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ABSTRACT
Artifcial intelligence (AI) and machine learning (ML) have grown rapidly in recent years, and their
applications in practice can be seen in many felds, ranging from facial recognition to image analysis.
Recent developments in Artificial intelligence have a vast transformative potential for both cyberse-
curity defenders and cybercriminals. Anti-malware solutions adopt intelligent techniques to detect
and prevent threats to the digital space. In contrast, cybercriminals are aware of the new prospects
too and likely to adapt AI techniques to their operations.
This thesis presents advances made so far in the field of applying AI techniques in cybersecurity
for combating against cyber threats, to demonstrate how this promising technology can be a useful
tool for detection and prevention of cyberattacks. Furthermore, the research examines how transna-
tional criminal organizations and cybercriminals may leverage developing AI technology to conduct
more sophisticated criminal activities. Next, the research outlines the possible dynamic new kind of
malware, called X-Ware and X-sWarm, which simulates the swarm system behaviour and integrates
the neural network to operate more efficiently as a background for the forthcoming anti-malware
solution. This research proposes how to record and visualize the behaviour of these type of malware
when it propagates through the file system, computer network (virus process is known) or by observed
data analysis (virus process is not known and we observe only the data from the system). Finally, a
paradigm of an anti-malware solution, named Multi agent antivirus system has been proposed in the
thesis that gives the insight to develop a more robust, adaptive and flexible defence system.

KEYWORDS
Cybersecurity, artificial intelligence, machine learning, deep learning, swarm intelligence, neural net-
work

ABSTRAKT
Význam umělé inteligence (AI) a strojového učení (ML) v posledních letech rychle rostl a na jejich
aplikacích lze vidět, že v mnoha oblastech, od rozpoznávání obličeje až po analýzu obrazu, byl
učiněn velký pokrok. Poslední vývoj v oblasti umělé inteligence má obrovský potenciál jak pro
obránce v oblasti kybernetické bezpečnosti, tak pro ůtočníky. AI se stává řešením v otázce obrany
proti modernímu malware a hraje tak důležitou roli v detekci a prevenci hrozeb v digitálním prostoru.
Naproti tomu kyberzločinci jsou si vědomi nových vyhlídek ve spojení s AI a pravděpodobně přizpůsobí
tyto techniky novým generacím malware, vektorům útoku a celkově jejich operacím.
Tato práce představuje dosavadní pokroky aplikace technik AI v oblasti kybernetické bezpečnosti. V
této oblasti tzn. v boji proti kybernetickým hrozbám se ukázuje jako slibná technologie a užitečný
nástroj pro detekci a prevenci kybernetických útoků. V práci si rovněž pokládme otázku, jak mo-
hou nadnárodní zločinecké organizace a počítačoví zločinci využít vyvíjející se technologii umělé
inteligence k provádění sofistikovanějších trestných činností. Konečně, výzkum nastíní možný nový
druh malware, nazvaný X-Ware, který simuluje chování hejnového systému a integruje neuronovou
síť tak, aby fungovala efektivněji a tak se celý X-Ware a X-sWarm dal použít nejen jako kybernet-
ická zbraň na útok, ale i jako antivirové obranné řešení. Tento výzkum navrhuje, jak zaznamenat
a vizualizovat chování X-Ware, když se šíří prostřednictvím systému souborů, sítí a to jak analý-
zou jeho dynamiky (proces je znám), tak analýzou dat (proces není znám, pozorujeme jen data).
Nakonec bylo v disertační práci navrženo paradigma řešení proti malwaru, jež bylo nazváno „Multi
agent antivirus system“. Tato práce tedy poskytuje pohled na vývoj robustnějšího, adaptivnějšího a
flexibilnějšího obranného systému.

KLÍČOVÁ SLOVA
kybernetická bezpečnost, umělá inteligence, strojové učení, hluboké učení, rojová inteligence, neu-
ronová síť
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Introduction

1 INTRODUCTION

1.1 Overview

Today, cybersecurity become an essential part for computer systems and infrastructures with
a concentrate on the defence of valuable resource stored on those systems from malicious actors
who want to steal, damage, destroy or forbid access to it. The increasing use of Internet services
and computer systems has led to a sharp increase in the number of attacks on cyberspace.
The Internet is not only the chief source of information, but it is also a viable medium for
cybercriminals to use it as a tool to carry out cyber-attacks. Contemporary with the development
of technology, cyber-threats are becoming more sophisticated and automation. Cybercriminals
are always changing their methods, making attacks challenging to predict and prevent.

Over the years, scientists have investigated a considerable number of methods to protect in-
formation systems from unauthorized access and unauthorized use. Such techniques may involve
proper implementation of security mechanisms such as passwords, encryption, access control lists
as well as complicated security protocols. Nevertheless, conventional security systems, which use
rules and signatures, have become ineffective against flexible, continually evolving cyber-attacks.
Furthermore, current cyber defence systems involve humans at multiple levels, which may cause
the information flow slow and asynchronous. As a consequence, such a system is unavailable
to adapt to the speeds of cyber threats. Thus, we need advanced approaches such as applying
Artificial intelligence (AI) techniques that provide flexibility and learning capability to assist
humans in combating cybercrimes.

On the contrary, malicious actors are aware of the new prospects too and will probably
attempt to use for nefarious purposes. This technology will also be used as a way to improve
threats. For example, malicious actors can leverage Machine learning (ML) technique to generate
a hard-to-detect malware variant with machine speed. What is more, AI might be able to
personalize the phishing scheme better and raising the scale of the attack, making the attack
more likely to succeed. Hence, it is logical to expect that, shortly evolutionary techniques,
artificial intelligence as well as swarm intelligence will be used in computer viruses and antivirus
solution.

1.2 The impact of AI on Cybersecurity

The rapid development of computing technology and the internet has a significant impact on
people’s daily life and work. Unfortunately, it also caused many new cybersecurity challenging
issues: First, the explosion of data makes manual analysis impractical. Second, threats are
growing at a high rate, which also means that new short-lived species and highly adaptive
threats become commonplace. Third, at present, the threats compromise various techniques for
propagation, infection, and evasion, therefore, they are hard to detect and predict. Moreover,
the expense to prevent threats also should be considered. It takes much time, money, and effort
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to generate and implement the algorithm. Also, employing or training specialists in the field
is hard and expensive. What is more, many threat variations emerge and spread continuously.
Hence, AI-based methods are expected to cope with these cybersecurity issues.

1.2.1 The positive uses of AI

In the field of cybersecurity, AI is already being used to advance defensive capabilities.
Based on its powerful automation and data analysis capabilities, AI can be used to analyse large
amounts of data with efficiency, accuracy, and speed. An AI system can take advantage of what
it knows and understand the past threats to identify similar attacks in the future, even if their
patterns change. Undoubtedly, Artificial Intelligence has several advantages when it comes to
cybersecurity in the following aspects:
• AI can discover new and sophisticated changes in attack flexibility: Conventional technology

is focused on the past and relies heavily on known attackers and attacks, leaving room for
blind spots when detecting unusual events in new attacks. The limitations of old defence
technology are now being addressed through intelligent technology. For example, privileged
activity in an intranet can be monitored, and any significant mutation in privileged access
operations can denote a potential internal threat. If the detection is successful, the machine
will reinforce the validity of the actions and become more sensitive to detect similar patterns
in the future. With a larger amount of data and examples, the machine can learn and adapt
better to detect anomalous, faster and more accurate operations. This is especially useful
when cyber-attacks are becoming more sophisticated, and hackers are making new and
innovative approaches.

• AI can handle the volume of data: AI can enhance network security by developing au-
tonomous security systems to detect attacks and respond to breaches. The volume of
security alerts that appear daily can be very overwhelming for security groups. Automati-
cally detecting and responding to threats has helped to reduce the work of network security
experts and can assist in detecting threats more effectively than other methods. When a
large amount of security data is created and transmitted over the network every day, net-
work security experts will gradually have difficulty tracking and identifying attack factors
quickly and reliably. This is where AI can help by expanding the monitoring and detection
of suspicious activities. This can help network security personnel react to situations that
they have not encountered before, replacing the time-consuming analysis of people.

• AI security system can learn over time to respond better to threats: AI helps detect threats
based on application behaviour and the entire network activity. Over time, AI security
system learns about a regular network of traffic and behaviour and making a baseline of
what is normal. From there, any deviations from the norm can be spotted to detect attacks
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1.2.2 Drawbacks and limitations of using AI

The advantages highlighted above are just a fraction of the potential of AI assist cybersecu-
rity, but the application of this technology had some limitations as described below.
• Data sets: Creating an AI system demand a considerable number of input samples, which

however, obtaining and processing the samples can take a long time and resources.
• Resources requirement: Building and maintain the fundamental system need an immense

amount of resources, including memory, data, and computing power. What’s more, skilled
resources necessary to implement this technology requires a significant cost.

• False alarm: Frequent false alarms are an issue for end-users, disrupt business, potentially
delaying any necessary response and generally affecting efficiency. The process of fine-
tuning is a trade-off between reducing false alarms and maintaining the security level.

• Attack the AI-based system: Attackers can use various attacks techniques that target AI
systems such as adversarial inputs, data poisoning and model stealing.

1.3 Contributions of the thesis

This thesis exposes issues related to the application of AI techniques in network security.
The principal contributions of this thesis are:

• We conduct comprehensive research about how AI-based techniques could be applied to
enhance the cybersecurity solution as well as the potential maliciously used of AI methods.

• We propose a new type of malware that combines SI, ANN as a background for an anti-
malware solution.

• Based on the architectural model of the X-Ware, we have designed an anti-malware
paradigm for the upcoming swarm malware.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 is focused on the thesis motivation
and main goals of the dissertation. Chapter 3 presents the knowledge background employed in
the thesis. Chapter 4 describes the state of the art. Chapter 5 presents the application of AI in
the cyber domain. Chapter 6 describes all essential information about the methodology of X-
Ware creation as well as summarises and discussed author’s results in developing the X-Ware. In
chapter 7, a design of a novel worm with swarm characteristics, whose communication relies on
the Tor privacy infrastructure is proposed. Chapter 8 presents a paradigm design to intelligent
anti-malware solution. Chapter 9 is focused on summary and discussion about achieved results
and proposal of the future work.
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2 MOTIVATION AND GOALS

2.1 Motivation

Recent days, the exponential growth of the Internet and its technologies and the rising
dependency of users upon the applications for most essential demands has raised the importance
of cyberspace security. As a consequence, cybersecurity becomes a vital part of computer systems
and infrastructures with a concentrate on the defence of valuable resource stored on those systems
from adversary action.

Over the years, numerous solutions have been proposed for protecting the information sys-
tems from unauthorized access and unauthorized use. These methods may involve proper im-
plementation of security mechanisms such as password protection, firewalls, access control and
encryption. Nevertheless, these techniques have become ineffective against the increasingly so-
phisticated, continually evolving cyber-attacks.

Furthermore, current cyber defence solutions involve humans at multiple levels, which may
cause the information flow slow and asynchronous. As a consequence, such a system is unavail-
able to adapt to the speeds of cyber threats. Thus, more advance techniques need to be research
to assist humans in combating cybercrimes.

In recent days, a variety of AI architecture designs have blossomed in the context of cyberse-
curity. On the offence side, cyber threat actors can employ AI to improve the sophistication and
scope of their attacks. On the defence side, AI is utilized to enhance the defence strategies, so
that the defence systems become more robust, flexible, and efficient, which can adaptively with
the environment and decrease the impacts occurred. On the other side, attackers are using the
same tools to increase the sophistication of their attacks. However, there is a lack of literature
dealing with the malicious uses of AI technologies. The research and industry communities need
to understand how AI can be applied to cyber-attacks and where the weak points are to find
the best vaccine for them.

The motivation of this dissertation work is to seek the answer for the question: “what is
the impact of Artificial intelligence in cybersecurity“. This question is formed in part by the
perception that AI plays a very significant role in the of cybersecurity in recent time.

2.2 Goals of the thesis

This research is aimed to illustrate how artificial intelligence techniques can be utilised in
cybersecurity. The following highlights are stated as the main goals of the dissertation.

2.2.1 Goal 1

Study the applications of AI on cybersecurity from two respects, how AI improve the cyber
defence solutions and the misuse of AI and its impact, with already existing examples:

• First, I will introduce a brief explanation of AI methodology for cybersecurity.
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• Second, AI-based approaches for defending against cyberspace attacks will be listed.
• Next, a range of possible uses toward which AI could be put for the malicious end will be

illustrated.
• Finally, I will summarise the main points and discuss the challenges and open research

directions.

2.2.2 Goal 2

Propose a prototype of X-Ware that use swarm intelligence principle and AI technique as a
backbone of its functionality and generation:

• First, the conception of a new type of malware that is a combination of swarm intelligent,
ANN, and a traditional virus will be proposed.

• Second, the conception will be applied to design a prototype.
• Finally, the prototype will be evaluated via empirical experiments and analysis.

2.2.3 Goal 3

Monitor and analyse the behaviour of the X-Ware on the simulation of the real network
system:

• First, a collection of analysis techniques and monitoring tools for observing the X-Ware
will be studied.

• Second, I will apply these techniques and tools to monitor the prototype.
• Finally, the results from empirical experiments will be analysed and discussed.

2.2.4 Goal 4

Design structure and the principles of the possible swarm anti-malware solution:
• First, I will propose the conception of an anti-malware solution based on the conception

of the swarm virus.
• Second, the conception will be utilised to design a Multi-agent antivirus system.
• Finally, the main points of the proposed framework will be discussed. Additionally, sug-

gestions for future work will also be presented.
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3 BACKGROUND

This chapter provides the necessary theoretical background, that is, the methods and pro-
cedures for the establishment of a key material which is in the constant focus of how AI would
leverage on the cyber applications.

3.1 Artificial intelligence

Defining AI can take two approaches. First, it is a science that strives to discover the
nature of intelligence and develop smart machines in which scientists apply information, logic,
self-learning, and determination to make machines becoming intelligently. To put it simply,
humans create machines with intelligence. This intelligence can think, learn, decide, and work
while trying to solve a problem as human intellect. On the other hand, scientists define AI as a
science that researches and develops methods for resolving complexity problems that impossible
to be resolved without adopting intelligence. For example, scientists build an AI system for
real-time analysis and decision making based on enormous amounts of data. In recent years, AI
has resulted in advances in many scientific and technological fields such as computerized robots,
image and recognition, natural language processes, expert systems and other majors. The next
few chapters will focus on some of the areas listed previously. These chapters will discuss the
utilization of some of these artificial intelligent areas in cybersecurity.

In fact, AI has represented a broad category of methods for teaching computers how to
perform the tasks as a human. This includes Machine Learning (ML), a technique that trains a
machine how to learn; and Deep Learning (DL) that helps machines to analyze data so that they
can draw the same conclusions as a human. As a core building block for AI, Machine Learning
uses algorithms to parse data, learn from that data and make the decision based on what it
taught. Deep Learning is a strict subset of machine learning that uses a structure as close as
possible to the human brain as a model for learning and makes intelligent decisions on its own.

3.2 Cybersecurity

The main aim of cybersecurity is to protect computers, networks, and software programs
from such cyber attacks. While a variety of definitions of the term cybersecurity have been
suggested, this paper will use the definition suggested by Craigen et al. (2014) [32] following as:
“Cybersecurity is the organization and collection of resources, processes, and structures used to
protect cyberspace and cyberspace-enabled systems from occurrences that misalign de jure from
de facto property rights.“ Furthermore, cybersecurity concerns with the practice of ensuring
integrity, confidentiality, and availability of information of the organization and user’s assets
[128], which is further described with the following definitions

• Integrity refers to preventing unauthorized modification or deletion of information.
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• Confidentiality refers to protecting sensitive information from unauthorized individuals or
systems.

• Availability refers to keeping information accessible by authorized users.
The term “cybersecurity“ includes other concepts, which are defined by the ISO [1] as follows:

• Information security: “concerned with the protection of confidentiality, integrity, and avail-
ability of information in general, to serve the needs of the applicable information user“.

• Network security: “concerned with the design, implementation, and operation of networks
for achieving the purposes of information security on networks within organizations, be-
tween organizations, and between organizations and users“.

• Internet security: “concerned with protecting internet related services and related ICT
systems and networks as an extension of network security in organizations and at home,
to achieve the purpose of security. Internet Security also ensures the availability and
reliability of Internet services“

• Critical information infrastructure protection: “ensures that those systems and networks
are protected and resilient against information security risks, network security risks, in-
ternet security risks, as well as Cybersecurity risks“.

• Cybercrime: “criminal activity where services or applications in the Cyberspace are used
for or are the target of a crime, or where the Cyberspace is the source, tool, target, or place
of a crime“.

• Cybersafety: “condition of being protected against physical, social, spiritual, financial,
political, emotional, occupational, psychological, educational or other types or consequences
of failure, damage, error, accidents, harm or any other event in the Cyberspace which could
be considered non-desirable“.

Along with the development of technology, malicious software is becoming more sophisticated
and automated. Cybercriminals are always changing their methods, making attacks difficult
to predict and prevent. Conventional security systems, which use rules and signatures, have
become ineffective against flexible, continually evolving cyber-attacks. Thus, we need advanced
approaches such as applying AI-based techniques that provide flexibility and learning capability
to assist humans in combating cybercrimes.

3.3 Swarm intelligence

Nature’s inspiration always helps humanity to solve real problems. Over the years, the ap-
plied of bio-inspired techniques have been seen in various areas ranging from computer science,
engineering, economics, medicine, and social sciences. Among those biologically-inspired tech-
niques, SI is a research direction that has attracted scientists in recent times. This domain
focus on designing robust systems (or principles) that can operate efficiently and intelligently
under threat and catastrophic conditions without centralized control [20]. SI-based algorithms
have emerged as nature-inspired algorithms that are capable of providing quick, robust, and
inexpensive solutions to various complex problems [29][94].
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The expression “Swarm Intelligence“ was first introduced by Beni and Wang in the context of
cellular robotics system [15]. This term refers to the collective behavior of agents in nature such
as ant colonies, honey bees, fireflies, and bird flocks. These agents in the swarm collaborate with
one another to achieve tasks necessary for their survival. Generally speaking, SI is a population-
based system that comprises many individuals in it that communicate locally with each other
and with their environment. The individuals interact with each other via direct or indirect to
solve the problem [91]. Direct interaction may through direct contact, like ants touch each other
with their antenna or through audio and visual. On the other hand, indirect interaction, which
is referred to as stigmergy, means the individual communicate through the environment, such
as ant product pheromone use for exchanging information [34]. SI can therefore be defined as a
branch of AI that is used to model the collective activities of social agents in nature.

