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Abstract: Malicious attacks are becoming more prevalent due to the growing use of Internet of Things
(IoT) devices in homes, offices, transportation, healthcare, and other locations. By incorporating fog
computing into IoT, attacks can be detected in a short amount of time, as the distance between IoT
devices and fog devices is smaller than the distance between IoT devices and the cloud. Machine
learning is frequently used for the detection of attacks due to the huge amount of data available
from IoT devices. However, the problem is that fog devices may not have enough resources, such as
processing power and memory, to detect attacks in a timely manner. This paper proposes an approach
to offload the machine learning model selection task to the cloud and the real-time prediction task to
the fog nodes. Using the proposed method, based on historical data, an ensemble machine learning
model is built in the cloud, followed by the real-time detection of attacks on fog nodes. The proposed
approach is tested using the NSL-KDD dataset. The results show the effectiveness of the proposed
approach in terms of several performance measures, such as execution time, precision, recall, accuracy,
and ROC (receiver operating characteristic) curve.

Keywords: Internet of Things (IoT); machine learning; cybersecurity; DDoS

1. Introduction

Historically, only computers, mobile phones, and tablets were connected to the Internet.
The Internet of Things (IoT) today enables many kinds of devices and appliances (e.g.,
televisions, air conditioners, washing machines) to be connected to the Internet. IoT is
being used in several fields today, including healthcare, agriculture, traffic monitoring,
energy saving, water supply, unmanned air vehicles, and automobiles.

A three-layer IoT architecture is illustrated in Figure 1; from left to right: (1) thing layer,
(2) fog layer, and (3) cloud layer. The thing layer includes IoT devices from several domains,
including smart-homes, eHealth, smart vehicles, smart drones, and smart-cities. This layer
enables data collection while having limited resources such as bandwidth, processing,
energy, and memory. Next comes the fog layer, which is closer to the thing layer and may
contain some operational resources to manage real-time operations and rapid decision
making. Finally, the cloud layer facilitates the collection, processing, and storage of data
in various data centers. However, as it is far away from the thing layer, it may take a long
time to incorporate decisions in the thing layer.

According to a recent report from the International Data Corporation (IDC) (https:
//www.idc.com/, accessed on 20 March 2022), the amount of data generated by IoT devices
will reach 73 zeta bytes by 2025, up from 18 zeta bytes in 2019. A massive influx of data
opens up a lot of potential threats [1]. The problem is that IoT devices and their networks
tend to be insecure since they are typically under-powered, memory-limited, or insuffi-
ciently bandwidth-limited to perform basic security functions such as encryption. IBM
X-Force (https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-
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attacks/, accessed on 20 March 2022) reported in 2020 that attacks on IoT grew five-fold
over the previous year. Currently, IoT-enabled networks are at risk of losing privacy and
confidentiality due to malware and botnet attacks [2].

Figure 1. A three-layer Internet of Things (IoT) architecture.

For the IoT, several security solutions have been proposed, such as authentication [3],
detection, and prevention [4]. Introducing machine learning (ML) algorithms into the IoT
may alleviate concerns about security and privacy [5,6]. Today, it is crucial to decide where
to run which algorithms for fast decision making, such as on the cloud or the fog or the
thing layer. When all ML decisions are made in the cloud, IoT decisions may be delayed.
In other layers, such as the thing or fog layer, it may be difficult to apply ML solutions due
to their limited resources, such as bandwidth, processing, and energy.

Current research [7–12] indicates that deep learning algorithms are capable of detect-
ing IoT attacks more effectively than traditional machine learning algorithms. However,
only the cloud layer may have the resources to run these algorithms. In addition, these
algorithms are not always very effective in some situations, such as remote live operations
(e.g., remote surgery), since the system is supposed to make real-time decisions rapidly.
Previous work on IoT attacks [9,13] has shown that a machine learning technique such as
support vector machine (SVM) can only provide meaningful results if it is combined with
a feature extraction/reduction algorithm or optimization algorithm. This combination of
algorithms fails to meet the low resource requirement. ML techniques such as decision
trees, naïve Bayes, K-nearest neighbors (KNN), and others are extremely robust for applica-
tions such as offline or non-interactive predictions between small datasets. These models,
however, are considered weak when applied to real-time predictions. Studies conducted
in the state of the art [14–16] report that the detection rate is quite low when using these
classifiers to detect IoT attacks.

The paper proposes an ensemble model for an IoT system with limited bandwidth,
processing power, energy, and memory (e.g., in the fog layer) to detect IoT attacks. Denial
of service (DoS), authentication attacks, and probe attacks are taken into account. Moreover,
no additional feature extraction or dimensional reduction algorithm is used to increase
detection rates. This model is best suited to the real-time, quick detection of IoT attacks. In
the proposed approach, there are two important steps: (1) selecting the best ensemble model
that has a short execution time and high performance (e.g., accuracy), and (2) running the
best model to achieve a short delay when applying the decision. Firstly, we perform the
first step in the cloud, as more resources are required for selecting the best ensemble model,
and the second step is performed in the fog layer, which has a low delay for real-time
applications.

