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Navigating the Extremes of Biological Datasets for Reliable Structural
Inference and Design

Abstract
Structural biologists currently confront serious challenges in the effective interpretation of experimental data
due to two contradictory situations: a severe lack of structural data for certain classes of proteins, and an
incredible abundance of data for other classes. The challenge with small data sets is how to extract sufficient
information to draw meaningful conclusions, while the challenge with large data sets is how to curate,
categorize, and search the data to allow for its meaningful interpretation and application to scientific
problems. Here, we develop computational strategies to address both sparse and abundant data sets. In the
category of sparse data sets, we focus our attention on the problem of transmembrane (TM) protein structure
determination. As X-ray crystallography and NMR data is notoriously difficult to obtain for TM proteins, we
develop a novel algorithm which uses low-resolution data from protein cross-linking or scanning mutagenesis
studies to produce models of TM helix oligomers and show that our method produces models with an
accuracy on par with X-ray crystallography or NMR for a test set of known TM proteins. Turning to instances
of data abundance, we examine how to mine the vast stores of protein structural data in the Protein Data Bank
(PDB) to aid in the design of proteins with novel binding properties. We show how the identification of an
anion binding motif in an antibody structure allowed us to develop a phosphate binding module that can be
used to produce novel antibodies to phosphorylated peptides - creating antibodies to 7 novel phospho-
peptides to illustrate the utility of our approach. We then describe a general strategy for designing binders to a
target protein epitope based upon recapitulating protein interaction geometries which are over-represented in
the PDB. We follow this by using data describing the transition probabilities of amino acids to develop a novel
set of degenerate codons to create more efficient gene libraries. We conclude by describing a novel, real-time,
all-atom structural search engine, giving researchers the ability to quickly search known protein structures for
a motif of interest and providing a new interactive paradigm of protein design.
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ABSTRACT 
 

NAVIGATING THE EXTREMES OF BIOLOGICAL DATASETS FOR RELIABLE STRUCTURAL 

INFERENCE AND DESIGN  

Brett T. Hannigan 

William F. DeGrado 

 

Structural biologists currently confront serious challenges in the effective interpretation of 

experimental data due to two contradictory situations: a severe lack of structural data for 

certain classes of proteins, and an incredible abundance of data for other classes.  The challenge 

with small data sets is how to extract sufficient information to draw meaningful conclusions, 

while the challenge with large data sets is how to curate, categorize, and search the data to 

allow for its meaningful interpretation and application to scientific problems.  Here, we develop 

computational strategies to address both sparse and abundant data sets.  In the category of 

sparse data sets, we focus our attention on the problem of transmembrane (TM) protein 

structure determination.  As X-ray crystallography and NMR data is notoriously difficult to 

obtain for TM proteins, we develop a novel algorithm which uses low-resolution data from 

protein cross-linking or scanning mutagenesis studies to produce models of TM helix oligomers 

and show that our method produces models with an accuracy on par with X-ray crystallography 

or NMR for a test set of known TM proteins.  Turning to instances of data abundance, we 

examine how to mine the vast stores of protein structural data in the Protein Data Bank (PDB) to 

aid in the design of proteins with novel binding properties.  We show how the identification of 

an anion binding motif in an antibody structure allowed us to develop a phosphate binding 

module that can be used to produce novel antibodies to phosphorylated peptides – creating 
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antibodies to 7 novel phospho-peptides to illustrate the utility of our approach.  We then 

describe a general strategy for designing binders to a target protein epitope based upon 

recapitulating protein interaction geometries which are over-represented in the PDB.  We follow 

this by using data describing the transition probabilities of amino acids to develop a novel set of 

degenerate codons to create more efficient gene libraries.  We conclude by describing a novel, 

real-time, all-atom structural search engine, giving researchers the ability to quickly search 

known protein structures for a motif of interest and providing a new interactive paradigm of 

protein design.
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Chapter 1 

1.1 Introduction 

Knowledge of protein structure is essential in our quest to understand the complex 

signaling and interaction networks that make life possible.  The past two decades have seen an 

explosion in the number of protein structures solved to atomic level, with only around 500 such 

structures deposited in the Protein Data Bank (PDB) in 1990 to nearly 100,000 today (1).  This 

amazing growth belies the fact that not all categories of proteins have been solved with equal 

success.  In particular, membrane proteins make up fewer than 2% of solved structures in the 

PDB (2) despite comprising an estimated 25% of the human proteome (3).  This discrepancy is 

largely due to the difficulty in obtaining atomic level data for proteins embedded in their native 

lipid environment.  To compensate for this difficulty, researchers have developed a number of 

experimental techniques to obtain low-resolution data on membrane protein structure, 

including the TOXCAT assay (4), the ToxR assay (5), reversal potential assay (6), cysteine cross-

linking (7), and scanning mutagenesis studies (8).  The data obtained from these experiments is 

extremely sparse, typically on the order of a single data point per residue.  Despite this paucity, 

in chapter 2, we describe a computational approach which uses this sparse data to infer the 

structure of homo-oligomeric, transmembrane proteins to an accuracy rivaling that of X-ray 

crystallography and NMR. 

The wealth of protein structural data that is now available carries with it the potential to 

inform efforts in designing novel protein-protein interactions.  Through extensive mining of 

protein structures, countless groups have identified and categorized structural motifs that are 

frequently involved in various protein interactions, from the GxxxG motif involved in 

transmembrane helix association (9) to the leucine zipper interaction motif found in many DNA 
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binding proteins (10).  In chapter 3, we leverage this data to engineer an antibody which binds 

to novel phosphorylated peptides.  Whereas, traditionally, phospho-specific antibodies have 

been generated through immunization (11), we developed a rational, structure-based approach 

paired with high-throughput screening.  We exploited a previously identified structural motif 

called a “nest” (12) which forms a cationic hole and reasoned that the phosphate group of a 

phosphorylated peptide might be a perfect anion to fill such a hole.  Scanning through the set of 

solved antibody/peptide structures, we found an example of an antibody in which one of the 

complementarity determining regions (CDR) involved in peptide binding formed a perfect nest.  

In this structure, the nest was involved in an interaction with the carboxyl group of an aspartic 

acid residue on the peptide.  Using a technique called phage display (13), we selected mutants 

based on the original antibody that preferentially bound peptides whose aspartic acid was 

replaced with a phosphorylated residue (phospho-serine, phospho-threonine, or phospho-

tyrosine.)  More impressively, we were then able to use this modified, phospho-specific motif as 

a “phosphate-binder” module and isolated 51 phospho-specific antibodies against seven 

different phosphorylated peptides unrelated to the original peptide.  This technique offers the 

promise of a much more efficient means of generating antibodies to recognize specific post-

translationally modified peptides and highlights the power of leveraging our knowledge of 

known structural binding motifs to engineer new interactions. 

In chapter 4 we extend the idea of mining structural data for protein interacting motifs 

in order to design a binder to the influenza fusion protein hemagglutinin.  A recent report details 

the successful design of two protein binders to hemagglutinin with nanomolar affinity (14).  In 

this work, the designers first docked individual amino acids to a solved structure of 

hemagglutinin in order to identify “hot-spot” residues that contribute a large fraction of the 
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overall binding energy.  Once two or three of such residues were identified, the authors 

searched through a database of small, easily expressible proteins which they could use as 

scaffolds to hold these hot-spot residues.  These proteins were in turn redesigned to 

accommodate the “hot-spot” residues and provide a level of complementarity to the 

hemagglutinin molecule. Eighty-eight designs were expressed and tested for binding activity.  

Two designs were found to bind, and after a round of affinity maturation, both designs 

produced variants with dissociation constants in the single-digit nanomolar range.  We 

hypothesize that an approach which explicitly attempts to create binding interfaces that mimic 

those found frequently in nature would have a higher success rate.  To that end, we developed a 

design methodology based upon the concept of “designability” (15), the idea that out of the vast 

ensemble of possible packing arrangements of protein secondary structure, only a limited 

subset is ever observed, and some of those arrangements can accommodate a wide variety of 

amino acid sequences.  We used computational techniques to search a non-redundant database 

of known protein packing arrangements to identify designable motifs which were a good match 

to our hemagglutinin epitope of interest.  These designable motifs provide a scaffold upon 

which we can then computationally design amino acids to drive binding to hemagglutinin.  We 

apply our approach to design short helical peptides to bind to hemagglutinin, experimentally 

characterize their behavior, and attempt to isolate modified versions with enhanced binding 

characteristics through phage display.  Although our first-generation peptide designs do not 

bind at levels detectable by our assays, we are able to draw valuable conclusions regarding the 

difficulty of designing peptide binders and propose a modified protocol to provide a protein 

scaffold to accommodate the proposed designable motif. 
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As shown in chapters 3 and 4, while the use of large sets of structural data can help in 

the design of novel protein interactions, to date our computational models are not robust 

enough to produce high-affinity designs directly.  Typically, designs with lower binding affinity 

are produced and then used as starting points for affinity maturation in gene library 

experiments such as phage display.  In these experiments, a library is produced by introducing 

mutations to the initial design, and variants are screened for enhanced binding activity through 

high-throughput assays.  One popular method of introducing mutations is through the use of 

degenerate codons (16), essentially mixtures of nucleic acids which form defined amino acid 

distributions.  However, while widely used, traditional degenerate codons have a number of 

shortcomings.  First, many experiments will mutate more residues than can be exhaustively 

sampled in the library.  Consequently, shaping what regions of sequence space are explored by 

the library can dramatically affect how likely it is that improved designs will be found.  

Traditional degenerate codons sample space without regards to what amino acid was present in 

the initial, albeit weak, design.  A more efficient approach would sample the original amino acid 

with a higher frequency, as it is already known that that amino acid is at least compatible with 

binding.  Second, sequencing projects have provided an incredible source of data on the amino 

acid transition probabilities seen during evolution.  It would be useful to use these probabilities 

to direct the mutations introduced in gene libraries rather than settle for an entirely random 

approach.  Finally, many degenerate codons introduce stop codons at significant levels.  Any 

decrease in the probability of introducing a stop codon has the potential to greatly increase the 

effective size of the gene library, and thus significantly improve the likelihood of finding 

improved designs.  In chapter 5 we describe the development of a novel algorithm that 

produces four mixtures of nucleotides to form “Super Codons” which address each of these 
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deficiencies.  The use of these mixtures in gene library experiments should focus the sampling of 

sequence space to regions closer to the original design, increasing the percentage of mutants 

that still fold properly and retain some of the initial binding interactions.  Additionally, sequence 

space will be explored more intelligently by explicitly making use of our knowledge of amino 

acid substitution rates seen through evolution and by decreasing the introduction of stop 

codons compared to the most popular degenerate codon.  Gene libraries offer the incredible 

potential to find enhanced binders from a pool of billions, but will only be successful if enhanced 

binders make it into the pool in the first place.  By intelligently directing how the pool samples 

sequence space around the initial design, we will greatly improve our chances of success. 

Finally, one of the difficulties that comes with an incredible abundance of data is how to 

efficiently search it and retrieve only that information which is relevant to the query of interest.  

Imagine the internet without Google.  A vast sea of data would be present with almost every 

fact known to humankind, and yet there would be no practical way to make sense of it or to 

search through it.  The utility of the internet would be dramatically curtailed.  In many ways, this 

is the present situation regarding the immense store of protein structural data we have 

amassed.  As shown in chapters 3 and 4 we are able to mine structural data to improve our 

efforts in protein design, but the search tools currently available have severe limitations.  First, 

the search algorithms focus only on the backbone structure of proteins, while neglecting the 

details of side-chain interactions.  As it is the side-chains which are typically involved in protein 

packing, binding interactions, and catalysis, this lack of searchability is a significant oversight.  

Secondly, the structural search tools developed to date lack the ability to return results in real-

time, severely impeding the natural search-design-repeat feedback cycle and slowing design 

efforts.  To address these deficiencies, in chapter 6 we create a novel, all-atom, real-time 
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structural search algorithm called Suns.  Suns uses the popular molecular-visualization package 

PyMOL (17) to allow the user to select structural motifs to use as a query to our database of 

non-redundant protein structures, and immediately returns results matching the given query to 

an arbitrary tolerance.  We show how Suns can be used to design novel protein structures, find 

scaffolds which can accommodate given side-chain motifs, and quickly discover secondary 

structures which would be good candidate scaffolds for the hemagglutinin hot-spot residues 

discussed in chapter 4.  With its near-instantaneous search capability, Suns promises to 

dramatically increase the utility of the structural data available, and open up new avenues for 

assessing a protein structure’s designability. 
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Chapter 2 
A photon-free approach to transmembrane protein structure determination 

2.1 Abstract 

The structures of membrane proteins are generally solved using samples dissolved in micelles, 

bicelles, or occasionally phospholipid bilayers using X-ray diffraction or magnetic resonance.  

Because these are less than perfect mimics of true biological membranes, the structures are 

often confirmed by evaluating the effects of mutations on the properties of the protein in their 

native cellular environments.  Low-resolution structures are also sometimes generated from the 

results of site-directed mutagenesis when other structural data are incomplete or not available.  

Here we describe a rapid and automated approach to determine structures from data on site-

directed mutants for the special case of homo-oligomeric helical bundles.  The method uses as 

input an experimental profile of the effects of mutations on some property of the protein.  This 

profile is then interpreted by assuming that positions that have large effects on 

structure/function when mutated project towards the center of the oligomeric bundle.  Model 

bundles are generated and correlation analysis is used to score which structures have inter-

subunit Cβ distances between adjoining monomers that best correlate with the experimental 

profile. These structures are then clustered and refined using energy-based minimization 

methods. For a set of 10 homo-oligomeric TM protein structures ranging from dimers to 

pentamers, we show that our method predicts structures to within 1 to 2 Å backbone RMSD 

relative to X-ray and NMR structures.  This level of agreement approaches the precision of NMR 

structures solved in different membrane mimetics. 

This chapter has been published in the Journal of Molecular Biology (2011 December 9; 
414(4):596-610).  Dr. Cinque Soto is an equal-contributor to this work and primary author of the 
text.  William F. DeGrado is the corresponding author.   
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2.2 Introduction 

Helical transmembrane protein structure determination represents a significant 

challenge.  Fewer than 2% of all experimentally determined structures deposited in the Protein 

Data Bank (1) (PDB) are membrane proteins, yet 20-25% of open reading frame (ORFs) from 

recently sequenced genomes encode for proteins that embed in the membrane(2)(3). Even with 

advances in conventional methods for protein structure determination such as X-ray 

crystallography and NMR spectroscopy, the fundamental problems of obtaining diffraction-

quality crystals, protein expression and purification, and protein-size limitations still remain.  

Computational methods for modeling transmembrane protein structure are becoming 

increasingly more important if we hope to decrease the discrepancy in structural information 

between globular and membrane proteins.  

Depending on the scientific question being asked, the laborious (and sometimes 

insurmountable) task of experimentally determining the structure of a membrane protein using 

conventional methods may not be necessary. For example, Zhu et al. (4) recently used disulfide 

crosslinking information to build models for the helical transmembrane (TM) dimers glycophorin 

A (GpA) and integrin αIIβ3. The resulting models for GpA had a root mean square distance 

(RMSD) over the backbone atoms of 1 to 1.5 Å with the NMR structures. Metcalf et al.(5) used 

mutagenesis data and protein sequence variation to build models for the TM homo dimers GpA 

and BNIP3 apoptosis factor. The RMSD for the GpA model was 1.3 Å. We hypothesize that other 

forms of low-resolution experimental data can potentially provide sufficient information to 

accurately model other transmembrane protein structures.  Experimental data from a variety of 

mutagenesis experiments are ideal for studying this possibility.   
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The earliest structural models by Brünger and coworkers for the TM region of GpA were 

based solely on the energetics of interaction between helices (6)(7).  The resulting models were 

compared against mutagenesis data showing the disruptive effects that non-polar mutations 

had on GpA’s ability to dimerize (8). The structural models agreed with the mutagenesis data 

and showed that key residues oriented toward the helical interface were sensitive to nonpolar 

mutations. 

The approach of modeling helical TM regions using the energetics of interaction 

between helices has been extended to larger homo-oligomers.  Phospholamban is a TM homo-

pentamer that is important in calcium storage and release in cardiocytes.  Mutagenesis studies 

(7)(9) showed that mutations of key hydrophobic residues disrupted pentamer oligomerization.  

A global search of conformational space revealed five low-energy helical bundles (7), only one of 

which was found to be in agreement with an extensive set of mutagenesis data (7)(9), and 

ultimately the experimentally determined structures (10)(11).  This five-fold symmetrical 

structure has a left-handed twist; most critical residues lie at the helix/helix interface and show 

large interaction energies.  Interestingly, the lowest energy conformer did not agree with the 

experimental results, indicating that energy is a necessary -- but insufficient -- criterion for 

assessing models.  

Herezyk and Hubbard (12) used a different approach to model helical TM homo-

olgimers.  Using a combination of Monte Carlo/Simulated Annealing (MCSA) and Molecular 

Dynamics/Simulated Annealing (MDSA) along with a set of orientational restraints derived from 

published mutagenesis data (7)(9), Heryzk and Hubbard constructed models for GpA and 

phospholamban.  Unlike the modeling approach of Brünger and coworkers, which made use of 

mutagenesis data after the model was constructed, Herezyk and Hubbard used restraints 
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derived from mutagenesis data in their modeling procedure. The resulting model for GpA had an 

RMSD to native of 0.9 Å over the backbone atoms. A comparison of the profile between 

interaction energy and mutagenesis data revealed an excellent level of agreement for 

phospholamban.   

More recent approaches for modeling helix TM homo-oligomers fall into one of these 

two categories: modeling methods based purely on energetics (13)(14)(15)(16) and those that 

use some combination of energetics and low-resolution experimental data (4)(5)(17)(18).  The 

incorporation of experimental data directly into the modeling process provides two obvious 

benefits.  First, the experimental data corrects for inaccuracies in the force field and for 

approximations regarding the environmental conditions.  Second, by using experimental data 

directly in the modeling process, the conformational space that needs to be sampled can be 

greatly reduced.  

We have developed a novel approach for modeling helical TM homo-oligomers that 

incorporates a variety of low-resolution mutagenesis data directly into the modeling process. 

Our modeling approach consists of two phases. In the first phase we use a symmetric rigid-body 

search to generate an ensemble of models that is consistent with a given set of low-resolution 

data. In the second phase we cluster and then refine only the centroid models using the 

CHARMM22 force field.  At the heart of our rigid-body search is a simple scoring function that 

restrains the conformational search by maximizing the correlation between inter-subunit Cβ 

distance and experimental data while minimizing steric clashes between helices.  Our 

correlation term allows us to use a variety of low-resolution mutagenesis data without the need 

for scaling the data or converting the data into distance restraints4 or angular restraints (12).   

We demonstrate the accuracy of our modeling approach by using a variety of low-resolution 
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experimental data such as mutagenesis, ToxR, TOXCAT, ion channel and crosslinking data to 

model the TM regions of GpA, phospholamban, M2, BM2, BNIP3 and the ephrin receptor 

tyrosine kinase (EphA1).  The final models ranged in RMSD from 0.6 Å to 2.1 Å when compared 

to the native structures. This approach to modeling helical TM protein structure can be of 

enormous benefit when conventional methods of protein structure determination fall short. 

 
2.3 Results 
Overview of modeling protocol 

Our modeling protocol can be broken down into two phases.  The first phase involves 

rigid-body sampling using an ideal or experimentally-determined helix. The second phase 

involves side chain placement, clustering and refinement of the models with a molecular 

mechanics force field.  We briefly describe the first phase here. A detailed description of the 

second phase can be found in the Methods. Rigid-body sampling (RBS) begins with a helix that is 

transformed to the global frame of reference so that the axis of the helix is coincident with the 

global Z-axis and its geometric center is at the origin. Four degrees of freedom are required to 

define the relationship between monomers in a structure with exact rotational symmetry.  Here 

we apply two rotations and two translations to define the location of the helix in the unit cell.  

The individual steps in our modeling protocol are illustrated in Figure 1.  

At the heart of our RBS method is the use of the correlation coefficient (r) to evaluate 

the degree to which experimental data correlates with the projection of the side-chains in the 

oligomer, as defined by the inter-subunit contact distance for each residue in the structure. The 

inter-subunit contact distance is defined here as the distance between Cβ atoms on identical 

residues of a homo-dimer, and this provides a quantitative measure that can be correlated with 

the extent of perturbation or crosslinking associated at the same position in the sequence. The 
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correlation coefficient is a measure of the linear relationship between two variables and ranges 

from a value of 1 for two perfectly correlated variables to a value of -1 for two perfectly anti-

correlated variables.  The correlation coefficient is used to restrain the RBS protocol by 

incorporating it directly into a scoring function that is used to optimize each pose (see 

Methods).  In this study, we correlate inter-subunit Cβ distance with the degree of experimental 

perturbation associated with mutations or the extent of cross-linking in a Cys-scanning 

experiment to determine how well a given hypothetical model agrees with experimental data. 

The extent of Cys crosslinking and the perturbational effects of mutations generally increase 

with decreasing inter-subunit distance (negative correlation).  However, for simplicity, we refer 

to all correlations as positive for structures that are in agreement with the expected 

experimental outcome.   

We demonstrate the utility of our RBS protocol by using it in three tests.  In the first test 

we use it to search for a set of idealized helical conformations using native inter-subunit Cβ 

distances as “experimental data.”  The second test is similar to the first test but uses a set of 

nine symmetric helical TM structures obtained from the PDB instead of idealized helical 

arrangements.  It should be noted that the first and second tests are used to determine how 

well our search strategy works under the most ideal conditions (i.e., where experimental data 

correlates perfectly with inter-subunit Cβ distances). In the third and final test, we model these 

same nine structures using low resolution experimental data to restrain the search. The 

resulting ensembles of models from this test are clustered using a k-medoid clustering algorithm 

(19). Side chains are then added to each of the centroid models using SCAP (20) followed by all-

atom refinement using  the CHARMM22 force field implemented in the XPLOR-NIH package 

(21). 
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Idealized hide-and-seek test 

To test the RBS protocol, we constructed a set of ten helix dimer conformations by 

randomly choosing values for the four search parameters (Tx, Tz, θ, and φ). Each set of four 

parameters is then used to position a 16 residue ideal poly-alanine helix in space. The symmetry 

mate is generated by rotating a copy of the helix 180° about the global Z axis.  After construction 

of the ten dimers, we determined the inter-subunit Cβ distances along the length of the helices.  

These distances were used as simulated experimental data to restrain the rigid-body search with 

the goal of recapitulating the original dimer conformation.  In all ten cases, the simple scoring 

function selects a model with an RMSD of 0.6 Å or less to the starting conformation (see 

Supplementary Table 1). 

Hide-and-seek test using TM structures from the PDB 

The RBS protocol can generate the native pose with high accuracy for idealized cases. A 

more challenging test would entail modeling actual helical structures from the PDB which may 

not contain idealized geometry. We repeated the hide-and-seek test on a set of nine symmetric 

helical TM structures from the PDB.  Three of these structures are dimers, five are tetramers and 

one is a pentamer. For each test case, we determined the inter-subunit Cβ distances from the 

first two chains of the native structure. If a glycine is present along the protein sequence we 

computed the distance between Cα atoms. For structures solved using NMR, we use the 

average structure (see Methods) to obtain the native distances.   

We use three separate measures of RMSD in assessing the performance of the RBS 

protocol on experimentally determined structures.  The first measure, RMSDScore, denotes the 

RMSD between the best scoring model in the ensemble and the native structure. The second 

measure, RMSDMin, denotes the smallest RMSD in the ensemble. The third measure, RMSDNative, 
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denotes the RMSD of the best scoring model when the native helix is used in place of the ideal 

helix in the rigid-body search.   As shown in Table 1, all nine cases have a RMSDScore of 2.9 Å or 

less.  The dimer BNIP3 gives the best results with a RMSDScore of 0.9 Å.  The worst performing 

case, phospholamban, gives a RMSDScore of 2.9 Å.  The remaining cases yield RMSDScore values 

between 1.2 and 2.0 Å.  While our scoring function does not select the lowest RMSD model in 

the ensemble, it does perform reasonably well at generating low RMSD models (Figure 2). With 

the exception of the BM2 case, a sizable population of models with RMSDs below 1.5 Å is always 

generated. Producing an ensemble of models with relatively low RMSD to native is critical for 

two reasons.  First, models that are near-native will generally yield more favorable scores in the 

refinement stage.  Second, clustering will be more effective at assigning near-native models as 

centroids.    

We suspected that our sampling algorithm could generate a larger population of near-

native models if we introduced natural curvature into the starting helix.  Superimposing an ideal 

helix onto the corresponding native helix gives an RMSD that is larger than 1.0 Å for GpA, BM2, 

and all of the M2 structures.   To better assess how this deviation from ideality influences the 

final result, we carried out the same search using the native helix in place of the ideal helix. The 

resulting RMSDNative values are 0.6 Å or less for all cases with the exception of the M2(xtal) case 

(Table 1).  However, we note the existence of models with RMSDNative values of 0.6 Å or less for 

all of the ensembles generated using a native helix (Figure 2). 

Restrained sampling using low resolution experimental data 

The first two tests show that when sufficient information between monomers is given in 

the form of native distances, our RBS protocol can generate models with RMSDMin values 

between 0.9-1.6 Å. However, in a practical situation, exact distance information will likely be 



16 
 

unavailable. Therefore, to assess the ability of the sampling protocol to perform similarly in a 

practical situation, we used low-resolution experimental data to restrain the search. Besides 

being the most stringent test thus far, given the inherent noise present in low-resolution 

experimental data, this test will provide a meaningful benchmark in terms of the practicality of 

our method.   A description of the low-resolution experimental data is provided in the Methods 

section.   

Before carrying out the search, we wanted to test our hypothesis that inter-subunit Cβ 

distance correlates with low-resolution experimental data. To do this we determined the 

correlation coefficient and the associated p values between the inter-subunit Cβ distance data 

obtained from each native structure and the corresponding set of experimental data (see 

Supplementary Tables 2-8 for the experimental data). Phospholamban has the strongest 

correlation with |r|=0.91 (p=4.6E-7). The dimer GpA has roughly the same |r| value of 0.78 

(with an approximate p value of 5.0-E-6) for both the crosslinking and mutagenesis data. The 

dimer EphA1 has |r|= 0.76 (p=3.2E-3).  The M2 cases have roughly the same |r|=0.72 (with a p 

value of about 3.7E-4).  BNIP3 and BM2 have the weakest correlations with |r| =0.44 (p=5.7E-2) 

and |r|=0.58 (p=4.7E-3) respectively.  For all but one of the cases, the p-value for the correlation 

between experimental data and inter-subunit Cβ distance is less than 0.05, indicating that the 

correlation is unlikely due to chance.   Based on the |r| values and associated p-values obtained 

for the native structures, it would seem that correlating inter-subunit Cβ distance with low-

resolution experimental data can provide a useful filter when modeling TM homo oligomers 

(Figure 3).    

Using the low-resolution experimental data to generate TM bundles, we obtained an 

RMSDScore of 2.1 Å or less for eight out ten cases (Table 2).    BNIP3 and phospholamban are the 
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largest outliers with RMSDScore values of 3.0 Å.  For BNIP3 it is not surprising that the RMSDScore is 

so large given the weak correlation between inter-subunit Cβ distance and the experimental 

data.  For phospholamban, we noticed that the bundle radius for the top scoring model is about 

1.0 Å smaller than in the native structure. A more important measure of performance of the 

sampling protocol is how close to native conformation our sampling can reach. Clearly, if the 

sampling protocol cannot generate a sufficient number of models that are close to native, it is 

likely that all-atom refinement will be of little value in generating good models. The RMSDMin 

value is 1.6 Å or less for 9 out of 10 cases (Table 2).  With the exception of BM2, the sampling 

protocol generates ensembles with a significant fraction of models less than 2.0 Å RMSD to 

native (Figure 4).  Based on these results it appears that when inter-subunit Cβ distance data 

correlates strongly with mutational data, rigid-body sampling alone can be used to generate 

reasonable starting conformations that can be further refined.   However, since our scoring 

function is designed as a filter it may not select the most energetically favorable conformation in 

the ensemble of models.  For this, we use a more detailed all-atom scoring function. 

Refinement using XPLOR-NIH 

The resolution of our simple scoring function does not capture detailed energetic 

interactions such as van der Waals packing and Coulombic interactions. These interactions are 

important for obtaining optimal packing between helices. To capture these important 

interactions, we first cluster the ensemble of models generated using our RBS protocol, add side 

chains to all centroids and then subject them to all-atom refinement using the CHARMM22 force 

field in XPLOR-NIH (21).  The most favorable scoring model according to XPLOR is deemed our 

best prediction.   
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Refinement of the centroids gives an RMSDScore of 2.1 Å or better for all ten cases (Figure 

5).  For the dimers GpA, GpA(Crosslinking), EphA1 and BNIP3, the RMSDScore is 1.4 Å or less.  

Results for larger homo oligomeric states are equally as impressive with RMSDScore ranging in 

value from 1.1-2.1 Å. Given the spread in RMSD values between individual models in the native 

NMR ensembles, which can be as large as 0.9 Å for some of the structures considered here, our 

results would indicate that the RBS protocol coupled to clustering and refinement with XPLOR-

NIH has the potential to generate models comparable in accuracy to those obtained using 

medium-resolution NMR.  The importance of using a detailed all-atom scoring function is clearly 

illustrated for the case of BNIP3. Using our simple scoring function to select a model from the 

ensemble will give an RMSD to native of 3.0 Å. If we refine all of the models in the ensemble and 

then select the most favorable scoring model according to CHARMM22, we obtain an RMSD to 

native of 0.6 Å. Clearly, refining the entire ensemble of 1,000 models would be a time 

consuming task and so we cluster the ensemble of models first and then refine only the 

centroids. Using this approach, we also obtain a model with an RMSD to native of 0.6 Å but do 

so in a fraction of the time it would take to refine the entire ensemble of models. The r value 

between the experimental data and the inter-subunit Cβ distance for the refined models either 

remained the same or improved when compared with the corresponding value for native.   