To date, many SI algorithms have been proposed in the literature and successfully applied in
practice, including function optimization problems, finding optimal routes, scheduling, structural
optimization, and image analysis [37]. Examples of SI algorithms are: Ant Colony Optimiza-
tion [34], Particle Swarm Optimization [36], Artificial Fish Swarm [78], Artificial Bee Colony
[66], Self-Organizing Migrating Algorithm [143], Bacterial Foraging [96], Cat Swarm Optimiza-
tion [30], Glowworm Swarm Optimization [70], Firefly Algorithm [139], Bat Algorithm [140],
Grey Wolf Optimizer [86], and Whale Optimization Algorithm [85]. The most well known and
very basic one is Ant Colony Optimization (ACO), followed by Particle Swarm Optimization
(PSO) and Self-Organizing Migrating Algorithm (SOMA). As a consequence, these methods
were utilized in a variety of problem domains as well as cybersecurity.

Recently, scientists proposed numerous techniques that have utilized SI for ensuring integrity,
confidentiality, and availability of information. In this part, we category applicability of SI
in the field of cybersecurity into three main groups: feature selection, parameter and weight
optimization, and other approaches

3.3.1 Feature selection

In term of applying SI in cybersecurity, one of the most research direction that attracts
the research community is adopting these techniques for optimizing the feature selection. It is
derived from the fact that Machine learning (ML) approaches have been widely used to improve
the efficiency of cyber defence systems. In fact, feature selection is one of the core concepts in ML,
which hugely impacts the performance of the model. Generally speaking, feature selection can
be described as the process of choosing the optimal subset of features based on specific criteria.
This works by selecting the features with minimum redundancy and maximum relevance score.
In this way, it examines for a projection of the data onto fewer features which conserves the
information as much as feasible. Feature selection techniques often category into wrapper-based,
filter-based or embedded.
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3.3.2 Optimum the parameter and weight

ML is often considered as a crucial part of the evolution of cybersecurity solutions. In fact,
ML models are parameterized so that their performance can be tuned for a given problem.
In general, a model parameter is a configuration variable that is inherent to the model and
whose value can be estimated from the provided data. Parameters, which are also learned from
historical training data, are crucial to ML methods. In brief, the ML models can have many
parameters and discovering the best configuration of parameters can be treated as a search
problem. Hence, the application of metaheuristic algorithms to optimize the fine-tuning of
parameters is also an attention topic to the research community.

3.3.3 Other applicabilities

Besides the application to optimize the selection of attributes as well as the optimization of
parameters, SI algorithms are also carried out in various fields of cybersecurity. For instance,
Si-based algorithm had been utilized to generate a traffic profile in [45], for investigating the
probable origin of attack in [129], to initiate the parameter [53].

3.4 Malware

3.4.1 Overview

Malware is a generic term generally used for viruses, trojan horses, worms, rootkits, spyware,
ransomware, and others. They are intrusive and can perform harmful, unauthorized activities
on computer systems without sending any prior consent. Malware is easily propagated into
any computer systems causing long-lasting destructions as well as system corruptions. Fig. 3.1
shows a variety of malware in computer systems.

Among other malware, computer virus is the most pervasive one. Similar to biological virus,
[114], computer virus, as a program, can automatically replicate itself and do harm to a variety
of host files. The list of host files include device drivers, boot code, executable files, and files
that can be executed only via some specific applications (such as Visual Basic scripts, Microsoft
Word,. . . ). As the hosts are run, the virus code is activated and propagates itself further by
autonomous replicating and attaching to other hosts.

Besides virus, different terminologies are used to address different malware based on their
purposes, and behaviours, in other words, spreading strategies. To name a few, a worm exploits
system vulnerabilities to spread over a network. A spyware hijacks personal and confidential
data. An adware automatically and generically delivers unwelcome advertisements into a system.
A ransomware locks or encrypts data from a victim for money extortion. A rootkit sneaks in to
take the highest possible administration right to control a machine. A pack of botnets is used
for an entire network control from a remote server.
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Fig. 3.1: Type of malware

3.4.2 Propagation mechanisms

The propagation of malware can be categorized into several groups as follows:
• Spreading through e-mail: The user open or execute the attachment of the email cause the

virus executes. In some cases, opening the e-mail with might lead to execute the malicious
code. In addition, Links in e-mail can lead to a website comprised of viruses, which often
exploits browser and operating system vulnerabilities. In other words, the link leads to
executing a piece of code, and the computer may be infected with a virus.

• Spreading through a network: In this case, a malware spreads in a network by exploiting
the vulnerabilities that allows it to compromise itself into a target host.

• Transferring via physical media: A human actor might cause the malicious software to
spread, by physically transferring the infected media to new locations.

• Local spreading: The malicious program can self-replicate on a host locally within the
limits of access permissions. What’s more, the shared network drives (NFS for instance)
might allow the malware to spread across systems.

3.5 Virus

3.5.1 Overview

The first idea of computer virus was brought up by John von Neumann in 1950s regarding
his study of cellular automata and self-replicating software [47]. Nevertheless, not until 1971
that the Creeper, first self-replicating program developed by Bob Thomas was presented [24].
In 1983, Fred Cohen introduced a program which is capable of infecting a computer, replicating
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itself and propagating to other computers [31]. The first “computer virus“ was born and used
ever since. Later on, in 1986, a software named Brain was considered to be the first malware in
real world that have ever been observed [119].

There are four phases that a computer virus goes through when infecting a system: Dormant
phase, Trigger phase, Propagation phase and Execution phase as describe below:

• Dormant phase: The dormant phase is in which the virus infiltrates into a system but does
not function yet.

• Trigger phase: The virus needs a trigger for its initializing code in trigger phase. This
trigger can be a pre-set timer or a condition changing events such as internal clock changing,
or a user opens a file containing virus.

• Propagation phase: The propagation phase starts then as the virus replicates itself, and
autonomously triggers new viruses, if there are.

• Execution phase: The virus performs its intended function. The virus can delete, be-
side itself, a number of local files, or attempt to slow down the system performance by
consuming disk space and power with self propagation.

3.5.2 File infection techniques

Overwriting

Overwriting is a simple infection technique, in which the virus copies its code over the host
computer system’s file data, thus destroying the original program [119].

Appending

In this case, the virus appends itself at the end of the original file. Technically, the virus
inserts the malicious code at the end of the last section of the file. This technique allows the
virus modifies the host file so that it is able to execute without cause damage to the host file
[119]. Figure 3.2 illustrates a typical appending virus.

Prepending

In this technique, the virus inserts its malicious code right before the entry point of the host
program. When the user executes the infected host program, the malicious code will run first
before the original host code takes over. To do this, the virus executes the host file by copying
the host file as a temporary file to disk and using a function call to run the host file [119]. Figure
3.3 illustrates the prepending technique.

Cavity

Cavity infectors typically overwrite part of files that contain zeros in binary files so-called
caves of the file. Nevertheless, the other parts also can be leverage, such as 0𝑥𝐶𝐶 - filled blocks
that C compilers often use for instruction alignment, or areas that contain spaces 0𝑥20. Cavity
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technique typically does not increase the size of the host file. [119]. Figure 3.4 shows the cavity
technique.

Compressing

A particular virus infection technique that utilizes uses run-time packers to compress the
host files code. Sometimes this technique is used to hide the increase in host size after infection
by packing the host sufficiently with the binary packing algorithm. Figure 3.5 illustrates the
compressing technique.

Ameoba infection technique

This technique splits the virus into two parts. The head part of the virus is prepended to
the front of the file, and the tail part is appended to end of the file [119]. When executing, the
head accesses to the tail and is loaded later. The original program is re-built as a new file for
execution afterwards. Figure 3.6 shows the host program before and after infection by a virus
that uses the Amoeba infection technique.
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Fig. 3.6: Ameoba infection technique

Companion

A companion virus is a kind computer virus that does not modify any files but names itself
similar to another program file that is frequently executed.

Entry Point Obscuring (EPO) technique

In this technique, the virus hide its entry point in order to avoid detection. Instead of taking
control directly the host file, the virus patches the host file with a jump or call routine, and
acquire the control that way.

Dll injection technique

This kind of infection happens by deceiving an application to call a malicious DLL file which
then gets executed as part of the target process. The original content of the host file is not
modified.

Embedded decryptor technique

This kind of virus embeds the decryptor to the host file, in which the entry point of the host
is modified to point to the decryptor code. When the infected host executes, the virus code is
decrypted and take control [119].
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3.6 Artificial neural network

3.6.1 Overview

Artificial Neural Network (ANN), in short, Neural Network (NN) is a brain-inspired com-
putational system that replicates the human brain in the learning process. An ANN connects
neurons, technically termed, nodes, together to form a computational network, which is able to
perform many sophisticated tasks. Information passed from nodes to nodes is evaluated with
“weight“ multipliers assigned to the links between the nodes. The higher the weight factor,
the more important the input or, the stronger the signal is. Weighted input is then fed to an
activation function to generate a final value for the next corresponding node. Figure 3.7 shows
a basic structure of a neural network.

ANN is well-known for its ability to handle with ease complex natural problems with large in-
puts, and deliver results with relatively high accuracy compared to many other methods utilised
in ML. ANN works as an information managing model that imitates the biological nervous
system function of a human brain. A human brain consists of a number of connected neurons
forming a network that receives, processes and sends signals to perform human actions. There is
a large amount of ANN applications in many specific computational areas ranging from human-
like cognitive tasks such as three-dimensional object recognition, facial recognition, handwriting
recognition, speech recognition, to more outreaching fields such as texture analysis, diagnosis of
hepatitis, undersea mine detection, data recovery from faulty software in telecommunications,
and many other applications. ANNs, like human brains, learn from examples or by trial and
error mechanism. A human brain learning ability depends on adjusting the synaptic relation-
ship between neurons, so does an ANN. For ANN learning paradigms, there are three training
methods: supervised learning, unsupervised learning and reinforcement learning. Supervised
learning proceeds a set of well-labelled input to create a mapping function for predicting a spec-
ified output. Unsupervised learning proceeds unlabeled input and produces unspecified output.
Reinforcement learning utilises reward-penalty, trial and error mechanism. The system learns
from feedbacks obtained from its interactions with the surrounding environment.

3.6.2 Multilayer perceptron

The multilayer perceptron (MLP) is a feed forward network with interconnected neurons, in
which an input vector map with its specific output vector. The neurons, or nodes, are connected
by weight and each node includes a nonlinear activation function. An MLP consists of one
input layer, one or several hidden layers, and eventually an output layer. In a MLP, each node
connects to every node in the next and previous layer, which leads to a fully connected network
[49].

Through training, MLP can learn to solve specific problems. There are many algorithms
that can be utilized to train an MLP. A common algorithms for training is the back-propagation
algorithm [102], which proceeds in two phases :
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Fig. 3.7: Basic structure of a neural network

• Forward phase: the weights of the network are fixed and the input signal is propagated
through the network until it reaches the output.

• Backward phase: The output of the network is compared with a target value to produce an
error signal. The resulting error signal is propagated through the network in the backward
direction. In the backward phase, continuous adjustments are made to the weights of the
network.

Summarize of the back-propagation algorithm describes as following [49]:
1. Initialise network weights
2. Present input to the network
3. Calculate the output based on input
4. Comparing actual output to the target output to calculate error signal
5. Propagate error signal back to the network
6. Adjust weights to minimise overall error
7. Repeat steps 2–7 with next input until the error reaches a satisfactory level.

3.7 Network analysis and centrality measures

Network analysis provides a set of robust quantitative techniques to depict relations among
actors and to examine the structure of the system. In the cybersecurity domain, network analysis
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used to study the processes that rule the propagation of the malware specimen. These analysis
allows us not only make predictions about the behavior of advanced malware spread but it is
also possible to test the effectiveness of control procedures or security countermeasures

These analysis techniques include the graph density and number of connected components,
which describe the network as a whole. They also consist of vertex metrics such as degree central-
ity, betweenness centrality, eigenvector centrality, closeness centrality, and clustering coefficient
that can be utilised to classify unique or essential factor within a network.

3.7.1 Degree centrality

The degree centrality of a vertex 𝑥 is the number of its edges. The degree centrality values
are normalized by the maximum possible degree in graph G. Hence, it is the fraction of edges
that x is connected to. This metric indicates the probability that a message propagating in the
network flows through vertex 𝑥, which actually reflects the intensiveness of network traffic. The
degree centrality of vertex i in an undirected network is given by equation:

𝐶𝐷 (𝑖) =
∑︁𝑛

𝑗=1
𝐴𝑖𝑗 (3.1)

where 𝑛 is the number of vertices, 𝐴𝑖𝑗 is adjacency matrix. If there is a link between i and j
node, then 𝐴𝑖𝑗 = 1, and if opposite, 𝐴𝑖𝑗 = 0. Normalized version of degree centrality is:

𝐶 ′
𝐷 (𝑖) = 𝐶𝐷 (𝑖)

𝑛 − 1 (3.2)

3.7.2 Closeness centrality

The closeness centrality of a vertex 𝑖 is the inverse of the sum of the shortest paths between
𝑖 to every other vertex in the network [48]. This metric reflects the speed at which the message
spreads from the 𝑖 to all other vertices in the network. Considering that the sum of distances
depends on the number of vertices, the calculation needs to be normalised as denoted in equation
3.3.

𝐶𝐶 (𝑖) = 𝑛 − 1∑︀𝑛−1
𝑗=1 𝑑 (𝑖, 𝑗)

(3.3)

where 𝑛 is the number of vertices, 𝑑 (𝑦, 𝑣) is the shortest path between vertex x and y.

3.7.3 Betweenness centrality

The betweenness centrality quantifies the fraction of shortest paths between any couple of
vertices passing through a vertex 𝑢 [48]. The higher the betweenness, the higher the likelihood
that the vertex will become a mediator in the data flow between the other nodes. Simply
speaking, this centrality points out the vertex who influence the communication flow of the
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system, because more information will pass through that vertex. The betweenness centrality of
an undirected network denotes by the following equation:

𝐶𝐵 (𝑣) =
2

∑︀
𝑗<𝑘

𝑔𝑗𝑘(𝑖)
𝑔𝑗𝑘

(𝑁 − 1) (𝑁 − 2) (3.4)

where N is the number of vertices, 𝑔𝑗𝑘 is the number of shortest paths between vertex j and k,
and 𝑔𝑗𝑘 (𝑖) is the number of paths via vertex i among shortest paths between vertex j and k.

3.7.4 Eigenvector centrality

The eigenvector centrality metric takes into consideration not only the number of connection
that a vertex has but also the significance of its neighbours. If a vertex has many connections to
other vertices which are themselves well connected, then, it possesses high eigenvector centrality
value. In the network, the vertices with high eigenvectors are considered to be more influential
than other nodes. This metric can be utilised in measures of malware diffusion power. The
equation of this metric is given in Eq. 3.5:

𝐶𝐸 (𝑖) = 1
𝜆

∑︁
𝑗

𝐴𝑖𝑗𝐶𝐸𝑗 (3.5)

where 𝐴𝑖𝑗 is adjacency matrix of vertex 𝑖 and 𝑗 at the edge 𝑘, 𝜆 is the largest eigenvalue of the
adjacency matrix, and 𝐶𝐸𝑗 is the eigenvector centrality of vertex 𝑗.

3.7.5 Clustering coefficient

The clustering coefficient measures of the number of triangles in a graph. There are two
versions of this metric: global and local. The global clustering coefficient measures the total
number of closed triangles in a network. On the other hand, the local clustering coefficient
indicates how close a member of a group is to all other nodes in the same group. The local
clustering coefficient of a vertex 𝑖 is defined as [133]:

𝐶𝑖 = 2𝐿𝑖

𝑘𝑖 (𝑘𝑖 − 1) (3.6)

where 𝑘𝑖 is the degree of vertex 𝑖, 𝐿𝑖 is the number of connections of the 𝑘𝑖 neighbors of vertex
𝑖.

The clustering coefficient of entire graph is presented by the average clustering coefficient,
⟨𝐶⟩. This metric calculates the probability that two neighbors of a randomly selected vertex
connect to each other. The average clustering coefficient is defined as [133]:

⟨𝐶⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝐶𝑖 (3.7)

where 𝑁 is the number of vertices.
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4 STATE OF ART

4.1 Studies relevant to AI techniques in cybersecurity

While the concept AI was proposed in the 1950s, in recent years, it has grown at a significant
pace and now influencing all aspects of community and occupations. Many areas benefit from
AI, such as gaming, natural language processing, health care, manufacturing, education and
others. This trend is also affecting the cybersecurity field where AI has been utilized to both
attacking and defending in the cyberspace. On the offence side, cyber threats can employ AI
to improve the sophistication and scope of their attacks. On the defence side, AI is utilized to
enhance the defence strategies, so that the defence systems become more robust, flexible, and
efficient, which can adaptively with the environment and decrease the impacts occurred.

Recently, researchers presented several literature surveys in the domain of AI and cyberse-
curity. However, some of them just focused on the adopting machine learning methods to cyber
problems such as those in [22, 122, 56, 135]. Other research [16, 134] just focused on Deep
learning methods. Additionally, there is a lack of literature dealing with the nefarious use of AI.

Apruzzese et al. [10] performed a survey on ML and DL methods for cyber security. Never-
theless, their research was just covering attacks related particularly to network intrusion detec-
tion, malware investigation, and spam identification.

The author in [75] discuss the intersection of AI and cybersecurity. More particular, the
paper reviewed some ML and DL approaches to counter against cyber attacks. What is more,
the author introduced the possibility of attacking the AI model. Nevertheless, the paper just
discussed adversarial attacks and ignored other kinds of attack the AI model, such as poisoning
data, extraction the model.

Another approach by the authors in [135] pointed out the differences between traditional
ML and DL methods for cybersecurity. However, their survey just concentrated on intrusion
detection.

4.2 Malware and advance techniques

The malware spreading has been a topic for numerous researches. Studies of its dynamic
and behaviours when placed in real-world networks are among the main trends. For example,
virus infection on computers was investigated by authors in [93] implementing epidemiologically
compartmental models to identify potential contagious sources. Concurrently, another group,
[111], introduced a moderate epidemiological model inspired by the fractional epidemiological
model for descriptions of computer viruses with an arbitrary order derivative with a non-singular
kernel.

