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Abstract

Due to the rapid development of the information industry, modern communication

and storage systems require much higher data rates and reliability to server various

demanding applications. However, these systems suffer from noises from the prac-

tical channels. Various error correction codes (ECCs), such as Reed-Solomon (RS)

codes, convolutional codes, turbo codes, Low-Density Parity-Check (LDPC) codes

and so on, have been adopted in lots of current standards. With the increasing data

rate, the research of more advanced ECCs and the corresponding efficient decoders

will never stop.

Binary LDPC codes have been adopted in lots of modern communication and

storage applications due their superior error performance and efficient hardware

decoder implementations. Non-binary LDPC (NB-LDPC) codes are an important

extension of traditional binary LDPC codes. Compared with its binary counter-

part, NB-LDPC codes show better error performance under short to moderate block

lengths and higher order modulations. Moreover, NB-LDPC codes have lower error

floor than binary LDPC codes. In spite of the excellent error performance, it is hard

for current communication and storage systems to adopt NB-LDPC codes due to

1



complex decoding algorithms and decoder architectures. In terms of hardware im-

plementation, current NB-LDPC decoders need much larger area and achieve much

lower data throughput.

Besides the recently proposed NB-LDPC codes, polar codes, discovered by Arıkan,

appear as a very promising candidate for future communication and storage systems.

Polar codes are considered as a major breakthrough in recent coding theory society.

Polar codes are proved to be capacity achieving codes over binary input symmetric

memoryless channels. Besides, polar codes can be decoded by the successive can-

celation (SC) algorithm with of complexity of O(N log2N), where N is the block

length. The main sticking point of polar codes to date is that their error perfor-

mance under short to moderate block lengths is inferior compared with LDPC codes

or turbo codes. The list decoding technique can be used to improve the error perfor-

mance of SC algorithms at the cost higher computational and memory complexities.

Besides, the hardware implementation of current SC based decoders suffer from long

decoding latency which is unsuitable for modern high speed communications.

ECCs also find their applications in improving the reliability of network coding.

Random linear network coding is an efficient technique for disseminating informa-

tion in networks, but it is highly susceptible to errors. Kötter-Kschischang (KK)

codes and Mahdavifar-Vardy (MV) codes are two important families of subspace

codes that provide error control in noncoherent random linear network coding. List

decoding has been used to decode MV codes beyond half distance. Existing hard-

ware implementations of the rank metric decoder for KK codes suffer from limited

throughput, long latency and high area complexity. The interpolation-based list

decoding algorithm for MV codes still has high computational complexity, and its

2



feasibility for hardware implementations has not been investigated.

In this exam, we present efficient decoding algorithms and hardware decoder

architectures for NB-LDPC codes, polar codes, KK and MV codes. For NB-LDPC

codes, an efficient shuffled decoder architecture is presented to reduce the number

of average iterations and improve the throughput. Besides, a fully parallel decoder

architecture for NB-LDPC codes with short or moderate block lengths is also pre-

sented. Our fully parallel decoder architecture achieves much higher throughput and

area efficiency compared with the state-of-art NB-LDPC decoders. For polar codes,

a memory efficient list decoder architecture is first presented. Based on our reduced

latency list decoding algorithm for polar codes, a high throughput list decoder ar-

chitecture is also presented. At last, we present efficient decoder architectures for

both KK and MV codes.
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Chapter 1

Introduction

Error correction codes (ECCs), such as Reed-Solomon (RS) codes, convolutional

codes, turbo codes, Low-Density Parity-Check (LDPC) codes and so on, are widely

used in current communication and storage systems. Non-binary LDPC codes and

polar codes are recently emerged ECCs for future applications. However, NB-LDPC

codes suffer from high decoding algorithms and inefficient hardware decoder archi-

tecture. The successive cancelation (SC) based list (SCL) decoding algorithm for

polar codes has much better error performance that the SC algorithm. However, the

hardware implementations of the SCL decoding algorithm suffer from long decoding

latency, which is unsuitable for high speed applications. Besides, ECCs also find ap-

plications in random linear network coding (RLNC). The Kötter-Kschischang (KK)

codes and Mahdavifar-Vardy (MV) codes are two important families of subspace

codes that provide error control in noncoherent random linear network coding.

In this chapter, we first explain our motivations of our research in Sec. 1.1, and

then present our main contributions in this dissertation as well as the organization

4



1.1. MOTIVATIONS

of this dissertation in Sec. 1.2.

1.1 Motivations

1.1.1 Non-binary LDPC Codes

Binary low-density parity-check (LDPC) codes are more and more popular in ap-

plications because of their capacity-approaching performance. In terms of perfor-

mance, binary LDPC codes start to show their weaknesses when the codeword length

is small or moderate, or when a higher order modulation is used. For these cases,

nonbinary LDPC (NB-LDPC) codes over high order Galois fields have shown great

potential [3, 4]. For instance, in [1], a rate-1/2 NB-LDPC code of length 84 over

GF(64) is shown to perform 0.375dB better than a rate-1/2 binary irregular LDPC

code of equivalent length 504 bits in [5] over binary input additive white Gaussian

noise (AWGN) channel. Over the QAM-AWGN channels, NB-LDPC codes with

a field order greater than or equal to the size of constellation have the advantage

that the encoder/decoder works directly with symbols. All mapping choices of the

codeword symbols to the constellation points are equivalent and lead to the same

performance. In [1], an NB-LDPC code over GF(256) performs 0.5dB better than a

rate-1/2 binary LDPC codes of the equivalent length 1008 bits over QAM256-AWGN

channel.

A significant obstacle to the application of NB-LDPC codes is that their de-

coding algorithms have high complexities. Hence, a lot of research effort has been

spent on efficient decoding algorithms for NB-LDPC codes [1,6]. Among them, the

EMS [1] and the Min-Max [6] algorithms draw a lot of attention because of their low
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computation and memory complexity. For an NB-LDPC code over GF(2m), both

the EMS and the Min-Max algorithms store only the nm (nm � 2m) most reliable

messages, thus reducing the memory requirement at the cost of small performance

degradation. The check node processing of the EMS algorithm needs additions and

comparisons, while the Min-Max algorithm needs only maximizations and compar-

isons in check node processing. The trellis-based check node processing (TBCP)

algorithm [7] reduces the computational complexity of check node processing of the

Min-Max algorithm by eliminating unnecessary check-to-variable messages.

Besides the Min-Max and EMS decoding algorithms, stochastic decoding [2,8,9]

is another way to reduce the hardware complexity of NB-LDPC decoders while

maintaining the decoding performance. Compared to conventional belief propa-

gation decoding algorithms, the stochastic decoding algorithm has lower hardware

complexity [9]. The relaxed half-stochastic decoding algorithm optimized for NB-

LPDC codes with variable node degree 2, called the RD2 algorithm, was proposed

in [8]. The RD2 decoding algorithm reduces the decoding complexity by reducing

the number of real multiplications significantly. An improved version of the RD2

algorithm, called the NoX decoding algorithm [2], is proposed to further reduce the

computational complexity.

Recently, a considerable amount of research effort has been spent on efficient

decoder architectures for NB-LDPC codes [9–17]. Existing NB-LDPC decoders still

suffer from low throughput and large hardware complexity. For example, a (248,

124) NB-LDPC decoder over GF(32) [15] achieves a throughput of 47.69 Mb/s at the

cost of 10.33 mm2 silicon area under 90nm technology. An (837, 726) NB-LDPC

decoder [16] over GF(32) achieves a throughput of 60Mb/s at the cost of 1.29M
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standard NAND gates using the 180nm technology. The FPGA implementation of

a (192, 96) stochastic AMSA decoder [9] over GF(256) achieves a throughput of

64Mb/s at the frequency of 108MHz.

1.1.2 Polar Codes

Polar codes, recently introduced by Arıkan [18], are a significant breakthrough in

coding theory. It is proved that polar codes can achieve the channel capacity of any

discrete or continuous memoryless channel [18, 19]. Polar codes can be efficiently

decoded by the low-complexity successive cancelation (SC) decoding algorithm [18]

with a complexity of O(N logN), where N is the block length. To approach the

channel capacity using the SC algorithm, polar codes require very large code block

length (for example, N > 220 [20]), which is impractical in many applications.

For short or moderate length, the error performance of polar codes under the SC

algorithm is worse than that of Turbo or low-density parity-check (LDPC) codes [21].

Lots of efforts [21–28] have already been devoted to the improvement of error-

correction performance of polar codes with short or moderate lengths. An SC list

(SCL) decoding algorithm was proposed recently in [21], which performs better

than the SC algorithm and performs almost the same as a maximum-likelihood

(ML) decoder [21]. In [22–24], the cyclic redundancy check (CRC) is used to pick

the output codeword from L candidates, where L is the list size. The CRC-aided

SCL algorithm performs much better than the SCL algorithm at the expense of

negligible loss in code rate.

In terms of hardware implementations of the SC algorithm, an efficient semi-

parallel SC decoder was proposed in [20], where resource sharing and semi-parallel

7
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processing were used to reduce the hardware complexity. An overlapped computa-

tion method and a pre-computation method were proposed in [29] to improve the

throughput and to reduce the decoding latency of SC decoders. Compared to the

semi-parallel decoder architecture in [20], the pre-computation based decoder archi-

tecture [29] can double the throughput. A simplified SC decoder for polar codes,

proposed in [30], reduces the decoding latency by more than 88% for a rate 0.7 polar

code with length 218.

Despite its significantly improved error performance, the hardware implementa-

tions of SC based list decoders [31–34] still suffer from long decoding latency and

limited throughput due to the serial decoding schedule. In order to reduce the de-

coding latency of an SC based list decoder, M (M > 1) bits are decoded in parallel

in [35–37], where the decoding latency can be reduced by M times ideally. How-

ever, for the hardware implementations of the algorithms in [35–37], the actually

achieved decoding latency reduction is less than M due to extra decoding cycles on

finding the L most reliable paths among 2ML candidates, where L is list size. A

software adaptive SSC-list-CRC decoder was proposed in [38]. For a (2048, 1723)

polar+CRC-32 code, the SSC-list-CRC decoder with L = 32 was shown to be about

7 times faster than an SC based list decoder. However, it is unclear whether the list

decoder in [38] is suitable for hardware implementation.

1.1.3 Error Control Decoders for RLNC

Random linear network coding (RLNC) is an efficient technique for disseminat-

ing information in networks (see, for example, [39–42]). Due to its random linear

operations, RLNC not only achieves network capacity with high probability in a
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distributed manner, but also provides robustness against varying network condi-

tions [43]. Unfortunately, it is highly susceptible to errors due to noise, malicious or

malfunctioning nodes, or insufficient min-cut [44]. As a result, error control is vital

for RLNC.

Error control methods proposed for RLNC assume two transmission models. The

methods for the first model (see, for example, [45]) depend on and take advantage

of the underlying network topology or the particular linear networking operations

performed at various nodes. The methods for the other model (see, e.g., [44, 46])

assume that both the transmitter and the receiver have no knowledge of such channel

transfer characteristics. The two models are referred to as coherent and noncoherent

network coding, respectively. In this paper, we focus on error control for noncoherent

RLNC.

An error control code for noncoherent network coding [44], called a subspace

code, is a set of subspaces. Information is encoded in the choice of a subspace

spanned by a set of transmitted packets. A subspace code is called a constant-

dimension code (CDC) if all subspaces are of the same dimension. CDCs lead to

simplified network protocols due to the constant dimension. A class of asymp-

totically optimal CDCs, referred to as Kötter-Kschischang (KK) codes, has been

proposed in [44]. A decoding algorithm based on interpolation for bivariate lin-

earized polynomials is also proposed for KK codes in [44]. It was shown in [46] that

KK codes correspond to lifting of Gabidulin codes, a class of optimal rank metric

codes. As a result, KK codes can be decoded by the generalized decoding algorithm

for the rank metric codes [46].
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Motivated by KK codes, a new family of subspace codes, referred to as Mahdavifar-

Vardy (MV) codes in this paper, was proposed [47–49]. List decoding, which has

been used to decode beyond the error correction diameter bound [50], can be applied

to the decoding of MV codes. Using algebraic list decoding, it was shown [49] that

MV codes can achieve a better tradeoff between rate and decoding radius than KK

codes.

Error control for RLNC comes at the expense of additional computations needed

for encoding and decoding. The complexities of existing decoding algorithms [44,

49, 51] for KK and MV codes are much higher than those of encoding, and are

hence critical to applications of RLNC. Most previous works focus on theoretical

aspects of network coding. For example, the decoding complexities of KK and MV

codes were analyzed in [44,46] and [47–49], respectively. However, theoretical anal-

ysis does not completely reflect how the decoding algorithms affect the hardware

implementation results, such as area and throughput. For KK codes, decoder ar-

chitectures based on the generalized decoding algorithm for rank metric codes [46]

was proposed in [43]. Unfortunately, the rank metric decoder architectures in [43]

suffer from limited throughput, long decoding latency and high area complexity.

Besides, to the best of our knowledge, decoder architectures for MV codes and their

hardware implementations have not been investigated in the open literature.

1.2 Contributions and Organization

This dissertation has the following contributions and is organized as follows.

• In Chapter 2, the shuffled decoding algorithm and its corresponding decoder
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architecture are investigated. Our main contributions of this chapter are two-

fold. First, we propose a shuffled schedule (SS) of the Min-Max algorithm

for NB-LDPC codes. To reduce the memory requirement and improve the

throughput, we also propose a modified shuffled schedule (MSS), which em-

ploys a novel shuffle sort (SST) algorithm to reduce the complexity of check

node processing significantly. Our simulation results show that both the SS

and MSS converge faster and have slightly better error performance than the

flooding schedule, and that the degradation of the MSS in error performance

as well as convergence rate is negligible. The simulation results also show that

the error performance of the MSS and layered schedule are almost the same.

Second, an efficient shuffled decoder architecture for NB QC-LDPC codes is

proposed based on the Min-Max algorithm using the modified shuffled sched-

ule. The proposed architecture has a similar top structure to other partly

parallel decoder architectures for binary and nonbinary LDPC codes. How-

ever, it has several key novelties: 1) its underlying modified shuffled schedule

is novel; 2) on-the-fly computation and hardware re-usage have been used to

reduce memory consumption and to improve the throughput; 3) a random

memory address generator (RMAG) has been employed in the check node

unit (CNU) to reduce the number of cycles required by CNP; 4) since the

variable node unit (VNU) becomes complex for decoders storing only the nm

most reliable values, the variable-to-check messages are stored in an improved

way so as to simplify the message access.

• In Chapter 3, a fully parallel decoder architecture based on the proposed

decoding algorithm is also proposed. The main contributions of this paper are
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as follows:

1. Based on the Min-Max algorithm, a reduced memory complexity trellis

based check node processing (RTBCP) algorithm is proposed.

2. A simplified algorithm is proposed to reduce the computational complex-

ity of variable node processing (VNP). As a result, compared with the

RHS algorithm in [2], a stochastic decoder, the proposed decoding al-

gorithm needs fewer real multiplications but more real comparisons and

finite field additions.

3. For each a priori message, all LLRs except several most reliable ones

are approximated with a linear function. Two kinds of low complexity

LLR generation units are also proposed for the approximation of the

check-to-variable (c-to-v) LLR and a priori LLR, respectively. With 5-

bit quantization scheme and nm = 32, the areas of the two LGUs are

10.7% and 13.3%, respectively, of that of an SRAM which stores an LLR

vector under a 90nm CMOS technology. A similar approach was proposed

in [52] to approximate a priori LLR. The main differences between our

work and that in [52] are as follows:

– Besides the approximation of channel LLR vectors, we try to approx-

imate check-to-variable LLR vectors.

– A simplified variable node processing (SVNP) algorithm is proposed

to compensate the performance degradation caused by LLR approx-

imation.

4. A parallel check node unit (CNU) and a low-latency variable node unit

(VNU) are proposed. Based on the proposed CNU and VNU, an efficient
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fully parallel decoder architecture is also proposed. A fully parallel NB-

LDPC decoders based on GF(256) is implemented with 28nm CMOS

technology. The decoder over GF(256) achieves a throughput of 546Mb/s

and an energy efficiency of 0.178nJ/b/iter.

Since routing congestion tends to be challenging for fully parallel LDPC de-

coder architectures, the proposed decoder architecture is not suitable for very

long LDPC codes. The proposed fully parallel decoder architecture is partic-

ularly advantageous for NB-LDPC codes over large fields, since the memory

reduction will be more significant when nm is large.

• In Chapter 4, we focus on efficient architectures and their hardware imple-

mentations of interpolation based decoders for KK and MV codes. The main

contributions of this paper are:

1. The decoder of KK codes has two stages: interpolation and factorization.

The generalized interpolation algorithm in [51] is used for the first stage

since it is more efficient than Gaussian elimination [51]. For factoriza-

tion, we propose a reformulated right division algorithm for linearized

polynomials, which is suitable for hardware implementations.

2. The list decoder of MV codes also has two stages: interpolation and

factorization. The generalized interpolation algorithm in [51] is used in

the interpolation process. A linearized Roth-Ruckenstein (LRR) algo-

rithm [53] is proposed in [47] to solve the factorization problem for MV

codes. In this paper, we make a more detailed study on the LRR algo-

rithm. For list size L = 2, we derive the equations used to compute all
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the information symbols and uncover the relation between two possible

solutions. A matrix based LRR (M-LRR) algorithm, which is suitable

for hardware implementations, is also proposed for factorization.

3. A serial decoder architecture and an unfolded decoder architecture for

KK codes are proposed for applications with moderate and high through-

puts, respectively. Both architectures are implemented for KK codes over

GF(28) and GF(216) to demonstrate their efficiency. To the best of our

knowledge, this is the first efficient implementation of interpolation-based

decoder for KK codes. Compared to the rank metric decoder architec-

tures for KK codes [43], the proposed serial decoder architecture improves

the throughput by 4.9 and 13.2 times, while its gate counts are only 56%

and 76% of their respective counterparts in [43]. Moreover, for these two

codes, the unfolded architecture achieves a throughput of 12.5Gb/s and

41.6Gb/s, much higher than the throughput of 214Mb/s and 134Mb/s

of their respective counterparts in [43]. The throughputs per thousand

NAND gates of our architectures are much higher and their latency much

shorter than their counterparts in [43].

4. A serial list decoder architecture for MV codes is proposed. To the best

of our knowledge, this is the first hardware implementation of MV de-

coders. An efficient architecture for solving equations over an extension

field GF(qml) (q > 2 is moderate) is proposed. The proposed equation

solver does not require complicated inversion operations over GF(qml).

Besides, an implementation of factorization that computes all L possible

transmitted packets in parallel is proposed, where L is the list size for
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list decoding.

• In Chapter 5, we propose the first hardware implementation of the CA-SCL

algorithm to the best of our knowledge. Based on both algorithmic and ar-

chitectural improvements, our decoder architecture achieves better error per-

formance and higher area efficiency compared with the decoder architecture

in [31]. Specifically, the major contributions of this work are:

1. Message memories account for a significant fraction of an SC or SCL

decoder [20,31]. In this chapter, an area efficient message memory archi-

tecture is proposed. Besides, a new compression method for the channel

messages is used to reduce the area of the proposed decoder architecture.

2. An efficient processing unit (PU) is proposed. For the proposed list de-

coder architecture, a fine grained PU profiling (FPP) algorithm is pro-

posed to determine the minimum quantization size of each input message

for each PU so that there is no message overflow. By using the quantiza-

tion size generated by the FPP algorithm for each PU, the overall area

of all PUs is reduced.

3. An efficient scalable path pruning unit (PPU) is proposed to control the

copying of decoding paths. Based on the proposed memory architecture

and the scalable PPU, our list decoder architecture is suitable for large

list sizes.

4. A low-complexity direct selection scheme is proposed for the CA-SCL

algorithm when a strong CRC is used (e.g. CRC32). The proposed

direct selection scheme simplifies the selection of the final output data
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word.

5. For a (1024, 512) rate-1
2

polar code, the proposed list decoder architec-

ture is implemented for list size L = 2 and 4, respectively, under a 90nm

CMOS technology. Compared with the decoder architecture in [31] syn-

thesized under the same technology, our decoder achieves 1.24 to 1.83

times area efficiency (throughput normalized by area). Besides, the pro-

posed CA-SCL decoder has better error performance compared with the

SCL decoder in [31].

• In Chapter 6, a tree based reduced latency list decoding algorithm and its

corresponding high throughput hardware architecture are proposed for polar

codes. The main contributions are:

– A tree based reduced latency list decoding (RLLD) algorithm over loga-

rithm likelihood ratio (LLR) domain is proposed for polar codes. Inspired

by the simplified successive cancelation (SSC) [30] decoding algorithm

and the ML-SSC algorithm [54], our RLLD algorithm performs the SC

based list decoding on a binary tree. Previous SCL decoding algorithms

visit all the nodes in the tree and consider all possibilities of the infor-

mation bits, while our RLLD algorithm visits much fewer nodes in the

tree and consider fewer possibilities of the information bits. When con-

figured properly, our RLLD algorithm significantly reduces the decoding

latency and hence improves throughput, while introducing little perfor-

mance degradation.
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– Based on our RLLD algorithm, a high throughput list decoder architec-

ture is proposed for polar codes. Compared with the state-of-arts SCL

decoders in [32, 33, 36], our list decoder achieves lower decoding latency

and higher area efficiency (throughput normalized by area).

More specifically, the major innovations of the proposed decoder architecture

are:

– An index based partial sum computation (IPC) algorithm is proposed to

avoid copying partial sums directly when one decoding path needs to be

copied to another. Compared with the lazy copy algorithm in [55], our

IPC algorithm is more hardware friendly since it copies only path indices,

while the lazy copy algorithm needs more complex index computation.

– Based on our IPC algorithm, a hybrid partial sum unit (Hyb-PSU) is

proposed so that our list decoder is suitable for larger block lengths.

The Hyb-PSU is able to store most of the partial sums in area efficient

memories such as register file (RF) or SRAM, while the partial sum units

(PSUs) in [31–33] store partial sums in registers, which need much larger

area when the block length N is larger. Compared with the PSU of [32],

our Hyb-PSU achieves an area saving of 23% and 63% for block length

N = 213 and 215, respectively, under the TSMC 90nm CMOS technology.

– For our RLLD algorithm, when certain types of nodes are visited, each

current decoding path splits into multiple ones, among which the L most

reliable paths are kept. In this paper, an efficient path pruning unit

(PPU) is proposed to find the L most reliable decoding paths among
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the split ones. For our high throughput list decoder architecture, the

proposed PPU is the key to the implementation of our RLLD algorithm.

– For the fixed-point implementation of our RLLD algorithm, a memory

efficient quantization (MEQ) scheme is used to reduce the number of

stored bits. Compared with the conventional quantization scheme, our

MEQ scheme reduces the number of stored bits by 17%, 25% and 27%

for block length N = 210, 213 and 215, respectively, at the cost of slight

error performance degradation.
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Chapter 2

An Efficient Shuffled Decoder

Architecture for Nonbinary

Quasi-Cyclic LDPC Codes

2.1 Introduction

Binary low-density parity-check (LDPC) codes are more and more popular in ap-

plications because of their capacity-approaching performance. In terms of perfor-

mance, binary LDPC codes start to show their weaknesses when the code word

length is small or moderate, or when higher order modulation is used for transmis-

sion. For these cases, nonbinary LDPC (NB-LDPC) codes over high order Galois

fields have shown great potential [3, 4]. For instance, in [1], a rate-1/2 NB-LDPC

code of length 84 over GF(64) is shown to perform 0.375dB better than a rate-1/2

binary irregular LDPC code of equivalent length 504 bits in [5] over binary input
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additive white Gaussian noise (AWGN) channel. Over the QAM-AWGN channels,

NB-LDPC codes with a field order greater than or equal to the size of constellation

have the advantage that the encoder/decoder works directly with symbols. All map-

ping choices of the codeword symbols to the constellation points are equivalent and

lead to the same performance. In [1], an NB-LDPC code over GF(256) performs

0.5dB better than a rate-1/2 binary LDPC codes of the equivalent length 1008 bits

over QAM256-AWGN channel.

A significant obstacle to the application of NB-LDPC codes is that their decoding

algorithms are of high complexity. Hence, a lot of research effort has been spent

on efficient decoding algorithms for NB-LDPC codes [3, 6, 56–58]. Among them,

the EMS [58] and the Min-Max [6] algorithms draw the most attention because

their low computation and memory complexity. Both the EMS and the Min-Max

algorithms can store only the nm (nm � q) most reliable messages, thus reducing

the memory requirement at the cost of small performance degradation. The check

node processing of the EMS algorithm needs addition and comparison operations,

while the Min-Max algorithm needs only maximization and comparison in check

node processing. The trellis-based check node processing (TBCP) algorithm [7]

reduces the computational complexity of check node processing (CNP) of the Min-

Max algorithm by eliminating unnecessary check-to-variable messages from CNP.

Recently, a considerable amount of research effort has already been spent on

efficient decoder architectures for NB-LDPC codes [7, 10, 11, 15, 59] based on the

EMS or the Min-Max algorithm. The existing NB-LDPC decoders still suffer from

low throughput and large hardware complexity. For example, a (248, 124) NB-

LDPC decoder over GF(32) [15] achieves a throughput of 47.69 Mb/s at the cost of
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10.33 mm2 silicon area under 90nm technology, while a (1200, 720) binary LDPC

decoder [60] achieves a throughput of 5.92 Gb/s at the cost of 13.5 mm2 silicon area

under 180nm technology.

The main contributions of this chapter are two-fold. First, we propose a shuffled

schedule (SS) of the Min-Max algorithm for NB-LDPC codes. To reduce the mem-

ory requirement and improve the throughput, we also propose a modified shuffled

schedule (MSS), which employs a novel shuffle sort (SST) algorithm to reduce the

complexity of check node processing significantly. Our simulation results show that

both the SS and MSS converge faster and have slightly better error performance

than the flooding schedule, and that the degradation of the MSS in error perfor-

mance as well as convergence rate is negligible. The simulation results also show

that the error performance of the MSS and layered schedule are almost the same.

Second, an efficient shuffled decoder architecture for NB QC-LDPC codes is pro-

posed based on the Min-Max algorithm using the modified shuffled schedule. The

proposed architecture has a similar top structure to other partly parallel decoder

architectures for binary and nonbinary LDPC codes. However, it has several key

novelties: 1) its underlying modified shuffled schedule is novel; 2) on-the-fly compu-

tation and hardware re-usage have been used to reduce memory consumption and to

improve the throughput; 3) a random memory address generator (RMAG) has been

employed in the check node unit (CNU) to reduce the number of cycles required by

CNP; 4) since the variable node unit (VNU) becomes complex for decoders storing

only the nm most reliable values, the variable-to-check messages are stored in an

improved way so as to simplify the message access.

For NB-LDPC codes, a shuffled schedule for the EMS algorithm was proposed
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in [1], and a shuffled schedule and a probabilistic shuffled schedule for the belief

propagation were proposed in [61]. The work herein differs from the previous works

in [1, 61] in three aspects. First, while the works in [61] and [1] focus on the belief

propagation and EMS decoding of NB-LDPC codes, respectively, our work considers

the Min-Max algorithm. Second, while our shuffled schedule is similar to those in [1,

61], our modified shuffled schedule with reduced-complexity check node processing

is novel. Third, while the works in [1, 61] focus on decoding algorithms, this work

considers not only decoding algorithms but also decoder architectures as well as

their hardware implementations.

For binary LDPC codes, a layered decoder architecture tends to be more efficient

than a shuffled decoder architecture. This is because both the CNP and variable

node processing (VNP) are relatively simple. However, for NB-LDPC codes, layered

decoder architectures [7, 15,59] have several drawbacks. First, The check node pro-

cessing of existing decoding algorithms for NB-LDPC codes is complex and requires

many cycles to finish. Processing the rows serially in the layered fashion requires

more cycles than processing all rows at the same time. Second, the variable node

processing for NB-LDPC codes is also complex compared to that of binary LDPC

codes. A round of variable node processing for a variable node takes 2nm cycles

for the nonbinary layered decoder architecture in [7]. Third, for layered decoder

architectures, the variable node processing may be performed several times for one

variable node during an iteration, leading to lower throughput. In contrast, the shuf-

fled decoder architecture proposed in this chapter processes all rows concurrently

and needs only a round of variable node processing for all variable nodes during an

iteration. This reduces the number of cycles needed for an iteration.
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The shuffled schedule has also been used in decoder architectures for binary

LDPC codes (see, e.g., [62]). However, each check to variable (c-2-v) or variable

to check (v-2-c) message is a vector for NB-LDPC codes, whereas each c-2-v or

v-2-c message is just a single log likelihood ratio (LLR) for binary codes. This

fundamental difference also leads to higher complexities for decoder architectures

of NB-LDPC codes than their binary counterparts. The key novelties mentioned

above also apply when comparing the proposed architecture herein with that in [62].

The rest of this chapter is organized as follows. Section 2.2 briefly reviews the

TBCP algorithm. Section 2.3 proposes the shuffled and modified shuffled schedule

and presents our simulation results. Our decoder architecture and the hardware

implementation results are presented in Section 2.4. The conclusion is drawn in

Section 2.5.

2.2 Background

Consider check node m and variable node n in the Tanner graph [63] defined by

H, respectively. Let M(n) denote the set of neighboring check nodes connected to

n, and N(m) the set of variable nodes connected to m. For a ∈ GF(q), let Ln(a)

be the a priori information of variable node n concerning the symbol a and Qn(a)

be the posteriori information of the same symbol. Rm,n(a) and Qm,n(a) denote

the messages passed from m to n and from n to m concerning a, respectively. Let

cn be the (n + 1)-th coordinate of a codeword and sn be the most likely symbol

for cn. The Min-Max decoding algorithm [6] can be formulated as follows, where

Imax denotes the maximal number of iterations and A(m|an = a)
def
= {(aj)(j ∈
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Figure 2.1: Messages sent form check node to variable node

N(m) \ {n})|
∑

j∈N(m)\{n} hm,jaj + hm,na = 0}:

Algorithm 1: Min-Max Algorithm [6]

Initialization:
Ln(a) =ln(Pr(cn = sn|channel)/Pr(cn = a|channel))
Qm,n(a) = Ln(a) (0 ≤ m < M, 0 ≤ a < q), i = 0
Iteration:
while HC 6= 0 and i < Imax do

check node Processing:
Rm,n(a) = min

(aj)∈A(m|an=a)
( max
j∈N(m)\{n}

Qm,j(aj))

variable node processing:
Q′m,n(a) = Ln(a) +

∑
m′∈M(n)Rm′,n(a)

Q′m,n = min
a∈GF (q)

Qm,n(a)

Qm,n(a) = Q′m,n(a)−Q′m,n
tentatively decoding:
cn = argmin

a
(Qm,n(a))

i = i+ 1

The Min-Max algorithm stores the nm most reliable messages. Suppose there

are n variable nodes connected with check node c. The truncated messages sent

from n variable nodes to check node c are shown in Fig. 2.1, where qv,c(k) is an LLR

value and qsv,c(k) ∈ GF (q), where GF(q) is a finite field with q elements. Each

v-2-c message contains nm LLRs and nm associated field symbols.

Normally, the CNP is performed in a forward-backward way [6], which is memory
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demanding. The TBCP algorithm [7] eliminates unnecessary v-2-c messages from

CNP, thus reducing the memory consumption. The TBCP algorithm first sorts these

n(nm−1) nonzero LLRs in non-decreasing order as xc(1), xc(2), · · · , xc(X), and only

the X smallest ones are kept. Their associated field symbols are αc(1), αc(2), · · · ,

αc(X), and they belong to variable nodes with indices ec(1), ec(2), · · · , ec(X). A path

construction (PC) algorithm shown in Algorithm 2 is proposed in [7] to compute the

truncated c-2-v message: rc,v and rsc,v, where rc,v is the nm-dimension LLR vector

and rsc,v is the associated field symbol.

Algorithm 2: PC Algorithm [7]

input : xc(i), αc(i), ec(i) i = 1, · · · , X; zc(v) v = 0, · · · , dc − 1; αsum
output: rc,v(j), rsc,v(j) for j = 0, · · · , nm − 1

Initialization:
rc,v(0) = 0, rsc,v(0) = αsum ⊕ zc(v), i = 1, cnt = 1, Pc,0 = [0, 0, · · · , 0]
while cnt < nm do

if ec(i) 6= v then
j = cnt
for k = 0 to j − 1 do

α = rsc,v(k)⊕ zc(ec(i))⊕ αc(i)
if Pc,k(ec(i)) 6= 1 for α 6∈ rsc,t then

rc,v(cnt) = xc(i); rsc,v(cnt) = α
Pc,cnt(ec(i)) = 1
Pc,cnt(s) = Pc,k(s) for s 6= ec(i)
cnt = cnt+ 1

i = i+ 1

As shown in Algorithm 2, zc(v) = αc,v(0), v = 1, · · · , n and αsum =
∑n

k=1 zc(j).