As a control, we applied the same XPLOR-NIH refinement protocol to all the native 

structures.  This involved refinement of all the individual models in each NMR ensemble and not 

the average model. We expect the experimentally determined structures after refinement to 

have scores that are similar to or more favorable than the scores of our centroid models.    We 

observe this trend for all cases with exception of BM2 (Figure 6).  We find that the refined native 

models for BM2 are about 100 XPLOR energy units less favorable than our best scoring model.  
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This seems to imply that the native BM2 bundle may not be tightly packed which ultimately 

leads to a less favorable van der Waals score.  For most cases, refinement with XPLOR-NIH does 

not significantly perturb the native structure. The RMSD between the unrefined and refined 

native models is on average less than 1.0 Å (represented as blue circles Figure 6).  For 

phospholamban and BM2, refinement perturbs the native conformation to a larger extent. In 

particular, the RMSD after refinement of the native BM2 ensemble resulted in two models 

having RMSDs larger than 1.7 Å. 

 
2.4 Discussion 

We have presented a method for modeling helical TM homo-oligomers that uses a 

rotationally symmetric rigid-body search followed by clustering and energy refinement using the 

CHARMM22 force field in XPLOR-NIH.  At the heart of our modeling procedure is a simple 

scoring function composed of a VDW clash term and a correlation coefficient between 

mutational data and inter-subunit Cβ distance.  The simple scoring function is optimized to 

obtain maximal agreement with experimental data while avoiding clashes between helices.  The 

novelty of our method is in its ability to directly restrain the search using low-resolution 

experimental data.  This prevents the search from needlessly meandering through space and 

focuses the sampling to give the best agreement with experimental data. 

Our method performs best when the experimental data correlate with |r| > 0.5 with the 

native inter-subunit Cβ distance. In these cases, the rigid-body search does a reasonable job at 

generating near-native backbone conformations.  As the correlation becomes weaker, so does 

the structural similarity between the native structure and the best scoring model. The 

combination of clustering, all-atom refinement and ranking with the XPLOR-NIH scoring function 
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improves the RMSD value to native.  In seven of the ten cases, the RMSD to native is 1.6 Å or 

less. 

Modeling TM homo-dimers 

As a prerequisite for addressing the general TM homo-oligomer problem, we first 

applied our modeling approach to the homo-dimer GpA using two sets of mutational data.  One 

set of data is from a fairly recent study and is comprised of crosslinking efficiency (4). Another 

data set consists of dimer disruption data and has been used extensively by others to propose 

different methods for modeling the TM region of GpA (5)(12)(13)(14).  Using either a 

combination of energetics and restraints derived from mutational data or using energetics 

alone, all of these methods generate models for the TM region of GpA with RMSDs to native in 

the range of 0.7-1.5 Å.  Using either set of low-resolution experimental data, our modeling 

approach achieves a similar level of accuracy for GpA.    

Earlier work in our group made use of a Monte Carlo-simulated annealing (MCSA) 

protocol to propose a model for the TM region of BNIP3 (5). The MCSA method used two energy 

terms that would penalize both neutral and disruptive mutations.  The method we propose here 

is different in two ways.  First, we do not use a stochastic approach for sampling conformational 

space.  Second, the present method does not rely solely on the energy to decide on the 

plausibility of a model, but instead also relies on how well the inter-subunit Cβ distance 

correlates with mutational data.  While both methods manage to accurately model the 

backbone of BNIP3, only the MCSA protocol correctly models the hydrogen bond between Nε2 

of HIS 173 and Oγ from SER 172 reported by Sulistijo and Mackenzie (22).  Since our refinement 

protocol in XPLOR-NIH does not incorporate side chain rotamer sampling, we could not optimize 

detailed hydrogen bond interactions between side chains. This prompted us to see if we could 
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model this hydrogen bond by simply changing the rotameric state of HIS 173 and SER 172 in our 

best scoring model.  Changing the rotameric states results in a new model that scores better 

than our original model.  This suggests that the hydrogen bond may  not be absolutely necessary 

for dimerization of the helices (our best refined model did not have this hydrogen bond), but if 

formed produces a slightly more stable complex conferring specificity to the dimer as pointed 

out in the recent work of Lawrie et al (23). 

Modeling larger TM homo-oligomeric complexes 

Our modeling protocol performed well on larger TM homo-oligomeric complexes.  The 

largest complex we considered is the pentamer phospholamban.  Similar to the case for GpA, 

the mutagenesis data for phospholamban has been used extensively in proposing a model for 

the TM region (7)(12)(14).   It is difficult to compare our results directly with earlier studies since 

they were carried out before publication of the NMR structure for phospholamban. However, a 

plot of the interhelical van der Waals energy per residue for phospholamban reveals a similar 

periodic pattern observed in plots from earlier studies (Supplementary Figure 1). A salient 

feature of using inter-subunit Cβ distance over interaction energy when constructing a profile is 

that the former descriptor is less sensitive to force field effects. We note that our model for 

phospholamban has a smaller radius than what is seen in the NMR structure.  However, since 

our modeling protocol does not account for the membrane environment or make use of 

experimentally derived distance information (i.e., inter-monomer NOEs), the effect of the non-

bonded forces from the molecular mechanics force field dominate resulting in tightly packed 

helices.   

We also applied our modeling approach to the influenza proton transporters M2 and 

BM2.  Our modeling protocol generates models for M2 with an RMSD of 1.7 Å to the high-
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resolution X-ray structure. When compared to the NMR model of M2, our protocol achieves an 

RMSD of about 1.0 Å.  Our automated method provides predictions for M2 that are better than 

earlier predictions that relied heavily on the expertise and intuition of the investigators (24).   

We also applied our modeling protocol to the recent solid state NMR structures of Sharma et al. 

(25) and Cady et al. (26).  Our best scoring models have an RMSD of 1.8 Å and 1.6 Å respectively 

to these solid state structures.  As a point of comparison, the NMR (solution and solid state) and 

the high-resolution X-ray structures show a spread in RMSD between 0.8-1.6 Å.   

In an earlier study, we also made use of correlation analysis in modeling the BM2 proton 

transporter (18).  In our previous approach we adopted a less efficient method that included the 

generation of a large ensemble of sterically feasible helical bundles (both ideal and coiled 

helices). The ensemble was scored using the correlation coefficient between the pertubility 

index (PI) and an estimate of the phase angle for the helix. The surviving models were subjected 

to refinement and then clustered. Two out of eight proposed models from our earlier study are 

within 1.0 Å of our current best scoring model.  It should be noted that all of the models from 

our previous study exhibit a weaker correlation with the experimental data than the model we 

propose here.  The current study along with our earlier study show the generality of the use of 

the correlation approach in modeling TM homo-oligomers; different geometric descriptors 

between helices can be used in modeling TM homo-oligomers.               

Two clear strengths with our modeling protocol are speed (~8 minutes on a single 2.40 

GHz processor) and the ability to use data directly from experiments conducted in native cellular 

membranes. This is in contrast to previous methods which often require the conversion of 

experimental data into distance restraints (4)(27), angular restraints (12), or pseudo-energy 

terms (5).  A potential downside of these approaches is their reliance on setting thresholds a 
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priori.  In contrast, we use experimental data directly to correlate against geometric descriptors 

between helices.  We feel this makes for a simpler protocol and allows us to avoid choosing 

“optimal” values through an intermediate training step.  Moreover, since our method relies 

heavily on the correlation value, data from a variety of different experimental contexts can be 

used without the need for scaling.  Other approaches need to determine different thresholds 

and penalty functions for different sets of experimental data, which can make them difficult to 

apply.    

One potential drawback of our modeling protocol is the requirement of both neutral 

and destabilizing mutations.  If a mutagenesis experiment is carried out only on residues at the 

dimer interface, our correlation approach will fail due to its reliance upon detectable differences 

between residues close to the dimer interface and those farther away. Put another way, if all 

the values for a particular mutagenesis experiment are identical the correlation value would be 

undefined since the difference between each experimental value would be identical to the 

mean value.  Alternative approaches do not have the same constraint. However, we anticipate 

that most mutagenesis experiments would involve mutations at a number of consecutive 

residues to determine which residues are located at the interface.   

A second potential drawback of our method is the use of an “ideal” helix during the 

rigid-body search. This drawback has been discussed by Bowie and coworkers (14) who note 

that experimentally determined helices can contain large deviations from ideal geometry that 

result in significant kinks or curvature. The importance of accounting for curvature as seen in 

experimentally determined helices was demonstrated by performing a hide-and-seek test using 

the low-resolution data; carrying out the search using the native helix yielded an RMSDMin in the 

range 0.3-1.1 Å while using an ideal helix yields an RMSDMin in the range 1.1-1.8 Å. One way of 
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incorporating experimentally determined helices into our modeling protocol is through the use 

of helical protein structures deposited in the PDB.  Initial tests using experimentally-derived 

helices extracted from the PDB reveal significant improvements in RMSDMin when compared to 

the case of using an ideal helix. Using the native helix from each case in Table 2, we searched 

the PDB using a rapid distance-matrix structure search method28 and extracted all helices below 

an RMSD of 0.5 Å to the native helix. The helix with the smallest RMSD to the native helix was 

used to carry out a rigid-body search using the low-resolution experimental data. The RMSDMin 

value when using the PDB-derived helices range from 0.5-1.3 Å which is not significantly 

different from the case of using the native helix. However, these PDB-derived helices were 

obtained using the native helix which will likely be unavailable in a practical modeling situation. 

It is clear that devising a way to incorporate structural information from the PDB into our 

modeling protocol would provide substantial enrichment of near-native conformations.     

The ultimate utility of our method to experimental biologists would be to avoid 

performing exhaustive mutagenesis experiments when attempting to model homo-oligomeric 

helical TM structure. Earlier work in our group used phylogeny information along with lattice 

models to determine how much information experimental information is needed to make 

reasonable predictions (29). For the method developed in our current study, we find that the 

more experimental data points provided as input, the more accurate the final predictions will 

be. However, a judicious choice of sequence region to target for carrying out the mutagenesis 

experiments can yield accurate results with far fewer experimental data points.  We find that for 

GpA, 8 contiguous experimental data points are sufficient to generate predictions that are 

within 1 Å RMSD to native (Supplementary Table 9).  Selecting 8 contiguous experimental data 

points from the N-terminal, center or C-terminal regions of the TM sequence produces results 
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that are similar to what is obtained using the full set of 23 experimental data points.  Splitting 

the 8 contiguous experimental data points into 4 contiguous experimental data points at both n-

terminal and c-terminal ends of the TM sequence for GpA yields a prediction that is also near 1 

Å RMSD to native.  We find a similar result for the phospholamban case when using 4 

contiguous experimental data points at both the N-terminal and C-terminal ends.       

Future improvements to our method will include adding additional terms to our simple 

two-term scoring function.  One possibility would be to include knowledge-based terms to 

improve the packing between helices. Work by Harrington and Ben-Tal (30) show that five types 

of chemical interactions common to TM helices could be used to essentially generate sub 

angstrom predictions.  It would be interesting to see if these five types of chemical interactions 

could be used to complement our current scoring function to filter out conformations that do 

not exhibit structural determinants common to TM helices. Such an approach would incur 

minimal computational cost while enriching the ensemble with more native-like models.  

While the manuscript was in review, a refined structure for phospholamban was 

published by Verardi et al. (11). Comparing our prediction for phospholamban to this new 

structure (PDB ID: 2KYV) gives a final prediction of 0.8 Å.  Using 4 contiguous experimental data 

points at both the N-terminal and C-terminal ends also gives a prediction around 0.8 Å. 

 
2.5 Conclusion 

In summary, we have developed a tool for rapidly modeling helical TM homo-oligomers 

that uses low-resolution experimental data directly in the modeling process.  At the heart of our 

modeling protocol is the use of a correlation term that restrains the rigid-body sampling and 

avoids costly searches in regions of conformational space that do not correlate with 

experimental information.  We show that correlating mutagenesis, crosslinking and ion channel 
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data with inter-subunit Cβ distance data followed by refinement provides accurate models for 

helical TM proteins exhibiting exact rotational symmetry.  One area where our modeling 

approach is likely to have a significant impact is in situations where it is either too difficult or 

time consuming to obtain a complete set of NMR data. 

2.6 Materials and Methods 
Details regarding the low-resolution experimental data 

At the core of our sampling methodology is the use of experimental information in the 

form of mutagenesis data, crosslinking data, TOXCAT and TOXR data.  We provide a short 

description of the data  below.  All of the experimental data used in this study can be found in 

Supplementary Tables 2-8.  

Phospholamban—Phospholamban is homo-pentameric bundle located in the sarcoplasmic 

reticulum of cardiocytes and is responsible for calcium transport. The mutagenesis data for 

phospholamban was taken from Table 2 of Simmerman et al. (9).  The data from this table 

shows the extent of pentamer formation following mutation to either an alanine or a 

phenylalanine  along the transmembrane region.  For this study, we used the alanine mutational 

data only.   

M2 and BM2—Both M2 (A/M2) and BM2 are homo-tetrameric TM proton transporters 

belonging to different types of influenza viruses.  These proton transporters are responsible for 

acidifying the interior of the virus which ultimately leads to virion uncoating in the endosomes.  

For both M2 and BM2 we used the pertubational index (PI) which is a combination of reversal 

potential, current and specific activity data (see Pinto et al. (24) for details).  PI data for M2 from 

was obtained from Figure 1 of Pinto et al. (24).  PI data for BM2 was obtained from Figure 3 of 

Ma et al. (18).   
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GpA—GpA is homo dimeric sialoglycoprotein from erythrocyte cells. Two sets of data for the TM 

region of of GpA were used.  The first set of data was obtained from Figure 5 of Lemmon et al., 

(8) and shows the relative degree of disruption of the GpA dimer by mutation of the native 

sequence with a nonpolar residue.  The degree of disruption of the dimer interface uses a scale 

of 0 (no effect on dimer formation) to 3 (no dimer formation).  The second set of data was taken 

from Supplementary Tables of Zhu et al (4) and shows the percentage of crosslinking between 

residues in the transmembrane region of the αIIbβ3/GpA chimera.  For this study, we 

considered only symmetric crosslinking data between residues.    

BNIP3— is a homo-dimer and a member of the Bcl-2 homology domain-3 subfamily 

of proapoptotic Bcl-2 proteins.  BNIP3 is associated with apoptotic response in the myocardium.  

Mutational data for the TM region of BNIP3 dimer comes from Figure 7 of Lawrie et al. (23) and 

represents a combination of TOXCAT and SDS-PAGE page phenotype scores based on  

percentage dimer disruption.   The “unified score” gives the average disruptive effect of 

different amino acid substitution along the protein sequence of the transmembrane helix.  The 

unified scale ranges in value from 0 (no dimer formation) to 10 (strong dimerization).  We used 

all the phenotype scores from the alanine mutations. 

EphA1—ephrin receptor A1 is part of a receptor tyrosine kinase and is involved in animal 

development and certain cancers.  ToxR data was taken from Table 3 of the Volynsky et al. (15).  

It should be noted that the ToxR data from Volynsky et al. do not consider every possible 

residue along the TM region. For our purposes, the mutations to glutamine and serine were not 

as informative, since mutation to a polar residue in the membrane could cause the dimer to be 

disrupted even when the residue is not along the dimer interface.  Similarly, glycine mutations 

may cause a structural change in the helices despite not residing at the oligomer interface. 
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Therefore, we concentrated on only the hydrophobic mutations (i.e., the isoleucine, alanine and 

valine mutations).    

Generation of the homo-oligomeric models 

Generation of the oligomer begins with the construction of an ideal helix using 

CHARMM22 internal geometry with φ and ψ dihedral angles set to -60 and -40 degrees 

respectively.  Modeling was carried out only for the TM region that had experimental data.  As 

such, the sequence length of the helix was dependent on the available experimental data.   

The sampling procedure begins with an ideal helix containing the native sequence.  Side 

chains were not considered at this stage but all residues (with the exception of glycine) 

contained a Cβ atom.  The individual steps used to position the helix in space are depicted in 

cartoon form in Figure 1. Each search for the best dimer configuration begins with a set of initial 

parameters for the four variables Tx, Tz, θ, and φ that were applied to an ideal helix centered at 

the origin of the global frame of reference.  To maximize the correlation of experimental data 

with inter-subunit Cβ distance while maintaining a sterically feasible distance between helices, 

the scoring function below was optimized using the Nelder-Mead simplex algorithm from the 

Gnu Scientific Library (GSL) (31). 
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The weighting parameters C1 (kcal/mol·Å2) and C2 (kcal/mol) were set to 75 and 100 

respectively.  The scale variable, S, is used to soften the van der Waal’s radii.  For the study 

carried out here, S was set to 0.80.  Rij
Min is the sum of the van der Waal’s radii of two atoms ij 

(the radii for different atoms were taken directly from the XPLOR manual (32)).  The distance 

between two atoms is denoted as ‘R(Tx,Tz,θ,)ij’ and is a function of the four search parameters 
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Tx, Tz, θ, and ф.  The ‘corr’ term is the correlation between the inter-subunit Cβ distances and 

the corresponding experimental data.  The experimental data (denoted ‘y’ in the above 

equation) denotes the same residue on symmetric helices and is correlated with the distance 

between these residues. The variable M represents all the atoms from each helix while the 

variable N represents only the Cβ atoms.  

Initial values for the sampling parameters were obtained by coarse enumeration 

between a suitable set of numerical boundaries and were subject to the three following 

conditions:  1) the bundle radius, Tx, for a dimer must lie between 2 and 4 Å.  For oligomeric 

states larger than 2, the bundle radius should be restrained between 6-9 Å.  2) the tilt angle, θ, 

must lie in the range of -30 to 30 degrees; and 3) the translation along the Z axis, Tz, measured 

from the geometric center of the helix  lie in the range of -10 to 10 Å.   To avoid a combinatorial 

explosion of values for the parameters, we capped the maximum number of initial values to 

1000.  Only models with a Score less than 50 were retained for the Refinement phase.   

Clustering 

Models were clustered using a k-medoid algorithm from the C clustering library19. The 

number of initial clustering attempts was set to 100.  The model with smallest RMSD to all other 

models in the cluster was selected as the centroid model. 

Side chain placement 

Side chains were added to all the centroid models using the side chain prediction 

program SCAP (20).  Default options were used with SCAP. 

Refinement with XPLOR-NIH 

After side chain addition, all of the centroid models from the first phase were subjected 

to 100 steps of rigid-body minimization (RBM) using XPLOR-NIH with the CHARMM22 force field.  
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The goal of this step in the refinement procedure is to enforce proper packing between helices 

while removing any steric clashes that arise as a result of having used a reduced representation 

for the side chain during the generation of the oligomer in the first phase.  The RBM step is then 

followed by two thousand steps of Powell minimization.  The dielectric constant was set to 4 

and the non-bonded cutoff distance was set to 12.0 Å.   All other options were left at their 

default values. 

Correlation versus anti-correlation 

It should be noted that while some experimental data will correlate positively with inter-

subunit Cβ distance, some data will correlate negatively with inter-subunit Cβ distance.  This can 

be understood by considering the case for cross-linked residues. If two corresponding residues 

in a homo-dimer are close in space the distance between the Cβ atoms will be small.  In this 

scenario, the Cβ atoms should cross link strongly.  The data would then be anti-correlated with a 

maximal value of -1 since a small distance yields a stronger (large magnitude) crosslinking signal.  

The statistical significance attributed to r is the probability of arriving at the current value if the 

correlation coefficient were in fact actually zero (the null hypothesis). For the purposes of this 

study r is considered statistically significant if the associated p value is less than 5% (p<0.05). 

Correlation coefficients and their respective p-values were calculated in Matlab. The p-values 

are one-sided, and represent the probability that two uncorrelated sequences of the given 

length would have a correlation value as good as the calculated correlation by chance. 

Root mean square distance (RMSD) calculations 

The root mean square distance (RMSD) is computed by optimally superimposing N, Cα, 

C and O atoms from a model onto the native structure. For the purposes of comparing our best 

prediction with a NMR models, we used the average model computed from all the individual 
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models in the NMR ensemble.  For the results involving refinement of the native models, we 

superimposed the refined native model onto the unrefined native model to determine the 

RMSD.    
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2.8 Figures 

 

Table 1 

Application of the sampling method using inter-helical Cβ distances from experimentally 

determined helical TM structures.  

 

Table 2 

Application of the sampling method using low-resolution experimental data.   

Name Oligomer PDB ID Residues       RMSDScore        RMSDMin       RMSDNative        RMSD*Min

GpA Dimer 1AFO 73-96 1.7 1.4 0.1

EphA1 Dimer 2K1L 549-560 1.3 1.0 0.2

BNIP3 Dimer 2KA2 170-184 0.9 0.9 0.3

M2(xtal) Tetramer 3LBW 26-43 1.4 1.4 1.4

M2(NMR) Tetramer 2RLF 26-43 1.5 1.2 0.1

M2(ssNMR1) Tetramer 2KQT 26-43 1.3 1.2 0.0

M2(ssNMR2) Tetramer 2LOJ 26-43 1.5 1.2 0.2

BM2 Tetramer 2KIX 7-25 2.0 1.6 0.6

Phospholamban Pentamer 1ZLL 37-52 2.9 0.9 0.3

Name Type of Data        RMSDScore        RMSDMin        RMSDMin*

GpA Mutagenesis 1.4 1.4

GpA(Crosslinking) Crosslinking 1.6 1.4

EphA1 TOXCAT 1.6 1.4

BNIP3 TOXCAT/Mutagenesis 3.0 1.6

M2(xtal) Ion conductance 1.9 1.5

M2(NMR) Ion conductance 1.4 1.3

M2(ssNMR1) Ion conductance 1.6 1.5

M2(ssNMR2) Ion conductance 1.7 1.3

BM2 Ion conductance 2.1 1.8

Phospholamban Mutagenesis 3.0 1.0
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Figure 1 

An illustration of the steps used to model a TM oligomer with exact rotational symmetry.  Step 1 

starts with an ideal helix transformed to the global frame of reference such that the geometric 

center of the helix is positioned at the origin.  Step 2 involves rotation about the global Z axis 

and determines which residues will form the interface of the dimer (denoted by the variable ф).  

Step 3 is a translation along the global Z axis and will affect the point of closest approach 

(denoted by the variable Tz).  Step 4 is a translation along the global X axis and will affect the 

radius of the bundle (denoted by the variable Tx).  Step 5 is a rotation about the global X axis and 

will affect the tilt of the bundle with respect to the global Z axis (denoted by the variable θ).  

Step 6 is a rotation about the global Z axis used to generate the symmetry mate followed by 

optimization between experimental data and inter-subunit Cβ distance (see Methods for a 

description of the two-term scoring function used in the optimization step).  Once an ensemble 

of 1000 poses has been generated the ensemble is clustered and side chains are added to the 

centroid models.  The centroid models are then refined using XPLOR-NIH. The spheres on the 
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end of the helices denote the n-terminus (blue) and c-terminus (red).  The individual axes on the 

global frame are color coded as follows: red denotes the positive X axis, green denotes the 

positive Y axis and blue denotes the positive Z axis.    
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Figure 2 

RMSD distributions for models generated using native inter-subunit Cβ distances.  Each panel 

consists of two distributions. The distribution to the left was generated using an ideal helix.  The 

distribution to the right was generated using the native helix. The RMSD value is between each 

model in the generated ensemble and the native structure. The distributions are: a) GpA 

b)EphA1 c) BNIP3 d) phospholamban e) M2(xtal)  f) M2(NMR)  g) M2(ssNMR1)  h)M2(ssNMR2)  

and i) BM2.    
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Figure 3 

PI versus inter-subunit Cβ distance profiles for a) native M2(NMR) structure and b) our best 

scoring model after refinement with XPLOR-NIH. A superimposition of our best scoring model 

and the native M2(NMR) structure is shown on the right.  
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Figure 4 

RMSD distributions for models generated using low-resolution experimental data.  Each panel 

consists of a single distribution that was generated using an ideal helix.  The RMSD value is 

obtained between each model in the ensemble and the native structure. The distributions are as 

follows: a) GpA b)GpA(Crosslinking) c) BNIP3 d) EphA1 e) BM2  f) M2(xtal)  g) M2(NMR)  

h)M2(ssNMR1) i) M2 (ssNMR2) and j) phospholamban.    
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Figure 5 

A comparison between the backbone of the native structure (shown in blue) and best scoring 

model (shown in red) after refinement  
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Figure 6 

Energy profiles versus RMSD to native after refinement with XPLOR-NIH.  Blue circles show the 

RMSD between the starting native model (from the NMR ensemble) and the native model after 

refinement with XPLOR-NIH. Red circles show the RMSD between each of the centroids and the 

corresponding native structure. The filled green circles represent the most favorable scoring 

model among the 20 centroid models. Only models with RMSD values below 2.5 Å are displayed 

on the graph. The panels are labeled as follows (a) GpA (b) GpA(Crosslinking) (c) BNIP3 (d) 

EphA1 (e) M2(xtal) (f) M2(NMR) (g) BM2 (h) phospholamban (i) M2(ssNMR1) and (j) 

M2(ssNMR2).   
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2.9 Supplementary Figures 
 

 

Supplementary Table 1 

Hide-and-seek test using inter-subunit Cβ distance as simulated experimental data.  
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Supplementary Table 2 

GpA disruption data obtained from Figure 5 of Lemmon et al. (8) 
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Supplementary Table 3 

GpA disulfide cross-linking data obtained from Supplementary Information of Zhu et al. (4) 
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Supplementary Table 4 

Pentamer disruption data obtained from Table 1 of Simmermann et al. (9)  
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Supplementary Table 5 

EphA1 TOXR data taken from Table 2 of Volynsky et al. (15)  
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Supplementary Table 6 

BNIP3 unified mutagenesis score values for alanine were taken from Figure 7 of Lawrie et al. 
(23) 
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Supplementary Table 7 

M2 perturbility index (PI) data taken from Figure 2 of Pinto et al. (24) 
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Supplementary Table 8 

BM2 perturbility index (PI) data taken from Figure 3 of Ma et al. (18) 
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Supplementary Figure 1 

Inter-subunit Cβ distance versus percentage pentamer formation for native phospholamban 

(upper left panel) and the best scoring model (upper right panel).  A similar profile is shown 

using van der Waals interaction energy per residue versus percentage pentamer formation for 

native phospholamban (lower left panel) and the best scoring model (lower right panel).  The 

van der Waals interaction energy per residue was obtained using the CHARMM22 force field 

implementation in XPLOR-NIH. 
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Supplementary Figure 2 

Structural heterogeneity between different structures of M2 that include the solution NMR 

structure (green, PDB ID 2RLF), a high-resolution X-ray structure (blue, PDB ID 3LBW), a solid-

state NMR structure from Mei Hong’s group (yellow, PDB ID 2KQT) and a solid-state NMR 

structure from Tim Cross’ group (red, PDB ID 2L0J).  
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Chapter 3 
Nature-inspired design of motif-specific antibody scaffolds 

3.1 Abstract 

Aberrant changes in post-translational modifications (PTMs) such as phosphorylation underlie a 

majority of human diseases. However, detection and quantification of PTMs for diagnostic or 

biomarker applications often requires monoclonal PTM-specific antibodies, which are 

challenging to generate using traditional antibody generation platforms. Here we outline a 

renewable synthetic antibody strategy by installing a novel motif-specific hot spot into an 

antibody scaffold. Inspired by a natural phosphate-binding motif, we designed antibody 

scaffolds with hot spots specific for phosphoserine, phosphothreonine, or phosphotyrosine. 

Crystal structures of the phospho-specific antibodies revealed two distinct modes of 

phosphoresidue recognition. These hot spots function independently of the surrounding 

scaffold as phage display antibody libraries based upon these scaffolds successfully yielded over 

fifty phospho- and target-specific antibodies against 70% of target peptides. Ultimately, our 

motif-specific scaffold strategy may provide a general solution for the rapid, robust 

development of monoclonal anti-PTM or anti-peptide antibodies for signaling, diagnostic, and 

therapeutic applications. 

This chapter has been published in Nature Biotechnology (2013 August 18; 31:916-921).  Dr. 
James T. Koerber is the first author of the work.  Nathan D. Thomsen, Brett T. Hannigan, and 
William F. DeGrado are co-authors.  James A. Wells is the corresponding author. I performed the 
computational analysis of antibody structures, identified the antibody structure with a “nest” 
motif, and contributed to designing the gene library used in phage-display selections.    

