76 research outputs found

    A New Class of Multiple-rate Codes Based on Block Markov Superposition Transmission

    Full text link
    Hadamard transform~(HT) as over the binary field provides a natural way to implement multiple-rate codes~(referred to as {\em HT-coset codes}), where the code length N=2pN=2^p is fixed but the code dimension KK can be varied from 11 to N1N-1 by adjusting the set of frozen bits. The HT-coset codes, including Reed-Muller~(RM) codes and polar codes as typical examples, can share a pair of encoder and decoder with implementation complexity of order O(NlogN)O(N \log N). However, to guarantee that all codes with designated rates perform well, HT-coset coding usually requires a sufficiently large code length, which in turn causes difficulties in the determination of which bits are better for being frozen. In this paper, we propose to transmit short HT-coset codes in the so-called block Markov superposition transmission~(BMST) manner. At the transmitter, signals are spatially coupled via superposition, resulting in long codes. At the receiver, these coupled signals are recovered by a sliding-window iterative soft successive cancellation decoding algorithm. Most importantly, the performance around or below the bit-error-rate~(BER) of 10510^{-5} can be predicted by a simple genie-aided lower bound. Both these bounds and simulation results show that the BMST of short HT-coset codes performs well~(within one dB away from the corresponding Shannon limits) in a wide range of code rates

    High Performance Decoder Architectures for Error Correction Codes

    Get PDF
    Due to the rapid development of the information industry, modern communication and storage systems require much higher data rates and reliability to server various demanding applications. However, these systems suffer from noises from the practical channels. Various error correction codes (ECCs), such as Reed-Solomon (RS) codes, convolutional codes, turbo codes, Low-Density Parity-Check (LDPC) codes and so on, have been adopted in lots of current standards. With the increasing data rate, the research of more advanced ECCs and the corresponding efficient decoders will never stop.Binary LDPC codes have been adopted in lots of modern communication and storage applications due their superior error performance and efficient hardware decoder implementations. Non-binary LDPC (NB-LDPC) codes are an important extension of traditional binary LDPC codes. Compared with its binary counterpart, NB-LDPC codes show better error performance under short to moderate block lengths and higher order modulations. Moreover, NB-LDPC codes have lower error floor than binary LDPC codes. In spite of the excellent error performance, it is hard for current communication and storage systems to adopt NB-LDPC codes due to complex decoding algorithms and decoder architectures. In terms of hardware implementation, current NB-LDPC decoders need much larger area and achieve much lower data throughput.Besides the recently proposed NB-LDPC codes, polar codes, discovered by Ar{\i}kan, appear as a very promising candidate for future communication and storage systems. Polar codes are considered as a major breakthrough in recent coding theory society. Polar codes are proved to be capacity achieving codes over binary input symmetric memoryless channels. Besides, polar codes can be decoded by the successive cancelation (SC) algorithm with of complexity of O(Nlog2N)\mathcal{O}(N\log_2 N), where NN is the block length. The main sticking point of polar codes to date is that their error performance under short to moderate block lengths is inferior compared with LDPC codes or turbo codes. The list decoding technique can be used to improve the error performance of SC algorithms at the cost higher computational and memory complexities. Besides, the hardware implementation of current SC based decoders suffer from long decoding latency which is unsuitable for modern high speed communications.ECCs also find their applications in improving the reliability of network coding. Random linear network coding is an efficient technique for disseminating information in networks, but it is highly susceptible to errors. K\ {o}tter-Kschischang (KK) codes and Mahdavifar-Vardy (MV) codes are two important families of subspace codes that provide error control in noncoherent random linear network coding. List decoding has been used to decode MV codes beyond half distance. Existing hardware implementations of the rank metric decoder for KK codes suffer from limited throughput, long latency and high area complexity. The interpolation-based list decoding algorithm for MV codes still has high computational complexity, and its feasibility for hardware implementations has not been investigated.In this exam, we present efficient decoding algorithms and hardware decoder architectures for NB-LDPC codes, polar codes, KK and MV codes. For NB-LDPC codes, an efficient shuffled decoder architecture is presented to reduce the number of average iterations and improve the throughput. Besides, a fully parallel decoder architecture for NB-LDPC codes with short or moderate block lengths is also presented. Our fully parallel decoder architecture achieves much higher throughput and area efficiency compared with the state-of-art NB-LDPC decoders. For polar codes, a memory efficient list decoder architecture is first presented. Based on our reduced latency list decoding algorithm for polar codes, a high throughput list decoder architecture is also presented. At last, we present efficient decoder architectures for both KK and MV codes