Pc,k is an n-dimension vector over GF(2) which stores the constructed path. ⊕

denotes addition over GF(q). The constructed nm LLRs are picked from the sorted

list xc(i), and stored in rc,v. Their associated field symbols are stored in rsc,v. X
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is set to 1.5nm [7] so that the decoding performance could be maintained. It takes

2nm iterations to compute rc,v, rsc,v [7].

2.3 Shuffled and Modified Shuffled Schedule

2.3.1 Shuffled Schedule

Suppose H is divided into G block columns: H = [H0 H1 ... HG−1], where Hi is an

M × g sub-matrix and g = N/G. Let M(n) denote the set of neighboring check

nodes connected to n, and N(m) denote the set of variable nodes connected to m.

Let Iv(i), Sv(i) for i = 0, · · · , nm − 1 denote an nm-ary a priori message, where

Iv is the LLR vector and Sv is the corresponding field symbol vector, respectively.

Let CM
(k)
c,l (i) = (x

(k)
c,l (i), α

(k)
c,l (i), e

(k)
c,l (i)) for i = 1, · · · , X, which are the inputs of the

PC algorithm [7] when computing updated c-2-v messages within block column l

in iteration k. Let (q
(k)
v,c , qs

(k)
v,c) and (r

(k)
c,v , rs

(k)
c,v ) denote a v-2-c and c-2-v message in

iteration k, respectively. Suppose the row weight for each Hi is exactly 1, which can

be easily satisfied by QC-LDPC codes. The proposed shuffled schedule is shown in

Algorithm 3.

During the initialization step, for each check node c, the init sort (IS) algorithm

sorts out X LLR values in a non-decreasing order from incoming dc(nm − 1) v-

2-c message elements, where dc is the corresponding check node degree. The IS

algorithm is shown in Algorithm 4, where n = dc; t, ts and ti are all X-dimension

vectors.

The block vnp(l) function in Algorithm 3 computes the corresponding q
(k+1)
v,c ,
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Algorithm 3: Shuffled Schedule

Initialization:

q
(0)
c,v = Iv, qs

(0)
c,v = Sv for c ∈M(v)

for c = 0 to M − 1 do

CM
(0)
c,0 = IS({(q(0)v,c , qs

(0)
v,c)|v ∈ N(c)})

Iteration:
for k = 0 to Imax − 1 do

for l = 0 to G− 1 do
for c = 0 to M − 1 do

for {v ∈ N(c) and lG ≤ v < (l + 1)G} do

(r
(k+1)
c,v , rs

(k+1)
c,v ) = PC(CM

(k)
c,v )

(q
(k+1)
v,c , qs

(k+1)
v,c ) = block vnp(l)

for c = 0 to M − 1 do
for v ∈ N(c) do

if v < (l + 1)G then

tqv,c = q
(k+1)
v,c ; tqsv,c = qs

(k+1)
v,c

else tqv,c = q
(k)
v,c ; tqsv,c = qs

(k)
v,c

CM
(k)
c,l+1 = IS({(tq(k+1)

v,c , tqs
(k+1)
v,c )|j ∈ N(c)})

CM
(k+1)
c,0 = CM

(k)
c,G
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Algorithm 4: IS Algorithm

input : (q
(k)
v,c , qs

(k)
v,c)|v ∈ N(c) = {v0, v2, · · · , vdc−1}

output: CM
(k)
c,l (i) = (x

(k)
c,l (i), α

(k)
c,l (i), e

(k)
c,l (i)) for i = 1, · · · , X

t(i) = q
(k)
v1,c(i), ts(i) = qs

(k)
v1,c(i), ti(i) = 0 for i = 1, 2, · · · , nm − 1

for j = 1 to dc − 1 do
a = b = 1
for i = 1 to X do

if t(a) ≤ q
(k)
vj ,c(b) then

T
(k)
c,l (i) = (t(a), ts(a), ti(a)); a = a+ 1

else T
(k)
c,l (i) = (q

(k)
vj ,c(b), q

(k)
vj ,c(b), j); b = b+ 1

(t(i), ts(i), ti(i)) = CM
(k)
c,l (i) for all i

CM
(k)
c,l = T

(k)
c,l

qs
(k+1)
v,c messages within block l. Take variable node v as an example. The q-

ary message Qv,c are firstly computed as Qv,c(s) = Lv(s) +
∑

c′∈M(j)\cRc′,v(s) for

s = 0, 1, · · · , q − 1. Here, Lv(s) = Iv(i) if Sv(i) = s, otherwise Lv(s) = Iv(nm − 1)

which is maximum of Iv. Besides, Rc′,v(s) = r
(k+1)
c′,v (ic′) if rs

(k+1)
c′,v (i′c) = s, otherwise

Rc′,v(s) = r
(k+1)
c′,v (nm − 1). Finally, q

(k+1)
v,c and qs

(k+1)
v,c are computed by sorting Qv,c.

2.3.2 Modified Shuffled Schedule

For the shuffled schedule in Algorithm 3, the computation of CM
(k)
c,l+1 employ the

IS algorithm, which needs (dc − 1)X comparisons. Thus, dc(dc − 1)X comparisons

are needed for computing all CM
(k)
c,l during an iteration. Besides, all v-2-c messages

need to be stored. This results in low throughput as well as a significant memory

requirement. Instead, we propose a modified shuffled schedule (MSS) which uses a

shuffled sort (SST) algorithm to compute CM
(k)
c,l+1 as shown in Algorithm 5.
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Algorithm 5: SST Algorithm

input : (q
(k+1)
v,c , qs

(k+1)
v,c , l),CM

(k)
c,l

output: CM
(k)
c,l+1

a = 1, b = 1, c = 1
for x = 0 to nm +X − 2 do

if e
(k)
c,l == l then b = b+ 1; continue

if q
(k+1)
v,c (a) ≤ x

(k)
c,l (b) then

CM
(k)
c,l+1(c) = (q

(k+1)
c,v (a), qs

(k+1)
c,v (a), l)

c = c+ 1, a = a+ 1

else CM
(k)
c,l+1(c) = CM

(k)
c,l (b); c = c+ 1, b = b+ 1

if c == X + 1 then break

The proposed SST algorithm needs at most nm+X−1 comparisons to compute

CM
(k)
c,l+1 based on CM

(k)
c,l and (q

(k+1)
v,c , qs

(k+1)
v,c ). It only takes at most (dc−1)X+(dc−

1)(nm +X − 1) = (dc − 1)(nm + 2X − 1) comparisons to compute all CM
(k)
c,l during

an iteration. Besides, only (q
(k+1)
v,c , qs

(k+1)
v,c ) need to be stored. As a result, compared

to the shuffled schedule in Algorithm 3, the MSS using the SST algorithm needs

fewer comparisons and less memory.

2.3.3 Simulation Results

Fig. 2.2 shows the frame error rate (FER) performance of the FFT-BP algorithm

and the Min-Max algorithm with flooding schedule, shuffled and modified shuffled

schedule as well as the layered schedule for three NB-LDPC codes on GF(32) [64]

over the AWGN channel with BPSK modulation. For our simulations, Imax = 30,

nm = 16, and X = 1.5nm = 24 for the SS and MSS. The flooding and layered
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Figure 2.2: FERs of selected codes
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schedule also use the TBCP algorithm in CNP. For all three codes, the error perfor-

mance with the MSS and SS is slightly better than that with the flooding schedule.

The layered schedule, the SS, and the MSS have nearly the same error performance,

which implies that the MSS results in little or no error performance degradation.

We also compare the convergence speed of the MSS, SS and layered schedule with

the flooding schedule in Fig. 2.3. Here IR0 = Nmss/Nf , IR1 = Nss/Nmss and LR =

Nl/Nf , where Nss, Nmss, Nf and Nl are the average numbers of iterations of the SS,

the MSS, the flooding and layered schedule, respectively. Several observations can

be made about Fig. 2.3. First, throughout the SNR range, IR0 < 1 and IR1 ≈ 1.

Thus, the MSS results in no degradation in convergence speed compared with the

SS, and both the MSS and SS converge faster than the flooding schedule. Second,

when FER is around 10−4, the average number of iteration of the MSS is only

60% − 70% of that of the flooding schedule. Third, IR0 and LR start to grow in

high SNR region, since even the flooding schedule converge very fast at high SNR.

Thus the advantage of the MSS and SS in convergence speed decreases when the

SNR is high. The same phenomenon was observed in [61].

As shown in Fig. 2.3, the layered schedule requires fewer iterations for the sim-

ulated codes than the MSS and SS, especially when the SNR is high. However, in a

hardware implementation, the MSS results in fewer clock cycles per iteration than

the layered schedule for two reasons. First, all rows can be processed at the same

time for the MSS, while only a block of rows can be processed concurrently for the

layered schedule. Second, the proposed MSS with the shuffled sort algorithm simpli-

fies the CNP after init sort is finished. In order to update the c-2-v messages in one

block column, only the updated v-2-c messages in the previous block column and
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Figure 2.4: CNU Architecture

old CMs are needed. As a result, the number of real value comparisons is reduced.

2.4 Shuffled Decoder Architecture

In this section, a shuffled decoder architecture with reduced memory consumption

and higher throughput is proposed for nonbinary QC-LDPC codes whose parity

check matrices consist of sub-matrices that are either the zero or shifted identity

matrices with nonzero entries replaced by elements of GF(q), where q = 2p.

2.4.1 Check Node Unit Architecture

The architecture of the proposed CNU which includes a top sorter and a path

constructor is shown in Fig. 2.4, where m denotes the quantization bits of an LLR

message and z = dlog2 dce. The top sorter provides corresponding inputs for the path

constructor which implements Algorithm 2. Take check node c as an example, the

top sorter in Fig. 2.4 computes CM
(0)
c,0 using the IS algorithm at the initialization step.

It also computes CM
(k)
c,l+1 for l = 0, 1, · · · , G− 1 using the SST algorithm during the

iteration process. Once CM
(k)
c,l is available, the path constructor computes updated

c-2-v messages within block column l using Algorithm 2.

The architecture of the proposed top sorter is shown in Fig. 2.5. It consists
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of a parallel porter (PS), two X×(m+p+z)-bits RAMs (RAM0 and RAM1) used

to store CM
(k)
c,l , and a random memory address generator (RMAG). Each word of

RAM0 and RAM1 stores an LLR value, the associated field symbol and index. At

the initialization step, the computation of CM
(0)
c,0 is carried out in dc rounds. In

the first round, q
(0)
v1,c and qs

(0)
v1,c are copied into the corresponding location of RAM0.

Besides, the index values of each word of RAM0 are set to 1. In the second round,

the temp results T
(0)
c,0 as shown in Algorithm 4 is stored in RAM1. In the next round,

T
(0)
c,0 will be stored in RAM0. This repeats until CM

(0)
c,0 is computed.
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The computation of CM
(k)
c,l+1 can be implemented in the same way as the com-

putation of CM
(0)
c,0 . However, extra cycles are spend on testing whether e

(k)
c,l = l as

shown in Algorithm 5. Under the worst condition, nm − 1 cycles are used on the

index testing. As shown in Fig. 2.6, a random memory address generator is pro-

posed to eliminate the cycles used in index testing during the computing of CM
(k)
c,l+1.

As a result, only X cycles are needed for the computation of CM
(k)
c,l+1. Assuming

X = 5, suppose we need to compute CM
(0)
c,1 , and CM

(0)
c,0 is stored in RAM0. Suppose

e
(0)
c,0(1) = e

(0)
c,0(3) = 0. Then the RMAG generates a read address sequence (0, 2, 4).

The RMAG first stores a binary sequence Sl = (s1, s2, · · · , sX), where si = 1

if e
(k)
c,l (i) = l, otherwise si = 0. Then, Sl is used to generate the read address

sequence for the computation of CM
(k)
c,l+1. As shown in Fig. 2.6, at the initiation

step, S0 is computed and stored in registers A0, A1, · · · , AX−1, which are used to

generate read address sequence when computing of CM
(0)
c,1 . Meanwhile, S1 are stored

in B0, B1, · · · , BX−1, which are used in the computation of CM
(0)
c,2 . This repeats until

the decoding of a codeword is finished. The First One Encoder outputs the smallest

i such that di = 1. The one-hot Encoder (OE) in Fig. 2.6 outputs a binary sequence

(e0, e1, · · · , eX−1), where ex = 1. ej = 0 if j 6= x. Here x is the decimal value of the

input of OE.

The proposed path constructor shown in Fig. 2.7 is almost the same as that

in [7] except: 1) the size of the CRAM is q×w instead of nm×w; 2) the maximum

of r
(k)
c,v is stored in MaxR; 3) part of the hardware in path construct will be used

in VNP. These improvements simplify VNP when only part of c-2-v messages are

stored. As shown in Fig. 2.7, r
(k)
c,v (i) is stored in the memory word whose address is

rs
(k)
c,v (i)⊗h−1i,j , where⊗ denotes multiplication over GF(q). According to Algorithm 2,
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Figure 2.7: Proposed Path Constructor Architecture

only nm LLRs are generated. So q−nm words of CRAM are undefined. During the

VNP, CRAM outputs Rc,v(s) to VNU. If one VNU needs Rc,v(s), then the input

vsym in Fig. 2.7 equals s. If s ∈ rs
(k)
c,v which is stored in nm p-bit registers, then

CRAM(s) is sent to the output. Otherwise, CRAM(s) is not defined and MaxR is

sent to the output.

2.4.2 Variable Node Unit Architecture

The proposed VNU architecture is similar to that used in binary LDPC decoder [65].

As shown in Fig. 2.8, suppose the variable node degree is 4, a w×q RAM (TempRAM

in Fig. 2.8) is employed to store channel LLR values in the same way that c-2-v

values are stored in the CRAM in Fig. 2.7. For variable node v, the proposed VNU

computes the q elements of Qv,c serially. Meanwhile, these q elements are sent to PS

which sorts out the nm minimal LLRs and their corresponding field symbols. The

architecture of PS is similar to the sorter proposed in [10], and hence is omitted in

this chapter.
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2.4.3 Top Decoder Architecture

Considering a nonbinary QC-LDPC code whose parity-check matrix H can be di-

vided into r × t sub-matrices of dimension s × s. Accordingly, H can be divided

into t block columns. The top architecture of the proposed shuffled decoder, shown

in Fig. 2.9, is a partly parallel architecture and hence has a similar top structure to

other partly parallel architectures (see, for example, [62,65]). M = r× s CNUs pro-

cess all rows concurrently. s VNUs process s columns concurrently. Two groups

of barrel shifters, BS0 and BS1, implements the interconnection between VNU

and CNU. The barrel shifter BS0 has s k-bit inputs and s k-bit outputs, where

k = m + dlog2 dve. The barrel shifter BS0 has s u-bit inputs and s u-bit outputs,

where u = max(m, q). The channel message RAM has two elements: LLR RAM and

its field symbol RAM. When a CNU needs to load messages from channel message

RAM, the LLR value and its associated field symbol will travel through BS0 and

BS1, respectively.

The decoding schedule of the proposed shuffled decoder is shown in Fig. 2.10.

During the initial sort process, the CNU loads channel LLR messages to compute

CM
(0)
c,0 . It takes nm + (dc − 1)(X + 1) cycles to compute all X elements of CM

(0)
c,0 .

Actually, the path construction (PCons) process can start two cycles later once
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Figure 2.9: Proposed shuffled decoder architecture for NB QC-LDPC codes

CM
(0)
c,0(1) is written into RAM0 or RAM1. At the same time, the RMAG will

begin to store the indexes compare results (SICR) to register Ai’s or Bi’s in RMAG

once CM
(0)
c,0(1) is available. Since the path construction takes 2nm cycles, the total

number of cycles used before iteration 1 is (dc − 2)(X + 1) + 3nm + 2. After the

initialization process, the shuffled decoder enters into regular iterations. Considering

the processing of block column 0 during iteration 1, VNP updates the v-2-c messages

within block column 0. The updated v-2-c messages (q
(1)
v,c , qs

(1)
v,c) are stored in the

PS. VNP takes q cycles. The shuffle sort (SST) will begin once the VNP is finished.

It takes only 1 + 1.5nm cycles to compute CM
(0)
c,1 , because the RMAG eliminates the

cycles used in index comparing. The Pcons process can start two cycles after the

SST starts. The number of cycles used for processing one block column then is just

2 + 2nm, because SST and Pcons are conducted at the same time. The processing

of the other block columns is the same of that of block column 0. The total number

of cycles used for decoding one received word is (dc − 2)(X + 1) + 3nm + 2 + dc(2 +

2nm + v)Imax.
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2.4.4 Implementation Results

A shuffled decoder architecture for an (837,726) QC-LDPC code over GF(25) is im-

plemented. nm and X are set to 16 and 24, respectively, to ensure good decoding

performance. Each LLR is represented by w = 5 bits with three integer and two

fractional bits. This quantization scheme introduces little error performance degra-

dation as shown in Fig. 2.2. Two stages of pipeline registers have been inserted as

shown in Fig. 2.9. The memories in CNU and VNU are implemented with register

files in order to improve the frequency that the decoder can work at. The decoder

is synthesized with Cadence RTL Compiler using an SMIC 130nm library. The syn-

thesis results are summarized in Table 2.1, where Ncycle denotes the total number of

clock cycles required to decode one received word (assuming 15 iterations). Suppose

the clock frequency for a decoder is f MHz, then the corresponding throughput

of proposed shuffled decoder is (fNbRcode)/Ncycle, where Nb and Rcode denote the

equivalent code length counted by binary bit and code rate, respectively. The effi-

ciency in Table 2.1 is defined by the throughput-to-gate-count ratio (Mbps/Million

gates).

Implementations in [7,15,59] for the same (837, 726) nonbinary QC-LDPC code

are also shown in Table 2.1 (the results presented in [7] are based not on synthesis
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Table 2.1: Decoder Complexity Comparison for an (837, 726) LDPC Code over
GF(32)

[7] [59] [15] proposed

Iterations 15 15 15 15
nm 16 32 8 16

Schedule layered layered layered MSS
Process (nm) N/A 180 90 130

Quantization bits 5 5 7 5
Frequency (MHz) 150 200 260 500

Ncycle 62240 53541 N/A 28215
Throughput (Mb/s) 10 16 29.0 64.3
Gate count (NAND) 1.27M 1.37M 3.28M 2.13M

Efficiency (Mbps/Mil gates) 7.87 11.67 8.84 30.18

but on estimation). The efficiency of the proposed decoder architecture is much

higher than these previous works. Compare with [59], the efficiency of our work is

almost 3 times of that in [59]. Even if the frequency of [59] doubles, our work is still

30% higher. The efficiency of our work is almost 4 times of that in [15] despite a

more advanced technology used in [15].

We remark that both the throughput and the efficiency assume that the decoding

takes 15 iterations. We adopt this definition for consistency, since the throughput

in [7,15,59] is also defined in the same fashion. While this definition reflects the worst

case instantaneous throughput of the decoder architecture, it does not account for

the convergence behavior of the decoding algorithm if early termination is enabled.

For the three codes in Fig. 2.3, the layered schedule reduces the required number of

iterations by less than 20% than the MSS. If we were to define the throughput to be

proportional to the number of iterations, our decoder architectures would still have

better throughput than those in [7, 15,59].
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As shown in Table 2.1, the proposed decoder architecture needs much fewer

clock cycles than those in [7, 59] based on the layered schedule. In addition to the

reasons discussed in introduction part, the improved throughput is also attributed

to two features of the proposed architecture. First, the RMAG reduces the number

of cycles used in the shuffled sorting and ensures that the path constructor always

gets some CM
(k)
c,l without waiting. Second, as shown in Fig. 2.10, part of the path

construction and the shuffle sorting process can be carried out simultaneously to

increase the throughput.

The proposed (837, 726) (Nb = 4185 bits) NB-LDPC decoder achieves a through-

put of 64.3 Mb/s and has a 13.28 mm2 silicon area under 130nm technology, while

a (4608, 4096) binary LDPC decoder [65] achieves a throughput of 2.1 Gb/s and

has a 1.92 mm2 silicon area under 65nm technology. This comparison indicates that

the decoding complexity and decoder architectures for NB-LDPC codes need to be

further improved.

2.5 Conclusion

In this chapter, we propose the shuffled and modified shuffled schedule of the Min-

Max decoding algorithm for NB-LDPC codes. Both the shuffled and modified shuf-

fled schedule have a slightly better error performance and converge faster than the

flooding schedule. Significantly reducing the complexity of check node processing,

the modified shuffled schedule leads to higher throughput and smaller memory re-

quirement while resulting in negligible degeneration in error performance and conver-

gence speed. Moreover, an efficient shuffled decoder architecture based on modified
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shuffled schedule for Quasi-Cyclic (QC) LDPC codes is also presented. With im-

proved CNU and VNU, the proposed decoder architecture needs much fewer clock

cycles to decoding a received word compared to state of arts design. The implemen-

tation of an (837, 726) LDPC decoder over GF(32) demonstrates the efficiency of

proposed architecture.
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Chapter 3

An Efficient Fully Parallel

Decoder Architecture for

Non-binary LDPC Codes

3.1 Introduction

Binary low-density parity-check (LDPC) codes are more and more popular in ap-

plications because of their capacity-approaching performance. In terms of perfor-

mance, binary LDPC codes start to show their weaknesses when the codeword length

is small or moderate, or when a higher order modulation is used. For these cases,

nonbinary LDPC (NB-LDPC) codes over high order Galois fields have shown great

potential [3, 4]. For instance, in [1], a rate-1/2 NB-LDPC code of length 84 over

GF(64) is shown to perform 0.375dB better than a rate-1/2 binary irregular LDPC

code of equivalent length 504 bits in [5] over binary input additive white Gaussian
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noise (AWGN) channel. Over the QAM-AWGN channels, NB-LDPC codes with

a field order greater than or equal to the size of constellation have the advantage

that the encoder/decoder works directly with symbols. All mapping choices of the

codeword symbols to the constellation points are equivalent and lead to the same

performance. In [1], an NB-LDPC code over GF(256) performs 0.5dB better than a

rate-1/2 binary LDPC codes of the equivalent length 1008 bits over QAM256-AWGN

channel.

A significant obstacle to the application of NB-LDPC codes is that their de-

coding algorithms have high complexities. Hence, a lot of research effort has been

spent on efficient decoding algorithms for NB-LDPC codes [1,6]. Among them, the

EMS [1] and the Min-Max [6] algorithms draw a lot of attention because of their low

computation and memory complexity. For an NB-LDPC code over GF(2m), both

the EMS and the Min-Max algorithms store only the nm (nm � 2m) most reliable

messages, thus reducing the memory requirement at the cost of small performance

degradation. The check node processing of the EMS algorithm needs additions and

comparisons, while the Min-Max algorithm needs only maximizations and compar-

isons in check node processing. The trellis-based check node processing (TBCP)

algorithm [7] reduces the computational complexity of check node processing of the

Min-Max algorithm by eliminating unnecessary check-to-variable messages.

Besides the Min-Max and EMS decoding algorithms, stochastic decoding [2,8,9]

is another way to reduce the hardware complexity of NB-LDPC decoders while

maintaining the decoding performance. Compared to conventional belief propa-

gation decoding algorithms, the stochastic decoding algorithm has lower hardware
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complexity [9]. The relaxed half-stochastic decoding algorithm optimized for NB-

LPDC codes with variable node degree 2, called the RD2 algorithm, was proposed

in [8]. The RD2 decoding algorithm reduces the decoding complexity by reducing

the number of real multiplications significantly. An improved version of the RD2

algorithm, called the NoX decoding algorithm [2], is proposed to further reduce the

computational complexity.

Recently, a considerable amount of research effort has been spent on efficient

decoder architectures for NB-LDPC codes [9–17]. Existing NB-LDPC decoders still

suffer from low throughput and large hardware complexity. For example, a (248,

124) NB-LDPC decoder over GF(32) [15] achieves a throughput of 47.69 Mb/s at the

cost of 10.33 mm2 silicon area under 90nm technology. An (837, 726) NB-LDPC

decoder [16] over GF(32) achieves a throughput of 60Mb/s at the cost of 1.29M

standard NAND gates using the 180nm technology. The FPGA implementation of

a (192, 96) stochastic AMSA decoder [9] over GF(256) achieves a throughput of

64Mb/s at the frequency of 108MHz.

In this chapter, several improvements are proposed to reduce both the mem-

ory requirements and computational complexities of the Min-Max algorithm. A

fully parallel decoder architecture based on the proposed decoding algorithm is also

proposed. The main contributions of this chapter are as follows:

1. Based on the Min-Max algorithm, a reduced memory complexity trellis based

check node processing (RTBCP) algorithm is proposed.

2. A simplified algorithm is proposed to reduce the computational complexity

of variable node processing (VNP). As a result, compared with the RHS al-

gorithm in [2], a stochastic decoder, the proposed decoding algorithm needs
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fewer real multiplications but more real comparisons and finite field additions.

3. For each a priori message, all LLRs except several most reliable ones are

approximated with a linear function. Two kinds of low complexity LLR gen-

eration units are also proposed for the approximation of the check-to-variable

(c-to-v) LLR and a priori LLR, respectively. With 5-bit quantization scheme

and nm = 32, the areas of the two LGUs are 10.7% and 13.3%, respectively, of

that of an SRAM which stores an LLR vector under a 90nm CMOS technol-

ogy. A similar approach was proposed in [52] to approximate a priori LLR.

The main differences between our work and that in [52] are as follows:

• Besides the approximation of channel LLR vectors, we try to approximate

check-to-variable LLR vectors.

• A simplified variable node processing (SVNP) algorithm is proposed to

compensate the performance degradation caused by LLR approximation.

4. A parallel check node unit (CNU) and a low-latency variable node unit (VNU)

are proposed. Based on the proposed CNU and VNU, an efficient fully parallel

decoder architecture is also proposed. A fully parallel NB-LDPC decoders

based on GF(256) is implemented with 28nm CMOS technology. The decoder

over GF(256) achieves a throughput of 546Mb/s and an energy efficiency of

0.178nJ/b/iter.

Since routing congestion tends to be challenging for fully parallel LDPC decoder

architectures, the proposed decoder architecture is not suitable for very long LDPC

codes. The proposed fully parallel decoder architecture is particularly advantageous

for NB-LDPC codes over large fields, since the memory reduction will be more
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significant when nm is large.

The rest of this chapter is organized as follows. Section 3.2 reviews the TBCP

algorithm. The RTBCP algorithm as well as the simplified variable node processing

algorithm is proposed in Section 3.3. The parallel CNU architecture, the low-latency

VNU architecture and the fully parallel decoder architecture are proposed in Sec-

tion 3.4. The implementation results and comparisons are presented in Section 3.5.

The conclusions are drawn in Section 5.6.

3.2 TBCP algorithm

3.2.1 Trellis based check node processing algorithm

Let GF(2m) be a Galois field with 2m elements. Let H = {hi,j} be a sparse parity

check matrix over GF(2m) with M rows and N columns. We focus on regular non-

binary LDPC codes, and hence assume H has constant row and column weights and

is an array of sparse circulants over GF(2m). Consider a check node c and a variable

node v in the Tanner graph defined by H. Let ε(v) denote the set of check nodes

adjacent to v, and τ(c) the set of variable nodes adjacent to c. For a ∈ GF(2m), let

Lv(a) be the a priori information of the variable node v concerning the symbol a.

For an LDPC code over GF(2m), check node processing is the most complex

part of the Min-Max algorithm [6,7]. The forward-backward approach [6] is widely

used in check node processing. However, both memory complexity and latency

are high for the forward-backward approach when the check node degree is high.

In [7], a TBCP algorithm is proposed to reduce the memory required by check
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node processing. Let dc be the check node degree of a check node c. The trun-

cated variable-to-check (v-to-c) message from a variable node v to a check node c

is (φv,c, φf
v,c), where φv,c is an nm-dimension LLR vector and φf

v,c is the associ-

ated nm-dimension Galois field symbol vector. For the Min-Max algorithm, the first

element of φv,c, φv,c(0), is always zero. The TBCP algorithm [7] first merges the in-

coming dc(nm− 1) nonzero LLRs in non-decreasing order as xc(0), xc(1), · · · . Their

associated Galois field symbols are αc(0), αc(1), · · · , and they belong to variable

nodes with indices ec(0), ec(1), · · · . For 1 ≤ X ≤ dc(nm − 1), a truncated message

vector mc = {mc(0),mc(1), · · · ,mc(X − 1)}, where mc(i) = (xc(i), αc(i), ec(i)) for

i = 0, 1, · · · , X − 1, is used by the path construction (PC) algorithm [7], shown in

Algorithm 6, to compute the updated c-to-v message (ρc,v,ρ
f
c,v).

Algorithm 6: Path Construction Algorithm [7]

input : mc(i) i = 0, 1, · · · , X − 1; zc; αsum
output: ρc,v(j), ρ

f
c,v(j) for j = 0, · · · , nm − 1

Initialization:
ρc,v(0) = 0, ρfc,v(0) = αsum ⊕ zc(v), i = 0, cnt = 1,Pc,0 = [0, 0, · · · , 0]

while cnt < nm do
if ec(i) 6= v then

j = cnt
for k = 0 to j − 1 do

α = ρfc,v(k)⊕ zc(ec(i))⊕ αc(i)
if Pc,k(ec(i)) 6= 1 and α 6∈ ρfc,t then

ρc,v(cnt) = xc(i); ρ
f
c,v(cnt) = α

Pc,cnt(ec(i)) = 1
Pc,cnt(s) = Pc,k(s) for s 6= ec(i)
cnt = cnt+ 1

i = i+ 1

As shown in Algorithm 6, zc(v) = φfv,c(0) for v ∈ τ(c) = {v0, v1, · · · , vdc−1} and
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αsum =
∑vdc−1

v=v0
zc(v). Algorithm 6 assumes a check node c and deals with variable

node v ∈ τ(c). Pc,cnt, which stores the constructed path, is a dc-dimension vector

over GF(2). ⊕ denotes addition over Galois field GF(2m). The constructed nm

LLRs are picked from the sorted list xc(i), and stored in ρc,v. Their associated

Galois field symbols are stored in ρfc,v. X is set to 1.5nm [7] so that at least nm

LLRs are generated for ρc,v. Suppose L is the number of times that the codes within

the for loop (lines 6 to 11) in Algorithm 6 are executed. In [7], L = 2nm.

The TBCP algorithm [7] computes all nm elements of a c-to-v message in serial.

The LLR and corresponding Galois field symbol of the most reliable element are

computed. The corresponding path information is also stored. Based on the path

information of the first element, the TBCP algorithm computes the LLR and Galois

field symbol of the second most reliable element. The third element is computed

based on the path information of the previous two elements. The process repeats

until all nm elements of a c-to-v message are computed. The LLR vector of a c-to-v

message is sorted in non-decreasing order once all nm elements are computed.

3.3 Improved Decoding Algorithm for NB-LDPC

Codes

3.3.1 RTBCP algorithm

In this section, a reduced complexity trellis based check node processing (RTBCP)

algorithm is proposed to reduce the complexity of check node processing further.

For a check node c, by observing the X LLR magnitudes of mc, it is found that these
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LLRs come from the first few elements of all dc connected v-to-c messages. As a

result, one can store only nv (nv < nm) elements for each truncated v-to-c message.

Usually, nv should satisfy that dcnv > X where dc is the check node degree. The

detailed value of nv can be determined by performance simulation. When dc is large,

nv could be much smaller than nm. Since only nv elements are needed, the memory

for v-to-c messages can be further reduced. Besides, normally, a length nm parallel

sorter [10] is used to store the nm minimum LLRs and sort them in non-decreasing

order. It will need a length nv parallel sorter if only nv elements are stored. Thus,

the overall hardware cost is further reduced.
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Figure 3.1: LLR evolution

Studying the magnitudes among the truncated nm LLRs of a c-to-v message, it is

found that the LLR vector can be approximated using a piece-wise linear function.

In Fig. 3.1, we plot the LLR evolution of a randomly picked c-to-v message during

the decoding of a (110, 88) QC-LDPC code over GF(256) [66] under BPSK-AWGN

channel. The signal to noise ratio (SNR) is 3.9dB. These LLRs are computed using

the PC algorithm in [7] with nm = 32. As shown in Fig. 3.1, these LLRs demonstrate
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piece-wise linearity during each iteration (a similar behavior is also demonstrated

by the LLRs for other SNR values).
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Figure 3.2: LLR approximation when nm = 32

Since the nm LLRs of ρc,v are generated in serial in Algorithm 6, we propose to

store only θc,v = ρc,v(nm − 1) and Mc,v = ρc,v(nc) during the while loop in Algo-

rithm 6, where nc is a parameter that can be determined by performance simulation.

Once the while loop is finished, the approximated LLR vector are computed with

the piece-wise linear function shown in Eq. (3.1), where η and β are scaling param-

eters to make the piece-wise interpolation more accurate. As shown in Fig. 3.2, we

approximate all the elements of an LLR vector using a piece-wise linear function:

ρ̂c,v(j) =

 η Mc,v

F (nc)
j j ≤ nc

Mc,v + β θc,v−Mc,v

F (nm)
(j − nc) j > nc,

(3.1)

where F (x) = 2dlog2 xe. Note that the divisions in Eq. (3.1) can be implemented

with bit shifting. If nc = 0, then all LLRs are approximated with a linear function.

