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design under structure and sequence constraints using formal languages. ACM-BCB - ACM
Conference on Bioinformatics, Computational Biology and Biomedical Informatics - 2013, Sep
2013, Bethesda, Washigton DC, United States. 2013. <hal-00823279v2>

HAL Id: hal-00823279

https://hal.inria.fr/hal-00823279v2

Submitted on 1 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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ABSTRACT
The problem of RNA secondary structure design is the fol-
lowing: given a target secondary structure, one aims to cre-
ate a sequence that folds into, or is compatible with, a given
structure. In several practical applications in biology, addi-
tional constraints must be taken into account, such as the
presence/absence of regulatory motifs, either at a specific
location or anywhere in the sequence.

In this study, we investigate the design of RNA sequences
from their targeted secondary structure, given these addi-
tional sequence constraints. To this purpose, we develop
a general framework based on concepts of language theory,
namely context-free grammars and finite state automata.
We efficiently combine a comprehensive set of constraints
into a unifying context-free grammar of moderate size. From
there, we use generic algorithms to perform a (weighted) ran-
dom generation, or an exhaustive enumeration, of candidate
sequences.

The resulting method, whose complexity scales linearly
with the length of the RNA, was implemented as a stan-
dalone program. The resulting software was embedded into
a publicly available dedicated web server. The applicabil-
ity of the method was demonstrated on a concrete case
study dedicated to Exon Splicing Enhancers, in which our
approach was successfully used in the design of in vitro ex-
periments.
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1. INTRODUCTION
During the last years, the synthetic biology field and gene

therapy techniques have considerably evolved [16, 10]. Ri-
bonucleic acids (RNAs) emerged as versatile molecules ca-
pable to serve as logic gates [25] or to repress the replication
of viruses [9]. To perform their functions, these RNAs use
specific structures and nucleotide patterns enabling them to
bind and interfere with other molecules. Efficient methods
for designing such molecules is thus key to reach the next
milestones in the emerging field of RNA nanotechnology [14].

In 1994, Hofacker and co-workers introduced the compu-
tational problem of RNA secondary structure design (a.k.a.
inverse folding) [15] : Given a secondary structure, design an
RNA sequence (if any), that folds into the sought structure.
This definition reverses the classical RNA folding problem
that consists in predicting the secondary structure from se-
quence data. Unfortunately, while there is a polynomial time
and space solution for the folding problem without pseudo-
knots [28], the reciprocity remains questionable for the in-
verse folding problem [24]. Consequently, the Vienna group
also proposed in their seminal 1994’s paper a series of cre-
ative heuristics for solving the RNA inverse folding problem,
which have been implemented in a program named RNAin-

verse [15].
In the late 2000s, the interest of the community for this

problem grew with progresses and potential applications in
nano-biotechnologies. Thereby, Andronescu et al. developed
RNA-SSD [2], Busch and Backofen INFO-RNA [4, 5], Zadeh et
al. NUPACK [27, 26], Dai and Wiese rnaDesign [6], Levin et al.
RNA-ensign [18], and Garcia-Martin et al. RNAiFold [13].



All forth mentioned programs improved over the original
RNAinverse.

Soon though, a need to design RNA sequences with more
complex structural properties as well as a necessity to mimic
properties of natural RNAs led to a second generation of
software. First, the repertoire of designable shapes has been
extended with Inv [12] and fRNAkenstein [20] that can de-
sign sequences with (respectively) pseudo-knots or multiple
alternate secondary structures. Next, methods have been
proposed to control generic sequence properties such as the
genetic robustness with RNAexinv [3], or the GC-content with
IncaRNAtion [22]

Nevertheless, as mentioned earlier, the (secondary) struc-
ture alone is not sufficient to fulfill all properties required to
achieve most of RNA functions. In particular, our capacity
to integrate multiple, precise and highly specific sequence
constraints is key to design functional RNAs. For instance,
RNAs often require specific nucleotide patterns to bind pro-
teins (E.g. the hairpin of the TAR element). Among existing
methods, INFO-RNA is the first to enable its users to input
sequence constraints, fixing a set of positions in the sequence
where only some nucleotides are allowed. NUPACK [27, 26] al-
lows to prevent patterns in designed sequences, but cannot
force the presence of a motif at an unspecific position.

Similar motif constraints (currently GC-content, positional
constraints and a limit on runs of similar consecutive nu-
cleotides) can also be defined with the recent RNAiFold [13],
arguably the closest competitor to our approach. However,
the constraint programming approach used by the authors
is not guaranteed to run in polynomial time and, in prac-
tice, can become prohibitively slow for longer sequences, or
rich sets of constraints. Furthermore, the set of constraints
supported by the software is rather restrictive, and a need
for more general sequence constraints often arise in real ap-
plications. This is the case in [19], where RNA structures
have been designed and tested in vitro in order to study the
effects of RNA structures on the activity of exonic splicing
enhancers (ESEs). In that work the sequential constraints
were given by one mandatory motif (the ESE) at a fixed
position in the structure, and a (possibly large) set of for-
bidden motifs (other putative ESEs). Since such forbidden
motifs could in principle appear anywhere in the structure,
they cannot be captured by positional constraints and may
be hard to avoid for large sets of forbidden sequences.