    Architectures for soft-decision decoding of non-binary codes

    Full text link
    En esta tesis se estudia el dise¿no de decodificadores no-binarios para la correcci'on de errores en sistemas de comunicaci'on modernos de alta velocidad. El objetivo es proponer soluciones de baja complejidad para los algoritmos de decodificaci'on basados en los c'odigos de comprobaci'on de paridad de baja densidad no-binarios (NB-LDPC) y en los c'odigos Reed-Solomon, con la finalidad de implementar arquitecturas hardware eficientes. En la primera parte de la tesis se analizan los cuellos de botella existentes en los algoritmos y en las arquitecturas de decodificadores NB-LDPC y se proponen soluciones de baja complejidad y de alta velocidad basadas en el volteo de s'¿mbolos. En primer lugar, se estudian las soluciones basadas en actualizaci'on por inundaci 'on con el objetivo de obtener la mayor velocidad posible sin tener en cuenta la ganancia de codificaci'on. Se proponen dos decodificadores diferentes basados en clipping y t'ecnicas de bloqueo, sin embargo, la frecuencia m'axima est'a limitada debido a un exceso de cableado. Por este motivo, se exploran algunos m'etodos para reducir los problemas de rutado en c'odigos NB-LDPC. Como soluci'on se propone una arquitectura basada en difusi'on parcial para algoritmos de volteo de s'¿mbolos que mitiga la congesti'on por rutado. Como las soluciones de actualizaci 'on por inundaci'on de mayor velocidad son sub-'optimas desde el punto de vista de capacidad de correci'on, decidimos dise¿nar soluciones para la actualizaci'on serie, con el objetivo de alcanzar una mayor velocidad manteniendo la ganancia de codificaci'on de los algoritmos originales de volteo de s'¿mbolo. Se presentan dos algoritmos y arquitecturas de actualizaci'on serie, reduciendo el 'area y aumentando de la velocidad m'axima alcanzable. Por 'ultimo, se generalizan los algoritmos de volteo de s'¿mbolo y se muestra como algunos casos particulares puede lograr una ganancia de codificaci'on cercana a los algoritmos Min-sum y Min-max con una menor complejidad. Tambi'en se propone una arquitectura eficiente, que muestra que el 'area se reduce a la mitad en comparaci'on con una soluci'on de mapeo directo. En la segunda parte de la tesis, se comparan algoritmos de decodificaci'on Reed- Solomon basados en decisi'on blanda, concluyendo que el algoritmo de baja complejidad Chase (LCC) es la soluci'on m'as eficiente si la alta velocidad es el objetivo principal. Sin embargo, los esquemas LCC se basan en la interpolaci'on, que introduce algunas limitaciones hardware debido a su complejidad. Con el fin de reducir la complejidad sin modificar la capacidad de correcci'on, se propone un esquema de decisi'on blanda para LCC basado en algoritmos de decisi'on dura. Por 'ultimo se dise¿na una arquitectura eficiente para este nuevo esquemaGarcía Herrero, FM. (2013). Architectures for soft-decision decoding of non-binary codes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33753TESISPremiad

