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ABSTRACT 

Data mining has become an increasingly important approach to deal with the rapid 

growth of data collected and stored in databases. In data mining, data classification 

and feature selection are considered the two main factors that drive people when 

making decisions. However, existing traditional data classification and feature 

selection techniques used in data management are no longer enough for such massive 

data. This deficiency has prompted the need for a new intelligent data mining 

technique based on stochastic population-based optimization that could discover 

useful information from data.  

 

In this thesis, a novel Simplified Swarm Optimization (SSO) algorithm is proposed as 

a rule-based classifier and for feature selection. SSO is a simplified Particle Swarm 

Optimization (PSO) that has a self-organising ability to emerge in highly distributed 

control problem space, and is flexible, robust and cost effective to solve complex 

computing environments. The proposed SSO classifier has been implemented to 

classify audio data. To the author’s knowledge, this is the first time that SSO and PSO 

have been applied for audio classification.  

 

Furthermore, two local search strategies, named Exchange Local Search (ELS) and 

Weighted Local Search (WLS), have been proposed to improve SSO performance. 

SSO-ELS has been implemented to classify the 13 benchmark datasets obtained from 

the UCI repository database. Meanwhile, SSO-WLS has been implemented in 

Anomaly-based Network Intrusion Detection System (A-NIDS). In A-NIDS, a novel 

hybrid SSO-based Rough Set (SSORS) for feature selection has also been proposed. 

The empirical analysis showed promising results with high classification accuracy 

rate achieved by all proposed techniques over audio data, UCI data and KDDCup 99 

datasets. Therefore, the proposed SSO rule-based classifier with local search 

strategies has offered a new paradigm shift in solving complex problems in data 

mining which may not be able to be solved by other benchmark classifiers. 
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CHAPTER 1. Background Information and Problem 

Statements 

In the emerging age of digital information we are overwhelmed with data, while our 

capability to analyse and interpret such huge datasets lags behind. Furthermore, it has 

been estimated that every 20 months the amounts of data stored in the world’s 

databases are doubled, which caused difficulties when trying to justify this figure in a 

quantitative sense [1]. Often, traditional data analysis, and interpretation of changing 

data, has become insufficient for data processing as the data volumes grow 

exponentially. In addition, due to the advancement of software capabilities and 

hardware tools that enable the automated data collection, as well as the decreasing 

trend in their cost, there has been a dramatic increase in the data being collected and 

stored in databases. Although in recent years information collection and storage has 

become easier and more inexpensive, great effort is required to extract relevant 

knowledge information from such large-scale databases. Therefore, a new generation 

of computational techniques and tools is required to support the extraction of useful 

knowledge from the rapidly growing volume of data. Hence, data mining becomes the 

reliable solution for elucidating the patterns that underlie it.  

 
Data mining is the application of specific algorithms that has been widely used for 

extracting patterns or models from data. Two main aspects in data mining are data 

classification and feature selection. Data classification classifies a data item into one 

of several predefined categorical classes. Feature selection can be defined as a process 

of choosing a small subset of features from the original set of features which is 

necessary and sufficient to describe the target concept. Other than the well-known 
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classical data mining techniques, heuristic approaches based on swarm intelligence 

algorithms have gained more attention and have been adopted in data classification 

problems in order to find a good solution. This thesis proposes and presents some new 

data mining approaches based on a population-based optimization algorithm for 

various data classification problems. The second topic being discussed in this thesis is 

about feature selection, which presents a new hybrid rough set reduction approach to 

feature selection. At this stage, this thesis is concerned with finding new approaches 

in both topics that contribute to the best classification accuracy; computation time is 

not taken into consideration. In this chapter, section 1.1 presents a brief discussion on 

data mining from the perspective of Knowledge Data Discovery (KDD). In section 

1.2, the motivation is described and the problem statement in this thesis is identified. 

Next, the objective and contribution of the thesis is stated in section 1.3, followed by 

the organisation of the thesis in section 1.4. 

 

1.1. Data Mining 

Data mining is the process of analysing data from different perspectives and 

summarising it into useful information. It blends traditional data analysis methods 

with sophisticated algorithms for processing large volumes of data. It has been widely 

used and unifies research in fields such as statistics, databases, machine learning and 

Artificial Intelligence (AI). Regarding that, data mining has been seen as an explosion 

of interest from both academia and industry to improve the process of visualising and 

understanding the pattern of the data. Data mining is the core part of the Knowledge 

Discovery in Database (KDD) process, which is essential to solve a problem in a 

specific domain [2]. Generally, KDD is the overall process of identifying valid, novel, 
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potentially useful and ultimately understandable patterns in data and converting it into 

useful information [3]. An overview of the steps constituting the KDD process is 

depicted in Figure 1.1. 

 

 

 

 

 

Figure 1.1. The processes of KDD [3] 

 
Data mining in KDD applies a specific algorithm to extract meaningful knowledge so 

that the discovered knowledge can be applied in the related area to increase working 

efficiency and also to improve the quality of decision-making. Data mining involves 

several steps such as data integration from various databases, data pre-processing, and 

induction of a model using a learning algorithm. Based on the requirements of the 

problem domain, various techniques that expose diverse kinds of patterns from a 

given dataset have been implemented in data mining. The most common techniques 

learned in data mining include data classification, data clustering, association rule 

discovery, and outlier detection.  