In this paper, we describe a general methodology for de-
signing RNA secondary structures subject to multiple pos-
itive and negative sequence constraints with or without lo-
cation restrictions. This methodology is based on concepts
arising in formal language theory, namely context-free gram-
mars and finite automata, and on algorithms for the ex-
haustive or random generation of words from a context-free
language. In Section 2 we describe our approach in its full
generality. Then, in Section 3, we show how the method has
been applied for designing sequences that have been tested
in vitro for a study on ESEs [19]. Section 4 describes our
implementation, and a dedicated web server, offering a user-
friendly environment for the generation and posterior analy-
sis of sequences. Finally we conclude in Section 5 with some
remarks and perspectives.

2. MODELING CONSTRAINTS USING LAN-
GUAGE THEORETICAL CONSTRUCTS

It has been known for decades that concepts of language
theory, namely regular expressions and finite state automata
(FSA) on one hand, and context-free languages and gram-
mars on the other hand, are useful to the fields of genomics
and bioinformatics. Regular expressions and automata, and
their probabilistic variants, as for example Markov models
for sequences, have been widely used for describing motifs
in genomic sequences. Furthermore context-free grammars,
again with probabilistic variants like stochastic context-free
grammars or covariance models, have been used for struc-
tural bioinformatics, as a basis for numerous works on pre-
diction, comparison, and detection of RNA structures.

Here we combine these two formalisms (closely related
within the Chomsky/Schutzenberger hierarchy of formal lan-
guages) to address the problem of designing RNA sequences
that can fold to a given structure, while respecting a set
of constraints given by mandatory motifs (having fixed or
variable position in the sequence) and forbidden motifs.

2.1 Method overview
As stated above, our experimental applications require a

rich combination of constraints. Let B := {A,C,G,U} be
the set of nucleotides, i.e. the vocabulary for our language
constructs, these constraints can be broken down into the
following four categories:

• Secondary structure constraint (CT): Designed
sequences are expected to be compatible with a target
secondary structure S, i.e. base-pairing positions in
the structure must correspond to canonical base-pairs
in the sequence (Watson-Crick G–C, A–U, or Wobble
G–U).

• Base positional constraint (CB): Some positions
within designed sequences must be chosen within position-
specific restricted lists of bases. In other words, each
position i is associated with a subset Ci ⊂ B. Note that
such constraints can be adequately summarized by a
sequence of IUPAC symbols, including the non-specific
N ≡ B.

• Mandatory motifs constraint (CM): A predefined
set M of sequences must be found at least once, at
an unspecified position, in any generated sequence.

• Forbidden motifs constraint (CF): Any designed
sequence must avoid a predefined set F of forbidden
sequences.

Notice that the length n := |S| of the designed sequence is
implicitly set by the CB constraint. Now, our problem can
be formally stated as:

Generate a set of k sequences of length n, which
are compatible with the target S and C, feature
occurrences of each of the motifs inM, and avoid
the forbidden motifs in F .

Our method can be divided into four main steps:

1. Build a context-free grammar G that captures both the
structure (CT) and base positional (CB) constraints,
generating the language LG of all sequences that are
compatible with the base-pairing constraints induced
by S, and the IUPAC sequence C.



2. Build a deterministic finite-state automaton (DFA for
short) A which recognizes the language LA of all se-
quences that feature a set M of motifs (CM), while
avoiding a set F of motifs (CF).

3. Construct the intersection context-free grammar G∩
that generates the language LG∩ := LA ∩ LG .

4. Use a (weighted) random generation algorithm to gen-
erate k sequences from G∩. Optionally, filter sequences
satisfying additional properties, such as their affinity
towards the target structure, and other criteria, like
the probability for certain regions to remain unpaired
in the Boltzmann equilibrium.

Note that LG∩ may be empty, as may result from a delicate
interplay between the automaton and the grammar, if the
constraints are too stringent. This property, which may not
be obvious from the grammar, can nevertheless be efficiently
tested.

2.2 Structural constraints and CFGs
This first step consists in building a formal grammar,

whose language is exactly the set of sequences that are com-
patible with the input structure and the set of positional con-
straints (CB). Here, we assume that the secondary structure
is free of pseudoknots, given as a dot-parenthesis notation
and that corresponding parentheses are at least separated by
one (unpaired) base (θ = 1, using standard nomenclature).

One builds a context-free grammar G = (B,V,R, S), such
that:

• S := V1 is the axiom.

• V = {Vi}i∈X , where X is the set of positions corre-
sponding to an unpaired base, or to the 5’ end of some
base pair (denoted by an opening parenthesis in the
dot-bracket notation).

• The set of production rules is R =
⋃

i∈X Ri, where
Ri is a set of productions associated with each non-
terminal Vi, and depends on the status of the position
i in the target structure S.

For unpaired positions (Si = “.”), any nucleotide
may be generated, provided that the positional con-
straint is satisfied. If there is no follow-up sequence
at this level of nesting, then the generation stops here.
Otherwise, the sequence must be extended, a task which
is delegated to another non-terminal Vi+1.

Ri :=

{
{Vi → b}b∈Ci [If Si+1 = “)” or i+ 1 > n, ]

{Vi → b Vi+1}b∈Ci [Otherwise.]

For paired positions (Si = “(”, paired with j), the
nucleotides chosen for the paired positions (i, j) must
belong to a list P of valid base-pairs. Again, there may
or may not be a follow up sequence at the same level
of nesting, leading to the following cases:

Ri :=


{Vi → b Vi+1 b

′ | (b, b′) ∈ (Ci × Cj) ∩ P}
[If Sj+1 = “)” or j + 1 > n, ]

{Vi → b Vi+1 b
′ Vj+1 | (b, b′) ∈ (Ci × Cj) ∩ P}

[Otherwise.]

