34 research outputs found

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Malware Detection in Internet of Things (IoT) Devices Using Deep Learning

    Get PDF
    Internet of Things (IoT) devices usage is increasing exponentially with the spread of the internet. With the increasing capacity of data on IoT devices, these devices are becoming venerable to malware attacks; therefore, malware detection becomes an important issue in IoT devices. An effective, reliable, and time-efficient mechanism is required for the identification of sophisticated malware. Researchers have proposed multiple methods for malware detection in recent years, however, accurate detection remains a challenge. We propose a deep learning-based ensemble classification method for the detection of malware in IoT devices. It uses a three steps approach; in the first step, data is preprocessed using scaling, normalization, and de-noising, whereas in the second step, features are selected and one hot encoding is applied followed by the ensemble classifier based on CNN and LSTM outputs for detection of malware. We have compared results with the state-of-the-art methods and our proposed method outperforms the existing methods on standard datasets with an average accuracy of 99.5%.publishedVersio

    A novel approach to data mining using simplified swarm optimization

    Get PDF
    Data mining has become an increasingly important approach to deal with the rapid growth of data collected and stored in databases. In data mining, data classification and feature selection are considered the two main factors that drive people when making decisions. However, existing traditional data classification and feature selection techniques used in data management are no longer enough for such massive data. This deficiency has prompted the need for a new intelligent data mining technique based on stochastic population-based optimization that could discover useful information from data. In this thesis, a novel Simplified Swarm Optimization (SSO) algorithm is proposed as a rule-based classifier and for feature selection. SSO is a simplified Particle Swarm Optimization (PSO) that has a self-organising ability to emerge in highly distributed control problem space, and is flexible, robust and cost effective to solve complex computing environments. The proposed SSO classifier has been implemented to classify audio data. To the author’s knowledge, this is the first time that SSO and PSO have been applied for audio classification. Furthermore, two local search strategies, named Exchange Local Search (ELS) and Weighted Local Search (WLS), have been proposed to improve SSO performance. SSO-ELS has been implemented to classify the 13 benchmark datasets obtained from the UCI repository database. Meanwhile, SSO-WLS has been implemented in Anomaly-based Network Intrusion Detection System (A-NIDS). In A-NIDS, a novel hybrid SSO-based Rough Set (SSORS) for feature selection has also been proposed. The empirical analysis showed promising results with high classification accuracy rate achieved by all proposed techniques over audio data, UCI data and KDDCup 99 datasets. Therefore, the proposed SSO rule-based classifier with local search strategies has offered a new paradigm shift in solving complex problems in data mining which may not be able to be solved by other benchmark classifiers

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Detecting IoT Attacks Using an Ensemble Machine Learning Model

    Get PDF
    Malicious attacks are becoming more prevalent due to the growing use of Internet of Things (IoT) devices in homes, offices, transportation, healthcare, and other locations. By incorporating fog computing into IoT, attacks can be detected in a short amount of time, as the distance between IoT devices and fog devices is smaller than the distance between IoT devices and the cloud. Machine learning is frequently used for the detection of attacks due to the huge amount of data available from IoT devices. However, the problem is that fog devices may not have enough resources, such as processing power and memory, to detect attacks in a timely manner. This paper proposes an approach to offload the machine learning model selection task to the cloud and the real-time prediction task to the fog nodes. Using the proposed method, based on historical data, an ensemble machine learning model is built in the cloud, followed by the real-time detection of attacks on fog nodes. The proposed approach is tested using the NSL-KDD dataset. The results show the effectiveness of the proposed approach in terms of several performance measures, such as execution time, precision, recall, accuracy, and ROC (receiver operating characteristic) curve

    Combining machine learning and metaheuristics algorithms for classification method PROAFTN