In this paper, extensive data analysis experiments are performed on the NSL-KDD
dataset (https://www.unb.ca/cic/datasets/nsl.html, accessed on 20 March 2022). The

https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
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dataset represents IoT attacks on a network in real time, and it is an upgraded version
of the original KDD-99 dataset. The results show a high level of accuracy in a minimum
amount of time with the fewest possible resources needed. The paper is organized as
follows: Section 2 presents the related work and the background, Section 3 presents our
proposed approach, Section 4 presents simulation scenarios, Section 5 provides the results
and, finally, Section 6 concludes the paper.

2. Background and Related Work
2.1. IoT-Specific Attacks Overview

From IoT devices, data can be collected which can then be processed and monitored,
depending on an application (e.g., e-healthcare or industrial) located in a cloud or fog layer.
There are several attacks related to the IoT in the literature. Denial of service (DoS) attacks,
authentication attacks, and probe attacks are presented below:

1. A denial of service (DoS) attack poses the greatest threat to IoT devices and servers
with open ports [17,18]. There are several types of DoS attacks such as Smurf, Neptune,
and Teardrop;

2. An authentication attack is an attack against privileged access. A remote to the user
(R2U) attack (such as HTTPtunnel and FTP_write) occurs when an intruder sends
malformed packets to a computer or server to which he/she does not have access.
User-to-root (U2R) attacks (such as Rootkit) occur when a malicious intruder attempts
to gain access to a network resource by posing as a normal user and then accessing it
using full permission;

3. In a probe attack, an intruder runs a scan of a network device to determine potential
vulnerabilities in the design of its topology or port settings and then exploits those in
the future to gain illegal access to confidential information. There are several types of
probe attacks, such as IPsweep, Nmap, and Portsweep.

2.2. ML-Specific Related Work on Security and Privacy

A comparison of related work on ML-specific attack detection can be seen in Table 1,
including the ML (machine learning)/DL (deep learning) used, the pre-processing fea-
tures, and performance analysis performed. During the pre-processing step, encoding (E),
scaling (S), normalization (N), and dimensionality reductions (D) are taken into account.
Furthermore, as part of the performance analysis, accuracy, receiver operating characteristic
(ROC) curve, F-score, Matthews correlation coefficient (MCC), and detection rate (DR) are
considered.

In [13,19,20], decision trees and rule induction are used to explain under what con-
ditions a specific type of attack (DoS, authentication attacks, and probe attacks) occurs
on a network. In this approach, encoding is used as a pre-processing technique, while
accuracy is used to evaluate the effectiveness of the method. Although this is a valuable
state-of-the-art approach, it cannot guarantee that any rules from decision trees will be
applicable for large sets of data because overfitting poses the greatest risks. Further, in [21],
principal component analysis (PCA) is utilized with a decision tree to detect and investigate
the reason of the anomalies.

The previous works of [7,8,13,22,23] show that attacks can be predicted with high
accuracy by using deep learning neural networks, either as a standalone technology [7,8]
or in combination with optimization [22,23] or machine learning algorithms [9,13]. More
precisely, [9,13] combine artificial neural networks (ANNs) with support vector machines
(SVMs), which provide significantly higher detection rates than standalone deep learning
or machine learning algorithms. Particularly, [13] develops the hybridization by including
the SVM with ANN but also combining that fusion with a genetic algorithm (GA) and
particle swarm optimization (PSO). This hybridization achieves a 99.3% accuracy rate.
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Table 1. Related Work. The letters E, S, N, and D stand for encoding, standardization, normalization,
and dimensional reduction, respectively. Further, accuracy, Matthews correlation coefficient, and
detection rate are denoted as A, MCC, and DR, respectively.

Reference ML/DL
Algorithm Used

Features Used
(X) or Not (×)

Analysis Performed
(X) or Not Performed (×)

[19,20] Decision Tree
+ Rule Induction

E(X), S(×),
N(×), D(×)

A(X), ROC(×), FScore(×),
MCC(×), DR(×)

[7,8] Deep Neural
Network (DNN)

E (×), S(×),
N(X), D(×)

A(×), ROC (×), FScore(X),
MCC(×), DR(×)

[22,23] Optimization
+ DNN

E(X), S(×),
N(X), D(X)

A(X), ROC (×), FScore(X),
MCC(×), DR(×)

[9,13] SVM-ANN
+ hybrid optimization

E(×), S(×),
N(X), D(×)

A(×), ROC (×), FScore(X),
MCC(X), DR(X)

[21] PCA
+ Random Decision

E(×), S(×),
N(X), D(X)

A(X), ROC (X), FScore(×),
MCC(×), DR(X)

[10,11] Dimensionality
Reduction + DNN

E (×), S(×),
N(X), D(X)

A(X), ROC(×), FScore(X),
MCC(×), DR(X)

[24] GA-based Latent
Dirichlet Allocation

E(X), S(×),
N(×), D(×)

A(X), ROC (×), FScore(X),
MCC(×), DR(X)

[25] Autoencoder based
LSTM classifier

E (X), S(X),
N(X), D(X)

A(×), ROC (×), FScore(X),
MCC(×), DR(×)

[26] Multinomial Logistic
Regression

E(×), S(×),
N(×), D(×)