 

1.2. Motivation and Problem Statements 

As mentioned earlier, data mining has been widely used to solve various kinds of data 

classification problems. However, data classification has turned out to be one of the 

most pervasive problems that encompasses many diverse applications in the data 

mining field. These problems have attracted more active research in order to find 
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efficient approaches to address them, and the outcome of the research is still 

unsatisfactory. 

 
The ultimate goal of classification is to discriminate new data into the most likely of 

the specific categorical variable (the class) based on the induction model generated by 

the classifier. However, the classification problem has become very complicated and 

computationally infeasible when the number of possible different combinations of 

variables is so high. Hence, Swarm Intelligence (SI) algorithms are generally more 

suitable to solve these difficult problems because they are based on stochastic 

population-based approaches. In addition, they are also capable of avoiding becoming 

stuck in a local optimal and can find a global optimal solution [4].  

 
Many data mining approaches have been proposed using stochastic population-based 

algorithms such as Particle Swarm Optimization (PSO), Immune Algorithm (IA), 

Artificial Bee Colony (ABC) and Ant Colony Optimization (ACO). Nevertheless, 

there are problems in real-world that are NP-hard and combinatorial. Thus, 

evolutionary algorithm like PSO is generally more suitable to solve these difficult 

problems because of its stochastic nature. PSO is a well-known, biologically inspired 

computational search and optimization algorithm which is based on the social 

behaviours of bird flocks or schools of fish [5]. Because of its easy implementation, 

PSO has been successfully applied in many fields, particularly in optimization 

applications [6] and data mining [6-8]. This is due to its simplicity and efficiency 

when navigating a search space for optimal solutions. In terms of data mining, PSO 

has emerged as a promising technique to discover useful and interesting knowledge 

from databases [8]. Because of these advantages, the motivation of this thesis is to 

develop a new data mining technique based on the original PSO algorithm. 
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In many applications, people are dealing with massive data that contains multi-

dimensional attributes such as network intrusion data, stock market data, medical 

data, weather forecast data and much more. Thus, data classification is faced with a 

problem when it has to generate rules with many attributes or features. Obviously, the 

time required to generate rules is proportional to the number of features. In addition, 

irrelevant and redundant features can reduce both the predictive accuracy and 

comprehensibility of the induced rule and degrade the classifier speed (due to its high 

dimensionality). Thus, selecting the most relevant features is necessary, and this 

strategy is implemented to simplify the rules and reduce its computational time while 

retaining the quality of classification, as it represents the original features set.  

 
This thesis proposes and investigates the application of a new efficient population-

based optimization algorithm for data mining based on the PSO algorithm. The new 

technique is referred as a Simplified Swarm Optimization (SSO) algorithm. Like 

PSO, SSO solves data mining problems by simulating the social interaction among 

agents or particles in their population, such as birds flocking or fish schooling. To 

deal with the problem of feature selection, a new hybrid swarm intelligence-based 

rough set theory for feature selection using SSO is proposed as a way to improve 

some performance criterion, such as accuracy of data classification. In this thesis, the 

author is concerned with introducing a new population-based optimization technique 

for data mining and feature selection that contributes to maximising the classification 

accuracy. Therefore, computation time is not taken into consideration. 

 
Throughout this thesis, each algorithm was implemented using Java NetBeans IDE 

6.1 on the following system: 1.8GHz Pentium (R) processor and 2GB RAM running 

in Windows XP Professional. Five traditional classifiers were involved in the 
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experiments for comparison with the proposed technique. Those benchmark 

classifiers were implemented from Waikato Environment for Knowledge Analysis 

(WEKA) [1]. The employed classifiers were set with their default parameters as set in 

WEKA. 

 

1.3. Objectives and Contributions of the Thesis 

This section outlines the main objectives and contributions to the area of data mining, 

particularly in feature selection and classification problems.  

i. To develop and implement an efficient data classification technique based on 

an SSO algorithm to be implemented in audio datasets. 

ii. To develop and implement a novel Exchange Local Search (ELS) strategy to 

improve the performance of the SSO rule-based classifier on various datasets. 

iii. To develop and implement a new hybrid SSO-based Rough Set for feature 

selection and Weighted Local Search (WLS) strategy with SSO classifier to 

improve the Anomaly-based Network Intrusion Detection System (A-NIDS).  

 

1.4. Outline of the Thesis 

The remainder of this thesis is structured as follows: 

 
“CHAPTER 2 Literature Review of Feature Selection and Data Mining” 

comprehensively presents two main topics that cover the foundations of feature 

selection and data mining. These topics provide a review of recent work that has been 

conducted in feature selection (with more emphasis on Rough set theory) and in data 

mining (with more emphasis on traditional classification techniques).  
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“CHAPTER 3 Data Mining using the Particle Swarm Optimization Algorithm” 

provides some introduction to four population-based optimization algorithms (with 

more emphasis on the PSO). This chapter also reviews the implementation of PSO 

algorithms for data mining purposes in various applications and problem domains. 