. ( ( ( . ) ) ( . . ) )

1 5 10 12

S1

S2

S3

S4

S5

S8

S9

S10

. ( ( ( . ) ) ( . . ) )

1 5 10 12

S1 → . S2 S2 → (S3 ) S3 → (S4 )S8 S4 → (S5 )

S5 → . S8 → (S9 ) S9 → . S10 S10 → .

V1 → AV2 | CV2 | GV2 | UV2

V2 → AV3 U | CV3 G | GV3 C | GV3 U | UV3 A | UV3 G

V3 → AV4 UV8 | CV4 GV8 | GV4 CV8 | GV4 UV8| UV4 AV8 | UV4 GV8

V4 → AV5 U | CV5 G | GV5 C | GV5 U | UV5 A | UV5 G

V5 → A | C | G | U
V8 → AV9 U | CV9 G | GV9 C | GV9 U | UV9 A | UV9 G

V9 → AV10 | CV10 | GV10 | UV10

V10 → A | C | G | U

A – Target Secondary Structure

B – Generating tree

C – Intermediate Grammar

D – Final Grammar

Figure 1: Illustration of the grammar construct in
the absence of positional constraints: Any target
secondary structure S (A) can be abstracted as a tree
(B) through a linear-time parsing, from which one
derives an intermediate grammar (C) whose sole pro-
duction is S. The rules of this intermediate grammar
can then be duplicated to allow for alternative nu-
cleotides, resulting into a final grammar G (D), which
generates every RNA sequence compatible with S.
Additionally, the rules of G can be restricted to ac-
count for further positional constraints.

In the above productions, we may typically allow only canon-
ical base-pairs, thus:

P := {(A,U), (C,G), (G,C), (G,U), (U,A), (U,G)}.

Note that these productions can be adapted in a straight-
forward manner from those of a specialized grammar that
only generates the targeted secondary structure. The whole
process of going from the secondary structure to the corre-
sponding grammar is illustrated by Figure 1. The result-
ing grammar has Θ(n) rules, and can be generated in Θ(n)
time and space from the target secondary structure, given in
dot-parenthesis notation, and a sequence of positional con-
straints, given as a set of IUPAC symbols.

2.3 Mandatory/forbidden motifs and automata
We consider the language LA of words that obey both

the CM and CF constraints at the primary sequence level,



and describe how to construct a deterministic finite-state au-
tomaton (DFA for short) A that recognizes LA. We assume
some level of familiarity with the basic notions and proper-
ties of finite-state automata, and direct the interested reader
to Salomaa’s classic reference [23].

The existence of LA follows from closure properties of reg-
ular languages through classical operations on sets (union,
intersection, complement), and by concatenation. This means
that the automaton that satisfies our various constraints can
be incrementally built from automata associated with each
of the individual constraints. However, the resulting au-
tomaton could become too large thereby negatively impact-
ing on the complexity of the whole method. Therefore, we
propose ad-hoc constructs based on the Aho-Corasick au-
tomaton, leading to much smaller automata.

Formal language constructs. Let LCM and LCF be the
languages of words that respect the constraints CM and
CF , respectively. Cleary, one has LA = LCM ∩ LCF , so it
suffices to derive automata for LCM and LCF .

Let us first consider the language LCF that contains all the
words of N∗ which avoid all motifs in F = {f1, f2, . . . , fk′}.
This language can be described as the complement in N∗

of LCF the language that asks for at least one occurrence
of a motif in F . The complement language can be further

described as the union LCF =
⋃k′

i=1 Lfi , where Lfi is the set
of words having at least one occurrence of fi ∈ F . Clearly,
Lfi is generated by the regular expression N∗.fi.N

∗, and
hence can be recognized by an automaton (having |fi| + 1
states). Furthermore, regular languages are stable by union,
so there exists an DFA that recognizes LCF and, taking the
complement, LCF is also recognizable by an automaton.

The general scheme for constructing a DFA that recog-
nizes LCM is similar. Let M = {m1,m2, . . . ,mk′′} be the

set of mandatory motifs. Clearly, one has LCM =
⋂k′′

i=1 Lmi ,
where Lmi is the language of all words containing at least
one occurrence of mi, and can be constructed as described
above. Since regular languages are closed by intersection,
then LCM is also regular and can be recognized by a DFA.

Aho-Corasick inspired automata. The closure proper-
ties used by the above constructions can be proven construc-
tively, thus they can be used to build A. However, a naive
implementation of these operations would yield a number of
states in Θ((

∑
i |fi|) ×

∏
j(1 + |mj |)). Such a potentially

huge state space would lead to time-consuming computa-
tions while occupying a large amount of memory. However,
it can be shown that a much smaller automaton exists for
the same language.