 
3.2 Introduction 

Post-translational modifications (PTMs), such as phosphorylation, acetylation, and 

ubiquitination, play essential roles in modulating protein function throughout biology. In 
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particular, phosphorylation is one of the most common regulatory mechanisms in eukaryotes 

where roughly 20-30% of all proteins can be phosphorylated by over 500 kinases1. Given the 

ubiquitous role of phosphorylation in signal transduction, it is not surprising that aberrant 

phosphorylation either directly causes or is a consequence of many human diseases, such as 

cancer and neurodegenerative disorders2. Recent advances in phosphoproteomic methods have 

greatly expanded the number of known phosphorylation sites (>170,000) and identified global 

phosphorylation changes that occur during disease3-6. Ultimately, the validation of key 

phosphorylation events is best conducted at the single-cell level where recent studies, utilizing 

phospho-specific (PS) monoclonal antibodies (Abs), have elucidated how stochastic fluctuations 

and signaling cross-talk contribute to the overall cellular state7, 8. Unfortunately, very few 

commercially available Abs are suitable for this purpose7 and since the number of functionally 

important phosphorylation sites steadily increases, there exists the need for a rapid, robust 

method to generate high-quality, renewable, monoclonal PS detection reagents. Furthermore, 

we seek to make renewable, recombinant Abs to provide genetically encoded functional tools 

for cell biology. 

The state of the art in PS detection reagents is the generation of Abs by the 

immunization of animals9. However, the generation of a polyclonal PS Ab is often imprecise, 

low-throughput, expensive, time-consuming and not renewable. Furthermore, the development 

of monoclonal PS antibodies requires additional screening of numerous hybridomas, which is 

made more challenging by the rarity of PS Ab clones, estimated to be 0.1-5%10, 11. Finally, 

disproportionately more phosphotyrosine (pTyr)-specific Abs exist than phosphoserine (pSer)- 

or phosphothreonine (pThr)-specific Abs. This fact has hindered the study of serine and 

threonine phosphorylation, which account for 90% and 10% of all phosphorylation sites, 
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respectively, compared to <0.05% for tyrosine12. Unfortunately, attempts to generate 

recombinant PS Abs using in vitro selection methods, such as phage display13-17, yeast display18, 

and ribosome display19, have been even less efficient than immunization methods18, 20-22. 

Engineered endogenous phosphopeptide-binding domains such as Src-homology-2 (SH2) or 

forkhead-associated (FHA) domains may provide an alternative to Abs, but the general utility of 

these scaffolds remains to be demonstrated23-25.  

Recently, the combination of immunization and phage display was utilized to isolate a 

high affinity PS Ab from chickens21. While this approach was successful and led to the first PS Ab 

structure, this approach relies upon a low-throughput and time-consuming immunization step. 

We hypothesize that both immunization and in vitro methods for generating PS Abs fail to 

routinely yield high quality Abs because most naïve Abs do not possess any initial affinity for the 

small peptide antigens. In light of these difficulties, we envisioned a novel structure-guided Ab 

generation strategy that employs Ab scaffolds with engineered pockets tailored to a particular 

sequence motif. This motif-specific anchoring pocket would provide initial antigen-binding 

affinity and guide the selection of Abs targeted to epitopes containing the motif (e.g. a pSer- or 

pTyr-containing peptide). Investigators have termed these motif residues “hot spots” that 

contribute a substantial fraction of the binding energy to a protein-protein interaction26, 27.  

Here we engineer Ab scaffolds with designed binding pockets for pSer, pThr, or pTyr residues 

and thus, make these residues hot spots in the antigen-Ab interaction. Guided by a natural 

phosphate-binding motif and knowledge of Ab structure-function, we first identified a parent Ab 

scaffold in which to install the designed pocket in the complementarity-determining regions 

(CDRs). We then mutated the scaffold to specifically bind pSer, pThr, or pTyr and solved the X-

ray crystal structures of PS Ab:peptide complexes. In the second step, we constructed two large 
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diverse single-chain Fv (scFv) Ab phage display libraries based upon these scaffolds and 

successfully selected 51 PS Abs against seven different pSer- or pThr-containing peptides. These 

results suggest that the phosphoresidue-binding pocket functions independently of additional 

structural and functional changes in other CDRs of the Ab. 

3.3 Results 
Design of PS Ab scaffolds 

To design a phosphate-binding motif into an Ab scaffold, we drew upon structural 

knowledge of how protein domains recognize anions, such as phosphate. The most common 

anion-binding motif, termed a nest, occurs within many different protein super-families, such as 

ATPases and kinases, and consists of three consecutive residues where multiple main-chain 

amides form hydrogen bonds with the anion (Supplementary Fig. 1a)28. Inspired by this 

ubiquitous motif, we sought to find an existing Ab scaffold into which we could build a similar 

short, localized loop. We focused our search on sixty anti-peptide Ab structures and manually 

inspected the CDRs for the desired nest conformation. We identified a region of CDR H2 within a 

mouse Fab (PDB ID 1i8i)29 that adopts the desired conformation due to a hallmark L glycine at 

54H (Fig. 1a). Interestingly, this Ab utilized the H2 loop to bind an acidic residue via six loop 

residues that anchor the peptide (52H and 52AH), stabilize the conformation (54H), or confer side 

chain specificity (53H, 55H, and 56H) (Fig. 1a and Supplementary Table 1). Strikingly, a larger 

search of all Ab-antigen structures identified eight Abs that utilize this loop to bind an aspartate 

or glutamate in the antigen (Supplementary Fig. 1b).  

To characterize this class of Ab-antigen interactions, we synthesized the gene encoding 

a humanized version of the 1i8i Fab and cloned this construct into both a phage display and 

protein expression vector (Supplementary Table 2). This humanized scaffold, which expressed 
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at yields > 3mg/L in bacteria, bound the peptide with similar affinity as reported for the mouse 

Fab29. To understand the importance of the Asp-loop (residues 52H-56H) interaction in peptide 

binding, we performed competition phage ELISAs to analyze Fab binding to a panel of peptides. 

ELISA data confirmed that the Asp8 residue of the antigen is a hot spot for binding as mutation 

to Ala, Ser, Thr, or Tyr substantially reduced Fab binding (>100-fold less) to the peptide (Fig. 1b). 

We reasoned that the carboxylate group of Asp8 residue might mimic a phosphorylated residue 

and thus, the Ab may bind peptides with pSer, pThr, or possibly pTyr in place of Asp8. ELISA data 

confirmed the ability of this Fab to bind pSer- or pThr-containing peptides, albeit with weak 

affinities (>2000 nM) (Fig. 1b and Table 1). No Ab binding was observed to the pTyr peptide 

probably due to its large size. Structural analysis of the peptide:Fab complex suggested that 

steric clashes with several side chains and the main chain of the CDR were likely responsible for 

the weak affinities.  

Therefore, we constructed three Ab phage display libraries to optimize the CDR region 

for each phosphorylated residue. The six-residue CDR region (52H-56H) was replaced with six 

random residues (H2 library) or seven random residues (H2+1 library) to relieve steric clashes 

with the Ab backbone. The third library design was similar to the H2 library, but fixed Gly or Ser 

at 53H and 54H (GS library). These strategies allowed us to assess the importance of the anchor 

(52H and 52AH) and conformation (55H) residues as well as alter the specificity residues (53H, 55H, 

and 56H). Using standard phage display methods, we then performed four rounds of selection 

against pSer, pThr, and pTyr peptides. Impressively, we observed strong enrichment against 

each of the pSer, pThr, and pTyr peptide targets using all three libraries, except for selections 

with the H2+1 library against pTyr (Fig. 1c and data not shown). 
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Characterization of PS Ab scaffolds 

For each phosphopeptide antigen, we isolated single phage clones and sequenced the 

CDR H2 region for clones that bound to the phosphopeptide by single-point ELISA (data not 

shown). Selections against the pSer and pThr peptides gave similar sequences and thus were 

combined into one sequence logo. Sequence logos from the H2- and GS-library selections 

against pSer/pThr highlighted the conservation of the key anchoring residue T52AH and 

conformation residue G54H in the loop, whereas more diversity was observed in the specificity 

residues (55H and 56H) (Fig. 2a). Interestingly, in the H2+1 libraries, we observed a strong 

enrichment for a Pro-Arg insertion in place of G53H and conservation of G54H (Fig. 2b). The G54H 

residue occupies a region of the Ramachandran plot in which only glycine is allowed, thus 

suggesting that this glycine is critical for the conformation29-31. The pTyr Abs contained a 

different binding motif from the pSer/pThr Abs suggesting that the mode of pTyr recognition 

differs from that of pSer/pThr recognition (Fig. 2c). 

Next, we analyzed the phage clones by competition ELISA to identify the best scaffold 

for each target (pSer, pThr, or pTyr) (data not shown). We identified a pSer-specific scaffold 

(pSAb with sequence ATGGHT), a pSer/pThr-specific scaffold (pSTAb with sequence STPRGST), 

and a pTyr-specific scaffold (pYAb with sequence VTGGRK). Interestingly, we were unable to 

isolate a pThr scaffold that did not cross-react with the pSer peptide. To determine the 

phospho-selectivity of these scaffolds, we analyzed binding to the phosphorylated and 

unphosphorylated peptides by ELISA and Biacore. Strikingly, we observed high affinity and 

selectivity for the phosphorylated peptide in all cases (Fig. 2 and Table 1).  
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Structural analysis of phosphopeptide recognition 

To explore the mode of phosphoresidue recognition, we determined the X-ray structure 

of four Fab:peptide complexes (pSAb:pSer, pSTAb:pSer, pSTAb:pThr, and pYAb:pTyr) as well as 

the unbound pYAb Fab (Supplementary Table 4 and 5). We observed strong electron density for 

the bound peptide in all pSer and pThr structures (Supplementary Fig. 3). For the pYAb Fab, only 

one of the two Fab copies in the asymmetric unit was fully occupied by the peptide, likely due to 

the packing arrangement of the Fabs (Supplementary Fig. 3). No changes in the positions of the 

CDRs were observed between the mouse29 and humanized Abs (c RMSD of 0.78 Å). 

Furthermore, binding of the peptide to the Ab did not induce any major CDR movements (c 

RMSD of 1.3 Å) (Supplementary Fig. 4). For all phosphopeptides, the recognition is achieved 

through two sectors: the phosphoresidue-binding pocket and a neighboring peptide sequence 

“reader” region, which consists primarily of CDRs L3 and H3 (Fig. 3e). Additionally, all peptide:Ab 

contacts outside of the phosphoresidue also occur in the parent Fab (Supplementary Fig. 4c)29.   

Structures of the peptide:Fab complexes illustrate how CDR H2 specifically recognizes 

each phosphoresidue (Fig. 3). For all three scaffolds, mutations found in the parent H2 loop 

make the main chain more accessible, creating a large electropositive binding pocket (indicated 

by arrow in Supplementary Fig. 5). The phosphoresidue side chain is almost fully engulfed by 

the Ab in pSAb (80% buried) and pSTAb (92% buried) and anchored by multiple hydrogen bonds 

(Fig. 3a-c, and Supplementary Table 6). In pSAb, the pSer residue makes key contacts with 

specificity residues G53H, R55H, and T56H, whereas in pSTAb, the pSer and pThr residues make 

key contacts with R53H, G54H, and S55H. In pSTAb, the insertion of P52BH allows the T52AH 

anchor to flip out and still contribute a hydrogen bond from the main-chain carbonyl. In stark 

contrast, pYAb does not utilize the original designed loop conformation to bind pTyr (Fig. 3d). A 
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key ionic interaction with K56H and a hydrophobic interaction with V52H contribute to the 

recognition mode. Interestingly, the H2 nest pocket is occupied by a water molecule that is 

stabilized by the free C-terminus of the peptide, indicating that pYAb may bind differently to the 

pTyr residue in longer peptides without this neighboring free carboxylate (Fig. 3d). Combined, 

our in vitro characterization and X-ray crystal structures confirmed that we successfully designed 

novel Ab scaffolds that utilize pSer, pThr, or pTyr as hot-spot residues. 

Generation of novel PS Abs using the pSer and pSer/pThr scaffolds 

We hypothesized that an Ab library in which the phosphoresidue-binding pocket was 

conserved and “reader” regions were mutated would enable rapid generation of new PS Abs. 

Since every member of the initial library contains a phosphoresidue-binding pocket, each Ab 

should have a weak initial affinity for the phosphorylated antigen, dramatically enhancing the 

selection of new Abs. As a proof of principle, we targeted pSer- and pThr-containing antigens, as 

reagents capable of detecting these modifications are significantly lacking. We diversified 

surface-exposed positions in CDR H2 (50H, 56H, and 58H) outside of the phosphate-binding 

pocket, CDR H3 (95H-101H), and CDR L3 (91L-94L, 96L) (Supplementary Table 7).  

We chose a set of ten biologically relevant pSer- or pThr-containing epitopes as target 

antigens (Table 2). As a stringent test, we did not perform counter-selections against the 

unphosphorylated antigens, since we reasoned that the binding pocket could be sufficient for 

selection of Abs that required the phosphorylated residue. We performed three rounds of 

selection and analyzed single phage clones from the third round of selection by single-point 

ELISA. Impressively, for seven targets, we isolated at least one scFv that bound only to the 

phosphorylated antigen (Table 2 and Fig. 4a). To demonstrate the specificity of the isolated 

clones, we performed a panel of ELISAs to assay binding of each scFv to each of the ten 
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phosphorylated peptides (Fig. 4b). The data demonstrated the exquisite target selectivity of 

most scFv clones, indicating the absence of promiscuous pSer-/pThr-peptide binding scFvs. 

Western blot analysis confirmed that a sample set of Abs specifically recognized the 

corresponding phosphoprotein (Fig. 4c). Finally, the scFv-Fc fusions exhibited affinities ranging 

from 42 to 2430 nM (Table 2), which matches or exceeds previous reports of PS Ab affinities18, 

21.  

 
3.4 Discussion 

Here we described a novel, recombinant Ab generation method that entails the design 

of a motif-specific (e.g. pSer, pThr, or pTyr) Ab scaffold followed by structure-informed 

mutagenesis of the scaffold to generate monoclonal Abs against a panel of phosphopeptide 

antigens. The high success rate of our strategy (PS Abs against 7 of 10 targets), which does not 

employ counter-selections against the unphosphorylated epitope, demonstrates how the motif-

specific pocket greatly improves the selection process, as even past Ab libraries generated from 

immunized animals required stringent counter-selections to enrich for PS Abs21, 22. In the case of 

pSAb and pSTAb, the pocket contains a hallmark L glycine at 54H that contributes to the main-

chain conformation of CDR H2. There is a remarkably high frequency of occurrence for this H2 

conformation in Abs (~12% of all H2 conformations31) and multiple Ab structures with anionic 

molecules (e.g. aspartate, glutamate, or sulfate) bound at this site (Supplementary Fig. 1).  

While our studies were in progress, the structure of a chicken scFv, which was 

generated from an immunized phage display library, was reported that utilized a similar H2 

conformation to bind pThr-containing phosphopeptide21. Interestingly, a structural comparison 

of this chicken scFv with our Abs reveals that the phosphoresidue binds to the same H2 loop 

conformation albeit with a different hydrogen bonding pattern (Supplementary Fig. 7). This 
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strikingly similarity suggests there may be a germline-encoded anion-binding pocket capable of 

binding phosphate or sulfate groups. In fact, previous work on Abs that bind phospholipids 

suggested a “phosphate-binding subsite” that conferred recognition of only the phosphorylated 

or sulfated forms of multiple lipids and haptens32. Furthermore, anion-binding pocket-containing 

Abs may provide a protective role in the recognition of phosphorylated or sulfated antigens, 

such as lipid A in Gram-negative bacteria32, or conversely, a more sinister role in autoimmune 

diseases, such as antiphospolipid syndrome33. Future crystallographic studies of these 

Ab:antigen complexes will better elucidate this possibility.  

Interestingly, the main-chain dominated mode of pSer/pThr recognition is completely 

different from most endogenous pSer/pThr-binding domains such as SH2, 14-3-3, and FHA, that 

predominantly utilize side chains to bind the phosphoresidue34 (Fig. 3 and Supplementary Fig. 

6). Only the WW domain sometimes utilizes two main-chain amides to bind a phosphate. In fact, 

our pSer/pThr scaffolds bind more efficiently to the phosphoresidue than naturally occurring 

domains by burying a larger surface area and contributing more hydrogen bonds 

(Supplementary Table 6). Others have recently suggested that these endogenous 

phosphoresidue-binding and other PTM-binding domains have evolved to bind shorter epitopes 

with moderate affinities to support the dynamic nature of signal transduction pathways, which 

potentially limits the range of epitopes they can bind34-36. Additionally, our designed PS pockets 

appear to function independently of the other CDRs as we could diversify those CDRs to target 

highly diverse phosphopeptides (Fig. 4).  

Surprisingly, pYAb utilizes a completely different motif to recognize pTyr. It is notable 

that we achieved highly specific recognition of pTyr, despite not burying most of the pTyr phenyl 

ring (Fig. 2c and 3d). However, we have yet to determine how the presence of the free 
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carboxylate, which stabilizes a water molecule in the nest, contributes to the binding affinity. 

We are currently developing new scaffolds in which most of the pTyr residue is buried and 

bound in a more nest-like region to boost the ligand efficiency and affinity. 

Our bacteriophage-derived PS Ab platform, which can be automated, rapidly generates 

Abs within two weeks as opposed to the several months required for hybridoma methods. In 

stark contrast to traditional monoclonal or polyclonal PS Abs, our recombinant PS Abs utilize a 

single framework that permits high-level bacterial expression (> 3mg/L) and mammalian 

expression (~0.5-5 g/mL media) in a renewable format. The use of a single framework greatly 

simplifies mutagenesis protocols (e.g. affinity maturation), sequence-function analysis, and 

conversion to other Ab formats (e.g. IgG).17 Finally, we hypothesize that this motif-specific 

scaffold method should be generalizable to targeting virtually any antigen with a defined motif. 

Since many other PTM-binding motifs exist in nature, these motifs may be similarly designed 

into Abs to generate high-affinity monoclonal reagents capable of detecting other PTMs. 

Ultimately, the rapid in vitro generation of monoclonal anti-PTM antibodies will greatly enhance 

the study of PTMs throughout biology. 
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3.6 Methods 
Vector construction 

We constructed a series of p3 phage display vectors along with compatible protein 

expression vectors (Supplementary Table 2). We modified the human Fab template by Kunkel 

mutagenesis, according to standard protocols37. All restriction enzymes and DNA polymerases 

were purchased from NEB (Ipswich, MA). Oligonucleotides were purchased from IDT and all 

constructs were verified by DNA sequencing (Quintara Biosciences). 

Generation of Phage Libraries 

A humanized Fab in pJK1 with two stop codons within the CDR H2 was used as a 

template for Kunkel mutagenesis with oligonucleotides designed to correct the stop codons and 

introduce the designed mutations at each site17, 37. To make the H2-targeted libraries, we 

generated three libraries in which the codons encoding for the parent H2 sequence (STGGYN) 

was replaced with either i) six random amino acids encoded by NNK (H2 library), ii) seven 

random amino acids encoded by NNK (H2+1 library), or iii) a core set of two or three amino 

acids, which were allowed to be only Gly or Ser, and were flanked on both sides by two random 

amino acids encoded by NNK (GS library). Mutagenic oligonucleotides are listed in 

Supplemental Table 3. The resulting mutagenesis reactions were electroporated and phage 

were produced as previously described17. The final diversities of the H2, H2+1, and GS libraries 

were 6.5 x 109, 1.6 x 1010, and 5.3 x 109, respectively. 

To make the PS Ab libraries, we constructed two scFv templates, which consisted of 

either the pSAb or pSTAb variable light chain linked to the corresponding variable heavy chain 
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by a (Gly4Ser)3 linker and contained two stop codons in the CDR H3. These plasmids were then 

used as templates for Kunkel mutagenesis. The light chain CDR L3 (91L-94L, 96L) and the heavy 

chain CDR H2 (50H, 56H, and 58H) were diversified using degenerate codons designed to mimic 

the natural sequence diversity found at these positions (Supplemental Table 7)17, 38. CDR H3 was 

diversified using three to nine random amino acids (DVK) followed by three terminal residues 

(F/M, A/D, and Y) commonly observed in anti-peptide Abs. For the mutagenesis reactions, L3 

oligonucleotides (P1 and P2) were mixed at a 1:1 molar ratio, H2 oligonucleotides (1, 2, and 3) 

were mixed at a 0.1:1:2 ratio and H3 oligonucleotides (PX.1 and PX.2, where X = CDR length) 

were mixed at a 2:1 ratio. The resulting libraries were produced using Hyperphage39 to enhance 

recovery of rare binders and the final diversities of the pSAb and pSTAb libraries were 3.4 x 1010 

and 2.7 x 1010, respectively.  

Phage Display Selections, ELISAs, and Western blots 

All phage preparations, selections, and ELISAs were performed according to standard 

protocols (Supplemental Methods)17. Western blots with biotinylated scFvs were performed as 

described in Supplemental Methods.  

Protein expression and purification 

Selected Fabs were expressed in a protease-deficient C43 strain40. Expressed Fabs were 

purified from total cell lysates by Protein A, ion exchange, and gel filtration chromatography as 

previously described17, 38. Fabs were stored at 4oC for short-term analysis or flash frozen in 10% 

glycerol for storage at -80oC. ScFv-rFc constructs were transiently transfected into 293T cells and 

purified from the media using Protein A chromatography. Biotinylated scFvs contained a C-

terminal biotin acceptor peptide and were co-expressed with BirA to enzymatically biotinylate 

each protein (pJK5). Nonphosphorylated versions of all peptides were fused to the C-terminus of 
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NusA, which contained an N-terminal His6 tag and biotin acceptor peptide. Recombinant 

proteins were purified on a His GraviTrap column (GE Healthcare, Piscataway, NJ) followed by 

monomeric Avidin resin (Thermo Scientific, Rockford, IL) to a final purity of >95%. All 

biotinylated peptides were purchased from Elim Biopharmaceuticals (Hayward, CA) or 

Peptibody, Inc. (Charlotte, NC). 

Biacore analysis 

Surface plasmon resonance data was measured on a Biacore model 4000 (Biacore, 

Uppsala, Sweden). All proteins were in TBS containing 0.1mg/mL BSA and 0.01% Tween-20. A 

Biacore CM5 chip was coated with NeutrAvidin at ~3000 RU and biotinylated antigens were 

captured at <100 RU. Serial dilutions of the Fabs were flowed over the immobilized antigens and 

1:1 Langmuir binding models were used to calculate the kon, koff, and KD for each Fab:antigen 

pair. 

Crystalization of peptide:Fab complexes 

Fabs were expressed as described above and concentrated to 10-15 mg/mL in 10 mM 

Tris pH 7.5, 50 mM NaCl. Complexes of the Fab with the corresponding peptide were formed at 

a 1:2 molar ratio of Fab:peptide. Crystals were grown in hanging drop format by mixing 100 nL 

protein solution and 100 nL crystallization solution using a Mosquito nanoliter pipetting system 

(TTP Labtech). Crystals formed within one to two weeks at either 18oC or 4oC. Initially, the 

crystals we obtained for the Fabs bound to the pSer peptides diffracted very weakly. We 

therefore employed a microseeding strategy with a seed stock generated from finely ground 

pSTAb:pThr crystals in 50 uL cryoprotectant solution41. Crystals for the pSAb:pSer and 

pSTAb:pSer complexes were generated by hanging drop vapor diffusion with 300 nL drops 

consisting of 150 nL protein solution, 120 nL reservoir solution, and 30 nL 1:100 dilution of seed 
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stock. All crystals were soaked in cryoprotectant solution and flash frozen in liquid nitrogen. 

Crystallization conditions and cryoprotectant solutions are listed in Supplementary Table 4. 

Diffraction data were collected using the Advanced Light Source beam line 8.3.1 at the 

Lawrence Berkeley National Laboratory (Berkeley, California) with a wavelength of 1.1 Å. The 

data were indexed, integrated, and scaled using ELVES42 or HKL200043. The structure of the 

pSTAb:pThr complex was solved by molecular replacement using Phenix44. The initial search 

model consisted of the variable heavy domain from 3n9g and the variable light domain, 

constant heavy domain, and constant light domain from 2gcy45. The pSTAb Fab structure was 

used as the search model for all other structures. Iterative rounds of model building and 

refinement were carried out with Phenix and Coot46. For isomorphous crystals, the same 

refinement test sets for calculating Rfree were used. Simulated annealing composite omit maps 

calculated using Phenix were used to remove model bias. After two rounds of refinement, 

peptides were built into each model using Coot. Riding hydrogens as implemented in Phenix 

were used in the final stages of refinement for the pSAb:pSer, pSTAb:pSer, and pSTAb:pThr 

complexes. Final refinement statistics can be found in Supplementary Table 5. The final 

coordinates were validated using MolProbity47. The final Ramachandran statistics (% Favored:% 

Outlier) were 98:0.2, 98:0.2, 98:0.2, 98:0, and 97:0.2 for pSAb:pSer, pSTAb:pSer, pSTAb:pThr, 

pYAb:pTyr, and pYAb, respectively. MacPyMol (DeLano Scientific) was used to generate 

structure figures. Electrostatic surfaces were calculated using APBS48 and buried surface areas 

were calculated using CCP449. 
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Accession codes 

The X-ray coordinates have been deposited in the Protein Data Bank for pSAb:pSer, 

pSTAb:pSer, pSTAb:pThr, pYAb:pTyr, and pYAb with accession IDs 4JFZ, 4JG0, 4JG1, 4JFX, and 

4JFY, respectively.  

3.7 Figures 
 

Fab Peptide kon (M-1 s-1) koff (s-1) KD (nM) 

Parent WT Asp 3.38 x 105 0.0032 9.6 

 pSer n.d. n.d. >2000a 

 pThr n.d. n.d. >2000a 

 Ser/Thr n.d. n.d. >2000a 

pSAb pSer 1.0 x 105 0.0075 71 

 pThr 4.7 x 104 0.041 866 

 Ser/Thr n.d. n.d. >2000a 

pSTAb pSer 4.8 x 104 0.0082 172 

 pThr 2.8 x 104 0.0064 232 

 Ser/Thr n.d. n.d. >2000a 

pYAb pTyr 1.9 x 105 0.070 360 

 Tyr 2.84 x 104 0.249 8700 

 

Table 1 

Affinity measurements of Ab scaffolds as determined by Biacore. aNo binding seen by 

competition ELISAs.  Peptide sequences for WT, pSer, pThr, and pTyr are GEKKGNYVVTDH, 

GEKKGNYVVTpSH, GEKKGNYVVTpTH, and GEKKGNYVVTpYA, respectively.  
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Peptide Sequence Number 

of unique 

scFvs 

Number of 

phosphospecific 

scFvsa 

KD (nM)b 

P1: 

Caspase 

3 (S12) 

NTENSVDSKpSIKNLEPKII 5 0 n.d. 

P2: 

RIPK3 

(S227) 

REVELPTEPpSLVYEAV 6 2 102  15 

(P2.A11) 

P3: 

RIPK3 

(S199) 

LFVNVNRKApST ASDVYSF 23 17 250  13 

(P3.28) 

P4: 

Smad2 

(T8) 

MSSILPFpTPPVVKRLL 3 2 78  14 

(P4.B9) 

P5: 

CREB 

(S133) 

RREILSRRPpSYRKILNDL 4 4 151  8 

(P5.G10) 

P6: 

HtrA2 

(S212) 

RRRVRVRLLpSGDTYEAVV 21 21 2430  

150 

(P6.C12) 

P7: Akt1 

(T308) 

KEGIKDGATMKpTF 0 0 n.d. 

P8: Akt1 

(S473) 

ERRPHFPQFpSYSASGTA 1 1 >5000c 

(P8.H9) 

P9: PKC 

 (S695) 

DQNMFRNFpSFMNPGMER 1 0 n.d. 

P10: 

Sgk1 

(S422) 

EAAEAFLGFpSYAPPTDSF 4 4 42.2  2.8 

(P10.D6) 

 

Table 2 

Summary of scFv hits versus ten new phosphopeptide targets. ascFv clones that exhibited >5-

fold higher ELISA signal against phosphorylated peptide compared to unphosphorylated peptide 

(Fig. 4). bAs determined by competition ELISA with scFv-Fc protein (n = 2-3, error values 

represent standard deviation). Clone ID is shown in parentheses. cOnly partial competition was 

observed at the concentrations of peptide used. 
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Figure 1 

Design of phospho-specific Ab scaffold. a) Structure of CDR H2 loop from Ab (PDB ID 1i8i) bound 

to aspartate in peptide antigen31. Each H2 residue contributes to anchoring the peptide (52H and 

52AH), specificity (53H, 55H, and 56H), or conformation (53H). Hydrogen bonds that confer 

specificity are shown in black and anchoring hydrogen bonds are shown in yellow. The peptide is 

shown in magenta and Ab heavy chain is shown in cyan. b) Competition phage ELISAs with 

humanized Fab. Eight different mutant peptides containing D, A, S, T, Y, pS, pT, or pY at position 

8 of the peptide were used as soluble competitors to inhibit Fab-phage binding to the 

immobilized wild-type peptide (KGNYVVTDH) (n=3, error bars represent standard deviation). 

Strong competition was observed for the wild-type peptide (green line), whereas no 

competition was observed for the S, T, A, or Y peptides (dashed lines) indicating that D is a hot-

spot residue. Strikingly, the Fab binds to phosphorylated species as weak competition was 
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observed for the pSer and pThr peptides (orange and blue solid lines, respectively). c) 

Representative pooled phage ELISAs from selection of H2-targeted library against pSer peptide. 