When an LLR element is needed, it is computed using Eq. (3.1). This reduces the
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memory required to store the LLR vector for c-to-v messages.

Based on the above discussions, an improved path construction (IPC) algorithm

is also proposed as part of the RTBCP algorithm. The IPC algorithm differs from

the PC algorithm in [7] at two aspects. First, the if block in Algorithm 6 (lines 7 to

11) is changed to that shown in Algorithm 7, where each path pc,cnt is represented

by an integer index instead of a dc-dimension binary vector. Besides, pc,0 = dc for

the proposed IPC algorithm. For hardware implementations of the proposed IPC

algorithm, it needs only t bits to store an integer index, where t = log2 dc + 1 if dc

is a power of 2, and t = dlog2 dce if dc is not a power of 2. Besides, the process to

decide whether xc(i) is an element of ρc,v is also simplified. In addition, the number

of elements in the truncated message vector mc used in Algorithm 6, X, is reduced

to nm. For the proposed IPC algorithm, the number of loops of Algorithm 6, L, can

be smaller than 2nm. Second, when the while loop of Algorithm 6 is finished, all nm

LLR elements are computed using Eq. (3.1).

Algorithm 7: Improved if block

if pc,k 6= ec(i) and α 6∈ ρfc,t then
if cnt = nc then Mc,v = xc(i)
θc,v = xc(i); ρ

f
c,v(cnt) = α

pc,cnt = ec(i); cnt = cnt+ 1

3.3.2 LLR compression for a priori messages

Similar to the piece-wise linear approximation of the LLR vector of a c-to-v message,

part of the LLR vector of a a priori message can also be approximated by its

linear interpolation. Let Lv = (Lv(0), Lv(1), · · · , Lv(nm − 1)) be the sorted LLR
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vector estimated from the channel for a variable node v. The approximated LLR

vector is L̂v = (L̂v(0), L̂v(1), · · · , L̂v(nm − 1)), where L̂v(k) = Lc(k) for k ≤ nI and

L̂v(k) = Lc(nI) + ∆v(k − nI) for k > nI . Here ∆v = βv
Lv(nm−1)−Lv(nI)

F (nm)
and βv is a

scaling parameter. For hardware implementations, only nI (nI < nm) LLRs and ∆v

are stored.

3.3.3 Simplified variable node processing algorithm

In this chapter, a simplified variable node processing (SVNP) algorithm is proposed

in Algorithm 8, where dv is the degree for a variable node v, and (ρi,v,ρ
f
i,v) for

i = 0, 1, · · · , dv − 1 are dv c-to-v messages sent to variable node v. ρdv ,v = L̂v, and

ρfdv ,v = L̂f
v , where L̂f

v is the corresponding Galois field symbol vector of the a priori

LLR vector L̂v for a variable node v. h0,v, h1,v, · · · , hdc−1,v are dv nonzero Galois

field symbols associated with variable node v.

The FindLLR function returns ρw,v(k) such that hw,vFi,j = ρfw,v(k) for 0 ≤ w <

dc. For w = dc, the FindLLR function returns ρw,v(k) such that Fi,j = ρfw,v(k).

When w < dc, if hw,vFi,j 6∈ ρfw,v, the FindLLR function returns γθw,v, where γ

is a correction factor and θw,v is defined above. When w = dv, if Fi,j 6∈ ρfw,v,

θw,v = L̂v(nm − 1). li for i = 0, 1, · · · , dv are dv + 1 integer parameters. The SORT

function sorts Ri,v, which has at most lsum =
∑dv

i=0 li (lsum ≤ nm) LLR elements,

in non-decreasing order and stores the nv minimal LLRs and their corresponding

Galois field symbols in φv,i and φf
v,i, respectively.

The proposed SVNP algorithm first serially computes at most lsum elements of a

v-to-c message. Among them, only nv(nv < nm) most reliable elements are stored.

Thus, both the memory requirement and the computation complexity are reduced.
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Algorithm 8: SVNP algorithm

input : (ρ0,v,ρ
f
0,v), · · · , (ρdv ,v,ρ

f
dv ,v

); li, i = 0, 1, · · · , dv;
hi,v, i = 0, 1, · · · , dv − 1

output: (φv,i,φ
f
v,i), i = 0, 1, · · · , dv − 1

Initialization: Sv = ∅;Ri,v = ∅, RSi,v = ∅, i = 0, 1, · · · , dv − 1;

for i = 0 to dv do
for j = 0 to li − 1 do

if i < dv then Fi,j = h−1i,v ρ
f
i,v(j) ;

else Fi,j = ρfi,v(j);

if Fi,j 6∈ Sv then
push Fi,j into Sv;
for w = 0 to dv do

tw =FindLLR(Fi,j,ρw,v,ρ
f
w,v);

for w = 0 to dv − 1 do

push ((
∑dv

b=0 tb)− tw) into Rw,v;
push Fi,j into RSw,v;

for i = 0 to dv − 1 do

(φv,i,φ
f
v,i) = SORT(Ri,v, RSi,v);

For the VNP algorithm in [1], all the elements of the incoming c-to-v messages are

needed for a round of variable node processing. However, for each incoming c-to-v

message, only part of its elements are needed for variable node processing when

using the SVNP algorithm.

For a round of variable node processing of a variable node v, the computational

complexities of the proposed SVNP algorithm and the VNP algorithm in [1] are

dominated by real value additions and comparisons. Hence, we compare the numbers

of real additions and comparisons of these two algorithms in Table 3.1. Since nv <

nm and lsum ≤ nm, the numbers of real comparisons and additions of the VNP

algorithm in [1] are more than (3− 4
dv

)nm
nv

and 3− 4
dv

(3dv−4
dv

> 1 when dv > 2) times,
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respectively, of those of the proposed SVNP algorithm.

Table 3.1: Computational complexity comparison between the proposed SVNP and
the VNP algorithm in [1]

[1] SVNP

real comparisons (3dv − 4)nm log2(2nm) dvnv log2 lsum
real additions (3dv − 4)2nm dv2lsum

The complexity reduction brought by the SVNP algorithm is not obvious ac-

cording to Table 3.1. This is because (3dv − 4) = dv when dv = 2. Under this

condition, the advantage of the SVNP algorithm depends on the specific values of

nv and lsum, which in turn are selected by performance simulation. Thus, when

dv = 2 the advantage of SVNP algorithm may be code specific.

In Table 3.2, we compare the computational complexity per decoding iteration

of the proposed improved decoding algorithm (IDA) with that of the RHS algorithm

in [2], a stochastic decoder. For the proposed IDA, the computational complexity

of the proposed IPC algorithm depends on the v-to-c messages. To be conservative,

the maximal computational complexity of the IPC algorithm is assumed. As shown

in Table 3.2, compared with the RHS algorithm, the proposed IDA needs fewer

real multiplications but more real comparisons and additions over GF(2m). When

lsum < 2m, the proposed IDA needs fewer real additions than the RHS algorithm.

lsum could be smaller than 2m, as its value is determined by the decoding performance

simulation.

3.3.4 Numerical results

We compare the error performance of the proposed IPC and SVNP algorithms with

that of the original PC and VNP algorithm for a (110, 88) NB-LDPC code over
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Table 3.2: Computational complexity comparison between the improved decoding
algorithm and the RHS algorithm in [2]

RHS [2] proposed IDA

real comparisons 0
Ndvnv log2 lsum+

2Mdcn
2
m

real additions 2Ndv2m 2Ndvlsum
real multiplications N(3dv − 4)2m Mdc(nm − 2)
GF(2m) additions M(2dc − 2) 2Mdcn

2
m

GF(256) [66] with variable node degree 2 and check node degree 10 under the BPSK-

AWGN channel. In our simulations, nm = 32, the maximal number of iterations is

30, and the flooding schedule is used. The resulting bit error rate (BER) and frame

error rate (FER) are shown in Fig. 3.3 and Fig. 3.4, respectively, where PC-VNP

denotes the decoding algorithm with the original PC algorithm and variable node

processing algorithm in [1].
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Figure 3.3: BER performance of the (110, 88) NB-LDPC code over GF(256)

In Fig. 3.3, L denotes the number of loops required by the corresponding IPC
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Figure 3.4: FER performance of the (110, 88) NB-LDPC code over GF(256)

algorithm. PC-(i, j, k)-ω denotes the decoding algorithm with the original PC al-

gorithm and proposed SVNP algorithm with l0 = i, l1 = j, l2 = k and nv = ω.

IPCe-VNP denotes the decoding algorithm that employs the proposed IPC algo-

rithm with nc = e and the VNP algorithm in [1]. IPCe-(i, j, k)-ω denotes the

decoding algorithm with the proposed IPC algorithm with nc = e and the proposed

SVNP algorithm with l0 = i, l1 = j, l2 = k and nv = ω. For IPC0, β = 1.25. For

IPC3, η = 1.25, β = 1.75. γ = 1.25 for all simulated algorithms. For all IPCe-

(i, j, k)-ω algorithms, part of each a priori LLR messages are linearly approximated

with nI = 4 and βv = 1. For fixed point simulations, a (4,1) quantization scheme

is used, where four bits and one bit are used to represent the integer and fraction

parts of an LLR, respectively.

Based on the results shown in Fig. 3.3, several observations are made as follows:

1. The BER performance of the PC-VNP and PC-(4, 4, 10)-8 are nearly the same.
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The proposed SVNP algorithm does not introduce noticeable performance

degradation.

2. The IPC0-VNP decoding algorithm shows an early error floor, while the BER

performance of the IPC3-VNP is even better than that of the PC-VNP algo-

rithm.

3. The BER performance of the IPC3-(2, 2, 15)-8 is better than that of the PC-

VNP and IPC0-(2, 2, 10)-8 decoding algorithms. The decoding performance

of IPC3-(2, 2, 15)-8 is close to that of original Min-Max floating algorithm.

4. The IPC0-(2, 2, 10)-8 decoding algorithm performs better than the PC-VNP

and IPC0-VNP decoding algorithms.

5. Reducing the number of loops used by the IPC algorithm will worsen the

corresponding decoding performance.

6. For decoding algorithms that employ the SVNP algorithm, nv should be large

enough to maintain decoding performance.

Both the IPC3-VNP and IPC3-(2, 2, 15)-8 decoding algorithms perform better

than the PC-VNP algorithm. Since the propose LLR approximation can also be

viewed as a non-uniform scaling technique, the improved decoding performance can

be attributed to the non-uniform scaling of each element in an LLR vector. As is

well known, for binary LDPC codes, the scaling technique has been used to improve

the decoding performance of the Min-Sum algorithm [67].

The early error floor of the IPC0-VNP decoding algorithm may come from the

inaccurate LLR approximation of the IPC0 algorithm. The performance of the

IPC0-VNP algorithm is improved when the VNP algorithm is replaced with the

proposed SVNP algorithm. On the other hand, the performance of the IPC3-VNP
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algorithm and the IPC3-(2, 2, 15)-8 algorithm are almost the same. With proper

value for each li, it seems that the SVNP is less sensitive to the LLR deviation

caused by the LLR approximation of the IPC0 algorithm. A conceptual explanation

is shown as follows.

Take the IPC0-(2, 2, 10)-8 decoding algorithm as an example, where l0 = 2,

l1 = 2 and l2 = 10. It is possible that the transmitted code symbol for variable node v

lies in the first several elements in L̂f
v , which is the corresponding Galois field symbol

vector of the sorted LLR vector L̂v. For IPC0 algorithm, the LLR approximation

is not accurate enough. As a result, during variable node processing, the SVNP

algorithm considers only the few most reliable symbols and their associated LLRs

for each c-to-v message sent to variable node v. For these LLRs, the approximation

error tends to be small. On the other hand, the SVNP algorithm considers more

symbols from L̂f
v . In this way, symbols with approximated LLRs, which may degrade

the decoding performance, are excluded from variable node processing.

The proposed IPC and SVNP algorithms are also applied to a (372, 248) (dv = 4)

quasi-cyclic NB-LDPC (QC-NB-LDPC) code over GF(32) [68]. For both PC and

IPC algorithms, nm = 8. For IPC0-(1, 1, 1, 1, 6)-5 and IPC1-(1, 1, 1, 1, 6)-5

algorithms, nv = 5, nI = 4. As shown in Fig. 3.5, the BER performance of the

IPC0-(1, 1, 1, 1, 6)-5 and IPC1-(1, 1, 1, 1, 6)-5 algorithms is nearly the same as

that of the PC-VNP algorithm. Compared to original Min-Max floating algorithm,

IPC1-(1, 1, 1, 1, 6)-5 has 0.1dB performance degradation. The BER and FER

performance is shown in Fig. 3.5 and Fig. 3.6. For the fixed point simulation, a

(4,1) quantization scheme is used, where four bits and one bit are used to represent

the integer and faction parts of an LLR, respectively. For the (372, 248) code, the
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Figure 3.5: BER performance of the (372, 248) NB-LDPC code over GF(32)

IPC0-VNP algorithm does not show an early error floor.

3.4 Fully Parallel Decoder Architecture

3.4.1 Top decoder architecture

Suppose there are M rows and N columns in the parity-check matrix. As shown in

Fig. 5.5, the proposed decoder architecture employs M CNUs and N VNUs. The

main characteristics of proposed fully parallel decoder architecture are as follows:

1. Check node processing and variable node processing are interleaved. During

check (variable, respectively) node processing, all rows (columns, respectively)

of the parity check matrix are processed simultaneously.

2. For both c-to-v and v-to-c messages, each message element is transmitted in
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Figure 3.6: FER performance of the (372, 248) NB-LDPC code over GF(32)

M

N

Figure 3.7: Proposed fully parallel decoder architecture

serial via the CNU-to-VNU (C2V) or VNU-to-CNU (V2C) interconnection

networks, respectively. The C2V and V2C networks can be hard wires to

connect CNUs and VNUs. If multiple quasi-cyclic NB-LDPC (QC-NB-LDPC)

codes need to be supported, barrel shifters can be used instead.

3. For each c-to-v message, the LLR vector, which has nm LLR elements, is not

stored. Instead, only one or two LLRs are stored, and the others are computed

on-the-fly.

4. The proposed fully parallel decoder architecture is suitable for moderate or
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short length (around 103 bits) NB-LDPC codes over large fields.

3.4.2 Parallel CNU architecture

In this chapter, a parallel check node unit (CNU) is proposed for the proposed fully

parallel decoder architecture. The top architecture of the proposed CNU is shown

in Fig. 3.8, where m is the bit width of a Galois symbol, p is the number of the

quantization bits, r = dlog2 dve + p is the number of the quantization bits of the

LLRs sent to CNU, t is the bit width of the index. For a check node c, the proposed

CNU is capable of computing all the corresponding c-to-v messages, which are sent

from c, in parallel. For each c-to-v message, the nm elements are computed in serial.

m
p
z

p

p

m
m

p

m c,l
(k)

Figure 3.8: Parallel CNU architecture

As shown in Fig. 3.8, the parallel CNU for a check node c consists of dc parallel

sorters (PS), dc path constructors (PC), a minimal LLR finder (MLF) and a trun-

cated message register group (TMR). The proposed parallel CNU engages in both

check node processing and variable node processing. During variable node process-

ing, dc v-to-c messages are sent to CNU in parallel. Take PSi as an example, it

receives each element of the incoming v-to-c message in serial. Meanwhile, PSi sorts

out the nv minimum LLRs and their corresponding Galois field symbols from the

received v-to-c message. During check node processing, the MLF unit computes the
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truncated message vector mc. The X elements of mc are computed in serial and

stored in the TMR. At the same time, dc path constructors compute dc updated

c-to-v messages in parallel based on the proposed IPC algorithm. The computing

of mc and dc c-to-v messages are performed at the same time.

The architecture of the parallel sorter PSi, shown in Fig. 3.9, is similar to that

in [10]. The nv sorted LLRs and their corresponding Galois field symbols are stored

in LLR registers (LR) and symbol registers (SR), respectively. As shown in Fig. 3.9,

the mode signal configures the function of the PS. During variable node processing,

the PS acts as the parallel sorter in [10]. However, the PS acts as a shift regis-

ter group during check node processing. During check node processing, if shifti is

enabled, the shifting operations of LRi and SRi are defined as Li,j = Li,j+1 and

Si,j = Si,j+1, respectively, for j = 1, 2, · · · , nv − 2.

Li,Li,nv
i

i

r
m i

i

p

m
i

i

i

Li,

Si,S i,nv Si,

Figure 3.9: Parallel sorter architecture

The minimal LLR finder (MLF) unit computes the minimal LLR, the corre-

sponding Galois field symbol and index based on its inputs messages. Suppose the

number of input messages is 8, the macro architecture of the MLF unit is shown

in Fig. 3.10. Each input message Ii in Fig. 3.10 consists of three parts: the LLR

LOi, the corresponding Galois field symbol SOi, and the associated index idxi. The

MLF unit outputs the input message with the smallest LLR. The MLF unit is a

tree of compare-and-select (CAS) units. Each CAS unit has two input messages and

outputs the one with a smaller LLR.
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Figure 3.10: The macro architecture of MLF when the number of input is 8

It takes X cycles for the proposed MLF to compute all X elements of the trun-

cated message vector mc. Once the minimal nv LLRs are sorted out, mc(0) =

(xc(0), αc(0), ec(0)) is computed by the MLF unit. Meanwhile, if the output index

ec(0) = k(0 ≤ k < dc − 1), then shiftk is enabled to shift both the LRk and SRk

by one step at the next clock. Once LRk and SRk have been shifted, the MLF unit

computes mc(1) and generates the corresponding shift signal. This repeats until all

X elements of mc are generated. Once an element of mc is computed, it is stored

in the TMR, which consists of nm (p+m+ t)-bit registers. The truncated message

element mc(i) is stored in the i-th location. All the PC units within a CNU can

access the message stored in any location of the TMR simultaneously.

The path constructor unit computes updated c-to-v message (ρc,v,ρ
f
c,v) based

on the propose IPC algorithm. Take PCi as an example, the architecture of the

proposed PC unit is shown in Fig. 3.11, where sum =
∑dc−1

i=0 Si,0, and s = dlog2 nme

is the width of the write and read address for the symbol register group (SRG) with

nm total locations. During the computing of the first element of a c-to-v message,

the initial load (IL) signal equals 1 and ZS = Si,0. For the computing of other

63



3.4. FULLY PARALLEL DECODER ARCHITECTURE

elements, ZS = SI,0, where I = ec(ji), and ji is the location index of the truncated

message element in the TMR that is read by PCi. The index register group (IRG),

which contains nm t-bit registers, stores nm paths: pi,0, pi,1, · · · , pi,nm−1. Each path

is represented by a t-bit integer as shown in Algorithm 7. The SRG, which contains

nm m-bit registers, stores the Galois field symbol vector, ρfc,v. The SRG also tests

whether the input symbol (symIni) has already been stored. The proposed PC

unit reads the truncated messages from the TMR and computes the corresponding

updated c-to-v message in 2nm cycles. Compared to the path constructor in [7], the

hardware complexity of proposed PC unit is reduced for several reasons:

1. The memory used to store all nm paths is reduced. In [7], it needs nmdc bits

to store all nm paths. However, the proposed PC needs only nmt bits, where

t = log2 dc + 1 if dc is a power of 2, and t = dlog2 dce if dc is not a power of 2.

2. It is easier to determine whether xc(ji) is an LLR element of the updated

c-to-v message. As shown in Fig. 3.11, it only needs to compare whether two

indices are the same. In contrast, the PC unit in [7] needs to first encode the

t-bit index into a dc-bit binary sequence and then do the bit-test operation.

3. Due to LLR approximation, the proposed PC does not need an LLR RAM to

store the LLR vector of the updated c-to-v message. The PC shown in Fig. 3.11

adopts the approximation scheme with nc = 0. Thus, only the maximal LLR

θc,v is stored in the p-bit register, MR, shown in Fig. 3.11.

The SRG unit in CNU is moved to VNU in order to avoid the global connection

wires between different CNUs. This will be discussed in Sections 3.4.3 and 3.4.4.
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Figure 3.11: Path constructor architecture

For the proposed CNU, all PC units can access any element of the TMR simul-

taneously. The check node processing can be initiated once the nv LLR elements

are sorted out. From mc(0), each PC unit processes at most one element of mc

sequentially during each cycle. On the other hand, The MLF unit generates one

new element of mc during each cycle. As a result, the PC units and MLF unit can

work simultaneously. Thus, it takes L(L ≤ 2nm) cycles to finish a round of check

node processing.

3.4.3 Low-latency VNU architecture

Many previous works [7, 15] on the NB-LDPC decoder architecture focus on the

simplification of check node processing. However, variable node processing of current

NB-LDPC decoders has not been carefully examined. The variable node processing

for one layer takes 2nm cycles for the VNUs in [7,15]. A low latency VNP algorithm

is proposed in [69] to reduce the cycles from 2nm to LS−V N+nm, where LS−V N < nm.

However, the VNP algorithm in [69] works for the layered schedule. Usually, the

variable node processing for different layers are performed in serial, which leads to

reduced throughput.
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In this chapter, based on the proposed SVNP algorithm, a low-latency VNU

architecture is proposed to reduce the number of cycles used by variable node pro-

cessing. The proposed low-latency VNU architecture works for the flooding or shuf-

fled schedule. During an iteration, it takes only lsum cycles to finish variable node

processing for each variable node. For each c-to-v message sent to a variable node

v, only a fraction of the nm elements are used in variable node processing. Besides,

it still needs a fraction of the nm elements of each channel message during variable

node processing.
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Figure 3.12: VNU architecture assuming dv = 2

For a variable node v, suppose the variable node degree dv = 2, the proposed

VNU architecture is shown in Fig. 3.12. The VNU architecture for other dv values is

similar. The proposed VNU computes dv temporary v-to-c messages (Rw,v, RSw,v)

for w = 0, 1, · · · , dv − 1 as shown in Algorithm 8. Each temporary v-to-c message

has at most lsum elements, which are serially sent to the corresponding parallel

sorters in the CNU. As shown in Fig. 3.12, two symbol register groups, SRG0 and

SRG1, store the Galois field symbol vector for the c-to-v messages sent to v. Take

SRG0 as an example, the input multiplexors select cnuSymIn0 and cnuRA0 as its

Galois field symbol input and read address during check node processing. cnuSymIn0

and cnuRA0 are driven by symIn and RA in the corresponding PC unit shown in
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Fig. 3.11, respectively. The Galois field symbol vector for the a priori message

concerning v is stored in SRG2. The output sai is the address of the input Galois

field symbol in SRGi. If the the input symbol has not been stored in SRGi, sai =

nm − 1.

Based on the Galois field symbol vector stored in SRG, the proposed VNU per-

forms variable node processing. Not all nm elements of the LLR vector of a c-to-v

message are stored. Instead, at most two LLR elements are stored since the use

of the IPC algorithm. During variable node processing, each LLR element is com-

puted on-the-fly based on Eq. (3.1). This LLR approximation approach reduces the

memory required to store c-to-v messages. The LLR generation unit (LGU) com-

putes the corresponding approximated LLR for c-to-v messages. The channel LLR

generation unit (CGU) computes the approximated LLR for a priori message based

on the approximation scheme proposed in Section 3.3.2. Suppose lsum = l0 + l1 + l2

for dv = 2, variable node processing is carried out as follows:

1. The input multiplexors select vnuRA0 as the read address of SRG0. The

address signal, vnuRA0, goes from 0 to l0−1, and is increased by 1 each cycle.

The corresponding Galois field symbol output is so0. The input multiplexors

of SRG1 and SRG2 select si1,0 and si2,0 as the symbol inputs, respectively.

Here, si1,0 = so0h1/h0 and si2,0 = so0/h0, where h0 and h1 are the non-zero

Galois field symbol in the v-th column of the parity-check matrix. The output

multiplexor of SRG0 selects vnuRA0 as the address input of LGU0.

2. The output multiplexors of SRG1 and SRG2 select sa1 and sa2 as the address

inputs of LGU1 and CGU, respectively.
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3. Similar read operations will be applied to SRG1 and SRG2 in serial. vnuRA1

and vnuRA2 will go from 0 to l1− 1 and 0 to l2− 1, respectively. The reading

behavior of the SRGs during a round of variable node processing is shown in

Fig. 3.13. Besides, si0,1 = so1h0/h1, si0,2 = so2h0, si1,2 = so2h1 and si2,1 =

so1/h1, where so1 and so2 are the symbol output of SRG1 and SRG2, respec-

tively.
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Figure 3.13: Reading behavior of the SRGs during the variable node processing

Suppose nm = 32 and 5-bit quantization scheme is used. Based on the scaling

factors proposed in Section 3.3.4, we propose two low complexity LGUs for nc = 0

and 3, respectively. The LGU for nc = 0 is shown in Fig. 3.14(a), where maxLLR

is the maximum LLR stored during check node processing. The SC0 unit first

multiplies the input by β, then divides the product by F (nm), where F (nm) is a

power of 2. The division in SC0 is just bit shifting. The output of SC0 has 7 bits

for the fraction part. In the proposed LGU, only one bit is kept for the fraction

part. The ST0 unit returns the maximal value in the quantization range if the

input is saturated. Otherwise, the output of ST0 is the same as the input. The

LGU for nc = 3, shown in Fig. 3.14(b), is more complex than that for nc = 0 and

needs both fixed-point multiplication and addition. Mc,v, shown in Algorithm 7, is

another stored LLR. When the index is no greater than nc, the SC1 unit multiplies
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the input with η. Otherwise, the input of SC1 is multiplied with β. The product

is then divided by F (nc) or F (nm) using bit shifting. The functionality of ST1 is

similar to that of ST0. In addition, we also propose the CGU using the scaling

parameters from Section 3.3.4. As shown in Fig. 3.15, the architecture of CGU is

similar to that of LGU. The DEC unit in Fig. 3.15 generates the select signal for

the multiplexer in the CGU.
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Figure 3.14: Architectures of the proposed LGUs
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Figure 3.15: Architectures of the proposed CGU

Since nm = 32 5-bit LLRs need to be stored for the PC algorithm in [7], we

also synthesize the proposed LGUs and compare the synthesis results with that of

a (32 × 5)-bit SRAM module under a 90nm CMOS technology in Table 3.3. The

SRAM is built with a register file using a memory compiler. LGU-0 and LGU-3

denote the LGU unit with nc = 0 and nc = 3, respectively, and CGU-4 denotes

the CGU unit with nI = 4. The areas of the proposed LGUs and CGU are only
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a fraction of that of an SRAM storing 32 LLRs while maintaining the same clock

rate.

Table 3.3: Comparisons of LGUs and CGU with a 32×5 SRAM.

SRAM LGU-0 LGU-3 CGU-3

Frequency (MHz) 400 400 400 400
area (µm2) 7801 835 1031 1217
gate count 2763 295 365 431

3.4.4 Decoding schedule, decoder throughput, and inter-

connection

The decoding schedule of the proposed fully parallel decoder is simple. Take dv = 2

as an example, at the beginning of decoding, each a priori message is loaded into

SRG2 in its corresponding VNU. The compressed LLR messages are stored in the

CGU. At the same time, each message pair, which consists of an LLR and its

related Galois field symbol, is sent to the corresponding PS unit through the V2C

interconnection network. The loading of a priori messages takes nm cycles. Check

node processing begins once the loading of a priori messages is finished. The c-to-v

messages and the compressed message vector mc are updated at the same time,

since the MLF unit generates the elements of mc at a speed higher than the speed

at which the elements of mc are consumed by the PC unit. A round of check node

processing takes L cycles.

Variable node processing starts once check node processing is finished, and takes

lsum cycles. In order to improve the decoder’s clock frequency, P stages of pipeline

registers are inserted in the VNU. Each element of the computed v-to-c messages is

sent to the corresponding PS unit. For each v-to-c message, only the nv minimum

70



3.4. FULLY PARALLEL DECODER ARCHITECTURE

LLRs and their corresponding Galois filed symbols are stored in a non-decreasing

order in the corresponding PS unit. As a result, it takes L+ lsum cycles to finish an

iteration. The throughput T of the proposed fully parallel decoder is given by

T =
NmRf

NI(L+ lsum + P )
, (3.2)

where R is the code rate, f the clock rate, and NI the number of iterations.

Since the SRGs of each PC unit are moved to the corresponding VNU to avoid

global interconnection between different CNUs, the input control signals for the SRG

during check node processing are transmitted form CNUs to VNUs through the C2V

interconnection network. The output signal of the SRG that engages in the path

construction is transmitted through the V2C interconnection network. As shown in

Fig. 3.11, the control signals of the SRG during check node processing include: the

write and read addresses, the symbol input, and the write enable signal. The output

signals that go through the V2C network are existi and soi. As a result, the bus

width of each message that goes from CNUs to VNUs is b0 = max(m+p,m+2s+1),

where s = dlog2 nme is the width of the read and write address. The bus width of

each message that goes from VNUs to CNUs is b1 = m+r+1, where r = dlog2 dve+p

is the number of bits used to represent an output LLR of VNU.

It is well known that the main obstacle of the fully parallel decoder architec-

ture for binary LDPC codes is the routing congestion [70]. However, the routing

congestion for the proposed fully parallel NB-LDPC decoder architecture is allevi-

ated. The routing congestion is mainly determined by the number of the global

interconnection wires that connect between CNUs and VNUs and by the numbers
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of CNUs and VNUs instantiated in the decoder. For a binary (Nb,Mb) LDPC code

with average variable node degree dv, the fully parallel decoder in [70] needs Mb

CNUs and Nb VNUs, and the number of edges in the corresponding Tanner graph is

Nbdv. As a result, the number of the global interconnection wire is 2Nbdvp, where p

is the number of the quantization bits. For a NB-LDPC code over GF(2m) with the

same code length and code rate, the proposed fully parallel decoder will be easier

to route since the numbers of CNUs and VNUs are reduced to Mb/m and Nb/m,

respectively. Hence the number of the global interconnection wires is reduced to

Nbdv(b0 + b1)/m for the proposed decoder architecture.

It has been shown that for large fields (2m ≥ 64), the best NB-LDPC codes de-

coded with belief propagation should be ultra sparse (cyclic codes, dv = 2) [71]. The

proposed fully parallel decoder architecture is especially suitable for such codes with

moderate or short length. Suppose the length of a NB-LDPC code over GF(256) is

1024 bits. Let nm = 32, dv = 2 and p = 5. Based on the proposed fully parallel

decoder architecture, the implementation of this 1024-bit NB-LDPC decoder has

1024
8
× 2 × (19 + 15) = 8704 global interconnection wires. On the other hand, the

fully parallel LDPC decoder architecture in [70] for a 1024-bit binary LDPC code

with dv = 2 and p = 5 has 2 × 1024 × 2 × 5 = 20480 global interconnection wires.

This comparison demonstrates that the proposed fully parallel decoder architecture

for moderate or short NB-LDPC codes over large fields is feasible.

The proposed fully parallel decoder architecture not only works for QC-NB-

LDPC codes, but also works for irregular NB-LDPC codes.
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3.5 Implementation Results and Comparisons

In order to demonstrate the efficiency of our proposed fully parallel decoder archi-

tectures, we synthesize our NB-LDPC decoders using Design Compilerr Graphical

(DCG) by Synopsys. Since DCG tightens timing and area correlation between syn-

thesis and placement to 5% [72], the timing/area results obtained by using DCG

are very close to those produced by place and route tools, such as IC Compilerr.

For power estimation, the PrimeTimer PX (PTPX) is employed. For the power

estimation flow, the SPEF file generated by DCG is used to improve the accuracy of

the power consumption results. The process of employing DCG synthesis is shown

as follows:

1. Step 1: Perform the normal synthesis. Based on the cell area, determine the

floorplan constraints, such as core area, pin locations and placement bounds

and so on.

2. Step 2: Perform the DCG synthesis with these floorplan constraints.

3. Step 3: If the signal congestions predicted by DCG is not acceptable, revise

the floorplan constraints and repeat Step 2. Otherwise, the DCG synthesis is

finished.

Since the results in [15] are derived from place and route, we compare our DCG

results with those in [15] in terms of energy efficiency (consumed energy per decoded

bit) and area efficiency, where energy efficiency =
power

throughput
and area efficiency =

area
throughput

. In this chapter, the (110, 88) NB-LDPC decoder is synthesized with

DCG, and the power consumption is measured at the SNR point where BER is
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around 1× 10−6. The physical results are shown in Table 3.4, where TGR denotes

throughput to gate count ratio. Table 3.4 shows that our decoder architecture has

better area efficiency and energy efficiency than those in [15].

