.) Evaluation of Iteration 1: The following tables illustrate the Web
Service Term Model (WSTM) for Web Service 2, for the three methods as described in
Chapter 4.

 Figure 0-16: Method1-WS2 (XSD) Domain Expert Scoring

Auhood Alfaries 184 of 189

Figure 0-17: Method1& 2-WS2 (WSDL) Domain Expert Scoring

Auhood Alfaries 185 of 189

 Figure 0-18: Method3-WS2 (XSD & WSDL) Domain Expert Scoring

Auhood Alfaries 186 of 189

D.2 Iteration 2 Evaluation Sheets

Figure 0-19: Iteration 2 Financial Ontology Domain Expert Scoring

Auhood Alfaries 187 of 189

D.3 Iteration 3 Lexical Layer Evaluation Sheets

Figure 0-20: Iteration 3 Financial Gold Standard Ontology

Auhood Alfaries 188 of 189

Figure 0-21: Iteration 3 Financial SOLFO Gold Standard Evaluation

Auhood Alfaries 189 of 189

Figure 0-22: Iteration 3 Financial SOLFO Gold Standard Evaluation