After three rounds of selection, all library pools exhibited higher binding signal to the pSer 

peptide than the parent Fab (dashed line).  
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Figure 2 

Selection and characterization of pSer-, pSer/pThr-, and pTyr-specific scaffolds. Competition 

ELISAs were used to determine the specificity of each Ab scaffold (n=3, error bars represent 

standard deviation). For both pSAb (a) and pSTAb (b), no binding inhibition was observed for the 

unphosphorylated peptides up to 2 M, whereas strong inhibition was observed for the 

phosphorylated peptides. For pYAb (c), weak inhibition was observed at high concentrations of 

the unphosphorylated Tyr peptide, but ~20-fold less pTyr peptide was required to observe the 

same level of inhibition. The sequence frequency logos of the Ab pools from which each lead 

clone was derived are depicted in the bottom panels. GS and H2 indicate the sequence logos 

from GS and H2 libraries selected against pSer and pThr. For the six-residue loops selected for 

pSer or pThr binding, clear enrichment for the G53H and G54H is seen. For the seven-residue 

loops selected for pSer or pThr binding, we observed a replacement of G53H with Pro-Arg, likely 

opening up the binding pocket to better accommodate pThr. All clones that bound pTyr came 

from the six-residue libraries and contain two positively charged amino acids at H55 and H56. 

The H2 sequences of pSAb, pSTAb, and pYAb are ATGGHT, STPRGST, and VTGGRK, respectively.  
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Figure 3 
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X-ray crystal structures of phosphoresidue-binding pocket from pSAb (a), pSTAb (b and c), and 

pYAb (d). a) In pSAb, pSer makes hydrogen bonds with all three specificity residues (G53H, H55H 

and T56H). The anchoring hydrogen bond (yellow) to T52AH is conserved. b and c) In pSTAb, the 

pSer/pThr makes hydrogen bonds with two specificity residues (R53H and S55H), one anchor 

residue (S52H), and the conformation residue (G54H). In both pSTAb structures bound to pSer 

and pThr, R53H forms a bidentate interaction with the phosphate. The anchor residue T52AH is 

flipped compared to pSAb, which allows the backbone carbonyl to make a new anchoring 

hydrogen bond (yellow). d) The pTyr is recognized by a salt bridge with K56H and a hydrophobic 

interaction between V52H and the phenyl ring of the pTyr. However, the phosphate group of 

pTyr does not occupy the phosphate-binding pocket, which is instead occupied by a water 

molecule (shown as red sphere). e) The structures demonstrate two distinct recognition sectors: 

a phosphoresidue-binding pocket (red box) and the peptide-binding “reader” region (black box). 

Key CDRs L3, H2, and H3 are colored yellow, dark blue, and red. Phosphopeptides are shaded 

magenta and the Ab light and heavy chains are shaded green and cyan, respectively. Yellow and 

black dashed lines indicate hydrogen bonds between the phosphoresidue and Ab scaffold.  
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Figure 4 

Generation of novel recombinant phospho-specific (PS) Abs using the pSAb and pSTAb scaffolds. 

a) Representative phage ELISAs of one scFv clone selected against each of the nine 

phosphopeptide targets demonstrates that we selected PS Abs to seven out of the ten targets. 

No hits were observed against P7. To analyze target specificity, we characterized the binding of 

each scFv-phage to ten different phosphopeptides by phage ELISA (n = 2 - 3) (b). Heatmap 

representation of the phage ELISA binding signals for each scFv-phage (vertical axis) against each 

of the ten phosphopeptides (horizontal axis). Strikingly, most of these scFvs bind only to the 

phosphopeptide against which they were selected. For each scFv, signals were normalized to the 

highest overall ELISA signal observed against the ten peptides. The scale goes from zero (black) 
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to one (yellow). c) ScFvs also recognize the phosphorylated protein in Western blots. FLAG-

tagged target proteins were immunoprecipitated from transiently transfected HEK293T. To 

verify PS binding, samples were either dephosphorylated using alkaline phosphatase (AP) or 

treated with buffer only. Membranes were probed with biotinylated scFv (20 g/mL) overnight 

and bound scFv was detected using NeutrAvidin-HRP. Total levels of target protein were 

monitored using anti-FLAG-HRP (Supplemental Methods).  
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3.8 Supplementary Figures 
 

Heavy chain 

residue 

Label Function 

52 Anchor Accepts hydrogen bond from main-chain amide of 56; Donates 

hydrogen bond to carboxylate of Asp 

52A Anchor Hydrogen bonds to main-chain amide of Asp; Potential hydrogen 

bond to phosphate 

53 Specificity Lack of side chain prevents steric clashes with Asp 

54 Conformation Critical L glycine 

55 Specificity Side chain can confer specificity and enhance binding 

56 Specificity Side chain can confer specificity and enhance binding 

 

Supplementary Table 1 

Functional description of H2 loop residues. 

Vector Type Promoter Description 

pJK1 Phagemid with truncated g3 phoA Displayed protein is fused to 

C-terminal domain of g3 

pJK2 Phagemid with full-length g3 phoA Displayed protein is fused to 

full-length domain of g3 

pJK3 Protein expression in bacteria T7 Expression under control of T7 

promoter 

pJK4 Protein expression in bacteria pTac Expression under control of 

pTac promoter 

pJK5 Protein expression in bacteria T7 Expression under control of 

T7; co-expression of BirA 

pJK6 Protein expression in 

mammalian cells 

hEFI-HTLV Mammalian cell expression of 

protein fused to rabbit Fc 

 

Supplementary Table 2 

List of vectors utilized in this study.  
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Protein Condition Cryoprotectant solution Temperature (oC) 

pSAb:pSer 23% PEG1500, 0.1M PCB 

pH 6.8 

Mother liquor with 10% 

PEG200 and 25% PEG1500 

4 

pSTAb:pSer 22% PEG1500, 0.1M PCB 

pH 6.4 

Mother liquor with 10% 

PEG200 and 25% PEG1500 

4 

pSTAb:pThr 25% PEG1500, 0.1M PCB 

pH 6 

Mother liquor with 10% 

PEG200 and 25% PEG1500 

4 

pYAb:pTyr 20% PEG3350, 0.2M KCl Mother liquor with 10% 

PEG200 and 25% PEG3350 

4 

pYAb 25% PEG1500, 0.1M 

MMT pH 4 

Mother liquor with 10% 

PEG200 and 25% PEG1500 

18 

 

Supplementary Table 3   

Crystallization and cryoprotection conditions for Fab complexes.  
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 pSTAb:pThr pSTAb:pSer pSAb:pSer pYAb:pTyr pYAb 

Data collection      

Space group P 21 21 21 P 21 21 21 P 21 21 21 P 32 2 1 P 32 2 1 

Cell dimensions        

    a, b, c (Å) 43.81, 95.59, 

119.82 

43.95, 

95.89, 

119.92 

43.5, 

94.87, 

120.58 

152.85, 

152.85, 

85.29 

152.26, 

152.26, 

83.55 

    , ,   ()  90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 120 90, 90, 120 

Resolution (Å) 50 – 1.55 (1.604 

– 1.55) 
74.89  - 

1.81 (1.875  

- 1.81) 

74.56 – 

1.75 (1.813 

– 1.75) 

50 – 1.95 

(2.02 - 

1.95) 

76.13 – 2.63 

(2.724 – 

2.63) 

Rsym or Rmerge 0.065 (0.51) 0.119 (0.67) 0.113 

(0.71) 

0.097 

(0.67) 

0.115 (0.97) 

I / I 15.22 (2.39) 6.14 (1.90) 7.22 (1.90) 9.32 (2.11) 11.61 (1.86) 

Completeness (%) 97.85 (86.93) 99.70 

(99.48) 

99.49 

(99.33) 

99.92 

(99.81) 

99.49 (95.97) 

Redundancy 5.6 (2.9) 3.8 (3.8) 3.9 (3.9) 4.1 (4.1) 7.8 (5.4) 

      

Refinement      

Resolution (Å) 50 – 1.55 74.89  - 

1.81 

74.56 – 

1.75 

50 – 1.95 76.13 – 2.63 

No. reflections 72503 (3659) 46969 

(2418) 

50977 

(2622) 

83503 

(4166) 

33257 (1719) 

Rwork / Rfree (%) 15.1 / 17.4 16.1 / 20.2 15.4 / 19.9 16.3 / 20.2 18.8 / 23.6 

No. atoms      

    Protein 3607 3458 3470 6764 6543 

    Ligand 5 5 5 26 52 

    Water 621 607 675 977 56 

Wilson B-value (Å) 13.33 18.36 15.42 23.38 59.75 

B-factors      

    Protein 18 23 19 32 88.6 

    Water 30.6 33.7 30.7 38.9 68.7 
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R.m.s. deviations      

    Bond lengths (Å) 0.01 0.003 0.01 0.009 0.007 

    Bond angles () 1.35 0.9 1.32 1.2 0.86 

Ramachandran statistics 

(%) 

     

    Favored 98 98 98 98 97 

    Outliers 0.23 0.23 0.24 0 0.24 

1Values in parentheses are for highest-resolution shell. 

2Data was collected from a single crystal for each structure. 

3Outlier residue (Pro52BH) is the same in both structures with excellent density. 

4Outlier residue (Pro149H) is the same in both structures with excellent density in the high resolution 

structure 

Supplementary Table 4 

Data collection and refinement statistics (molecular replacement)  
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Supplementary Figure 1 

Structure of nest motif in non-antibody and antibody scaffolds.    a) Nest motif present in 

barnase50, in which three consecutive main-chain amides contact the carbonyl group from a 

different residue (magenta).  b) Structural alignment of CDR H2 bound to Asp/Glu.  Alignment of 

CDR H2 region (50H-56H) from PDB ID 1i8i29, 1frg51, 2igf52, 2qhr53, 1dqj54, 2nyy55, 3bn956, and 

3ffd57.  All the antibodies contain G54H (indicated by arrow) and make at least two hydrogen 

bonds between the Asp/Glu antigen residue and main-chain NH groups.  Asp and Glu residues 

are colored light green and CDR H2 is colored cyan. c) Alignment of the same CDR H2 region 

bound to sulfate ions from PDB ID 1seq58, 2gsg59, and 3vg060. 
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Supplementary Figure 2 

Biacore traces of phospho-specific Fabs binding to phosphorylated peptides. a) pSAb binding to 

pSer peptide.  b) pSTAb binding to the pSer peptide.  c) pSTAb binding to the pThr peptide.  d) 

pYAb binding to the pTyr peptide.  Black lines represent the raw data and orange lines represent 

the best fit curves obtain from global fitting. 
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Supplementary Figure 3 

Density maps of Fab structures.  Strong electron density in pSAb:pSer (a), pSTAb:pSer (b), 

pSTAb:pThr (c), and pYAb:pTyr (d) complexes was observed for the peptide (top panels Fo-Fc 

maps) and for the phosphoresidue and CDR H2 loop (50H -56H) (bottom panels 2Fo-Fc maps).  

We observed weak density for the N-terminal lysine and C-terminal histidine in each peptide.  

Additionally, we observed good density for the unbound pYAb (e).  Fo-Fc maps were contoured 

to 3 and 2Fo-Fc maps were contoured to 1.25.  The heavy chains are shaded cyan and the 

light chains are shaded green.  Fo-Fc mesh for the peptide is shaded green.  2Fo-Fc mesh for the 

peptide is shaded dark blue and 2Fo-Fc mesh for CDR H2 is shaded light blue.  The peptides are 

shaded magenta.  
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Supplementary Figure 4 

Structural comparison between the mouse and humanized Fab (a) and the bound and unbound 

Fab (b).  a) Alignment of the mouse Fab with the humanized Fab reveals no major deviations in 

the position of CDRs between the Fabs (c RMSD of 0.78 Å). The light and heavy chains of the 

humanized Fab are colored dark green and dark blue, respectively.  The light and heavy chains of 

the mouse Fab are colored pale green and cyan, respectively. The peptide is shown in pink.  b) 

Comparison of the unbound and bound forms of pYAb reveals no major shifts in CDR position 

upon binding to the peptide (c RMSD of 1.3 Å). The light and heavy chains of the bound Fab are 

colored dark green and dark blue, respectively. The light and heavy chains of the unbound Fab 

are colored pale green and cyan, respectively.   c) List of all contacts between peptide residues, 

not including the phosphoresidue, and antibody.  All of these contacts are conserved among 

pSAb, pSTAb, pYAb, and the parent 1i8i Fab29.  
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Supplementary Figure 5 

Electrostatic surface representations of parent Fab (a), pSAb (b), pSTAb (c), and pYAb (d).  

Analysis of phosphate-binding pocket (indicated by arrow) in CDR H2 reveals larger 

electropositive pocket for all the phospho-specific scaffolds compared to the parent Fab.  

Surfaces were calculated with APBS and generated with MacPymol. 
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Supplementary Figure 6 

Comparison between the natural PS chicken scFv and designed pSTAb structures. For the 

chicken scFv, the heavy chain contributes a majority of the contacts with the phosphopeptide 

(a), whereas for the pSTAb Fab the light and heavy chains contribute a similar number of 

contacts with the phosphopeptide(b). (c) The chicken H2 loop (sequence = TSRGG) binds the 

side of the pThr residue using hydrogen bonds with the T52H side chain and several main chain 

amides. R53H contributes an electrostatic component. (d) Our H2 loop (sequence = STPRGS) 

engulfs more of the pSer residue using multiple hydrogen bonds and a bidentate electrostatic 

interaction with R53H. Phosphopeptides are shown in magenta and the light and heavy chains 

are shown in green and light blue, respectively. 
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Supplementary Figure 7   

Phosphoresidue-binding pocket from natural phosphopeptide-binding domains.  The structures 

highlight several distinct motifs used to bind the phosphoresidues.  In all structures, at least one 

Lys or Arg makes a salt bridge with the phosphoresidue.  The CDR H2 pocket from a scFv isolated 

from an immunized chicken that binds to a pThr-containing peptide is also shown21.  
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Phosphopeptides are shown in magenta and key protein domain side chains and main chains are 

shown in green.  Representative structures for the 14-3-3, WW, BRCA1 C-terminus (BRCT), 

WD40, forkhead-associated (FHA), Src Homology 2 (SH2), and phosphotyrosine-binding (PTB) 

domains are from PDB ID 1ywt61, 1f8a62, 1t1563, 1nex64, 1j4l65, 1a0t66, and 1shc67, respectively. 
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Chapter 4 
Using designability to design a protein binder to hemagglutinin 
 

4.1 Introduction 

The design of protein binders to target specified epitopes is both highly desirable and 

incredibly difficult.  It is highly desirable because so much of the life of the cell relies on protein 

interactions.  If a protein engineer could design a protein to target an arbitrary epitope, she 

could disrupt or stabilize known protein-protein or protein-peptide interactions, tag and 

monitor a particular protein of interest, lock a protein into a particular confirmation, impede a 

conformational change, or even create an artificial antibody which would recruit other proteins 

or cells to its target.  It’s incredibly difficult because of the many degrees of freedom allowed in 

the design process.  After selecting the epitope to be targeted, the designer still has to 

determine a protein backbone scaffold to be used, how to orient that scaffold with regard to the 

protein to be bound, what amino acid sequence will allow the scaffold to take on its given fold 

while also presenting amino acids which will drive the interaction, and finally how those amino 

acid side-chains will be presented. 

One approach to addressing these difficulties is to choose a scaffold based upon a 

known interacting partner, or a homolog to an interacting partner, and then use computational 

repacking tools to improve or alter the binding affinity or specificity (1) (2) (3) (4).  These 

approaches have the benefit of decreasing the search space for finding a binder by starting with 

a scaffold that is known to bind to a similar protein, allowing the researcher to concentrate on 

redesigning the amino acids at the binding interface.   

In many instances, however, there may not be known interacting partners or it may be 

desirable to start with a novel protein framework.  Recently, Fleishman et al. published a 
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protocol that allowed them to design a novel binder with nanomolar affinity to a conserved 

region of the influenza hemagglutinin protein (5).  Their approach begins by designing key “hot-

spot” residues that will provide a significant portion of the driving force for the interaction.  

They then search through a database of small, easily expressed proteins to identify members 

that can be oriented in such a way as to accommodate these hot-spots while also offering a 

degree of surface complementarity to the binding target.  Hot-spot residues were then 

incorporated into compatible scaffolds, and additional scaffold residues were redesigned to be 

more compatible with the new binding interface.  Of eighty eight designs selected for testing in 

a yeast-display assay, they were able to identify two modest binders (one with a Kd of 200 nM 

and the other weaker than their quantification limit), which were then strengthened to the 

nanomolar range via affinity maturation.  A somewhat similar approach of “hot-spot” centric 

design was used to create a novel protein-protein interface which was matured to have a Kd of 

180 pM (6). 

In the search for appropriate scaffolds upon which to graft these hot-spots, we believe 

insufficient attention is paid to identifying scaffolds which would create interfaces that more 

closely mimic natural protein-protein or protein-peptide interfaces.  While the possible 

geometry of secondary structure packing is virtually infinite, it has been shown that nature 

chooses a limited subset of possible geometrical arrangements in protein design (7) (8) (9) (10) 

(11) (12) (13).  Moreover, many of the common structural motifs regularly seen in nature can 

accommodate a wide variety of amino acid sequences, an observation that has led to these 

structural motifs being called “designable.” (14) (15) These observations – that some structural 

motifs are over-represented in nature and can accommodate a variety of amino acid sequences 

– can be used to focus the search for protein or peptide binder scaffolds.  For instance, Yin et al. 



97 
 

describe the design of a transmembrane peptide which binds two closely related integrins by 

using structures from a database of transmembrane, helix-helix interactions as scaffolds (16).  

After threading the known integrin sequence onto one helix, they then redesigned the other 

helix partner, and were thus able to take advantage of known helix packing geometries favored 

by nature.  Similarly, the concept of designability was used to design a peptide binder to carbon 

nanotubes by using knowledge of preferred coiled-coil geometries to design a scaffold which 

would wrap a carbon nanotube of a given radius (17). 

Here we propose a general strategy of explicitly incorporating designability into the 

design of protein binders.  As a test platform for our approach, we choose to design a peptide or 

protein binder to the same conserved stem region of the influenza hemagglutinin protein which 

Fleishman et al. targeted.   We believe that we will be able to decrease the number of designs 

screened in order to obtain a modest binder by purposefully choosing scaffolds which would 

allow us to recapitulate secondary structure interaction geometries favored by nature. 

4.2 Results 
Overview of design approach 

Our design approach begins with the identification of an epitope to target on the 

protein of interest.  Epitopes can be chosen based upon a wide variety of criteria including: level 

of conservation (18), proximity to an enzymatic active site (19), known structural importance 

(16) (20), role in allosteric modulation (21), interactions with other binders (22), and 

identification by computational tools (23) (24) (25) (26).  Once the epitope is chosen, a subset of 

key residues in that epitope are selected and used as a query to a structural search algorithm 

such as MaDCaT (27) or Suns (28).  The number of residues in the query will vary depending 

upon the requirements of the search tool, but should be sufficient to identify key aspects of the 
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targeted epitope, such as secondary structure present and distance between structural 

elements.  Next, the total number of similar motifs found in a non-redundant set of protein 

structures will give an indication as to how designable that interface is.  If only a few proteins 

(on the order of five results from a database of 2000 chains) are identified that have similar 

motifs, then this interface is not very designable, and other residues within the chosen epitope 

should be queried.  If no alternative subset of residues yields better results, then another 

epitope may need to be selected.  If, on the other hand, dozens, if not hundreds or thousands of 

similar motifs are found in unrelated proteins, then this is a good indicator that the selected 

motif is designable, and the design process should continue. 

Next, the full structures of the matches should be examined with the goal of identifying 

structural elements outside of the matching motif that are interacting partners with the motif.  

For instance, our motif may consist of a beta-strand packing against an alpha-helix.  When 

examining matching motifs, we may observe that frequently there is a second alpha-helix which 

packs against this beta-strand/alpha-helix motif.  In this way we expand our initial epitope motif 

of beta-strand/alpha-helix to include a potential binding partner – the second alpha-helix.  Using 

the matching motifs to align the structures, these potential interacting partners are then placed 

in context of the original protein of interest.  As the potential interacting partners are to be used 

as protein scaffolds upon which we will place amino acids to drive the interaction, we remove all 

side-chains from these structures.  These potential scaffolds are then checked for steric clashes 

with the protein of interest, and are pared back to non-clashing, consecutive residues which are 

close to the desired epitope.  These scaffolds, the segments which interact with our motif 

matches, can then be used to design peptide binders to our epitope, or alternatively we can 

attempt to place these scaffolds in the context of larger proteins which are known to be easily 
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expressible.  We describe both approaches in our example binder-design targeting 

hemagglutinin.   

Identifying peptide scaffolds for a hemagglutinin binder 

We have chosen to design a binder to the same conserved stem region of hemagglutinin 

as Fleishman et al., facilitating comparison between the two design approaches.  This region of 

hemagglutinin was originally selected due to its high degree of sequence conservation among all 

hemagglutinin subtypes, its proximity to the fusion peptide of hemagglutinin which is essential 

for influenza virus infectivity (29), and the fact that it is the target of a number of broadly 

neutralizing antibodies (30) (31) (32).   

With our epitope selected, we next chose a subset of residues encompassing an alpha-

helix and a neighboring parallel beta-strand to use as a query to the structural search program 

MaDCaT.  Examining the results of the MaDCaT query, we looked for helical stretches outside of 

the matching segments which would be near our epitope of interest when the matching 

segments were superimposed.  These nearby helices would be potential peptide scaffolds upon 

which to build our hemagglutinin binders.  These potential peptide scaffolds were added to our 

original hemagglutinin query and these modified queries were then submitted to MaDCaT.  The 

matches to the potential scaffold helices were extracted from this second round of MaDCaT 

results, and were used as an ensemble for redesign.  A depiction of our procedure can be seen 

in Figure 1.  From this approach, we chose two high-scoring designs to synthesize and test for 

binding to hemagglutinin (designs chaim_1 and chaim_2 in Table 1). 

In an alternative approach, we modified our search to focus on solely the helical region 

of the hemagglutinin stem. Using an in-house database of helix dimers, we looked for helix pairs 

where the backbone of one helix would overlay closely on the backbone of the hemagglutinin 
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helix, while allowing the partner helix to rest in the hydrophobic groove of our epitope.  From 

helix dimers which had one helix overlay exceptionally well with our hemagglutinin helix, we 

generated ensembles (Figure 2) and computationally redesigned the partner helices to interact 

with hemagglutinin as described in the methods.  We chose three high-scoring designs to 

synthesize and test for binding to hemagglutinin (designs bth_1, bth_2, and bth_3 in Table 1). 

Our five designs can be seen in Figure 3. 

Peptide synthesis of designed binders 

In our first round of synthesis, we incorporated two cysteine residues in each of our 5 

designs.  These cysteine residues, spaced 4 residues apart along the solvent-facing portion of 

each helix, allowed us to attach a chemical cross-linker to encourage helicity (33).  Our cross-

linker, dibromo-m-xylene, has a length approximately equal to the length between a residue at 

(i) and (i+4) on an alpha-helix, thus decreasing the entropic penalty the peptide must pay to 

form a regular secondary structure.  Unfortunately, these peptides proved difficult to purify, and 

their spectra using circular dichroism (CD) spectroscopy lacked minima at 208 nm and 222 nm 

that is the characteristic signature of alpha-helices (Figure 4).  Furthermore, when we tested for 

binding against hemagglutinin using bio-layer interferometry (34), no binding was detected.  We 

hypothesized that the cross-linker increased the hydrophobicity of our peptide, making it prone 

to aggregation.    

We therefore modified two of our designs to remove the cross-linker and used the 

helicity predictor Agadir (35) to help choose the solvent facing residues (Table 1).  In addition, 

we made an additional peptide by solubilizing the interacting helix from one of Fleishman et al.’s 

successful designs in order to test whether the helix removed from its protein context would still 

bind.  These peptides were significantly easier to purify and showed much improved helicity by 
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CD, especially the bth_1 design and the solubilized Fleishman-inspired helix. (Figure 5). Initial 

tests for binding using bio-layer interferometry looked promising as seen in Figure 6a.  From 80 

to 360 seconds, biotinylated hemagglutinin is loaded onto streptavidin covering the sensor of 

the instrument.  From 540 to 720 seconds, our peptides flow across the attached hemagglutinin, 

and the increased intensity of the bth_1 design and the solubilized Fleishman helix indicates a 

change in the thickness of the biological sample, presumably due to the binding of our peptides.  

Note that the overall magnitude is quite small, as would be expected since the size of our 

peptides are miniscule compared to the immobilized hemagglutinin.  Once the peptides stop 

flowing around 720 seconds, the intensity quickly falls back to the level seen prior, indicating 

that our peptides, if binding, have a fairly fast off-rate.  At 900 seconds, we flow a mixture of our 

peptides and a known antibody which targets the same site.  As can be seen, the signal is much 

stronger in this case as the antibody is significantly larger than our peptide.  Also, after the 

antibody and peptides cease to flow at time 1080, the signal does dip slightly but still remains 

much higher than it was before.  This may be indicative of our peptides falling off quickly while 

the antibody continues to bind. 

As a negative control, we next tried flowing our peptides across the instrument without 

first loading hemagglutinin.  Unfortunately, as can be seen in Figure 6b, we get a very similar 

signal, suggesting that the binding we saw in the presence of hemagglutinin was non-specific 

and not due to our designed interaction.   

Phage display of peptide binders 

We anticipate that binding to hemagglutinin may be weak for our starting designs, just 

as it was for the two Fleishman binders.  Therefore, we decided to move our designs into a 

phage display system which allows us to test our initial design for binding and then improve 
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upon any weak interaction through the creation of libraries.  We first modified our bth_1 design 

to include an additional two turns of the alpha-helix, allowing for an additional tryptophan to 

pack in the hydrophobic groove of hemagglutinin.  We cloned DNA coding for this construct, 

bth_2, chaim_1, and the Fleishman-inspired helix into plasmids that contain the gene for the 

phage coat protein pVIII.  The designs were inserted in-frame with the pVIII gene so that we 

could express chimeric proteins that would include our helical designs attached with a flexible 

linker to the pVIII coat protein.   

Phage expressing our chimeric protein were then interrogated using an ELISA assay to 

look for possible binding to hemagglutinin.   For each construct, we made two separate phage 

stocks.  We did not induce expression of our chimeric protein in the first stock, relying on basal 

transcription to supply a low level of pVIII-helix design chimeras, while the majority of pVIII 

protein came from the wild-type sequence found in the supplied helper phage.  The second 

stock was induced with IPTG, and thus we’d expect a higher proportion of pVIII-helix design 

chimeras to be present on each phage.  We then presented each stock of phage to three 

different wells of a 96-well plate.  The first well was coated with hemagglutinin (HA), the second 

well was coated with hemagglutinin and also contained an antibody known to target the same 

epitope we are targeting, and the third well did not have any hemagglutinin present. 

If our peptides successfully target the proper hemagglutinin epitope, then we’d expect 

to see some binding signal in the first well, significantly less binding in the second well as the 

known antibody competes with our binders, and little to no binding in the third well which lacks 

hemagglutinin.  Moreover, we’d expect the binding signal to increase as we move from the 

uninduced phage stock to the induced phage stock, as avidity effects should increase the 

apparent binding strength of any binder.  Looking at the results shown in Figure 7, we can see 
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that both the bth_1 and bth_2 designs, and to a lesser extent the Fleishman inspired helix, show 

a pattern consistent with binding to our desired epitope.  All three designs show a significant 

increase in signal when the well is coated in hemagglutinin (first row) compared to the well 

without hemagglutinin (third row).  Moreover, the presence of an antibody which binds to the 

epitope we are targeting does appear to compete with the binding of our designs as seen by 

comparing the signal in the first and second rows.  Finally, for these three constructs, the 

induced stocks of phage show stronger binding signals than the uninduced, which we’d expect if 

our peptides are involved in the binding interaction, since the induced stocks of phage should 

have higher effective concentrations of our peptide.   Compared to the strength of binding 

observed for the known high-affinity antibody (ninth column), our designed binders appear to 

have much more modest affinity. 

One puzzling observation from our initial ELISA is the observation that the binding 

strength of a pVIII chimera formed from a protein that was not known to bind hemagglutinin 

compares favorably to that of the high-affinity hemagglutinin antibody (tenth column).  

Interestingly, the binding strength appears to be independent of whether the high-affinity 

antibody is present or not (compare first and second rows), suggesting that it binds a different 

epitope of hemagglutinin.  We had originally included this construct as a negative control so that 

we could observe the ELISA signal present for a phage pool without our designed binders.  Since 

this construct fails in that regard, we performed the ELISA a second time, this time focusing on 

the two designs which showed the most promise (bth_1 and bth_2) and included a phage pool 

with a wild-type pVIII gene as a negative control.  These results can be seen in Figure 8.  

Interestingly, in this second ELISA, the differences between the induced and uninduced 

phage stocks disappear, with both the induced and uninduced results more consistent with the 
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induced stock in the previous assay.  Moreover, the background binding to the well without 

hemagglutinin (third row) is higher than in the original assay.  We are unable to explain these 

discrepancies.  Of special note though is that the binding data for the wild-type pVIII follows a 

similar pattern to our two designs.  The wells with hemagglutinin show a stronger binding signal 

than the wells without hemagglutinin (first and third rows), with the wells with hemagglutinin 

and the high-affinity antibody (second row) somewhere in between.  One explanation for these 

results could be that the phage naturally sticks non-specifically to hemagglutinin.  When the 

high-affinity antibody is present, less hemagglutinin surface area is exposed which is available 

for non-specific binding and consequently a drop in ELISA signal is observed. 