Behaviours of malware are studied also in [74], [99], [95]. As in [74], the Susceptible Infected
(SI) and the Susceptible Infected Recovered (SIR) model were combined and implemented to
Barabasi-Albert network to study the influence of infection rates over virus propagation. In
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another research carried out by Parsaei et al. [95], the Lyapunov function and the Volterra-
Lyapunov matrix properties are combined for building a computer virus propagation model.
Researchers in [99] also built a virus propagation model utilizing Lyapunov function but in
combination with Outh-Hurwitz criterion with a kill signal, namely SEIR-KS.

On the other hand, frameworks for malware evolution based on evolutionary computation for
computer malware, in [83], [116], and for Android malware, by Noreen et al. [90], were proposed.
Moreover, the researchers in [24] exploited the Evolutionary Algorithm (EA) to generate malware
automatically. Kudo et al. in other research [71], proposed botnets with adopted ML techniques
for prediction of system vulnerabilities and malware self-governed evolution.

Lately, the combination of malware and computational intelligence has been raised as a new
research trend among scientists. Many researches such as [9], [136], [8], [63], and [7] focused on
utilizing ML engines to evade anti-malware.

In another approach, Zelinka et al. [145] came up with a swarm virus prototype mimicking a
swarm system behaviour. This paper is to outline a possible dynamics, structure, and behavior
of a hypothetical (up to now) swarm malware as a background for a future anti-malware system.
The research shows, how to capture and visualize the behavior of such malware when it walks
through the operating system. The swarm virus prototype, designed here, mimics a swarm
system behaviour and thus follow the main idea of a swarm algorithms. The information of its
behavior is stored and visualized in the form of a complex network, reacting virus communication
and swarm behaviour.
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5 APPLICATIONS OF AI IN CYBER DOMAIN

This chapter presents a detailed survey on the application of AI in the cyber domain, which
have already been presented and published at scientific conferences and journals [rel1, rel2, rel3,
rel4, rel6].

5.1 AI methodology for cybersecurity

In this section, the author group give an overview of the learning algorithms, an essential
concept of AI. Furthermore, we present some brief introduction about ML, DL and bio-inspired
computation methods that frequently utilize in the area of cybersecurity.

5.1.1 Learning algorithms

AI is a branch of computer science that seeks to produce a new type of intelligent automaton
that responds like human intelligence. To achieve this goal, machines need to learn. To be more
precise, we need to train the computer by using the learning algorithms. Generally, learning
algorithms help to enhance performance in accomplishing a task through learning and training
from experience. There are currently three major types of learning algorithms which we use to
train machines:
• Supervised learning: This type requires a training process with a large and representative

set of data that has been previously labelled. These learning algorithms are frequently
used as a classification mechanism or a regression mechanism.

• Unsupervised learning: In contrast to supervised learning, unsupervised learning algorithms
use unlabeled training dataset. These approaches are often used to cluster data, reduce
dimensionality, or estimate density.

• Reinforcement learning: Reinforcement learning is a type of learning algorithm that learns
the best actions based on rewards or punishment. Reinforcement learning is useful for
situations where data is limited or not given.

5.1.2 Machine learning methods

Machine learning (ML) is a branch of AI that aims to empower systems by utilizing data to
learn and improve without being explicitly programmed. ML has strong ties to mathematical
techniques that enable a process of extracting information, discovering patterns, and drawing
conclusions from data. There are different types of the ML algorithm, but they can generally be
classified into three main categories: supervised learning, unsupervised learning, and reinforce-
ment learning. In the computer security domain, the standard ML algorithms are decision trees
(DT), support vector machines (SVM), Bayesian algorithms, k-nearest neighbour (KNN), ran-
dom forest (RF), association rule (AR) algorithms, ensemble learning (EL), k-means clustering,
and principal component analysis (PCA).
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5.1.3 Deep learning methods

Deep learning (DL) is a sub-field of ML, and it uses data to teach computers how to do
things only humans were capable of before. Its motivation lies in the working mechanisms of the
human brain and neurons for processing signals. The core of deep learning is that if we construct
more extensive neural networks and train them with as much data as possible, their performance
continues to increase.The most important advantage of DL over the conventional ML is its supe-
rior performance in large datasets. Similarly to ML methods, DL methods also have supervised
learning, unsupervised learning, and reinforcement learning. The benefit of DL is the leverage of
unsupervised learning to select feature automatically. The typical DL algorithms are frequently
utilized in cybersecurity domain are: feed forward neural networks (FNN), convolutional neu-
ral networks (CNNs), recurrent neural networks (RNN), deep belief networks (DBNs), stacked
autoencoders (SAE), generative adversarial networks (GANs), restricted Boltzmann machines
(RBMs), and ensemble of DL networks (EDLNs).

5.1.4 Bio-inspired computation methods

Bio-inspired computation is a branch of AI, which emerged as one of the most studied
during recent years. It is a collection of intelligent algorithms and methods that adopt bio-
inspired behaviours and characteristics to solve a wide range of complex academic and real
domain problems. Among many biological-inspired methods, the following techniques are most
commonly used in cybersecurity domain: genetic algorithms (GA), evolution strategies (ES), ant
colony optimization (ACO), particle swarm optimization (PSO), and artificial immune systems
(AIS).

5.2 AI-based approaches for defending against cyberspace at-
tacks

Recently, scientists proposed numerous techniques that have utilized AI methods to detect
or categorize malware, detect network intrusions, phishing, spam attacks, counter Advanced
Persistent Threat (APT) and identify Domain Generation Algorithms (DGAs). In this section,
we category these literature into four main groups: malware identification; network intrusion
detection; phishing and SPAM identification, and other, which compromise countering APT and
identify DGAs. Fig. 5.1 illustrates the primary areas of utilising AI to cybersecurity.

5.2.1 Malware identification

Malware is a general term for many types of malicious software such as virus, worm, trojan
horse, exploits, botnet, retrovirus and today is a popular method of cyber-attack. The malware’s
impact on digital society is enormous, so a considerable amount of research about adopting AI
techniques has been done to prevent and mitigate malware. The most recent and noteworthy
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Cyber Applications of
AI-base methods 

Malware detection
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Spam mail
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Countering APTs

Identify domain names
generated by DGAs

Fig. 5.1: Main branches of cybersecurity application adopting AI techniques
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contribution works utilizing intelligent for malware detection, and prevention are described as
follow.

In [137], the authors adopted ML to create an online framework for hardware-assisted mal-
ware detection based on virtual memory access patterns. The proposed method used logistic
regression, support vector machine and random forest classifier and performed on the RIPE
benchmark suite for the experiments. The authors reported that the framework has a true pos-
itive rate of 99% with less than 5% false positive rate. Meanwhile, the scholars in [28] presented
a framework for classifying and detecting malicious software using data mining and ML clas-
sification. In this works, both signature-based and anomaly-based features were analyzed for
detection. Experimental results showed that the proposed method outperformed other similar
methods.

The authors in [59] utilized operational codes (OpCode) and k-nearest neighbors (KNN),
support vector machine (SVM) as a ML classifiers to classify malware. The OpCode was rep-
resented as a graph and embedded into eigenspace, then particular or ensemble of classifiers
were utilized to classify each vector as malware or benign. The empirical result showed that the
proposed model is efficient with a low false alarm rate and high detection rate.

Later, Ye et al. [141] built a deep learning architecture for intelligent malware detection.
In this work, they utilized an AutoEncoder stacked up with multilayer restricted Boltzmann
machines (RBMs) to detect unknown malware. The author claimed that heterogeneous deep
learning framework could improve the overall performance in malware detection compared with
traditional shallow learning methods, deep learning methods.

A recent trend of research in malware detection focused on mobile malware in general and
Android malware in particular. Machine learning, along with Deep learning, was a significant
breakthrough in this area. In [82], a deep convolutional neural network (CNN) was adopted to
identify malware. The raw opcode sequence from a disassembled program was used to classify
malware. The authors in [76] utilized the Support vector machine (SVM) and the most significant
permissions from all of the permission data to distinguish between benign and malicious apps. In
[146], the authors presented novel ML algorithms, namely Rotation Forest for malware identity.
Artificial neural network (ANN) and the raw sequences of API method calls were utilized in
[67] to detect Android malware. A recent study by Wang et al. [131] introduced a hybrid
model based on deep autoencoder (DAE) and convolutional neural network (CNN) to raise the
accuracy and efficiency of large-scale Android malware detection.

Another research direction that attracted the attention of scientists was the used of bio-
inspired methods for malware classify. These techniques were mainly used for features optimiza-
tion and optimizing the parameter for the classifiers. For example, Particle Swarm Optimization
(PSO) was adopted in [6], [2], [17]; the Genetic Algorithm (GA) was utilized in [4], [42] to en-
hance the effective of malware detection system. Table 5.1 abstracts some characteristics of the
discussed malware identification approaches, concerning to the focus area, techniques, features,
the dataset and validation metrics used to evaluate the model’s performance. For the validation
metrics, we present the best performing method in the paper.
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Tab. 5.1: Selected literature of AI-based approaches in malware investigation

Ref. Year Focus Tech. Features Dataset
Validation

metrics

[137] 2017
PC
malware

SVM,RF
Logistic regression

MAP’s
feature sets

RIPE
DR: 99%
FPR: 5%

[28] 2017
PC
malware

BAM, MLP
N-gram,
Windows
API calls

Self collection:
52,185 samples

ACC: 98.6%
FPR: 2%

[59] 2017
PC
malware

KNN, SVM
OpCode
graph

Self collection:
22,200 samples

ACC, FPR

[82] 2017
Android
malware

CNN
Opcode
sequence

GNOME,
McAfee Labs

ACC: 98%/80%/87%,
F-score: 97%/78%/86%

[6] 2017
Android
malware

ANF,
PSO

Permissions,
API Calls

Self collection:
500 samples

ACC: 89%

[4] 2017 Botnet C4.5, GA Multi features ISOT , ISCX
DR: 99.46%/95.58%
FPR: 0.57%/ 2.24%

[141] 2018
PC
malware

AutoEncoder,
RBM

Windows API
calls

Self collection:
20,000 samples

ACC: 98.2%

[76] 2018
Android
malware

SVM, DT
Significant
permissions

Self collection:
54,694 samples

ACC: 93.67%
FPR: 4.85%

[146] 2018
Android
malware

Rotation Forest
Permissions,
APIs,
system events

Self collection:
2,030 smaples

ACC: 88.26%

[67] 2018
Android
malware

ANN API call
Malgenome,
Drebin,
Maldozer

F1-Score: 96.33%
FPR: 3.19%

[2] 2018
Android
malware

PSO, RF, J48,
KNN, MLP, AdaBoost

Permissions
Self collection:
8500 samples

TPR: 95.6%
FPR: 0.32%

[131] 2019
Android
malware

DAE, CNN

Permissions,
filtered intents,
API calls,
hardware features,
code related patterns

Self collection:
23000 samples

ACC: 98.5%/98.6%
FPR: 1.67%/1.82%

[17] 2019
Android
malware

PSO, Bayesnet,
Naïve Bayes, SMO,
DT, RT, RF
J48, MLP

Permissions
UCI, KEEL,
Contagiodump,
Wang’s repository

ACC:
79.4%/47.6%/
82.9%/94.1%/
100%/77.9%

[42] 2019
Android
malware

SVM, ANN
App Components,
Permissions

Self collection:
44,000 samples

ACC: 95.2%/96.6%
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5.2.2 Intrusion Detection

An intrusion detection system (IDS) is a system that is supposed to protect the system from
possible incidents, violations, or imminent threats. AI-based techniques are appropriate for
developing IDS and outperform other techniques because of their flexibility, adaptability, fast
calculation and learning ability. Hence, many researchers studied intelligent methods to improve
the performance of IDS. The focus is on developing features optimization and improving the
classifiers to reduce the false alarm. Some recent notable studies are listed as follows: Al-Yaseen
et al. [3] combined support vector machine (SVM) and extreme learning machine with modified
K-means as a model for IDS. Using KDD’99 Cup dataset [61], their model archived the result
up to 95.75% accuracy and 1.87% of false alarms. Meanwhile, Kabir et al. [65] introduced a
method for intrusion detection system based on sampling with Least Square Support Vector
Machine (LS-SVM). The proposed methodology is validated through KDD’99 Cup dataset and
obtained a realistic performance in terms of accuracy and efficiency.

The authors in [11] introduced a fuzziness based semi-supervised learning approach for IDS.
In their work, they utilized unlabeled samples assisted with a supervised learning algorithm to
enhance the performance of the classifier. The algorithm was tested on the KDD’99 Cup dataset
and outperformed other comparative algorithms.

Later, Shone et al. [109] proposed a novel deep learning-based intrusion detection method
called nonsymmetric deep autoencoder (NDAE). The authors used TensorFlow and evaluated
their method by using KDD Cup ’99 [61] and NSL-KDD [120] datasets. They have claimed that
their model has achieved an accuracy of 97.85%.

Another approach using Genetic Algorithms (GA) and Fuzzy Logic for network intrusion
detection is presented by Hamamoto et al. [58]. The GA is used to create Digital Signature of
Network Segment using Flow Analysis (DSNSF), a prediction of the networks traffic behaviour
for a given time interval. Additional, the Fuzzy Logic approach is adopted to assess whether
an instance represents an anomaly or not. The evaluation was conducted by using real network
traffic from a university and obtained an accuracy of 96.53% and false alarm of 0.56%.

One point to be taken into account is that the use of Swarm Intelligence (SI) for IDS. Botes
et al. [21] presented a new method namely Ant Tree Miner (ATM) classified, which is is a
decision tree using ACO instead of conventional techniques such as C4.5 and CART [92], for
intrusion detection. Using NSL-KDD datasets, their approach archived the accuracy of 65% and
false alarm rate 0%.

In a later study [118], the authors presented an IDS using binary PSO and kNN. The proposed
method consists of feature selection and classification step. Based on the results obtained, the
algorithm showed excellent performance, and the proposed hybrid algorithm raised the accuracy
generated by KNN by up to 2%. Meanwhile, Ali et al. [5] introduced a learning model for fast
learning network (FLN) based on PSO named PSO-FLN, and then the model had been utilized
to the problem of IDS. The PSO-FLN model was tested on the KDD’99 Cup datasets and
achieved the highest testing accuracy compared to other meta-heuristic algorithms. In the
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Tab. 5.2: Selected literature focusing on network intrusion detection

Ref. Year Focus Tech. Anomaly types Dataset
Validation

metrics

[3] 2017
intrusion
detection

SVM,
K-means

DoS, Probe,
U2R, R2L

KDD’99
ACC: 95.75%,
FPR: 1.87%

[11] 2017
intrusion
detection

NN with
random
weights

DoS, Probe,
R2L, U2R

NSL-KDD ACC: 84.12%

[21] 2017
intrusion
detection

ACO, DT
DoS, Probe,
R2L, U2R

NSL-KDD
ACC: 65%,
FPR: 0%

[118] 2017
intrusion
detection

PSO, KNN
DoS, Probe,
R2L, U2R

KDD’99

ACC:
- Dos: 99.91%
- Probe: 94.41%
- U2L: 99.77%
- R2L: 99.73%

[65] 2018
intrusion
detection

LS-SVM
DoS, Probe,
U2R, and R2L

KDD’99 ACC: Over 99.6%

[109] 2018
intrusion
detection

DAE, RF
DoS, Probe,
R2L, U2R

KDD’99,
NSL-KDD

Average ACC:
85.42% - 97.85%

[58] 2018
Anomaly
detection

Fuzzy logic,
GA

DoS, DDoS,
Flash crowd

University
dataset

ACC: 96.53%,
FPR: 0.56%

[5] 2018
Intrusion
detection

PSO, FLN
DoS, Probe,
R2L, U2R

KDD’99

ACC:
- Dos: 98.37%
- Probe: 90.77%
- U2L: 93.63%
- R2L: 63.64%

[50] 2018
Anomaly
detection

CSO, K-means
DoS, Probe,
R2L, U2R

UCI-ML,
NSL-KDD

ACC: 97.77%,
FPR: 1.297%

[57] 2018
Intrusion
detection
& classification

ABC, AFS

DoS, Probe, R2L,
U2R, Fuzzers, Analysis,
Exploits, Generic,
Worms, RA,
Shellcode,
Backdoors

NSL-KDD,
UNSW-NB15

ACC: 97.5%,
FPR: 0.01%

[27] 2019
anomaly
detection

PSO, SVM,
K-means, AFS

DoS,Probe,
R2L, U2R,
RA, RI, CI

KDD’99,
Gas Pipeline

ACC: 95%

[51] 2019
Anomaly
detection

GWO, CNN
DoS, Probe,
U2R, R2L

DARPA’98,
KDD’99

ACC: 97.92%/98.42%
FPR: 3.6%/2.22%

[68] 2019
anomaly
&misuse detection

Spark ML,
LSTM

DSoS, DoS,
Botnet,
Brute Force SSH

ISCX-UNB
ACC: 97.29%
FPR: 0.71%

[105] 2019
Anomaly
detection

FA, C4.5,
Bayesian

DoS, Probe,
U2R, R2L

KDD’99

DoS(ACC: 99.98%, FPR: 0.01%)
Probe(ACC: 93.92%, FPR: 0.01%),
R2L(ACC: 98.73%, FPR: 0%),
U2R(ACC: 68.97%, FPR: 0%)

[55] 2019
Intrusion
dectection

Tabu search,
ABC, SVM

DoS, Probe,
U2R, R2L

KDD’99
ACC: 94.53%,
FPR: 7.028%
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recent study by Chen et al. [27], a multi-level adaptive coupled intrusion detection method
combining white list technology and machine learning was presented. The white list was used
to filter the communication, and the machine learning model was used to identify abnormal
communication. In this article, the adaptive PSO algorithm and Artificial Fish Swarm (AFS)
algorithm were used to optimize the parameters for the machine learning model. The method
was tested on KDD’99 Cup [61], Gas Pipeline, and industrial field datasets. The empirical result
showed that the proposed model is efficient with various attack types.

In [50], the authors introduced the Fuzzified Cuckoo based Clustering Technique for anomaly
detection. The technique consists of two phases: the training phase and the detection phase. In
the training phase, Cuckoo Search Optimization (CSO), K-means clustering, and Decision Tree
Criterion (DTC) were combined to evaluate the distance functions. In the detection phase, a
fuzzy decisive approach was utilized to identify the anomalies based on input data and previously
computed distance functions. Experimental results showed that the model was effective with an
accuracy rate of 97.77% and a false alarm rate of 1.297%.