Four approaches have been highlighted in PSO-based classification including: PSO 

for Rule-based Classification Model, Nearest Neighbor Classification, PSO as 

Optimizer within Other Learning Algorithms, and Clustering with PSO Algorithms. 

Also, some PSO variants for data classification are discussed in this chapter.  

 
“CHAPTER 4 Data Mining using Simplified Swarm Optimization Algorithm” 

presents the Simplified Swarm Optimization (SSO) algorithm that is based on 

traditional PSO for data mining. This is followed by the principle of the SSO 

algorithm; the SSO rule mining scheme; the SSO rule evaluation; and SSO rule 

pruning. The proposed algorithm is then applied to audio data and it is compared with 

Support Vector Machine (SVM) to investigate its competitiveness. 

 
“CHAPTER 5 The Proposed SSO with Exchange Local Search for Data 

Classification” presents a proposed Exchange Local Search (ELS) strategy to be 

incorporated with SSO for data classification. To show the applicability of the 

proposed approach, SSO with ELS (SSO-ELS) is then applied to 13 datasets obtained 

from public sources such as the UCI repository database. The performance is 

compared with and without ELS for SSO and PSO, and four other traditional 

classifiers including SVM, J48, PART and kNearest Neighbor. 

 
“CHAPTER 6 A Hybrid SSO-based Rough Set Reduction Method for Network 

Intrusion Detection Systems” introduces a proposed hybrid SSO-based rough set 
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reduction for features dimensionality reduction. This approach is specifically applied 

to solve the classification problem in Anomaly-based Network Intrusion Detection 

Systems (A-NIDS) due to its large amount of attributes. This is followed by the 

principle of the proposed SSO with Weighted Local Search (WLS) strategy for 

mining anomaly intrusion patterns. The experimental results, when compared with 

original SSO and PSO, and also with SVM and Naive Bayes, show the effectiveness 

of hybridizing SSO-WLS approaches for A-NIDS detection.  

 
“CHAPTER 7 Conclusions and Future Work” contains a summary, conclusion, 

limitations and future direction of the research conducted in this thesis.  
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CHAPTER 2. Literature Review of Feature Selection 

and Data Mining 

In recent years, the field of automated data mining has emerged as an important area 

of applied research when dealing with the voluminous data collected in various 

industries. This is due to the low cost and availability of larger storage devices. Thus, 

two major data mining tasks that must be solved are feature selection and 

classification. In this chapter, the investigation on several techniques of feature 

selection and data classification is continued, and comprehensive reviews on both 

topics are presented in section 2.1 and section 2.2. In this thesis, the new data mining 

algorithms based on the population-based optimization algorithm are proposed in 

Chapter 3.  

 

2.1. Feature Selection Overview 

Feature selection plays an important role in data pre-processing technique for data 

mining [2]. It is a process of finding a subset of features from the original set of 

features, and forming patterns in a given dataset to obtain the optimal one according 

to the given goal of processing and criterion. It reduces the number of features, 

removes irrelevant, redundant, or noisy data and brings immediate effects for 

applications: speeding up a data mining algorithm, improving mining performance 

such as classification accuracy, and improving results comprehensively.  

 
In the context of classification, feature selection can be structured into three fractions: 

filter method, wrapper method and embedded method [9]. Filter methods rely on the 

intrinsic properties of the training data to select some features without involving any 
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learning algorithm. Each feature is ranked according to some univariate metric, and 

only the highest ranking features are used while the remaining low ranking features 

are eliminated. Afterwards, this subset of features is presented as input to the 

classification algorithm. Therefore, feature selection is allowed to be performed only 

once, and then different classifiers can be evaluated. A number of multivariate filter 

techniques were introduced to overcome univariate problems in filter methods. 

 
Wrapper methods embed the model hypothesis search within the feature subset space. 

These methods begin by looking for the dependency from a suboptimal subset. Then 

this value is fed into the fitness function of the selected learning algorithm and 

evaluated in order to find the suitable features. These methods suffer from a high risk 

of overfitting and require huge computational cost. 

 
Meanwhile, in the third category of feature selection, namely, embedded methods, the 

search for an optimal subset of features is built into the classifier construction, which 

can be seen as a search in the combined space of feature subsets and hypotheses. 

Thus, their function is seen as more specific to a given learning algorithm. Embedded 

methods are less computationally intensive than wrapper methods due to the internal 

interaction with the classification model during the feature selection process.  

2.1.1. Feature Selection Problems 

The feature selection problem is more or less a special case of a much broader 

problem of subset selection. Suppose a large set of M items {xk,yk} where k = 1, 2,…., 

M consisting of n input variables xk,i where i = 1, 2,…., n and one output variable yk is 

given from which we need to find a small m subset being optimal in a certain sense. 

Fitness function (Fi) is computed from the values xk,i and yk , k = 1, 2,…., m to rank the 
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