Affinity maturation using phage libraries 

As the results for the bth_1 and bth_2 designs looked especially promising in the first 

ELISA, we decided to attempt to affinity mature these using a phage library system.  For each 

design, we made three libraries by introducing amino acid diversity at seven or eight positions in 

either the N-terminal portion, the middle portion, or the C-terminal portion, as seen in Figure 9.  

Each position was diversified by using a mixture of nucleotides that allowed us to keep the 

original, designed amino acid present at a frequency of between 34% and 55% and sample the 

other nineteen amino acids otherwise.  In this way each library should be composed of at least 

0.02% of the initial designed sequence (which for a modest library of size 109 would mean about 

200,000 copies), ensuring that any new binders will need to compete favorably with the original 

weakly binding design to survive rounds of selection.  Moreover, by dividing the constructs into 

thirds, every library member will keep a majority of the designed residues which drive the 

interaction to hemagglutinin, while sampling alternative amino acids at only one or two of the 

sites which make contact to hemagglutinin.  The additional residues diversified in each library 
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are at sites designed to be solvent facing, allowing sequences that stabilize or relax the 

secondary structure in a way which is beneficial to binding to be sampled. 

Each library was subjected to three rounds of selection against hemagglutinin.  In each 

round, the phage library was incubated with magnetic beads with hemagglutinin attached.  The 

beads were then washed, leaving only those phage which bound to the beads or hemagglutinin.  

Binders to just the beads should be rare as the libraries were subjected to a depletion round 

prior to selection as detailed in the methods section.  Bound phage were eluted off of the beads 

and then amplified in a passage through bacteria.  This amplified pool then became the phage 

library for the next round of selection.   

After the final round of selection, we took the libraries obtained after each of the three 

rounds and subjected them to an ELISA assay.  Each of the six libraries were interrogated in 

wells coated with hemagglutinin and wells coated with BSA in place of hemagglutinin.  Ideally, 

what we’d like to see is the binding signal increase in the hemagglutinin coated wells as our 

strong binders come to dominate the library after subsequent rounds of selection.  In the wells 

without hemagglutinin, we’d like to see a steady, low signal, indicating little to no non-specific 

binding by our libraries.  As can be seen in Figure 10 however, the binding signal remained low 

in all wells for all libraries.   In fact, every library sees a drop in signal between the first and 

second round of selection, and most stay the same or drop again between the second and third 

rounds.  Moreover, the signal for most libraries is remarkably similar for the wells coated with 

hemagglutinin and the wells coated with BSA.  Rather than selecting a few specific, strong 

binders to hemagglutinin, it appears that our libraries consisted of weak, non-specific binders.  

This result unfortunately is consistent with our second ELISA performed on the initial designs 

(Figure 8) where the binding signal for our two designs was on par with the signal obtained from 
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phage with the wild-type pVIII gene, indicating a general trend of weak, non-specific binding for 

our phage. 

Placing helical designs onto protein scaffolds 

If our designed peptides bind hemagglutinin, we believe that the interaction is too weak 

for us to detect or to use as a starting point in our selection experiments.   We note that the 

Fleishman-inspired helix, removed from its natural protein context, also fails to bind or binds too 

weakly for us to detect despite showing strong evidence of helicity (Figure 5) and maintaining 

the same key hot-spot residues from Fleishman’s initial design and mutations found through the 

affinity maturation experiment.  We hypothesize that the addition of a protein scaffold may 

facilitate the development of a binder by stabilizing the secondary structure of the binding 

interface and thus reducing the entropic cost of the binding event.  Moreover, the protein 

scaffold may provide additional contacts which could be used in binding. 

Therefore, we next searched for protein scaffolds upon which we could thread our 

helical peptide binders.  We were interested in scaffolds that were small (< 150 residues), stable, 

and easily expressed in e. coli.  Additionally, we required any protein scaffold to contain a 

surface exposed helix upon which we could thread our peptide designs.  In the end, we chose to 

work with two scaffolds familiar to our lab: a designed thermo-stable version of GB1 (36) which 

consists of 57 residues, and the de novo designed, three-helix bundle 3D (37), consisting of 73 

residues.   For our first round of experiments, we have decided to concentrate on the designed 

peptide bth_1.  We threaded this helix onto all possible registries of the helices present in GB1 

and 3D, and selected two threadings from each scaffold to place into a phage display system.  

These four threadings, seen in Figure 11, were chosen because they avoided obvious clashes 
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between the scaffold and hemagglutinin and were able to accommodate the majority of the 

bth_1 peptide.   

We inserted DNA coding for our new constructs in-frame with the gene coding for the 

pVIII phage coat protein as before.  However, this time in addition to our construct, we also 

attached a FLAG-tag peptide sequence to the terminus of our design as seen in Figure 12.  Using 

the FLAG-tag, we are able to monitor the expression level of our chimeric protein by performing 

an ELISA on our phage pool against an immobilized anti-FLAG antibody.  By changing the signal 

peptide at the front of the construct, by altering the length and composition of the linker 

between our construct and the pVIII gene, or by changing whether our construct is placed at the 

N-terminus or C-terminus of the pVIII gene, we hope to be able to transform any low expressing 

constructs into high expressing constructs.  Experiments are currently under way to tune these 

parameters to maximize expression. 

4.3 Conclusions 

The ability to design a de novo binder to a protein epitope of interest is a stringent test 

of our understanding of protein/protein and protein/peptide interactions.  The two successful, 

designed protein binders to hemagglutinin described by Fleishman et al. are evidence that great 

progress has been made in our ability to design specific interactions which drive protein 

association.  However, the failure to detect any binding activity for 86 of the 88 designs tested 

indicates that our current knowledge of protein interactions is incomplete and we need 

improved methods to increase the odds of a computational design being successful.  We believe 

that the concept of “designability” promises to be such a method to increase the odds of 

success.  By explicitly seeking to mimic interaction geometries that nature has repeatedly 
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selected for, we implicitly take advantage of the countless experiments carried out through 

evolution.   

If designability offers such promise, what can account for our failure in harnessing it to 

design a binder to the same hemagglutinin epitope?  We believe at least part of the cause can 

be found in our initial attempts to use a short peptide as our binder.  In addition to the loss in 

entropy due to the packing of side chains at the binding interface, a penalty that must be paid 

by any binder, peptide binders also face an entropic loss due to the decrease in backbone 

flexibility.  In one study, the loss in backbone flexibility cost peptide binders almost half of the 

free energy difference they would have realized had the peptide been completely rigid (38).   

We initially attempted to mitigate the loss in peptide flexibility by adding a chemical 

staple to our peptides, constraining the distance between a pair of residues at i and i+4 to be 

the optimal distance for an alpha-helix.  In this way, we hoped to encourage the peptide to 

naturally adopt a helical structure in solution, and therefore decrease the entropic penalty of 

forming a rigid helix upon binding.  However, the chemical staple proved to significantly 

decrease solubility of our peptide, and we still did not measure strong helix formation in 

solution.  We were more successful in choosing solvent-facing residues which encouraged 

peptide helicity in solution, but we anticipate these helices retain broad flexibility with few 

constraints to limit the distance between the 5’ and 3’ ends.   It is particularly telling that the 

peptide we created based upon one of the Fleishman designs showed strong helicity and yet 

failed to provide detectable binding to hemagglutinin. 

We chose a peptide as our binding scaffold because we wanted to design the “minimal” 

binder to our hemagglutinin epitope.  From our results, we now believe the “minimal” binder 

would involve threading our peptide onto a protein scaffold.  In this way, the loss in entropy is 
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paid for by the energetics involved in the folding of the protein.   Strong constraints are placed 

on the distances between the two ends of the interacting segment by the scaffold in which it is 

placed.  We have adopted this strategy for our designs and are currently involved in testing 

these constructs. 

4.4 Materials and Methods 
Initial scaffold search 

For our computational design of hemagglutinin binders, we used the structure of 

hemagglutinin found in the Fleishman crystal structure PDB ID 3r2x, which comes from the 1918 

H1N1 pandemic strain.  For the bth_1, bth_2, and bth_3 designs, we concentrated on residues 

41-56 of HA2 which form the helix in the hemagglutinin epitope recognized by a number of 

broadly neutralizing antibodies as well as the Fleishman binders.  Using this helix as a query, we 

searched for similar helices in an in-house database of helices culled from a set of non-

redundant PDBs specified by PISCES (38) (file: 

cullpdb_pc25_res1.5_R0.3_d100709_chains1486.1379.txt). Using BioPython's PDB module (39), 

we superimposed the backbone atoms from the hemagglutinin helix of HA2, residues 41-56, 

onto each 16 residue helix segment in our database. We noted each segment which 

superimposed with 0.75 Å or better RMSD to the backbone atoms of hemagglutinin, and looked 

for partner helices interacting with that matching segment in the native PDB structure. We 

saved helix partners that made substantial contact with the hemagglutinin-like helix and that 

would lie in the hydrophobic groove of our hemagglutinin epitope when superimposed. After 

visually inspecting the roughly 300 hits that met our criteria, we chose 14 examples for further 

analysis. Each of these helix/helix interactions was used as a query into a distance-map based 

structural search algorithm similar to MaDCaT (27), which then delivered an ensemble of 
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structures with similar geometries. Using the fixed backbone design program found in Rosetta 

(40), we then redesigned each helix in the ensemble to interact with the hemagglutinin helix 

rather than the native helix which aligned well to hemagglutinin. We examined the best scoring 

designs and chose three designs to synthesize. 

For the chaim_1 and chaim_2 designs, a somewhat modified approach was used.  In 

addition to the hemagglutinin helix formed from residues 41-56 of HA2, we also included the 

beta-strand residues found nearby on HA1 at positions 38-42.  These two fragments were used 

as a query to the structural search program MaDCaT, which returned an ensemble of matches.  

A volume adjacent to the target was extracted from each match, and all segments of at least 10 

contiguous residues within the volume are taken as potential binders. For the sake of peptide 

stability, we further restricted the potential binders to those that were primarily helical. These 

were clustered hierarchically by RMSD, and the best candidates were combined with the original 

target interface and used as the queries for a new round of MaDCaT searches.  The results of 

this second search were used as starting ensembles for redesign. Candidates were chosen for 

redesign based on a combination of factors, including cluster size, ensemble size, and manual 

removal of obviously bad geometries.  

In both cases, we used Rosetta to select the buried residues from a restricted alphabet 

that included only Alanine, Phenylalanine, Isoleucine, Leucine, Methionine, Valine, and 

Tryptophan.  These choices allow for plenty of variation in size and shape to obtain optimal 

packing, while forestalling the possibility that Rosetta would insert an unfavorable polar group 

to satisfy a hydrogen bond.  Rosetta was also allowed to optimize the rotamer of any residue on 

HA that was within 6 Å of the predicted position of the binder.  From the top models computed 

by Rosetta, we chose from those predicted to bury at least one aromatic residue in the 
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hydrophobic groove of hemagglutinin, as we believe the burial of a large hydrophobic residue 

will significantly help drive our interaction.  

Initially, the solvent exposed face was designed manually to create helix-stabilizing salt-

bridges between lysines and glutamates, with glutamines filling in the remaining spots to 

maintain charge balance.  In addition, two Cysteine residues were placed four residues apart on 

the solvent-exposed face of each helix to facilitate helix-stabilization via the addition of a 

dibromo-m-xylene cross-linker.   

After encountering solubility issues with our first designs, we used the program Agadir 

to help modify the solvent facing residues of bth_1 and chaim_1 to promote helicity and 

solubility.  We took our two peptide sequences, and at positions designed to be solvent 

exposed, we placed either a glutamic acid, lysine, arginine, histidine, or tyrosine.  At the C-

terminus we placed a glutamine, as this is a known helix-capping residue (35).  These five 

residues are highly soluble and can be useful in stabilizing helical secondary structure.  All 

possible sequences made using these substitutions were fed into Agadir which produces a 

helicity prediction score ranging from 0% to 100%.  We chose the sequences with the highest 

predicted helicity to synthesize – 83% for bth_1 and 57% for chaim_1. 

Peptide synthesis 

All peptides were synthesized at 200 M scale on ChemMatrix Rink Amide resin in a 

Symphony/Multiplex peptide synthesizer using FMOC protected amino acids.  Peptides were 

cleaved using a 20 mL solution of 90% trifluoroacetic acid (TFA), 5% Thioanisole, 3% 1,2-

ethanedithiol (EDT), and 2% anisole at room temperature for two and a half hours.  TFA was 

removed by blowing nitrogen over the mixture for about half an hour, and the peptides were 

then precipitated out in 30 mL of diethyl ether chilled on dry ice.  The peptides were pelleted 
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using centrifugation and the diethyl ether was removed.  Peptides were resuspened in 30 mL of 

diethyl ether and spun down three more times.  After discarding the diethyl ether from this last 

wash, the crude peptides were lyophilized. 

Addition of cross-linkers 

Dibromo-m-xylene was cross-linked to our five initial peptides.  Crude peptide was 

dissolved in 50 mM NH4HCO3 to a concentration of 2 mg/mL and a 1:1 molar equivalent of tris(2-

carboxyethyl)phosphine (TCEP) was added.  The solution was shaken at room temperature for 

an hour.  Three equivalents of dibromo-m-xylene dissolved in dimethylformamide (DMF) with a 

volume 1/10 that of the crude peptide mixture was then added and this solution was shaken for 

2 additional hours.  The reaction was quenched by making the solution slightly acidic through 

the addition of a small amount of 1 M HCl. 

Peptide purification 

Peptides were purified using reverse phase HPLC in a gradient between solvent A (water 

and 0.1% TFA) and B’ (isopropanol, acetonitrile, and water at a 6:3:1 ratio with 0.1% TFA) using a 

C4 column.  Peptide identities were confirmed using matrix-assisted laser desorption/ionization 

(MALDI) mass-spectroscopy. 

Circular dichroism spectroscopy 

Purified peptides were dissolved in 20 mM phosphate buffer with pH 7.2 at 

concentrations in the 50 M to 350 M range.  Spectra were recorded on a JASCO J-810 

spectropolarimeter from 190 nm to 250 nm with band width of 1 nm, 4 second response time, 

and 3 accumulations were averaged. 
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Bio-layer interferometry 

Binding experiments via bio-layer interferometry were carried out in the Ian Wilson lab 

by Cyrille Dreyfus using an Octet instrument produced by ForteBio. 

Creation of phage display constructs 

Single-stranded DNA coding for our peptide designs was ordered from IDT and cloned 

into a plasmid containing the phage pVIII protein using Kunkel mutagenesis as described in (41).  

Proper insertion was verified through sequencing by Elim Biopharm.   

Constructs for our peptides placed on protein scaffolds were assembled into double 

stranded DNA elements from overlapping primers designed by DNAWorks (42).  These double 

stranded DNA elements were inserted into the plasmid containing the pVIII phage gene through 

Gibson cloning similar to the method described in (43).  

A FLAG-tag sequence (DYKDDDDK) was attached to the N-terminus of each of our 

protein scaffolds, by a GGGGS linker.   Currently we are trying a 15mer linker 

(GGGGSTAGSGATTSG) between our protein construct and the pVIII gene. 

Phage stocks were created as described in (41). 

Creation of phage libraries 

Designed peptides were divided into sections of 7 or 8 residues.  Single-stranded DNA 

was ordered to add diversity to each given section in the following manner: 1) overlapping 

regions 5’ and 3’ to the section to be diversified were selected; 2) codons in the regions to be 

diversified were soft-randomized using mixtures of nucleotides at each codon position so that 

the original, designed amino acid would be present roughly 50% of the time while the other 

amino acids would be sampled the remainder of the time, 3) primers including the overlapping 

regions and nucleotide mixtures were ordered from IDT and inserted via Kunkel mutagenesis.   
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The soft-mutagenesis strategy was accomplished by creating 4 mixtures of nucleotides – 

each mixture set one nucleotide to be present at 70% and the remaining nucleotides were 

present at 10%.  In this way, if we originally designed a methionine, we’d replace the ATG codon 

with a codon compose of (70% A, 10% C,T,and G)(70% T, 10% A, C, G) (70% G, 10% A,C,T), which 

would thus have a methionine present 34% of the time, and some other amino acid present the 

other 66% of the time. 

Phage selection procedures 

We used streptavidin MagneSphere beads from ProMega in a Thermo KingFisher 

instrument for our selection experiments.  First, phage libraries were pre-depleted of off-target 

binders to the magnetic beads by incubating 200 L of phage at 1013 phage/mL with magnetic 

beads from 30 L of bead slurry for 2 hours.  After 2 hours, the magnetic beads were removed 

and the now-depleted phage library was used in the following selection procedures. 

60 L of bead slurry and 100 L of TBS + 0.5% BSA + 0.1% Tween was added to a well for 

each library experiment performed.  Beads were transferred to 200 L of phage stock from the 

depletion + 500 nM of biotinylated hemagglutinin, and mixed for 2 hours followed by a 10 

minute pause.  Next, beads were transferred to wells with 200 L PBS + 0.1% Tween and 

washed by mixing for 30 seconds.  The washes were repeated 5 times, each time in a fresh well 

of 200 L PBS + 0.1% Tween.  Finally, the beads were transferred to wells with 200 L of glycine 

at a concentration of 0.1 M with pH 2.2 and mixed for 10 minutes to elute bound phage.  Once 

the beads were removed, the elution reaction was quenched by adding 25 L of 1 M Tris at pH 

11. 

The eluted phage were then used to generate phage for the next round of selection by 

adding the quenched phage stock to 2 mL of XL1 bacteria and shaking for a half hour at 37o C.  
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After half an hour KO7 helper phage were added and this was shaken for an addition hour at 37o 

C at which point this culture was added to 30 mL of 2xYT media with appropriate inducers and 

selectors for overnight expression.  The next morning phage were harvested and the selection 

procedure was repeated. 

ELISA assays 

Nunc Maxisorp 96-well plates from Thermo Scientific were coated with 100 L of 

hemagglutinin at 10 g/mL in PBS buffer.  After shaking overnight at 4o C, wells were emptied 

and any uncoated surfaces were blocked with bovine serum albumin (BSA) by adding 100 L of 

0.5% BSA in PBS and shaking at room temperature for 2 hours.  Control wells without 

hemagglutinin were likewise blocked with BSA.  The PBS + 0.5% BSA solution was removed, and 

wells were washed 4 times with PBS + 0.1% Tween.  Phage particles were resuspended in TBS + 

0.5% BSA + 0.1% Tween at a concentration of 1013 phage/mL, and 100 L was added to each 

well.  In wells that were to be co-incubated with the known, high-affinity, broadly neutralizing 

antibody to hemagglutinin, the antibody FI6, provided by the Ian Wilson lab, was added to the 

TBS + 0.5% BSA + 0.1% Tween solution to give an FI6 concentration of 10 nM.  100 L of phage 

solution was added to each well, and left to shake at room temperature for 2 hours.  After 2 

hours we removed the phage solution, and washed each well 6 times with TBS + 0.1% Tween.  

HRP/Anti-M13 antibody from GE Healthcare was diluted by a factor of 1:5000 into TBS + 0.5% 

BSA + 0.1% Tween solution, and 100 L was added to wells.  This was allowed to shake for 30 

minutes at room temperature, and was then removed.  Each well was washed 2 times with PBS 

+ 0.1% Tween followed by 2 times with PBS only.  A 1:1 mixture of TMB Peroxidase Substrate 

and Peroxidase Substrate B supplied by KPL was made, and 100 L was added to each well.  This 

shook for 5 to 15 minutes at room temperature, and was then quenched by the addition of 100 
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L of 1 M H3PO4.  Endpoint values were read at 450 nm using a SpectraMax M5 Microplate 

reader. 
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4.6 Figures 
 

Design 
Name 

Synthesis with 
cross-linkers 

Synthesis without cross-
linkers 

Phage Display Constructs 

bth_1 LKQWICNFNCKVQE
EL 

LEEWIRRFEEYWRRMQ TEEWIRRFSEYFRRMLEEWR
RN 

bth_2 NKEELNCKLCELFK  NSEELIRRIEELRRL 

bth_3 NEEIKCRLCEMWR   

chaim_1 AQELLCKWECQAKQ
L 

ALDLLRRWEEEARRLQ ALDLLRRWEEEARRL 

chaim_2 QQFLCEFECWAKK
M 

  

Fleishma
n 

 ESRFDEYMRRMWEEVFR
RQ 

ESRFDEYMRRMWEEVFRRN 

Table 1  

A list of the five hemagglutinin binder designs.  Initially each design contained a pair of cysteine 

residues to allow for the attachment of a chemical cross-linker.  Later, two designs were 

modified to remove this linker, and solvent-facing residues were modified to improve solubility 

and helicity.  We also created a soluble helix based upon the structure of Fleishman et al.  

Residues which are designed to make contact with hemagglutinin are shown in bold, red type. 
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Figure 1 

An overview of MaDCaT-based scaffold search. 

a) Our initial MaDCaT query consists of a portion of the beta-strand and a portion 

of the helix in the conserved stem region of hemagglutinin.   

b) We look through MaDCaT results and look for helices that are not part of 

matching segments which would lie in the hydrophobic groove of hemagglutinin 

when matching segments are superimposed.  These helices can be used as 

backbone scaffolds for our peptide designs. 
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c) We extract these potential backbone scaffolds, and add them to the original 

query to perform a second MaDCaT search. 

d) The ensemble of potential backbone scaffolds is extracted from this second 

MaDCaT search and used in fixed-backbone design.   
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Figure 2  

An overview of the helix-dimer scaffold search: 

a) The hemagglutinin helix we used as a query to search our database. 

b) A cluster of interacting helices that have partners which are structurally similar to the 

query helix. 
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Figure 3 

Our five initial designs for peptide binders to hemagglutinin.  Hemagglutinin is seen in 

surface representation with chain A colored green and chain B colored cyan.  Our peptides 

are shown in cartoon representation with sticks for side-chains.  Residues designed to make 

contact with hemagglutinin are colored red while those designed to be solvent exposed are 

colored yellow.  Designs are a) bth_1, b) bth_2, c) bth_3, d) chaim_1, e) chaim_2. 
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Figure 4 

Circular Dichroism spectra of four of our synthesized peptides with chemical cross-linkers (bth_1 

resisted solubilization and was unable to be characterized): 

a) bth_2 

b) bth_3 

c) chaim_1 

d) chaim_2  
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Figure 5  

Circular dichroism of our three peptides without chemical cross-linkers: 

a) bth_1 

b) chaim_1 

c) Fleishman 
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Figure 6 

Bio-layer interferometry data examining binding between our helical peptide designs and 

hemagglutinin. 

a) During time period 60 to 360, biotinylated hemagglutinin is flowed across the chip and bound 

to streptavidin.  From 540 to 720 our peptides flow across the hemagglutinin bound to the chip.  

The bth_1 peptide and Fleishman-inspired helix appear to bind, although the signal drop soon 

after the peptides stop flowing.  From 900 to 1080 an antibody known to bind hemagglutinin 

flows across the chip along with our peptide designs and binding is detected.  There is a slight 

drop in signal once the flow is stopped, possibly due to our peptides falling off while the 

antibody remains. 
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b) As a control, we flow our peptides across the sensor without hemagglutinin bound (cyan, 

orange, and blue labels).  Similar binding is observed to when hemagglutinin is present, 

indicating peptide binding observed was most likely due to non-specific stickiness of our 

peptides.  
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Figure 7 

ELISA results for our initial helix designs placed in phage.  The first row of wells is coated in 

hemagglutinin (HA), the second row is coated in hemagglutinin and also has a high-affinity 

antibody which targets our desired hemagglutinin epitope, and the third row has no 

hemagglutinin.  Signal strength is given in absorbance units at OD450, and shading is 

proportional to this measure. 
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Figure 8 

ELISA results obtained for designs bth_1 and bth_2 as well as phage displaying the wild-type 

pVIII gene.  Signal strength is given in absorbance units at OD450 and shading is proportional to 

strength as in Figure 7. 
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Figure 9 

Diversification of initial peptide designs for phage display. 

For designs bth_1 (a-c) and bth_2 (d-f) we created three phage libraries where we diversified 

either the N-terminal, middle, or C-terminal amino acids (diversified residues are shown in red). 
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Figure 10 

ELISA results after one, two, and three rounds of selection against hemagglutinin.  The first six 

columns give binding results for the given library in wells coated with hemagglutinin.  The last six 

columns serve as a negative control, giving binding results for the given library in wells coated 

with BSA. 
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Figure 11 

Threading protein scaffolds onto helical peptide designs. 

Two proteins were chosen to be used a scaffolds to hold the designed hemagglutinin binder 

bth_1: a) and b) GB1; c) and d) 3D.  We threaded our designed peptide onto each scaffold in 

two different registries.  The Hemagglutinin molecule is shown in cyan and green, the bth_1 

peptide is shown in magenta, and the protein scaffolds are shown in yellow. 
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Figure 12 

We have designed two possible arrangements for inserting our designed hemagglutinin binder 

into the phage pVIII gene.  a) Binder inserted at C-terminus b) Binder inserted at N-terminus. 

The length and composition of the two linkers as well as the sequence of the signal peptide can 

be modified to increase the yield of properly folding chimeric protein.  We can monitor the 

presence of our chimeric protein on the phage surface through an ELISA assay using anti-FLAG 

antibody. 
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Chapter 5 
Super Codons: Creating optimal sets of nucleotide mixtures for use in gene library 
production 
 

5.1 Abstract 

Protein design typically requires the use of targeted mutagenesis libraries to enhance the 

binding or enzymatic activity of a protein.  Proteins with improved binding or enzymatic 

properties are identified from these libraries through a series of selection steps.  To construct 

the libraries, designers frequently target specific residues for diversification and use degenerate 

codons at these sites.  Degenerate codons are formed by replacing single nucleotides in a codon 

with equimolar mixtures of nucleotides, thus producing a defined distribution of amino acids at 

a given site.  While this technique has proven to be useful, the resulting distributions are often 

non-ideal and thus a system providing a more tailored amino acid distribution at each site would 

create more efficient libraries.  To that end, we have developed a novel set of target amino acid 

distributions which take into account the frequencies of amino acid substitutions observed in 

nature.  Moreover, we develop an algorithm which will calculate four mixtures of nucleotides 

that will best recapitulate these distributions, or any alternative set of distributions.  The 

distributions which can be made from these four mixtures offer substantial benefits over 

traditional degenerate codons including: a) more efficiently exploring sequence space, b) taking 

into account amino acid substitution rates seen in nature, and c) introducing stop codons at 

lower rates than NNK based libraries.   To aid in the adoption of our approach, we have 

developed a website at supercodons.degradolab.org, which allows researchers to easily create 

their own nucleotide mixtures to match: (a) their own amino acid distributions, (b) the amino 

acid distributions from a given multiple alignment, (c) the amino acid distributions observed in 

antibody sequences, and (d) amino acid distributions based on the substitutions seen in nature. 
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5.2 Introduction 

Gene library production has become a favorite tool of protein designers.  Typically, 

designers will start with a design for a new or improved protein, whether based upon intuition, 

homology studies, or computational design, and then create a library of mutants that samples 

sequence space around this initial design.  For instance, one study described designing 88 

potential protein binders to the influenza hemagglutinin protein using the computational 

package Rosetta (1).  These de novo proteins were assayed for binding, revealing two moderate 

binders, and further optimization of these binders required generation of libraries in which the 

designs were randomly mutated.   As library size is limited however, randomizing the entire 

protein lacks the efficiency provided by an approach randomizing fewer, more structurally 

targeted residues.  Antibody researchers frequently use libraries of antibody scaffolds, 

randomizing portions of the complementarity determining regions (CDRs) to produce antibodies 

which bind novel targets (2) (3) (4).  Other groups have used library approaches to create or 

modify enzymatic activity of a protein (5) (6) (7). 

During library production, researchers must decide on a strategy to introduce diversity 

into their initial design.  Small-scale screening methods require small, focused libraries and thus 

researchers may choose to make only a few targeted mutations, relying on intuition to limit the 

number of amino acids tried at a given position, or to perform saturation mutagenesis of all 20 

amino acids at only a very few positions.  However, for large-scale, high-throughput selections, 

researchers can explore a larger section of sequence space, with a total diversity of up to 107 

variants for yeast-display experiments, 109 variants for phage-display experiments, and up to 

1014 variants for ribosome and mRNA display experiments (8).  This strategy allows many more 

positions to be diversified, prompting researchers to use techniques such as degenerate codons 

(9). 
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Degenerate codons use various equimolar mixtures of the four standard nucleotides 

when synthesizing DNA to create defined amino acid distributions.  For example, Table 1 lists a 

few of the more popular degenerate codons in use, as well as commonly used descriptions for 

these degenerate codons (10).  In Figure 1 we show the computed amino acid distributions one 

would expect to observe when using these degenerate codons.  Despite offering some level of 

tunability in specifying what mutations are introduced at a given site, these distributions are still 

sub-optimal for library generation.  For instance, many of the distributions have a majority of 

amino acids represented at a frequency of 10% or lower.  If one were to diversify ten sites using 

these degenerate codons, then less than one out of ten billion sequences would be the original 

designed sequence.  Even with the large maximum diversity level of 109 variants afforded by 

phage display, one would not expect a single copy of the original protein with weak activity to 

be present in the library.  Ideally a small, but non-negligible, fraction of library members would 

carry the sequence for the original protein with weak affinity or activity, and only improved 

mutants would out-compete these during selection.  Moreover, most of the degenerate codons 

preclude certain amino acids altogether.  While the NTT codon may be used to place a 

hydrophobic amino acid at a given position, it is possible that, surprisingly, a charged residue 

greatly improves binding or activity.  Having a distribution which favored hydrophobic amino 

acids while still allowing for the possibility of a charged or hydrophilic amino acid would be 

advantageous. 