Indeed, let us remind that automata for the language of
words ending with some fixed motif can be adapted from
the Aho-Corasick (AC) automaton [1]. As illustrated by
Figure 2B and 2E, an AC automaton is a simple prefix tree,
complemented with failure transitions (dashed edges), which
allows for an efficient, single-pass, string matching for a com-
plete set of motifs W. Namely, the AC automaton uses its
states to represent the maximal prefix of a word inW which
has been read/generated at any given moment. Reading
a new symbol either leads to a extended prefix, meaning
a progression within the prefix tree, or a failure, resulting
in a transition to a state associated with another smaller
(possibly empty) prefix. Note that, despite its classic rep-
resentation as a non-deterministic automaton, the AC au-
tomaton can easily be made deterministic in linear time, as

M =

{
AGC (m1)
GG (m2)

}
F =

{
AUG (f1)
AAG (f2)

}

ε

A

AU

AUG

G

U

AA

AAG

G

A

A

ε

A

AG

AGC

C

G

A

G

GG

G

G
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A

AG

AGC

C

G

A

G

GG

G

G

C,G

C,U

A

G

AU
U

C,U

A

G

A

C,U

ε

A

AU

U

AA

A

A

⊥
G G

A,C,G,U

ε

A

AG

G

A

G

G

ε

A

AG

G

A

ε

G

G

ε

A,C,G,U

C

G

CG

AF

A{GG}

A{GG}

A∅

DA

B

C

E

F

G

Figure 2: Using the Aho-Corasick automaton to
build compact automata for LCF and LCM . From
a set F (A), an AC automaton can be built (B) and
transformed into an automaton for the language that
excludes F (C). For a set of mandatory motifs (D),
a similar initial construct can be used (E), later to
be duplicated to retain a memory of the motifs that
are still to be generated (G). The resulting automata
can easily be made deterministic and completed (F).

illustrated by Figure 2E and 2F, increasing the number of
edges (in Θ(

∑
i |wi|)) at most by a constant factor |B|.

From such a construction, applied to the set F of for-
bidden motifs (cf Figure 2B), an automaton for LCF can be
obtained by simply disallowing (rerouting to a non-accepting
ground state ⊥) each transition leading to a complete mo-
tif in F . Any other state in the AC automaton is set as
final/accepting, and the initial state is the one associated
with the suffix ε, as illustrated by Figure 2C.

A similar approach can be used for LCM . This time, one
may simply create 2|M| versions of the AC automaton, each
built for a subset of motifsM′ ⊆M that remains to be gen-
erated. Reflecting these semantics, any transition leading to
a complete motif mi in an automaton M′ with be rerouted
to a state, in the automaton M′′ := M′/{mi}, which cor-
responds to the longest suffix of mi which is a prefix of a
word in M′′. The initial state will be the one associated
with the prefix ε in the automatonM, and any state in the
automaton ∅ is accepting/final, as illustrated by Figure 2G.

These two constructs may even be merged into a single
one (omitted from the example), that directly builds an au-
tomaton for LCM ∩ LCF . One simply builds AC automata
for each set of words F ∪M′, ∀M′ ⊆ M. Any transition
towards a state associated with a forbidden word f ∈ F
is rerouted to the non-accepting ground state ⊥ and any
transition leading to a state m ∈ M in the automaton M′
is rerouted to the automaton M′/{m} as described above.
The initial state is then (ε,M), and any state (−,∅) is fi-



nal. As summarized in Table 1, the resulting automaton
has Θ(2|M| · (

∑
i |fi| +

∑
j |mj |)) states, and can be built

in linear time. Note that the final automaton is not neces-
sarily minimal, and one may obtain an even more compact
automaton using any minimization algorithm.

2.4 Combining structural and sequential con-
straints

It is well-known that context-free languages are not closed
under intersection. However, the intersection of a context-
free language with a regular language is always context-free.
The standard proof of the latter statement involves run-
ning a deterministic finite state automaton in parallel with
a pushdown automaton, and noting that the whole process
can itself be simulated by a pushdown automaton that ac-
cepts by final states. Of particular interest in our context,
there exists an efficient algorithm that computes the context-
free grammar of the intersection of a context-free language
with a regular language, as soon as the former is given as a
context-free grammar, and the latter is given as a determin-
istic finite state automaton [23] (the algorithm does not need
to construct nor explicitly simulate a pushdown automaton).
In its original form, the algorithm needs the input grammar
to be transformed into an equivalent grammar in Chomsky
Normal Form. However, since our grammars have peculiar
kinds of rules, we can design a variant of the original al-
gorithm that avoids this step. Furthermore, this algorithm
possibly generates useless rules and symbols, which do not
generate any word due to conflicting constraints in both lan-
guages. A cleaning step allows to remove these rules and
symbols from the grammar.

The general principles of the algorithm are the following.
We start from a grammar G =< N,V, P, S >, where N =
{A, C, G, U} is the set of terminal symbols, V is the set of
non-terminal symbols, P is the set of rules, and S ∈ V is
the axiom; and from a DFA A =< N,Q, q0, F, δ >, where
Q is the set of states, q0 ∈ Q is the initial state, F is the
set of final states, and δ is the transition function. The
output grammar G′ has its set of non-terminal symbols V ′ ⊂
Q × V × Q ∪ S′, where S′ is the axiom of G′. Any symbol
(q, T, q′) ∈ V ′ generates the words which are generated by
T in the grammar G, and which correspond to a path from
q to q′ in the automaton A. Below are examples of this

Lang. #States Remark

LCF ≤ 2 +

|F|∑
i=1

|fi| Aho-Corasick

LCM ≤ 2|M|
∑

mi∈M

|mi| Aho-Corasick

LA O
(

2|M|
|M|∑
i=1

|mi|
|F|∑
i=1

|fi|
)