The implementation results in [14] are derived from synthesis with Design Com-

piler using 180nm CMOS technology. Only the gate count (the gate count of mem-

ory is estimated) and throughput are provided in [14] and area and power are not

available in [14]. In order to make a fair comparison, our fully parallel decoder is

also synthesized under 180nm CMOS technology, and we compare the TGR of our

decoder with those in [14]. The memory in [14] can be implemented with normal

dual port SRAM. The memory of the our proposed decoder architecture can be

implemented with the content addressable memory (CAM). Due to the lack of such

a memory compiler, the memories in our proposed decoders are implemented with

registers, and the gate counts of our decoder in Table 3.4 are the synthesis gate

counts. Since registers require more area than memories generated from a mem-

ory compiler, our decoder architectures would have smaller gate counts than those

in Table 3.4 if CAM modules were used. In terms of TGR, the proposed decoder

architecture is better than those in [14].

The stochastic decoding algorithm for NB-LDPC codes is promising due to its

low hardware complexity [9]. Besides, the stochastic decoding algorithm is a good

candidate for fully parallel LDPC decoder architectures. The FPGA implementation

of a (192, 96) NB-LDPC stochastic decoder over GF(256) [9] achieves a throughput

of 65Mb/s, and it is projected [9] that a corresponding ASIC implementation can

achieve a throughput of 698Mb/s, which would be 27% higher than the throughput

of our proposed decoder on GF(256). In the chapter, however, we did not compare
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our decoder architectures with that in [9] because the corresponding area, frequency

and power results under ASIC implementation are not provided in [9].

3.6 Conclusion

In this chapter, a reduced memory complexity trellis based check node processing

algorithm is proposed. An a priori message compression algorithm is also proposed

to reduce memory requirement further. A simplified algorithm is also proposed to

reduce the complexity of variable node processing. Based on the proposed algo-

rithms, a fully parallel decoder architecture for NB-LDPC codes. The hardware

efficiency of proposed fully decoder architecture is much higher than those of previ-

ous comparable decoder architectures in open literature.
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Table 3.4: Comparisons with other decoder architectures.

[15] [14] This work‡
Code GF(32) GF(32) GF(256) GF(32)

Block Length 248 372 110 372
Code Rate 0.55 0.66 0.8 0.66

Process 90nm 180nm 28nm 180nm
Core Area 10.33

- 1.289 -
(mm2) (0.99*)

Utilization - - 0.757 -
NAND Gate Count 1.92M 0.6M† 2.57M 4.1M
Frequency (MHz) 260 200 520 220

Iterations 10 10 10 10
Throughput 47.69

66 546 982
(Mb/s) (153.3*)
TGR 24.9

110 212.4 239.5
(Mb/s/Million gate) (79.6*)

Power (mW) 479 - 976 -
Energy Efficiency

(nJ/bit) 10.06 - 1.78 -
(nJ/bit/Iteration) 1.006 - 0.178 -

Area Efficiency 4.62
- 423.58 -

(Mb/s/mm2) (154.5*)

†The gate count of the memories in [14] is estimated, assuming
that one memory bit takes the area of 1.5 NAND gates.
‡The implementation results of this work are not as accurate as
those obtained from a place and route tool. In this work, the
memories are implemented as registers , and the gate count of
our decoder is obtained from DCG or normal synthesis.
* These results have been normalized to 28nm for comparison.
Since the voltage of the process in [15] is not available, the en-
ergy efficiency has not been scaled.

76



Chapter 4

Efficient Error Control Decoder

Architectures for Noncoherent

Random Linear Network Coding

4.1 Introduction

Random linear network coding (RLNC) is an efficient technique for disseminat-

ing information in networks (see, for example, [39–42]). Due to its random linear

operations, RLNC not only achieves network capacity with high probability in a

distributed manner, but also provides robustness against varying network condi-

tions [43]. Unfortunately, it is highly susceptible to errors due to noise, malicious or

malfunctioning nodes, or insufficient min-cut [44]. As a result, error control is vital

for RLNC.

Error control methods proposed for RLNC assume two transmission models. The
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methods for the first model (see, for example, [45]) depend on and take advantage

of the underlying network topology or the particular linear networking operations

performed at various nodes. The methods for the other model (see, e.g., [44,46]) as-

sume that both the transmitter and the receiver have no knowledge of such channel

transfer characteristics. The two models are referred to as coherent and nonco-

herent network coding, respectively. In this chapter, we focus on error control for

noncoherent RLNC.

An error control code for noncoherent network coding [44], called a subspace

code, is a set of subspaces. Information is encoded in the choice of a subspace

spanned by a set of transmitted packets. A subspace code is called a constant-

dimension code (CDC) if all subspaces are of the same dimension. CDCs lead to

simplified network protocols due to the constant dimension. A class of asymp-

totically optimal CDCs, referred to as Kötter-Kschischang (KK) codes, has been

proposed in [44]. A decoding algorithm based on interpolation for bivariate lin-

earized polynomials is also proposed for KK codes in [44]. It was shown in [46] that

KK codes correspond to lifting of Gabidulin codes, a class of optimal rank metric

codes. As a result, KK codes can be decoded by the generalized decoding algorithm

for the rank metric codes [46].

Motivated by KK codes, a new family of subspace codes, referred to as Mahdavifar-

Vardy (MV) codes in this chapter, was proposed [47–49]. List decoding, which has

been used to decode beyond the error correction diameter bound [50], can be applied

to the decoding of MV codes. Using algebraic list decoding, it was shown [49] that

MV codes can achieve a better tradeoff between rate and decoding radius than KK

codes.
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Error control for RLNC comes at the expense of additional computations needed

for encoding and decoding. The complexities of existing decoding algorithms [44,

49, 51] for KK and MV codes are much higher than those of encoding, and are

hence critical to applications of RLNC. Most previous works focus on theoretical

aspects of network coding. For example, the decoding complexities of KK and MV

codes were analyzed in [44,46] and [47–49], respectively. However, theoretical anal-

ysis does not completely reflect how the decoding algorithms affect the hardware

implementation results, such as area and throughput. For KK codes, decoder ar-

chitectures based on the generalized decoding algorithm for rank metric codes [46]

was proposed in [43]. Unfortunately, the rank metric decoder architectures in [43]

suffer from limited throughput, long decoding latency and high area complexity.

Besides, to the best of our knowledge, decoder architectures for MV codes and their

hardware implementations have not been investigated in the open literature.

In this chapter, we focus on efficient architectures and their hardware implemen-

tations of interpolation based decoders for KK and MV codes. The main contribu-

tions of this chapter are:

1. The decoder of KK codes has two stages: interpolation and factorization. The

generalized interpolation algorithm in [51] is used for the first stage since it is

more efficient than Gaussian elimination [51]. For factorization, we propose

a reformulated right division algorithm for linearized polynomials, which is

suitable for hardware implementations.

2. The list decoder of MV codes also has two stages: interpolation and factoriza-

tion. The generalized interpolation algorithm in [51] is used in the interpola-

tion process. A linearized Roth-Ruckenstein (LRR) algorithm [53] is proposed
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in [47] to solve the factorization problem for MV codes. In this chapter, we

make a more detailed study on the LRR algorithm. For list size L = 2, we

derive the equations used to compute all the information symbols and uncover

the relation between two possible solutions. A matrix based LRR (M-LRR)

algorithm, which is suitable for hardware implementations, is also proposed

for factorization.

3. A serial decoder architecture and an unfolded decoder architecture for KK

codes are proposed for applications with moderate and high throughputs, re-

spectively. Both architectures are implemented for KK codes over GF(28) and

GF(216) to demonstrate their efficiency. To the best of our knowledge, this is

the first efficient implementation of interpolation-based decoder for KK codes.

Compared to the rank metric decoder architectures for KK codes [43], the

proposed serial decoder architecture improves the throughput by 4.9 and 13.2

times, while its gate counts are only 56% and 76% of their respective counter-

parts in [43]. Moreover, for these two codes, the unfolded architecture achieves

a throughput of 12.5Gb/s and 41.6Gb/s, much higher than the throughput of

214Mb/s and 134Mb/s of their respective counterparts in [43]. The through-

puts per thousand NAND gates of our architectures are much higher and their

latency much shorter than their counterparts in [43].

4. A serial list decoder architecture for MV codes is proposed. To the best of

our knowledge, this is the first hardware implementation of MV decoders.

An efficient architecture for solving equations over an extension field GF(qml)

(q > 2 is moderate) is proposed. The proposed equation solver does not require
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complicated inversion operations over GF(qml). Besides, an implementation

of factorization that computes all L possible transmitted packets in parallel is

proposed, where L is the list size for list decoding.

The rest of the chapter is organized as follows. Section 4.2 provides some related

background about KK and MV codes. Our serial and unfolded decoder architectures

for KK codes are proposed in Section 4.3. Section 4.4 presents the list decoder

architecture for MV codes. Section 5.5 presents the implementation results, and

conclusions are drawn in Section 5.6.

4.2 KK and MV codes

4.2.1 KK codes and its decoding algorithms

KK codes [44] constitute an important class of subspace codes with constant dimen-

sions. A KK code over GF(2m) is described by three parameters (m, n, k), where

n is the dimension of the transmitted subspace and k is the number of information

symbols over GF(2m). A k-dimension information vector u = (u0, u1 · · · , uk−1)T is

treated as a linearized polynomial [46] u(x) = u0x
[0] +u1x

[1] + · · ·+uk−1x
[k−1], where

x[i] denotes x2
i

and ui ∈ GF(2m). In this chapter, for all linearized polynomials

u(x), deg(u(x)) = max{j : uj 6= 0} denotes the degree of u(x). The information

vector u is encoded into n packets over GF(2m): p0, p1, · · · , pn−1, where pi = (βi,

u(βi)) and β0, β1, · · · , βn−1 are linearly independent over GF(2m). Each packet

consists of two elements from GF(2m). After these n encoded packets are injected

into the network, N potentially corrupted packets (r0(s), r1(s))’s are received, where

r0(s), r1(s) ∈ GF(2m) for s = 0, 1, · · · , N − 1. Based on the received packets, the
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KK decoder produces û = (û0, û1, · · · , ûk−1)T .

Algorithm 9: Interpolation algorithm for KK codes [51]

input : (r0(s), r1(s)); s = 0, 1, · · · , N − 1
output: d(x, y) s.t. d(r0(s), r1(s)) = 0, s = 0, 1, · · · , N − 1

Initialization: f0(x, y) = x, f1(x, y) = y
for s = 0 to N − 1 do

for i = 0 to 1 do
∆i = fi(vs, ws)
Oi = max(deg(fi,x(x)), deg(fi,y(y)) + k − 1)

I0 = {i : ∆i 6= 0}; I1 = {i : ∆i = 0}
if I0 6= ∅ then

i∗ ← argmin
i∈I0

{Oi}

for i ∈ I0 do
if i 6= i∗ then

Fi(x, y) = ∆i∗fi + ∆ifi∗

else Fi(x, y) = fi
2 + ∆ifi

if I1 6= ∅ then
for i ∈ I1 do

Fi(x, y) = fi

f0(x, y) = F0, f1(x, y) = F1

O0 = max(deg(f0,x(x)), deg(f0,y(y)) + k − 1)
O1 = max(deg(f1,x(x)), deg(f1,y(y)) + k − 1)
if O0 ≤ O1 then

d(x, y) = f0(x, y)

else d(x, y) = f1(x, y)

The KK decoder in [44] consists of two stages. The first stage, called interpo-

lation, finds a nonzero bivariate linearized polynomial d(x, y) = dx(x) + dy(y) such

that d(r0(s), r1(s)) = 0 for s = 0, 1, · · · , N−1. The degrees of dx(x) and dy(y) are at

most m and m− k + 1, respectively. The second stage, referred to as factorization,
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obtains the transmitted information symbols by computing a linearized polyno-

mial û(x) such that d(x, û(x)) = 0. While the interpolation can be implemented

by solving a system of linear equations via Gaussian elimination, a more efficient

generalized interpolation algorithm in the ring of linearized polynomials has been

proposed in [51] (the interpolation algorithm proposed in [44] is in fact a special case

of this generalized interpolation algorithm). The generalized interpolation algorithm

in [51] adapted to the interpolation problem for an (m,n, k) KK code is shown in Al-

gorithm 9, where fi(x, y) = fi,x(x) + fi,y(y) is a bivariate linearized polynomial over

GF(2m). A rank metric decoder has also been proposed for KK codes in [46], and

its hardware implementation has been investigated in [43]. Unfortunately the rank

metric decoder architectures in [43] suffer from limited throughput, long decoding

latency, and high area complexity.

The interpolation algorithm in [51] for KK codes parallels Koetter’s interpola-

tion algorithm for RS codes. The comparison between these two algorithms are

shown in Table 4.1, where IRS denotes the interpolation algorithm for RS codes.

As shown in Table 4.1, the IRS algorithm and Algorithm 9 are similar in their poly-

nomial updating rules. The key difference lies in the fact that Algorithm 9 deals

with linearized polynomial while the IRS algorithm deals with polynomials. Due to

their differences in multiplications, interpolator architectures for RS codes are not

applicable to Algorithm 9.
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4.2.2 MV codes and its list decoding algorithm

MV codes are similar to but different from KK codes [44]. To enable list decoding,

different code constructions are proposed for different code dimensions in [47,48].

For an l-dimensional MV code over GF(qml), where l is a positive integer that

divides q − 1, the equation xl − 1 = 0 has l distinct roots e0 = 1, e1, . . . , el−1 over

GF(q). We first choose a primitive element γ of GF(qml) so that γ, γ[1], . . . , γ[ml−1]

form a normal basis of GF(qml), where γ[i] = γq
i
. We then construct elements

αi = γ + eiγ
[m] + e2i γ

[2m] + · · · + el−1i γ[m(l−1)] over GF(qml) for i = 0, 1, . . . , l − 1,

where ei’s are the l distinct roots of equation xl − 1 = 0 over GF(q). It is proved

in [48] that the set {α[j]
i : i = 0, 1, . . . , l−1, j = 0, 1, . . . ,m−1} is a basis of GF(qml)

over GF(q).

For an information vector u = (u0, u1, . . . , uk−1) over GF(q) and its correspond-

ing linearized polynomial u(x) =
∑k−1

i=0 uix
[i], let u⊗i(x) denote the composition of

u(x) with itself by i times for any nonnegative integer i, where

u⊗i(x) ,


x i = 0

u(x) i = 1

u(u⊗(i−1)(x)) i > 1

(4.1)

The information vector u is encoded into l packets p0, p1, . . . , pl−1, where

pi =

 (α0, u(α0), u
⊗2(α0), . . . , u

⊗L(α0)) i = 0

(αi,
u(αi)
αi

, . . . , u
⊗L(αi)
αi

) otherwise
(4.2)

and L is the desired list size. Each packet consists of L+ 1 elements in GF(qml). At
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the receiver, N potentially corrupted packets (r0(s), r1(s), · · · , rL(s))’s are received,

where r0(s), r1(s), · · · , rL(s) ∈ GF(qml) for s = 0, 1, · · · , N − 1.

Similar to the decoding of KK codes, the list decoding of MV codes is divided into

two stages: interpolation and factorization. The generalized interpolation algorithm

is also capable of performing the interpolation for the list decoding of MV codes.

The generalized interpolation algorithm adapted to the interpolation problem for

an l-dimensional MV code is shown in Algorithm 10.

As shown in Algorithm 10, fi(x, y1, · · · , yL) = fi,x(x)+fi,y1(y1)+ · · ·+fi,yL(yL) is

a nonzero multivariate linearized polynomial, where fi,x and fi,yj ’s (j = 1, 2, · · · , L)

are linearized polynomials. The maximal degrees of fi,x, fi,yj are (l+ t)L, (l+ t)L−

j(k− 1), respectively, where t < lL−L(L+ 1)k−1
2m

is the dimension of error packets

received. The output is a nonzero multivariate linearized polynomial d(x, y1, · · · , yL)

that satisfies d(r0(s), r1(s), · · · , rL(s)) = 0 for s = 0, 1, · · · , N−1. The interpolation

step is finished in N iterations.

The factorization step finds at most L possible solutions of u(x) for the following

equation:

d(x, u(x), u⊗2(x), · · · , u⊗L(x)) = 0. (4.3)

An LRR algorithm [47], shown in Algorithm 11, has been proposed to solve Eq. (4.3).

Let Y be a variable in the ring Lq[x], where Lq[x] is the set of linearized polynomials

with coefficients in GF(q). Since the output of Algorithm 10 is d(x, y1, · · · , yL) =

dx(x) + dy1(y1) + · · ·+ dyL(yL), Eq. (4.3) is equivalent to

d(x, Y ) = d0(x) + d1(x)⊗ Y + · · ·+ dL(x)⊗ Y ⊗L = 0 (4.4)

86



4.2. KK AND MV CODES

Algorithm 10: Interpolation algorithm for MV codes [51]

input : (r0(s), r1(s), · · · , rL(s)); s = 0, 1, · · · , N − 1
output: d(x, y1, · · · , yL) s.t. d(r0(s), r1(s), · · · , rL(s)) = 0, s = 0, 1, · · · , N − 1

Initialization: f0(x, y1, · · · , yL) = x, fi(x, y1, · · · , yL) = yi i = 1, 2, · · · , L
for s = 0 to N − 1 do

for i = 0 to L do
∆i = fi(r0(s), r1(s), · · · , rL(s))
dj = deg(fi,yj(y)) + j(k − 1)) for j = 1, 2, · · · , L
Oi = max(deg(fi,x(x), d1, d2, · · · , dL)

I0 = {i : ∆i 6= 0}; I1 = {i : ∆i = 0}
if I0 6= ∅ then

i∗ ← argmin
i∈I0

{Oi}

for i ∈ I0 do
if i 6= i∗ then

Fi(x, y1, · · · , yL) = ∆i∗fi + ∆ifi∗

else Fi(x, y1, · · · , yL) = ∆ifi
[1] + ∆

[1]
i fi

if I1 6= ∅ then
for i ∈ I1 do

Fi(x, y1, · · · , yL) = fi

f0 = F0, f1 = F1

for i = 0 to L do
dj = deg(fi,yj(y)) + j(k − 1)) for j = 1, 2, · · · , L
Oi = max(deg(fi,x(x), d1, d2, · · · , dL)

d(x, y1, · · · , yL) = f0
Omin = O0

for i = 1 to L do
if Oi < Omin then

d(x, y1, · · · , yL) = fi
Omin = Os
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where u(x) is the solution of Y and

di(x) =

 dx(x) i = 0

dyi(yi)|yi=x i > 0.
(4.5)

If the polynomial d(x, Y ) is divisible by x[s], then we define

d↓s(x, Y ) = d′0(x) + d′1(x)⊗ Y + · · ·+ d′L(x)⊗ Y ⊗L, (4.6)

where d′i(x)[s] = di(x).

Algorithm 11: LRR algorithm [47]

Procedure: LRR(d(x, Y ), k, λ)

Global variables: A ⊆ Lq[x], u(x) =
∑k−1

i=0 uix
[i] ∈ Lq[x]

Call procedure initially with d(x, Y ) 6= 0 λ = 0
if λ == 0 then

A = ∅
s← largest integer s.t. d(x, Y ) is divisible by x[s]

H(x, γ)← 1
x
d↓s(x, γx)

Z ← set of all roots of H(0, γ) in GF(q)
foreach γ ∈ Z do uλ ← γ
if λ < k − 1 then

LRR(d↓s(x, Y
[1] + γx), k, λ+ 1)

else
if d(x, uk−1x) == 0 then

A← A ∪ u(x)

As shown in Algorithm 11, the L possible solutions of u(x) are stored in the set

A. The original LRR algorithm is a high-level algorithm, the detailed expression of

d(x, Y ) are not specified in [47].
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4.3 Efficient KK decoder architectures

In this chapter we first propose a serial decoder architecture and an unfolded decoder

architecture for KK codes.

4.3.1 Serial decoder architecture

In order to minimize the hardware cost, a serial decoder architecture is proposed

in Fig. 4.1, where the widths of multi-bit buses are shown. The serial architecture

consists of the following major parts: coefficient registers CXRi and CYRi, two

interpolators interpolator0 and interpolator1, polynomial selection unit polySel, and

a polynomial divider polyDiv, which implements the factorization step. Algorithm 9

updates two bivariate linearized polynomials: fi(x, y) = fi,x(x) + fi,y(y) for i = 0

and 1, where fi,x(x) =
∑Nx−1

j=0 CEXi(j)x
[j] and fi,y(y) =

∑Ny−1
j=0 CEYi(j)y

[j] are

linearized polynomials in x and y, respectively. For i = 0 or 1, the coefficients of

fi,x(x) and fi,y(y) are stored in CXRi and CYRi, respectively. CXRi and CYRi

consist of Nx and Ny m-bit registers, respectively, since each element in GF(2m) is

represented by m bits. Nx − 1 and Ny − 1 are set to the maximal degrees of fi,x(x)

and fi,y(y), respectively, during the interpolation process. Hence, Nx = m + 1,

Ny = m− k + 2.

Interpolator0 and interpolator1 compute the updated coefficients for f0(x, y) and

f1(x, y), respectively, and write the updated coefficients back to CXR and CYR

during each cycle. Since interpolator0 and interpolator1 have the same circuitry,

the architecture of interpolator0 is discussed in Sec. 4.3.1. After the interpolation

is finished, the polySel unit selects f0(x, y) if O0 ≤ O1, or f1(x, y) otherwise. Since
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Figure 4.1: Serial KK decoder architecture
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the polySel unit can be easily implemented with the orderComp unit (see Fig. 4.4)

used for interpolator0, the details of the polySel unit are omitted. The coefficients

of the polynomial selected by the polySel unit will be stored in DCXR and DCYR,

which consist of Nx and Ny m-bit registers, respectively. The polyDiv unit will then

compute û based on a reformulated right division algorithm described in Sec. 4.3.1.
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Efficient interpolator architecture

The architecture of interpolator0 is shown in Fig. 4.2. It computes the corresponding

∆0 and O0 as well as the updated polynomial coefficients for f0(x, y) as specified in

Algorithm 9. Interpolator0 consists of Nx + Ny polynomial updating units (PUUs)

and the orderComp and polyEvl units. Each PUU generates a new coefficient during

each cycle. The polyEvl unit evaluates the corresponding linearized polynomial and

generates ∆0, and the orderComp unit generates O0. The number of bits needed for

O0 is l = dlog2 max {Nx, Ny + k − 1}e.

To achieve high throughput, a fully parallel architecture shown in Fig. 4.3 is used

for the polyEvl unit. In this work, all Galois field elements are represented with

respect to a normal basis so that the q-exponentiation operation will be a cyclic

shift. Suppose the normal basis representation for b =
∑m−1

j=0 γ
[j]bj ∈ GF(2m) is

(bm−1, bm−2, · · · , b0), where bj ∈ GF(2) and γ[j]’s constitute a normal basis. The

corresponding normal basis representation for b2 is (bm−2, · · · , b0, bm−1). In Fig. 4.3,

the computation of b[j] is carried out by the S(j) unit, which cyclicly shifts its input

by j positions and requires wiring only. The SUM0 in Fig. 4.3 performs bit-wise

XOR operations for their m-bit input messages. Finite field multiplications and

additions are also used in the polyEvl unit. Additions over GF(2m) are simply bit-

wise XOR operations. In this work, we use the improved Massey–Omura normal

basis multipliers proposed in our previous work [43, Sec. III-B].

The architecture of the orderComp unit is shown in Fig. 4.4. The IsZero unit

tests whether its m-bit input message is zero. The two priority decoders in Fig. 4.4

compute deg(f0,x(x))) and deg(f0,y(y)), respectively, and their outputs have lx =

dlog2Nxe and ly = dlog2Nye bits, respectively. In Fig. 4.4, k is the number of
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information symbols. A fixed-point adder that performs integer addition is used.

The MAX unit computes the maximum of its two inputs.

The two groups of PUUs in Fig. 4.2 — Ny PUUs on the left and Nx PUUs

on the right — update f0,y(y) and f0,x(x), respectively. Since all PUUs have the

same circuitry, the PUU that updates the coefficient of x[j] is shown in Fig. 4.5. In

Algorithm 9, f0(x, y) is updated in three different ways: 1) f0(x, y) = f0(x, y)2 +

∆0f0(x, y) when O0 < O1 and ∆0 is not zero; 2) f0(x, y) = ∆0f1(x, y) + ∆1f0(x, y)

when O0 > O1 and ∆0 is not zero; 3) f0(x, y) keeps unchanged when ∆0 is zero. As a

result, there are three different polynomial operations: 1) computing the square of a

linearized polynomial; 2) multiplying a linearized polynomial with a constant; and 3)

adding two linearized polynomials. The proposed PUU is configured to implement
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Figure 4.5: Architecture of the PUU that updates the coefficient of x[j]

these three operations with two control signals MSi and KEEPi.

Taking ∆0, ∆1, O0 and O1 as inputs, the control unit computes the control

signals

(KEEP0,KEEP1,MS0,MS1, c0, c
′
0, c1, c

′
1)

=



(1, 1, 0, 1,∆0,X,∆0,∆1) if ∆0 6= 0,∆1 6= 0, O0 ≤ O1

(1, 1, 1, 0,∆1,∆0,∆1,X) if ∆0 6= 0,∆1 6= 0, O0 > O1

(0, 1,X, 0,X,X,∆1,X) if ∆0 = 0,∆1 6= 0

(1, 0, 0,X,∆0,X,X,X) if ∆0 6= 0,∆1 = 0

, (4.7)

where X in Eq. (4.7) is “don’t care”.

Reformulated right division algorithm

In [44], a recursive right division procedure is proposed to solve factorization prob-

lem. In this chapter, the right division procedure [44] is reformulated in a non-

recursive manner. Let a(x) = dx(x) and b(x) = dy(y)|y=x. Let lc(a(x)) de-

note the leading coefficient of a(x). That is, if a(x) has degree d, i.e., a(x) =

adx
[d] + ad−1x

[d−1] + · · · + a0x
[0], then lc(a(x)) = ad 6= 0. The reformulated right

division algorithm is shown in Algorithm 12. The k messages symbols are recovered
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within at most k iterations.

Algorithm 12: Reformulated right division algorithm

Input: a(x) and b(x), b(x) 6≡ 0
Output: û = (û0, û1, · · · , ûk−1)

Initialization: j = 0; ûi = 0, for 0 ≤ i < k
while deg(a(x)) ≥ deg(b(x)) and a(x) 6= 0 do
d = deg(a(x)), e = deg(b(x)), q = d− e
ad = lc(a(x)), be = lc(b(x)), ûq = (ad/be)

[m−e]

t(x) = (ad/be)
[m−e]x[q], a(x) = a(x)− b(t(x))

j = j + 1
end while
if j > k or deg(a(x)) > 0 then

return decoding failure
end if
return û

Efficient factorization architecture

A parallel polynomial divider that implements Algorithm 12 is shown in Fig. 4.6,

where AX(j) and BX(j) denote the coefficients of x[j] for a(x) and b(x), respectively,

UAX(j) the updated coefficients for a(x), and coeff and pos a recovered information

symbol and its position in the information vector, respectively. The COS unit finds

the leading coefficient and the degree of a given linearized polynomial. The inv

unit computes the inversion of the leading coefficient lc(b(x)) of b(x). The CS unit

cyclicly shifts the m-bit input by m − e positions, where e is the degree of b(x).

S(j) cyclicly shifts its input by j positions and hence requires wiring only. The LS

unit has Ny m-bit inputs and Nx-1 m-bit outputs. As shown in Fig. 4.6, we have

L(j+pos) = BX(j) for j = 0, 1, · · · , Ny − 1. For other j, L(j)=0. In this work, a

parallel inversion architecture is employed, and such an architecture for inversions
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over GF(28) is shown in Fig. 4.7.
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Figure 4.6: Architecture of the polyDiv unit
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Figure 4.7: Parallel inversion architecture over GF(28)

Performance of the serial decoder architecture

We now consider the critical path delay (CPD), latency, and throughput of the serial

architecture in Fig. 4.1. The critical path delay of the polyDiv unit is given by TCOS

+ Tinv + Tmul + TCS + Tmul + Tadd, where TCOS is the delay of the COS unit

shown in Fig. 4.6 and Tinv, Tmul, and Tadd are the delays of finite field inversion,

multiplication, and addition, respectively. On the other hand, the critical path delay

of an interpolator is given by max{TpolyEvl, TorderComp} + Tctrl + TPUU. The

CPD of the polySel unit is negligible compared to those of the polyDiv unit and
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the interpolator. When m = 8, the CPDs of the polyDiv unit and the interpolator

are dominated by 5Tmul and 2Tmul, respectively. In order to balance the CPDs

between the polyDiv and interpolator, a stage of pipeline registers is inserted in the

polyDiv unit (indicated by the dotted line in Fig. 4.6).

For the serial architecture in Fig. 4.1, the interpolation needs N cycles, where N

is the number of linearly independent received packets. The maximal value of N is

set to 2n−k, since the decoder will fail if the number of errors exceeds its correction

capability when N > 2n − k. Without the pipeline registers, the factorization will

finish in M (M ≤ k) cycles, since the polyDiv unit recovers one non-zero information

symbol during each cycle. The polySel takes one cycle. In the worst case, it takes

at most N + 1 + k cycles to generate û. With the pipeline registers inserted in

the polyDiv unit as shown in Fig. 4.6, it takes 2M cycles to finish the polynomial

division, and the overall latency becomes N+1+2M . Once the coefficients of d(x, y),

which is the output of interpolation, are loaded into CXR and CYR, the interpolator

could start processing the following received packets while the polyDiv unit is still

inferring the previous information vector. The throughput of the proposed serial

decoder architecture is given by fmk
max(N,2M,1)

Mb/s, assuming that the clock rate of

the decoder is f MHz.

4.3.2 Unfolded decoder architecture

For modern network applications, a throughput well beyond several Gb/s is de-

sirable. Since the serial architecture described in Section 4.3.1 may not meet such

throughput requirements, an unfolded decoder architecture is also proposed for high

throughput scenarios. As shown in Algorithms 9 and 12, both the interpolation and
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right division algorithms contain a loop, and both algorithms will finish in limited

iterations. As a result, an unfolded architecture is proposed in Fig. 4.8.
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Figure 4.8: Unfolded decoder architecture

Compared with the serial decoder architecture, the unfolded architecture in

Fig. 4.8 has N stages of interpolator and k stages of polyDiv, where N is the

maximal number of received packets. For all received words, the N iterations of

an interpolation process are distributed to N pairs of interpolators. interpolatori,s

does the interpolation in iteration s of Algorithm 9 and passes the results to the

next stage of interpolators. Nx,s and Ny,s denote the numbers of registers needed by

interpolatori,s. The polyDivj unit implements iteration j of Alg. 12, and Dx,j and

Dy,j denote the numbers of registers needed by polyDivj.

Based on Algorithm 9, at the beginning of iteration s, (deg(fi,x(x)), deg(fi,y(y))) ≤
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(dx,s, dy,s) =


(s, 0) if 0 ≤ s ≤ k

(s, s− k) if k < s ≤ m

(m,m+ 1− k) if s > m

. Similarly, we can show that the

degrees of a(x) and b(x) at the beginning of iteration j of Alg. 12 are at most

px,j = m− j and py,j = m−k+ 1, respectively, for j = 0, 1, · · · , k−1. Thus, we can

use Nx,s = dx,s+ 1 and Ny,s = dy,s+ 1 registers for interpolatori,s and Dx,j = px,j + 1

and Dy,j = py,j + 1 registers for polyDivj. These upper bounds help to reduce the

hardware cost of the proposed unfolded decoder architecture.

The decoding latency of the unfolded decoder architecture is the same as that of

the serial architecture, but the throughput is fmk Mb/s, which is higher than the

serial architecture.

4.4 Efficient MV list Decoder Architecture

MV codes enable stronger error correction at the cost of higher computational com-

plexity. As shown in [48, Fig. 1], MV codes under list decoding enhance the average

decoding radius when packet rate is low. In this section, an efficient serial list de-

coder architecture for MV codes is proposed. Without loss of generality, we take

L = 2 as an example to simplify the presentation. The decoder architecture for a

different L is similar and can be easily obtained.

4.4.1 Serial list decoder architecture

A serial list decoder architecture for MV codes is shown in Fig. 4.9. When L = 2,

three multivariate linearized polynomials, f0(x, y1, y2), f1(x, y1, y2), and f2(x, y1, y2),
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participate in interpolation according to Algorithm 10, where fi(x, y1, y2) = fi,x(x)+

fi,y1(y1) + fi,y2(y2). As shown in Fig. 4.9, three groups of coefficient registers, CR0,

CR1, and CR2, store the coefficients of linearized polynomial f0, f1, and f2, re-

spectively. For each group of coefficient registers, CX, CY1, and CY2 store the

coefficients of fi,x, fi,y1 , and fi,y2 , respectively. The interpolator units perform the

interpolation step and update corresponding coefficient registers according to Algo-

rithm 10. Once the interpolation step is finished, the factorization unit computes

two possible transmitted information vectors.
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Figure 4.9: Unfolded decoder architecture

The coefficients of these multivariate linearized polynomials are elements in

GF(qml), where q = 2h. Each coefficient is represented by an ml-dimension vec-

tor over GF(q). As a result, each coefficient is represented by a z-bit binary vector

and stored in a z-bit register, where z = mlh.