There are two main approaches one could use to realize a given amino acid distribution 

at a target site – through the use of trinucleotide phosporamidites, or by creating three 

individual nucleotide mixtures to compose custom degenerate codons.  The first approach 

essentially preforms codons and then mixes these in the proper proportion to match the desired 

amino acid distribution (11) (12).  While this method will ensure a very close match to the 
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desired amino acid distribution, to-date trinucleotide use is not as wide-spread or cost-effective 

as simply making individual nucleotide mixtures.  Alternatively, a set of three nucleotide 

mixtures is calculated which, when used to form a codon, will produce an amino acid 

distribution which closely matches the target distribution.  A number of groups have proposed 

algorithms to calculate these nucleotide mixtures (13) (14) (15) (16).  One shortcoming of these 

approaches is that they create three different nucleotide mixtures for each desired amino acid 

distribution.  Thus, if a researcher wishes to use 10 different amino acid distributions in their 

library, 30 different nucleotide mixtures will be required.  This is time-consuming and costly. 

In this present work, we begin by developing a set of amino acid target distributions that 

address these deficiencies of the standard degenerate codons.  Each target amino acid 

distribution identifies one amino acid as the dominant amino acid, while the rest of each 

distribution is calculated based upon amino acid substitution probabilities found in nature.  By 

using a target distribution which keeps the original, designed amino acid as the dominant amino 

acid, researchers can ensure that some small fraction of the library will contain examples of the 

original design with weak binding or activity.  Moreover, as the other amino acids will attempt 

to be present following the probability of a substitution from this dominant amino acid, a larger 

fraction of the library will be spent sampling sequences more relevant to the original design, 

while still allowing for the unexpected beneficial mutation like the aforementioned hydrophobic 

to charged residue substitution. 

We extend our previous work (16) by using constrained optimization to identify four 

mixtures of nucleotides which will best allow a researcher to produce a set of amino acid 

distributions that match a given set of target distributions.  We then use this procedure to 

generate a set of four nucleotide mixtures that will be able to generate amino acid distributions 

that closely match our derived target distributions.  Additionally, we have developed a web 
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portal at supercodons.degradolab.org, which will allow researchers to generate their own 

nucleotide mixtures to match a) amino acid distributions of their choosing, b) amino acid 

distributions based on a multiple-alignments and c) amino acid distributions based on observed 

amino acid frequencies in given antibody positions. 

5.3 Results and Discussion 
Development of target amino acid distributions 

A protein engineer will often further optimize the properties of a designed protein using 

degenerate codons to randomize portions of the initial design.  Degenerate codons allow for 

some flexibility in what amino acids will be introduced at a given position.  For instance, as seen 

in Figure 1f, the NTT codon should introduce an equal number of phenylalanine, isoleucine, 

leucine, and valine residues at a given location, while disallowing the other sixteen amino acids.  

The NWW, RVK, and DVT codons on the other hand, will each permit about half of the amino 

acids while disallowing the other half (Figure 1c-e).  Meanwhile, the NNN and NNK codons allow 

for all 20 amino acids, at frequencies between 3% and 10% (Figure 1a-b).  While allowing for 

some tunability with regards to what amino acids get introduced where, we believe the 

distributions allowed by degenerate codons are less than ideal in three distinct ways. 

First, while a number of residues of an initial design may be targeted for diversification, 

often the mutations necessary to enhance binding or activity are found in only a few of these 

sites.  For example, in the two hemagglutinin binders designed in (1), only two or three 

mutations were necessary to improve the binding of their initial designs by roughly two orders 

of magnitude.  However, traditional degenerate codons will spend the majority of the library 

exploring sequence space at a significant distance from the original design.  For instance, let us 

imagine choosing ten sites to diversify and using a degenerate codon which will place the 

original, designed amino acid at that site 10% of the time (as many of the degenerate codons 
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will).  Furthermore, let us assume that we create a phage display library of 109 members.  Then, 

using the binomial distribution, we know we can expect only 

(
10
10

) ∗  0.110 ∗ 109 =  0.1 

members to have the sequence of the initial, weak design, 

(
10
9

) ∗ 0.19 ∗ 0.91 ∗  109 = 9 

members to have a single mutation, and 

(
10
8

) ∗ 0.18 ∗ 0.92 ∗ 109 = 364.5 

members to have just two mutations.  In fact, only 0.163% of the library will be composed of 

members with 5 or fewer mutations from the starting sequence.  In other words, a very large 

proportion of the library will be spent sampling sequence space at a considerable distance from 

the initial design, as illustrated by Figure 2a.  Moreover, it is generally assumed that the total 

number of functional mutants left in the library decreases as the number of mutations from the 

initial design increases (17).  It would be preferable if the library sampled each initial, designed 

amino acid at a high frequency, while sampling alternative amino acids at low frequencies. 

Secondly, the distributions offered by the various degenerate codons frequently do not 

match with biophysical intuition.  For instance, as alluded to by the description “charged 

hydrophobic,” the degenerate codon NWW samples heavily from hydrophobic residues like 

leucine, isoleucine and valine, while also sampling charged amino acids like histidine, glutamic 

acid, and aspartic acid.  While a dramatic mutation from a small hydrophobic residue to a large, 

charged residue may on occasion dramatically improve a design, they are also more likely to 

disrupt the protein fold.  It is likely that for most residues chosen for diversification, subtle 

tweaks will be more amenable.  Thus, we propose that distributions that introduce amino acid 

substitutions with frequencies more akin to what is seen in nature would be more successful. 
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Thirdly, as shown in Figure 1c-f, many of the degenerate codons permit some subset of 

the amino acids while completely omitting another subset.  While many favorable mutations 

may be fairly conservative in nature, it is also true that some very beneficial mutations will be 

completely unexpected.  For instance, one group was able to improve the catalytic efficiency of 

a computationally designed Kemp eliminase over 100 fold with four mutations (18).  While two 

mutations were fairly conservative (the hydrophobic to hydrophobic mutation F77I and the 

asparagine to aspartate N224D), two were rather surprising (the hydrophobic to charged I7D 

and the small flexible to large and charged G202R).  Thus, we believe that amino acid 

distributions that allow for at least a modest sampling from each of the twenty amino acids will 

better allow these surprising mutations to be discovered. 

In an attempt to fix these deficiencies, we have developed a set of target amino acid 

distributions.   First, we create 20 separate amino acid distributions where in any given 

distribution, one of the amino acids has a high target frequency (60%).  In this way, we increase 

the fraction of the library which samples sequence space close to the original design, as 

illustrated in Figure 2b.  In fact, when diversifying 10 positions using this method, a full 63.3% of 

the library should have 4 or fewer mutations relative to the initial design, in contrast to the 

0.16% of sequences when the original amino acid is present only 10% of the time. 

We next address the other two identified deficiencies in degenerate codons – namely 

the desire for the introduced mutations to make biophysical sense, while simultaneously not 

precluding any mutations a priori.  To this end, we first define each target distribution by the 

amino acid represented at 60%.  Next, use the original alignment for the popular amino acid 

substitution matrix BLOSUM 62 (19) (the default substitution matrix used in protein BLAST) to 

calculate the frequency of substitution from this majority amino acid to each of the remaining 

19 amino acids.   We then complete the target distribution by allocating the remaining 40% in 
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proportion to these substitution frequencies.  As the aligned sequences used in generating the 

BLOSUM matrices come from local alignments of evolutionarily related proteins, we expect our 

proposed target distributions to better track permissible mutations.  At the same time, because 

every possible amino acid substitution is observed in these alignments, no amino acid will be 

precluded from one of the target distributions.  It should be noted that no attempt is made to 

correct for differences in the natural abundance of the 20 amino acids.  Thus, an amino acid like 

tryptophan which occurs rarely in known proteins (20), will likewise be a rare substitution in our 

target distributions.  We do this deliberately as we expect designed amino acid frequencies to 

track natural amino acid frequencies. 

The results of these steps can be seen in the 20 target amino acid distributions seen in 

Figure 3 and Supplemental Table 1.  As previously stated, each target distribution selects one 

amino acid to be present at 60%, while the remaining amino acid probabilities follow biophysical 

intuition.  For instance, looking at the distribution which sets valine to 60%, we see that leucine 

and isoleucine are the next most favored amino acids.  This makes sense as all three are 

medium-sized, hydrophobic amino acids.  On the other hand, tryptophan and histidine are the 

least favored amino acids.  Presumably, the fact that tryptophan is a relatively rare amino acid 

to start with, and the fact that it is quite large compared to valine, accounts for its low 

frequency.  Histidine’s low frequency can be ascribed to the facts that it too is a rare amino acid, 

and it is a large, slightly basic side-chain as opposed to a medium, hydrophobic one.  In the 

target distribution which set glutamic acid to 60%, one finds the next most popular amino acids 

to be the charged amino acids of aspartic acid and lysine, while smaller, hydrophobic amino 

acids are less likely.  Similar patterns can be found in the remaining 18 target distributions. 
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Creating libraries with derived target distributions 

With our target distributions in place, we now turn to the question of how best to 

introduce these distributions into gene libraries. We propose to use mixtures of nucleotides at 

each of the three positions of a codon in an attempt to best match the desired target amino acid 

distributions.  

A number of groups have studied methods to create mixtures of nucleotides that will 

approximate a given target distribution (21) (22) (23) (16).  These methods create three 

nucleotide mixtures for each target amino acid distribution, requiring 3*N different mixtures for 

N target distributions.  Each separate nucleotide mixture is not without cost, however.  Either 

one has to make each separate mixture, or ask for it to be made when ordering the DNA 

construct – a request typically granted at a cost of a couple hundred dollars per mixture.  We 

noted that the four nucleotides of DNA could be combined to make 64 codons which code for 

the 20 amino acids found in proteins.  Likewise, perhaps we could create four mixtures of 

nucleotides, which we refer to as Super Nucleotides, which could then be used to generate 64 

different Super Codons, with each Super Codon producing a different amino acid distribution.  

Our goal is then to find the set of four Super Nucleotides that would allow us to best 

approximate each of our target amino acid distributions.  By limiting ourselves to only four 

nucleotide mixtures, we dramatically decrease the cost and difficulty associated with creating 

gene libraries. 

We frame this as an optimization problem.  The user supplies a set of target 

distributions 

{TargetDist1, TargetDist2, TargetDist3, … , TargetDistN}, 

 where each target distribution is simply: 

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑖 = {%𝐴𝑙𝑎, %𝐴𝑟𝑔, %𝐴𝑠𝑛, … , %𝑉𝑎𝑙} 
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We then want to find the set of four Super Nucleotides, {SNt1, SNt2, SNt3, SNt4} which will allow 

us to best match our target distributions.  Each Super Nucleotide is simply a mixture of the four 

standard nucleotides. 

𝑆𝑁𝑡𝑖 = {%𝐴, %𝐶, %𝐺, %𝑇} 

The set of 4 Super Nucleotides can be used create 64 different Super Codons and their 

corresponding amino acid distributions: 

𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑑𝑜𝑛1 = (𝑆𝑁𝑡1, 𝑆𝑁𝑡1, 𝑆𝑁𝑡1) → 𝐷𝑖𝑠𝑡1 

𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑑𝑜𝑛2 = (𝑆𝑁𝑡1, 𝑆𝑁𝑡1, 𝑆𝑁𝑡2) → 𝐷𝑖𝑠𝑡2 

… 

𝑆𝑢𝑝𝑒𝑟𝐶𝑜𝑑𝑜𝑛64 = (𝑆𝑁𝑡4, 𝑆𝑁𝑡4, 𝑆𝑁𝑡4) → 𝐷𝑖𝑠𝑡64 

We then want to minimize our objective function, which is: 

 ∑ min
1≤𝑗≤64

𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐹𝑢𝑛(𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑖, 𝐷𝑖𝑠𝑡𝑗)

𝑁

𝑖=1

 (1) 

 

where CompareFunction is the function we use to compare how similar two amino acid 

distributions are to one another. 

In our previous work (16) we evaluated a number of functions that could be used to 

compare distributions, and preferred a function which mixed an entropic term with chi-squared 

term as shown below. 

 
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐹𝑢𝑛 =  ∑ 𝑃𝑐𝑎𝑙𝑐(𝑎) ln

𝑃𝑐𝑎𝑙𝑐(𝑎) +  𝜀

𝑃𝑑𝑒𝑠(𝑎) +  𝜀

21

𝑎=1

+ 0.5 [𝑃𝑑𝑒𝑠(𝑎) − 𝑃𝑐𝑎𝑙𝑐(𝑎)]2 

 

(2) 
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The entropic term is asymmetric and has the effect of adding a significant penalty for 

overshooting an amino acid with a small desired probability.  This term has the effect of severely 

penalizing the formation of stop codons, which will have a desired probability of 0.  However, 

there are other low probability amino acids in our distributions which we want to be 

represented for reasons detailed in the previous section.  We found that the use of this 

comparison function resulted in many distributions which precluded the appearance of some of 

these low frequency amino acids.  We therefore turned to a second comparison function which 

had previously looked promising.  

 
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐹𝑢𝑛 =  ∑(1 − cos (|𝑃𝑑𝑒𝑠(𝑎) − 𝑃𝑐𝑎𝑙𝑐(𝑎)|𝜋)

21

𝑎=1

 (3) 

As seen in Figure 4, the penalties rise slowly for small differences, quickly for medium 

difference, and then slowly again for large differences.  This should have the effect of preferring 

many small deviations to one large deviation, decreasing the likelihood of a major deviation for 

a single amino acid.  Note that the penalty is not based on a percentage of the desired 

probability.  In other words, the penalty accrued due to realizing a 2% probability at a given 

position when a 7% probability is desired is the same as realizing a 55% probability when a 

probability of 60% were desired.   Thus as a percentage of the desired probability, the objective 

function will focus on the dominant amino acid in each distribution. 

One potential downside to function 3 is that it does not penalize the introduction of 

stop codons as heavily as the other function.  Each of our distributions sets a target probability 

of 0% to stop codons, so their introduction will still be penalized.  However, we make two slight 

alterations to further limit the occurrence of stop codons.  First, we slightly modify our 

comparison function so that the penalty for stop codons is twice the normal penalty.  Second, 
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we discard any potential distribution which has a stop codon percentage greater than an 

arbitrary threshold, which we set to 10%. 

With our constrained optimization problem defined, we use a Sequential Least Squares 

Programming (SLSQP) package to minimize our objective function, using our previously derived 

twenty amino acid distributions as input.  As output, we receive four Super Nucleotides, shown 

in Table 2, and a list of twenty distributions which can be realized using those Super 

Nucleotides, seen in Figure 3 and Supplemental Table 2.  We have gathered key statistics from 

these distributions in Table 3.   

The first and most notable characteristic to note is how closely we were able to achieve 

the desired probability of 60% for each of the twenty amino acids.  The actual probabilities for 

the main amino acid in each distribution range from 56.5% for tryptophan to 68.9% for valine, 

with an average of 62.2%.  These values represent a range of around -6% to +15% of the 

targeted value, and a mean only 3.7% higher than the ideal target probability.  In Figure 4, we 

compare the regions of sequence space sampled by our proposed distributions and the NNK 

degenerate codon, assuming we create a library which introduces diversity at 10 residues and 

the initial amino acids follow the same distribution as amino acids in naturally occurring proteins 

(24).  Our proposed distributions should generate a library where over 70% is devoted to 

sampling sequences that are 4 mutations or less from the initial design.  On the other hand, the 

NNK library would devote almost 90% of the library to sampling designs that are 9 or 10 

mutations from the original.  Neither library will be able to sample all sequence combinations 

available by randomizing 10 sites, but our approach should spend significantly more time 

sampling more meaningful regions of sequence space by concentrating on sequences closer to 

the original design and more biophysically intuitive substitutions.  This success addresses the 

first deficiency we identified with regards to traditional degenerate codons, ensuring that our 
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library should sample sequence space closer to the original design that has already shown some 

evidence of binding or activity. 

Next, we look at the other 19 minor amino acids in each distribution to see how well we 

were able to match the targets we set based upon the data from substitution matrices.  To 

evaluate this, for each distribution we measured the correlation between the desired 

probabilities for the lower 19 amino acids plus 1 stop codon to the delivered probabilities, as 

seen in Table 3.  Most of the distributions correlate nicely with the desired distributions, with 13 

of the 20 distributions recording correlations between 0.50 and 0.81.  Considering Valine as a 

typical high-scoring distribution, we see that the top three most desired minor amino acids are 

isoleucine, leucine, and alanine.  The Super Codon produced using the Super Nucleotide 

numbers (1, 0, 2) from Table 2 produces a distribution that similarly stresses these amino acids, 

with these three forming the top three delivered minor amino acids.   

To get a better sense of the significance of our correlation values, for each distribution, 

we calculated 10,000 random distributions for the minor amino acids, and calculated correlation 

values between these random distributions and our desired distribution.  For 15 of our 20 

distributions, the correlation value realized by using our Super Codons exceeds 95% of the 

correlation values obtained between the random distributions and the desired distribution.  

However, four distributions (serine, tyrosine, cysteine, and tryptophan) have negative 

correlations, placing them in the bottom half of the correlation values between random 

distributions and the target distribution.  We wondered if these distributions performed poorly 

due to some inherent incompatibility between the desired distribution and our algorithm, or if 

their poor performance was a case of the global optimum for all 20 amino acid distributions 

creating sub-optimal solutions for a few individual distributions.  To investigate this, we used our 

algorithm to target each of the distributions separately so that each distribution had its own set 
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of Super Nucleotides.  The results can be seen in Supplemental Table 3.  Both tyrosine and 

serine were able to significantly improve their correlation values under this more generous 

protocol, with tyrosine going from a correlation of -0.05 to 0.63 and serine going from -0.01 to 

0.45.  However, both cysteine and tryptophan retained poor correlation scores, indicating that 

these distributions may be difficult to match by just using a mixture of nucleotides at each 

codon position.  However, for the vast majority of amino acid distributions, our approach of 

creating four Super Nucleotides was able to create distributions where mutations from an initial 

amino acid closely followed the distribution found substitution matrices. 

The third concern we wanted to address was to make sure each amino acid was 

represented in each distribution.  The lowest probability found in any of our twenty distributions 

is for methionine in both the cysteine and tyrosine distributions, with a probability of 0.0125%.  

While a fairly small percentage, in a very modest phage library of size 107, we would still expect 

methionine to be sampled 1250 times at positions using these Super Codons.  Thus, even the 

least frequent amino acid mutation should be present at over a thousand copies for each 

diversified position in our library. 

Finally, we turn to the presence of stop codons.  As shown in Figure 1, traditional 

degenerate codons are not immune to the introduction of stop codons.  The popular NNK 

degenerate codon for instance will insert a stop codon at a frequency of 3.13% for instance.  If 

one were to create a library using this degenerate codon at 10 positions, a full 27% of the library 

would be wasted by premature stop codons.  Looking at the distributions from our proposed 

Super Codons, we see stop codons will be introduced at frequencies ranging from 0.05% for the 

leucine distribution on up to 8.57% for tryptophan, with an unweighted average of 1.93%.  If we 

weight the various distributions according to how frequently their major, target amino acid 

occurs in the naturally occurring proteins found in UniProt (24), we get an average of 1.38%.  
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This means we would expect only about 13% of our library to be wasted on premature stop 

codons if 10 positions are randomized. 

Extending Super Codons to target alternative distributions 

While we believe the four Super Nucleotides and twenty target distributions we 

propose will work well for most gene libraries, we recognize there may be instances when 

researchers wish to create alternative distributions.  To allow for this, we have created a public 

website at supercodons.degradolab.org which allows researchers to use our algorithm to 

produce four Super Nucleotides targeting their own distributions.  We provide four different 

ways to specify new target distributions. 

BLOSUM-based distributions 

This method will produce distributions similar to our proposed distributions.  However, 

the user is able to specify a percentage other than 60% for each distribution’s target amino acid.  

This allows researchers some latitude in setting how far from the initial, designed sequence they 

would like to sample.  By decreasing the percentage of the original amino acid, they will increase 

the average number of mutations per library member.   In addition, this method also permits 

researchers to specify a subset of amino acid distributions which they care about.  Therefore, if 

a researcher is generating a library targeting ten locations for diversification, it might be 

worthwhile to create distributions only for the ten amino acids diversified rather than all 

twenty.  By decreasing the number of distributions our algorithm is trying to match, it may be 

possible to more closely match those distributions which are important for the experiment at 

hand. 

Antibody mutagenesis 

One popular use of display libraries is to evolve antibodies which target a given epitope.  

Antibodies are composed of a conserved scaffold called the constant region and the variable 

https://d.docs.live.net/924e51ed9452b91e/DeGrado%20Lab%20Misc/supercodons.degradolab.org
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region responsible for target recognition.  The antibody community has collected hundreds of 

thousands of antibody sequences and have shown that even in the variable regions, different 

positions have particular preferences for certain amino acids.  Thus, when randomizing a 

position in a given antibody, it may be useful to avoid sampling a given amino acid if that amino 

acid is almost never seen at that position in any other antibody sequence, while sampling 

frequently observed amino acids more often.  Using standard antibody position naming 

schemes, we allow the user to specify as many positions as she is interested in, and then use the 

position-specific amino acid distribution data curated by abYsis (25) as the target distributions.  

Our algorithm will then generate the best four Super Nucleotides to target those sites as seen in 

Figure 5. 

Custom distributions and multiple-alignments 

 We also allow researchers to simply input their own distributions in comma-separated 

format, or to drop in a set of multiple alignments.  In the case of multiple alignments, our 

website will identify all sites within the alignment that have conservation less than a user 

defined threshold (default value of 95%) and then create distributions based upon the 

frequency of amino acids seen at each position.  This may be useful when taking into account 

evolutionary data or homologous proteins.  One group reported using Rosetta (26) to inform the 

generation of a phage display library by using the sequence profiles of decoys to select 

degenerate codons (27).  These sequences can instead be used directly as input to our server 

which will then attempt to create four Super Nucleotides that can match the distributions seen 

at the variable sites, replacing the impreciseness of the traditional degenerate codons.  

5.4 Conclusions 

The set of twenty amino acid distributions we describe here will be a powerful tool for 

targeted mutagenesis libraries.  Our set of four Super Nucleotides (each Super Nucleotide 
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composed of a mixture of the four standard nucleotides) is a cost effective way for researchers 

to create amino acid distributions that closely mirror our derived distributions.  By keeping one 

amino acid in each distribution at a high percentage of 60%, researchers will be able to create 

libraries which sample sequence space within a few mutations of a starting sequence, rather 

than spending the bulk of the library sampling sequences much further from the starting design, 

which are likely less functional.  Moreover, other amino acids will be sampled at rates 

proportional to amino acid transition frequencies observed in the multiple alignments of related 

proteins which helped create the BLOSUM62 substitution matrix, which we believe should make 

libraries more efficient.  Additionally, no amino acid transition is ever precluded, and thus our 

method can capture surprising mutations such as a hydrophobic to charged amino acid 

mutation, that one may not expect a priori (18).  And finally, our distributions have a lower rate 

of stop codon incorporation than other commonly used degenerate codons (Figure 1 and Figure 

3), ensuring that ~90% of each library actually produces full-length proteins. 

In addition to the public website we have produced, all of our source code is available 

under GPLv2 license at GitHub: https://github.com/godotgildor/SuperCodons.  The command 

line version of our tool is even more customizable than the website, including allowing the user 

to try out different objective functions for minimization and varying the number of Super 

Nucleotides to calculate (not just 4). 

Super Codons will provide a powerful tool to the community of protein engineers, 

allowing researchers to increase the number of directed mutations introduced to their libraries 

while maintaining larger numbers of functional variants and minimizing the number of 

premature stop codons.  By expanding the number of mutants permitted and focusing the area 

of sequence space explored, display libraries will become even more powerful tools, enabling 

proteins with enhanced binding or activity properties to be discovered more readily. 

https://github.com/godotgildor/SuperCodons
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5.5 Methods 
Target distribution derivation 

To build our twenty target distributions, we first set one amino acid to have a desired 

probability of 60%.  We then aimed to split the remaining 40% in such a way as to mirror amino 

acid transition probabilities seen in nature.  We downloaded the original data used to make the 

BLOSUM matrices from ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blosum.tar.Z, and 

looked at the counts given in the blosum62.out file.  That file has a 20 x 20 matrix giving 

weighted counts for each amino acid pair seen in the multiple alignments used to generate 

BLOSUM62.  If we were making the distribution which set valine to 60% probability for example, 

then we would look at the counts in blosum62.out for valine.   We then would ignore the 

identity transition, i.e. the valine to valine cell, and scaled the 19 remaining cells so that the sum 

of their probabilities would = 40%.  In other words, each of the 19 remaining cells would be set 

to: 

𝑝(𝑎𝑎𝑖|𝑉𝑎𝑙) = 𝑐(𝑎𝑎𝑖|𝑉𝑎𝑙) ∗  
40%

∑ 𝑐(𝑎𝑎𝑗|𝑉𝑎𝑙)𝑎𝑎𝑗≠𝑉𝑎𝑙

 

where c(aai | Val) is the weighted count of amino acid aai in the Valine row. 

Super Nucleotide and Super Codon Calculation 

To find the best set of Super Nucleotides that will match our set of distributions, we set 

up the problem as a constrained optimization problem.  First, we define a Super Nucleotide as 

one mixture of the four traditional nucleotides: 

𝑆𝑁𝑡𝑖 = {%𝐴, %𝐶, %𝐺, %𝑇} 

where the percentages of A, C, G, and T sum up to 100% and are all positive.  We then want to 

find the set of N Super Nucleotides that best allow us to approximate our M desired amino acid 

distributions 

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑖 = {%𝐴𝑙𝑎, %𝐴𝑟𝑔, %𝐴𝑠𝑛, … , %𝑉𝑎𝑙} 

ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum/blosum.tar.Z
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and again the percentages sum to 100% and are all positive.  Note, in the work described in our 

paper, N = 4, and M = 20, although our source code leaves these as user defined parameters. 

With N Super Nucleotides, one can make N * N * N = N3 different distributions.  Our 

program will be tasked with minimizing the objective function: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ min
1≤𝑗≤𝑁3

𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑖, 𝐷𝑖𝑠𝑡𝑗)

𝑀

𝑖=1

 

that is, for each of our M target distributions, it will find the one of N3 possible distributions that 

best matches, and sum the CompareFunction values for all M target distributions. 

The function we use to compare our distributions is: 

𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑(1 − cos (|𝑃𝑑𝑒𝑠(𝑎) − 𝑃𝑐𝑎𝑙𝑐(𝑎)|𝜋)

21

𝑎=1

 

To find the best set of Super Nucleotides that minimizes our objective function, we use 

the Sequential Least Squares Programming (SLSQP) minimizer available in SciPy v0.12 (28).  We 

supply a pointer to our objective function and an initial guess for the set of Super Nucleotides, 

and the minimizer then returns a set of Super Nucleotides that is a local minimum of our 

objective function.  Because the final answer depends upon the initial guess, our website 

currently launches seven separate threads, each with a different, random starting set of Super 

Nucleotides, and one set where we set one nucleotide to 70% and the remaining nucleotides to 

10% in each of the four Super Nucleotides.  This last step ensures that we have at least one set 

of Super Nucleotides where each of the four nucleotides is the majority nucleotide in one Super 

Nucleotide.  We then take the best result of the 8 different minimizations as our final answer.  

We have found that increasing the total number of threads does not offer much improvement, 

although we leave that option as a command line switch in our code.   
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Testing significance of correlations 

To test the significance of our correlations between the desired probabilities for the 19 

minor amino acids in a given distribution to the delivered probabilities, we created 10,000 decoy 

distributions by simply drawing a vector of 19 random floating point values from a Dirchlet 

distribution with i = 1 for i=1 to 19.  We then calculated the correlation coefficient between 

each of these decoys and the desired distribution, and then calculated the fraction of these 

values which were less than the correlation between our delivered and the desired probabilities. 
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5.6 Figures 
 

Codon Description 

NNN All 20 amino acids 

NNK All 20 amino acids 

NWW Charged, hydrophobic amino acids 

RVK Charged, hydrophilic amino acids 

DVT Hydrophilic amino acids 

NTT Hydrophobic amino acids 
  

Table 1 

Common degenerate codons and a brief description.  Taken from (10). 

Codes use IUB code where each letter represents an equimolar mixture as follows: N: A/C/T/G; 

K: G/T; R: A/G; V: A/C/G; W: A/T  

 

 

Table 2 

Optimal Super Nucleotide mixtures found to fit our 20 target amino acid distributions.  Each 

Super Nucleotide is simply a mixture of the 4 standard nucleotides.  The last column gives the 

code used by the firm IDT to specify each given mixture when ordering DNA constructs.  