Intersection

LA Θ

(
2|M| ·

(∑
i

|fi|+
∑
j

|mj |
))

Aho-Corasick

Table 1: Number of states for the sequence con-
straint automaton.

construction:

Vi → b ⇒ {V q→r
i → b | δ(q, b) = r}

Vi → b Vi+1 ⇒ {V q→r
i → b V s→r

i+1 | δ(q, b) = s}
Vi → b Vi+1 b

′ ⇒ {V q→r
i → b V s→t

i+1 b′

| δ(q, b) = s and δ(t, b′) = r}
Vi → b Vi+1 b

′ Vj+1 ⇒ {V q→r
i → b V s→t

i+1 b′ V u→r
j+1

| δ(q, b) = s and δ(t, b′) = u}

The algorithm begins by creating the axiom S′ and one
rule S′ → [q0, S, q] for every q ∈ F . A stack allows to store
every newly created non-terminal symbol. When a symbol
is popped out, all the rules starting with it are generated
and then pushed up.

Algorithm 1 presents a basic implementation of these prin-
ciples (the easy cleaning step is omitted for the sake of
simplification). Additional technical improvements may be
added (and are implemented in our webserver) for the algo-
rithm to become more space and time efficient, but they are
beyond the scope of this paper.

The algorithm produces a grammar having a set of rules
in Θ(|R| · |Q|3), each produced in constant average time. In
the specific context of RNA rational design, let us remind
that |R| ∈ Θ(n) and |Q| ∈ O(2|M| · (f + m)) after mini-
mization, where f :=

∑
i |fi| and m :=

∑
j |mj |. It follows

that the overall time and space complexities of the complete
algorithm grow like O(n · 8|M| · (f + m)3), i.e. linearly on
the sequence length.

2.5 Sequence generation
From the final context-free grammar, a random generation

of sequences can be done using GenRGenS [21] or GrgFreqs

(a C++ re-implementation of GenRGenS). Both implemen-
tations feature procedures for counting the total number of
words compatible with the constraints, their uniform ran-
dom generation and their exhaustive enumerations. These
procedures rely on a recursive precomputation analogous to
a dynamic-programming scheme [8] for counting the num-
ber of words generated from each non-terminal. From a
weighted count, one can easily compute probabilities asso-
ciated with the choice of a given production rule among the
ones accessible from a given non-terminal, in such a way
that applying the process recursively will result in a uniform
random generation of admissible sequences. A naive imple-
mentation of these procedures requires Θ(n2.|R|) arithmetic
operations for general grammars.

However, it can be remarked that the grammar G∩ is
rather peculiar, as each of its rules only produces words of
a single length. Consequently, the recursions used to com-
pute the number of generated sequences greatly simplify (as
the convolution products responsible for the superlinear be-
havior are no longer justified). They can consequently be
computed in Θ(|R|) time and Θ(|V |) space, each generation
requires Θ(|Q|·n) arithmetic operations. GrgFreqs has been
extended to detect automatically such grammars, and adapt
its algorithm accordingly.

2.6 Filtering generated sequences
Sequences generated from the grammar are compatible

with the target structure, and also satisfy all the constraints
on primary sequence. However, they may not necessarily
fold into the MFE structure, i.e. admit the target secondary
structure as their MFE. To work around such a potential
issue, we use the following approach:



Algorithm 1: Intersection of CFG with DFA

Input : CFG G =< N,V, P, S > and DFA
A =< N,Q, q0, F, δ >

Output: G′ =< N,V ′, P ′, S′ >

begin
Create new axiom S′

P ′ ← ∅
NTqueue← ∅
foreach q in F do

Add Sq0→q to NTQueue
Add (S′ → Sq0→q) to P ′

while NTqueue 6= ∅ do

V q→q′ ← pop NTqueue
for p ∈ P where p.leftHandSide = V do

switch p do
case V → u0 // Terminal (a|u|c|g)

q′ ← δ{q, u0}
Add (V q→q′ → u0) to P ′

case V → u0V1 // (aV|uV|..)
q1 ← δ{q, u0}
Add (V q→q′ → u0V

q1→q′

1 ) to P ′

case V → u0V1u1 // (aVu|cVg|..)
q1 ← δ{q, u0}
for q′1 ∈ Q where δ{q′1, u1} = q′ do

Add (V q→q′ → u0V
q1→q′1
1 u1) to

P ′

case V → u0V1u1V2 // (aVuW|cVgW|..)

q1 ← δ{q, u0}
for q′1 ∈ Q do

q2 ← δ{q′1, u1}
Add
(V q→q′ → u0V

q1→q′1
1 u1V

q2→q′

2 ) to
P ′

case V → V1 // Only when V=S in

current grammar

if q = q0 and q′ ∈ F then

Add (V q→q′ → V q→q′

1 ) to P ′

otherwise // No other cases in

current grammar
Exception

if NonTerminal in above productions is new
then Add it to NTqueue
;

• First, we use a weighting scheme to direct the ran-
dom generation towards sequences of high affinity. In-
deed, it was shown by some of the authors that using
a weighted sampling strategy based on the free-energy
greatly increases the probability of randomly gener-
ated sequences to fold into the target structure [18,
22]. Since GrgFreqs/GenRGenS support such a non-
uniform model [21, 8], we included in our software an
option to draw each sequence with respect to a pseudo
Boltzmann-distribution. In this distribution, any ad-
missible sequence is generated with probability pro-
portional to e−E/RT , where R is the universal gas con-
stant, T is the temperature in Kelvin and E is the free-

energy of the target secondary-structure S. For the
latter, we used a simplified version of the Turner 2004
energy model restricted to stacking base-pairs, requir-
ing minor, yet technical, modifications of the grammar
G∩ (omitted in this presentation).