A(×), ROC (X), FScore(×),
MCC(×), DR(×)

[27] Ensemble Learning
with XGboost

E (X), S (×),
N(×), D(×)

A(X), ROC (×), FScore(×),
MCC(×), DR(×)

The dimensionality reduction factor is also explored in a wide variety of works. The
studies of [10] and refs. [11,12] used principal component analysis (PCA) with ANN
and showed an efficacy of 91 percent F1-scores. Researchers from [28] have also explored
dimensionality reduction with one-hot encoder and combined outlier analysis, which
increased performance by 2.96 percent and 4.12 percent higher than CNN and RNN.
This approach to dimensionality reduction with machine learning yields a mix of higher
and average results. In addition, it is still unclear how many dimensionality reduction
algorithms will fit within a single model to provide an optimal outcome. A combination of
latent Dirichlet allocation (LDA) and a genetic algorithm is used in [24], which provides a
below-average accuracy rate of 88.5 percent and a false positive rate of 6 percent.

The results are improved even more by techniques such as logistic regression and
autoencoder. The study of [25] uses an autoencoder with LSTM and carries out experiments
on a number of autoencoders, hitting the AUC score of 96 percent. Multinomial logistic
regression provided a 99 percent ROC for finding anomalies in [26]. The idea of ensemble
learning has also been explored by several authors. One of the appealing results, with
99.6 AUC, is provided by using XGBoost in [27].

The literature review covered almost all taxonomies of machine learning, from decision
trees to neural networks, and from regression (logistic) techniques to ensemble learning.
Following an extensive assessment, it was determined that a deep neural network with
some optimization algorithm or ensemble learning could provide an impressive detection
rate and the least false alarm rate of attacks. Additionally, feature engineering is also
required to improve this model.
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2.3. Voting and Stacking Techniques

The voting process, as its name suggests, ensembles the results of a number of weak
classifiers by choosing the classifier with the greatest number of common traits as the final
one. The advantage of this method is that it ignores errors of misclassified classifiers. As
an example, to solve a classification problem through voting, a range of weak classifiers
is selected, including K-nearest neighbor (KNN) classifiers and decision trees. Both naïve
Bayes and K-nearest neighbour classifiers yield the same class label as a result, which
differs from naïve Bayes. Following this, the maximum number of common votes from the
K-nearest neighbor classifier and decision tree will be considered.

Stacking is a method of ensemble learning that takes into account heterogeneous
weak classifiers, which means that different machine learning algorithms are combined. In
addition, in stacking, there is the concept of a meta-layer that combines the classifier results
from the base layers using a meta-layer model. For instance, to solve a classification problem
through stacking, a range of weak classifiers, such as K-nearest neighbour classifiers,
decision trees, and naïve Bayes classifiers are selected at base layers, and their results are
combined through a neural network classifier as a meta-layer model. In the meta-layer
model, the neural network will take inputs from the base layer and provide the outputs of
these three weak classifiers with a final prediction.

2.4. Ensemble Machine Learning-Based Attack Detection

The authors of [29] demonstrate how ensemble machine learning, neural networks,
and kernel methods can be used to detect abnormal behavior in an IoT intrusion detection
system. In this study, ensemble methods outperform kernel and neural networks in terms
of accuracy and error detection rates.

To detect webshell-based attacks, ensemble machine learning is used in [30]. In
webshell attacks, a malicious script installed on a web server for remote administration
executes malicious code written in popular web programming languages. Ensemble
techniques, including random forest and extremely randomized trees, are applied in this
work, and voting is used in order to improve their performance. The study concluded
that random forests and extremely randomized trees are best for IoT scenarios involving
moderate resources (CPU, memory, etc). Nevertheless, voting is proved to be most effective
in scenarios requiring heavy resources. In [31], cyberattacks are detected using ensemble
methods for IoT-based smart cities. Ensemble methods were found to be more accurate than
other machine learning algorithms, including linear regression, support vector machines,
decision trees, and random forests.

Further, anomalies are detected using ensemble methods applied to software-defined
networking (SDN) in IoT at [32]. In SDN, IoT networks could be controlled from a central
server called a controller [33,34]. Further, in [35], DDoS attacks are detected by using an
ensemble method that uses traffic flow metrics to classify attacks. The applied approach
yields fewer false alarms and a high degree of accuracy. Moreover, cyberattacks are detected
by enabling cloud–fog architecture on the Internet of Medical Things (IoMT) using ensemble
machine learning, in [36]. In this work, decision trees, naïve Bayes, and random forest
machine learning techniques are used as a base classifier, and XGBoost is used at the next
level. This method achieved a high detection rate of 99.98% on the NSL-KDD dataset.

The detection of anomalies in the smart home is carried out by ensemble machine
learning rather than binary classification in [37]. Ensemble machine learning was able to
detect anomalies in categorical datasets with minimal false positives. In [38], adaptive
learning is used to boost the intelligence of ensemble machine learning for the Internet of
Industrial Networks. This approach proved effective under ROC curve calculations.