Meanwhile, the authors in [57] incorporated Artificial Bee Colony and Artificial Fish Swarm
algorithms to cope with the complex IDS problems. In this work, a hybrid classification method
based on the ABC and AFS algorithms was proposed to improve the detection accuracy of IDS.
The NSL-KDD and UNSW-NB15 datasets were used to evaluate the performance of the method.
Based on the results obtained, the proposed model was efficient with a low false alarm rate and
high accuracy rate.

In later research, Garg et al. [51] proposed a hybrid model for network anomaly detection
in cloud environments. The model utilized Grey Wolf Optimization (GWO) and Convolutional
Neural Network (CNN) for feature extraction and identifying the anomalies on real-time network
traffic streams. The empirical result showed that the proposed model was efficient with a low
false alarm rate and high detection rate.

Another approach [68] presented a hybrid IDS utilizing Spark ML and the convolutional-
LSTM network. The ISCX-UNB dataset was used to evaluate the performance of the method.
Based on the results obtained, the proposed model obtained a significant result and outperformed
the compared method.

In Ref. [105], the authors adopted the firefly algorithm for feature selection and C4.5,
Bayesian Networks classifier for detection network intrusion. The proposed approach was tested
on the KDD’99 Cup dataset, and obtained a promising result and outperformed the compared
method for feature selection.

Recently, research conducted by Gu et al. [55] introduced an IDS based on SVM with the
Tabu-Artificial Bee Colony for feature selection and parameter optimization simultaneously. The
main contributions of their work included the adopting of Tabu Search algorithm to improve the
neighbourhood search of ABC so that it could speed up the convergence and prevented stuck
in the local optimum. According to their experiments, although the accuracy rate was high
94.53%, the false alarm rate was 7.028%.

Table 5.2 abstracts some characteristics of the discussed network intrusion detection ap-
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proaches, concerning to the focus area, techniques, features, the dataset and validation metrics
used to evaluate the model’s performance. For the validation metrics, we present the best
performing method in the paper.

5.2.3 Phishing and SPAM detection

Phishing attack is a cyber-attack that attempts to steal user’s identity or financial credentials.
Today, phishing attacks are one of the most menacing threats on the Internet. Various novel
intelligent approaches were used to cope with these problems.

The authors in [112] presented a phishing detection scheme called Phishing Email Detection
System (PEDS), which joined the evolving neural network and reinforcement learning. Their
model obtained 98.6% of accuracy rate and 1.8% false positive rate.

The authors in [64] introduced an anti-phishing method, which utilized several different ML
algorithms and nineteen features to distinguish phishing websites from legitimate ones. The
authors claimed that their model achieved 99.39% true positive rate.

Another approach by Feng et al. [43], applied neural network for identification the phishing
web sites by adopting the Monte Carlo algorithm and risk minimization principle. Empirical
results showed that their model reached to 97.71% precise detection rate and 1.7% false alarm
rate.

A recent study conducted by [104] introduced a real-time anti-phishing system, which utilized
seven different classification algorithms and natural language processing (NLP) based features.
According to the authors, their approach obtained a promising result with a 97.98% accuracy
rate.

Another study [79] built a stacking model by combining GBDT, XGBoost and LightGBM
using URL and HTML features for classifying the phishing web pages. The authors reported
that their approach reached to 98.60% accuracy rate.

The terminology “SPAM“ refers to unsolicited bulk email (junk email). Spam email may lead
to security issues and inappropriate contents. To overcome the drawbacks of this cyber-threats,
recently scientists applied various novel intelligent techniques to build spam filter systems.

Feng et al. [44] combined support machine vector and Naive Bayes to develop a spam
filtering system. The proposed system was evaluated by DATAMALL dataset and obtained a
great spam-detection accuracy.

The authors in [72], designed a spam categorization technique using a modified cuckoo search
to enhance the spam classification. In their work, the step size-cuckoo search was utilized for
feature extraction, and the SVM was used for classification. The proposed approach was tested
on two spam datasets: Bare-ling, Lemm-ling, and obtained a competitive result.

Later, research conducted by [113] proposed a system to filter the spam message of Facebook
using SI-based and machine learning technique. The PSO algorithm was adopted for feature
selection and the SVM, decision tree for classification. The authors claimed that the proposed
system was efficient. Unfortunately, the details of the results were not provided.
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Tab. 5.3: Selected literature focusing on phishing and spam identification

Ref. Year Focus Tech. Features Dataset
Validation
metrics

[44] 2016
Spam
detection

Naive Bayes,
SVM

99 features DATAMALL Not provide

[72] 2017
Spam
classification

CSO, SVM 101 features Ling-spam corpus ACC: 87%/88%

[112] 2018
Mail
phishing
detection

NN, RL 50 features
Self collection:
9900 samples

ACC: 98.6%,
FPR: 1.8%

[64] 2018
Website
phishing
detection

RF, SVM, NN,
logistic regression,
naïve Bayes

19 features

Phishtank,
Openphish,
Alexa,
Payment gateway,
Top banking website

ACC: 99.09%

[43] 2018
Website
phishing
detection

NN 30 features
UCI repository
phishing dataset

ACC: 97.71%,
FPR: 1.7%.

[113] 2018
Spam
message
detection

PSO, DE, DT
DB index, SVM,

13 features
Self collection:
200,000 samples

Not provide

[12] 2018
Spammer
detection

LFA, FCM 21 features
Self collections:
14,235 samples

ACC: 97.98%

[104] 2019
Website
phishing
detection

Naive Bayes,
KNN,
Adaboost,
K-star,
SMO, RF, DT

104 features
Self collection:
73,575 samples

ACC: 97.98%

[79] 2019
Website
phishing
detection

GBDT,
XGBoost,
LightGBM

20 features
Self collection:
- 1st: 49,947 samples
- 2nd: 53,103 samples

ACC: 97.30%/98.60%
FPR: 1.61%/1.24%

[41] 2019
spam
detection

GA, RWN 140 features
Spam Assassin,
LingSpam,
CSDMC2010

ACC:
96.7%/93%/90.8%
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Recently, Aswani et al. [12] provided a hybrid approach for detecting the spam profiles on
Twitter using social media analytics and bio-inspired computing. Specifically, they utilized a
modified K-Means integrated Levy flight Firefly Algorithm (LFA) with chaotic maps to identify
spammers. A total of 14,235 profiles was used to evaluate the performance of the method. The
empirical result showed that the proposed model was efficient with an accuracy of 97.98%.

A recent study conducted by Faris et al. [41] presented an email spam detection and identifi-
cation system based on Genetic Algorithm (GA) and Random Weight Network (RWN). Accord-
ing to the experiments, the proposed system obtained remarkable results in terms of accuracy,
precision, and recall.

5.2.4 Other: counter APT and identify DGAs

Advanced Persistent Threat

Advanced Persistent Threat (APT) is a sophistication cyber-attack that uses advanced tech-
niques to exploit sensitive data and remain undetected. The attackers often focus on valuable
targets, such as large corporation’s security agencies and government organizations, with the
ultimate goal of long - term information stealing. To defend against APT attacks, scholars
proposed a variety of AI techniques to deal with these cyber-threats.

In [87], the authors applied a decision tree to build IDS to detect APT attacks. It can
detect intrusion from the beginning and quickly react to APT to minimize damage. Empirical
results showed that the proposed system achieved a high rate of APT detection. Meanwhile,
Sharma et al. [108] presented a framework architecture for the detection of APTs, which based
on multiple parallel classifiers. According to the authors, the proposed framework achieved great
effectiveness and accuracy.

The authors in [101] investigated how deep neural networks (DNN), which used raw features
of dynamic analysis could be employed for nation-state APT attribution. Evaluated with the
training set contained 3200 samples, the proposed approach reached an accuracy of 94.6%.

Burnap et al. [23] used machine activity metrics and self-organizing feature map approach to
distinguish legitimate and malicious software. The authors reported that their method showed
promising for APT detection.

Another approach [52] introduced a ML-based approach named MLAPT to identify and
predict APTs. According to the authors, their system had the ability of early prediction of APT
attacks. The experiments showed that MLAPT had a true positive rate and the false positive
rate with 81.8% and 4.5% respectively.

Table 5.3 exhibits some characteristics of the discussed phishing and spam detection ap-
proaches, concerning to the focus area, techniques, features, the dataset and validation metrics
used to evaluate the model’s performance. For the validation metrics, we present the best
performing method in the paper.
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Identify domain names generated by DGAs

Domain Generation Algorithms (DGAs) are algorithms that use to create an immense num-
ber of pseudo-random domain names to hide the operator’s command and control (C&C) server
and evade detection. Lison et al. [80] adopted recurrent neural networks (RNN) to identify
domain names generated by DGAs with high precision. According to the authors, the model
could detect 97.3% of malware-generated domain names with a low false positive rate. Curtin
et al. [33] also took a similar approach using the generalized likelihood ratio test (GLRT) and
achieved promising results.

Yu et al. [142] performed a comparative analysis on convolutional neural network (CNN) and
recurrent neural network (RNN) based architectures and tested on the dataset with 2 million
domain names. The authors reported that all comparative models performed well with high
accuracy rate and low false positive rate.

The authors in [124] introduced a novel Long Short-Term Memory network (LSTM) based
algorithm to handle the multiclass imbalance problem in DGA malware detection. Based on the
results obtained, the proposed algorithm provided an improvement as compared to the original
LSTM.

In a recent study [132], the authors utilized IF-TF for a DGA and DNS covert channel
detection system based machine learning. According to the authors, the proposed approach
achieved outstanding accuracy at 99.92%. Another approach in [138], proposed a framework
for identification word-based DGAs by utilizing the frequency distribution of the words and an
ensemble classifier constructed from Naive Bayes, Extra-Trees, and Logistic Regression. The
authors reported that their method outperformed the comparative researches. Table 5.4 de-
scribes the main details of the selected researches focusing on APTs detection and identifying
domains generated by DFGAs, concerning to the focus area, the algorithms, the dataset, and
the evaluation measures.

5.3 The malicious use of AI

Regarding the fact that AI tools already developed in open source, it is logical to expect
that, AI technologies may be leveraged for creating new types of advanced and sophisticated
threats. In this section, we illustrate a range of feasible uses toward which AI could be put for
nefarious ends. Some of them are already occurring in the limited form in practice but could
be scaled up or strengthen with further technological advances in the future [121]. Fig. 5.2
highlights some branches of leveraging of AI for malicious activities.
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Tab. 5.4: Selected studies focusing on APTs and DGAs domains detection

Ref. Year Focus area Tech. Features Dataset
Validation

metrics

[87] 2017
APTs
detection

DT API calls
Self collection:
130 samples

ACC: 84.7%

[108] 2017
APTs
detection

GT, DP,
CART, SVM

Log events Self collection
ACC: 98.5%,
FPR: 2.4%

[101] 2017
nation-states
APTs detection

DNN Raw text
Self collection:
3200 samples

ACC: 94.6%

[80] 2017
DGA
domains
detection

RNN
Letter
combinations

Self collection:
over 2.9 million
samples

ACC: 97.3%

[23] 2018
APTs
detection

SOFM, DT,
Bayesian,
SVM, NN

Machine
activity metrics

Self collection:
1188 samples

ACC: 93.76%

[52] 2018
APTs detection
and prediction

DT, KNN,
SVM, EL

Network traffic
Self collection,
university live traffic

ACC: 84.8%,
FPR: 4.5%

[33] 2018
DGA
domains
detection

RNN Characters
Self collection:
2.3 million samples

FPR: <=1%

[142] 2018
DGA
domains
detection

RNN, CNN Strings
Self collection:
2 million samples

ACC: 97–98%

[124] 2018
DGA
botnet
detection

LSTM Characters Alexa, OSINT F1:98.45%

[138] 2019 DGA detection Ensemble words
Self collection:
1 million samples

ACC:
67.98%/
89.91%/91.48%

[132] 2019
DGA, DNS
covert chanel
detection

TF-IDF Strings
Self collection:
1 million samples

ACC: 99.92%
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Malicious use of AI
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Fig. 5.2: The use of AI for malicious activities in cybersecurity

5.3.1 AI and autonomy intelligent threats

AI-powered malware

AI technologies can further be weaponized to increase the effectiveness of the malware, mak-
ing it more autonomous, sophistication, increase in speed, and hard to detect. With the support
of AI, the new generation of malware become smarter and capable to operate autonomously.
The intelligent malicious programs can self-propagate in a network or computer system base on
a sequence of autonomous decisions, intelligently custom-made to the parameters of the host
system and. Autonomous malware capable of choosing the lateral movement techniques, thus
increasing the likelihood of fully compromising the targeted networks.

What is more, malware authors could adopt the ability to adapt to a new environment or
to use the knowledge acquired from past occurrences of AI in creating intelligent viruses and
malware or modelling adaptable attacks. Consequently, malware becomes independent, inte-
grating into its environment, taking countermeasures against security tools and could leverage
data acquired from the past to attack the system.

One of the ultimate goals of malware is to hide their presence and malicious intent to avoid
being detected by anti-malware solutions. Cybercriminals will certainly discover ways to imple-
ment the most advanced technology into evasive techniques.

The researchers from IBM [115] presented malware enhanced by the Deep learning (DL)
technique that was capable of leveraging facial recognition, voice recognition, and geolocation
to identify its target before for attacking.

In [100] Rigaki and Garcia adopted DL techniques to generate malicious malware samples
that avoid detection by simulating the behaviours of legitimate applications.

Concurrently to the development of malware, there are attempts to apply bio-inspired tech-
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niques into malware. For instance, Ney ea al. [89] presented how to compromise a computer
by encoding malware in a DNA sequence. Later, the authors in [145] outlined a hypothetical
swarm malware as a background for a future anti-malware system. More precise, the swarm
virus prototype simulated a swarm system behaviour, and its information was stored and visu-
alized in the form of a complex network. As a further improvement, the authors in [126] fused
swarm base intelligence, neural network, and a classical computer virus to form a neural swarm
virus.

AI used in social engineering attacks

AI can be leveraged to mine large amounts of big datasets containing social network data to
extract personally identifiable information, which can be used for compromising user accounts.
What is more, based on user information, malicious actors could adopt AI to generate custom
malicious links or creating personalized phishing emails automatically.

There have been researches on adopting AI to carry out complex social engineering attacks.
In [106, 107], the authors introduced a long short-term memory (LSTM) neural network that
was trained on social media posts to manipulate users into clicking on deceptive URLs.

5.3.2 AI as a tool for attacking AI models

As AI is being integrated into security solutions, cybercriminals attempt to exploit vulnera-
bilities in this domain. Attacks on AI systems are typically discussed in the context of adversarial
machine learning. The offences on AI systems often appeared in three areas:

• Adversarial inputs: This is a technique where malicious actors design the inputs to make
models predict erroneously in order to evade detection. Recent studies demonstrated how
to generate adversarial malware samples to avoid detection. [54] crafted adversarial exam-
ples to attack the Android malware detection model. Meanwhile, scholars in [63] presented
a generative adversarial network (GAN) based algorithm called MalGAN to craft adver-
sarial samples, which capable of bypassing black-box machine learning-based detection
models. Another approach by Anderson et al. [9] adopted GAN to create adversarial do-
main names to avoid the detection of domain generation algorithms. The authors in [69]
investigated adversarial generated methods to avoid detection by DL models. Meanwhile,
in [7], the authors presented a framework based on reinforcement learning for attacking
static portable executable (PE) anti-malware engines.

• Poisoning training data: In this kind of attack, the malicious actors could pollute the
training data from which the algorithm is learning in such a way that reduces the detection
capabilities of the system. Different domains are vulnerable to poisoning attacks, for
example, network intrusion, spam filtering or malware analysis [77],[26].

• Model extraction attacks: These techniques are used to reconstruct the detection models or
recover training data via black-box examining [123]. On this occasion, the attacker learns
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how ML algorithms work by reversing techniques. From this knowledge, the malicious
actors know what the detector engines are looking for and how to avoid it.

Table 5.5 describes the main details of the selected studies focusing on malicious use of AI,
with regard to the focus area, the techniques, the innovation point and the main idea.

5.4 Challenges and open research directions

In this section, we discuss the challenges when adopting AI-based approaches in practice.
Additionally, we also offer a vision about some areas that need to be further researched.

5.4.1 Challenges

AI methods have played a crucial role in cybersecurity applications and will continue a
promising direction that attracts investigations. However, some issues must be considered when
applying AI-based techniques in cybersecurity. First, the accuracy of AI models is a significant
barrier. Specifically, the false alarms may cause waste of time triaging, or an AI system might
miss a cyberattack entirely. Another barrier to adoption is that many of the approaches proposed
today are model-free methods. These models require a large quantity of training data, which
are hard to obtain in real cybersecurity practice. Next, in designing AI-based solutions for
cybersecurity, approaches need to consider the adversary. Adversary attacks are hard to detect,
prevent and counter against as they are part of a battle between AI systems.

AI can help protect the system against cyber-threats but can also facilitate dangerous attacks,
i.e., AI-based attack. Malicious actors can leverages AI to make attacks flexible and more
sophisticated to bypass detection methods to penetrate computer systems or networks.

5.4.2 Open research directions

There are diverse promising and open topics for incorporating AI techniques and cybersecu-
rity. Some research area is as follows.

First, the combination of several AI-based techniques in a defence solution may still an
interesting research direction. For example, the incorporate between bio-inspired computation
and ML/DL approaches shown the promising results in malware detection [6], [2], [17], [4], [42] or
[68], [105], [55] in detect the network intrusion. Hence, the combination of these two techniques
is a very potential research direction due to the number of bio-inspired algorithms exploited in
cybersecurity is still limited.

Second, the corporation between a human intellect with machines for cyber defences also
needs further investigation. In this human-machine model, the agents will autonomously execute
the task whilst humans can supervise and intervene only when necessary.

