10,969 research outputs found

    Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b

    Get PDF
    Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin

    Bayesian models and algorithms for protein beta-sheet prediction

    Get PDF
    Prediction of the three-dimensional structure greatly benefits from the information related to secondary structure, solvent accessibility, and non-local contacts that stabilize a protein's structure. Prediction of such components is vital to our understanding of the structure and function of a protein. In this paper, we address the problem of beta-sheet prediction. We introduce a Bayesian approach for proteins with six or less beta-strands, in which we model the conformational features in a probabilistic framework. To select the optimum architecture, we analyze the space of possible conformations by efficient heuristics. Furthermore, we employ an algorithm that finds the optimum pairwise alignment between beta-strands using dynamic programming. Allowing any number of gaps in an alignment enables us to model beta-bulges more effectively. Though our main focus is proteins with six or less beta-strands, we are also able to perform predictions for proteins with more than six beta-strands by combining the predictions of BetaPro with the gapped alignment algorithm. We evaluated the accuracy of our method and BetaPro. We performed a 10-fold cross validation experiment on the BetaSheet916 set and we obtained significant improvements in the prediction accuracy

    Flexible RNA design under structure and sequence constraints using formal languages

    Get PDF
    The problem of RNA secondary structure design (also called inverse folding) is the following: given a target secondary structure, one aims to create a sequence that folds into, or is compatible with, a given structure. In several practical applications in biology, additional constraints must be taken into account, such as the presence/absence of regulatory motifs, either at a specific location or anywhere in the sequence. In this study, we investigate the design of RNA sequences from their targeted secondary structure, given these additional sequence constraints. To this purpose, we develop a general framework based on concepts of language theory, namely context-free grammars and finite automata. We efficiently combine a comprehensive set of constraints into a unifying context-free grammar of moderate size. From there, we use generic generic algorithms to perform a (weighted) random generation, or an exhaustive enumeration, of candidate sequences. The resulting method, whose complexity scales linearly with the length of the RNA, was implemented as a standalone program. The resulting software was embedded into a publicly available dedicated web server. The applicability demonstrated of the method on a concrete case study dedicated to Exon Splicing Enhancers, in which our approach was successfully used in the design of \emph{in vitro} experiments.Comment: ACM BCB 2013 - ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics (2013

    Bayesian models and algorithms for protein beta-sheet prediction

    Get PDF
    Prediction of the three-dimensional structure greatly benefits from the information related to secondary structure, solvent accessibility, and non-local contacts that stabilize a protein's structure. Prediction of such components is vital to our understanding of the structure and function of a protein. In this paper, we address the problem of beta-sheet prediction. We introduce a Bayesian approach for proteins with six or less beta-strands, in which we model the conformational features in a probabilistic framework. To select the optimum architecture, we analyze the space of possible conformations by efficient heuristics. Furthermore, we employ an algorithm that finds the optimum pairwise alignment between beta-strands using dynamic programming. Allowing any number of gaps in an alignment enables us to model beta-bulges more effectively. Though our main focus is proteins with six or less beta-strands, we are also able to perform predictions for proteins with more than six beta-strands by combining the predictions of BetaPro with the gapped alignment algorithm. We evaluated the accuracy of our method and BetaPro. We performed a 10-fold cross validation experiment on the BetaSheet916 set and we obtained significant improvements in the prediction accuracy

    Analysis of Three-Dimensional Protein Images

    Full text link
    A fundamental goal of research in molecular biology is to understand protein structure. Protein crystallography is currently the most successful method for determining the three-dimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an expert's ability to derive and evaluate a protein scene model. In this paper, the problem of protein structure determination is formulated as an exercise in scene analysis. A computational methodology is presented in which a 3D image of a protein is segmented into a graph of critical points. Bayesian and certainty factor approaches are described and used to analyze critical point graphs and identify meaningful substructures, such as alpha-helices and beta-sheets. Results of applying the methodologies to protein images at low and medium resolution are reported. The research is related to approaches to representation, segmentation and classification in vision, as well as to top-down approaches to protein structure prediction.Comment: See http://www.jair.org/ for any accompanying file

    Exon-phase symmetry and intrinsic structural disorder promote modular evolution in the human genome