2.5. IoT System with Cloud and Fog

Figure 1 illustrates the benefits of using the cloud for data processing because it may
have the resources necessary to perform complex computations. The cloud, however, has
several inherent weaknesses, including high costs, long latency, and limited bandwidth [39].
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Further, due to proximity to IoT devices, fog is well suited for solving a variety of issues
including long latency, communication, control, and computation [40]. With fog computing,
time-sensitive data can be stored and analyzed locally [41]. Furthermore, by reducing the
amount and distance of data sent to the cloud, IoT applications can be made more secure
and private [42,43].

Researchers have employed a number of approaches and techniques to overcome
data transfer challenges in fog, including encryption-based data transfer, as described
in [44,45]. Furthermore, several researchers have proposed methods to improve security in
fog, including game-based security [46]. However, these works do not have the advantage
of functioning in real time. Currently, researchers are developing a method for predicting
real-time scenarios and minimizing the overall time factor by balancing cloud computing
with fog computing and optimizing the trade-off between the two (e.g., [47]). Likewise,
this approach is used in our paper to move resource-intensive and time-sensitive tasks to
the cloud and real-time tasks to the fog layer.

3. Proposed Approach

Our objective is to use ensemble machine learning techniques for detecting attacks in
an IoT system. This is because deep neural networks require substantial resources, such as
memory. The goal is to come up with the best ensemble method and to apply it for real-time
attack detection. Figure 2 outlines the proposed approach with three layers: thing, fog and
cloud. It involves the following three steps (also shown in Figure 2): (1) data collection
at the cloud layer, (2) running the ensemble algorithm on the cloud and selecting the best
model, and (3) running the best selected algorithm in the cloud. The description of the
above tasks is given below.

1. Data collection at Cloud Layer
This step involves collecting data from the thing layer and passing it to the cloud layer.
To accomplish this, data from the thing layer can first be transported to the fog layer.
The fog layer can then transport it to the cloud layer. While transporting the data to
the cloud layer, the fog layer can also filter data to decide which data to be transported
to the cloud. IoT attacks can be predicted using the following attributes: (1) login
details, (2) the fields of network data packets, such as fragment details, protocol type,
source and destination address, (3) service type, (4) flags, and (5) duration. We provide
detailed information about the data used in our simulation in the next section.

2. Selecting a best model on the cloud
The objective of this step is to combine various basic machine learning classifiers
(such as naïve Bayes, KNN, and decision trees) with ensemble techniques (such as
stacking, bagging, and voting) to obtain optimal results (accuracy, precision, execution
time). As this is a time-consuming step, we recommend running it in the cloud. In
addition, we simply apply the basic machine learning classifiers, as they require a
short execution time.
Figure 3 illustrates this step by including four layers: (1) the data layer, (2) the base
layer, (3) the meta-layer, and (4) the method selection layer. In the data layer, collected
data from the previous step is pre-processed and fed into the base layer. The base layer
applies different combinations of base classifiers, such as naïve Bayes (B1), decision
trees (B2), and KNN (B3). The results of these combinations are then fed into the meta
layer, where ensemble methods, such as stacking (E1), bagging (E2), and voting (E3),
aggregate the outcomes. Each ensemble method is evaluated in terms of accuracy,
precision, recall, and ROC and execution time. Further, the model with a combination
of base classifiers and an ensemble method that yields the best results is selected.
Algorithm 1 describes the above-proposed approach in detail. The input parameters
of the algorithms are: (1) base classifiers (i.e., B = B1, B2, B3, . . . Bn), (2) ensemble
methods (i.e., E = E1, E2, E3, . . . Em), and (3) training dataset (D). At the first two
lines of the algorithm, the output and the result (i.e., variable OUTPUT and Result in
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Algorithm 1) are initialized to NULL. The third line initializes the execution time to
the maximum value.
In the fourth line, we store all the combinations of the base classifiers (i.e., using
the function findAllCombinations) in variable C. The proposed approach aims to
determine the best combination and the best ensemble method. Therefore, in line 5,
we iterate each of the combinations, and then, again, in line 7, each base classifier
in the corresponding combination is iterated. Each base classifier is applied to the
training dataset (D) with the outcome being stored in o (line 8).
Line 10 involves an iteration of the ensemble methods and the application of each
ensemble method to the outcome (o) at step 11. At line 12, the ensemble result is
calculated in terms of accuracy, precision, recall, etc. Further, at line 13, the execution
time of the combination of base classifiers and an ensemble method is calculated. The
new result (r) and execution time (time) is then compared to the previous best result
(Result) and time (ExcecutionTime). If this is the best result so far, the corresponding
combination and ensemble method is stored in the output (OUTPUT); see line 14.
Further, the result is stored in line 15. In the end, the best output is returned at line 21.

3. Running the best model on the fog layer
This step involves executing the model selected in the previous step over the fog
layer with the real-time data collected from the thing layer. The model consists of a
combination of base classifiers and an ensemble method.

Figure 2. Proposed approach.

Figure 3. Selection of an ensemble method.
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Algorithm 1: Find a best model
procedure FINDABESTMODEL(B, E, D)

// B← B1, B2, B3, . . . Bn. Here, B1, B2, B3, . . . Bn are Base
Classifiers.

// E← E1, E2, E3, . . . Em. Here, E1, E2, E3, . . . Em are Ensemble
methods.