    Get PDF
    © Crown 2019. The supervised learning classification algorithms are one of the most well known successful techniques for ambient assisted living environments. However the usual supervised learning classification approaches face issues that limit their application especially in dealing with the knowledge interpretation and with very large unbalanced labeled data set. To address these issues fuzzy classification method PROAFTN was proposed. PROAFTN is part of learning algorithms and enables to determine the fuzzy resemblance measures by generalizing the concordance and discordance indexes used in outranking methods. The main goal of this chapter is to show how the combined meta-heuristics with inductive learning techniques can improve performances of the PROAFTN classifier. The improved PROAFTN classifier is described and compared to well known classifiers, in terms of their learning methodology and classification accuracy. Through this chapter we have shown the ability of the metaheuristics when embedded to PROAFTN method to solve efficiency the classification problems

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Machine Learning-Based Anomaly Detection in Cloud Virtual Machine Resource Usage

    Get PDF
    Anomaly detection is an important activity in cloud computing systems because it aids in the identification of odd behaviours or actions that may result in software glitch, security breaches, and performance difficulties. Detecting aberrant resource utilization trends in virtual machines is a typical application of anomaly detection in cloud computing (VMs). Currently, the most serious cyber threat is distributed denial-of-service attacks. The afflicted server\u27s resources and internet traffic resources, such as bandwidth and buffer size, are slowed down by restricting the server\u27s capacity to give resources to legitimate customers. To recognize attacks and common occurrences, machine learning techniques such as Quadratic Support Vector Machines (QSVM), Random Forest, and neural network models such as MLP and Autoencoders are employed. Various machine learning algorithms are used on the optimised NSL-KDD dataset to provide an efficient and accurate predictor of network intrusions. In this research, we propose a neural network based model and experiment on various central and spiral rearrangements of the features for distinguishing between different types of attacks and support our approach of better preservation of feature structure with image representations. The results are analysed and compared to existing models and prior research. The outcomes of this study have practical implications for improving the security and performance of cloud computing systems, specifically in the area of identifying and mitigating network intrusions

    Intelligent instance selection techniques for support vector machine speed optimization with application to e-fraud detection.

    Get PDF
    Doctor of Philosophy in Computer Science. University of KwaZulu-Natal, Durban 2017.Decision-making is a very important aspect of many businesses. There are grievous penalties involved in wrong decisions, including financial loss, damage of company reputation and reduction in company productivity. Hence, it is of dire importance that managers make the right decisions. Machine Learning (ML) simplifies the process of decision making: it helps to discover useful patterns from historical data, which can be used for meaningful decision-making. The ability to make strategic and meaningful decisions is dependent on the reliability of data. Currently, many organizations are overwhelmed with vast amounts of data, and unfortunately, ML algorithms cannot effectively handle large datasets. This thesis therefore proposes seven filter-based and five wrapper-based intelligent instance selection techniques for optimizing the speed and predictive accuracy of ML algorithms, with a particular focus on Support Vector Machine (SVM). Also, this thesis proposes a novel fitness function for instance selection. The primary difference between the filter-based and wrapper-based technique is in their method of selection. The filter-based techniques utilizes the proposed fitness function for selection, while the wrapper-based technique utilizes SVM algorithm for selection. The proposed techniques are obtained by fusing SVM algorithm with the following Nature Inspired algorithms: flower pollination algorithm, social spider algorithm, firefly algorithm, cuckoo search algorithm and bat algorithm. Also, two of the filter-based techniques are boundary detection algorithms, inspired by edge detection in image processing and edge selection in ant colony optimization. Two different sets of experiments were performed in order to evaluate the performance of the proposed techniques (wrapper-based and filter-based). All experiments were performed on four datasets containing three popular e-fraud types: credit card fraud, email spam and phishing email. In addition, experiments were performed on 20 datasets provided by the well-known UCI data repository. The results show that the proposed filter-based techniques excellently improved SVM training speed in 100% (24 out of 24) of the datasets used for evaluation, without significantly affecting SVM classification quality. Moreover, experimental results also show that the wrapper-based techniques consistently improved SVM predictive accuracy in 78% (18 out of 23) of the datasets used for evaluation and simultaneously improved SVM training speed in all cases. Furthermore, two different statistical tests were conducted to further validate the credibility of the results: Freidman’s test and Holm’s post-hoc test. The statistical test results reveal that the proposed filter-based and wrapper-based techniques are significantly faster, compared to standard SVM and some existing instance selection techniques, in all cases. Moreover, statistical test results also reveal that Cuckoo Search Instance Selection Algorithm outperform all the proposed techniques, in terms of speed. Overall, the proposed techniques have proven to be fast and accurate ML-based e-fraud detection techniques, with improved training speed, predictive accuracy and storage reduction. In real life application, such as video surveillance and intrusion detection systems, that require a classifier to be trained very quickly for speedy classification of new target concepts, the filter-based techniques provide the best solutions; while the wrapper-based techniques are better suited for applications, such as email filters, that are very sensitive to slight changes in predictive accuracy