The degree of each multivariate linearized polynomial may keep increasing during

the interpolation step. Besides, within the decoding radius, there is an upper bound

on the degree that each linearized polynomial can achieve. For an l-dimension MV
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code over GF(qml), if a transmitted information vector can be correctly recovered,

then the maximal values of deg(fi,x), deg(fi,y1), and deg(fi,y2) are (l+ t)L, (l+ t)L−

(k − 1), and (l + t)L − 2(k − 1), respectively, where t < lL − L(L + 1)k−1
2m

is the

dimension of error packets received. Let N0, N1 and N2 denote the numbers of z-bit

coefficient registers for CX, CY1 and CY2, respectively. Then, N0 = (l + t)L + 1,

N1 = (l+ t)L− (k− 1) + 1, N2 = (l+ t)L− 2(k− 1) + 1 and w = (N0 +N1 +N2)z.

Similar to the KK decoders proposed in Section 4.3, all the finite field arithmetic

operations for the decoding of MV codes are performed assuming a normal basis.

Suppose an element c =
∑ml−1

i=0 ciγ
[i] is represented as (cml−1, · · · , c1, c0) under nor-

mal basis, where γ[i]’s constitute a normal basis of GF(qml) and ci ∈ GF(q). We

also define c[−i] , g, where g[i] = c. Then, under normal basis, c[−1] is represented

as (c0, cml−1, · · · , c1).
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Figure 4.10: The architecture of interpolator0 for the proposed MV decoder

4.4.2 Efficient interpolator architecture for MV codes

The proposed interpolator for the serial MV list decoder is similar to that of the

KK decoders in Section 4.3. The interpolator architecture is shown in Fig. 4.10.

Interpolatori updates the coefficients of the multivariate linearized polynomial fi in

Algorithm 10. Take interpolator0 as an example. As shown in Fig. 4.10, interpolator0
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consists of polyEvl, orderComp and three groups of PUUs. The functions of these

units are similar to those of an interpolator for the KK decoders in Section 4.3. As

shown in Fig. 4.10, coef0, coef1 and coef2 denote the coefficients of f0, f1 and f2,

respectively. The architectures of polyEvl and orderComp are similar to those of the

KK decoders in Section 4.3. Let f0,x =
∑N0−1

i=0 CEX(i)x[i], f0,y1 =
∑N0−1

i=0 CEY1(i)y
[i]
1

and f0,y2 =
∑N0−1

i=0 CEY2(i)y
[i]
2 . The architectures of polyEvl and orderComp of

interpolator0 when L = 2 are shown in Fig. 4.11 and Fig. 4.12, respectively, where

all the multipliers are based on normal basis and z is the number of bits used to

represent a coefficient.
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S(0) S(2(N2-1))
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r2(s)

CEX0(0) CEX0(N0-1)
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z z z z z z

z
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Figure 4.11: Architecture of polyEvl for interpolator0 of the proposed MV decoder

k- k-

O0

0 0 N0 0 0 N1 0 0 N2
z z

IsZero IsZero
z z

IsZero IsZero
z z

IsZero IsZero

Figure 4.12: Architecture of orderComp for interpolator0 of the proposed MV de-
coder

The PUU of interpolator0, shown in Fig. 4.13, updates the coefficient of x[j]

for f0,x. The linearized polynomial f0 is updated in four different ways: 1) f0 =

∆1f0 + ∆0f1; 2) f0 = ∆2f0 + ∆0f1; 3) f0 = ∆0f
[1]
0 + ∆

[1]
0 f0 and 4) f0 remains
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Figure 4.13: Architecture of PUU that updates x[j] for interpolator0 of the proposed
MV decoder

the same. The proposed PUU in Fig. 4.13 is configured to implement any of these

updating operation with properly set control signals PS0, MS0 and KEEP0.

4.4.3 Efficient factorization architecture for MV codes

Hardware efficient matrix based LRR algorithm

An LRR algorithm is proposed in [47] to solve the factorization problem for the list

decoding of MV codes. For efficient hardware implementation of the factorization

algorithm, more details about the LRR algorithm should be derived.

In this chapter, assuming L = 2, we derive the expression of linearized polyno-

mial d↓s(x, Y ) in each iteration of Algorithm 11. We denote d↓s(x, Y ) as d(i)(x, Y )

during the computation of the information symbol ui. Based on d(i)(x, Y ), the equa-

tion used to compute ui is also derived. Here, Lemma 1 is given without proof since

it is straightforward.

Lemma 1. Let Y =
∑l

k=0 akx
[k] be an element in the ring Lq[x], and λ ∈ GF (q),

then (Y [1] + λx)[i] ⊗ (Y [1] + λx)[j] = Y [1+i] ⊗ Y [1+j] + λ2x[i+j].
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Let Yi denote Y ⊗ Y [i]. When L = 2, d(x, Y ) in Eq. (4.4) has the following

general form:

d(x, Y ) = d0,0x
[0] + · · ·+ d0,n0x

[n0]

+ d1,0Y
[0] + · · ·+ d1,n1Y

[n1]

+ d2,0(Y0)
[0] + · · ·+ d2,n2(Y0)

[n2],

(4.8)

where n0 = ml− 1, n1 = n0 − (k − 1), and n2 = n0 − 2(k − 1). Then, d(i)(x, Y ) has

the following general form:

d(i)(x, Y ) = d
(i)
0,0x

[0] + · · ·+ d
(i)
0,n0

x[n0]

+ d
(i)
1,0Y

[0] + · · ·+ d
(i)
1,n1

Y [n1]

+ d
(i)
2,0(Yi)

[0] + · · ·+ d
(i)
2,n2

(Yi)
[n2].

(4.9)

and d(0)(x, Y ) = d↓s(x, Y ). The equation to solve for u0 is d
(0)
2,0u

2
0 + d

(0)
1,0u0 + d

(0)
0,0 = 0.

The coefficients of d(i+1)(x, Y ) can be derived from d(i)(x, Y ). Let D(i)(x, Y ) =

d(i)(x, (Y [1] + uix)), then

D(i)(x, Y ) = d
(i)
0,0x

[0] + · · ·+ d
(i)
0,n0

x[n0]

+ d
(i)
1,0Y

[1] + · · ·+ d
(i)
1,n1

Y [n1+1]

+ d
(i)
1,0uix

[0] + · · ·+ d
(i)
1,n1

uix
[n1]

+ d
(i)
2,0(Yi+1)

[1] + · · ·+ d
(i)
2,n2

(Yi+1)
[n2+1]

+ d
(i)
2,0u

2
ix

[i] + · · ·+ d
(i)
2,n2

u2ix
[i+n2].

(4.10)
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Eq. (4.10) can be simplified to be

D(i)(x, Y ) = D
(i)
0 (x) +D

(i)
1 (Y ) +D

(i)
2 (Yi+1)

= D
(i)
0,0x

[0] + · · ·+D
(i)
0,n0

x[n0]

+ D
(i)
1,0Y

[1] + · · ·+D
(i)
1,n1

Y [n1+1]

+ D
(i)
2,0(Yi+1)

[1] + · · ·+D
(i)
2,n2

(Yi+1)
[n2+1],

(4.11)

where D0,j = d
(i)
0,j + d

(i)
1,jui for 0 ≤ j < i, D0,j = d

(i)
0,j + d

(i)
1,jui + d

(i)
2,ju

2
i for j ≥ i,

D1,j = d
(i)
1,j and D2,j = d

(i)
2,j for all j. Then, we have

d(i+1)(x, Y ) = D
(i)
↓s (x, Y ), (4.12)

where s is the largest integer s.t. D
(i)
0 (x), D

(i)
1 (Y ) and D

(i)
2 (Y ⊗ Y [i+1]) are divisible

by x[s], Y [s] and (Y ⊗Y [i+1])[s], respectively. Once d(i)(x, Y ) is determined, we obtain

an equation about ui, d
(i)(x, uix) = 0.

It is interesting to illustrate the root pattern of the factorization algorithm for

MV codes. Since L = 2, ui is a root of the following i+ 1 equations:



d
(i)
0,0 + d

(i)
1,0ui = 0

d
(i)
0,1 + d

(i)
1,1ui = 0

· · ·

d
(i)
0,i−1 + d

(i)
1,i−1ui = 0

d
(i)
0,i + d

(i)
1,iui + d

(i)
2,0u

2
i = 0.

(4.13)

The first nonzero equation in Eq. (4.13) is used to solve ui. The equation to derive

u0 is d
(0)
2,0u

2
0 + d

(0)
1,0u0 + d

(0)
0,0 = 0.
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Lemma 2. Consider a nonzero quadratic equation f(u) = au2 + bu+ c = 0, where

a, b, c ∈ GF(qml). Here u ∈ GF(q), where q = 2h. If f(u) = 0 has two distinct roots,

then a 6= 0, and b 6= 0. If f(u) = 0 has two identical roots, then a 6= 0, and b = 0.

If f(u) = 0 only has one root, then a = 0, b 6= 0.

The proof of Lemma 2 is omitted here since it is very straightforward. The

roots generation of the factorization process is shown in Fig. 4.14. Without loss

of generality, suppose the equation is f0(u0) = 0, derived from d(0)(x, Y ), which

has only one root u0. d(1)(x, Y ) is computed based on d(0)(x, Y ) and u0. The

equation f1(u1) = 0 also has only one root u1. The same root pattern repeats

until d(i)(x, Y ) is computed. Suppose fi(ui) = 0 has two different roots ui,0 and

ui,1. As a result, dl(i+1)(x, Y ) and dr(i+1)(x, Y ) are computed based on ui,0 and

ui,1, respectively. dl(i+1)(x, Y ) and dr(i+1)(x, Y ) are the linearized polynomials used

to derive the equations about ui+1,0 and ui+1,1, which are two possible values of

information symbol ui+1, respectively. Then we give the following two lemmas which

are proved in Appendix A and B, respectively.

d(i)(x,Y) dl(i+1)(x,Y)

dr(i+1)(x,Y)

ui,0

ui,1

fi+1,0(ui+1,0)

fi+1,1(ui+1,1)

dl(i+2)(x,Y)

fi+2,0(ui+2,0)

fi+2,1(ui+2,1)

dr(i+2)(x,Y)

ui+1,0

ui+1,1

d(0)(x,Y)

f0(u0)

d(1)(x,Y)

f1(u1)

u0

fi(ui)

Figure 4.14: Root pattern

Lemma 3. Both equations fi+1,0(ui+1,0) = 0 and fi+1,0(ui+1,0) = 0 have only one

root, where fi+1,0(ui+1,0) = 0 and fi+1,0(ui+1,0) = 0 are derived from dl(i+1)(x, Y )
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and dr(i+1)(x, Y ), respectively.

Lemma 4. The equation fi+j,0(ui+j,0) = 0, derived from dl(i+j)(x, Y ), has only one

root for j > 1. The same is true for dr(i+j)(x, Y ).

Based on the above discussions, for L = 2, the two possible output information

vectors have the following general form

u(0) = {u0, u1, · · · , ui,0, ui+1,0, · · · , uk−1,0}

u(1) = {u0, u1, · · · , ui,1, ui+1,1, · · · , uk−1,1}
(4.14)

where 0 ≤ i ≤ k−1. It is also possible that factorization produces only one solution.

Then u(0) = u(1). In this chapter, a matrix based LRR (M-LRR) algorithm that is

suitable for hardware implementation is proposed in Algorithm 13. Here, we assume

L = 2.

Algorithm 13: M-LRR algorithm

input : d(x, Y ), n0, n1, n2

output: u(0),u(1)

Initialization: M (0) = 03×n0 ,M
(1) = 03×n0

for i = 0 to 2 do
for j = 0 to ni do

M
(0)
i,j = M

(1)
i,j = di,j

for i = 0 to k − 1 do
M (0) = shiftPow(M (0)); M (1) = shiftPow(M (1))

u
(0)
i = solver0(M

(0), i); u
(1)
i = solver1(M

(1), i)

M (0) = matrixUpdate(M (0), u
(0)
i , i)

M (1) = matrixUpdate(M (1), u
(1)
i , i)

As shown in Algorithm 13, the coefficients of d(x, Y ), which are the output

of interpolation, are first copied into the coefficient matrices M (0) and M (1). The
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proposed M-LRR algorithm outputs at most two possible transmitted information

vectors. The shiftPow function is shown in Algorithm 14. The solver0 function in

Algorithm 13 is shown in Algorithm 15. The solver1 function is the same as solver0

except that it returns r1 when f(u) = 0 has two different roots. The matrixUpdate

function shown in Algorithm 16 updates coefficient matrices based on Eq. (4.10).

The shiftPow function preprocesses the coefficient matrix so that at least one

of M0,0, M1,0 and M2,0 is a nonzero coefficient, where M is the input matrix. Take

M (0) as an example, after preprocessing, the solver0 function derives the coefficients

of equation f
(0)
i (u0i ) = 0 and solves this equation. It is possible that f

(0)
i (u0i ) =

0 may have two distinct roots. However, only one root is selected as shown in

Algorithm 15. The matrixUpdate function updates the coefficient matrix that will

be used to compute the next information symbol.

Algorithm 14: shiftPow

input : M
output: M ′

Initialization: M ′ = 03×n0

i = 0
for j = 0 to n0 do

if M0,j 6= 0 or M1,j 6= 0 or M2,j 6= 0 then
i = j
break

for s = 0 to 2 do
for j = i to n0 do

M ′
s,j−i = M

[−i]
s,j
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Algorithm 15: solver0
input : M, i
output: ui

Initialization: a = 0, b = 0, c = 0, a, b, c ∈ GF (qml)
pow = 2
for j = 0 to i− 1 do

if M0,j 6= 0 or M1,j 6= 0 then
a = 0, b = M1,j, c = M0,j

pow = 1
break

if pow == 2 then
a = M2,i, b = M1,i, c = M0,i

f(u) = au2 + bu+ c
solve equation f(u) = 0, u ∈ GF (q) = {0, 1, · · · , q − 1}
If f(u) = 0 has only one root r, then ui = r
If f(u) = 0 has two roots r0 and r1, where r0 < r1, then ui = r0

Algorithm 16: matrixUpdate

input : M,ui, i
output: M ′

Initialization: M ′ = 03×n0

for j = 1 to i− 1 do
M ′

0,j−1 = (M0,j + uiM1,j)
[−1]

for j = i to n0 do
M ′

0,j−1 = (M0,j + uiM1,j + u2iM2,j)
[−1]

for j = 0 to n0 do

M ′
1,j = M

[−1]
1,j

M ′
2,j = M

[−1]
2,j
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Efficient implementation of the M-LRR algorithm

Based on the proposed M-LRR algorithm, a parallel factorization architecture for

list size L = 2 is proposed in Fig. 4.15. The proposed factorization architecture

computes two possible transmitted information vectors u(0) and u(1) at the same

time. It takes at most n0 cycles to compute all possible information symbols. As

shown in Fig. 4.15, after the interpolation step is finished, the output of polySel is

loaded into the matrix coefficient register M (0) and M (1). The equation coefficients

selector (ECS) unit computes the coefficients of f(u) as described in Algorithm 15.

The SV0 and SV1 units compute corresponding roots based on coefficients output

from the ECS unit. The coefficient matrix update (CMU) unit implements both the

shiftPow and matrixUpdate functions specified in Algorithms 14 and 16. Both ECS

and CMU can be implemented with combinational logic.

a b c

u(0)

zz z

h

n2z

n2z

n1z

n1z

z z z

z z zn0z

n0z

z z z

z z z

z z z

z z z
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n1z

n2z

abc

u(1)

z zz

h

n2z
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zzz

zzz

zzz
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n2z

n0z
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n2z

Figure 4.15: Architecture of factorization for MV decoder (L = 2)

The quadratic equation f(u) = 0 over GF(qml) is solved by enumeration. The

architecture of the proposed SV0 unit is shown in Fig. 4.16. As shown in Fig. 4.16,

the proposed SV0 consists of q equation checkers. The checker-i unit checks whether
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f(i) = 0, where i ∈ GF(q). It outputs zero if f(i) = 0. The root selector (RS) unit

chooses the final roots. The root selection rule is specified in Algorithm 15. The

architecture of SV1 is almost the same as SV0 except the slight difference in the

RS unit. The proposed SV0 architecture is suitable for small or moderate q. Both

hardware cost and critical path will increase dramatically when q is large.

It needs at most n0 = ml− 1 cycles to finish the factorization step. As a result,

the worst case throughput is fhk
max(N,n0)

Mb/s, where f is the clock frequency.

2 a b c

0

h

z

z z zh

zz

2

q-1

h

z

h

zz

1

h

z

h

zz h u

q 2 q

Figure 4.16: Architecture of SV0
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4.5 Implementation Results

The two decoder architectures proposed in Section 4.3 are implemented for the two

KK codes investigated in [43]: an (8, 8, 4) KK code over GF(28) and a (16, 16, 8) KK

code over GF(216). The technology we used is a Free PDK 45nm process [73] which is

the same as that used in [43]. In Table 4.2, we compare the implementation results

of our decoder architectures with those in [43] in terms of gate count, frequency,

throughput and latency. The gate count is measured by the two-input one-output

NAND gate. The throughput of the proposed serial KK decoder architecture over

GF(28) and GF(216) is 4.9 and 13.2 times of that of designs in [43], respectively,

while the gate count is only 56% and 76% of that of the designs in [43], respec-

tively. The unfolded decoder architecture achieves a throughput of 12.5Gb/s and

41.6Gb/s, respectively. The latency of the rank metric decoders in [43] over GF(28)

and GF(216) is 8.6 and 20.9 times of the proposed serial and unfolded architectures.

The throughput per thousand NAND gates (throughput divided by the gate

count in thousands) of the proposed serial and unfolded KK decoder architectures

are much higher than the architectures in [43]. The throughput per thousand NAND

gates of the unfolded architecture is higher than that of the serial architecture,

because the upper bounds on Nx,s, Ny,s, Dx,j, and Dy,j above reduce the hardware

cost of coefficient registers, interpolators and the polyDiv units of the unfolded

architecture.

The proposed serial list decoder architecture is also implemented for a 2-dimensional

MV code over GF(46), where k = 3, l = 3, L = 2. As shown in Table 4.2, the pro-

posed MV decoder achieves a throughput of 193Mb/s at the cost of 341.8k gates.

For KK and MV codes, the code parameters are restricted by the size of the finite
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field. The decoding complexity of long KK and MV codes may increase significantly

when the field size is large. In this chapter, we focus on KK and MV codes with

small parameters to reduce complexity. However, for practical applications, the

packet size is usually at the magnitude of several thousands of bytes. The proposed

decoder architectures also work for long codes based on Cartesian products of KK

or MV codes [43,46]. For example, suppose the packet length is 1000 bytes, we can

use the Cartesian product of 250 (8, 8, 4) KK codes over GF(28) to get a code of

length 2000 bytes. In this case, the evaluation of 250 polynomials are placed into

a single packet. The decoding of long packets is just the decoding of these 250 KK

codes. Based on the hardware complexity limit and throughput requirement, we

can use one or multiple (8,8,4) KK decoders.

4.6 Conclusion

In this chapter, based on a generalized interpolation and a reformulated right divi-

sion algorithms, an area efficient serial decoder architecture and a high throughput

unfolded decoder architecture are proposed for KK codes. The implementation re-

sults show that the proposed decoder architectures are much more efficient than

previously proposed rank metric decoder architectures. A serial list decoder archi-

tecture for MV codes is also proposed. An M-LRR algorithm is proposed for efficient

implementation of the factorization step of the decoding of MV codes. The synthe-

sis results demonstrate that the proposed list decoder architecture for MV codes

is feasible for hardware implementation. Future works include developing efficient

decoder architecture for fields with large sizes to achieve a good tradeoff between
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error correction capability and hardware complexity.
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Chapter 5

An Efficient List Decoder

Architecture for Polar Codes

5.1 Introduction

Polar codes, recently introduced by Arıkan [18], are a significant breakthrough in

coding theory. It is proved that polar codes can achieve the channel capacity of any

discrete or continuous memoryless channel [18, 19]. Polar codes can be efficiently

decoded by the low-complexity successive cancelation (SC) decoding algorithm [18]

with a complexity of O(N logN), where N is the block length. To approach the

channel capacity using the SC algorithm, polar codes require very large code block

length (for example, N > 220 [20]), which is impractical in many applications.

For short or moderate length, the error performance of polar codes under the SC

algorithm is worse than that of Turbo or low-density parity-check (LDPC) codes [21].
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Lots of efforts [21–28] have already been devoted to the improvement of error-

correction performance of polar codes with short or moderate lengths. An SC list

(SCL) decoding algorithm was proposed recently in [21], which performs better

than the SC algorithm and performs almost the same as a maximum-likelihood

(ML) decoder [21]. In [22–24], the cyclic redundancy check (CRC) is used to pick

the output codeword from L candidates, where L is the list size. The CRC-aided

SCL algorithm performs much better than the SCL algorithm at the expense of

negligible loss in code rate.

In terms of hardware implementations of the SC algorithm, an efficient semi-

parallel SC decoder was proposed in [20], where resource sharing and semi-parallel

processing were used to reduce the hardware complexity. An overlapped computa-

tion method and a pre-computation method were proposed in [29] to improve the

throughput and to reduce the decoding latency of SC decoders. Compared to the

semi-parallel decoder architecture in [20], the pre-computation based decoder archi-

tecture [29] can double the throughput. A simplified SC decoder for polar codes,

proposed in [30], reduces the decoding latency by more than 88% for a rate 0.7 polar

code with length 218.

The investigation of efficient list decoder architectures for polar codes is moti-

vated by improved error performance of the SCL and CA-SCL algorithms, especially

for polar codes with short or moderate lengths. The tree search list decoder architec-

ture for the SCL algorithm proposed in [31] is the first list decoder architecture for

polar codes in the literature to the best of our knowledge. In this chapter, we pro-

pose the first hardware implementation of the CA-SCL algorithm to the best of our

knowledge. Based on both algorithmic and architectural improvements, our decoder
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architecture achieves better error performance and higher area efficiency compared

with the decoder architecture in [31]. Specifically, the major contributions of this

work are:

1. Message memories account for a significant fraction of an SC or SCL de-

coder [20, 31]. In this chapter, an area efficient message memory architecture

is proposed. Besides, a new compression method for the channel messages is

used to reduce the area of the proposed decoder architecture.

2. An efficient processing unit (PU) is proposed. For the proposed list decoder

architecture, a fine grained PU profiling (FPP) algorithm is proposed to de-

termine the minimum quantization size of each input message for each PU so

that there is no message overflow. By using the quantization size generated

by the FPP algorithm for each PU, the overall area of all PUs is reduced.

3. An efficient scalable path pruning unit (PPU) is proposed to control the copy-

ing of decoding paths. Based on the proposed memory architecture and the

scalable PPU, our list decoder architecture is suitable for large list sizes.

4. A low-complexity direct selection scheme is proposed for the CA-SCL algo-

rithm when a strong CRC is used (e.g. CRC32). The proposed direct selection

scheme simplifies the selection of the final output data word.

5. For a (1024, 512) rate-1
2

polar code, the proposed list decoder architecture

is implemented for list size L = 2 and 4, respectively, under a 90nm CMOS

technology. Compared with the decoder architecture in [31] synthesized under

the same technology, our decoder achieves 1.24 to 1.83 times area efficiency
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(throughput normalized by area). Besides, the proposed CA-SCL decoder has

better error performance compared with the SCL decoder in [31].

The rest of this chapter is organized as follows. In Section 5.2, polar codes as

well as the SCL and CA-SCL algorithms are briefly reviewed. Two improvements

of the CA-SCL algorithm are discussed in Section 5.3. The proposed list decoder

architecture is described in Section 5.4. Section 5.5 shows the implementation and

comparison results of the proposed list decoder architecture. The conclusions are

drawn in Section 5.6.

5.2 Polar Codes and Its CA-SCL Algorithm

5.2.1 Polar Codes

A generation matrix of a polar code is an N×N matrix G = BNF
⊗n, where N = 2n,

BN is the bit reversal permutation matrix [18], and F =
[
1
1
0
1

]
. Here ⊗n denotes the

nth Kronecker power and F⊗n = F⊗F⊗(n−1). Let uN−10 = (u0, u1, · · · , uN−1) denote

the data bit sequence and xN−10 = (x0, x1, · · · , xN−1) the corresponding encoded bit

sequence, then xN−10 = uN−10 G. The indices of the data bit sequence uN−10 are

divided into two sets: the information bits set A contains K indices and the frozen

bits set Ac contains N −K indices.

5.2.2 SCL and CA-SCL Algorithms

List decoding was applied to the SC algorithm in [21] and the resulting SCL algo-

rithm outperforms the SC algorithm. For a list size L, the SCL algorithm keeps at
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Algorithm 17: SCL algorithm [21]

input : n, the received channel message yN−10

output: ûN−10

for l = 0 to L− 1 do
for β = 0 to N − 1 do

Pl,0[β][s] = Pr(yβ|s), s = 0, 1

for λ = 0 to n do rl[λ] = 0

for i = 0 to N − 1 do
for λ = φi to n− 1 do rl[λ] = l
foreach survived decoding path l do

metricComp(l, i)

if i ∈ Ac then
foreach survived decoding path l do

ûl,i = Cl,n[0][i mod 2] = 0

else
pathPruning(P0,n, · · · , PL−1,n)

if i mod 2 == 1 then
foreach survived decoding path l do

pUpdate(l, n, i)
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Algorithm 18: metricComp(l, i) [21]

input : l, i

determine (b
(i)
n , b

(i)
n−1, · · · , b

(i)
1 ) and φ(i)

for λ = φ(i) to n do
for k = 0 to 2n−λ do

if b
(i)
λ = 1 and λ = φ(i) then
s = Cl,λ[β][0]
Pl,λ[k][u]
= G(Prl[λ−1],λ−1[2k], Prl[λ−1],λ−1[2k + 1], s)
= 1

2
Prl[λ−1],λ−1[2k][u⊕ s] · Prl[λ−1],λ−1[2k + 1][u] for u ∈ {0, 1}

else
Pl,λ[k][u] = F (Pl,λ−1[2k], Pl,λ−1[2k + 1])

=
1∑

u′=0

1
2
Pl,λ−1[2k][u⊕ u′] · Pl,λ−1[2k + 1][u′]

for u ∈ {0, 1}

most L decoding paths and outputs L possible data words ûN−10,0 , ûN−11,0 , · · · , ûN−1L−1,0,

where ûN−1l,0 = (ûl,0, ûl,0, · · · , ûl,N−1). A low complexity state copying scheme was

proposed in [31] to simplify the copying process when a decoding path needs to be

duplicated.

For l = 0, 1, · · · , L−1 and λ = 0, 1, · · · , n, let Pl,λ be an array with 2n−λ elements:

Pl,λ[j] contains two messages Pl,λ[j][0] and Pl,λ[j][1] for j = 0, 1, · · · , 2n−λ − 1. Cl,λ

has the same structure as Pl,λ: Cl,λ[j] contains two binary partial sums Cl,λ[j][0]

and Cl,λ[j][1] for j = 0, 1, · · · , 2n−λ − 1. The SCL algorithm with low complexity

state copying [31] is reformulated in Algorithm 17. For the decoding of ui, the SCL

algorithm can be divided into the following parts:

• For each surviving decoding path l, compute the path metrics Pl,n[0][0] and

Pl,n[0][1] using the recursive function metricComp(l, i) shown in Algorithm 18.
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For i = 1, 2, · · · , N−1, let (b
(i)
n , b

(i)
n−1, · · · , b

(i)
1 ) denote the binary representation

of index i, where i =
∑n−1

j=0 2jb
(i)
n−j. φ

(i) (1 ≤ φ(i) ≤ n) in Algorithm 18 is the

largest integer such that b
(i)

φ(i)
= 1. When i = 0, φ(i) = 1. Based on the

recursive algorithm for computing path metric in [21] and the low complexity

state copying algorithm in [31], the path metric computation is formulated in a

non-recursive way in Algorithm 18, where rl = (rl[n−1], rl[n−2], · · · , rl[0]) is

the message updating reference index array for decoding path l. For decoding

path l, rl[0] ≡ 0, while all other elements are initialized with 0. Two types of

basic operations, denoted as F and G operations, respectively, are employed

in Algorithm 18.

• If ui is a frozen bit, for each decoding path, the decoded code bit ûl,i = 0,

decoding path l will carry on with ûl,i = 0. If ui is an information bit, decoding

path l (l = 0, 1, · · · , L− 1) splits into two decoding paths with corresponding

path metrics being Pl,n[0][0] and Pl,n[0][1], respectively. There are at most

2L paths after splitting, and 2L associated path metrics. The pathPruning

function in Algorithm 17 finds the L most reliable decoding paths based on

their corresponding path metrics.

• For each of the L surviving decoding paths, the pUpdate(l, n, i) function shown

in Algorithm 19 [21] updates the partial sum matrices that will be used in the

following path metric computation.

We make several observations about the path metric computation:

• When i = 0, Pl,1, · · · , Pl,n are updated in serial, and only the F computation

is employed.

121



5.2. POLAR CODES AND ITS CA-SCL ALGORITHM

• For i > 0, Pl,φ(i) , · · · , Pl,n are updated in serial. The G computation is used

when computing Pl,φ(i) , while the F computation is used for the other proba-

bility message arrays.

• The computation of Pl,φ(i) is based on Prl[φ(i)−1],φ(i)−1, while the computation

of Pl,λ (λ > φ(i)) is based on Pl,λ−1.

Algorithm 19: pUpdate(l, λ, i) [21]

input : l, λ, i

if λ == 0 then return
j = bi/2c
for β = 0 to 2n−λ − 1 do

Cl,λ−1[2β][j mod 2] = Cl,λ[β][0]⊕ Cl,λ[β][1]
Cl,λ−1[2β + 1][j mod 2] = Cl,λ[β][1]

if j mod 2 == 1 then pUpdate(l, λ− 1, j)
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The path pruning function, pathPruning, finds the L most reliable paths, a0,

a1, · · · , aL, and their corresponding decoded bits, c0, c1, · · · , cL, based on the path

metrics. The path metrics of the surviving L decoding paths are the L largest ones

among 2L input metrics. Once the surviving decoding paths are found, the partial

sums and the reference index array of decoding path l will copy from decoding path

al. The partial sum computation of decoding path l is carried on with the binary

input cl.

The pruning scheme in this chapter and the path pruning scheme in [28] both

try to eliminate decoding paths that are less reliable. However, there are still some

differences:

• The pruning scheme in [28] is used for successive cancelation stack (SCS)

decoding algorithm as well as the SCH decoding algorithm, which is a hybrid

of SCL and SCS decoding algorithms, whereas our pruning scheme is used for

the SCL algorithm.

• For the SCL algorithm, suppose there are L decoding paths before the decoding

of ui, then the metrics of 2L expanded decoding paths are computed. The

pruning scheme in this chapter finds the L largest metrics out of 2Lmetrics and

keeps their corresponding decoding paths. For the pruning scheme in [28], a

path will be deleted if its path metric is smaller than a dynamic threshold, ai−

ln(τ), where ai is the largest metric of candidate paths, and τ is a configuration

parameter.

• For the path pruning scheme in [28], the number of deleted paths is not fixed

and depends on the configuration parameter τ , while the number of deleted
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paths is always L for the pruning scheme in this chapter.

The F and G operations in Algorithm 18 are in probability domain. The F and

G operations in Algorithm 18 can also be performed over the logarithm domain [23].

For u ∈ {0, 1}, the resulting logarithm domain G and F computations are shown in

Eq. (5.1) and Eq. (5.2), respectively, where max∗(x, y) = max(x, y)+log(1+e−|x−y|).

max∗(x, y) can also be approximated with max(x, y), resulting in the approximated

F computation in Eq. (5.3).

In [22], the performance of the SCL algorithm is further improved by the adoption

of CRC, which helps to pick the right path from the L possible decoded data words.

In terms of the fixed point implementation, the CA-SCL algorithm is quite sensitive

to saturation. For two decoding paths, it is hard to decide which is better if the

metrics of both paths are saturated. In order to avoid message saturation, a non-

uniform quantization scheme is proposed in [31]. If the channel messages (Pl,0) are

all quantized with t bits, all the log-likelihood messages (LLMs) of Pl,λ need to be

quantized with t+ λ bits in order to avoid saturation.

5.3 Two Improvements of the CA-SCL Algorithm

In this chapter, two improvements of the CA-SCL algorithm are proposed. Firstly,

for the i-th received bit yi, there are two likelihoods, Pr{yi|0} and Pr{yi|1}. Suppose

Pr{yi|m} (m ∈ {0, 1}) is the smaller one among the two likelihoods. For j ∈ {0, 1},

two log-likelihood messages (LLMs) are defined as

Pl,0[i][j] = log
Pr{yi|j}
Pr{yi|m}

. (5.4)
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Thus one of the LLMs is always 0, and the other is always non-negative. For the

proposed list decoder, only the non-negative LLM and its corresponding binary

index s are stored. As shown in Fig. 5.1, Msg denotes the stored non-negative LLM,

and its corresponding bit index is s. When s = 0, Pl,0[i][0] = Msg, Pl,0[i][1] = 0.