// D is the training dataset.
1 OUTPUT ← NULL;
2 Result← NULL;
3 ExecutionTime← MAX;
4 C ← f indAllCombinations(B);
// Find all the combinations of the Base Classifiers (B).

5 foreach c ∈ C do
// Iterate each combination.

6 o = 0; // Initialize an outcome.
7 foreach Ba ∈ c do

// Iterate each Base Classifier in c.
8 o ← o, ApplyBaseClass f ier(Ba, D);

// Apply Ba over dataset D and store the outcome of each
Ba in the form of the ROC curve or any performance measure
in o.

9 end
10 foreach Ea ∈ E do

// Iterate each Ensemble method.
11 e← applyEnsembleMethod(Ea, o) ;

// Apply Ensemble Method Ea on o.
12 r ← f indResult(e);

// Find the result in form of ROC or any other Performance
measures

13 time← f indExcecutionTime(c, Ea);
// The execution time of the combination of base
classifiers (c) and an ensemble method (Ea)is calculated

14 if isResultBetter(r, time, Result, ExecutionTime) then
// If r and time is better than Result and
ExecutionTime.

15 OUTPUT ← c, Ea;
// Store the base classifiers and Ensemble method over
OUTPUT.

16 Result← r;
17 ExecutionTime← time;
18 end
19 end

20 end
21 Return : OUTPUT;

// Return the best model with base classifiers and an ensemble
method

The proposed approach to include cloud–fog/edge architecture is derived from the
analysis of an NGIAtlantic EU project [48], in which cross-Atlantic experimental validation
is proposed for intelligent SDN-controlled IoT networks. In this project, IoT devices
transmit data to an IoT application in the cloud over the Internet via a gateway (located at
edge/fog devices) whose security and latency are enhanced by running secure network
functions. Our approach is a practical solution in real-time for such a scenario since, in
production IoT networks, fog/edge nodes do not have a lot of resources to run heavy-
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weight algorithms that require a lot of resources. Therefore, if only the trained model is
run in the fog layer (step 3, above), the fog node’s resource requirements will be lowered,
which is practical. Furthermore, since the cloud layer has plenty of resources, it makes
sense to train the data there, as described in steps 1 and 2.

4. Simulation Environment

This section presents the simulation environment in terms of server configuration,
dataset description, cloud and fog data separation, and simulated base classifier and
ensemble methods.

4.1. Server Configuration

The proposed framework with fog and cloud nodes is tested on a server with a CPU
Core E7400 processor and 3.00 GB of RAM and a 32-bit operating system with 2.80 GHz.
The proposed ensemble algorithm is implemented on the cloud node and the best model is
run on the fog node. The Weka platform is used to run the experimentation at the cloud
layer and the real-time detection of IoT attacks at the fog layer.

4.2. Dataset Description

The NSL-KDD dataset (https://www.unb.ca/cic/datasets/nsl.html, accessed on 20
March 2022) is used for the simulation of this work. It contains 41 features to describe
each specific entity in an IoT network. Details on network intrusions with these 41 features
can be segmented into computational information (service, flag, land, etc.), content-based
information (login information, root shell information, etc.), duration-based (such as dura-
tion from host to destination transfer, error rates), and host-based information (host and
destination ports and counts information).

In Figure 4, the NSL-KDD dataset is represented by two layers: (1) the inner layer
represents different types of IoT attacks in the dataset, such as Probe, DoS, U2R, and R2L;
(2) the outer layer represents examples of attacks within each category. Attacks such as
Saint, Satan, Nmap, and portsweep, which can be found in Figure 4, come under the Probe
IoT attack category. In these attacks, the attacker scans a network device to determine
potential weaknesses in its design, which are subsequently exploited in order to gain access
to confidential information, as described in Section 4.

Figure 4. Layerwise NSL-KDD dataset description.

https://www.unb.ca/cic/datasets/nsl.html
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Likewise, attacks such as Neptune, Teardrop, Worm, and Smurf fall into the category
of DoS attacks. These attacks cause a denial of service when an attacker consumes resources
unnecessarily, making the service unavailable for legitimate users. Moreover, Sendmail,
Multihop, and phf belong to R2L (remote-to-user) attacks, while Perl, text, and sqlattack
belong to U2R (user-to-root) attacks. In Figure 4, variables are underlined according to
their segment. Most variables in this dataset are nominal. There are three basic protocol
types, TCP (transmission control protocol), UDP (user datagram protocol), and FTP (file
transfer protocol), that exist in the dataset.

4.3. Data Separation for the Cloud and Fog Layers

Our proposed scheme uses the cloud layer to keep track of historical data about
network connections associated with IoT attacks, while the fog layer analyzes real-time
data. Furthermore, the cloud layer consists of the target variable and its associated labels,
whereas the fog layer requires this variable to be predicted for new entries or labels.
Training and testing data segments are provided in the NSL-KDD dataset source. For
experimentation, training data is used as cloud data, and testing data as fog data. Further,
a significant subset of the NSL-KDD dataset is used in the cloud layer for training and
validation, while the rest of the unlabeled data is considered for real-time processing in
the fog layer for testing. Moreover, K-cross validation is used with an 80:20 ratio at the
cloud layer.