• Then, a naive filtering step selects sequences which fold
to the given structure and have high self-containment
index [17], probability to maintain the structure under
its sequence context. Other filters, like unpaired prob-
ability value for a specific motif, can be applied to find
better sequences according to the requirement.

For longer sequences, this strategy may still reveal insuffi-
cient to produce sequences that fold exactly into the target
structure. In such situations, generated sequences may still
be used as initial sequences (aka seeds) for traditional local
search methods. Indeed, the combination of random gener-
ation (global sampling) and local search into a glocal hybrid
strategy was shown to outperform individual approaches,
both in term of accuracy and diversity of the produced se-
quences [22].

3. EXPERIMENTS
We report here a case study that was done by some of

the authors, using an early version of our software. This ex-
perimental study aimed to characterize how the structural
context of an exon slicing enhancer (ESE) in a transcript
affects its functionality [19]. It is known that strong RNA
secondary structures decrease the accessibility of the em-
bedded exonic splicing enhancer (ESE) and thus hinder its
recognition by single-stranded RNA binding proteins. This
can result in enhanced or repressed exon splicing and differ-
ent mRNA isoforms, which may have great impact on the
functionalities of the proteins. In order to further charac-
terize the effect of different RNA secondary structures on
ESE functions, we needed to place the ESE motif in differ-
ent structural context to test its functions experimentally.

An in vitro splicing system was established by cloning the
SMN1 splicing cassette into the GFP gene. The cassette
sequence contained the SMN1 alternative exon 7 and its
partial flanking introns. Various constructs (one ESE in
different context) could be inserted into the exon (see Fig-
ure 3A), and RT-PCRs were used to quantify the splicing
outcomes reflecting the contextual effect on the ESE.

Among the many known variants of the ESE motif [11],
representative ESEs such as Tra2β- and ASF-ESE) with
high enhancer activities were selected to be tested. These
variants were used as mandatory motif (CM) in the con-
structs. We chose to consider a simple structure, a stem-
loop, and to modify the structural context by putting it at
different positions relatively to the ESE. More precisely, we
designed four groups of constructs, including: 1) ESE in
stem regions with varying stabilities by using different num-
ber of base-pairs (Figure 3B); 2) ESE flanking by a varying
stability stem (Figure 3C); 3) ESE upstream or downstream
a strong stem-loop with different lengths of spacers (Fig-
ure 3D); 4) ESE in the varying-size loop of a strong stem-
loop (Figure 3E). The reverse complementary sequence of
the ESE in Figure 3B was used as an negative control ESE,
leading to an experiment using another mandatory motif.
Meanwhile, to avoid the confounding effects by other ESE
motifs in the sequence, the constructs had to not contain



Figure 3: Illustration of the experimental design (A)
and various constructs containing the ESE motif in
different structural context (B-D). ESE location are
marked by the red star symbols.

any other potential ESE sequence (CF), nor even any ESS
sequence (Exonic Splicing Silencer). This set of forbidden
motifs could be up to 1475 out of 4096 hexamers, if all the
computationally identified motifs were used [11].

Starting from these constraints and using our methodol-
ogy, we generated a set of candidates, further restricted by
our experimental collaborators, later to be constructed and
experimentally tested. The results further supported that
stem structure could block embedded ESE function, and
showed that ESEs following a stable hairpin structure could
be highly active. It was also found that different ESEs in
the loop may function differently because of potential non-
canonical base-pairings. This suggested that the modulation
on ESE functions by RNA structure could be prevalent and
in different modes of actions. More details regarding the ex-
perimental aspects of the study can be found in Li et al [19].

4. SOFTWARE AND WEB SERVER
The package named CFGRNAD, was mainly written in

Python, and integrates the OCaML FSA program (http://
www.linguistics.ucla.edu/people/grads/jheinz/software/),
and GrqFreqs [21]. The package including the programs can
be downloaded from https://code.google.com/p/cfgrnad/.

4.1 Web server
CFGRNAD was embedded in a web server available at:
http://www.lix.polytechnique.fr/RNADesignStudio/

The server enables a user to submit a design task, specifying
various constraints and options, such as:

• Targeted secondary structure in dot-bracket notation;

• Position-specific constraints denoted by a sequence of
IUPAC codes;

• Lists of forbidden and mandatory motifs, either man-
ually specified or uploaded as a file;

• Number of generated sequences;

• Random generation model, chosen between a uniform
model and a Boltzmann/weighted model. The lat-
ter weighs each eligible sequence with a probability
p ∝ e−E/RT , where E is the sequence free-energy as-
suming the targeted structure, R is the universal gas
constant and T is the temperature in Kelvin. A sim-
plified version of the 2004 Turner model for the free-
energy is used, assigning individual contributions to
each stacking pairs and disregarding other terms.

After computation, the resulting set of sequences is dis-
played and can be further analyzed within a dedicated web
page, accessible at a later time using a unique accession id.
In this web space, the structure/sequence can be visualized
using the VARNA software [7] and each candidate sequence
can be evaluated using various statistics, including:

• G+C-content;

• Free-energy of sequence upon forming the targeted struc-
ture, evaluated within the Turner model;

• Boltzmann probability of the targeted structure;

• Difference between the minimal free-energy structure
and its second best suboptimal;

• Whether or not the targeted structure is the MFE for
the candidate sequence.