Third, outstanding literature has proved that the threat actors could utilize the AI-based
method to bypass or attack the AI models such as in [9], [123], [54], [63],[69],[26], [25]. Hence,
the defence strategy against these types of attacks would be an inevitable trend in the future.
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Tab. 5.5: Selected references in term of the malicious use of AI
Ref. Year Focus Tech. Innovation point Main idea

[9] 2016
Adversarial
attacks

GAN
New attack
model

create adversarial domain names to avoid the
detection of domain generation algorithms

[123] 2016
Stealing
model

AE
model extraction
attacks

extract target ML models by the machine learning
prediction APIs

[106] 2016
Social
engineering
attacks

RNN
New attack
model

Automated spear phishing campaign generator
for social network

[89] 2017
Compromise
computer

Encoding
DNAs

Encoding
malware
to DNAs

compromise the computer by encoding malware in
a DNA sequence

[54] 2017
Adversarial
attacks

AE
New attack
algorithm

adversarial attacks against deep learning based
Android malware classification

[63] 2017
Adversarial
attacks

GAN
New attack
model

present a GAN based algorithm to craft malware
that capable to bypass black-box
machine learning-based detection models

[115] 2018
Malware
creation

DNN
AI-powered
malware

Leverage deep neural network enhance malware,
make it more evasive and high targeting

[100] 2018
Malware
creation

GAN
AI-powered
malware

avoid detection by simulating the behaviours
of legitimate applications

[145] 2018
Malware
creation

ACO
SI-based
malware

use ACO algorithms to create a prototype malware
that have a decentralize behaviour

[7] 2018
Adversarial
attacks

AL
New attack
method

a generic black-box for attacking static portable
executable machine learning malware models

[69] 2018
Adversarial
attacks

AM
New attack
algorithm

adversarial generated methods to attack
neural network-based malware detection

[77] 2018
Poisoning
attack

EPD
New poisoning
data method

present a novel poisoning approach that attack against
machine learning algorithms used in IDSs

[26] 2018
Poisoning
attack

AM
Analysis
poisoning
data method

present three kind of poisoning attacks on machine
learning-based mobile malware detection

[107] 2018
Social
engineering
attacks

LSTM
New attack
model

introduced a machine learning method to
manipulate users into clicking on deceptive URLs

[126] 2019
Malware
creation

ANN
next generation
malware

fuse swarm base intelligence, neural network to
form a new kind of malware
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Another aspect that captures further investigation is the use of AI in malware, such as in
[115], [145], [126]. Specifically, the combination of swarm communication and other AI-based
techniques need to be noted. Such malware will exhibit extremely high robustness of information
preservation against swarm network damage. Swarm communication also exposes the research
direction to apply this idea to other malware like worms, trojans, or ransomware so that their
activities can be more distributed and stealth.

5.5 Discussion

The utilize of AI in cybersecurity creates new frontiers for security investigate. Scientists
views AI as an essential response to the continuous growth in the number and increase the com-
plexity of cyber-threats and the need for quick reaction and substantially automatic responses
to security attacks. On the other hand, AI technology also leads to some security issues that
need to be resolved. In this section, we summarize the essential points in this study. Other
methods to enhance cybersecurity are also mentioned. To conclude, the authors compared this
study with several existing surveys.

It is clear from the literature that AI-based approaches could be adopted in the cyber domain,
encompassing a variety of methods that have developed over many decades, have demonstrated
effectiveness, and are currently in use.

At present, the prime targets for AI applications are malware classification and analysis,
intrusion detection (focusing on anomaly network-based attacks), phishing and spam, advanced
persistent threat detection and characterization. Furthermore, a rapidly emerging topic for
application is automated vulnerability testing and intrusion resistance.

Intrusion detection systems typically rely on hybridization techniques that combine several
methods: signature-based methods for rapid detection of known threats with low false alarm
rates and anomaly-based methods to flag deviations. What is more, another trend is combining
with other computational intelligent models such as ACO, PSO.

The absence of datasets for research and development in network intrusion is a problem.
Precisely, publicly available datasets are extremely dated, such as DARPA (1998), KDD (1999),
and NSL-KDD (2009), and the characteristics and volume of attacks have significantly changed
since that time. What is more, the majority use of these datasets may offer a one-sided vision
about collected data and not reflect real-world situations.

There are indications that AI-based models can be bypassed. Several published examples
in the cybersecurity field indicate that the AI system can be challenged with the adversarial
inputs or poisoning the training data. Furthermore, the potential threats of malicious use of AI
need to be taken into account. For example, AI technology can be utilized to power malware,
establish a spear-phishing campaign, or perform a social engineering attack.
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5.6 Summary

This chapter focuses on the application of the AI-based technique in cybersecurity issues.
Specifically, we present the application of AI in malware detection, intrusion detection, APT,
and other domains such as spam detection, phishing detection. Furthermore, our study offers a
vision of how AI could be adopted for malicious use.

In contemporary research, the primary targets for AI application in cybersecurity are network
intrusion detection, malware analysis and classification, phishing, and spam emails. In those
areas, the adoption of DL gradually become the primary trend. Furthermore, the combination of
other intelligent techniques, such as bio-inspired methods, together with ML / DL, also attracted
the attention of researchers. Such combinations yield very promising results and continue a trend
for further research.

Although the role of AI in resolving cybersecurity matters continues being researched, some
of the problems that exist around the deployment of AI-based defences are also striking. For
instance, the adversarial attack against the AI models or the emergence of autonomous intelligent
malware. Hence, research on discovering solutions to these threats should be further explored.
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6 X-WARE: THE SWARM MALWARE

In chapter 5 we focus on the application of the AI-based technique in cybersecurity issues.
Furthermore, we predict that in upcoming time, the cyber-threat actors will leverage the AI
technology in malicious intention, for instance in malware.

This chapter described the methodology of developing a prototype of the hypothesis X-
Ware, which is an improvement of the swarm virus introduced in [145]. In this study, the
authors outlined a possible dynamics, structure, and behavior of a hypothetical (up to now)
swarm malware as a background for a future anti-malware system. The research shows, how to
capture and visualize the behavior of such malware when it walks through the operating system.
The swarm virus prototype, designed here, mimics a swarm system behaviour and thus follow
the main idea of a swarm algorithms.

The content in this chapter have already been presented and published at scientific journals
[145] and conferences [110], [126].

6.1 Methodology

6.1.1 X-Ware design

Malware has evolved drastically since its early days being an unharmful annoyer. Various
techniques have been adopted to virus development such as oligomorphism, metamorphism,
polymorphism, encryption, armouring (armoured viruses) [46] and obfuscation [98] to defeat
anti-malware. One of the latest modern viruses, Stuxnet, [73], is controlled with command and
control (C&C) infrastructure method. C&C has a weak spot of being immobilized when its
control centre is demolished.

Acting as a malware developer, in order to eliminate the weak spot of the botnet structure
being its C&C centre, the author group adopted swarm-based intelligence and NN to a traditional
virus to produce a new malware named X-Ware.

Technically, this virus consists of instances (many individuals) forming a swarm (population)
that propagate in a computer file system. The individuals in the swarm communicate via
command lines (when shifting from file to file) and among themselves. The global data is
stored inside each virus so that the swarm can be expected to perform decentralized behaviour.
Whenever there is a change in the swarm (e.g., the virus moves to another host), the information
will be updated to every individual in the pack.

Furthermore, when a member of the swarm is eliminated (removed by a user or deleted by
antivirus software), another one will be regenerated by swarm to ensure that the number of
individuals in the population is constant.

In addition, the ANN embedded on the prototype, which presented in [rel4], can be used
as a “trigger conditions” to execute the payload on the aimed target, or control behavior of
the swarm. On the other hand, the virus can simulate the working mechanism of an ANN to
enhance the robustness. More details about this are discussed in section 6.1.4. The workflow of
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Fig. 6.1: X-Ware work flow

the X-Ware, which illustrated in Fig. 6.1, is as follows: The workflow of the X-Ware consist of :
• Dormant: The virus is idle; none of the other virus instances is operating.
• Infection: This phase is responsible for generating the swarm population and maintains

the virus population size. Moreover, the infection phase is also a kind of passive defence
mechanism. In case an anti-malware recognizes some of the viruses and eliminates them,
the same amount of viruses will be regenerated to ensure the same swarm size.

• Trigger : The virus is activated to perform the tasks for which it was intended to. System
events can cause this triggering.

• Execution: The virus delivers a payload onto the infected system.
• Communication: The communication phase decides which virus should be activated as

well as updates the global memory of the swarm.
• Movement: This phase determines the next target to infect.
• Healing: The virus wipes its old copy when the movement to another host is completed.

This phase helps to maintain the cardinality of the swarm.

6.1.2 X-Ware structure and functionality

The X-Ware is a self-replicating structure consisting of components to perform its task. The
functionality of each component is as follows:
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• Infector: This component is responsible for some tasks, respectively, as follows. The first
task is copying the virus and attaching it to a suitable host. The second one is healing
the host file after moving to a new location. The third one is checking whether the file is
infected or not; if the file is infected, then there is no need to infect it again.

• Propagator: This component is the most important because it decides how the virus is
propagated. It will indicate where to move (i.e., which file to infect) by evaluating the
files.

• Communication: Communication is responsible for exchanging information in the swarm.
The virus instances interact with each other to decide which one should be activated
through the command line arguments. Furthermore, it allows the virus to update the
stored information such as locations of all virus instances, and the network topology when
moving to a new file. That means the entire communication traffic goes from one virus
instance to another without any central communication point.

• Payload: In this prototype, the payload is to test the swarm functionality. No destructive
payload was implemented.

• Trigger: The trigger launches the payload at a given condition. The triggering can be set
by a variety of system events such as setting off at a given time, a given number of times
a program runs, the physical condition of the disk, a specific date or time.

6.1.3 Spreading mechanisms

The spreading of malware is quite complicated and mainly depends on the kind of malware
(e.g., viruses, trojans, worms) and the environment it is in (inside the computer or network).
The distribution of malicious programs has expanded beyond traditional ways, such as from
removable media, download files from the Internet, or email attachments to more sophisticated
approaches like drive-by-downloads from a compromised website or using social engineering.

In fact, the malware could use various infection techniques to move inside a PC environment
such as prepending, appending, or inserting it into an executable file. For the herein virus
prototype, the prepending technology is adopted. With this technology, the virus attaches itself
to the starting code of the host so that it will execute first when the program starts.

Furthermore, the spreading strategy resembles the classical worm called “Rabbit“ [13]. With
this strategy, the virus will erase its copy on previously visited files when moving to a new one.
Consequently, the host will be recovered to the original state. In this view, the virus behaviour
is similar to evolutionary or swarm algorithms, whose individuals jump over the search space.
This strategy controls the spread of the virus to avoid excessive population growth, which may
cause system slowdown and lead to possible detection. Hence, the population of the swarm virus
will remain unchanged during the contagion.
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Fig. 6.2: Each virus in the swarm consist of a MLP

6.1.4 Incorporate ANN and the virus

This part discusses how to incorporate ANN and the proposed virus. In this study, the
concept of MLP neural network has been use to enhance the malware. More specifically, we
adopt MLP in two cases: (1). each of the virus in the swarm will contain an MLP, (2). a number
of individuals in the population will simulate the behaviour of the MLP to perform actions.

Each virus comprise an ANN

In this implementation, each individual in the swarm had its own MLP as shown in Fig.
6.2. The MLP implementation, in this case, is composed of three layers: input layer, hidden
layer and output layer. The file’s size was used as input to the network’s input layer, which
contains a total of 2 neurons. The hidden layer consists of 2 neurons for network training, and
an output layer consists of 1 neuron as it produces the result of whether to perform the tasks of
the malware or not. In terms of activation function, there are a variety of methods which could
be used for training. In this study, for the purpose of binary classification, the logistic sigmoid
function is utilised. Fig. 6.3 shows the architecture of the ANN integrated into this prototype.

The back-propagation algorithm [102] is used to train the MLP in the proposed approach.
Back-propagation is short for "backward propagation of errors". It is a supervised training
algorithm in the multilayer feed-forward networks using gradient descent [60]. The dataset used
for training is collected from system files. After training the model, the optimized network
weights are integrated into the virus. When the virus executes, these weights are used on the
embedded MLP to make the computation. Then, the network makes the “trigger conditions“
to perform the execution or can be responsible for another activities.

Viruses are trained to perform system searches for finding a suitable target. The ANN then
generates signals for conducting a task. For the herein experiments, the task is to display a
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Fig. 6.3: Architecture of the MLP embedded in virus

message. Additionally, the file size is utilised for target identification. Other attributes, such as
system-level features, can be utilised. Subsequently, it is impossible to reverse the ANN to work
out the target specifications.

Malware can use an ANN model, which is a black box, instead of a traditional “if-then“
command line to camouflage its trigger condition. This seems to be much more effective cam-
ouflage technique that obfuscation. Technique wise, this complicates the deciphering jobs of
anti-malware by hiding the target categories or triggering conditions.

Virus act as a node of an ANN

This kind of implementation uses several viruses in the swarm to act as input layers, hidden
layers and output layers of. Fig. 6.4 illustrates this idea. As shown in this figure, only some
individuals in the swarm (black coloured) act as nodes in the network. More precisely, two
individuals are utilised as input nodes to receive signals, three for hidden nodes and one for the
output node.

The MLP is also trained to obtain the optimized weights in the same manner as mentioned
above. The difference is the weight allocated on individuals that act as nodes in the network.
In other words, each node comprises its own weights.

When the virus executes, the swarm simulates the working mechanism of an ANN network.
More specifically, the signal values propagated from the “inputs virus“, through the connection to
the “hidden virus“, and then onward through more connection to the “output virus“. Following
this strategy, the payload of the virus could be distributed, and it is extremely hard to reverse
engineer the virus (reverse engineers must capture whole swarm).

6.1.5 Visualizing X-Ware behaviour

Malware activities can be logged, recorded, in two ways: using network dumps method,
or tracking that malware’s exploitation and operation on a system to collect relevant data for
security purposes. Malware samples can be dynamically analysed in a controlled environment.
Analysts can then monitor the malware’s execution, record its reactions to the operating system
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Fig. 6.4: Virus simulate the ANN working mechanism

and network. Subsequently, base on the collected data, its specific behaviour profile can be
established.

Because of the continually rising number of malware, there is a massive amount of data
generated from analysing them. There are inevitable needs for data storages and adequate,
structured analysing tools to gain useful insights for counteracts, or for at least menace identifi-
cation. Nevertheless, there are some difficulties in working with data. For instance, raw data is
extremely hard for analysts to proceed. Furthermore, inappropriate tools can generate unusable
results.

One of the most effective ways to observe a tremendous multi-dimensional amount of data
for human beings is to visualize it. Application of data visualization in the security field is
still in its early stage. There are still a wide range of visualizing tools as well as applications
to explore, and many more yet to come. Additionally, there are needs for ad-hoc solutions for
specific systems and for most of the cases, these do not satisfy all needs.

As mentioned above, so as to capture X-Ware’s behaviour for later visualization, the author
group performed a dynamic analysis on a sample of it. An X-Ware sample was put in a vir-
tual, isolated environment. X-Ware’s activities, for instance, file writing and deleting, registry
writing and reading, process creating and terminating, as well as system calls invoked by the
malware while performing these actions, were recorded. Table. 6.1 presents the actions currently
monitored by the author group’s analysis platform.

To protect the host system from any hostile takeovers, the dynamic analysis was performed
in a separate virtual machine. This can be done by separating the host OS and the guest’s
kernel. Before executing any malware on a VM, a snapshot, or record, of the clear state of the
VM was taken. This enabled the analyst to revert the machine back to that snapshot after each
analysis. This isolated environment was installed with appropriate tools to capture the X-Ware

45



X-Ware: the swarm malware

Tab. 6.1: OS-related action

Type Operation

File Create, Read, Write, Rename

Process Create, Terminate

Registry Create, Read, Write, Delete

NET Connect, Send, Disconnect

Executable
samples

File storage

Virtual machine

Launch
samples

Monitoring
tools

Log

Analysis machine

Analysis

Reports

Fig. 6.5: X-Ware behavior analysis architecture

activities. Fig. 6.5 shows the platform for monitoring the behaviour of the X-Ware sample.
For observation and analysis of a swarm virus, its behavioural pattern is the essential factor.

Behavioural pattern is usually a portion of significant malware behaviour records in a system,
which is easily accessible for the analysts. As a virus moves from one file to another across a PC
system, its behaviour follows and can be mapped down like a tree structure. Nonetheless, the
tree structure contains dead-ends and no-cycles, which are not effective to capture the complex
coordinate-to-coordinate movement of the viruses. Thus, the tree structure is converted to
another structure which is inspired by swarming dynamic nature. This complex structure, or
network, has proven itself to be an effective format for visualising the swarm dynamics [144] and
performing analysis upon it. In this study, the Bianconi-Barabási model [18], for the mentioned
advantages, is utilised

Generally speaking, Bianconi and Barabási instructed how to build a complex network by
nodes and links between nodes. In Bianconi-Barabási model, a new node i is added to a network
by establishing a link to another node which is selected from a set of existing neighbouring
nodes. If in neighbour with node i, there are two nodes: j with probability of p, and node k with
probability of 1 – p., the link will be established between i and the node with higher probability.
There can be more neighbouring nodes, and each possesses its own probability. i will form a link
at a time to a neighbouring node with the highest probability. This node-to-node connectivity
is built up to form a complex network in which a node can be connected, to the time being, for
several times.
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The previous literature [145] has pointed out that the movement of the virus in the swarm
and the communication inside the swarm likely follow the complex network topology so that any
swarm intelligence based techniques, which permit search over the graph, could be adopted to
build the complex network. The principal idea is such that a vertex represents each individual,
and edges between vertices should reflect dynamics in population, i.e., interactions between
individuals. For instance, SOMA [143] could be used to form a complex structure. The SOMA
algorithm consists of a Leader drawing the entire population in each migration loop. Hence, the
position in the population of activated Leaders shall be recorded like vertex, and the interacts
between Leaders and individuals shall be recorded like edges.

6.2 Experiment setups

The proposed hypothesis can be validated with the help of a virus prototype in a high
programming language - C#. This prototype is very convenient for laboratory experiments and
researches.

This virus has no payload, and the contagion can be controlled. To train the ANNs for
the virus, a labelled dataset was prepared. It consisted of 1000 files from a clean computer. A
validation set that consisted of 100 samples were also prepared, which were then used to tune
the parameters of the model.

In addition, an environment for virus evaluation had been established to test this virus’s
performance. The main goal of this environment was to focus on analysing the behaviour of
X-Ware as well as showing the possibility of visualising X-Ware. For hardware specification, a
desktop machine with 16 GB of RAM and an Intel Core i7-8750 processor were used.