4.4. Simulated Base Classifiers and Ensemble Methods

Simulating the proposed approach included the use of five machine learning classifiers
and two ensemble methods. The classifiers used are: (1) decision tree (DT), (2) random
forest (RF), (3) K-nearest neighbors (KNN), (4) logistic regression (LR), and (5) naïve Bayes
(NB), while ensemble techniques are voting and stacking. Table 2 shows the detail of each
combination of base classifiers in the base layer. A total of 10 different model combinations
are tested. The models are listed in Table 2. This is because we selected five base classifiers,
and we created combinations of two. Therefore, we end up with 10 models (i.e., 5C2).

Table 2. Base classifier combinations: decision tree (DT), random forest (RF), K-nearest neighbor
(KNN), logistic regression (LR), naïve Bayes (NB).

Model Base Classifier Combinations

1 DT RF KNN
2 RF KNN LR
3 KNN LR NB
4 LR NB DT
5 NB DT RF
6 DT KNN LR
7 RF LR NB
8 KNN NB DT
9 LR DT RF

10 NB RF KNN

5. Results and Analysis

Here, we evaluate the results of the proposed approach for the cloud and fog layers
using three factors: (1) execution time, (2) performance measures, and (3) error associated
with the final model. On the cloud layer, a larger amount of data (training) is used to build
models and conduct experiments. Testing data is considered new data and is tested on the
fog layer. In the cloud layer, the best model is selected, and in the fog layer, it is evaluated
using real-time data. Our first objective is to summarize the results, including the cloud
layer, and the method by which model 8 (distributed in Table 2), with an ensemble method,
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was selected to be applied to the fog layer. Following that, we show the results obtained
from the real-time data in the fog layer.

5.1. Cloud Layer Result Analysis
5.1.1. Execution Time

Figure 5 displays the execution time for voting and stacking ensemble methods over
all the models described in Table 2. The X-axis in Figure 5 refers to the duration in seconds
to execute a model, while the Y-axis refers to the model number. Compared to the voting
ensemble method, stacking takes a much higher execution time. According to our results,
model number 8, with the voting technique, shows minimal execution time (9.96 s), with
KNN, NB, and DT used as base classifiers.

Figure 5. Execution times of all models.

5.1.2. Performance Measures

Figure 6 shows overall performance as measured by kappa, F-measure, and the ROC
area. It shows that all the models have values greater than 0.99, with model 8 providing
the kappa value 0.991, the F-measure value 0.995, and the ROC area 0.999. Figure 7 shows
the errors with voting as an ensemble method in terms of mean absolute error, root mean
square error, relative absolute error, and root-relative squared error. Model 1, with voting,
exhibits significantly fewer errors than any other model. In this model, DT, RF, and K-NN
are used as base classifiers, and voting is used as an ensemble technique. In spite of this,
we selected model 8 with voting to run in the fog layer, as it performed well in terms
of execution times and other performance parameters, as shown in Figure 6. Based on
Figure 7, the root-relative squared error in model 8 with voting has the greatest impact, of
27.94 percent, and the mean absolute error has the least impact, of 0.6 percent.

Figure 6. Performance of all models.
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Figure 7. Errors associated with all the models.

To verify further, we calculate the performance of model 8 in terms of precision, F-
measure, MCC, and PRC area (Figure 8), in addition to all other metrics. Through the
Y-axis, the result is accurate to three decimal places. The most significant performance
metric is MCC, which indicates how random or real the prediction is. It ranges from −1 to
1. Model 8’s values in the experiment are typically closer to 99.99 percent. In general, model
8 with voting is highly optimized to run on the fog layer, according to the requirements of
real-time execution and excellent performance.

Figure 8. Performance of the selected model.
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We found that model number 8, using K-nearest neighbor, naïve Bayes, and decision
trees as the base classifiers outperforms all other models with respect to execution time
and performance metrics (such as kappa, F-measure, ROC, and MCC). Since time is an
important factor in the selection of any model, the voting ensemble technique determines
that model 8 takes the least time: 1.15 s. Additionally, kappa, F-measure, ROC, and MCC
have maximum values of 6.39, 98.20, 99.60, and 96.40, respectively. There is also a mean
absolute error of 7.78 percent, a root mean square error of 17.64 percent, a relative absolute
error of 15.87 percent, and a root-relative squared error of 35.63 percent. Further, the
root-relative squared error of model 8 is 27.94 percent, and the minimum impact is 0.6
percent. In fact, model 8 is the most time-efficient and resource-intensive model, which is
why it has the greatest impact.

5.2. Fog Layer Result Analysis

With the new data now being included, we measure the performance of model 8,
with this model having KNN, NB, and DT as the base classifiers, as well as voting as an
ensemble model.

5.2.1. Performance Measures

Performance measures such as kappa, F-measure, and ROC indicate how well the
model performs in the fog layer. Figure 9 illustrates that all performance indicators in the
selected model are almost equal and at the top. The values are 96.39, 98.20, 99.60, and 96.40
for kappa, F-measure, ROC, and MCC, respectively.