These statistics are computed on-demand from the result
page using software from the Vienna RNA software pack-
age [15] (with the exception of the straightforward GC-content).

4.2 Runtime and robustness testing
To confirm its linear complexity, we measured the runtime

of our random generation software. To that purpose, we
used a realistic random model used by Levin et al [18], which
performs a weighted random generation to draw structures
which, on the average, have similar structural properties
(#base-pairs/length, #helices/length. . . ) as experimentally-
determined ribosomal RNAs. For length varying from 50 to
300nts by steps of 25nts, we generated 20 random secondary
structures. For each of the generated structure, we designed
100 candidates, using a single mandatory motifM = {CGU}
and three arbitrary forbidden motifs F = {AAU,CGC,UGC}.
The results, summarized in Figure 4 by averaging the run-
time of sequences of equal length, confirm the linear com-
plexity of the software, while exhibiting a fairly low variance.

We also performed more involved tests of our implemen-
tation on experimentally-determined structures, leading to

http://www.linguistics.ucla.edu/people/grads/jheinz/software/
http://www.linguistics.ucla.edu/people/grads/jheinz/software/
https://code.google.com/p/cfgrnad/
http://www.lix.polytechnique.fr/RNADesignStudio/


Test Sequence/Structure M #F #state #trans GI GA GB #seqAG

1
CUCGAACGCAANNNNNNNNNNAAUUC
.....((((((....)))))).....

ACGCAA 1 902 3062 14142,17522 2010,6405 630,803 346

2
CUCGAACGCAANNNNNNNNNNAAUUC
..........................

ACGCAA 1 902 3062 906, 3064 903, 3064 903, 3064 457647

3
CUCGAACGCAANNNNNNNNNNAAUUC
......(((((....)))))......

ACGCAA 1 902 3062 24220, 29483 3123, 10438 636, 820 1038

4
CUCGAACGCAANNNNNNNNNNAAUUC
.......((((....)))).......

ACGCAA 1 902 3062 38507, 48783 5434, 18910 645, 856 4844

5
CUCGAACGCAANNNNNNNNNNAAUUC
........(((....)))........

ACGCAA 1 902 3062 48087, 56849 5826, 20167 663, 914 7958

6
CUCGANNNNNNUACAGANNNNNNAAUUC
.....((((((......)))))).....

UACAGA 1 222 712 16643, 47520 14946,45655 1998, 5005 13948

7
CUCGANNNNNNNNNNNNNNNNUACAGAAAUUC
.....((((((....))))))...........

UACAGA 0 0 0 - - - 0

8
NNNNNNNNNNUCGUCG
(((....)))......

UCGUCG 1 1117 3889
716553,
1710596

219601,
885384

18223,34324 42234

9
UCGUCGNNNNNNNNNN
......(((....)))

UCGUCG 1 939 3209
115152,
252205

32620,
122590

11469,20532 35209

Table 2: Statistics of the RNA design on test data. All the 9 tests use the same set of forbidden motifs
which contains 238 putative hexamer ESEs. Sequence: expected sequence, N means [AUCG]; Structure:
bracket notation, ‘()’ means pairing; M: Mandatory motif, present only once. Forbidden: forbidden motif
set, in which the motifs cannot be present; #F, #state and #trans means the number of final states, total
states, and transitions, independently; GI, GA, GB represent the (numbers of non-terminal states, number of
productions) pair statistics for the grammar after Initial intersection, after removing productions containing
non-accessible non-terminals, and after clean the productions, independently; #seqAG: number of sequences
under both constraints of motifs and structure.
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Figure 4: Typical runtime on random realistic sec-
ondary structures and sets of motif M = {CGU} and
forbidden motifs F = {AAU,CGC,UGC}.

statistics are summarized in Table 2. For all these tests, we
used a much larger set of forbidden motifs proposed by Fair-
brother et al [11], consisting of 238 putative ESEs. We no-
ticed that the size of FSA became much larger than that on
a small dataset, which contained only 4 or 5 2-mers, and the
time required to build the FSA also increased. The cost of
the intersection between the grammar and the FSA increases
with the size of the automaton. Test 8 has the highest run
time for intersection, the reason for which is probably that
both side of the stem do not have motif base constraints. It
is interesting that the polarity of the structure influences the
time of intersection, as can be noticed by comparing test 8
to test 9. One of the reasons may be that the stem on the 5’
end in test 8 generates too much unused non-terminals, or
productions, than the stem at the 3’ end in test 9. Finally,

test 7 reveals that the list of putative ESEs conflicts with
the mandatory constraints, revealing an unfeasible design
objective. Being able to identify such situation is one of the
strength of our method, especially in comparison with local
search alternatives.

4.3 Potential for inverse folding
As emphasized in our introduction, our approach focuses

on positive design principles (target + constraints compati-
bility), but does not explicitly capture negative design goals
(specificity, avoidance of more favorable folds). However, its
low complexity allows for a generation of a large number of
independent candidates, which can be refolded and tested.
A first benchmark was proposed in Reinharz et al [22], with
a strong emphasis on the RNASSD software [2]. Here, we
supplement this study by comparing the global sampling
approach implemented by CFGRNAD with NUPACK [26].