To analyse the behaviour of the virus, the “out-of-the-box“ (OOB) method was utilised. This
method helped to keep physical machines from being infected. The OOB method was brought up
using VMware software [127]. VMware was used to establish a virtualised environment, in which
Windows 10 played the role of a host operating system and Windows 10 Pro as a guest operating
system. The guest operating system included dynamic monitoring and behavior analysis which
involved runtime execution of the X-Ware samples inside an isolated environment. Table 6.2
lists the tools for dynamic monitoring and capturing the fingerprints or file path traces. Table
6.3 indicates the tools utilised for analysing and visualisation. Table 6.4 shows the specifications
of the sandbox configuration information used for experimentation. Noriben sandbox [103] was
utilised to perform dynamic analysis of X-Ware samples whereas they were executed - forced to
start, and their behaviours were monitored.

The behavioural pattern is a significant feature when studying malicious software. To record
and visualize the behaviour of X-Ware, a slightly adjusted Bianconi-Barabási model for creating
scale-free networks was used. In Bianconi-Barabási model, there are two parameters to be set
up being the probability 𝑝 and the number of links to attach for each new vertex 𝑚. In these
experiments, the parameter 𝑝 was set to at least 0.5. The probability 0.5 would mean that the
ratio of connecting to neighbours or random vertex is equal. Another parameter to set is the
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Tab. 6.2: Tools for monitoring the behaviour of X-Ware

Tools Description

Process Monitor used to track I/O operations, registry, file operation and processes

Process Hacker used for monitoring system resources

Regshot used to compare registry snapshots

RAMMap used to analyze memory usage of any application

Tab. 6.3: Tools used to analysis and visualise X-Ware

Tools Description

VM-snapshot
Snapshot manager to copied and stored the current working state of

an virtual machine at a specified time

Noriben A sandbox for malware analysis

Procdot Software used for visualising malware

Gephi Tools for network analysis and visualization

Tab. 6.4: Specification of environment used for experimentation

System
Execution

environment

Operating

System

Network

interface
Configuration

Host Physical Windows 10 Pro Ethernet
Intel i7-8750,

16 GB RAM

Sandbox Virtual Machine Windows 10 Pro Virtual Ethernet
Processor: 2

RAM: 8 GB
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Tab. 6.5: Recommended parameters of X-Ware.

Parameter Value

number of individual 5–up to user

Visited host length 20–up to user

p 0.4–0.9

m 1–10

𝑚 parameter, which represents the number of connections it will initially have. Experiments
showed that any value higher than four would give better performance. In this network, each
edge weights 1/𝑑, where 𝑑 is the distance of the file, measured by the number of folders between
files (vertices) + 1. The complete set of experimental verified value are shown in Table 6.5.

6.3 Experimental results and analysis

In this section, the experimental results are presented and analysed. The behavioural analysis
provides detailed information about the malware that is suitable for understanding the X-Ware
samples. The samples were executed in a Windows virtual machine environment, and their
behaviour was identified during program execution. Malware analysing tools, as stated in Table
6.2 and Table 6.3 were used to track the X-Ware activities and produce the log files.

6.3.1 Behavioural analysis

The result of executing the X-Ware in the isolated environment is illustrated in Fig. 6.6,
Fig. 6.13, and Fig 6.12. In the presented case study, we obtained the behaviour data (named X-
Ware.exe) composed of the malware actions on the system until the termination of the primary
process. It was noticeable that these data were all typical file operations, including creating,
reading, writing and renaming files. Besides, there were registry access and modification, process
creation and termination, and network access.

Based on the logs, the behaviour of the virus prototype was visualized for concept demon-
stration.

As shown in Fig. 6.6, 6.7, 6.8, the initial virus population was created by the main process
of X-Ware. This initializing process was started by utilizing a Process Create to run the binary.
Then, a CreateFile function with Generic Read in Desired Access was performed to open the
file. Lastly, there was a copying process for reprinting a CreateFile with Generic Write of the
binaries, from Hello1 to Hello5. The following step of the generating population was a read/write
operations from the X-Ware file to the host. All of the above operations were performed by a
single thread.

1Visualization using ProcDot[97]
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Fig. 6.6: Generate virus population1

Fig. 6.7: Beginning of population creation2

Fig. 6.8: CreateFile Function for the Copy2
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Fig. 6.9: Beginning of the movement 2

Fig. 6.10: Execution of cmd.exe2

Figures 6.9, 6.10, 6.11, and 6.12 demonstrate the movement of a swarm’s individuals. The
movement began with Process Create to execute the file named Hello1 ; this file compromised
the virus code. Followingly, the virus searched for victim files by performing CreateFile function
with Read Data/List Directory in Desired Access. Once the target was found, there was the kick-
start of the infecting process by a CreateFile with Generic Read/Write of the binary dixdiag.exe.
The next step was the read/write operation from the virus file to the host. Once the migration
was successful, the virus updated its new position information to other members of the flock.
Then, the executed binary brought the execution to cmd.exe to clean its old copy when the move
to another host was made. At this point, the jumping was conducted successfully. Figures 6.13
illustrated the regenerating process when the user or anti-virus software eliminated members of
the swarm. The regenerating process aimed to keep the cardinality of the swarm constant.

6.3.2 Network analysis

Complex network analysis can be accomplished using many components. In this study, we
utilised the adjacency weight matrix to indicate the linkage between different individuals in the
population.

In the herein experiments, a swarm consisting of 5 individuals was created, which means there
2Visualization using Process Monitor[84]
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Fig. 6.11: Finishing the movement2

Fig. 6.12: Virus movement1
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Fig. 6.13: Regenerate virus files1

Tab. 6.6: Swarm virus network centralities

Min Median Max

Degree centrality 0.095 0.057 0.485

Closeness centrality 0 0.178 1

Betweenness centrality 0 0.02 0.162

Eigenvector centrality 0 0.004 1

are five virus instances. In each experiment, an individual jumped from file to file (infected a
file) 20 times in total. The fascinating behaviour of the swarm was recorded and visualised.
The figures shall be read as follow: the node size is related to file importance. The node colour
indicate the communication between the subgroups. Furthermore, the virus behaviour in the
system had been analysed for different network attributes such as the vertex centrality including
degree , closeness, betweenness, eigenvector. Alongside that, the clustering coefficient was also
utilised to examined the network structure. The obtained statistical data is given in Table 6.6.

Degree Centrality

Generally referred to as the basic centrality; this centrality is defined as the number of direct
connections a node has with other nodes, which means the number of relation (edge) that the
node has. Technically, a node with a higher degree has more neighbour than the others. Degree
centrality is an important distribution hub in the network as it connects and thereby distributes
the most of information flowing through the network. Degree centrality is one of the most
significant features considering a complex network. Figure 6.14 presents the visualisation of
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Fig. 6.14: Degree centrality

the networks in term of degree centrality. As can be seen from the graphs, there are multiple
nodes which are increasing (distinguished by their size), emphasising their prominence in the
population.

Closeness centrality

The closeness centrality is defined as the average of the shortest path from one node to other
nodes in the network. This centrality represents the utility and efficiency of connections between
the nodes. In other words, this measure points out the individuals who are the most influent in
the entire network.

Closeness is a crucial measure as to the rate of distribution of information in the graph. The
visualization of this centrality is given in Figure 6.15. As shown in the figure, the closeness
centrality is mainly distributed over the entire network. This actually conveys that the majority
of the nodes are contributed evenly in the network.

Betweenness centrality

The betweenness centrality is defined as a ratio of the shortest paths between other nodes
passing through the node, to the total number of shortest paths between nodes. The higher
the betweenness, the higher the likelihood that the node will become a mediator in the data
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Fig. 6.15: Closeness centrality

flow between the other nodes. Simply speaking, this centrality points out the individuals who
influence the communication flow of the system.

Betweenness is a fundamental measure in terms of the control and management of informa-
tion within the graph. This centrality is illustrates in figure 6.16. In this graph, the bigger nodes
have higher betweenness centrality. Incidentally, the node which has the highest betweenness
centrality also has the best fitness. One crucial aspect to be taken into account is that once the
node for the best fitness changes, the betweenness centrality of the system alter as well.

Eigenvector centrality

The eigenvector centrality indicates that the importance of a node depends not only on the
number (its degree) but also the significance of its neighbouring nodes. If a node is attached
to many other nodes which are themselves well connected, then, it possesses high eigenvector
centrality value. In the network, the nodes with high eigenvectors are considered to be more
influential than other nodes.

Eigenvector centrality is used as a measure of influence and power of a node in the network.
Figure 6.17 demonstrates the distribution of eigenvector centrality. The colour coding is utilised
to distinguish the centrality. Darker nodes are more central and lighter nodes are less central.
As shown in the figure, some individuals are more influent than the others in the swarm.
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Fig. 6.16: Betweenness centrality

Fig. 6.17: Eigenvector centrality
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Clustering coefficient

Clustering coefficient is a measure of the density of triangles in a network. In many networks
it is found that if vertex 𝑖 link to 𝑗 and 𝑘, then vertex 𝑗 and 𝑘 are likely to connect each other [88].
A lower clustering coefficient’s vertex indicates that it probably connect to many unconnected
vertices which belong to different communities.

In the previous studies, the authors in [39, 40] argued that higher clustering coefficients
lead to lower speeds of propagation. In addition, a high clustering coefficient indicates that
persistence of the transmission in the network. Furthermore, the correlations between the two
factors of the X-Ware properties has been plotted in Fig. 6.18. The figure indicates that
as vertex degree increases, the range of clustering coefficient shrinks from [0, 1] exponentially
towards 0. This means that a vertex with a higher degree has a lower value of the clustering
coefficient. There are some possible explanations for the decrease of clustering coefficient in as
vertices degree increases.

• First, the X-Ware members tend to group in communities, sharing mostly neighbours
within the same community.

• Second, the smaller communities are denser. Hence, the value of clustering coefficients is
larger.

• Finally, communities may be connected by large degree vertices, and being a connector
will decrease its value of clustering coefficient of these large degree ones.

Histograms of the four measures

Fig. 6.19, 6.20, 6.21, and 6.22 depict the histograms of observed network attributes. The
empirical result shows that the more important a node is, the higher centrality it has. Subse-
quently, if a node has a higher centrality, then it has more probability of being visited. In other
words, the important files have a higher centrality, which means they have a higher chance to be
infected by the malware prototype. In contrast, less important files have lower centrality values
and have a lower chance of being visited by the virus.

Discussion

Network analysis is a set of methods that originated from network theory to exhibit the
power of social network influences. It provides several statistics that help characterize a network.
Network science has been applied widely in many areas, from studies of the social networks to
an assortment of biological systems and even to complex networks.

In recent years, the research community has witnessed efforts to modelling several complex
systems as the complex network [19]. This omnipresent scale-free structure has an essential
meaning for system dynamics. The complex network could be witnessed in numerous systems,
from world wide web to citation networks, and as well as the epidemics of malware. Therefore,
it is of essential to understand the effect of evolving complex networks on virus spreading to
help make policies to prevent and mitigate the damage of malicious code.
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Fig. 6.18: Correlation of clustering coefficients and vertex degree

Fig. 6.19: Histogram of the network degree centrality

58



X-Ware: the swarm malware

Fig. 6.20: Histogram of network betweenness centrality

Fig. 6.21: Histogram of network closeness centrality
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Fig. 6.22: Histogram of network eigenvector centrality

At present, numerous metrics have been used to define and classify complex networks. In
which, centrality is a crucial property of complex networks that affects the operation of dynamical
processes, like synchronization and epidemic spreading, and can bring valuable information
about the organization of complicated systems. The centrality measures aim for identifying the
more influence nodes in a network. They are used for understanding the power and the social
influence in a network.

In the scope of this thesis, the author utilized some basic centrality measure metric to evaluate
the spreading of the hypothesis swarm malware: degree, closeness, betweenness, eigenvector and
clustering coefficient.

Our empirical experiments show that the files with higher fitness also have more top centrality
metrics, and this means these files are more important. They are distinguishable from others.
In contrast, less critical files have lower centrality estimates. This means a random X-Ware
instance, which is moving through the system files or network, has a higher probability of
infecting a file with the higher fitness files.

The essential factor is that files with higher fitness should be distinct. In our experiments
show that most important files also have higher centrality. In figures, the nodes that represent
important files are bigger than the other. In contrast, less important should be smaller. Graphs
6.14 6.15,6.16 are showing the dependency between importance and centralities. In these graphs,
the most important file is the biggest node in the figure. So it is the most influence node in
the network also. Furthermore, in figure 6.17, the darker nodes indicate that they are more
influence than the other. These results suggest that if we can identify the most centrality node
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in the network then the virus’ spreading rate could be decrease and potentially eradicate the
virus.

6.4 Countermeasure

This section aims to suggest an approach to counter the X-Ware prototype. The prototype
version of X-Ware is developed and observed in a controlled environment so that its behaviour
and data can be easily obtained. Nevertheless, in reality, identifying the self-replicating swarm
structures is a difficult task. As our experiments verify, the X-Ware has two significant features 1)
it is moving over the hosts while keeping the constant of the population and 2) the communication
among them. These features shall act as the critical criteria for identifying the to-be-created
likewise prototypes. Hence, we suggest that the protection systems should not destroy them
instantly but observe them and analyze their activities data as a whole in order to discover the
activities of some subset of such malware that can be expected from the X-Ware (i.e. movement,
communication, trigger).

Additionally, complex network visualization and analysis can help a lot. By applying the
network analysis, we can discover the critical nodes, which play an essential role in the swarm
network and thus can take corresponding actions based on the analysis.

6.5 Summary

In this chapter, we presented X-Ware, which is a new virus based on botnet evolution using
AI and SI for the purpose of studying its features to form the anti-malware solution in future.
This chapter discusses the methodology to develop a prototype of X-Ware in which the ANN acts
as an intelligent centre that keeps payload, triggers conditions with no payload and controllable
contagion. Furthermore, there are practical experiments to visualise, measure, and analyse the
behaviour of the X-Ware under the form of a complex network.
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7 X-SWARM: THE UPCOMING SWARM WORM

Inheritance from Chapter 6, in this chapter we study the modification the X-Ware as a worm,
named X-sWarm, its simulations and analysis. The content of this chapter have already been
presented and published at scientific journals [125].

7.1 Introduction

Recent years have witnessed a dramatic growth in utilizing computational intelligence tech-
niques for various domains. Based on developments of evolving trends of cyber-threat, it is
reasonable to predict that cybercriminals will begin to integrate malware with artificial intelli-
gence in general, swarm intelligence technology in particular, to create more effective attacks.
Generally, artificial swarm malware can share the collected information, speed up the process of
trial and error, and leverage the specialized members of the swarms in the specifics environment.

Alongside that, an emergency trend needs to be concerned is that the abuse of anonymity
networks like Tor to evade detection and anonymize the location of the command and control
(C&C) servers. With the deployment of Tor, a device is able to build a web-based hidden service
(HS) for accepting connections without revealing their physical location.

A natural question which arises is what happens if the two mention technique are combined.
To seek the answer to this question, we design a prototype called X-sWarm, which combine
the above techniques, so that we can conduct analysis, understanding of their potential and
limitations. From this result, we suggest the idea for developing the mitigation techniques for
this kind of upcoming threats as shown in figure 7.1

Tor Network

X-ware

X-ware

X-ware

X-ware

Fig. 7.1: X-sWarm architecture, the individual communicate through Tor network
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In this chapter, we assess the threat of malware with swarm behaviour that relies on Tor
infrastructure. Accordingly, we present a design of the first generation of an X-sWarm, in
which the communication channel is established through hidden services. We also propose
a graph maintenance algorithm with high resiliency and repair in the event of a take-down.
Furthermore, we also suggest the countermeasure technique based on the same stealthy features
of the X-sWarm. Our main contributions are summarized as follows:

• We propose a novel reference design of a new type of malware with swarm characteristics,
whose command, communication, and management are fully anonymized by leveraging
the Tor privacy infrastructure.

• We define a communication topology with self-repair mechanisms that enhance the re-
siliency and performance of the network.

• We discuss the possible countermeasures to mitigate similar threats in the future.

7.2 Background

In this section, we present some of the basic concepts that will be useful to better explain
the proposed method by presenting the significant objects and interactions among them.

7.2.1 Worm

Peter Szor, in his research [119] described the worm was a subclass of computer viruses but
primarily propagated on networks. The main difference between a computer virus and worm is
the propagation mechanism. While the virus spreads by infecting files on computer or network,
worms usually propagate as independent programs. A copy of a worm will be called a worm
instance to avoid ambiguity. Furthermore, worms can exploit the vulnerabilities of the remote
system and compromise these systems without the assisting of the user. Today, many worms
act a carrier for other malware, such as trojan horses and bots.

A typical worm contains the following components: target locator, infection propagator,
payload routines self-tracker, and life-cycle manager. In this structure, two key components are
the target locator and infection propagator; the other components are non-essential and vary
according to the worm.

7.2.2 Tor and hidden services

Tor, which name derived from the acronym of the project name “The Onion Router“, is
a distributed low-latency anonymity-network. It aims to help user protecting their privacy,
circumvent censorship, as well as keep the user’s confidential communication un-monitor. What
is more, the users capable of concealing their activities and location by using Tor.

Users establish anonymous communications by forwarding their traffic through other Onion
Router (OR). The client negotiates with each relay in the circuit a separate set of encryption
keys in order to enhance the privacy on the circuit. The client negotiates with each relay in the
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symmetric circuit locks to enhance the privacy on the circuit. Next, clients transmit data using
an encrypted channel, using previously negotiated keys. The data are delivered from the relay to
relay until it reaches the destination. In addition to providing anonymous communications, Tor
also allows publishing services inside the network anonymously, which called hidden services.

The architecture of Tor’s hidden services consists of the following components:
• The service (e.g. web-server)
• client: the specific user who want to access the service
• Introduction Points: a set of relays, which is chosen by the hidden service that transmits

the initial messages between the hidden service and client at the Rendezvous Point
• Hidden Service Directories: store the service descriptor.
• Rendezvous Point: The client randomly chooses the Tor relay, which is used to transmit

the data between the client and the hidden service.
Generally, it is essential for a service to be published in the network in order to be reachable.

The process begins with the hidden services selects a randomly set of relays to be its introduction
points. Next, it creates a descriptor containing the public key and the address of its introduction
points, then inserts the descriptor in a dynamic hash table using an address like abcxyz.onion
as key. Tor implements a dynamic hash table for storing the onion address by utilizing the
hidden service directory. By using the .onion address, the client obtains the descriptor and
forms a new virtual circuit to a random relay as a rendezvous point. The client then utilizes the
introduction points to notify the hidden service about the rendezvous point. Finally, the hidden
service establishes a virtual circuit to the rendezvous point and starts the connection with the
client.