    Umělá inteligence v kybernetické bezpečnosti

    Get PDF
    Artifcial intelligence (AI) and machine learning (ML) have grown rapidly in recent years, and their applications in practice can be seen in many felds, ranging from facial recognition to image analysis. Recent developments in Artificial intelligence have a vast transformative potential for both cybersecurity defenders and cybercriminals. Anti-malware solutions adopt intelligent techniques to detect and prevent threats to the digital space. In contrast, cybercriminals are aware of the new prospects too and likely to adapt AI techniques to their operations. This thesis presents advances made so far in the field of applying AI techniques in cybersecurity for combating against cyber threats, to demonstrate how this promising technology can be a useful tool for detection and prevention of cyberattacks. Furthermore, the research examines how transnational criminal organizations and cybercriminals may leverage developing AI technology to conduct more sophisticated criminal activities. Next, the research outlines the possible dynamic new kind of malware, called X-Ware and X-sWarm, which simulates the swarm system behaviour and integrates the neural network to operate more efficiently as a background for the forthcoming anti-malware solution. This research proposes how to record and visualize the behaviour of these type of malware when it propagates through the file system, computer network (virus process is known) or by observed data analysis (virus process is not known and we observe only the data from the system). Finally, a paradigm of an anti-malware solution, named Multi agent antivirus system has been proposed in the thesis that gives the insight to develop a more robust, adaptive and flexible defence system.Význam umělé inteligence (AI) a strojového učení (ML) v posledních letech rychle rostl a na jejich aplikacích lze vidět, že v mnoha oblastech, od rozpoznávání obličeje až po analýzu obrazu, byl učiněn velký pokrok. Poslední vývoj v oblasti umělé inteligence má obrovský potenciál jak pro obránce v oblasti kybernetické bezpečnosti, tak pro ůtočníky. AI se stává řešením v otázce obrany proti modernímu malware a hraje tak důležitou roli v detekci a prevenci hrozeb v digitálním prostoru. Naproti tomu kyberzločinci jsou si vědomi nových vyhlídek ve spojení s AI a pravděpodobně přizpůsobí tyto techniky novým generacím malware, vektorům útoku a celkově jejich operacím. Tato práce představuje dosavadní pokroky aplikace technik AI v oblasti kybernetické bezpečnosti. V této oblasti tzn. v boji proti kybernetickým hrozbám se ukázuje jako slibná technologie a užitečný nástroj pro detekci a prevenci kybernetických útoků. V práci si rovněž pokládme otázku, jak mohou nadnárodní zločinecké organizace a počítačoví zločinci využít vyvíjející se technologii umělé inteligence k provádění sofistikovanějších trestných činností. Konečně, výzkum nastíní možný nový druh malware, nazvaný X-Ware, který simuluje chování hejnového systému a integruje neuronovou síť tak, aby fungovala efektivněji a tak se celý X-Ware a X-sWarm dal použít nejen jako kybernetická zbraň na útok, ale i jako antivirové obranné řešení. Tento výzkum navrhuje, jak zaznamenat a vizualizovat chování X-Ware, když se šíří prostřednictvím systému souborů, sítí a to jak analýzou jeho dynamiky (proces je znám), tak analýzou dat (proces není znám, pozorujeme jen data). Nakonec bylo v disertační práci navrženo paradigma řešení proti malwaru, jež bylo nazváno „Multi agent antivirus system“. Tato práce tedy poskytuje pohled na vývoj robustnějšího, adaptivnějšího a flexibilnějšího obranného systému.460 - Katedra informatikyvyhově
    corecore