Our benchmark consists in sets of 20 random target sec-
ondary structures for each length in [30, 50, 75, 100], gener-
ated as described in Reinharz et al [22]. For each target
structure, we designed a set of 20 design candidates using
NUPACK (random initial seed + Turner 1999 energy model).
For difficult designs, NUPACK may produce sequences whose
MFE-predicted structure does not exactly match the target
structure, yet share many base-pairs with it. In order to
assess the quality of the designed sequence, we define the
structural sensitivity of a sequence w with respect to a tar-
get S as:

Sen(w, S) =
|{(i, j) | (i, j) ∈ S and (i, j) ∈ Sw}|

|w| (1)

where Sw is the MFE structure for w, predicted using RNAfold

(Turner 1999 energy model). Then we ran our software CF-

GRNAD for a total runtime which is equal to that of NUPACK.
We include in both measured runtimes the computation of
structural sensitivities. This property seems essential for a
fair comparison, as CFGRNAD produces much more candidate
sequences than its competitor. Furthermore, we emphasize
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Figure 5: Structural sensitivity distribution for se-
quences designed using CFGRNAD (uniform distribu-
tion, top), CFGRNAD (weighted distribution, middle)
and NUPACK (bottom).

that the energy model (Turner 1999) used to score a design
is the same as the one used by NUPACK in its optimization,
but differs from that of CFGRNAD (modified Turner 2004).

An analysis of the distribution of structural sensitivities,
shown in Figure 5, confirms the positive impact of weights
on the quality of CFGRNAD designs. The relative proportions
of successful designs remains highly favorable to NUPACK.
For the latter, the average probabilities of complete success
ranged from 80% down to 40% for sequence lengths between
30 and 100 nts, and 97% of refolded designs shared at least
90% of base-pairs with their target. By contrast, CFGRNAD
only achieved 30%-2% for complete success and 50-18% for
>90% sensitivity.

However, the linear time complexity of CFGRNAD allows
for the generation of larger sets of candidates, even when
the cubic-time RNAfold is included in the postprocessing.
For instance, using NUPACK to generate 20 candidates for a
structure of 100 nts may require as much as 6 800 seconds
on a standard laptop, allowing for the generation and evalu-
ation of 197 000 CFGRNAD candidates. As shown in Figure 6,
this larger number of candidates produced by CFGRNAD in
a given time apparently compensates its lower probability

Structures
30

20

10

0

10

20

30

P
o
p
u
la

ti
o
n

Struct. Sens.

100% - NUPACK

>90% - NUPACK

>75% - NUPACK

100% - CFGRNAD (weighted)

>90% - CFGRNAD (weighted)

>75% - CFGRNAD (weighted)

Figure 6: Raw population and structural sensitivity
of candidate sequences generated by NUPACK (Green,
upward) and CFGRNAD (Blue, downward) for target
structures of increasing lengths, clustered according
to their structural sensitivity.

of success and, with very few notable exceptions, the raw
numbers of perfect, good and acceptable designs produced
by CFGRNAD seems to exceed that of NUPACK. One should
however remain cautious before extrapolating this claim for
larger RNAs, since the probability of producing perfect de-
signs through random generation is expected to decrease ex-
ponentially with the length.

5. CONCLUSION
In this work, we have proposed a novel approach based

on language-theoretical tools to perform a rational design
of RNA under a biologically-motivated set of constraints.
Namely, we showed that large set of diverse constraints could
be addressed within a unifying framework, leading to an al-
gorithm whose time and space requirements scale linearly
with the length of designed secondary structures. Further-
more, such a framework paves the road for novel extensions,
and our program is currently the only available tool to per-
form RNA design with forced/forbidden motifs. Such a fea-
ture has proven its utility in the design of sequences that
have been tested in vitro.

A first extension of this work may assess the impact of,
possibly stringent, constraints on the probability of actually
folding into the MFE. In the absence of such constraints,
it was shown that a substantial proportion of sequences de-
signed using a weighted random generation scheme (also de-
noted as global sampling strategy) actually folds back in sil-
ico into the target structure [18, 22]. The success rate is suf-
ficiently high to make the approach competitive against the
alternatives based on various heuristics or exponential-time
exact resolution, especially when additional design goals are
captured [22]. However, certain constraints may possibly
have a drastic, non-trivial, effect on the success rate, for
instance by preventing motifs favored by stable folds from
forming (e.g. forbidding GC,CG,CC motifs would forbid any
occurrence of a GC

GC
stacking pairs). Such an effect might

also be interpreted in the light of evolution, as the low des-
ignability (i.e. evolutionary accessibility) of experimental
secondary structures may indicate a strong selective pres-
sure, and suggest an essential position in the RNA regula-
tory network.

Another illustration of the flexibility of our approach is



the inclusion of structural (possibly non-canonical) motifs,
which could be expressed as multi-strand (or gapped) mo-
tifs, contextualized by the target secondary structure. These
may be prescribed either at a specific location in the se-
quence, or anywhere, depending on the intended applica-
tion. The design of sequences of variable lengths may also
constitute a natural extension, at the cost of more demand-
ing algorithms. Future developments will aim at captur-
ing more sophisticated free-energy models, such as the full
Turner model, or crossing interactions (pseudoknots), rely-
ing on other language-theoretical formalisms such as multi-
ple grammars.
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