When s = 1, Pl,0[i][0] = 0, Pl,0[i][1] = Msg. If t bits are needed to quantize a channel

LLM, it takes t + 1 bits to represent two LLMs corresponding to a received bit yi,

while it takes 2t bits to store two LLMs directly.

Msg s

Figure 5.1: Compressed channel message

Secondly, at the end of the CA-SCL decoding algorithm, the candidate data word

that passes the CRC and has the greatest path metric is the output data word, which

will incur additional comparisons. In this chapter, a simple direct selection scheme

is proposed: we first calculate all L checksums in parallel and then scan from the

checksum of data word 0 to the checksum of data word L− 1, if a data word passes

the CRC, the scan process is terminated and the corresponding candidate data

word is the final output one. When all L CRC checks fail, since the CRC checksum

could be corrupted, a decoding failure is announced if re-transmission is possible;

otherwise, pick a data word randomly and output.

The direct selection scheme reduces computational complexity at the expense

of possible performance degradation. In this chapter, we give an estimation of the

frame error rate (FER) degradation. Let w denote the number of the detectable

errors for our CRC. Assume all the bits of the final L candidate data words are

independently subject to a bit error probability, pb. We calculate the increase in
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FER, Pe, caused by the direct selection scheme instead of the ideal selection scheme,

which always selects the transmitted data word if it is within the final L candidates.

For each candidate data word, there are three probabilities:

• The probability that the candidate data word is the same as the transmitted

one is givn by p1 = (1− pb)K .

• The probability that the candidate fails the CRC is denoted as p2.

• The probability that the CRC identifies the candidate as the transmitted data

word by mistake is denoted as p3, and p3
.
=
∑K

r=w+1

(
K
r

)
prb(1 − pb)

K−r .
=(

K
w+1

)
pw+1
b (1− pb)K−w−1.

Thus, p1 + p2 + p3 = 1. We have

Pe 6 p3
1− pL2
1− p2

+ pL2 − (1− p1)L. (5.5)

Note that pb depends on the signal to noise ratio (SNR) and the list size L. For a

specific SNR, in order to simplify our analysis, we can use p
b,SC to approximate pb,

where p
b,SC denotes the bit error probability of the SC algorithm. The probabilities,

p2 and p3, are also approximated. Though approximated probabilities are employed

when calculating Pe, the order of Pe still helps us in determining whether our direct

selection scheme is applicable. For instance, when a strong CRC is used, i.e. large

w, p3 is small, leading to a small Pe. On the other hand, a higher data rate leads to

a greater K and hence a greater Pe.
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5.3.1 Numerical Results

For a rate 1/2 polar code with N = 1024, the FERs of the SC, SCL and CA-SCL

algorithms are shown in Fig. 5.2, where SC denotes the floating-point SC algorithm.

CS2-max and CS2-map denote the floating-point CA-SCL algorithm with L = 2 and

the approximated F computation shown in Eq. (5.3) and the F computation shown

in Eq. (5.2), respectively. CSi-max-j denotes the fixed-point CA-SCL algorithm

with L = i and non-uniform quantization scheme with t = j, where t is the number

of quantization bits for channel probability message. Si-max-j denotes the fixed-

point SCL algorithm with L = i and non-uniform quantization scheme with t = j.

For all simulated CA-SCL algorithms, a CRC scheme with a generator polynomial

0x1EDC6F41 is employed, and the direct selection scheme is employed to pick the

final output codeword from L possible candidates.

2 . 0 2 . 5 3 . 0 3 . 5 4 . 0

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

FE
R

S N R  ( d B )

 S C
 C S 2 - m a x
 C S 2 - m a p
 C S 2 - m a x - 3
 C S 2 - m a x - 4
 C S 4 - m a x - 4
 C S 8 - m a x - 4
 S 2 - m a x - 3
 S 4 - m a x - 3

Figure 5.2: FER performance of a polar code with N = 1024

The simulated results show that:
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• For the CA-SCL algorithm, the approximated F computation in Eq. (5.3)

results in negligible performance degradation.

• When each channel LLM is quantized with 4 bits, the employment of the

proposed non-uniform quantization scheme leads to negligible performance

degradation. When each channel LLM is quantized with 3 bits, the resulting

FER performance is roughly 0.2dB worse than that using 4-bit quantization.

• Using a larger list size leads to obvious performance improvement for the

CA-SCL algorithm, whereas the SCL algorithm with L = 2, 4 has nearly the

same performance, especially in the high SNR region. For polar codes with

moderate block length (e.g. N = 211, 212, 213), similar phenomena have been

observed in [22].

More simulation results on the proposed direct selection scheme are provided.

There are three selection schemes employed in our simulations.

• The proposed direct selection (DS) scheme, which outputs the first data word

that passes CRC.

• Ideal selection (IS) scheme, which always outputs the correct data word if it

exists in the final list.

• Metric based selection (MS) scheme [22], which outputs the data word that

has the maximal path metric among all data words that have passed CRC.

In Figs. 5.3 and 5.4, DSk, ISk and MSk denote the CA-SCL algorithms with list

size L = k under the direct, ideal and metric based selection schemes, respectively.

The generation polynomial of the CRC16 used in our simulations is 0x1021.
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As shown in Fig. 5.3, when code rate is 0.75 and CRC16 is used, the proposed

direct selection scheme introduces early error floor for all simulated list sizes, while

the metric based selection scheme performs nearly the same as the ideal selection

scheme. When code rate is 0.5, as shown in Fig. 5.4, the direct selection scheme

performs nearly the same as the ideal selection scheme with list size L = 2. When

list size L = 4, 8, 16, the proposed direct selection scheme shows certain performance

degradation compared with the ideal selection scheme, while the metric based selec-

tion scheme has little performance degradation. When CRC32 is used, the proposed

direct selection scheme performs nearly the same as the ideal selection scheme for

both code rates 0.5 and 0.75 [74].

3 . 0 3 . 2 3 . 4 3 . 6 3 . 8 4 . 0 4 . 2 4 . 4 4 . 6 4 . 8

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0
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R

S N R

 D S 2
 I S 2
 M S 2
 D S 4
 I S 4
 M S 4
 D S 8
 I S 8
 M S 8
 D S 1 6
 I S 1 6
 M S 1 6

Figure 5.3: FER performances under CRC16 and rate 0.75

We also calculate the bound on the FER degradation for all simulated cases. We

choose SNR = 3.6dB, since DS4, DS8 and DS16 begin to show an error floor at this

SNR in Fig. 5.3. For the length 1024 polar code, the bit error probability pb of the

SC algorithm is 6.28× 10−4 and 3.04× 10−6 for rate 0.75 and 0.5, respectively. For
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Figure 5.4: FER performances under CRC16 and rate 0.5

CRC16 and CRC32, w = 2 [75] and 4 [76], respectively. When CRC16 is used, for

each simulated list size, the bound is around 10−2 and 10−10 for rate 0.75 and 0.5,

respectively. When CRC32 is used, for each simulated list size, the bound is 10−4

and 10−17 for rate 0.75 and 0.5, respectively. It is found that the error degradation

caused by our DS scheme is big when the corresponding Pe is big (e.g. 10−2). On

the other hand, when Pe is quite small (e.g. 10−17), our DS scheme leads to little

performance degradation.

Based on our calculation results, for a given CRC and code rate, Pe increases

with the list size L. This observation indicates that the potential performance degra-

dation caused by the DS scheme will increase when L increases. This is consistent

with the simulation results shown in Figs. 5.3 and 5.4.
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Figure 5.5: Top architecture of the list decoder

5.4 Efficient List Decoder Architecture

For the CA-SCL algorithm, we propose an efficient partial parallel list decoder ar-

chitecture shown in Fig. 5.5. The proposed list decoder architecture mainly consists

of the channel message memory (C-MEM), the internal LLM memory (L-MEM), L

processing unit arrays (PUAs) (PUA0, PUA1, · · · , PUAL−1), the path pruning unit

(PPU) and the CRC checksum unit (CRCU). These components are described in

details in the following subsections.

5.4.1 Message Memory Architecture

The L-MEM stores all the inner LLMs used for metric computation. Since all the

LLMs in Pl,λ need to be quantized with t + λ bits for λ ≥ 1, the variable-size

LLMs make the L-MEM architecture for the proposed list decoder nontrivial. In

this chapter, an area efficient scalable memory architecture for L-MEM is proposed

based on the nonuniform quantization:

• For λ = 1, 2, · · · , n, since each LLM within Pλ = (P0,λ, P1,λ, · · · , PL−1,λ) is
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quantized with t + λ bits, a regular sub-memory is created for storing LLMs

in Pλ.

• All n sub-memories are combined to a single memory.

• Due to the nonuniform quantization, the width of each sub-memory may be

different. As a result, the concatenated L-MEM is an irregular memory with

varying width within its address space. For the proposed memory architec-

ture, the irregular L-MEM is split into several regular memories to fit current

memory generation tools.

The proposed L-MEM is a mix of different types of memories, including SRAM,

register file (RF) or register. Since SRAM and RF are more area efficient than a

register, the proposed L-MEM architecture is better than the register based LLM

memory in [31].

Suppose there are T processing units (PUs) in each PUA shown in Fig. 5.5, it

consumes at most 4LT LLMs for one round of computation. For λ = 1, 2, · · · , n,

we store all the LLMs within Pλ = (P0,λ, P1,λ, · · · , PL−1,λ) in a single memory as

follows.

• When 2n−λ+1L > 4LT , it takes a sub-memory of 2n−λ−1

T
words, where each

word has 4LT (t+ λ) bits.

• When 2n−λ+1L 6 4LT , it takes a sub-memory with only one single word,

which has 2n−λ+1(t+ λ)L bits.

An example of the concatenation of n = 6 sub-memories, (S1, S2, · · · , S6), is shown

in Fig. 5.6(a). For current memory compiler, it is hard to generate an irregular single
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memory instance as shown in Fig. 5.6(a). For the proposed L-MEM architecture,

the concatenated irregular memory is split into several regular memory instances

as shown in Fig. 5.6(b), where additional dummy memories are added so that each

instance is regular. For general cases, the irregular memory is divided into λo =

n− log2 T − 1 regular instances. Depending on the number of words, each memory

instance could be implemented with SRAM, RF or registers.

M1

M2

M3

M4

dummy memory
(a) (b)

S1

S2

S3

S4

S5S6

Figure 5.6: The split of an irregular LLM memory

Compared with the register based LLM memory, the proposed L-MEM architec-

ture is more area efficient because:

• Some sub-memory instances can be implemented with SRAM or RF which is

more denser than register based memory.

• As shown in Fig. 5.6(b), most of the LLMs are store in the largest memory

instance M1 which contains

Nw = n− λo + 1 +
λo−1∑
λ=1

2n−λ−1

T
(5.6)

words, where each word has 4LT (t+ 1) bits.
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As shown in Eq. (5.6), Nw is inverse to the number of processing units, T , within

a PUA. As a result, the area of the proposed L-MEM depends on T for a fixed block

length N = 2n and t. Taking RF as an example, we show the comparison of

area efficiency of RFs with different depths in Table 5.1, where area per bit (APB)

denotes the total area of a memory normalized by the number of total stored bits.

The total areas shown in Table 5.1 are from a memory compiler associated with a

90nm technology. As shown in Table 5.1, the RF with a larger depth has a smaller

APB. Hence, given the same amount of bits, it takes a smaller area if those bits can

be stored in a RF with a larger depth. For SRAM, the same phenomena have been

observed.

Table 5.1: Area per Bit for RFs with Different Depth and Width 128 using TSMC
90nm CMOS technology

depth 8 16 32 64 128
total area (µm2) 24331 27022 32308 42812 63811

APB (µm2) 23.7 13.1 7.9 5.2 3.89

The C-MEM can be implemented with a simple regular memory with N
2T

words,

where each word has 2T (t+1) bits. Due to the compression of the channel message,

each compressed channel message is de-compressed into two LLMs by the deComp

unit in Fig. 5.5 before being fed to the PUs. The deComp unit can be implemented

with multiplexors.

5.4.2 Processing Unit Array

The G and approximated F computations shown in Eq. (5.1) and Eq. (5.3), respec-

tively, are used in the metric computation. These two types of basic operation can

be performed with a PU [31, 74]. The hardware complexity of the proposed PU is
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determined by p, which is the width of an input LLM.

Due to the non-uniform quantization of the LLMs belonging to different message

arrays, for each PU, the number of quantization bits, p, for each input LLM should

be large enough so that no overflow will happen. According to the fixed point

implementation of the CA-SCL algorithm, the quantization of Pl,n (l = 0, 1, · · · , L−

1) needs the most binary bits, which is t + n. For each PUA, it is unnecessary to

employ T PUs with p+1 = t+n. In this chapter, a fine grained PU profiling (FPP)

algorithm, shown in Algorithm 20, is proposed to decide p for each PU.

Algorithm 20: FPP Algorithm

input : n, t, λo = n− log2 T − 1
output: p[0], p[1], · · · , p[T − 1]

for j = 0 to T − 1 do
p[j] = t+ λo − 1

for λ = λo + 1 to n do
for j = 0 to 2n−λ − 1 do

p[j] = t+ λ− 1

Table 5.2: Bit width of LLM Inputs of PUl,j when n = 10, T = 8 and t = 4

j 0 1 2 3 4 5 6 7
p[j] 13 12 11 11 10 10 10 10
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For the j-th PU of PUAl (l = 0, 1, · · · , L − 1), each LLM input is quantized

with p[j] bits. The proposed FPP algorithm is based on the observation that only

2n−λ < T PUs are needed when computing the updated Pl,λ with λ > λo. Thus, in

the proposed PUAl, only PUl,0, PUl,0, · · · , PUl,2n−λ−1 are enabled for the computing

of Pl,λ. Based on the proposed FPP algorithm, each PUA can finish the metric

computation without any overflow at the cost of less area consumption. As shown

in Algorithm 20, the bit width of the LLM inputs of a PU is determined by n, T

and t. One example is shown in Table 5.2, where n = 10, T = 8 and t = 4.

The area saving due to the proposed fine grained profiling algorithm also depends

on T , n and t. For the proposed list decoder architecture, there are L identical PU

arrays, where each array contains T PUs. In Table 5.3, we compare the area of a

regular PU array with that of an array where the input message width of each PU is

determined by the fine grained profiling algorithm. As shown in Table 5.3, the area

of PU arrays is reduced by 30% to 55% depending on the number of PUs with an

array and the block length N = 2n. Here, each channel message is quantized with

t = 4 bits.

Metric Computation Schedule

For the proposed L-MEM, each data word is capable of storing 4TL LLMs. More-

over, each word is equally divided into L consecutive parts, where the l-th part stores

the LLMs corresponding to decoding path l. The metric computation schedule is

almost the same as that of the partial parallel SC decoder in [20] except that L

PUAs work simultaneously for L decoding paths, respectively.

When a data word needs to be updated, the write mismatch would happen since
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L PUAs generate only 2LT updated LLMs during one clock cycle. These L PUAs

need to read two consecutive data words from L-MEM in order to generate 4TL

LLMs. For the proposed list decoder architecture, as shown in Fig. 5.5, L write

buffers (wBUFs) are employed to store half of 4TL LLMs generated by L PUAs.

Once the remaining LLMs are computed, the output selection (OSel) module formats

these LLMs in the way that these LLMs are stored in the L-MEM.

Since all the LLMs belonging to Pλ = (P0,λ, P1,λ, · · · , PL−1,λ) with λ > λo are

stored in a single data word in L-MEM and the computing of LLMs belonging to

Pλ+1 can only take place once Pλ are updated, an additional clock cycle is needed

to read out the LLMs within Pλ that have been just written into the L-MEM. This

will increase the delay and decrease the throughput of the proposed list decoder. As

shown in [20], the bypass buffer, rBUF, is used to temporarily store the messages

written into the L-MEM and eliminate the extra read cycle.

5.4.3 Path Pruning Unit

For the CA-SCL algorithm, once the path metric computation of decoding step i is

finished, each current decoding path splits into two sub decoding paths. However,

the list decoder keeps at most L decoding paths. For the proposed list decoder archi-

tecture, a path pruning unit (PPU) is proposed to prune the split decoding paths in

an efficient way. As shown in Fig. 5.5, the proposed PPU contains two sub modules,

the maximum value filter (MVF) and the crossbar control signals generator (CCG).

The MVF generates L path indices a0, a1, · · · , aL−1 and L associated decoded bits

c0, c1, · · · , cL−1. For a current decoding path l, both the path metric and partial sum

computations will be based on the LLMs and partial sums within decoding path al,
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and the decoded data bit for ul,i is cl. al and cl for l = 0, 1, · · · , L − 1 are used to

control the copying of partial sums and checksums.

Table 5.4: Comparison of ASIC implementation results using TSMC 90nm CMOS
technology

metric sorter [31] proposed MVF

L 2 4 8 16 32 2 4 8 16 32
CPD (ns) 0.45 0.85 1.8 4.1 9.6 0.54 1.25 2.25 3.7 5.2

area (µm2) 1995 9199 47119 241633 1392617 1580 8401 30814 96979 319498
area saving – 20% 8% 34% 59% 77%

Maximum Values Filter

Taking list size L = 8 as an example, the proposed MVF architecture, shown in

Fig. 5.7, consists of a bitonic sequence generator (BSG) and a stage of compare and

select (CAS) modules. The BSG has 16 inputs (D0, D1, · · · , D16) and 16 outputs

(S0, S1, · · · , S16). Each input or output consists of three parts: the path metric,

the associated list index and decoded bit. The width of each input and output is

z = x1 + x2 + 1, where x1 = t + n is the number of bit used to quantize a path

metric and x2 = log2 L is the number of bits used to represent a list index.

Each stage of the BSG consists of L
2

increase-order sorters (ISs) and L
2

decrease-

order sorters (DSs), which are shown in Fig. 5.8(a) and Fig. 5.8(b), respectively.

Both the IS and DS have two inputs and two outputs. For k = 0, 1, SIk =

(LRk, lk, bk), SOk = (LR′k, l
′
k, b
′
k) and LRk, lk and bk denote the path metric and its

corresponding list index and decoded bit. The IS reorders the inputs such that path

metric LR′0 ≤ LR′1. The output of the comp-max module is 1 when LR0 > LR1.

The DS reorders the inputs such that LR′0 ≥ LR′1 and the output of the comp-min

module is 1 when LR0 < LR1.
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The BSG reorders the inputs based on the magnitude of path metrics. Let

LSr(r = 0, 1, · · · , 15) denotes the associated path metric of output Sr, the path

metrics of the 16 outputs satisfy:

LS0 ≤ LS1 ≤ · · · ≤ LS7, (5.7)

LS8 ≥ LS9 ≥ · · · ≥ LS15. (5.8)

It is proved in [77] that the 8 maximum values among LSi’s are max(LSr, LS8+r)

for r = 0, 1, · · · , 7. Hence, a stage of CAS modules is appended at the outputs of

BSG shown in Fig. 5.7, where CSAr takes Sr and Sr+8 as inputs. This stage of

CAS modules produce the outputs Ot = (al, cl) for l = 0, 1, · · · , L− 1. As shown in

Fig. 5.8(c), the CAS module compares the path metrics of its two inputs and selects

the corresponding list index and bit value whose associated path metric is larger.
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Figure 5.7: Maximum values filter architecture

The metric sorter in [31] has the same function as that of the proposed MVF. We

compare the proposed bitonic sorter based MVF module with the metric sorter [31]
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in terms of area and critical path delay (CPD) under different list sizes when both

modules are synthesized under the TSMC 90nm CMOS technology. As shown in

Table 5.4, the proposed MVF module is more suitable for large list sizes. For

list size L = 2 to 32, the proposed MVF achieves 8% to 77% area saving. The

proposed MVF architecture achieves area saving because the comparator dominates

the area for the metric sorter and the MVF modules. For list size L, the metric

sorter needs NMS = L(2L−1) comparators, while the proposed MVF module needs

NMV F = 1 + 2 + · · · + log2 L = L
2
((log2 L)2 + log2 L + 2) comparators. When L is

large, NMS/NMV F ≈ 4L
log2 L

. Clearly, our MVF module needs fewer comparators.

When L = 2, 4, 8, compared with the metric sorter, the proposed MVF has

longer CPD while achieving area saving. However, the longer delay for the MVF

is inconsequential because it is not in the critical path for the decoder architecture

when L 6 8. When L = 16, 32, the proposed MVF is better than the metric sorter

in terms of both area and CPD. Thus, the proposed MVF is more suitable for large

list sizes.
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Crossbar Control Signal Generator

Due to the lazy copy method [31], when decoding path l needs to be copied to

decoding path l′, instead of copying LLMs from path l to path l′, the index references

(rl = (rl[n− 1], · · · , rl[0]) shown in Algorithm 18) to LLMs of path l are copied to

path l′. For decoding path l, when PUAl is computing updated LLMs in Pl,λ, the

crossbar (CB) module shown in Fig. 5.5 selects input LLMs from decoding path

rl[λ− 1]. The CB can be implemented with L-to-1 multiplexors.

The crossbar control signal (CCG) generator computes the control signals of CB,

cc0, cc1, · · · , ccL − 1, where the l-th output of CB is connected to the ccl-th input.

Since the CCG is a direct implementation of the lazy copy scheme in [31], the details

are omitted and can be found in our extended manuscript [74].

5.4.4 Partial Sum Update Unit and the CRC Unit

In this chapter, a parallel partial sum update unit (PSU) is proposed to provide

the partial sum inputs to L PUAs when performing the G computation. Compared

with the PSU in [20,31], which needs N − 1 single bit registers for a decoding path,

our PSU needs only N
2
− 1 single register bits.

Take N = 23 as an example, the architecture of PSUl, which computes the

partial sums for decoding path l, is shown in Fig. 5.9, where stage3 and stage2 have

one and two elementary update units (EUs), respectively. rl,3,0, rl,2,0, rl,2,1 shown

in Fig. 5.9 are single bit registers. cl = ûl,i is the binary input of the PSUl. There

are three partial sum outputs: bl,3, bl,2 and bl,1 with a width of 1, 2 and 4 bits,

respectively. When the LLMs in Pl,λ need to be updated with the G computation,

bl,λ is the corresponding partial sum input. The architectures of PSUl for other
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code lengths can be derived from the architecture in Fig. 5.9. For a polar code with

length N = 2n, the corresponding PSUl contains n−1 stages: stagen, stagen−1, · · · ,

stage2, where stagej has 2n−j EUs for n ≥ j ≥ 2.

When bit index i is even, cl is stored in rl,n,0 and other registers keep their

current values unchanged. When bit index i is odd, bit registers in stagen, stagen,

· · · , stageφ(i+1) are updated with their corresponding input. When decoding path

index l 6= al, the updated partial sums of decoding path l should be computed based

on the bit registers in PSUal . The switch network (SW) shown in Fig. 5.9 selects

the corresponding bit register value from PSUal . The width of the input signal

Bl,j,k = {r0,j,k, r1,j,k, · · · , rL−1,j,k}\{rl,j,k} is L− 1 bits.

rl,3,0
SW

L-1

1
1
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SW

L-1

1
1

rl,2,1
SW

L-1

1
1

bl,3[0] Bl,3,0 Bl,2,0
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EU3,0

stage3 stage2bl,2[0]
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Figure 5.9: PSU architecture
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The CRC unit (CRCU) checks whether a data word passes the CRC. Suppose

an h-bit CRC checksum is used, the architecture of the CRCUl for decoding path

l is shown in Fig. 5.10, where the generation polynomial for the CRC checksum

computation is p(x) = xh+ph−1x
h−1+· · ·+p1x+1. The proposed CRCUl is based on

a well known serial CRC computation architecture [78]. If the polynomial coefficient

pk = 0, the corresponding XOR gate and multiplexer are removed. During the

decoding of the first K−h information bits, the control signal shift l = 0 and CRCUl

computes the h-bit checksum of these information bits. The checksum is stored in

bit registers dl,0, dl,1, · · · , dl,h−1 shown in Fig. 5.10. When a frozen bit is being

decoded, dl,0, dl,1, · · · , dl,h−1 will not be updated. Once the checksum computation

is finished, the checksum is compared with the remaining h decoded information

bits, and the control signal shift l = 1. The checksum and the remaining h code bits

are compared bit by bit. The comparison result is stored in the register csl. The

decoded codeword for decoding path l passes the CRC only if cs l = 0. The SW

module shown in Fig. 5.10 is the same as that used in the partial sum computation

unit PSUl. When l 6= al, the SW module selects dal,k for k = 0, 1, · · · , h− 1.
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5.4.5 Decoding Cycles

For the proposed list decoder, pipeline registers can be inserted in the paths that pass

through the MVF. Let NC denote the number of cycles spent on the decoding of one

data word. For list decoder architectures based on partial parallel processing [20],

NC = 2N +
N

T
log2

N

4T
+ npRN, (5.9)

where N , T , np, R denote the block length, the number of PUs per decoding path,

the number of pipeline registers inserted in the path pruning unit and the code rate,

respectively.

The corresponding throughput TP = fNR
NC

, where f is the frequency of the list

decoder. The latency TD = NC
f

.

5.4.6 Scalability of the Proposed List Decoder Architecture

For our list decoders, in term of error performance, it is desirable to use large list

sizes since a larger L leads to more performance gain for the CA-SCL decoding

algorithm. For the current list decoder architecture in [31], two problems arise

when L increases.

• The message memories of the list decoder in [31] are built with registers due to

the non-uniform quantization of the logarithm domain messages. Besides, the

message memories dominate the whole decoder area. As a result, the memory

area of the list decoder is linearly proportional to list size L. For a larger list

size, the list decoder architecture in [31] will suffer from large area and high

power consumption due to its register based memory.
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• As shown in Table 5.4, when the list size grows, the metric sorter suffers

from large area and long critical path delay, which results in a slower clock

frequency of the list decoder. If multiple pipelines are inserted in the metric

sorter, the number of cycles for decoding one codeword also increases as shown

in Eq. (5.9).

For our list decoder architecture, these two issues are solved as follows.

• The proposed memory architecture is more area efficient compared to register

based memory. Besides, the proposed memory architecture offers a tradeoff

between data throughput and memory area. The register based memory [31]

remains almost unchanged when the number of PUs changes. However, for the

proposed memory architecture, the number of PUs affects the depth-width ra-

tio of the message memories. Hence, the area of message memory can be tuned

by varying the number of PUs. Reducing the number of PUs will increase the

depth of message memories, which is more area efficient. On the other hand,

reducing the number of PUs will also increase the number of cycles used on

decoding one codeword and decrease the data throughput.

• When the list size increases, the proposed MVF is more area efficient and has

a shorter critical path delay compared with the metric sorter [31].

As shown in Eq. (5.6), the depth of the largest LLM memory instance will

increase when N increases. Hence, the area efficiency will be improved when N

increases. As a result, our list decoder architecture is more suitable for large block

length N .
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5.5 Implementation Results

In this chapter, our list decoder architecture has been implemented with list size

L = 2 and 4 for a rate 1/2 polar code with N = 1024. For each list size, two list

decoders with the numbers of T = 8 and 16 PUs, respectively, are implemented

and synthesized under a TSMC 90nm CMOS technology. For the L-MEM within

each of our list decoder, each sub memory is compiled with a memory compiler if

its depth is large enough. Otherwise, the sub memory is built with registers. For

all implemented decoders, each channel LLM is quantized with 4 bits in order to

achieve near floating point decoding performance. For our list decoders with L = 2

and 4, one stage of pipeline registers is used. Since the synthesis results in [31] were

based on a UMC 90nm technology, the authors of [31] have generously re-synthesized

their decoder architecture using the TSMC 90nm technology. We list both synthesis

results from [31] and the re-synthesized results provided by the authors of [31] in

Table 5.5. To make a fair comparison, we focus on the re-synthesized results.

The implementation results in Table 5.5 show that:

• The decoder architecture in [31] has a higher throughput than our list decoder

architecture. The reason is that the decoder architecture in [31] employs regis-

ter based memory while the proposed list decoder architecture employs register

file (RF) based memories. The read and write delays of an RF are larger than

those of a register based memory.

• On the other hand, our list decoder architecture is more area efficient. For list

decoders with the same L and T values, compared with the decoder of [31],

our list decoder architecture achieves 1.24 to 1.83 times of area efficiency.
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Our list decoder is implemented for the N = 1024 polar code because the same

block length is used in [31]. For larger block length or larger list size, our advantage

in area efficiency is expected to be greater due to more area efficient LLM memory.

Since the CA-SCL algorithm helps to select the correct one from L possible

decoded codewords [22], the decoding performance of the CA-SCL algorithm is

better than that of the SCL algorithm with the same list size in [31]. As shown in

Fig. 5.2, the proposed CA-SCL decoders in Table 5.5 outperform the SCL decoders in

Table 5.5. We note that the number of PUs has no impact on the error performance

of the SCL and CA-SCL decoders.

As shown in Fig. 5.2, for the CA-SCL algorithm, increasing the list size results

in noticeable decoding gain according to our simulations. As shown in [21, Fig. 1],

increasing the list size of the SCL algorithm leads to negligible decoding gain es-

pecially in high SNR region. For the CA-SCL algorithm, the choice of list size L

depends on the tradeoff between error performance and decoding complexity. Bet-

ter error performance can be achieved by increasing the list size L. For the SCL

algorithm, we need to find the threshold value LT , where little further decoding gain

is achieved by employing a list size L > LT . For the SCL algorithm, the feasible list

size should be no greater than LT and satisfy the error performance requirement.

Due to the serial nature of the successive cancelation method, the SC based de-

coders and its list variants suffer from long decoding latency. In terms of through-

put, the throughput of SC based decoders is expected to be lower than BP based

decoders, since the BP algorithm for polar codes has a much higher parallelism.

On the other hand, the BP algorithm for polar codes still suffers from inferior finite

length error performance [26,79]. Current simulation results [26] show that the error
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performance of the BP algorithm for polar codes is similar to that of SC algorithm,

but worse than those of the SCL and CA-SCL algorithms.

5.6 Conclusion

In this chapter, an efficient list decoder architecture has been proposed for polar

codes. The proposed decoder architecture achieves higher area efficiency and better

error performance than previous list decoder architectures.
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Chapter 6

A High Throughput List Decoder

Architecture for Polar Codes

6.1 Introduction

Polar codes [18] are a significant breakthrough in coding theory, since polar codes can

achieve the channel capacity of binary-input symmetric memoryless channels [18]

and arbitrary discrete memoryless channels [19]. Polar codes of block length N

can be efficiently decoded by a successive cancelation (SC) algorithm [18] with a

complexity of O(N logN). While polar codes of very large block length (N >

220 [20]) approach the capacity of underlying channels under the SC algorithm, for

short or moderate polar codes, the error performance of the SC algorithm is worse

than turbo or LDPC codes [55].

Lots of efforts [23, 24, 55] have already been devoted to the improvement of er-

ror performance of polar codes with short or moderate lengths. An SC list (SCL)
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decoding algorithm [55] performs better than the SC algorithm. In [23, 24, 55], the

cyclic redundancy check (CRC) is used to pick the output codeword from L candi-

dates, where L is the list size. The CRC-aided SCL (CA-SCL) decoding algorithm

performs much better than the SCL decoding algorithm at the expense of negligible

loss in code rate.

Despite its significantly improved error performance, the hardware implementa-

tions of SC based list decoders [31–34] still suffer from long decoding latency and

limited throughput due to the serial decoding schedule. In order to reduce the de-

coding latency of an SC based list decoder, M (M > 1) bits are decoded in parallel

in [35–37], where the decoding latency can be reduced by M times ideally. How-

ever, for the hardware implementations of the algorithms in [35–37], the actually

achieved decoding latency reduction is less than M due to extra decoding cycles on

finding the L most reliable paths among 2ML candidates, where L is list size. A

software adaptive SSC-list-CRC decoder was proposed in [38]. For a (2048, 1723)

polar+CRC-32 code, the SSC-list-CRC decoder with L = 32 was shown to be about

7 times faster than an SC based list decoder. However, it is unclear whether the list

decoder in [38] is suitable for hardware implementation.

In this chapter, a tree based reduced latency list decoding algorithm and its

corresponding high throughput hardware architecture are proposed for polar codes.

The main contributions are:

• A tree based reduced latency list decoding (RLLD) algorithm over logarithm

likelihood ratio (LLR) domain is proposed for polar codes. Inspired by the

simplified successive cancelation (SSC) [30] decoding algorithm and the ML-

SSC algorithm [54], our RLLD algorithm performs the SC based list decoding
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on a binary tree. Previous SCL decoding algorithms visit all the nodes in

the tree and consider all possibilities of the information bits, while our RLLD

algorithm visits much fewer nodes in the tree and consider fewer possibilities

of the information bits. When configured properly, our RLLD algorithm sig-

nificantly reduces the decoding latency and hence improves throughput, while

introducing little performance degradation.

• Based on our RLLD algorithm, a high throughput list decoder architecture

is proposed for polar codes. Compared with the state-of-arts SCL decoders

in [32,33,36], our list decoder achieves lower decoding latency and higher area

efficiency (throughput normalized by area).