7.3 X-sWarm design

In this section, the author describes the methodology to design the prototype. The X-sWarm
consists of the following components: target selection, infection propagator, communicator,
payload. These components integrated to compromise a machine.

7.3.1 Target selection

This component is responsible for discovering new targets in order to spread the worm
through the network. This is crucial to the success of the worm. There are several methods to
identify the targets, such as the following:

• E-mail addresses: There are many ways worm can collect e-mail addresses for attacks. For
example, the address books on the victim’s machine, collecting from the web, or through
social networks.

• Host Lists: the host list on the compromised machine may contain information about the
potential targets.
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• Network neighbourhood: The worms explore the network neighbourhood to find new po-
tential targets, for instance, by sending queries using Server Message Block (SMB) proto-
cols.

• Random generation of target IP addresses: This is the most common and easily imple-
mented technique. A worm could randomly select a target address to infect.

• Combine method: some worm’s author utilized some of the mentioned methods to discover
the victim.

For demonstration purpose, the target engine is implemented with a simple method. First,
the worm discovers the IP address of the host. Next, it uses the Class-C boundary of that
IP address and commences an Internet Control Message Protocol (ICMP) scan from A.B.C.0
through A.B.C.255. If a host responds to the ICMP echo request, the worm adds the host to
the target list. Contemporary, the worm attempt to establish an SMB NULL Session when
traversing through the IP address range.

After all systems on the local network have been vanquished, the targeting mechanism turns
its attention to spreading across a wider area.

7.3.2 Infection propagator

This part describes the strategy which is used by the worm to propagate itself to a new bud.
Generally, there are four typical approaches to propagate the worm

1. Through security vulnerabilities: every computer operating system has its vulnerabilities,
and some worms are specifically coded to take advantage of these weak points.

2. Through email: this is a common way for computer worms to spread themselves. Worm’s
author can deceive the user into executing the malicious code in the email or click the
malicious link. What is more, the attachment also could be utilized to spread the worms.

3. Through shared folder: worm replicates themselves to a shared P2P folder on the disk or
even produce a shared folder and deceive the user into running the malicious code.

4. Through instant messaging: use social engineering and send messages that trick recipients
into executing a link or an attachment.

In the scope of this research, we examine the null session technique to spread the worm.
A null session is the unauthenticated sessions of the Server Message Block (SMB) protocol
enables anonymous access to hidden administrative shares on a system. Consequently, the user
can enumerate information about the system and environment when connecting to the share
through a null session.

The propagation process

The propagation process starts by examining the local network address space, attempting
to spread to as many machines as it can locally. After attempting to exploit all computers on
the local network, it tries to intrude random external IP addresses.
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The first thing when the worm tries to compromise a machine is by establishing a null
session. This step provides the information on whether the machine it is attacking supports the
Common Internet File System (CIFS) protocol and is likely to be a Windows machine. Next,
the worm uses the SMB protocol to enumerate the list of account names on the remote machine.
It also establishes some basic properties about the user for guessing the password process. After
that, it makes an SMB connection with the target computers, attempting to access the IPC$
connection. If the worm successfully connects to the IPC$ share, it copies itself over to the
remote machine. After the copy process, the worm uses remotely schedule a job to run itself on
the target machine.

7.3.3 Communicator

This component is responsible for communication in the swarm. In fact, we design a virtual
network between infected computers to establish communication and control operations. Each
worm has a list of other known, running copies of the worm and capable of creating encrypted
communication channels to spread information. This virtual network is built based on swarm
intelligence principle. Such a network could be utilized to pass information rapidly to all running
executables, lead to decentralize the C&C communication, and preventing the communication
channel from being disrupted by others, make the worm hard to track. The two techniques are
utilized for transmitting information are TCP and through Tor network.

In our design, the prototype would form a peer-to-peer (P2P), self-healing network that
maintains a low degree and a low diameter with other instances to relay messages. In the
following, we present an abstract graph representation of a worm communication topology,
which is capable of self-repairing and dynamic distributed. This communication topology is
simple, stealthy and resilient, which formed over a privacy infrastructure such as Tor.

Graph structure

We propose to use the concept of Neighbour-of-Neighbour (NoN) [81] to construct the ab-
stract graph. In the literature [81], the authors examined the neighbour of neighbours for making
better routing decisions. In the scope of this study, we investigate the concept of NoN to create
a self-healing network. Note that in this study, we use vertex and node with equivalent meaning.
We define our graph as below:

Definition 1. Consider a graph G having 𝑛 vertices (𝑉 ) and 𝑚 edges (𝐸), where each vertex
𝑣𝑖 ∈ 𝑉, 0 ≤ 𝑣 < 𝑛, is linked which a number of vertices. The set of neighbour verices of 𝑣𝑖 is
denoted as 𝑁(𝑣𝑖). Furthermore, the vertex 𝑣𝑖 has the information of vertices that are linked to
𝑁(𝑣𝑖). In other words, each vertex knows the information of its neighbour of neighbour.

Figure 7.2 give an example of a network connection diagram with 16 vertices. In this di-
agram, the neighbours of vertex 1 are: 𝑁(𝑣1) = {7, 11, 13, 15}. The neighbours of vertex 7
are 𝑁(𝑣7) = {1, 8, 12, 15}, similarly 𝑁(𝑣11) = {1, 4, 6, 12}, 𝑁 (𝑣13) = {1, 5, 10, 2}, 𝑁(𝑣15) =
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Fig. 7.2: Network diagram

{0, 1, 7, 8}. Thus, the NoN of vertex 1 are {8, 12, 15, 5, 2, 10, 0, 6, 4}. Vertex 1 stores a list that
contains the information about its neighbours vertices 𝑁(𝑣1) and the vertices that connected to
𝑁(𝑣1). In the content of this work, the information stored is the .onion addresses themselves.

Network self-healing mechanism

Today, many networks have a valuable property that they can change their topology by re-
configuring. More precise, the nodes in the network can establish new connections or disconnect
the existing one. These networks should be able to tolerant the failures and capable of recovering.
The process where the network can recover in response to failure is what we call self-healing.

Based on the neighbour of the neighbour graph, we propose a network self-healing mechanism
to form a new connection and substitute the relay function of the removed node. Thus, the
connectivity of the network is maintained. The specific process of the repairing is: Assuming
a vertex 𝑣𝑖 is deleted, the neighbours of 𝑣𝑖 react to this deletion by adding some set of edges
amongst themselves. These edges can only be between nodes which were previously neighbours
of 𝑣𝑖. This is to ensure the locality information in the underlying network which is maintained
after inserted the edges.

One aspect to take into account is that the insertion of the new edge may lead to the growth
in the connectivity degree of each vertex, denoted by 𝛿 (𝑣). Indeed, the degree of some vertices
may rise significantly after repeated deletion. Nevertheless, increasing the degree of such vertices
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is undesirable for the worm’s resilience and clandestine operation. Hence, we propose to keep
the degree of the vertices in the range [𝛿 (𝑀𝑖𝑛) , 𝛿 (𝑀𝑎𝑥)] when add a new edge. The flow of
the self-healing operation is presented in algorithm 1.

Algorithm 1 The self-healing algorithm
Input: Graph G
Output: Graph G’ after self-healing
for each deleted vertex 𝑣𝑖 do

for each pair neighbours of 𝑣𝑖: 𝑣𝑗 , 𝑣𝑘 ∈ 𝑁 (𝑣𝑖) do
if 𝛿(𝑣𝑗), 𝛿(𝑣𝑘) < 𝛿(𝑀𝑎𝑥) and 𝑒𝑗𝑘 = {𝑣𝑗 , 𝑣𝑘} not in 𝐸 then

Add edge between 𝑣𝑗 , 𝑣𝑘

Update state of vertices

Figure 7.3 depicts the self-healing process in a 4-regular graph with 16 nodes. The red lines
indicate the newly established connection between the vertices. For example, when vertex 1 is
deleted, its neighbors 𝑁 (1) = {7, 11, 13, 15} react to this deletion and traverse their neighbor
list to check whether they are linked to each other, and then establish a new one. In this case,
the following edges are created: (7, 13), and (11, 15). Similarly, when vertex 12 is removed
together with its connected edge, the new edges are appeared: (7,9) and (0, 11).

Command and control communication

In our prototype, communication is entirely encrypted by using Tor and Secure Sockets
Layer (SSL). Furthermore, the encryption keys are unique to each link. Additionally, there is
no central server; instead, all requests are handled by peers within the network. Each worm
member acts as a command server and a client. Consequently, this structure helps the worm
more resilient against the defences method than the traditional centralized structure.

The communication inside the swarm relies on the peer list that contained in each worm.
This list is fixed and has a limited size for each worm. Thus, when a worm is revealed, only a
few numbers of worms in its peer list are exposed. To forward a command, a worm could use
its neighbours as targets and rely on these neighbours to continue passing on the command in
the swarm worm.

Furthermore, the peer list based architecture can be utilized to implement strong encryption
as suggested in [130]. Technically, each worm 𝑖 generates its symmetric encryption key 𝐾𝑖.
Assume the worm 𝑥 has its peer list, which is denoted by 𝑃𝐿𝑥. This peer list would consist of
not only the 𝑁 .onion address but also the symmetric keys of its neighbours. Hence, the peer
list on worm 𝑥 is:

𝑃𝐿𝑥 = {(𝑂𝑖1 , 𝐾𝑖1) , (𝑂𝑖2 , 𝐾𝑖2) , ..., (𝑂𝑖𝑛 , 𝐾𝑖𝑛)} (7.1)

where
(︁
𝑂𝑖𝑗 , 𝐾𝑖𝑗

)︁
are the .onion address and symmetric key used by the worm 𝑖𝑗 . This encryption

ensures that if a worm is captured, then just the keys in the captured worm’s peer list are
revealed. Hence, the encryption among the remaining worms will not be endangered.
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Fig. 7.3: Node deletion and the self-healing process
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7.3.4 Payload

A worm’s payload is designed to perform specific actions on behalf of the worm’s author
on the victim system. In this prototype, the payload is to test the swarm worm functionality.
Hence, no destructive payload was implemented, except spread to other machines.

7.3.5 X-sWarm swarm behaviour

In this subsection, we describe how to build a malware network with swarm-based technol-
ogy to create more effective attacks. Additionally, we discuss the swarm characteristics of our
envision prototype.

Over the past few years, we have seen that traditional worm and botnet has a critical
weakness that is the centralise C&C communication. Thus, cyber-threat actors attempt to
discover a different method to overcome this disadvantage. One potential approach is to leverage
the swarm intelligence (SI) to overcome the centralise weakness. With the latest advances of
swarm technology, it is logical to expect that in the upcoming time swarm intelligence (SI) will
be utilised to obtain this goal. Hence, to deal with this future threat, we need to have knowledge
about this emergence trend so that we can design an efficient solution for countering the SI-based
malware threats. For this reason, in this work, we propose a new swarm-based C&C behaviour
in malware network. We aim to decentralise the infrastructure as well as autonomy the role of
each member in such a network.

Accordingly, we suggest to design a P2P malware network that is able to share information –
between malware nodes – and act on their own without a malware author issuing any commands.
In this network, the nodes capable of communicating with each other and share local intelligence.
For example, the malware attempts to learn information about a potential victim, and when it
discovers the victims, it will share this information for the rest of the swarm. Furthermore, each
node can make autonomous decisions with minimal supervision, use the collective intelligence to
solve problems. This network allows node executes commands without the central instruction,
and recruit and train new members of the swarm. Consequently, as a swarm compromises the
more devices, it will be able to grow exponentially and thereby enhance its ability to attack
multiple targets simultaneously.

In other respects, the communication-feedback mechanisms are required in order to help the
swarm operate autonomously. We suggest that each peer in the P2P network supports bidirec-
tional commands, enabling a peer within a network request and receive a response. Accordingly,
each peer contains a set of commands that allow it to interact with other peers using custom-
built P2P communication for performing multi-tasks routines. In the context of our work, the
Tor protocol is utilised as a communication channel. Table 7.1 depicts the necessary commands
for the communication process.
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Tab. 7.1: List of command establish the autonomous of swarm.

Type of command Description

Peer list
These type of commands are utilised to maintain the peer list

up to date

Update config
The update commands are leveraged to ensure that every

member have the latest config

Report
These commands are responsible for reporting the

potential target.

Data transfer These commands allow to transmit data between peers

7.4 X-sWarm life cycle

The life cycle of X-sWarm consists of the following stages, which cycle through until it is
eliminated:

1. Choosing target: In this phase, the worm select the uninfected host to attack. In other
words, the worm performs reconnaissance to determine other potential victims.

2. Infection: In the infection stage, X-sWarm exploits the file-sharing vulnerability to com-
promise the target system. By using Windows file share, users can read or write files across
the network transparently. Our prototype takes advantage of these file-sharing services by
using them to copy the worm code to a target’s file system. After that, the worm might be
manually executed by a user or scheduled to execute on the victim machine automatically.
This is a simple but yet effective propagate technique.

3. Communication and update: When infecting a new host, the worm transmits the
attacker’s address to the victim machine. Whenever a new node address is introduced, it
will join the virtual network. Then it will exchange the peer list with its neighbours. The
data transfer executes via the virtual network, which uses Tor protocol to ensure that the
information encrypted.

4. Payload execution: In this phase, the X-sWarm executes the payload. Nevertheless,
for academic purpose, the worm is not implemented with a destructive payload but just
propagate the worm.

7.5 Evaluation and Results

In this section, we conduct several experiments to prove the concept that is proposed in the
previous section. First, we simulate to evaluate the resiliency and performance of the self-healing
algorithm. Next, we execute the proposed X-sWarm to monitor its behaviour.
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7.5.1 Simulation and analysis

In this part, we consider the performance measurements for our prototype along two di-
mensions: efficiency and robustness. The experiment involves the simulation process of the
self-healing network resiliency and performance. For studying the robustness and the attack
tolerance of networks, we conduct the procedure of removing a node from a network, where
the node is chosen randomly, which mean the removal of a set of nodes happens with a certain
probability.

Efficiency evaluation

The efficiency is a measured metric that needs to be concerned when studying communication
in the network. A worm may be evaluated by its communication efficiency, such as how long it
would take to transmit messages, update binary code, or collect the host’s information.

One metric to express the efficiency of the network is the average shortest path length, 𝑙. This
metric measures the average shortest path length that link any of two vertices in the network.
The dynamics of the network (i.e. communications, information) is slow if 𝑙 is high and vice
versa. The average shortest path length defined by equation 7.2

𝑙 = 1
𝑛 * (𝑛 − 1)

∑︁
𝑖 ̸=𝑗

𝑑(𝑣𝑖, 𝑣𝑗), (7.2)

where 𝑑(𝑣𝑖, 𝑣𝑗) is the minimum number of edges between 𝑣𝑖 and 𝑣𝑖, and n is the number of
vertices.

Nevertheless, as the number of deleted vertices rises, the network will eventually turn into
many disconnected components. Consequently, the average shortest path length becomes infi-
nite. Hence, the author in [62] proposed to utilise the mean inverse shortest path length defined
by the equation 7.3

𝑙−1 = 1
𝑛 * (𝑛 − 1)

∑︁
𝑖 ̸=𝑗

1
𝑑(𝑣𝑖, 𝑣𝑗) , (7.3)

This way, if no edge connects 𝑣𝑖 and 𝑣𝑗 , the distance of 𝑑(𝑣𝑖, 𝑣𝑗) = 0. Furthermore, the
inverse length ranges from 0 (no edges) to 1 (fully connected). As such, the speed of information
transformation is measured by 𝑙−1: the larger 𝑙−1 is the better. In the context of our work, the
𝑙−1 refers to the overlay network of peer to peer connections created by the malware, instead of
the physical topology of the network.

To investigate the effect on the network connectedness, we simulate and construct some
generic models to analysis. Among various existing models for generating networks Erdos Renyi
model [38] of the random networks and the Barabási Albert model [14] of the scale-free network
are widely used. Hence, in the simulation process, we simulate the following models: two regular
models (𝑁 = 1000, 𝑘 = 4) in which one have the self-repairing mechanism, an Erdos Renyi model
(𝑁 = 1000, 𝑝 = 0.05) and an Barabási Albert model (𝑁 = 1000, 𝑚 = 5).

Figure 7.4 illustrates the results for the vertex attack vulnerability measured by the average
inverse shortest path length 𝑙−1, which is defined in equation 7.3 when a fraction number of
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Fig. 7.4: Mean inverse shortest path when removing nodes

vertices are removed. As shown in Figure 7.4, the regular model decay exponentially after 20%
of nodes is removed, while with the Erdos Renyi model, the rate is 30%. This can be explained
from the finding that each node has approximately the same degree and thus contributes to the
network by relatively the same amount. For the Barabási Albert model, the 𝑙−1 slightly decreases
until 50% of node removal. This is of course, due to the large variation in the importance of
the nodes, i.e., there exist significant vertices, hubs. These hubs act as a crucial role in network
functionality. As long as the hubs are not eliminated, the connectivity of the network remains.
On the contrary, in the regular model applying our proposed self-healing, as the nodes are
deleted and the number of nodes decreases, the 𝑙−1 of the graph also slightly rises accordingly,
even when 90% of the node is deleted. This should be interpreted as the network functionality
remains after removing a large of nodes. Furthermore, as the number of nodes decreases, the
average of inverse shortest path length rises, which mean the dynamics of the network increases.
Taken together, these results show that our algorithm helps maintain connectivity and even
increases the efficiency of the network when deleting vertices.

Robustness evaluation

To evaluate the robustness, we examine how resilient our network is to failure in the network,
such as members being eliminated. We utilise some metrics that are used in graph theory, such
as the closeness centrality, degree centrality and a number of the connected component after
nodes removal.