Figure 9. Performance on the fog node (using a model with KNN, NB, and DT as the base classifiers
as well as voting as an ensemble method).

5.2.2. Errors Associated

Figure 10 represents the mean absolute error (MAE), root mean square error (RMSE),
relative absolute error (RAE), and root-relative squared error (RRSE). Our experiment
yielded mean absolute error, root mean square error, relative absolute error, and root-
relative squared error values of 7.78, 17.64, 15.87, and 35.63 percent, respectively.
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Figure 10. Associated errors on the fog node (using a model with KNN, NB, and DT as the base
classifiers as well as voting as an ensemble method). Here, MAE stands for mean absolute Eeror,
RMSE stands for root mean square error, RAE stands for root absolute error, and RRSE stands for
root-relative squared error.

5.2.3. Execution Time and CPU Usage

Along with the previously discussed performance metric, we also calculated the
execution time of the chosen model, as well as all other models (not selected at the cloud
layer) using voting as an ensemble method on the fog node. This execution time is shown in
Figure 11. This is to determine whether we selected the correct model in terms of execution
time. The fog node execution time of model 8 with voting was the fastest of all models.

Figure 11. Execution time of all the models on the fog node.
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Additionally, we calculated the CPU consumption within the fog layer. Less than 10%
of the CPU is consumed by the fog layer. Therefore, our method does not require additional
resources from fog nodes. Moreover, our approach has a low execution time. This shows
that our approach is highly cost-effective.

6. Conclusions

This study proposes an approach to offload the ensemble machine learning model
selection task to the cloud and the real-time prediction task to fog nodes. Using this
technique, the cloud can handle more resource-intensive tasks and the fog nodes can
handle real-time computations to simplify and reduce real-time attack detection. The
proposed approach has been tested on the NSL-KDD dataset. Using a range of performance
indicators, such as kappa, F-measure, ROC, and MCC, our results showed that the selected
model in the cloud layer performed well in the fog layer. Moreover, the selected model in
the fog node took a minimum of 1.15 s in the experiments. The research also shows that the
ensemble method with voting takes less time to execute than stacking.

Our study used the NSL-KDD dataset. Our future plans are to collect data from
real testbed emulation. Currently, there are several testbeds available in the EU and the
US [49,50], such as Fed4Fire (https://www.fed4fire.eu/, accessed on 20 March 2022),
COSMOS (https://cosmos-lab.org/, accessed on 20 March 2022) (Cloud-Enhanced Open
Software-Defined Mobile Wireless Testbed for City-Scale Deployment), and POWDER
(https://powderwireless.net/, accessed on 20 March 2022) (Platform for Open Wireless
Data-Driven Experimental Research). We will create an edge/fog computing use case
on these testbeds and run our proposed approach in an IoT scenario presented in an
NGIAtlantic project [48].
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for webshell detection in Internet of things environments. In Transactions on Emerging Telecommunications Technologies; Wiley:
Hoboken, NJ, USA, 2020; p. e4085. [CrossRef]

31. Rashid, M.M.; Kamruzzaman, J.; Hassan, M.M.; Imam, T.; Gordon, S. Cyberattacks Detection in IoT-Based Smart City Applications
Using Machine Learning Techniques. Int. J. Environ. Res. Public Health 2020, 17, 9347. [CrossRef]

32. Tsogbaatar, E.; Bhuyan, M.H.; Taenaka, Y.; Fall, D.; Gonchigsumlaa, K.; Elmroth, E.; Kadobayashi, Y. SDN-Enabled IoT Anomaly
Detection Using Ensemble Learning. In Artificial Intelligence Applications and Innovations; Maglogiannis, I., Iliadis, L., Pimenidis,
E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 268–280.

http://dx.doi.org/10.1145/3136825.3136874
http://dx.doi.org/10.1109/SPACES.2015.7058223
http://dx.doi.org/10.1109/ICASID.2019.8925239
http://dx.doi.org/10.1145/3386263.3407586
http://dx.doi.org/10.1016/j.iot.2021.100365
http://dx.doi.org/10.1109/CSNET.2018.8602689
http://doi.org/10.3390/electronics9040692
http://dx.doi.org/10.3390/s22010241
http://dx.doi.org/10.1002/ett.4085
http://dx.doi.org/10.3390/ijerph17249347


Future Internet 2022, 14, 102 17 of 17

33. Sharma, S. Towards Artificial Intelligence Assisted Software Defined Networking for Internet of Vehicles. In Intelligent Technologies
for Internet of Vehicles; Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., Markakis, E.K., Eds.; Springer International
Publishing: Cham, Switzerland, 2021; pp. 191–222. [CrossRef]

34. Latif, S.A.; Wen, F.B.X.; Iwendi, C.; Li, F.; Wang, L.; Mohsin, S.M.; Han, Z.; Band, S.S. AI-empowered, blockchain and SDN
integrated security architecture for IoT network of cyber physical systems. Comput. Commun. 2022, 181, 274–283. [CrossRef]

35. Rambabu, K.; Venkatram, N. Ensemble classification using traffic flow metrics to predict distributed denial of service scope in the
Internet of Things (IoT) networks. Comput. Electr. Eng. 2021, 96, 107444. [CrossRef]