More specifically, the major innovations of the proposed decoder architecture

are:

• An index based partial sum computation (IPC) algorithm is proposed to avoid

copying partial sums directly when one decoding path needs to be copied to

another. Compared with the lazy copy algorithm in [55], our IPC algorithm is

more hardware friendly since it copies only path indices, while the lazy copy

algorithm needs more complex index computation.

• Based on our IPC algorithm, a hybrid partial sum unit (Hyb-PSU) is proposed

so that our list decoder is suitable for larger block lengths. The Hyb-PSU is

able to store most of the partial sums in area efficient memories such as register

file (RF) or SRAM, while the partial sum units (PSUs) in [31–33] store partial

sums in registers, which need much larger area when the block length N is

larger. Compared with the PSU of [32], our Hyb-PSU achieves an area saving
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of 23% and 63% for block length N = 213 and 215, respectively, under the

TSMC 90nm CMOS technology.

• For our RLLD algorithm, when certain types of nodes are visited, each current

decoding path splits into multiple ones, among which the L most reliable paths

are kept. In this chapter, an efficient path pruning unit (PPU) is proposed

to find the L most reliable decoding paths among the split ones. For our

high throughput list decoder architecture, the proposed PPU is the key to the

implementation of our RLLD algorithm.

• For the fixed-point implementation of our RLLD algorithm, a memory efficient

quantization (MEQ) scheme is used to reduce the number of stored bits. Com-

pared with the conventional quantization scheme, our MEQ scheme reduces

the number of stored bits by 17%, 25% and 27% for block length N = 210, 213

and 215, respectively, at the cost of slight error performance degradation.

Note that the SSC and ML-SSC algorithms reduce the latency of the SC algo-

rithm by performing it on a binary tree. Inspired by this idea, our RLLD algorithm

performs the SC based list decoding algorithm on a binary tree. The low-latency

list decoding algorithm [38] also performs the list decoding algorithm on a binary

tree. Our work [80] and the decoding algorithm in [38] are developed independently.

Both of our RLLD algorithm and the low-latency list decoding algorithm [38] try to

reduce the number of visited nodes in the binary tree so that the decoding latency

can be reduced. However, there are still some differences.

• Compared with the decoding algorithm in [38], our RLLD algorithm visits

fewer nodes. Illuminated by the ML-SSC algorithm, our RLLD algorithm
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processes certain arbitrary rate nodes [30] in a fast way.

• When a rate-1 node [30] is visited, our RLLD algorithm employs a less com-

plex and hardware friendly algorithm to compute the returned constituent

codewords.

• Our RLLD algorithm is based on LLR messages, while the decoding algorithm

in [38] is based on logarithm likelihood (LL) messages, which require a larger

memory to store.

In terms of hardware implementations, compared with state-of-arts SC list de-

coders [31–34,36,37], our high throughput list decoder architecture shows advantages

in various aspects.

• For the high throughput list decoder architecture, LLR message is employed

while LL message was used in [31,32,36,37]. The LL based memories require

more quantization bits and a larger memory to store. The area efficient mem-

ory architecture in [32] is employed to store all LLR messages. LLR messages

were also employed in [33,34]. However, the register based memories in [33,34]

suffer from excessive area and power consumption when N is large.

• Our list decoder architecture employs a Hyb-PSU, which is scalable for polar

codes of large block lengths. The register based PSUs of the list decoders

in [31–33] suffer from area overhead when the block length is large. Instead

of copying partial sums directly, our scalable PSU copies only decoding path

indices, which avoids additional energy consumption.

The proposed high throughput list decoder architecture has been implemented for

several block lengths and list sizes under the TSMC 90nm CMOS technology. The
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implementation results show that our decoders outperform existing SCL decoders in

both decoding latency and area efficiency. For example, compared with the decoders

of [33], the area efficiency and decoding latency of our decoders are 1.65 to 45 times

and 3.4 to 6.8 times better, respectively.

The rest of the chapter is organized as follows. Related preliminaries are reviewed

in Section 6.2. The proposed RLLD algorithm is presented in Section 6.3. The high

throughput list decoder architecture is presented in Section 6.4. In Section 6.5, the

implementation and comparisons results are shown. At last, the conclusion is drawn

in Section 6.6.

6.2 Preliminaries

6.2.1 Polar Codes

Let uN−10 = (u0, u1, · · · , uN−1) denote the data bit sequence and xN−10 = (x0, x1,

· · · , xN−1) the corresponding codeword, where N = 2n. Under the polar encoding,

xN−10 = uN−10 BNF
⊗n, where BN is the bit reversal permutation matrix, and F =[

1
1
0
1

]
. Here ⊗n denotes the nth Kronecker power and F⊗n = F ⊗ F⊗(n−1). For

i = 0, 1, · · · , N − 1, ui is either an information bit or a frozen bit, which is set

to zero usually. For an (N,K) polar code, there are a total of K information bits

within uN−10 . The encoding graph of a polar code with N = 8 is shown in Fig. 6.1.

6.2.2 Prior Tree-Based SC Algorithms

A polar code of block length N = 2n can also be represented by a full binary tree

Gn of depth n [30], where each node of the tree is associated with a constituent
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Figure 6.1: Polar encoder with N = 8
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Figure 6.2: Binary tree representation of an (8, 3) polar code

code. For example, for node 1 shown in Fig. 6.2, the correspondent constituent

code is the set {(s20, s22, s24, s26)}, where each element (s20, s22, s24, s26) relates to

the data word u70 as shown in Fig. 6.1. The binary tree representation of an (8, 3)

polar code is shown in Fig. 6.2, where the black and white leaf nodes correspond to

information and frozen bits, respectively. There are three types of nodes in a binary

tree representation of a polar code: rate-0 , rate-1 and arbitrary rate nodes. The

leaf nodes of a rate-0 and rate-1 nodes correspond to only frozen and information

bits, respectively. The leaf nodes of an arbitrary rate node are associated with both

information and frozen bits. The rate-0, rate-1 and arbitrary rate nodes in Fig. 6.2

are represented by circles in white, black and gray as shown.

The SC algorithm can be mapped on Gn, where each node acts as a decoder for

its constituent code. The SC algorithm is initialized by feeding the root node with
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the channel LLRs, (Y0, Y1, · · · , YN−1), where Yi = log(Pr(yi|xi = 0)/Pr(yi|xi = 1))

and (y0, y1, · · · , yN−1) is the received channel message vector. As shown in Fig. 6.2,

the decoder at node v receives a soft information vector αv and returns a constituent

codeword βv. When a non-leaf node v is activated by receiving an LLR vector αv,

it calculates a soft information vector α0
v and sends it to its left child. Node v first

waits until it receives a constituent codeword β0
v , and then computes and sends a soft

information vector α1
v to its right child. Once the right child returns a constituent

codeword β1
v , node v computes and returns a constituent codeword βv. When a

leaf node v is activated, the returned constituent codeword βv contains only one bit

βv[0], where βv[0] is set to 0 if leaf node v is associated with a frozen bit; otherwise,

βv[0] is calculated by making a hard decision on the received LLR αv[0], where

βv[0] = h(αv[0]) =


0 αv[0] > 0,

0 or 1 αv[0] = 0,

1 αv[0] < 0.

(6.1)

From the root node, all nodes in a tree are activated in a recursive way for the SC

algorithm. Once βv for the last leaf node is generated, the codeword xN−10 can be

obtained by combining and propagating βv up to the root node.

The SSC decoding algorithm in [30] simplifies the processing of both rate-0 and

rate-1 nodes. Once a rate-0 node is activated, it immediately returns the all zero

vector. Once a rate-1 node is activated, a constituent codeword is directly calcu-

lated by making hard decisions on the received soft information vector as shown in

Eq. (6.1). The ML-SSC decoding algorithm [54] further accelerates the SSC decod-

ing algorithm by performing the exhaustive-search ML decoding on some resource
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constrained arbitrary rate nodes, which are called ML nodes in [54]. For an ML

node with layer index t, the constituent codeword passed to the parent node pv is

βv = argmax
x∈C

2n−t−1∑
i=0

(1− 2x[i])αv[i], (6.2)

where C is the constituent code associated with node v.

6.2.3 LLR Based List Decoding Algorithms

For SCL decoding algorithms [31, 34, 55], when decoding an information bit ui,

each decoding path splits into two paths with ûi being 0 and 1, respectively. Thus

2L path metrics are computed and the L paths correspond to the L minimum

path metrics are kept. The list decoding algorithm in [31, 55] are performed either

on probability or logarithmic likelihood (LL) domain. In [34], an LLR based list

decoding algorithm was proposed to reduce the message memory requirement and

the computational complexity of LL based list decoding algorithm. For decoding

path l (l = 0, 1, · · · , L− 1), the LLR based list decoding algorithm employs a novel

path metric

PM
(i)
l =

i∑
k=0

D(L(k)
n [l], ûk[l]), (6.3)

where D(L
(k)
n [l], ûk[l]) = 0 if h(L

(k)
n [l]) equals to ûk[l]. Otherwise, D(L

(k)
n [l], ûk[l]) =

|L(k)
n [l]|. Here L

(k)
n [l] , W

(k)
n (yN−1

0 ,ûk−1
0 [l]|0)

W
(k)
n (yN−1

0 ,ûk−1
0 [l]|1)

and yN−10 = (y0, y1, · · · , yN−1) is the re-

ceived channel message vector.
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6.3 Reduced Latency List Decoding Algorithm

6.3.1 SCL Decoding on A Tree

Similar to the SSC decoding algorithm, the SC based list decoding algorithms [31,55]

can also be performed on a full binary tree Gn [38, 80]. The SCL decoding is

initiated by sending the received channel LLR vector to the root node of Gn. As

shown in Fig. 6.3, without losing generality, each internal node v in Gn is activated

by receiving L LLR vectors, αv,0, αv,1, · · · , αv,L−1, from its parent node vp and is

responsible for producing L constituent codewords, βv,0, βv,1, · · · , βv,L−1, where αv,l

and βv,l correspond to decoding path l for l = 0, 1, · · · , L−1. Suppose the layer index

of node v is t, αv,l and βv,l have 2n−t LLR messages and binary bits, respectively,

for l = 0, 1, · · · , L− 1.

Once a non-leaf node v is activated, it calculates L LLR vectors, αvL,0, αvL,1,

· · · , αvL,L−1, and passes them to its left child node vL, where

αvL,l[i] = f(αv,l[2i], αv,l[2i+ 1]) (6.4)

for 0 ≤ i < 2n−t−1 and l = 0, 1, · · · , L− 1.

Here f(a, b) = 2 tanh−1(tanh(a/2) tanh(b/2)) and can be approximated as:

f(a, b) ≈ sign(a) · sign(b) min(|a|, |b|). (6.5)

Node v then waits until it receives L codewords, βvL,0, βvL,1, · · · , βvL,L−1, from

vL. In the following step, node v calculates another L LLR vectors, αvR,0, αvR,1,
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· · · , αvR,L−1, and passes them to its right child node vR, where

αvR,l[i] = g(αv,l[2i], αv,l[2i+ 1], βvL,l[i])

= αv,l[2i](1− 2βvL,l[i]) + αv,l[2i+ 1]
(6.6)

for 0 ≤ i < 2n−t−1 and l = 0, 1, · · · , L− 1.

At last, node v waits until it receives L codewords, βvR,0, βvR,1, · · · , βvR,L−1, from

vR. It then calculates βv,0, βv,1, · · · , βv,L−1 and passes them to its parent node vp,

where

(βv,l[2i], βv,l[2i+ 1]) = (βvL,l[i]⊕ βvR,l[i], βvR,l[i]), (6.7)

for 0 ≤ i < 2n−t−1 and l = 0, 1, · · · , L− 1.
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Figure 6.3: Node activation schedule for SC based list decoding on Gn

For l = 0, 1, · · · , L− 1, PMl is the path metric associated with decoding path l

and is initialized with 0. When a leaf node v associated with an information bit is

activated, decoding path l splits into two paths with βv,l being 0 and 1, respectively.

Note that the layer index of a leaf node is n, hence αv,l and βv,l have only one LLR

and binary bit, respectively, when node v is a leaf node. For the SCL decoding, 2L
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expanded path metrics are computed, where

PMj
l = PMl +D(αv,l, j), (6.8)

for j = 0, 1 and l = 0, 1, · · · , L − 1. D(αv,l, j) = 0 if h(αv,l) equals j. Otherwise,

D(αv,l, j) = |αv,l|. Suppose the L minimum expanded path metrics are PMj0
a0

,

PMj1
a1

, · · · , PMjL−1
aL−1

, which correspond to the L most reliable paths, then βv,l = jl

for l = 0, 1, · · · , L − 1. Decoding path al will be copied to decoding path l before

further partial sum and LLR vector computations. For each decoding path l, path

metric is also updated with PMl = PMjl
al

. When a leaf node v associated with a

frozen bit is activated, βv,l = 0 for l = 0, 1, · · · , L− 1 are passed to its parent node

vp. The updated path metric PMl = PMl + D(αv,l, 0). Note that the SCL algorithm

on a tree described above is equivalent to the SCL algorithms in [31,55].

6.3.2 Proposed RLLD algorithm

In this chapter, a reduced latency list decoding (RLLD) algorithm is proposed to

reduce the decoding latency of SC list decoding for polar codes. For a node v, let

Iv denote the total number of leaf nodes that are associated with information bits.

Let Xth be a predefined threshold value and X0 and X1 be predefined parameters.

Our RLLD algorithm performs the SC based list decoding on Gn and follows the

node activation schedule in Section 6.3.1, except when certain type of nodes are

activated. These nodes calculate and return the codewords to their parent nodes

while updating the decoding paths and their metrics, without activating their child

nodes. Specifically:
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• When a rate-0 node v is activated, βv,l is a zero vector for l = 0, 1, · · · , L− 1.

• When a rate-1 node v with Iv > Xth is activated, βv,l is just the hard decision

of αv,l for l = 0, 1, · · · , L − 1. For a well constructed polar code, we observe

that the polarized channel capacities of the information bits corresponding to

rate-1 nodes with Iv > Xth are greater than those of the other information

bits. Hence, for rate-1 nodes with Iv > Xth, our RLLD algorithm considers

only the most reliable candidate codeword for each decoding path due to a

more reliable channel.

• When a rate-1 node v with Iv 6 Xth is activated, the returned codewords are

calculated by the proposed candidate generation (CG) algorithm.

• Let t denote the layer index of node v. When an arbitrary rate node v with

Iv 6 X0 and 2n−t 6 X1 is activated, each decoding path splits into 2Iv paths.

From now on, such an arbitrary rate node is called fast processing (FP) node.

The proposed metric based search (MBS) algorithm is used to calculate the

returned codewords.

When performed on a binary tree, the SCL algorithms in [31, 55] do the path ex-

panding and pruning as well as the updating of path metrics when a leaf node is

activated. In contrast, our RLLD algorithm do the path expanding and pruning as

well as updating of path metrics when a certain intermediate node is visited. Thus,

our RLLD algorithm visits fewer nodes.

When a rate-1 node with Iv > Xth or a rate-0 node is activated, ideally, PMl is

updated with PMl + ∆v,l for l = 0, 1, · · · , L−1, where ∆v,l =
∑Iv−1

i=0 D(αv,l[i], βv,l[i]).

For each rate-1 node with Iv > Xth, ∆v,l = 0 since βv,l is the hard decision of
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αv,l. However, for a rate-0 node, ∆v,l could have a non-zero value. For our RLLD

algorithm, ∆v,l is also set to be 0 for each rate-0 node, since the resulting performance

degradation is negligible. By setting ∆v,l to be 0, we no longer need to calculate

αv,l sent to a rate-0 node.

Proposed CG Algorithm

When a rate-1 node with Iv 6 Xth is activated, ideally, we should consider 2Iv

candidate codewords for each decoding path. Since there are at most L codewords

from the same decoding path that could be passed to the parent node, it is enough

to find only the L most reliable codewords among 2Iv candidates for each decoding

path. When Iv is large (e.g. Iv > 32), finding the L most reliable codewords is com-

putationally intensive and lacks efficient hardware implementations. For our RLLD

algorithm, we considers only the W (W < L) most reliable codewords among 2Iv

candidates for each decoding paths. In this chapter, W is set to be 2, since it results

in efficient hardware implementations at the cost of negligible error performance

lost.

When W = 2, the proposed CG algorithm, shown in Alg. 21, is used to calculate

the codewords passed to the parent node. Besides, the CG algorithm also outputs

L list indices, a0, a1, · · · , aL−1, which indicate that decoding path al needs to be

copied to path l. Suppose the layer index of such a rate-1 node v is t. For each

decoding path l, there are 2Iv = 22n−t candidate codewords that could be passed to

the parent node vp. However, our CG algorithm considers only the most reliable

codeword Cv,l,0 and the second most reliable codeword Cv,l,1. In order to find these
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two codewords, each candidate codeword Cv,l,j is associated with a node metric

NMj
l =

∑Iv−1

k=0
mk|αv,l[k]| (6.9)

for j = 0, 1, · · · , 2Iv−1, where mk = 0 if Cv,l,j[k] equals h(αv,l[k]) and 1 otherwise. As

a result, the smaller a node metric is, the more reliable the corresponding candidate

codeword is. Based on Eq. (6.9), Cv,l,0 = h(αv,l) is the hard decision of the received

LLR vector αv,l. Cv,l,1 is obtained by flipping the kM,l-th bit of Cv,l,0, where kM,l is

the index of the LLR element with the smallest absolute value among αv,l.

Each decoding path splits into two paths and has two associated candidate code-

words. Alg. 21 calculates 2L expanded path metrics PMj
l for l = 0, 1, · · · , L−1 and

j = 0, 1 to select L codewords passed to the parent node. The minL function in

Alg. 21 finds the L smallest values among 2L input expanded path metrics. Once

βv,l for l = 0, 1, · · · , L − 1 are computed, decoding path al is copied to decoding

path l before further operations.

Algorithm 21: The proposed CG algorithm

input : αv,0, αv,1, · · · , αv,L−1
output: βv,0, βv,1, · · · , βv,L−1; a0, a1, · · · , aL−1
for l = 0 to L− 1 do

kM,l = argmin
k∈{0,1,··· ,Iv−1}

|αv,l[k]|

NM0
l = 0; Cv,l,0 = h(αv,l)

NM1
l = |αv,l[kM,l]|; Cv,l,1 = Flip(Cv,l,0, kM,l)

PMj
l = PMl + NMj

l for j = 0, 1

(PMb0
a0
, · · · ,PMbL−1

aL−1
) = minL(PM0

0,PM1
0, · · · ,PM1

L−1) for l = 0 to L− 1 do

βv,l = Cv,al,bl ; PMl = PMbl
al
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Proposed MBS Algorithm

When an FP node is activated, each current decoding path expands to 2Iv paths,

each of which is associated with a candidate codeword. Similar to the CG algorithm,

the proposed MBS algorithm calculates L codewords passed to the parent node and

L path indices, a0, a1, · · · , aL−1. The calculation of returned codewords are shown

as follows.

• For each candidate codeword Cjv,l, calculate its corresponding node metric NMj
l

for j = 0, 1, · · · , 2Iv − 1 and l = 0, 1, · · · , L− 1.

• Calculate 2IvL expanded path metrics PMj
l for l = 0, 1, · · · , L − 1 and j =

0, 1, · · · , 2Iv − 1.

• Find L expanded path metrics among 2IvL ones. The correspondent candidate

codewords are passed to the parent node vp.

To calculate the node metric, we propose a new method with low computational

complexity. In the literature, two methods can be used: the direct-mapping method

(DMM) shown in Eq. (6.9) and the recursive channel combination (RCC) [37]. In

terms of computational complexity, the former needs 2Iv(2n−t−1)L additions, where

N = 2n and t is the layer index of an FP node v. The RCC needs (
∑n−t−1

i=1 2i22n−t−i+

2Iv)L additions. Compared to the DMM, the RCC approach needs fewer additions.

For our RLLD algorithm, we want to compute these 2Iv node metrics in parallel.

However, the parallel hardware implementations of the DMM and RCC algorithms

require large area consumption. This will be discussed in more detail in Section 6.4.3.

In this chapter, a hardware efficient node metric computation method, which

takes advantage of both the DMM and the RCC, is proposed. The proposed method,
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referred to as the DR-Hybrid (DRH) method, is shown in Alg. 22, where Cjv,l[2i :

2i+ 1] = (Cjv,l[2i], C
j
v,l[2i+ 1]), and r is represented by a binary tuple of length two,

i.e. r = r0 + 2r1. In our method, the RCC approach is used to calculate θl,i first.

Then, the DMM is carried out.

Algorithm 22: DR-Hybrid method

for l = 0 to L− 1 do
/* ----------RCC---------------- */

1 for i = 0 to 2n−t−1 − 1 do
2 for r = 0 to 3 do
3 θl,i[(r0, r1)] = (1− 2r0)αv,l[2i] + (1− 2r1)αv,l[2i+ 1];

/* ----------DMM---------------- */

4 for j = 0 to 2Iv − 1 do

5 NMj
l =

∑2n−t−1−1
i=0 θl,i[Cjv,l[2i : 2i+ 1]].

The DRH method needs 4×2n−t−1 +2Iv(2n−t−1−1) additions. Take X0 = 8 and

X1 = 16 as an example, the DMM, RCC and DRH methods need 3840, 864 and

1824 additions. Though our DRH method needs more additions than the RCC, it

results in a more area efficient hardware implementation when all 2Iv node metrics

are computed in parallel, since the RCC method needs more complex multiplexors.

Once we have 2IvL node metrics and corresponding candidate codewords, 2IvL

expanded path metrics PMj
l = PMl + NMj

l for l = 0, 1, · · · , L − 1 and j =

0, 1, · · · , 2Iv − 1 can be computed. The next step is selecting L returned codewords

and their corresponding expanded path metrics.

Ideally, we should find the L minimum expanded path metrics, which correspond

to the L most reliable codewords, among 2IvL ones. However, directly finding the

L minimum values from 2IvL ones is computationally intensive and lacks efficient
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hardware implementations. A bitonic sequence based sorter [32] (BBS) with 2IvL

inputs is able to fulfill this task. Such a BBS takes 2Iv−1L(
∑s−1

i=1 i)+2Iv−2L compare-

and-switch (CS) units [32], where each of them has one comparator and two 2-to-1

multiplexors and s = log2(2
IvL). For example, when Iv = 8 and L = 4, such a BBS

needs 23296 CS units. In order to simplify the hardware implementation, a two-stage

sorting scheme was proposed in [37], where the first stage selects q (q < L) smallest

node metrics from 2Iv ones for each decoding path. The second stage selects the

L smallest metrics from the Lq expanded path metrics produced by the first stage.

Compared with the direct sorting scheme [32, 36], the hardware implementation of

the two-stage sorting scheme is more efficient at the cost of certain error performance

degradation.

In this chapter, our MBS algorithm employs the two-stage sorting scheme and

improves the first stage in the following two aspects:

• Instead of using a fixed q, our MBS algorithm employs a dynamic qIv ,L(qIv ,L 6

L), which is a power of 2 and depends on both Iv and L.

• An approximated sorting (ASort) method is used to select out qIv ,L metrics

from 2Iv ones. Though these sorted metrics are not always the precisely qIv ,L

smallest among 2Iv one, our ASort method leads to an efficient hardware

implementation.

Our ASort method is illustrated as follows:

• When 2Iv 6 2L, the BBS with 2L inputs and L outputs is used to select the

qIv ,L minimum node metrics from 2Iv ones.

• When 2Iv > 2L, all 2Iv node metrics are divided into qIv ,L groups as follows:
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NM0
l , · · · ,NMm−1

l︸ ︷︷ ︸
group 1

, · · · ,NM
(qIv,L−1)m
l , · · · ,NM

qIv,Lm−1
l︸ ︷︷ ︸

group qIv,L

.

Here m = 2Iv

qIv,L
. The two minimum node metrics of each group are first computed.

The BBS computes the minimum qIv ,L node metrics among 2qIv ,L ones.

After the first stage of sorting, the number of expanded path metrics Ne could

be 2L, 4L, · · · , L × L. The second stage of sorting is the same as that in [37]. A

binary tree of 2L-L BBSs are employed to sort out the final L minimum expanded

path metrics. Take Ne = 4L as an example, there are 4L extended path metrics:

PMj0
l0

, PMj1
l1

, · · · , PM
j4L−1

l4L−1
, then PMj0

l0
, · · · , PM

j2L−1

l2L−1
and PMj2L

l2L
, · · · , PM

j4L−1

l4L−1
are

applied to two 2L-L BBSs, respectively. Thus, total 2L metrics are selected out.

Then the 2L-L BBS is employed again to generated the final L minimum extended

path metrics: PM
j′0
l′0

, PM
j′1
l′1

, · · · , PM
j′L−1

l′L−1
.

6.3.3 Discussions on the Parameters of Our RLLD Algo-

rithm

For our RLLD algorithm, the returned codewords from rate-1 nodes with Iv > Xth

are obtained by making hard decisions on the received LLR vectors. The other

rate-1 nodes are processed by our CG algorithm. Note that both the hard decision

approach and our CG algorithm could cause potential error performance degrada-

tion since ideally we should consider 2Iv candidate codewords for each decoding

path. With more rate-1 nodes (decreasing Xth) being processed by the hard de-

cision approach, the decoding latency could be reduced at the cost of more error

performance degradation.

The choices of X0 and X1 are tradeoffs between implementation complexity and
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achieved decoding latency reduction. Ideally, we want X0 and X1 to be as large as

possible so that more data bits could be decoded in parallel. The number of adders

needed by Alg. 22 is proportional to 2Iv2n−t in terms of hardware implementations.

Thus, for practical implementations, we could choose only realistic values for X0

and X1.

For the two step sorting scheme of our MBS algorithm, we want qIv ,L to be

as small as possible so that the sorting complexity could be minimized. However,

reducing qIv ,L could degenerate the resulting error performance, since ideally we

need to consider the L most reliable candidate codewords for each decoding path.

As a result, the selections of qIv ,L are tradeoffs between sorting complexity and error

performance.

6.3.4 Comparison with Related Algorithms

If we perform the SC based list decoding algorithms [31, 55] on a tree, then all

2N − 1 nodes of the tree will be activated. For our RLLD algorithm, denote na as

the number of activated nodes. Then we have na < 2N − 1, where na is determined

by the block length N , the code rate, the locations of frozen bits and the parameters

X0 and X1. X0 and X1 are used to identify all FP nodes. The reduction of the

number of activated nodes will transfer into reduced decoding latency and increased

throughput. Take the (8, 3) polar code in Fig. 6.2 as an example, suppose X0 = 1

and X1 = 2, then only 5 nodes (node 0, 1, 2, 5, 6) need to be activated by our RLLD

algorithm, whereas the previous algorithms [31,55] need to activate all 15 nodes.

The CA-SCL decoding algorithm was also performed on a binary tree in [38].

Compared with the low-latency list decoding algorithm [38], our RLLD algorithm
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employs the proposed MBS algorithm to process FP nodes, while FP nodes were pro-

cessed by activating its child nodes in [38]. Our MBS algorithm results in decreased

decoding latency at the cost of potential error performance loss. Besides, our RLLD

algorithm takes a simpler approach when a rate-1 node is activated. When a rate-1

node is activated, a Chase-like algorithm was used to calculate the L codewords

passed to the parent node in [38]. Compared to the Chase-like algorithm, our CG

algorithm has lower computational complexity and is more suitable for hardware

implementation due to the following facts:

(1) The Chase-like algorithm in [38] was performed over log-likelihoods (LL)

domain while our method is performed over LLR domain. Compared with our LLR

based method, it takes more additions to calculate related metrics for the Chase-like

algorithm.

(2) For each decoding path, the Chase-like algorithm considers 1 +
(
c
1

)
+
(
c
2

)
candidate constituent codewords, where c = 2 in [38]. In contrast, our method

considers only two constituent codewords.

(3) In order to find the L best decoding paths and their constituent codewords,

the Chase-like algorithm creates a candidate path list. The final L candidates are de-

termined by inserting and removing elements from the list. The Chase-like algorithm

is suitable for software implementations. However, the hardware implementations

of the Chase-like algorithm has not been discussed in [38]. On the other hand, with

a bitonic based sorter [32] (BBS), the L most reliable decoding paths can be decided

in parallel for our CG algorithm.
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6.3.5 Simulation Results

For an (8192, 4096) polar code, the bit error rate (BER) performances of the pro-

posed RLLD algorithm as well as other algorithms are shown in Fig. 6.4. In Fig. 6.4,

CSx denotes the CA-SCL decoding algorithm with L = x, where CRC-32 is used.

Rx-y denotes our RLLD algorithm with L = x and Xth = y. The values of qIv ,L’s

under different list sizes and Iv’s are shown in Table 6.1. For all simulated algo-

rithms, the additive white Gaussian noise (AWGN) channel and binary phase-shift

keying (BPSK) modulation are used. For all simulated RLLD algorithms, X0 = 8

and X1 = 16 for practical implementations.

Table 6.1: The Values of qIv ,L’s under Different List Sizes and Iv’s

Iv 1 2 3 4 5 6 7 8

L

2 2 2 2 2 2 2 2 2
4 2 4 4 4 4 4 4 2
8 2 4 8 8 8 8 4 2
16 2 4 8 8 8 8 8 2
32 2 4 8 8 8 4 4 2

SNR (dB)
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
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Figure 6.4: BER performance for an (8192, 4096) polar code
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Based on the simulation results shown in Fig. 6.4, we observe that R2-8 performs

nearly the same as CS2 and R2-64. When the list size increases, compared with CS4,

R4-8 shows obvious error performance degradation when BER is blow 10−7. The

degradation is reduced by increasing Xth to 128, as we observe that R4-128 performs

nearly the same as CS4. When the list size further increases (e.g. L = 16 and 32),

at low BER level, the error performance degradation shows again even Xth = 256.

As shown in Fig. 6.4, R16-256 and R32-256 are worse than CS16 and CS32 when

BER is below 10−5 and 10−6, respectively. Note that for the (8192, 4096) polar code

in this chapter, Iv of a rate-1 node is at most 256.

Depending on the specific list size, we predict that our RLLD algorithm will

show performance degradation compared to the CA-SCL algorithm at certain BER

values even when all rate-1 nodes are processed by the proposed CG algorithm.

Nevertheless, for the (8192, 4096) polar code, our RLLD algorithm can still show

obvious advantage in terms of error performance compared with the SC algorithm.

The root causes of the error performance degradation of our RLLD algorithm may

be as follows:

(1) For our RLLD algorithm, when a rate-1 node with Iv 6 Xth is activated, only

the two most reliable constituent codewords are kept. When list size L is large, there

may not be enough candidate codewords to include the correct codeword, since our

CG algorithm could miss certain good candidate codewords.

(2) When a rate-1 node with Iv > Xth is activated, only the most reliable can-

didate codeword is considered for each decoding path, which could also cause error

performance degradation.

(3) During the first sorting stage of our MBS algorithm, when 2Iv > L, qIv ,L is
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selected to be no greater than L for certain Iv values for efficient hardware imple-

mentation. As a result, we may lose certain good candidate codewords due to the

limitation on qIv ,L.

6.4 High Throughput List Polar Decoder Archi-

tecture

6.4.1 Top Decoder Architecture
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IMEM

CMEM
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Figure 6.5: Decoder top architecture

In this chapter, based on the proposed RLLD algorithm, a high throughput list

decoder architecture, shown in Fig. 6.5, for polar codes is proposed. In Fig. 6.5, the

channel message memory (CMEM) stores the received channel LLRs, and the inter-

nal LLR message memory (IMEM) stores the LLRs generated during the SC com-

putation process. With the concatenation and split method in our prior work [32],

the IMEM is implemented with area efficient memories, such as register file (RF) or

SRAM. The proposed architecture has L groups of processing unit arrays (PUAs),

each of which contains T processing units [20] (PUs) and is capable of performing ei-

ther the f or the g computation. The hybrid partial sum unit (Hyb-PSU) in Fig. 6.5
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consists of L computation units, CU0, CU1, · · · , CUL−1, which are responsible for

updating the partial sums of L decoding paths, respectively. The path pruning unit

(PPU) in Fig. 6.5 finds the list indices and corresponding constituent codewords for

L survival decoding paths, respectively.

Both our high throughput list decoder architecture in Fig. 6.5 and that in [32]

employ a partial parallel processing method. Besides, both architectures contain a

channel message memory and internal message memory. However, compared to the

architecture in [32], the major improvements of our list decoder architecture are:

(a) Instead of LL messages, our high throughput list decoder architecture em-

ploys LLR messages, which result in more area efficient internal and channel message

memories.

(b) The PPU in Fig. 6.5 implements our CG and MBS algorithms, while the

PPU in [32] is just a sorter which selects L values among 2L ones. Due to the

proposed PPU, our decoder architecture achieves much higher throughput that the

that in [32].