    Get PDF
    A key signature of module exchange in the genome is phase symmetry of exons, suggestive of exon shuffling events that occurred without disrupting translation reading frame. At the protein level, intrinsic structural disorder may be another key element because disordered regions often serve as functional elements that can be effectively integrated into a protein structure. Therefore, we asked whether exon-phase symmetry in the human genome and structural disorder in the human proteome are connected, signalling such evolutionary mechanisms in the assembly of multi-exon genes. We found an elevated level of structural disorder of regions encoded by symmetric exons and a preferred symmetry of exons encoding for mostly disordered regions (>70% predicted disorder). Alternatively spliced symmetric exons tend to correspond to the most disordered regions. The genes of mostly disordered proteins (>70% predicted disorder) tend to be assembled from symmetric exons, which often arise by internal tandem duplications. Preponderance of certain types of short motifs (e.g. SH3-binding motif) and domains (e.g. high-mobility group domains) suggests that certain disordered modules have been particularly effective in exon-shuffling events. Our observations suggest that structural disorder has facilitated modular assembly of complex genes in evolution of the human genome. © 2013 The Author(s)

    Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin.

    Get PDF
    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein-protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein-protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV-Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs

    Navigating the Extremes of Biological Datasets for Reliable Structural Inference and Design

    Get PDF
    Structural biologists currently confront serious challenges in the effective interpretation of experimental data due to two contradictory situations: a severe lack of structural data for certain classes of proteins, and an incredible abundance of data for other classes. The challenge with small data sets is how to extract sufficient information to draw meaningful conclusions, while the challenge with large data sets is how to curate, categorize, and search the data to allow for its meaningful interpretation and application to scientific problems. Here, we develop computational strategies to address both sparse and abundant data sets. In the category of sparse data sets, we focus our attention on the problem of transmembrane (TM) protein structure determination. As X-ray crystallography and NMR data is notoriously difficult to obtain for TM proteins, we develop a novel algorithm which uses low-resolution data from protein cross-linking or scanning mutagenesis studies to produce models of TM helix oligomers and show that our method produces models with an accuracy on par with X-ray crystallography or NMR for a test set of known TM proteins. Turning to instances of data abundance, we examine how to mine the vast stores of protein structural data in the Protein Data Bank (PDB) to aid in the design of proteins with novel binding properties. We show how the identification of an anion binding motif in an antibody structure allowed us to develop a phosphate binding module that can be used to produce novel antibodies to phosphorylated peptides - creating antibodies to 7 novel phospho-peptides to illustrate the utility of our approach. We then describe a general strategy for designing binders to a target protein epitope based upon recapitulating protein interaction geometries which are over-represented in the PDB. We follow this by using data describing the transition probabilities of amino acids to develop a novel set of degenerate codons to create more efficient gene libraries. We conclude by describing a novel, real-time, all-atom structural search engine, giving researchers the ability to quickly search known protein structures for a motif of interest and providing a new interactive paradigm of protein design

    RNA structure analysis : algorithms and applications

    Get PDF
    In this doctoral thesis, efficient algorithms for aligning RNA secondary structures and mining unknown RNA motifs are presented. As the major contribution, a structure alignment algorithm, which combines both primary and secondary structure information, can find the optimal alignment between two given structures where one of them could be either a pattern structure of a known motif or a real query structure and the other be a subject structure. Motivated by widely used algorithms for RNA folding, the proposed algorithm decomposes an RNA secondary structure into a set of atomic structural components that can be further organized in a tree model to capture the structural particularities. The novel structure alignment algorithm is implemented using dynamic programming techniques coupled by position-independent scoring matrices. The algorithm can find the optimal global and local alignments between two RNA secondary structures at quadratic time complexity. When applied to searching a structure database, the algorithm can find similar RNA substructures and therefore can be used to identify functional RNA motifs. Extension of the algorithm has also been accomplished to deal with position-dependent scoring matrix in the purpose of aligning multiple structures. All algorithms have been implemented in a package under the name RSmatch and applied to searching mRNA UTR structure database and mining RNA motifs. The experimental results showed high efficiency and effectiveness of the proposed techniques
    corecore