Super 
Nucleotide 
Number 

%A %C %G %T IDT Code 

0 5% 6% 5% 84% (05060584) 

1 6% 7% 82% 5% (06078205) 

2 9% 77% 8% 6% (09770806) 

3 83% 5% 7% 5% (83050705) 
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AA 
Name 

Major 
Amino 
Acid % 

Correlation 
of Minor 
Amino 
Acids 

Correlation 
Significance 

Stop 
Codon % 

Gly 67.2% 0.538 99.5% 0.42% 

Ala 63.1% 0.633 99.9% 0.42% 

Val 68.9% 0.740 100.0% 0.07% 

Leu 65.2% 0.720 100.0% 0.05% 

Ile 64.8% 0.760 100.0% 0.43% 

Met 57.2% 0.752 100.0% 0.24% 

Pro 59.3% 0.437 97.3% 0.14% 

Phe 63.5% 0.806 100.0% 0.63% 

Trp 56.5% -0.190 21.6% 8.57% 

Tyr 62.7% -0.047 42.7% 7.27% 

His 57.5% 0.502 98.7% 0.52% 

Lys 62.0% 0.481 98.6% 4.03% 

Arg 64.0% 0.268 86.9% 0.51% 

Asp 61.3% 0.564 99.5% 0.43% 

Glu 59.9% 0.629 99.8% 3.67% 

Asn 62.0% 0.549 99.4% 0.43% 

Gln 57.5% 0.502 98.8% 4.83% 

Ser 65.0% -0.008 48.6% 1.89% 

Thr 63.9% 0.633 99.9% 0.11% 

Cys 62.0% -0.082 36.2% 3.95% 

 

Table 3 

Summary of realized amino acid distributions using the Super Nucleotides in Table 2.  The first 

column gives the name of the amino acid with a desired probability of 60%.  The second column 

gives the actual probability of that amino acid realized in our distribution.  The third column 

gives the correlation between the desired and realized values for the other 19 amino acids, 

giving an indication as to the fit of the minor amino acids.  The fourth column gives a value for 

the significance of the given correlation, calculated as described in the Methods section.  The 

last column gives the percentage of stop codons present in each of the realized distributions. 
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Figure 1 

Theoretical amino acid distributions of six commonly used degenerate codons. 
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Figure 2 

The expected number of mutations from an initial sequence when randomizing 10 positions 

with  

Blue bars - 10% probability of keeping the initial amino acid at each location  

Orange bars - 60% probability of keeping the initial amino acid at each location 
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Figure 3 

The twenty target amino acid distributions are shown in yellow, while the amino acid 

distributions able to be realized by the four Super Nucleotides in Table 2 are shown in red. 

 

 

Figure 4 

Histograms illustrating what fraction of a library which diversifies 10 residues has the given 

number of mutations relative to the initial designed sequence.   

Blue bars - using the standard NNK degenerate codon 

Orange bars - using our proposed Super Nucleotides. 
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a) 

 

b) 

 

Figure 5 

a) Desired (yellow) and actual (red) distributions for four positions on the CDR H2 

of an antibody.  Desired distributions are based upon the observed frequency of 

each amino acid in nature as reported by abYsis (25). 

b) The four Super Nucleotides that will allow us to create the distributions in a).
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5.7 Supplemental Figures 
Distribution 
Name G A V L I M P F W Y H K R D E N Q S T C Stop 

Cys 2.4% 5.0% 4.3% 4.9% 3.4% 1.2% 1.1% 1.6% 0.5% 1.1% 0.7% 1.6% 1.2% 1.3% 1.2% 1.4% 1.0% 3.3% 2.9% 60.0% 0.0% 

Asp 3.1% 2.7% 1.6% 1.9% 1.5% 0.6% 1.5% 0.9% 0.2% 0.7% 1.2% 3.0% 2.0% 60.0% 6.1% 4.6% 2.0% 3.5% 2.3% 0.5% 0.0% 

Ile 1.1% 2.6% 9.7% 9.2% 60.0% 2.0% 0.8% 2.5% 0.3% 1.1% 0.5% 1.3% 1.0% 1.0% 1.0% 0.8% 0.7% 1.4% 2.2% 0.9% 0.0% 

Ser 3.4% 5.6% 2.1% 2.2% 1.5% 0.8% 1.5% 1.1% 0.3% 0.9% 1.0% 2.8% 2.0% 2.5% 2.6% 2.8% 1.7% 60.0% 4.2% 0.9% 0.0% 

Gln 2.0% 2.9% 1.7% 2.4% 1.3% 1.1% 1.3% 0.8% 0.3% 1.0% 1.6% 4.6% 3.7% 2.4% 5.3% 2.3% 60.0% 2.8% 2.0% 0.5% 0.0% 

Lys 2.4% 3.2% 1.8% 2.3% 1.5% 0.9% 1.5% 0.9% 0.3% 1.0% 1.1% 60.0% 5.9% 2.3% 3.9% 2.3% 2.9% 3.0% 2.2% 0.5% 0.0% 

Trp 2.5% 2.5% 2.2% 4.5% 2.2% 1.2% 0.9% 5.2% 60.0% 5.4% 0.9% 1.7% 1.6% 1.0% 1.6% 1.0% 1.4% 1.8% 1.7% 0.9% 0.0% 

Asn 3.7% 2.6% 1.6% 1.8% 1.3% 0.7% 1.1% 1.0% 0.2% 0.9% 1.9% 3.2% 2.6% 4.9% 2.9% 60.0% 2.0% 4.1% 2.9% 0.6% 0.0% 

Pro 2.8% 4.4% 2.6% 2.9% 2.1% 0.8% 60.0% 1.1% 0.3% 0.9% 1.0% 3.2% 2.0% 2.5% 2.9% 1.8% 1.7% 3.4% 2.8% 0.7% 0.0% 

Thr 2.3% 3.9% 3.8% 3.5% 2.8% 1.1% 1.4% 1.2% 0.3% 1.0% 0.8% 2.4% 1.9% 2.0% 2.1% 2.3% 1.4% 4.9% 60.0% 1.0% 0.0% 

Phe 1.6% 2.2% 3.5% 7.4% 4.2% 1.6% 0.7% 60.0% 1.2% 5.8% 1.1% 1.3% 1.3% 1.0% 1.2% 1.0% 0.7% 1.6% 1.6% 0.7% 0.0% 

Ala 4.4% 60.0% 3.8% 3.4% 2.4% 1.0% 1.6% 1.2% 0.3% 1.0% 0.8% 2.5% 1.8% 1.6% 2.3% 1.5% 1.5% 4.7% 2.8% 1.2% 0.0% 

Gly 60.0% 6.4% 2.0% 2.3% 1.5% 0.8% 1.5% 1.3% 0.4% 0.9% 1.1% 2.8% 1.9% 2.8% 2.1% 3.1% 1.5% 4.2% 2.4% 0.8% 0.0% 

His 2.3% 2.6% 1.5% 2.3% 1.4% 0.9% 1.1% 1.9% 0.4% 3.6% 60.0% 2.8% 2.9% 2.3% 3.2% 3.4% 2.5% 2.6% 1.8% 0.5% 0.0% 

Leu 1.4% 2.9% 6.1% 60.0% 7.4% 3.2% 0.9% 3.5% 0.5% 1.4% 0.6% 1.6% 1.6% 1.0% 1.3% 0.9% 1.0% 1.6% 2.2% 1.0% 0.0% 

Arg 2.0% 2.8% 1.9% 2.9% 1.5% 0.9% 1.1% 1.1% 0.3% 1.1% 1.5% 7.4% 60.0% 1.9% 3.2% 2.3% 2.9% 2.7% 2.1% 0.5% 0.0% 

Met 1.4% 2.6% 4.4% 9.4% 4.8% 60.0% 0.8% 2.3% 0.4% 1.1% 0.7% 1.7% 1.5% 0.9% 1.3% 1.0% 1.4% 1.6% 1.9% 0.7% 0.0% 

Val 1.4% 3.8% 60.0% 7.1% 9.0% 1.7% 0.9% 1.9% 0.3% 1.2% 0.5% 1.5% 1.2% 1.0% 1.3% 0.9% 0.9% 1.8% 2.7% 1.0% 0.0% 

Glu 2.0% 3.1% 1.8% 2.1% 1.3% 0.7% 1.5% 0.9% 0.3% 0.9% 1.4% 4.3% 2.8% 5.2% 60.0% 2.3% 3.7% 3.1% 2.1% 0.4% 0.0% 

Supplemental Table 1 
The twenty target distributions we propose.  Each distribution is named for the amino acid present at 60%.  The remaining 40% is distributed 
proportionally based upon amino acid mutation probabilities from the data used to create the BLOSUM 62 substitution matrix.  
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Distribution 
Name G A V L I M P F W Y H K R D E N Q S T C Stop 

Cys 4.1% 0.4% 0.3% 0.7% 0.2% 0.0% 0.4% 3.8% 3.4% 4.5% 0.3% 0.0% 5.3% 0.3% 0.0% 0.3% 0.0% 9.6% 0.4% 62.0% 3.9% 

Asp 5.7% 4.1% 4.1% 0.4% 0.3% 0.0% 0.4% 0.2% 0.0% 3.7% 5.2% 0.5% 0.5% 61.3% 6.8% 4.5% 0.6% 0.6% 0.3% 0.3% 0.4% 

Ile 0.4% 0.4% 5.9% 8.0% 64.8% 4.9% 0.3% 0.4% 0.0% 0.0% 0.0% 3.7% 4.0% 0.0% 0.3% 0.4% 0.2% 0.7% 5.0% 0.0% 0.4% 

Ser 0.4% 3.9% 0.3% 1.2% 0.3% 0.0% 4.6% 4.2% 0.5% 6.3% 0.4% 0.1% 0.5% 0.4% 0.1% 0.4% 0.1% 65.0% 3.9% 5.6% 1.9% 

Gln 0.6% 0.4% 0.4% 4.1% 0.4% 0.0% 3.9% 0.0% 0.0% 0.5% 6.4% 6.7% 6.0% 0.7% 6.0% 0.7% 57.5% 0.4% 0.5% 0.0% 4.8% 

Lys 0.5% 0.4% 0.4% 0.5% 3.9% 0.3% 0.3% 0.0% 0.0% 0.4% 0.4% 62.0% 5.6% 0.6% 5.2% 6.9% 3.7% 0.8% 4.2% 0.0% 4.0% 

Trp 4.1% 0.4% 0.3% 4.0% 0.0% 0.2% 0.4% 0.5% 56.5% 0.6% 0.0% 0.3% 8.5% 0.0% 0.3% 0.0% 0.3% 6.4% 0.4% 8.3% 8.6% 

Asn 0.5% 0.4% 0.4% 0.3% 3.9% 0.2% 0.3% 0.2% 0.0% 3.7% 3.7% 6.9% 0.9% 5.2% 0.6% 62.0% 0.4% 5.5% 4.2% 0.3% 0.4% 

Pro 0.6% 6.2% 0.5% 4.7% 0.5% 0.0% 59.3% 0.3% 0.0% 0.4% 5.8% 0.1% 6.3% 0.6% 0.1% 0.7% 1.2% 5.2% 6.9% 0.4% 0.1% 

Thr 0.6% 5.4% 0.4% 0.4% 4.6% 0.4% 3.9% 0.2% 0.0% 0.4% 0.4% 1.3% 1.5% 0.5% 0.1% 6.2% 0.1% 9.4% 63.9% 0.3% 0.1% 

Phe 0.3% 0.3% 4.2% 12.1% 4.0% 0.2% 0.4% 63.5% 0.2% 3.8% 0.3% 0.0% 0.3% 0.2% 0.0% 0.2% 0.0% 5.3% 0.3% 3.8% 0.6% 

Ala 6.6% 63.1% 4.9% 0.7% 0.1% 0.3% 5.4% 0.0% 0.3% 0.1% 0.1% 0.5% 1.0% 0.9% 6.5% 0.1% 0.6% 3.9% 4.6% 0.0% 0.4% 

Gly 67.2% 5.7% 4.1% 0.4% 0.3% 0.0% 0.5% 0.2% 0.3% 0.2% 0.3% 0.1% 6.6% 4.1% 0.8% 0.3% 0.1% 4.4% 0.4% 3.4% 0.4% 

His 0.6% 0.4% 0.4% 3.9% 0.4% 0.0% 3.9% 0.3% 0.0% 4.5% 57.5% 0.7% 5.5% 6.0% 0.7% 6.7% 6.4% 0.9% 0.5% 0.4% 0.5% 

Leu 0.4% 0.5% 6.7% 65.2% 7.2% 0.4% 4.6% 4.5% 0.0% 0.3% 3.5% 0.0% 3.9% 0.4% 0.0% 0.4% 0.4% 0.8% 0.5% 0.3% 0.0% 

Arg 5.7% 0.5% 0.4% 0.5% 0.7% 3.4% 0.4% 0.0% 3.4% 0.0% 0.0% 4.4% 64.0% 0.1% 0.4% 0.6% 0.3% 8.5% 5.8% 0.5% 0.5% 

Met 0.4% 0.4% 5.9% 7.9% 12.5% 57.2% 0.3% 0.5% 0.2% 0.0% 0.0% 3.7% 3.9% 0.0% 0.3% 0.5% 0.2% 0.8% 5.0% 0.0% 0.2% 

Val 4.1% 4.9% 68.9% 6.6% 4.6% 0.4% 0.4% 3.5% 0.0% 0.2% 0.3% 0.1% 0.4% 3.4% 0.7% 0.2% 0.1% 0.5% 0.4% 0.2% 0.1% 

Glu 5.7% 4.1% 4.1% 0.6% 0.1% 0.2% 0.4% 0.0% 0.3% 0.5% 0.7% 4.4% 0.9% 8.2% 59.9% 0.6% 5.1% 0.3% 0.3% 0.0% 3.7% 

Tyr 0.4% 0.3% 0.3% 0.7% 0.2% 0.0% 0.3% 3.8% 0.3% 62.7% 4.5% 0.4% 0.5% 3.7% 0.4% 3.7% 0.5% 4.5% 0.3% 5.3% 7.3% 

 

Supplemental Table 2 
The amino acid distributions which best match the desired distributions given in Supplemental Table 1 as found by our algorithm. 
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Distribution 
Name 

G A V L I M P F W Y H K R D E N Q S T C Stop 

Ala 6.4% 60.8% 5.6% 0.7% 0.2% 0.2% 3.8% 0.3% 0.3% 0.4% 0.2% 0.3% 0.7% 3.2% 4.0% 0.2% 0.2% 7.1% 4.6% 0.3% 0.5% 

Arg 4.2% 0.4% 0.5% 2.9% 2.4% 2.2% 2.1% 0.0% 0.3% 0.0% 0.6% 8.4% 61.0% 0.1% 0.9% 0.9% 5.0% 4.1% 3.5% 0.1% 0.4% 

Asn 0.8% 0.5% 0.3% 0.2% 2.3% 0.2% 0.4% 0.1% 0.0% 2.3% 4.5% 5.4% 1.1% 6.8% 0.6% 61.9% 0.4% 7.0% 4.9% 0.2% 0.2% 

Asp 4.9% 4.9% 3.3% 0.2% 0.4% 0.0% 0.3% 0.1% 0.0% 3.0% 3.7% 0.9% 0.4% 60.6% 8.3% 6.7% 0.5% 0.7% 0.5% 0.2% 0.4% 

Cys 6.5% 0.4% 0.6% 0.9% 0.3% 0.0% 0.3% 6.1% 3.3% 4.6% 0.3% 0.0% 5.1% 0.4% 0.0% 0.2% 0.0% 7.1% 0.2% 61.8% 1.7% 

Gln 0.7% 0.5% 0.5% 4.0% 0.1% 0.3% 4.0% 0.0% 0.1% 0.1% 4.6% 6.9% 6.1% 0.6% 7.7% 0.5% 61.0% 0.1% 0.5% 0.0% 1.6% 

Glu 4.1% 4.9% 4.1% 0.4% 0.4% 0.0% 0.5% 0.0% 0.0% 0.1% 0.7% 6.7% 0.8% 7.6% 61.3% 0.8% 6.0% 0.1% 0.5% 0.0% 0.8% 

Gly 60.8% 8.1% 4.1% 0.1% 0.4% 0.2% 0.0% 0.2% 1.6% 0.3% 0.0% 0.6% 4.3% 4.5% 3.6% 0.7% 0.0% 6.1% 1.3% 2.5% 0.6% 

His 0.4% 0.2% 0.4% 5.6% 0.5% 0.0% 3.2% 0.5% 0.0% 6.2% 61.0% 0.4% 4.8% 4.6% 0.3% 5.4% 4.6% 0.7% 0.3% 0.4% 0.5% 

Ile 0.5% 0.5% 10.4% 9.9% 61.0% 2.5% 0.3% 3.1% 0.0% 0.2% 0.2% 1.8% 1.8% 0.3% 0.3% 1.9% 0.2% 1.8% 2.9% 0.1% 0.3% 

Leu 0.3% 0.4% 6.8% 60.8% 8.4% 4.3% 3.0% 4.6% 0.2% 0.3% 1.2% 0.6% 2.8% 0.2% 0.3% 0.3% 2.4% 1.0% 0.8% 0.2% 0.9% 

Lys 0.9% 0.5% 0.5% 0.4% 3.8% 0.4% 0.3% 0.0% 0.0% 0.1% 0.4% 61.1% 8.2% 0.6% 6.6% 5.3% 4.4% 0.8% 4.2% 0.0% 1.6% 

Met 0.4% 0.4% 6.0% 10.7% 6.7% 60.4% 0.0% 1.2% 0.6% 0.1% 0.0% 3.6% 3.6% 0.0% 0.3% 0.4% 0.0% 1.1% 4.0% 0.1% 0.6% 

Phe 0.3% 0.2% 4.1% 9.3% 6.7% 0.7% 0.2% 61.2% 0.4% 6.7% 0.3% 0.1% 0.2% 0.4% 0.0% 0.7% 0.0% 3.7% 0.4% 3.7% 0.7% 

Pro 0.5% 5.5% 0.5% 5.7% 0.4% 0.1% 60.8% 0.2% 0.1% 0.3% 3.0% 0.3% 5.8% 0.3% 0.3% 0.3% 3.2% 5.7% 6.2% 0.2% 0.4% 

Ser 0.7% 7.9% 0.9% 3.5% 0.4% 0.3% 3.2% 3.9% 2.5% 2.1% 0.1% 0.2% 0.5% 0.3% 0.2% 0.2% 0.1% 61.9% 6.3% 3.0% 1.8% 

Thr 0.5% 5.9% 0.8% 0.7% 5.0% 3.2% 3.0% 0.3% 0.1% 0.3% 0.2% 4.3% 2.8% 0.4% 0.4% 3.9% 0.2% 6.8% 60.7% 0.2% 0.4% 

Trp 6.4% 0.5% 0.9% 8.7% 0.1% 0.7% 0.0% 0.7% 63.2% 0.2% 0.0% 0.2% 5.2% 0.0% 0.2% 0.0% 0.0% 5.5% 0.4% 4.8% 2.4% 

Tyr 0.2% 0.3% 0.7% 1.4% 0.6% 0.0% 0.4% 10.3% 0.1% 62.0% 6.1% 0.1% 0.3% 3.8% 0.1% 3.8% 0.2% 4.3% 0.3% 3.2% 1.9% 

Val 2.2% 5.0% 60.5% 8.1% 10.0% 2.6% 0.4% 2.8% 0.0% 0.2% 0.2% 0.5% 0.4% 2.1% 2.2% 0.4% 0.2% 0.7% 1.1% 0.1% 0.3% 

 

Supplemental Table 3 
The best calculated distributions when each distribution was treated separately.   
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AA 
Name 

Natural 
Abundance 

of AA 

Ala 8.25% 

Arg 5.53% 

Asn 4.06% 

Asp 5.45% 

Cys 1.37% 

Gln 3.93% 

Glu 6.75% 

Gly 7.07% 

His 2.27% 

Ile 5.96% 

Leu 9.66% 

Lys 5.84% 

Met 2.42% 

Phe 3.86% 

Pro 4.70% 

Ser 6.57% 

Thr 5.34% 

Trp 1.08% 

Tyr 2.92% 

Val 6.87% 

 

Supplemental Table 4 

Natural abundance of each amino acid in the complete UniProt/Swiss-Prot database per (24). 

  



168 
 

5.8 References 

1. Computational Design of Proteins Targeting the Conserved Stem Region of Influenza 

Hemagglutinin. Fleishman, Sarel J., et al. 2011, Science, pp. 816-821. 

2. High-affinity Human Antibodies from Phage-displayed Synthetic Fab Libraries with a Single 

Framework Scaffold. Lee, Chingwei V., et al. 2004, Journal of Molecular Biology, pp. 1073-1093. 

3. Design and Use of a Phage Display Library. Pini, Alessandro, et al. 34: Journal of Biological 

Chemistry, 1998, Vol. 273. pp 21769-21776. 

4. Nature-inspired design of motif-specific antibody scaffolds. Koerber, JT, et al. s.l. : Nature 

Biotechnology, 2013. pp 916-921. 

5. A general strategy for the evolution of bond-forming enzymes using yeast display. Chen, Irwin, 

Dorr, Brent M. and Liu, David R. 28: Proceedings of the National Academy of the Sciences, 2011, 

Vol. 108. pp 11399-11404. 

6. Mechanism-Based Phage Display Selection of Active-Site Mutants of Human Glutathione 

Transferase A1-1 Catalyzing SNAr Reactions. Hansson, Lars O., Widersten, Mikael and 

Mannervik, Bengt. 37: Biochemistry, 1997, Vol. 36. pp 11252-11260. 

7. A Single Mutation in a Regulatory Protein Produces Evolvable Allosterically Regulated Catalyst 

of Nonnatural Reaction. Moroz, Olesia V., et al. s.l. : Angewandte Chemistry, 2013, Vol. 125. pp 

6246-6249. 

8. In vitro display technologies: novel developments and applications. Amstutz, Patrick, et al. 

s.l. : Current Opinion in Biotechnology, 2001, Vol. 12. pp 400-405. 

9. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 

1984. Cornish-Bowden, A. 13: Nucleic Acids Research, 1985, Vol. 10. pp 3021-3030. 

10. Identifying sepcificity profiles for peptide recognition modules from phage-displayed peptide 

libraries. Tonkikian, R, et al. s.l. : Nature Protocols, 2007, Vol. 2. pp 1368-1386. 

11. Efficient and flexible access to fully protected trinucleotides suitable for DNA synthesis by 

automated phosphoramidite chemistry. Zehl, A, et al. 23: Chemical Communications, 1996. pp 

2677-2678. 

12. Combination of DMT-mononucleotide and Fmoc-trinucleotide phosphoramidites in 

oligonucleotide synthesis affords an automatable codon-level mutagenesis method. Gaytan, P, 

et al. 9: Chemistry & Biology, 1998, Vol. 5. pp 519-527. 

13. Optimizing doped libraries by using genetic algorithms. Tomandl, D., Schober, A. and 

Schwienhorst, A. 1: Journal of Computer-Aided Molecular Design, 1997, Vol. 11. pp 29-38. 

14. Scoring functions for computational algorithms applicable to the design of spiked 

oligonucleotides. Jensen, L.J., et al. s.l. : Nucleic Acids Research, 1998, Vol. 26. pp 697-702. 

15. Combinatorial codons: a computer program to approximate amino acid probabilities with 

biased nucleotide usage. Wolf, E. and Kim, P.S. s.l. : Protein Science, 1999, Vol. 8. pp 680-688. 



169 
 

16. Designing gene libraries from protein profiles for combinatorial protein experiments. Wang, 

W and Saven, J. 21: Nucleic Acids Research, 2002, Vol. 30. pp e120. 

17. Why High-error-rate Random Mutagenesis Libraries are Enriched in Functional and Improved 

Proteins. Drummond, D.A., et al. s.l. : Journal of Molecular Biology, 2005, Vol. 350. pp 806-816. 

18. Kemp elimination catalysts by computational enzyme design. Röthlisberger, D., et al. s.l. : 

Nature, 2008, Vol. 453. pp 190-195. 

19. Amino acid substitution matrices from protein blocks. Henikoff, S. and Henikoff, J.G. 22: 

Proceedings of the National Academy of Sciences, 1992, Vol. 89. pp 10915-10919. 

20. Non-Darwinian Evolution. King, J.L. and Jukes, T.H. 3881: Science, 1969, Vol. 164. pp 788-

798. 

21. Optimal codon randomization via mathematical programming. Nov, Y. and Segev, D. s.l. : 

Journal of Theoretical Biology, 2013, Vol. 335. pp 147-152. 

22. Optimizing doped libraries by using genetic algorithms. Tomandl, D., Schober, A. and 

Schwienhorst, A. s.l. : Journal of Computer-Aided Molecular Design, 1997, Vol. 11. pp 29-38. 

23. Scoring functions for computational algorithms applicable to the design of spiked 

oligonucleotides. Jensen, L. J., et al. 3: Nucleic Acids Research, 1998, Vol. 26. pp 697-702. 

24. UniProtKB/Swiss-Prot protein knowledgebase release 2013_09 statistics. ExPASy. [Online] 

[Cited: October 3, 2013.] http://web.expasy.org/docs/relnotes/relstat.html. 

25. abYsis. [Online] [Cited: September 1, 2013.] http://www.bioinf.org.uk/abysis/index.html. 

26. Practically useful: what the Rosetta protein modeling suite can do for you. Kaufmann, K.W., 

et al. 49: Biochemistry, 2010, Vol. 13. pp 2987-2998. 

27. Engineering a protein–protein interface using a computationally designed library. Guntas, G., 

Purbeck, C. and Kuhlman, B. 45: Proceedings of the National Academy of Sciences, 2010, Vol. 

107. doi: 10.1073/pnas.1006528107. 

28. Eric Jones, Travis Oliphant, Pearu Peterson and others. SciPy: Open Source Scientific Tools 

for Python. [Online] 2001. http://www.scipy.org/. 

29. Cirino, Patrick C., Mayer, Kimberly M. and Umeno, Daisuke. Generating Mutant Libraries 

Using Error-Prone PCR. [book auth.] Frances H. Arnold and George Georgiou. Directed Evolution 

Library Creation. Totowa, New Jersey : Humana Press, 2003. 

30. An efficient one-step site-directed and site-saturation mutagenesis protocol. Zheng, Lei, 

Baumann, Ulrich and Reymond, Jean-Louis. 14: Nucleaic Acids Research, 2004, Vol. 32. pp e115. 

31. Automated design of degenerate codon libraries. Mena, M. A. and Daugherty, P. S. 12: 

Protein Engineering, Design & Selection, 2005, Vol. 18. pp 559-561. 



170 
 

Chapter 6 
A Real-Time All-Atom Structural Search Engine for Proteins 
 

6.1 Abstract 

Protein designers use a wide variety of software tools for de novo design, yet their repertoire 

still lacks a fast and interactive all-atom search engine.  To solve this, we have built the Suns 

program: a real-time, atomic search engine integrated into the PyMOL molecular visualization 

system.  Users build atomic-level structural search queries within PyMOL and receive a stream 

of search results aligned to their query within milliseconds.  This instant feedback cycle enables 

a new “designability”-inspired approach to protein design where the designer searches for and 

interactively incorporates native-like fragments from proven protein structures.  We 

demonstrate the use of Suns to interactively build protein motifs, identify scaffolds compatible 

with hot-spot residues. The official web site and installer are located at 

http://www.degradolab.org/suns/ and the source code is hosted at 

https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), 

https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and 

https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license). 

This chapter has been submitted to PLoS Computational Biology and also appears in the 
dissertation of Gabriel Gonzalez.  Gabriel Gonzalez is the first author, Brett T. Hannigan is a co-
author, and William F. DeGrado is the corresponding author.  I developed the client-side 
implementation of the search program, focused on the importance of interactive design, 
contributed algorithmic insights to the design of the server-side portion, used Suns to analyze the 
hemagglutinin hot-spot residues proposed by Fleishman et al., and contributed portions of the 
text.  Gabriel Gonzalez had the initial idea for the search engine, was chief architect of the search 
algorithm, and wrote the discussion, design, and results sections.  
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6.2 Introduction 

Protein structural bioinformatics rapidly approaches a big data crisis as the last decade 

has witnessed a dramatic increase in protein structure depositions. In 1993 researchers had just 

over 23,000 searchable structures at their disposal in the Protein Data Bank (PDB), while today 

we have over 94,000 [1].  This rapid structural expansion could inform protein design, structure 

determination, and structure prediction by providing numerous examples of native-like 

structural interactions in exquisite detail, but researchers lack high-powered computational 

tools to intelligently explore large structural data sets in detail. 

One of the first popular protein structural search tools developed for this purpose was 

Dali by Holm and Sander [2].  Dali uses distance maps formed by calculating pairwise α-carbon 

distances to form a two-dimensional representation of a three-dimensional protein. Regions of 

similarity between two distance maps correspond to similar substructures in their respective 

proteins.  Holm and Sander used Dali to create the Families of Structurally Similar Proteins 

(FSSP) database [3], which aligns substructures across entries in the Protein Data Bank (PDB) to 

form families and subfamilies of common folds.  Researchers commonly use Dali to compare 

protein folds and infer homology [4-6]. 

The more recent MaDCaT search program [7] also uses α-carbon distance maps to 

search for similar protein backbone arrangements.  However, where Dali uses a heuristic 

approach to detect structural similarity, MaDCaT takes a query backbone structure or motif and 

finds globally optimal structural matches within an entire structural database.  This approach 

makes MaDCaT ideal for finding the best matches to frequently occurring motifs.  These 

“designable” motifs promise to be excellent design scaffolds, and MaDCaT applied this approach 

to design a viral-like protein coat for carbon nanotubes from designable interactions [8]. 
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Both Dali and MaDCaT return results after a several minutes of searching.  For greater 

speed, Shyu et. al. developed ProteinDBS [9] in order to provide the first real-time protein 

backbone search. They use image processing techniques to extract a set of features from α-

carbon distance maps and organize their structural database into a tree, allowing quick traversal 

and parallelism during searches.  These optimizations allow them to return search results nearly 

instantly, but they limit themselves to searching for backbone α-carbons. 

We required an all-atom search engine to guide the protein design process, so that we 

could search for proteins with similar active sites or binding motifs, explore protein scaffolds 

that can host a specific motif, and discover atomic-scale supporting interactions. 