(c) Our list decoder architecture employs a novel Hyb-PSU, which is more area

and energy efficient than that in [32]. Our Hyb-PSU is based on the proposed index

based partial sum computation algorithm. When a decoding path needs to be copied

to another one, our Hyb-PSU avoids copying partial sums directly by copying only

decoding path indices. In contrast, the PSU in [32] copies path sums directly, which

incurs additional energy consumption. Our Hyb-PSU stores most of the partial

sums in area efficient memories, while the PSU in [32] stores all the partial sums in

area demanding registers. Hence, our Hyb-PSU is scalable for larger block lengths.
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6.4.2 Memory Efficient Quantization Scheme

For an SC or SCL decoder, the message memory occupies a large part of the overall

decoder area [20, 32]. An SCL decoder needs a channel message memory and an

internal message memory. For an LLR based SCL decoder, the channel memory

stores N channel LLR messages. The internal message memory stores Ln LLR

matrices: Pl,t for l = 0, 1, · · · , L − 1 and t = 1, 2, · · · , n, where Pl,t has 2n−t LLR

messages.

For a fixed point implementation of our RLLD algorithm, it is straightforward

to quantize all LLRs in the internal memory with Q bits. In this chapter, a memory

efficient quantization (MEQ) scheme is proposed to reduce the size of the internal

memory. f(a, b) in Eq. (6.5) has the same magnitude range as those of a and b,

while the magnitude range of g(a, b, s) in Eq. (6.6) is at most twice of those of

a and b (s is either 0 or 1). Since P0,t, P1,t, · · · , PL−1,t are computed based on

P0,t−1, P1,t−1, · · · , PL−1,t−1, for a decoding path l, the LLRs in Pl,t1 may need a

greater magnitude range than that of the LLRs in Pl,t2 , where t1 > t2. Suppose each

channel LLR is quantized with Qc bits, the proposed MEQ scheme is as follows:

(1) Suppose all LLRs within the internal memory are quantized with Qm bits,

determine the minimal Qm such that the error performance degradation of the fixed

point performance is negligible.

(2) Let t1, t2, · · · , tr be r integers, where t1 6 t2 6 · · · 6 tr 6 n and r = Qm−Qc.

Denote Pt = (P0,t, P1,t · · · , PL−1,t). Suppose LLRs associated with P1,P2, · · · ,Pt1

are quantized with Qc bits and the remaining LLRs are quantized with Qm bits. De-

cide the maximal t1 such that the resulting fixed point error performance degradation

is negligible. Once t1 is decided, suppose the LLRs within Pt1+1,Pt1+2, · · · ,Pt2 are
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all quantized with Qc + 1 bits, find the maximal t2 such that the corresponding

error performance degradation is negligible. In this way, t3, · · · , tr are decided in

a serial manner so that Pti+1,Pti+2, · · · ,Pti+1
are quantized with Qc + i bits for

1 6 i 6 r − 1, and Pj are quantized to Qm bits for j > tr.

With the proposed MEQ scheme, the number of bits saved for the internal mem-

ory is

NB =
r+1∑
j=1

tj∑
t=tj−1+1

L2n−t(Qc + j − 1), (6.10)

where t0 = 0 and tr+1 = n are introduced for convenience.

In order to show the effectiveness of our MEQ scheme, the error performances of

our RLLD algorithm with the proposed MEQ scheme are shown in Fig. 6.6, where

the RLLD algorithm with our MEQ scheme is compared with the floating-point

CA-SCL decoding algorithm, floating-point RLLD algorithm, and RLLD algorithm

with a uniform quantization scheme for three different polar codes, (1024, 512),

(8192, 4096) and (32768, 29504) with Xth = 32, 128, 1024, respectively. For all

fixed-point decoders, each channel LLR is quantized with Qc = 5 bits. For the

RLLD algorithm with uniform quantization, each LLR in the internal memory is

quantized with Qm = 7 bits. Since Qm−Qc = 2, we need to determine two integers,

r1 and r2, for our MEQ scheme. When N = 210, 213 and 215, (r1, r2) = (1,2), (3,4)

and (4,5), respectively. As shown in Fig. 6.6, the performance degradation caused by

our MEQ scheme is small. Compared with the uniform quantization, the proposed

MEQ scheme reduces the number of stored bits by 17%, 25% and 27% for N = 210,

213 and 215, respectively.
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Figure 6.6: Effects of the proposed MEQ scheme on the error performances

6.4.3 Proposed path pruning unit

When a rate-1 node with Iv 6 WT or an FP node is activated, each decoding path

splits into multiple ones and only the L most reliable paths are kept. The PPU in

Fig. 6.5 implements our CG and MBS algorithms, and is responsible for calculating

L returned codewords, βv,0, βv,1, · · · , βv,L−1, and L path indices, a0, a1, · · · , aL−1.

For l = 0, 1, · · · , L− 1, decoding path l copies from decoding path al before further

decoding steps.

Take L = 4 as an example, the proposed PPU is shown in Fig. 6.7, which can be

easily adapted to other L values. Our PPU in Fig. 6.7 has two types of node metric

generation (NG) units, NG-I and NG-II, which compute the node metrics for a rate-

1 node and an FP node, respectively. NG-Il and NG-IIl correspond to decoding path

l. For decoding path l, the expanded path metrics PMj
l ’s are obtained by adding the

node metrics to the path metric PMl, which is stored in the path metric registers

(PMR) and initialized with 0.

When a rate-1 node is activated, NG-Il outputs two node metrics for l =
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0, 1, · · · , L − 1. After 2L expanded path metrics are computed, a stage of metric

sorter (MS2L−L) selects the L minimum metrics and their corresponding codewords

from 2L ones. The metrics sorter MS2L−L implements the minL function in Alg. 21

and can be constructed with a BBS. When an FP node is activated, L NG-II mod-

ules implement the first part of our two-stage sorting scheme. For each decoding

path, qIv ,L node metrics and their correspondent codewords are computed. The tree

of metric sorters sort the L minimum metrics among qIv ,LL ones. This is achieved

by log2 qIv ,L stages of metric sorters when qIv ,L is a power of 2. The output ex-

panded path metrics of the last stage of metric sorter are saved in the PMR. The

corresponding codewords of the selected L expanded path metrics are also chosen.

The related circuitry is omitted for simplicity.
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Figure 6.7: The proposed architecture for PPU

The micro architecture of NG-Il is shown in Fig. 6.8. The most complex part of

NG-Il is finding the minimum LLR magnitude and its corresponding index among

the LLR vector |αv,l| , (|αv,l[0]|, |αv,l[1]|, · · · , |αv,l[Iv − 1]|). Since the node metric

of the most reliable candidate codeword is always 0, we need to compute NM1
l =

|αv,l[kM,l]| in Fig. 6.8, which is the node metric of the second most reliable candidate
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codeword, with a corresponding index kM,l. For our list decoder architecture, for

each decoding path, at most T LLRs are computed in one clock cycle, since we have

only T PUs per decoding path. The Min-1 unit in Fig. 6.8 is capable of finding the

minimum value, mLLR, and its corresponding index, mIdx, from at most T parallel

inputs. When Iv 6 T , NM1
l = mLLR and kM,l = mIdx. Cv,l,0 = h(αv,l) in Fig. 6.8 is

the hard decision of αv,l, which is the most reliable candidate codeword. The second

most reliable candidate codeword is obtained by flipping the kM,l-th bit of Cv,l,0.

Min-1
mLLR

mIdx

mLR

mIR

cmp

HCM0 HCM1

0

1

0

1

,| |v l

,( )v lh 

0

1

En
kM,l

1NMl

, ,0v l

Figure 6.8: Hardware architecture of the proposed NG-Il

When Iv > T , suppose T is a power of 2, then Iv can be divided by T . During

each clock cycle, only T LLRs are fed to NG-Il, and the minimum value and its

corresponding index are computed in a partial parallel way. The minimum value

and associated index of the first T inputs are stored in mLR and mIR, respectively.

The minimum value of the second group of T inputs is compared with the current

value stored in mLR, and is stored in mLR if it is smaller than the current value

of mLR. This repeats until the whole LLR vector αv,l is processed. At last, the

minimum value of |αv,l| and its index are stored in mLR and mIR, respectively.

The hard decoding of αv,l is stored in the hard decoded constituent codeword mem-

ory (HCM0), and is copied to HCM1 when the second most reliable constituent

codeword is computed.

The micro-architecture of NG-IIl under X0 = 8 and X1 = 16 is shown in Fig. 6.9,
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where the block MUX4T256 includes 256 4-to-1 multiplexers. Our NG-IIl consists

of two parts, where the first part calculated 2Iv node metrics, NM0
l , NM1

l , · · · ,

NM2Iv−1
l , based on Alg. 22. The second part implements the first stage sorting of

our MBS algorithm. For L = 4, when 2Iv > 2L, the 2Iv metrics are first divided

into four groups. The Min-2 [81] block is modified slightly to find the two minimum

node metrics and their associated indices for each metric group. The MS8−4 block

calculates the final output metrics. When 2Iv = 2L = 8, the MS8−4 blocks work

directly on the 2L = 8 expanded path metrics. When 2Iv 6 L, the expanded path

metrics are output directly. As shown in Figs. 6.7 to 6.9, our PPU has long critical

path delay, since there are many levels of logic from the inputs to outputs. Pipelines

should be used to improve overall decoder frequency.

0 01 1

|αv,l[0]| 0

m0
0 01 1

m1

MUX4T256

|αv,l[1]| 0 |αv,l[14]| 

m14 m15

|αv,l[15]| 

...

...

...SUM

0 01 1

0

0 01 1

MUX4T256

0

SUM
0NMl

255NMl

Min-2 Min-2 Min-2 Min-2

MS8-4

Figure 6.9: Architecture of NG-IIl

Based on the DMM method in Eq. (6.9), the node metric computation part needs

2Iv(2n−t − 1)L adders and 2Iv2n−tL 2-to-1 multiplexers, where N = 2n and t is the

layer index of an FP node v. Based on the RCC method, it takes (
∑n−t−1

i=1 2i22n−t−i+

2Iv)L adders, 2Iv+1L 22n−t−1
-to-1 multiplexers and 4 × 2n−t−1L 2-to-1multiplexers.

In contrast, based on our DRH method, it takes 4× 2n−t−1 + 2Iv(2n−t−1− 1) adders,
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2Iv2n−t−1 4-to-1 and 4 × 2n−t−1 2-to-1 multiplexers. Table 6.2 compares hardware

resources needed by the DMM, RCC and DR-Hybrid methods when X0 = 8, X1 =

16, and αv,l[j] (0 ≤ j < 2n−t) is a 6-bit LLR. As shown in Table 6.2, the DRH

method requires the smallest total area. Besides, the implementations based on

DMM, RCC and DRH have roughly the same critical path delay.

Table 6.2: Hardware resources needed by different methods per list

DMM RCC DRH
# of adders 3840 864 1824

# of MUX2−1 4096 32 32
# of MUX4−1 0 0 2048

# of MUX256−1 0 512 0
total area (# of NANDs) 313,967 1,673,810 229,449

6.4.4 Proposed hybrid partial sum computation unit

For the list decoder architectures in [31, 32], all partial sums are stored in registers

and the partial sums of decoding path l′ are copied to decoding path l when decoding

path l′ needs to be copied to decoding path l. The PSU in [31] and [32] needs

L(N − 1) and L(N
2
− 1) single bit registers to store all partial sums, respectively.

Thus, for large N , the register based PSU architectures in [31,32] are inefficient for

two reasons. First, the area of the PSU is linearly proportional to N . For large N

(e.g. N > 215), the area of PSU is large since registers are usually area demanding.

Second, the power dissipation due to the copying of partial sums between different

decoding paths is high when N is large.
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Proposed Index Based Partial Sum Computation Algorithm

In order to avoid copying partial sums directly, an index based partial sum compu-

tation (IPC) algorithm is proposed in Algorithm 23, where pl[z] (l = 0, 1, · · · , L −

1 and z = 0, 1, · · · , n) is a list index reference. Cl,z for l = 0, 1, · · · , L − 1 and

z = 0, 1, · · · , n are partial sum matrices [32, 55]. Cl,z has 2n−z elements, each of

which stores two binary bits.

For our RLLD algorithm, once a rate-0, rate-1 or an FP node sends L codewords

to its parent node, the partial sum computation is performed after decoding path

pruning. Let t denote the layer index of such a node v. Let (Bn−1, Bn−2, · · · , B0)

denote the binary representation of the index of the last leaf node belonging to

node v, where Bn−1 is the most significant bit. Let te = n − j, where j is the

smallest integer such that Bj = 0. If Bj = 1 for j = 0, 1, · · · , n − 1, te = 0. Once

βv,0, βv,1, · · · , βv,L−1 are calculated, decoding path l′ may need to be copied to path

l before the following partial sum computation. Under this circumstance, the index

references are first copied, where pl′ [z] is copied to pl[z] for z = t, t− 1, · · · , 0. The

lazy copy algorithm was proposed in [55] to avoid copying partial sums directly.

However, the lazy copy algorithm is not suitable for hardware implementation due

to complex index computation. The PSU in [32] copies partial sums directly.

Micro Architecture of the Proposed Hybrid Partial Sum Unit

Based on our IPC algorithm, a Hyb-PSU is proposed with two improvements. First,

some partial sums are stored in memory, while others are stored in registers. Second,

instead of partial sums, only list index matrices are copied. These two improvements

reduce the area and power overhead of partial sum computation unit whenN is large.
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Algorithm 23: Index Based Partial Sum Computation (IPC) Algorithm

input : te, t, (βv,0, βv,1, · · · , βv,L−1)
output: Cl,te [j][0] for l = 0, 1, · · · , L− 1 and j = 0, 1, · · · , 2n−te

for l = 0 to L− 1 do
for j = 0 to 2n−t − 1 do

if v is the left child node of its parent node then
Cl,t[j][0] = βv,l[j]; pl[t] = l

else Cl,t[j][1] = βv,l[j]

if v is the left child node of its parent node then exit
for l = 0 to L− 1 do

for z = t− 1 to te do
for j = 0 to 2n−z−1 do

v0 = Cpl[z+1],z+1[j][0]; v1 = Cl,z+1[j][1]
if z == te then

Cl,z[2j][0] = v0 ⊕ v1; Cl,z[2j + 1][0] = v1
pl[z + 1] = pl[z] = l

else
Cl,z[2j][1] = v0 ⊕ v1; Cl,z[2j + 1][1] = v1
pl[z + 1] = l
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Figure 6.10: (a) Top architecture of CUl. (b) Type-I PE. (c) Type-II PE. (d) Inputs
and outputs of the CN.

The Hyb-PSU consists of L computation units, CU0, CU1, · · · , CUL−1, where the

micro architecture of CUl is shown in Fig. 6.10(a) and is described as follows.

(a) For block length N = 2n, CUl consists of n stages, where m is an integer and

the first n−m+ 1 stages are a binary tree of the type-I and type-II unit processing

elements (PEs) shown in Figs. 6.10(b) and 6.10(c), respectively. Stage z (z > m)

has 2n−z PEs. Each of the remaining m− 1 stages has the same circuitry.

(b) Two types of PEs are used in the PE tree in Fig. 6.10(a). Suppose the

maximal length of a constituent codeword that is returned from a rate-0, rate-1 or

FP node is 2µ, then stage z (z > n−µ) employs only the type-I PEs. The remaining

stages in the PE tree employ the type-II PEs.

(c) Compared with the type-II PE, the type-I PE has an extra data load unit

(DLU). For PEl,z,j within stage z (j = 0, 1, · · · , 2n−z − 1), the binary outputs,

ol,z,2j and ol,z,2j+1, are connected to bl,z−1,2j and bl,z−1,2j+1, respectively. The wired

connections are not shown in Fig. 6.10(a) for simplicity.

(d) BMl,z (z 6 m− 1) is a bit memory with cw = 2n−z

T
words, where each word
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contains T bits. T is the number of processing elements belonging to a decoding

path in a partial parallel list decoder. For our memory compiler, if cw is greater

than a threshold value, then BMl,z is implemented with an RF. If cw is even greater

than another threshold value, then BMl,z is implemented with an SRAM.

(e) The connector module (CN) has two T -bit inputs and two T -bit outputs.

The connections between the outputs and inputs are



O0[2j] = I0[j]⊕ I1[j] 0 6 j < T/2

O0[2j + 1] = I1[j] 0 6 j < T/2

O1[2j − T ] = I0[j]⊕ I1[j] T/2 6 j < T

O1[2j + 1− T ] = I1[j] T/2 6 j < T

(6.11)

(f) For our Hyb-PSU, L computation units are needed. For each PE within

CUl, ml,z,j in Figs. 6.10(b) and 6.10(c) is the output of an L-to-1 multiplexer whose

inputs are d0,z,j, d1,z,j, · · · , dL−1,z,j, where L−1 of them are from other computation

units. For each CN, Ml,z is the output of an L-to-1 multiplexer whose inputs are

D0,z, D1,z, · · · , DL−1,z.

Computation Schedule of Our Hybrid Partial Sum Unit

Once the returned L codewords βv,0, βv,1, · · · , βv,L−1 are computed, the path pruning

unit also outputs L indices a0, a1, · · · , aL−1, where al needs to be copied to decoding

path l. For l = 0, 1, · · · , L − 1, βv,l is first loaded into stage t by the DLU in

Fig. 6.10(b), and the output partial sums in Alg. 23 come out from stage te. For

stage t, if βv,l is sent from a rate-0 node, then the control signal LZt is 0, since βv,l

is a zero vector. Otherwise, LDt = 0 and LZt = 1. For the other stages, LDz = 1

188



6.4. HIGH THROUGHPUT LIST POLAR DECODER ARCHITECTURE

and LZz = 1 (z 6= t).

For all partial sums within the partial sum matrix Cl,z, we divide them into two

sets: C0
l,z and C1

l,z, where C0
l,z consists of Cl,z[j][0] for j = 0, 1, · · · , 2n−z−1 and C1

l,z

consists of the other partial sums within Cl,z. For each Cl,z, our Hyb-PSU stores

only C0
l,z in the registers or bit memory of stage z. As shown in Alg. 23, for z = t−1

to te + 1, C1
l,z is computed in serial. At last, C0

l,te
is computed. For our Hyb-PSU,

after loading the returned L codewords into stage t, for z = t − 1 to te + 1, C1
l,z is

computed on-the-fly and passed to the next stage as shown in Fig. 6.10.

When te > m, C0
l,te

is computed in one clock cycle and is output from stage

te, where Cl,te [j][0] is set to sl,te,j produced by the type-I and type-II PEs for j =

0, 1, · · · , 2n−te−1. When te < m, C0
l,te

is computed in 2n−te/T cycles, and T updated

partial sums are computed in each clock cycles. Since decoding path al needs to be

copied to path l, for z = t, t − 1, · · · , te + 1, the computation of C1
l,z is based on

C0
al,z+1 and C1

l,z+1. Hence, the multiplexers within stage z are configured so that

ml,z,j = dal,z,j for z > m. When z < m, Ml,z = Qal,z.

Comparisons with Related Works

Compared to the partial sum computation architectures in [31, 32], the proposed

Hyb-PSU architecture has advantages in the following two aspects.

(1) The proposed Hyb-PSU is a scalable architecture. The PSU architectures

in [31,32] require L(N − 1) and L(N/2− 1) single bit registers, where N = 2n is the

block length. Hence, they will suffer from excessive area overhead when the block

length N is large. In contrast, the proposed Hyb-PSU stores L(N − 1) bits and

most of these bits are stored in RFs or SRAMs, which are more area efficient than
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registers.

(2) The architectures in [31,32] copies partial sums of a decoding path to another

decoding path when needed, while our Hyb-PSU copies only index references. We

define the copying of a single bit from one register to another as a single copy

operation. When decoding path l′ needs to be copied to path l, the PSU in [32]

requires N1 = 2n−1 − 1 copy operations, while our Hyb-PSU needs only N2 = (n +

1) log2 L copy operations. Since the value of L for practical hardware implementation

is small, our lazy copy needs much fewer copy operations than direct copy.

In this chapter, when L = 4 and T = 128, for N = 213 and 215, the proposed

hybrid partial sum computation unit architecture is implemented with m = 3 and

m = 5, respectively, under a TSMC 90nm CMOS technology. Our partial sum

computation unit consumes an area of 0.779mm2 and 1.31mm2 for N = 213 and

N = 215, respectively.

To the best of our knowledge, those decoder architectures in [31,32,36,82] are the

only for SC based list decoding algorithms of polar codes. However, in [31, 36, 82],

the partial sum computation unit architecture was not discussed in detail and the

implementation results on the PSU alone are not shown. Hence, we compare our

proposed Hyb-PSU with that in [32]. When L = 4, the partial sum unit architecture

in [32] for N = 213 and 215 consumes an area of 1.011mm2 and 3.63mm2, respectively,

under the same CMOS technology. All PSUs are synthesized under a frequency of

500MHz. Our Hyb-PSU achieves an area saving of 23% and 63% for block length

213 and 215, respectively.
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6.4.5 Latency and Throughput

For the proposed high throughput decoder architecture, the number of clock cycles,

ND, used on the decoding of a codeword depends on the block length, the code rate

and the positions of frozen bits. For our RLLD algorithm, let NV be the number

of nodes (except the root node) visited in Gn. Let SV denote the set of indices of

visited nodes (except the root node). Let S ′V be a subset of SV , where S ′V consists

of rate-1 nodes with Iv 6 Xth and all FP nodes. For vi ∈ SV , let ti be the layer

index of node vi for i = 0, 1, · · · , NV − 1. Then

ND =

NV −1∑
i=0

(N
(i)
L +N

(i)
P ) +NC , (6.12)

where N
(i)
L = d2n−ti

T
e is the number of clock cycles needed to calculate the LLR

vectors sending to node vi. N
(i)
P is the number of clock cycles used by our PPU

when vi is activated. Note that decoding path splits only if node vi is a rate-1 node

with Iv 6 Xth or an FP node. Hence, N
(i)
P = 0 if vi 6∈ S ′V . If vi ∈ S ′V , N

(i)
P 6= 0 and

depends on the node type, Xth, qIv ,L, T , L and the number of pipeline stages in our

PPU. This will be discussed in more detail in Section 6.5.

Since our list decoder outputs xN−10 instead of uN−10 , we need to obtain uN−10

based on xN−10 before calculating the CRC checksum of the information bits. A

partial-parallel polar encoder [83] can be used and the corresponding latency is

N/T when T bits are fed to the encoder in parallel. For the computation of CRC,

a partial parallel CRC unit [84] can be used, and the corresponding latency is also

N/T . As a result, NC = 2N
T

.

The latency of our decoder is TL = NR/f , where f is the decoder frequency.
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Since we are using CRC for output final data word, we calculate the net information

throughput (NIT) of our decoder, where NIT = (NR−h)f
ND−NC

, where h is the CRC

checksum length. Here, the latency due to the CRC checksum computation does

not affect out decoder throughput, since our decoder can work on the next frame

once our Hyb-PSU begins to output decoded codewords for current frame.
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6.5 Implementation Results and Comparisons

To compare with prior works, we implement our high throughput list decoder ar-

chitecture for three polar codes with lengths of 210, 213 and 215, respectively, and

rates 0.5, 0.5 and 0.9, respectively. The last polar code is intended for storage

applications. For each code, three different list sizes are considered: L = 2, 4, 8.

All our decoders are synthesized under the TSMC 90nm CMOS technology using

the Cadence RTL compiler. The area efficiency (AE) of a partly parallel decoder

architecture depends on the number of PUs. In order to make a fair comparison

with prior works in [32, 33, 37], the number of PUs for each decoding path of our

implemented decoders is selected to be 64 when N = 210. When N = 213 and 215,

the number of PUs per decoding path is 128 for our decoders. The list decoders

in [85] are based on a line architecture, which always requires N
2

PUs.

A total of 3, 4 and 6 pipeline stages, respectively, are inserted in the PPU for

decoders with L = 2, 4 and 8, respectively. The number of pipeline stages needed

for our PPU is determined by the longest data path. For each vi ∈ S ′V , if node vi is a

rate-1 node with Iv 6 Xth, N
(i)
P depends on the number of PUs in a decoding path:

when Iv 6 T , N
(i)
P = 2 for all our implemented decoders; otherwise, N

(i)
P = 4 for all

our decoders, since the minimum value of a received LLR vector is calculated in a

partial parallel way, which incurs extra clock cycles. When node vi is an FP node,

N
(i)
P relates to qIv ,L. Depending on the detailed value of qIv ,L, we may use different

data paths when computing the L minimum expanded path metrics. The locations

of all pipelines are arranged so that a fewer number of clock cycles is needed when

the qIv ,L is smaller. In Table 6.6, we list the detailed value of N
(i)
P with respect to

Iv and L.
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The selection of Xth is a trade-off between AE and error performance. When

increasing Xth, more rate-1 nodes will be processed by our CG algorithm. Hence,

ND increases and the resulting NIT decreases. Meanwhile, the corresponding error

performance is better especially in high SNR region. Our high throughput list

decoder architecture supports all Xth values. For all our implemented decoders, Xth

is set to be large enough so that all rate-1 nodes are processed by our CG algorithm.

In this setup, for each implemented decoder, ND is maximized with respect to Xth,

and hence the throughput of our decoder architecture in Tables 6.3, 6.4 and 6.5

is the minimum achieved by our decoders. For each code, the corresponding error

performance is better than that of the RLLD with the MEQ in Fig. 6.6.

Table 6.6: N
(i)
P with Respect to Iv and L

Iv 1 2 3 4 5 6 7 8

L = 2 2 2 3 3 3 3 3 3
L = 4 2 4 4 4 4 4 4 3
L = 8 2 3 4 5 5 6 5 3

The implementation results are shown in Table 6.3, 6.4 and 6.5. The implemen-

tation results show that our decoders outperform existing SCL decoders [32, 33, 36]

in both decoding latency and area efficiency. Compared with the decoders of [33],

the area efficiency and decoding latency of our decoders are 1.65 to 45 times and

3.4 to 6.8 times better, respectively. The area efficiency and decoding latency of

our decoders are 4.07 to 30 times and 5.5 to 13 times better, respectively, than the

decoders of [32]. Compared with decoders of [37], our decoders improve the area ef-

ficiency and decoding latency by 1.16 to 17.8 times and 2.8 to 9 times, respectively.

When N = 210, the area efficiency and decoding latency of our decoders are 3.9

to 4.4 times and 3.58 to 3.84 times better, respectively, than the decoders of [36].
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Compared with the decoders of [36], our decoders would show more significant im-

provements in area efficiency and decoding latency when N is larger.

Based on the implementation results shown in Tables 6.3, 6.4 and 6.5, it is

observed that when the block length is fixed, as the list size L increases, the area

efficiency and decoding latency will decrease and increase, respectively, due to the

following reasons:

• It takes more memory to store internal LLRs when L increases.

• The number of pipeline stages within our PPU will increase when L increases,

which in turn increases the overall decoding clock cycles.

The latency reduction and area efficiency improvement of our decoders are due

to the reduced number of nodes activated in the decoding. However, the area and

frequency overhead of the proposed PPU somewhat dilute the effects due to decoding

clock cycles reduction. For example, our decoder reduces the number of decoding

cycles to approximately 1
7

of that of the decoders in [33] for L = 2, 4 and 8. However,

the reduction in decoding cycles does not fully transfer into the improvement in

decoding latency and area efficiency. Based on our implementation results, take

L = 2 as an example, the PPU occupies 61.99%, 40.16% and 25.40% of the area

of the whole decoder, for N = 210, 213 and 215, respectively. Compared with the

decoders with N = 210 and 213, the effects on the area efficiency caused by the area

overhead of PPU are smaller for decoders with N = 215. Keeping T unchanged, as

N increases, the area of the PPU increases very slowly while the total area of all

LLR memories is proportional to N . Hence, for larger N , PPU occupies a smaller

percentage of the total area of a whole decoder. When list size L is fixed, as N
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increases, the latency reduction and area efficiency improvement compared with

other decoders in the literature will be greater.

6.6 Conclusion

In this chapter, a reduced latency list decoding algorithm is proposed for polar codes.

The proposed list decoding algorithm results in a high throughput list decoder ar-

chitecture for polar codes. A memory efficient quantization method is also proposed

to save the size of message memories. The proposed list decoder architecture can

be adapted to large block lengths due to our hybrid partial sum computation unit,

which is area efficient. The implementation results of our high throughput list de-

coder demonstrates significant advantages over current state-of-art SCL decoders.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, efficient hardware decoder architectures for NB-LDPC codes, polar

codes, MV and KK codes are presented. An algorithm-architecture co-optimization

approach is employed.

In Chapter 2, the shuffled decoding algorithm and decoder architecture are pre-

sented. The shuffled decoding algorithm reduces the average number iterations.

Implementations for the (837, 726) nonbinary QC-LDPC code show that the ef-

ficiency of the proposed decoder architecture is much higher than these previous

works.

In Chapter 3, a fully parallel decoder architecture based on the is presented. A

reduced memory complexity trellis based check node processing (RTBCP) algorithm

is first proposed. A parallel check node unit (CNU) and a low-latency variable node
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unit (VNU) are also proposed. Based on the proposed CNU and VNU, an effi-

cient fully parallel decoder architecture is also proposed. A fully parallel NB-LDPC

decoders based on GF(256) is implemented with 28nm CMOS technology. The de-

coder over GF(256) achieves a throughput of 546Mb/s and an energy efficiency of

0.178nJ/b/iter. Compared with the state-of-art NB-LDPC decoder architectures,

the implementation results demonstrate that our fully parallel decoder architecture

has obvious advantages in terms of throughput and area efficiency.

In Chapter 4, efficient decoder architectures for KK and MV codes are presented.

A serial decoder architecture and an unfolded decoder architecture for KK codes are

proposed for applications with moderate and high throughputs, respectively. Both

architectures are implemented for KK codes over GF(28) and GF(216) to demon-

strate their efficiency. Compared to the rank metric decoder architectures for KK

codes [43], the proposed serial decoder architecture improves the throughput by

4.9 and 13.2 times, while its gate counts are only 56% and 76% of their respec-

tive counterparts in [43]. Moreover, for these two codes, the unfolded architecture

achieves a throughput of 12.5Gb/s and 41.6Gb/s, much higher than the throughput

of 214Mb/s and 134Mb/s of their respective counterparts in [43]. The throughputs

per thousand NAND gates of our architectures are much higher and their latency

much shorter than their counterparts in [43]. A serial list decoder architecture for

MV codes is also proposed. To the best of our knowledge, this is the first hardware

implementation of MV decoders.

In Chapter 5, we present the first hardware implementation of the CA-SCL

algorithm to the best of our knowledge. An memory efficient memory partition

method is employ to reduce the area of the message memories. A fine grained PU
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profiling (FPP) algorithm is proposed to determine the minimum quantization size

of each input message for each processing unit so that there is no message overflow.

An efficient scalable path pruning unit (PPU) is proposed to control the copying of

decoding paths. Based on the proposed memory architecture and the scalable PPU,

our list decoder architecture is suitable for large list sizes. For a (1024, 512) rate-1
2

polar code, the proposed list decoder architecture is implemented for list size L = 2

and 4, respectively, under a 90nm CMOS technology. Compared with the decoder

architecture in [31] synthesized under the same technology, our decoder achieves

1.24 to 1.83 times area efficiency (throughput normalized by area). Besides, the

proposed CA-SCL decoder has better error performance compared with the SCL

decoder in [31].

In Chapter 6, a tree based reduced latency list decoding algorithm and its cor-

responding high throughput hardware architecture for polar codes are presented.

Our reduced latency list decoding algorithm reduces the number of nodes visited in

a decoding tree. The proposed high throughput list decoder architecture has been

implemented for several block lengths and list sizes under the TSMC 90nm CMOS

technology. The implementation results show that our decoders outperform existing

SCL decoders in both decoding latency and area efficiency. For example, compared

with the decoders of [33], the area efficiency and decoding latency of our decoders

are 1.65 to 45 times and 3.4 to 6.8 times better, respectively.

7.2 Future Work

For future work, the following point may be worthy to be looked into:
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• Low complexity low latency decoding algorithms and decoder ar-

chitectures for NB-LDPC codes. Compared to binary LDPC decoders,

current NB-LDPC still suffer from excessive hardware complexity. For the

practical application of NB-LDPC codes, efficient decoding algorithms still

need to be investigated. Stochastic computation can reduce the computa-

tional complexity at the cost of long decoding latency. It is interesting to

combine stochastic computation with current NB-LDPC decoding algorithms

over real domain. It is also promising to explore the joint detection and de-

coding with NB-LDPC codes. Besides, efficient hard decoding algorithms for

NB-LDPC codes still need to be investigated.

• Efficient belief propagation decoding algorithms and decoder archi-

tectures for polar codes. Lots of efforts have already been devoted to

the research of efficient SC based decoding algorithms for polar codes. For

applications that require soft output, the belief propagation decoding algo-

rithms are essential. Current belief propagation decoding algorithms suffer

from high computational complexity, high hardware complexity, inferior error

performance due to inefficient message updating schedule. It is interesting to

explore efficient schedules for belief propagation decoding of polar codes.
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