    New Identification and Decoding Techniques for Low-Density Parity-Check Codes

    Get PDF
    Error-correction coding schemes are indispensable for high-capacity high data-rate communication systems nowadays. Among various channel coding schemes, low-density parity-check (LDPC) codes introduced by pioneer Robert G. Gallager are prominent due to the capacity-approaching and superior error-correcting properties. There is no hard constraint on the code rate of LDPC codes. Consequently, it is ideal to incorporate LDPC codes with various code rate and codeword length in the adaptive modulation and coding (AMC) systems which change the encoder and the modulator adaptively to improve the system throughput. In conventional AMC systems, a dedicated control channel is assigned to coordinate the encoder/decoder changes. A questions then rises: if the AMC system still works when such a control channel is absent. This work gives positive answer to this question by investigating various scenarios consisting of different modulation schemes, such as quadrature-amplitude modulation (QAM), frequency-shift keying (FSK), and different channels, such as additive white Gaussian noise (AWGN) channels and fading channels. On the other hand, LDPC decoding is usually carried out by iterative belief-propagation (BP) algorithms. As LDPC codes become prevalent in advanced communication and storage systems, low-complexity LDPC decoding algorithms are favored in practical applications. In the conventional BP decoding algorithm, the stopping criterion is to check if all the parities are satisfied. This single rule may not be able to identify the undecodable blocks, as a result, the decoding time and power consumption are wasted for executing unnecessary iterations. In this work, we propose a new stopping criterion to identify the undecodable blocks in the early stage of the iterative decoding process. Furthermore, in the conventional BP decoding algorithm, the variable (check) nodes are updated in parallel. It is known that the number of iterations can be reduced by the serial scheduling algorithm. The informed dynamic scheduling (IDS) algorithms were proposed in the existing literatures to further reduce the number of iterations. However, the computational complexity involved in finding the update node in the existing IDS algorithms would not be neglected. In this work, we propose a new efficient IDS scheme which can provide better performance-complexity trade-off compared to the existing IDS ones. In addition, the iterative decoding threshold, which is used for differentiating which LDPC code is better, is investigated in this work. A family of LDPC codes, called LDPC convolutional codes, has drawn a lot of attentions from researchers in recent years due to the threshold saturation phenomenon. The IDT for an LDPC convolutional code may be computationally demanding when the termination length goes to thousand or even approaches infinity, especially for AWGN channels. In this work, we propose a fast IDT estimation algorithm which can greatly reduce the complexity of the IDT calculation for LDPC convolutional codes with arbitrary large termination length (including infinity). By utilizing our new IDT estimation algorithm, the IDTs for LDPC convolutional codes with arbitrary large termination length (including infinity) can be quickly obtained

    Density Evolution for the Design of Non-Binary Low Density Parity Check Codes for Slepian-Wolf Coding

    Get PDF
    International audienceIn this paper, we investigate the problem of designing good non-binary LDPC codes for Slepian-Wolf coding. The design method is based on Density Evolution which gives the asymptotic error probability of the decoder for given code degree distributions. Density Evolution was originally introduced for channel coding under the assumption that the channel is symmetric. In Slepian-Wolf coding, the correlation channel is not necessarily symmetric and the source distribution has to be taken into account. In this paper, we express the non-binary Density Evolution recursion for Slepian-Wolf coding. From Density Evolution, we then perform code degree distribution optimization using an optimization algorithm called differential evolution. Both asymptotic performance evaluation and finite-length simulations show the gain at considering optimized degree distributions for SW coding

    Flexible LDPC Decoder Architectures

    Get PDF
    Flexible channel decoding is getting significance with the increase in number of wireless standards and modes within a standard. A flexible channel decoder is a solution providing interstandard and intrastandard support without change in hardware. However, the design of efficient implementation of flexible low-density parity-check (LDPC) code decoders satisfying area, speed, and power constraints is a challenging task and still requires considerable research effort. This paper provides an overview of state-of-the-art in the design of flexible LDPC decoders. The published solutions are evaluated at two levels of architectural design: the processing element (PE) and the interconnection structure. A qualitative and quantitative analysis of different design choices is carried out, and comparison is provided in terms of achieved flexibility, throughput, decoding efficiency, and area (power) consumption
    corecore