36. Kumar, P.; Gupta, G.P.; Tripathi, R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for
IoMT networks. Comput. Commun. 2021, 166, 110–124. [CrossRef]

37. Khare, S.; Totaro, M. Ensemble Learning for Detecting Attacks and Anomalies in IoT Smart Home. In Proceedings of the 2020 3rd
International Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA, 24–26 June 2020; pp. 56–63.
[CrossRef]

38. Hung, Y.H. Improved Ensemble-Learning Algorithm for Predictive Maintenance in the Manufacturing Process. Appl. Sci. 2021,
11, 6832. [CrossRef]

39. Wang, J.; Pan, J.; Esposito, F.; Calyam, P.; Yang, Z.; Mohapatra, P. Edge cloud offloading algorithms: Issues, methods, and
perspectives. ACM Comput. Surv. (CSUR) 2019, 52, 1–23.

40. Zhang, P.; Zhou, M.; Fortino, G. Security and trust issues in Fog computing: A survey. Future Gener. Comput. Syst. 2018, 88, 16–27.
41. Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: Architecture, key technologies, applications and open issues. J.

Netw. Comput. Appl. 2017, 98, 27–42.
42. Tariq, N.; Asim, M.; Al-Obeidat, F.; Zubair Farooqi, M.; Baker, T.; Hammoudeh, M.; Ghafir, I. The Security of Big Data in

Fog-Enabled IoT Applications Including Blockchain: A Survey. Sensors 2019, 19, 1788. [CrossRef]
43. Alzoubi, Y.I.; Osmanaj, V.H.; Jaradat, A.; Al-Ahmad, A. Fog computing security and privacy for the Internet of Thing applications:

State-of-the-art. Secur. Priv. 2021, 4, e145. [CrossRef]
44. Alrawais, A.; Alhothaily, A.; Hu, C.; Xing, X.; Cheng, X. An attribute-based encryption scheme to secure fog communications.

IEEE Access 2017, 5, 9131–9138.
45. Hu, P.; Ning, H.; Qiu, T.; Song, H.; Wang, Y.; Yao, X. Security and privacy preservation scheme of face identification and resolution

framework using fog computing in internet of things. IEEE Int. Things J. 2017, 4, 1143–1155.
46. Li, Z.; Zhou, X.; Liu, Y.; Xu, H.; Miao, L. A non-cooperative differential game-based security model in fog computing. China

Commun. 2017, 14, 180–189.
47. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.K.R.; Dlodlo, M. From cloud to fog computing: A review and a conceptual live

VM migration framework. IEEE Access 2017, 5, 8284–8300.
48. ATLANTIC-eVISION: Cross-Atlantic Experimental Validation of Intelligent SDN-controlled IoT Networks 2021–2022. Avail-

able online: https://ngiatlantic.eu/funded-experiments/atlantic-evision-cross-atlantic-experimental-validation-intelligent-sdn
(accessed on 20 March 2022).

49. Berman, M.; Demeester, P.; Lee, J.W.; Nagaraja, K.; Zink, M.; Colle, D.; Krishnappa, D.K.; Raychaudhuri, D.; Schulzrinne, H.;
Seskar, I.; et al. Future Internets Escape the Simulator. Commun. ACM 2015, 58, 78–89. [CrossRef]

50. Suñé, M.; Bergesio, L.; Woesner, H.; Rothe, T.; Köpsel, A.; Colle, D.; Puype, B.; Simeonidou, D.; Nejabati, R.; Channegowda, M.;
et al. Design and implementation of the OFELIA FP7 facility: The European OpenFlow testbed. Comput. Netw. 2014, 61, 132–150.
[CrossRef]

http://dx.doi.org/10.1007/978-3-030-76493-7_6
http://dx.doi.org/10.1016/j.comcom.2021.09.029
http://dx.doi.org/10.1016/j.compeleceng.2021.107444
http://dx.doi.org/10.1016/j.comcom.2020.12.003
http://dx.doi.org/10.1109/ICDIS50059.2020.00014
http://dx.doi.org/10.3390/app11156832
http://dx.doi.org/10.3390/s19081788
http://dx.doi.org/10.1002/spy2.145
https://ngiatlantic.eu/funded-experiments/atlantic-evision-cross-atlantic-experimental-validation-intelligent-sdn
http://dx.doi.org/10.1145/2699392
http://dx.doi.org/10.1016/j.bjp.2013.10.015

	Detecting IoT Attacks Using an Ensemble Machine Learning Model
	Recommended Citation

	Introduction
	Background and Related Work
	IoT-Specific Attacks Overview
	ML-Specific Related Work on Security and Privacy
	Voting and Stacking Techniques
	Ensemble Machine Learning-Based Attack Detection
	IoT System with Cloud and Fog

	Proposed Approach
	Simulation Environment
	Server Configuration
	Dataset Description
	Data Separation for the Cloud and Fog Layers
	Simulated Base Classifiers and Ensemble Methods

	Results and Analysis
	Cloud Layer Result Analysis
	Execution Time
	Performance Measures

	Fog Layer Result Analysis
	Performance Measures
	Errors Associated
	Execution Time and CPU Usage


	Conclusions
	References