The state of the art for all-atom search is Erebus [10], which permits all-atom rigid 

substructure searches, but this is insufficient for our design purposes because we desired an 

interactive search process.  Several bottle-necks in the Erebus search workflow impede a fluid 

design process, including time-consuming assembly of search queries, long search delays, and a 

web interface for retrieving results. 

A truly interactive search tool must remove every single one of these bottlenecks to 

bring the feedback loop down from minutes to seconds and permit users to rapidly explore 

multiple design alternatives iteratively in atomic detail.  Improved speed and faster feedback 

lets researchers to ask more sophisticated questions, explore structures more intelligently, and 

use limited collaboration time more efficiently. 

The Suns protein search engine makes it easy to search and browse a database of 

protein structures at the atomic level.  To our knowledge, Suns is the first real-time all-atom 

structural search engine and also the first to integrate seamlessly into the popular molecular 

visualization program PyMOL [11], so that researchers can easily click on motifs of interest, click 

search, and view aligned results within a fraction of a second.  We expect Suns to inform and 
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guide protein design, modeling, and structure determination by lowering the entry barrier to 

structural search so that it becomes a staple of every structural biologist’s toolbox rather than a 

tool limited to programmers. 

6.3 Design and Implementation 
Overview 

Our structural search engine greatly resembles a web search engine, even though these 

two types of engines index different types of data: web search engines commonly index linear 

text strings whereas our search engine indexes three-dimensional protein structures.  Despite 

these differences, we still borrow many principles from web search engines [12] to improve 

search speed: 

1. Divide structures into structural “pages” (3-D volumes) analogous to web pages 

2. Divide these “pages” into structural “words” (chemical motifs) analogous to textual 

words 

3. Create a forward index that matches sets of structural words to structural pages 

4. Perform slower and more accurate filters after the fast forward index lookup 

5. Return only as many results as requested to avoid unnecessary computation 

Forward Index 

Web search engines derive much of their speed by preprocessing the data set using a 

forward index that matches words to web pages [12].  The search engine can then tokenize each 

query into words and consult the forward index to rapidly return all pages that contain every 

word in the user’s search query.  Protein search engines can copy this trick, but they must first 

decide what volume size corresponds to a “page” and what chemical motifs correspond to 

“words”. 
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Two opposing considerations constrain the choice of page and word size.  The forward 

index resolves pages solely by their word counts, so larger words and smaller pages lead to 

more unique word counts per page and improves the selectivity of the forward index.  However, 

users prefer the exact opposite: smaller words and larger page sizes increase the power and 

flexibility of user search queries.  Therefore, optimizing a structural search engine requires 

balancing user needs against the efficiency of the forward index. 

We select a compromise suitable for atomic-level search queries: we restrict structural 

pages to cubes 15 Å wide and we define structural words to be connected chemical 

substructures ranging from 2 atoms (a hydroxyl) to 9 atoms (an indole ring) (Figure 1).  Our 

choice of page size assumes that larger structural patterns of interest can be reduced to a 

network of bridging local interactions below the 15 Å length scale.  Similarly, our choice of word 

size assumes that users will accept a modest restriction on search queries to groups of chemical 

motifs instead of groups of atoms.  Like web search engines, we permit searches for multiple 

disconnected words, allowing users to assemble complex queries from these simple chemical 

building blocks. 

Structural words 

We specify structural words using PDB files, which contain the specific residue and atom 

types to match.  For example, one structural word consists of a single PDB file containing the Cα-

Cβ-Cγ that links the phenyl group of phenylalanine to its backbone atoms.  When users search 

for the three-carbons in phenylalanine’s linker, their searches will not match tyrosine’s linker, 

nor will they match three connected ring carbons within a phenylalanine.  This allows the search 

index to optionally resolve motifs that are otherwise chemically identical [13]. 

Structural words may also match more than one protein element, and in those cases we 

use multiple PDB files to specify the structural word: one PDB file per matching chemical motif.  
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For example, one motif we index is a carboxylate, specified using two PDB files we created: one 

for glutamate’s carboxylate and another for aspartate’s carboxylate.  User search queries for 

carboxylates will match either of these two groups. 

The choice of structural words is customizable and for our public-facing server we select 

a default set of substructures appropriate for general-purpose searches (Supplementary Table 

1).  The most important searchable substructure matches the four backbone atoms for any 

protein residue, which permits geometrically exquisite backbone searches that specify all 

backbone atoms and torsion angles.  We partition flexible residues such as lysine and 

methionine into two separate words, and also isolate important chemical moieties into their 

own words, such as imidazole and guanidinium groups.  Some chemical moieties are shared 

between residues, such as the hydroxyl group, which matches serine, threonine, and tyrosine.  

However, every residue except glycine possesses at least one unique structural word so that 

users can restrict searches to a specific residue. 

Database 

Our forward index is formally a record level inverted index that converts sets of words to 

matching pages.  We supplement the forward index with a custom in-memory database that 

stores two pieces of information necessary to complete the search.  First, the database stores 

correspondences between words in the forward index and atoms in each structural page.  

Second, the database also keeps compact representations of every structural page suitable for 

returning as search results 

When the forward index produces a matched page, the database remembers which 

atoms in that page correspond to the words advertised in the forward index.  Sometimes the 

page contains more instances of a given word than the user required, such as when the user 

searches for two peptide bonds, and the page contains five.  The page must try out every valid 
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permutation of words that match the user’s query, and the forward index minimizes the number 

of permutations by prioritizing pages that closely match the minimum required word count. 

Alignment and RMSD 

Suns uses the Kabsch algorithm [14] to rapidly align each permutation to the user’s 

search query.  The Kabsch algorithm requires an exact atom-for-atom correspondence between 

the user’s search query and a candidate motif, and Suns compiles this correspondence from 

precomputed atomic correspondences for each stored motif in the custom database.  After 

alignment, the search engine only returns search results that match the search query within a 

specified root-mean-square deviation (RMSD) cutoff. 

For each result below the RMSD cutoff, Suns aligns the matching page to the search 

query and return the page as the search result.  If a page contains multiple matches Suns aligns 

each match separately and returns them as separate results.  This superimposes every search 

result and context on the original query for ease of visual comparison and downstream post-

processing. 

Streaming results 

The user may dial in the stringency of desired matches by tuning the RMSD cutoff.  The 

search engine will immediately stream any result within this cutoff, which allows the user to 

begin visualizing results before the search has completed, improving interactivity. 

Additionally, the search protocol requires the user to specify the number of desired 

results up front.  While the user may request an unlimited number of results in theory, in 

practice the search clients default to 100 search results, similar to how a web search engine will 

default to 10 search results.  This allows the search engine to stop processing the request after 

supplying the specified number of results, which reduces server load. Also, the search engine 
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may also optionally specify a search timeout to further reduce server load for users that request 

a large number of search results. 

Data set 

The public search engine uses PISCES [15] as the non-redundant protein structure data 

set, selecting a 20% sequence identity, 1.6 Å resolution, and 0.25 R-factor cutoff, which 

currently corresponds to 2058 chains.  The search engine’s available memory limits how many 

structures it can index, and our stress tests on the largest PISCES data set (90% identity, 3.0 Å, 

1.0 R-factor cutoff, 24,218 chains) required 89 GB of memory or 1 GB of memory per 272 

protein chains. 

6.4 Results 
Building motifs 

Suns lets users explore the “designable” space of protein motifs by expanding on small 

initial fragments, such as building a helix N-terminal capping motif beginning from a single 

guanidinium group.  One might begin by searching on the guanidinium fragment from an 

arginine, which recruits a cluster of nearby carboxylates forming a salt bridge with the arginine 

(Figure 2A).  Adding one of these carboxylates to the search query refines the motif further, 

revealing a preferred rotamer for the arginine when interacting with a carboxylic acid (Figure 

2B), and adding a preferred rotamer to the search query crystallizes a complete N-terminal 

capping motif (Figure 2C). 

The large number of close geometric matches to the final search query suggests that 

this is a highly “designable” motif.  Incremental searching allows users to rapidly explore and 

prototype designable native-like interactions like these with very little prior knowledge in 

protein folding or biophysics.  Moreover, a user can discover the motif by gradually refining a 

specification rather than specifying all the necessary interactions up front.  This benefits people 
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who may not even know what designable interactions look like and simply wish to explore what 

options they have available. 

The salt bridge we built this way also matches one of many newly discovered salt 

bridges by Donald et. al (Figure 8 of [16]).  However, we identified this without requiring a 

curated database of salt bridge and without using a specialized algorithm built to detect 

electrostatic pairs.  We also obtain detailed information from the superimposition of results, 

which allows us to visualize the structural variability of this salt bridge motif on a per-atom basis. 

Discovering motifs 

In addition to designing novel motifs, Suns allows users to search for scaffolds which 

contain motifs similar to a given query.  For instance, we were interested in discovering what 

other structures contained “nest” motifs similar to the one used in chapter 3 to develop the 

antibody module that binds phosphate.  We took the starting structure of the peptide bound 

antibody that contained a “nest” motif and chose three consecutive backbone segments to be 

used as a Suns query (Figures 3A and 3B).  The resulting matches not only clustered well on our 

three query backbone segments, but also followed a similar backbone arrangement N-terminal 

to the query, as can be seen in Figure 3C.  In Figure 3D we view the matching structures in 

cartoon representation, and immediately see that our query motif is frequently seen in alpha-

helices, despite the fact that the query itself is just a single loop.  This is a fascinating result 

because it is known that aspartic acid residues are a popular means of capping alpha-helices 

[18], so in essence, the initial antibody structure has a single turn of an alpha-helix and then 

uses the aspartic acid in the bound peptide to “cap” this turn.  Moreover, it is also known that 

phosphate groups can frequently bind near the amino-terminus of alpha-helices [19], providing 

a further explanation for our success in modifying this loop to bind phosphate. 
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Assembling larger fragments 

Users can build tertiary interactions for proteins as well.  To demonstrate this, we 

search for a valine from glucose binding protein and grow that into three small β strands with 

three residues per strand. 

Beginning from an interior valine from glucose-binding protein, we seed the two 

adjacent β strands with highly populated residue clusters on each side corresponding to a valine 

and tyrosine (Figure 4A).  To grow the three β strands in both directions, we search for pairs of 

residues at a time to identify new clusters of residues within the search results that we can 

insert into the sheet (Figure 4B).  The PyMOL search client permits a qualitative inspection of 

residue preference at selected positions by cycling through visualizing each residue type. This 

process not only provides a rough measure of residue preference, but also reveals rotameric 

preference, the kind of detailed information that a sequence logo would not reveal. 

We repeat this process of iteratively searching for pairs of residues at a time and 

incorporating clusters from the search results until we assemble a native-like fragment of a 

sheet where almost every residue originates from a unique protein structure (two disconnected 

threonines were inadvertently drawn from the same structure).  This then provides α-carbon 

coordinates that we feed into the backbone search engine MaDCaT [8], which finds suitable 

scaffolds to incorporate this fragment.  One MaDCaT search result greatly resembles the β sheet 

built using Suns (Figure 4C).  This illustrates how the local search capabilities of the Suns search 

engine complement existing coarse-grained search tools by bridging the gap between the world 

of smaller atomic interactions and the world of larger secondary-structure interactions. 

Connecting hot-spot residues 

Suns can also be used to find scaffolds compatible with specified residues to provide an 

alternative implementation of the hotspot residue approach to design [16].  The user can select 
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the hotspot of interest within PyMOL, search, and find all proteins in the PDB that position the 

given hot spot residues in the specified geometry. 

For example, Suns recapitulates the local backbone of a designed hemagglutinin binder 

[16].   Figure 5A illustrates how searching for fragments of the original hotspot residues reveals 

a prominent cluster of α helices matching the designed protein structure, indicating that the 

secondary structure of the interface could have been predicted solely from designability. 

Not every hotspot search will return a single solution for the backbone.  Sometimes 

searching for disembodied residues will reveal multiple distinct ways to thread the backbone 

between them (Figure 5B). 

6.5 Availability and Future Directions 

We initially built Suns to guide the protein design process, but we are releasing it as a 

general purpose search engine so that others may reuse it for applications we did not previously 

anticipate. 

The Suns plugin for PyMOL is available at www.degradolab.org/suns, which also includes 

a tutorial on how to install and use the library.  The source code for the client is available 

separately at https://github.com/godotgildor/Suns under a BSD license. 

Users can also automate searches using a command line tool, available at 

https://github.com/Gabriel439/suns-cmd under a BSD license. Users who wish to incorporate 

Suns within an automated workflow should use this client instead. 

The source code for the search engine is located at https://github.com/Gabriel439/suns-

search under a GPLv2 license.  Users should report bugs or request new features using the issue 

tracker at https://github.com/Gabriel439/suns-search/issues or by contacting the Suns mailing 

list at suns-search@googlegroups.com. 
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Currently the public search engine only indexes protein structures.  We also plan to add 

support for ligand search queries so that Suns can be used for drug design.  While this paper 

describes a protein-specific application of the search engine, the underlying algorithm can be 

readily generalized to ligands and other macromolecules. 
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6.6 Figures 
 

 
 

Figure 1 - Subdivision of protein structures.   

(A) An interior page highlighted in red from a protein of unknown function (PDB ID = 

2FSQ), illustrating the maximum scale of search queries. 

(B) Example words (chemical motifs) within the same page highlighted in yellow.  

Pages are 15 Å x 15 Å x 15 Å cubes. 
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Figure 2 - Incremental assembly of a motif.  

(A) An initial search for a guanidinium fragment reveals a cluster of nearby carboxylates.  (B) 

Refining the search with one carboxylate from the results reveals a specific linker preference for 

both the aspartate and arginine involved in the salt bridge.  (C) Adding the most common linker 

for arginine and repeating the search reveals that this salt bridge is part of an N-terminal 

capping motif.  Search queries are represented as thick sticks and search results are shown as 

thin lines.  Dashed lines highlight clusters in the search results, which are filtered to show the 

specific residue fragments of interest and neighboring water molecules within 3.0 Å as red 

spheres.  Search parameters and fragments listed in Supplementary Table 2.  
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Figure 3 – Identifying alternative “nest”-like motifs 

(A) The initial antibody structure (cyan) with select backbone atoms of CDR H2 shown in stick 

representation.  The backbone nitrogen atoms are within hydrogen-bonding distance of one of 

the carboxyl oxygens of aspartic acid on the bound ligand (magenta). (B) The Suns query 

segment is highlighted in yellow. (C) Suns results showing matching segments in blue-lines.  

Note not only clustering over the initial query, but also a looser clustering N-terminus to the 

query.  (D) The Suns results shown in cartoon representation reveals that the query segment is 

often found in an alpha-helix.  



185 
 

 

Figure 4 – Building a tertiary interaction.  

(A) Three strands are seeded by searching on a valine, which reveals two nearby clusters of 

valine and tyrosine.  (B) Strands are extended one residue in each direction by searching for 

pairs of residues (colored yellow), yielding clusters of potential inserts (colored green).  (C) The 

final backbone fragment (green) is fed to MadCaT, which identifies multiple compatible 

scaffolds.  One such scaffold (PDB ID=1E54, colored light grey) possesses many exact 

residue/rotamer matches to the assembled fragment (blue highlights) and many close matches 

(yellow highlights) that differ by a related residue (threonine to serine or valine to isoleucine) or 

by varying the rotamer.  
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Figure 5 - Finding backbones compatible with hot spot residues.  

(A) A Suns search at 0.7 Å RMSD cutoff for two hotspot residues previously identified by 

RosettaDock [17] for a hemagglutinin binder [16].  The majority of search results are helices that 

closely match the final designed protein.  The search query is shown in thick green sticks, the 

search result matches are shown as grey α-carbon traces, and the designed hemagglutinin 

binder is shown as a purple α-carbon trace against a blue hemagglutinin surface.  (B) Searching 

for two threonine side chains at 0.6 Å RMSD cutoff reveals two backbone clusters that can 

connect them, one corresponding to an α helix (green) and the other corresponding to a β sheet 

(yellow).  The original search query is shown in thick yellow sticks. 
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6.7 Supplementary Figures 
 

Motif Name Residue and Atom Names 

Alanine Ala(Cα,Cβ) 

Arginine Linker Arg(Cα,Cβ,Cγ,Cδ) 

Asparagine Linker Asn(Cα,Cβ,Cγ) 

Aspartate Linker Asp(Cα,Cβ,Cγ) 

Carboxamide Asn(Cγ,Oδ,Nδ), Gln(Cδ,Oε,Nε) 

Carboxyl Asp(Cγ,Oδ1,Oδ2), Glu(Cδ,Oε1,Oε2) 

Cysteine Cys(Cα,Cβ,Sγ) 

Glutamine Linker Gln(Cα,Cβ,Cγ,Cδ) 

Glutamate Linker Glu(Cα,Cβ,Cγ,Cδ) 

Guanidinium Arg(Cδ,Nε,Cζ,Nη1,Nη2) 

Histidine Linker His(Cα,Cβ,Cγ) 

Hydroxyl Ser(Cβ,Oγ), Thr(Cβ,Oγ), Tyr(Cζ,Oη) 

Imidazole His(Cγ,Cδ,Nδ,Cε,Nε) 

Indole Trp(Cγ,Cδ1,Cδ2,Cε1,Cε2,Nε,Cζ1,Cζ2,Cη) 

Isoleucine Ile(Cα,Cβ,Cγ1,Cγ2,δ) 

Lysine End Lys(Cδ,Cε,Nζ) 
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Lysine Linker Lys(Cα,Cβ,Cγ,Cδ) 

Methionine End Met(Cγ,Sδ,Cε) 

Methionine Linker Met(Cα,Cβ,Cγ) 

Peptide Bond All Residues(Cα,C,N,O) 

Phenylalanine Linker Phe(Cα,Cβ,Cγ) 

Phenyl Phe(Cγ,Cδ1,Cδ2,Cε1,Cε2,Cζ), Tyr(Cγ,Cδ1,Cδ2,Cε1,Cε2,Cζ) 

Proline Ring Pro(Cβ,Cγ,Cδ) 

Serine Linker Ser(Cα,Cβ) 

Threonine Linker Thr(Cα,Cβ,Cγ) 

Tryptophan Linker Trp(Cα,Cβ,Cγ) 

Tyrosine Linker Tyr(Cα,Cβ,Cγ) 

Valine Val(Cα,Cβ,Cγ1,Cγ2) 

 

Supplementary Table 1 - Default Motif Set.   

Default motifs indexed by the public server hosted at suns.degradolab.org.  (Motif Name): The 

common name for the motif.  (Residue and Atom Names): The atom names used to define the 

motif.  Some motifs may match multiple residue types, in which case all matching residues are 

listed with their corresponding atom names.  
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Figure Selection / 
{Search} 

Structure Result ID Chain Residue Atoms RMSD 
Cutoff 
(Å) 

2 1 2GBP N/A A Arg4 Cδ,Nε,Cζ,Nη1,
Nη2 

 

 {1}      0.2 

 2 3A6R 1 A Asp61 Cγ,Oδ1,Oδ2  

 {1,2}      0.2 

 3 3P02 0 A Arg325 Cα,Cβ,Cγ,Cδ  

 {1,2,3}      0.3 

3A 4 2GBP N/A A Val88 Entire 
Residue 

 

 {4}      0.1 

 5 4ASM 0 B Val353 Entire 
Residue 

 

 6 2WUR 0 A Tyr92 Entire 
Residue 

 

3B {4bb,6bb}      0.2 

 7 2JCQ 1 A Thr151 Entire 
Residue 

 

 {4bb,7}      0.2 

 8 2JCQ 0 A Thr149 Entire 
Residue 
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 {7sc,8bb}      0.5 

 9 3B34 0 A Thr37 Entire 
Residue 

 

 {5bb,8sc}      0.5 

 10 3SUU 0 A Asp102 Entire 
Residue 

 

 {6bb,7sc}      0.5 

 11 3D9A 0 H Thr482 Entire 
Residue 

 

 {6bb,8sc}      0.5 

 12 3Q1I 0 A Thr561 Entire 
Residue 

 

4A 13 † N/A B Met503 Cγ,Sδ,Cε  

 14 † N/A B Phe504 Cγ,Cδ1,Cδ2,C
ε1,Cε2,Cζ 

 

 {13,14}      0.7 

4B {7sc,8sc}      0.6 

 

Supplementary Table 2 - Search Parameters for all figures.   

(Figure): The figure and sub-figure the selections and searches correspond to.  (Selection / 

{Search}): No braces indicates a saved selection referenced by searches. Braces indicate a search 

based in terms of previous selections of the form {sel1, sel2, …}.  “sc” indicates only the side-

chain was taken from the previously saved selection and “bb” indicates only the backbone 
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atoms were used.   (Structure): The PDB ID the selection originated from.  (Result ID): The search 

result serial ID number to disambiguate selections where there are multiple results from the 

same PDB ID.  (Chain): Chain the selection originated from.  (Residue): Residue selected.  

(Atoms): Selected atoms.  (RMSD Cutoff): Root-mean-squared deviation cutoff used for a given 

search.  With the exception of initial selections for each figure, all selections are derived from 

results returned from the preceding search query in the table.  †: Structure provided by the 

David Baker laboratory for their hot spot motif for the hemagglutinin binder [16]. 

  



192 
 

6.8 References 

1. (2013) RCSB PDB - Content Growth Report. 

2. Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J 
Mol Biol 233: 123-138. 

3. Holm L, Sander C (1994) The FSSP database of structurally aligned protein fold families. 
Nucleic Acids Res 22: 3600-3609. 

4. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, et al. (1999) X-ray crystallographic 
structure of the Norwalk virus capsid. Science 286: 287-290. 

5. Doolittle JM, Gomez SM (2011) Mapping protein interactions between Dengue virus and its 
human and insect hosts. PLoS Negl Trop Dis 5: e954. 

6. Roy S, Aravind P, Madhurantakam C, Ghosh AK, Sankaranarayanan R, et al. (2009) Crystal 
structure of a fungal protease inhibitor from Antheraea mylitta. J Struct Biol 166: 79-87. 

7. Zhang J, Grigoryan G (2013) Mining tertiary structural motifs for assessment of designability. 
Methods Enzymol 523: 21-40. 

8. Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, et al. (2011) Computational design of 
virus-like protein assemblies on carbon nanotube surfaces. Science 332: 1071-1076. 

9. Shyu CR, Chi PH, Scott G, Xu D (2004) ProteinDBS: a real-time retrieval system for protein 
structure comparison. Nucleic Acids Res 32: W572-575. 

10. Shirvanyants D, Alexandrova AN, Dokholyan NV (2011) Rigid substructure search. 
Bioinformatics 27: 1327-1329. 

11. (2010) The PyMOL Molecular Graphics System. 1.6 ed. 

12. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. 
Computer networks and ISDN systems 30: 107-117. 

13. Chen WW, Shakhnovich EI (2005) Lessons from the design of a novel atomic potential for 
protein folding. Protein science 14: 1741-1752. 

14. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta 
Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 
32: 922-923. 

15. Wang G, Dunbrack RL, Jr. (2003) PISCES: a protein sequence culling server. Bioinformatics 19: 
1589-1591. 

16. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, et al. (2011) Computational 
design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332: 
816-821. 



193 
 

17. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, et al. (2003) Protein–protein 
docking with simultaneous optimization of rigid-body displacement and side-chain 
conformations. Journal of molecular biology 331: 281-299. 

18. Muñoz V,  Serrano L.  (1994) Elucidating the folding parameters of helical peptides using 
empirical parameters. Nature Structural Biology 1: 399-409. 

19. Copley RR, Barton GJ. (1994)  A structural analysis of phosphate and sulphate binding sites in 
proteins. Estimation of propensities for binding and conservation of phosphate binding sites. 
Journal of Molecular Biology 242: 321-329 

 



194 
 

Chapter 7 

Conclusions and Discussion 

7.1 Conclusions and discussion 
 

In this work I have investigated topics associated with the economy of protein structural 

datasets.  Whether datasets are small or large, this means intelligently formulating problems so 

that the utility of the data is maximized.  In chapter 2 we showed how minimal data from 

transmembrane oligomers could be used to accurately predict their structure.  Although the 

number of proteins solved to atomic accuracy continues to increase at an almost geometrical 

pace, transmembrane protein structure determination still lags significantly compared to 

soluble proteins, and techniques such as our which make use of a small set of experimental data 

will continue to be of use.  Recently another group reported impressive results for predicting 

transmembrane structure using simplified models of carbon hydrogen bonds, although their 

procedure is limited to proteins with a GxxxG motif (1).  It would be interesting to pair their 

energetic model with our minimal experimental data technique to see if we can expand their 

technique to include proteins with alternative packing arrangements and improve upon the 

accuracy of our independent predictions. 

In chapter 3 I showed how our knowledge of the anion-binding protein-motif called the 

“nest” could be leveraged to create an antibody specific for phosphorylated peptides.  This work 

was done prior to the development of our all-atom structural search program, Suns, described 

in chapter 6.  It is hoped that Suns will be an important tool for protein designers to discover 

structural motifs that can then be used in a similarly modular fashion to create de novo proteins 

with novel binding or enzymatic properties.  To examine whether Suns could have allowed us to 

discover the “nest” motif without its prior knowledge, I used Suns to look for all phosphorylated 
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residues in our non-redundant database.  In our current default database based upon the PISCES 

list of proteins with less than 20% identity (2), there is only a single instance of a phosphorylated 

residue.  This suggests that for rare structural motifs or modified amino acids a larger database 

with a less strict sequence similarity cutoff might be a better choice.  I therefore repeated the 

search for phosphorylated residues using the significantly larger database based upon the 

PISCES list with a 90% identity cutoff (approximately 23,000 entries vs. 2100 entries) and found 

almost 20 matches within 0.7 Å RMSD to our query phosphate group.  Interestingly, these 

matches showed the phosphate group largely exposed to solvent rather than involved with 

binding interactions within the protein, as seen in Figure 1.  However, the PISCES lists of non-

redundant proteins are composed of individual chains, precluding the possibility of capturing 

details about protein/protein interactions.  Because post-translational modifications like 

phosphorylation are often used for signaling involving protein binding, it may be important to 

create additional databases which include multiple chains so that details specific to 

protein/protein interactions can be studied. 

In chapter 4 I developed a novel design methodology based upon the concept of 

“designability” to create protein binders to chosen epitopes.  While much of this work was also 

completed prior to the development of Suns, I believe that Suns will prove to be a powerful tool 

in discovering designable protein scaffolds for use in designing binders.  As shown in chapter 6, 

Suns was able to identify a designable helix which accommodated the hot-spot residues for one 

of the successful hemagglutinin binders developed by Fleishman et al. and this helix overlays 

incredibly closely to the helix found in the successful binder.  Intriguingly, Suns did not find 

strongly designable motifs for many of the other hot-spot combinations proposed by Fleishman 

et al., possibly indicating why designs based upon these hot-spots failed to show binding to 

hemagglutinin.  This suggests an alternative mode of use for Suns – as a sanity-check for design 
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proposals.  Suns could be adapted to accept as input a proposed design, and then automatically 

break the input structure into smaller sub-structures, identifying which motifs are frequently 

observed in natural proteins and which portions are rare and therefore should be modified.    

With such a mode in place, Suns would have identified the successful binder as promising due to 

its use of the designable helix as an interaction motif, while many of the designs using 

alternative hot-spots would have been flagged as problematic. 

The Super Codons tool developed in chapter 5 will also be a powerful tool for use in 

conjunction with the design methodology described in chapter 4.  Despite continued 

improvements in energy functions used in computational protein design (3), for the foreseeable 

future it is likely that the majority of computationally designed proteins will exhibit modest 

binding affinity or enzymatic activity.  Thus, a final gene library step will be necessary to isolate 

proteins with improved characteristics.  As discussed at the end of chapter 4, our lab is currently 

in the process of creating constructs which place our designed helical binders onto protein 

scaffolds.  Because the amino acid distributions supplied by Super Codons focus libraries on 

sequences close to the computationally designed sequence, we are considering moving straight 

to libraries for these protein designs, bypassing the screening for binding using solely the initial 

sequence.  Using Super Codons, a phage library of 109 members formed by diversifying 10 

residues would still be expected to contain around 6 million phage particles with the initial 

protein sequence.  Consequently, our initial sequence will be well represented in our library, 

and our selection procedures should isolate binders with affinity greater than or equal to the 

affinity of that initial design. 

Finally, in chapter 6 I described the development of Suns – the first real-time, all-atom, 

protein structural search algorithm.  As shown, this tool should offer powerful insights into 
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nature’s preferred design motifs.  However, presently Suns is only indexed for elements found in 

natural amino acids.  This leaves out the ability to search for other important protein 

interactions found in the PDB, including interactions with post-translationally modified amino 

acids, DNA and RNA, and chemical ligands.  However, Suns was designed to be easily modified.  I 

was able to add the ability to search for phosphate groups to Suns in a matter of minutes, not 

hours, for example.  Modifications for indexing interactions with chemical ligands will be a bit 

more challenging, mostly due to the process of determining what small chemical group we 

should use to form our index “words,” but even this should be possible in a matter of weeks.  By 

adding the capability to search for these additional interaction types, Suns will be even more 

useful for tasks such as drug-discovery and design. 
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7.2 Figures 

 

Figure 1 

Suns search result for phosphate query.  The phosphate group is primarily exposed to solvent, 
rather than being involved in protein interactions.  a) Stereo image showing large cavity 
surrounding aligned phosphate groups. b) Image showing the same phosphate groups 
surrounded by water molecules depicted as red spheres. 
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