In the experiment, the closeness centrality of a single vertex can’t reflect the whole network.
Hence, the mean centrality of the whole network is obtained during the test, which is calculated
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by equation 7.4.
𝜇𝐶𝐶

=
∑︀𝑛

𝑖=1 𝐶 (𝑥𝑖)
𝑛

(7.4)

where 𝑛 is the number of vertices, 𝐶 (𝑥𝑖) is the closeness centrality of vertex 𝑥𝑖.
In our simulations, the average degree of all vertices can be utilised as a test indicator and

calculated by equation 7.5

𝜇𝐶𝐷
=

∑︀𝑛
𝑖=1 𝐶 ′

𝐷 (𝑖)
𝑛

(7.5)

To examine our proposed algorithm’s ability to repairing the network, some experiments
are deployed. We simulate the node removal process in the network of 1000 nodes, with up to
90% (900) node deletions. Four models are utilised including two k-regular (k=4), an Erdos
Renyi model, and an Barabási Albert model. In these models, one k-regular model applies our
proposed self-repairing algorithm while the others use a naive self-repairing algorithm (each node
may add edges joining it to any other neighbour nodes as desired). The figure 7.5 illustrates
the mean degree centrality and the mean closeness centrality when deleting nodes. From the
figure, it can be seen that the model apply our algorithm to keep the mean centralities stable.
This result may be explained by the fact that our method keeps the degrees of the nodes in
the bound constraint during the repairing process. On the other hand, in figure 7.5, there is a
clear trend of increasing the degree and closeness centrality in the models that utilise the naive
self-healing algorithm. From the result, we can see that the naive self-healing approach cause
high degree increase (which may lead to overload and eventual network breakdown) or increase
in distances between nodes (which may lead to poor communication). Whereas, our proposed
method keep the metrics stable, and even after 90% of node removal, the degree centrality and
closeness slightly increase. Low degree centrality is desirable because it decreases the chances of
detection and takes down.

In order to understand how node removal affects the network, we simulate the nodes deletion
process of four types of model: a normal 4-regular, an Erdos Renyi, an Barabási Albert, and
finally a 4-regular model with self-healing mechanism. Figure 7.6 depicts the simulation result
when removing nodes of two network of size 1000 (a) and 10000 (b), respectively. From the
data in Figure 7.6, it is apparent that the self-repairing model remains connected even when a
large portion (80%) of the nodes are deleted, compared to other types of the model (with no
self-repairing mechanism). Note that, in a normal model after 30% node deletion, the number of
partitions rise sharply. The similar phenomenon happens in Erdos Renyi and Barabási Albert
model when removing 50% of nodes. From this result, we notice that the normal 4-regular model
is the most vulnerable to random node removal whereas Erdos Renyi and Barabási Albert models
have better tolerance with node deletion. On the contrary, the model with the self-healing
mechanism is the most resilient network. It can, therefore, be assumed that our self-healing
algorithm makes the k-regular network more resilient and robustness.
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Fig. 7.5: Mean centrality of the network when removing node

Fig. 7.6: The number of connected components after removing a fraction of nodes
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7.5.2 Empirical experiments

In this part, we execute the X-sWarm in the isolated environment to monitor its behaviour.
In the presented case study, we obtained the behaviour data composed of the malware actions
on the system network until the termination of the process. It was noticeable that these data
were all typical network operations. The propagation begins with the worm send a ping request
to all computer in the network as shown in Fig. 7.7. This step provides the information on
whether the machine it is attacking supports the Common Internet File System (CIFS) protocol
and is likely to be a Windows machine.

Fig. 7.7: Scan IP address

If a host reply with a ping success as illustrate in Fig. 7.8 then the worm uses the SMB
protocol to enumerate the list of account names on the remote machine. It also establishes some
basic properties about the user for guessing the password process and attempt to connect to
them in Fig. 7.9.

Fig. 7.8: Ping reply

After that, it makes an SMB connection with the target computers, attempting to access
the IPC$ connection.

If the worm successfully connects to the IPC$ share, it copies itself over to the remote
machine. More precise, the worm will search the shared folder on victim, if a shared folder is
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Fig. 7.9: Connect with the victim

Fig. 7.10: Search shared folder

discovered then the worm will infect this victim as shown in Fig. 7.10 and Fig. 7.11. After the
copy process, the worm start the a process to run itself on the target machine.

Tor allows to anonymously distribute services inside the network, which are called hidden
services. In our experiments, the hidden services are established to allow the communication of
the worm. By using the .onion address, one worm can contact with the others. First, it creates a
new virtual circuit to a random relay asking it to act as a rendezvous point. Then it utilises the
introduction points to notify the hidden service about the rendezvous point. Finally, the hidden
service generates a virtual circuit to the rendezvous point and commences the communication
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Fig. 7.11: Infect the victim

channel. The figure 7.12 demonstrates the process of creating virtual circuit.

Fig. 7.12: The establishment of virtual circuit

After successfully establish the connection, the malware can connect with the others to
retrieve the information. The communication between two members in the swarm is illustrated
in Fig. 7.13. It should be noticeable that Tor uses the SSL/TLS protocol suite to establish
encrypted connections between participating nodes, just as it is commonly used by web browsers,
email clients and others.
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Fig. 7.13: Communication channel

7.6 Countermeasures

In this section, we discuss some different mitigation strategies to counter against the X-
sWarm. Mitigation and detection can take place at different levels, such as host level or network
level.

7.6.1 Countermeasures for host level

Tor services frequently listen to several specific ports: ports 80, 443, 9001 and 9030, the
default ports of the Tor protocol while it is running on an infected device. The communication
is easily blocked by filtering network traffic if there is no application based on the Tor protocol
on the infected device since X-sWarm relies on Tor for communicating. In principle, there are
two feasible ways to do this. The first approach involves with control the traffic outbound to the
Internet by the ports being used, such as block outbound traffic to specific ports, or limit the
permitted outbound traffic to certain ports. The latter approach concerns with using network
inspection techniques to try and determine which is legitimate traffic and which is malicious traf-
fic. Nevertheless, blocking some commonly used ports may affect the user experience. Therefore,
traffic filtering can be a temporary countermeasure.

7.6.2 Network level countermeasure idea

“Sybil attack“ is referred as a small number of entities forge multiple peer identities so as
to compromise the peer-to-peer distributed systems [35]. In many P2P networks, the peers
are feasible to join the network without authentication or validation of their identities. As a
consequent, these P2P networks are vulnerable to Sybil attack.

79



X-swarm: The upcoming swarm worm

In our work, we leverage the Sybil attack to form a countermeasure idea for the X-sWarm.
To attack and break network down, the peer’s onion addresses need to be obtained. This can
be done either by detecting and reverse engineering an already infected host or by using a set
of honeypots. After identifying the peer address, we run many hidden services, disclosing a
subset of these as neighbours to each peer we encounter, so gradually over time our clone nodes
dominate the neighbourhood of each peer and contain it.

7.7 Summary

In this chapter, we present X-sWarm, a novel design of malware with swarm characteristics,
in which communication utilizes the Tor network. This design has shown that the combination
between SI and Tor network producing a robust and stealthy malware that has the ability
to evade detection, measurement, scale estimation and observation. Additionally, X-sWarm
relies on a resilient self-healing network formation that is simple to implement, yet robust to
partitioning, even up to 90% node removal the network is feasible self-recover. The results
demonstrate the feasibility, stealthiness, and robustness of this new type of malware. More
importantly, we suggest the countermeasure approach as the host and network level for this
upcoming threat. These findings contribute in several ways to our understanding of X-sWarm
and provide a basis for further research.

This research has also opened research directions. One potential research area is that the
capability to extend the malware into a model based on multi-agent systems, in which the agents
are embedded with more advance AI so that they can perform the task more effectively. On
the other hand, based on the X-sWarm idea, we could develop the autonomous anti-malware
technology in complex and large systems.
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8 MULTI AGENT ANTIVIRUS SYSTEM: A PARADIGM TO
DESIGN INTELLIGENT ANTI-MALWARE APPLICATIONS

8.1 Introduction

X-Ware’s ideas are fully applicable to designing future anti-malware solutions. For instance,
we can create adaptive, autonomous AI agents that collaborate with each other to achieve
common tasks. Instead of getting guidance from a single, centralized AI model, agents will be
smart and robust enough to communicate with each other and work together to achieve common
goals. This will form a Multi agent anti-virus system (MAAS).

Agents will learn how to protect systems depend on what they inspect from their networks
and local hosts. Furthermore, their strength is further enhanced by observations and behaviours
learned across different industries and majors. Generally speaking, we will have a swarm of
rapid response local AIs that accommodate to their environment while collaborating with each
other, instead of one big AI system delivering decisions. This will improve the IT performance of
organizations by saving resources, and also help them to avoid sharing confidential, potentially
sensitive information through the cloud or other means.

8.2 Architecture

The proposed paradigm consists of several cooperating agents, which are classified by one of
these roles: sensing, analysis, planning, and action execution. Furthermore, the system allows
multiple agents for each role. Figure 8.1 illustrates the various roles, and gives an example of
communication between the various agents.

On the other hand, the proposed system is intended to be dynamic: when the whole system
operates, the agents that occupying the roles can be included or excluded. Regardless of the
role of the agents, each agent must first announce its presence to the other agents existing in
the system through a broadcast message. The message comprises a unique identifier of the new
agent and an indicator of what role it will act. After that, existing agents in the system respond
to the message, indicating their unique identifier and role, allowing agents to establish direct
communication.

The ability for agents to join or leave the system in this way enhance the system’s performance
and resilience in the following ways.

• First, it allows the system to cover the sophisticated network topology. For example, in a
network, specific segments may be covered by a variety of agents. Each agent can analyse
network traffic independently, providing the network’s information to other agents based
on their demands.

• Next, it enables resource management. The proposed system can be deployed on several
different devices in the protected network. Nevertheless, each device may have other
processing priorities. When processing resources are limited, the agents can leave the
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Fig. 8.1: Architecture of the Multi agent antivirus system

system in order to return the resources to the host device. And when the host device’s
resources are available, the agent can re-join the network.

• Next, multiple agents provide redundancy. If one agent malfunctions, or even becomes
compromised by the adversaries, the other agents can be instantiated to take its place
dynamically.

• Finally, this mechanism allows for designing and implementing a new type of agent, deploy-
ing it into the existing system, and proactively excluding the agent if it does not perform
as supposed.

8.3 Type of agents

8.3.1 Sensing agents

This type of agent can acquire data from the environment and systems in which it operates,
as well as from itself, to obtain the knowledge of the current state of the environment and
trigger the specific analysis agent. Sensing agents operate based on data sources from external
and internal sources. The internal data derive from agent-related information, while the external
data are gathered from the protected system’s resources like memory, file system, and others.
Additionally, the external data also comes from observing the environment outside the agent.

Technically, sensing agents act as the roles of system and network monitoring tools. These
agents collect logs and metrics from the agent’s other internal systems, the underlying host
system, and relevant applications running on the host. Sensing agents is also capable of capturing
network traffic from the host network interfaces. For the sensory data to be beneficial to the rest
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of the system, they should go through normalization process so that way, unique and relevant
information are transferred.

8.3.2 Analysis agents

These agents process data obtained from sensing to assess the environment. When identifying
an abnormal behavior, the analysis agents trigger the planning agents for appropriate response
plans. Based on the sensing data and the knowledge of environment, it identifies anomalies in
data that are derived from the sensing agents. In case of threat detection, the analysis agent
will take appropriate steps for its actions.

8.3.3 Planning agents

These agents elaborate one to several action proposals and propose them to the action selec-
tion phase, which decides the action or set of steps to execute to resolve the threats previously
identified by analysis agents. It may be possible that the planning agents may interact with
other agents to proceed up with an optimal set of actions forming a global response strategy.

In the action selection phase, the proposed response plan is analyzed based on the data
from the agent’s current goals and the execution constraints and requirements. After that, an
executable response plan is submitted to the Action Execution agent.

8.3.4 Action prosecution agents

Action prosecution agents decide on an executable response plan, monitor its execution and
its effects, and provide other agents with the means to adjust the performance of their part of
the response plan as and when needed.

8.4 Generic work flow

The MAAS workflow is summarized in the following graph Fig. 8.2 that shows the agent’s
generic process flow.

In this diagram, each component of the MAAS has its principal tasks as follows:
• Sensing and monitoring component: acquire data from the systems as well as data ex-

changed with other entities (i.e., other agents or human experts). Furthermore, this com-
ponent monitors the execution of action plans that are deployed by action prosecution
components.

• Analysis component: processes the collected data as follows: The current state of the
environment and the agent itself. It also identifies the adversarial or suspicious events and
anomalies in collected data.

• Planning component: proposes the response plans that are corresponded with the contem-
porary state identified before. After that, this component evaluates and chooses the most
appropriate strategy.
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Fig. 8.2: MAAS generic workflow

• Action prosecution component: deploys the sequence actions corresponding to the plan.
This component also notices the sensing component to monitor the execution of the action
plan.

• Learning component: learns from the data acquired and stored by the agent and has an
adjustment mechanism to improve the agent’s performance.

8.5 Learning

Due to the continuous changing of the environment and the rapid evolvement of cyber-
threats, the agent must be equipped with autonomous learning to adapt to the dynamic envi-
ronment. The learning source of agents comes from the feedback data from the environment and
the from the agent actions itself. To be more specific, the agent learns from experiences that
could be obtained through actual confront with the cyber-threats or in simulations environment.
There are several approaches for the learning process, one of such is by applying the concepts of
Reinforcement Learning (RL) [117]. Next, we illustrative examples of learning from experience.

Let 𝑡 denote the time, 𝑎 denote the actions that are performed by the agent, and 𝑜 denote
the observations when the agent perform the actions. Let V denote the value of the state of the
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environment. Therefor the experiences of the agent can be represented by the sequence 8.1:
𝑛∑︁

𝑡=1
𝑎𝑡𝑜𝑡𝑉𝑡 (8.1)

We propose to utilise the experiences of the agent to train an ANN. In which, the inputs are
the actions and observations for several preceding time points. On the other hand, the outputs
are the value associated with taking that action as the next action. The next action will be
calculated based on the trained ANN.

The following is an example scenario to help explain how the ANN work. Supposedly, at
a specific time point, the agent can perform four actions: 𝑎1, 𝑎2, 𝑎3, and 𝑎4. At any specific
time points, the agent can receive five observations: 𝑜1, 𝑜2, 𝑜3, 𝑜4, and 𝑜5. Alongside that,
in this scenario, only these time points are considered: the most recent time when the agent
takes action and the previous time. Note that in practical implementations, there could be
hundreds of actions, observations, and multiple time points. Supposedly, the most recent ac-
tion is 𝑎1 and the corresponding observations 𝑜3. In the previous time point, the agent per-
formed 𝑎3 and received 𝑜5. These serve as the input data. After that, the ANN calculates
value associated with the actions. Accordingly, the rewards for the possible next action are:
(𝑎1, 0.05) , (𝑎2, 0.04) , (𝑎3, 0.14) , (𝑎4, 0.74). In this case, the agent will choose the action with
highest reward, action 𝑎4.

8.6 Summary

In this chapter we propose a paradigm of a Multi agent anti-virus system based on the
concept idea of the swarm malware. We believe that using the MAAS allows to build more
robust, adaptive and flexible defense system. This may be considered a promising aspect of an
insight for the autonomous anti-malware technology (i.e. Deux ex Machina) in complex and
large systems.

In future work, we will continue to investigate more details about our paradigm for developing
it and evaluating with much realistic examples. This will strengthen our intended approach
towards intelligent anti-malware solution and will enable us to better exploit the design process
for mapping requirements at run-time.
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9 CONCLUSIONS AND FUTURE WORK

9.1 Summary of Results and Insights

There are four main goals of the thesis as follows. Parts of the thesis, which are dedicated to
Goal 1, we can find in Chapter 5, where the application of the AI-based technique in cybersecurity
issues was examined. Specifically, the application of AI in malware detection, intrusion detection,
APT, and other domains such as spam detection, phishing detection was discussed. Furthermore,
a vision of how AI could be adopted for malicious use was offered. Goal 2 and Goal 3 was
presented in chapter 6, where the methodology to develop a prototype of X-Ware that combine
the SI principle and the ANN was described. Furthermore, practical experiments to visualise,
measure, and analyse the behaviour of the X-Ware under the form of a complex network were
performed. Goal 4 was presented in Chapter 8, where the structure and the principles of the
possible swarm anti-malware solution were introduced.

All four goals of the dissertation specified in Chapter 2 were fulfilled. Goal 1 was published
in [rel1], [rel2], [rel3], [rel4], [rel6], in which we discussed the impact of AI, SI in cybersecurity
domain. Goal 2, Goal 3 and Goal 4 was published in [rel5], [rel7], in which we proposed method-
ology to develop a prototype of X-Ware, X-sWarm as well as suggested a possible anti-malware
solution.

This dissertation was aimed at exploring the possibilities of employing artificial intelligence in
cybersecurity. In contemporary research, the primary targets for AI application in cybersecurity
are network intrusion detection, malware analysis and classification, phishing, and spam emails.
In those areas, the adoption of DL gradually become the primary trend. Furthermore, the
combination of other intelligent techniques, such as bio-inspired methods, together with ML /
DL, also attracted the attention of researchers. Such combinations yield very promising results
and continue a trend for further research. Although the role of AI in resolving cybersecurity
matters continues being researched, some of the problems that exist around the deployment of
AI-based defences are also striking. For instance, the adversarial attack against the AI models
or the emergence of autonomous intelligent malware.

By combining the swarm intelligence principle, ANN and a convention virus, the author
proposed X-Ware, which was an improvement of the work in [145]. The results yielded from this
work offer a better understanding of the behaviour of a possible new generation of malware in
order to protect future computer technology. As this work has shown, the X-Ware prototype is a
swarm one in which all individual viruses are capable of communicating amongst themselves as
swarm less-more do. Base on the X-Ware, the author modified it as a worm, named X-sWarm,
in which communication utilized the Tor network. This design had shown that the combination
between SI and Tor network producing a robust and stealthy malware that had the ability to
evade detection, measurement, scale estimation and observation.

More importantly, the concept idea of the swarm malware inspired us to proposed a paradigm
of a Multi agent anti-virus system. Instead of getting guidance from a single, centralized AI
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model, agents would be smart and robust enough to communicate with each other and work
together to achieve common goals. We believe that using the proposed paradigm allowed to
build more robust, adaptive and flexible defense system. This may be considered a promising
aspect of an insight for the autonomous anti-malware technology

9.2 Future work

To conclude the thesis, some works in the future are mentioned with the details as follows.
In the dissertation, we conduct a comprehensive survey about how AI can be used in cyber-

security. Accordingly, the combination of several AI-based techniques in a defence solution is
an exciting research direction.

In chapter 6, we proposed the X-Ware and extend it as X-sWarm in Chapter 7. Nevertheless,
there is an emerging trend that malware resides in volatile system areas such as the system
registry, in-memory processes and service areas and often know as the name “fileless“ malware.
On this point, transforming the current X-Ware and X-sWarm into the form of “fileless“ is the
next step for further research.
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