112 research outputs found

    Pattern recognition beyond classification: An abductive framework for time series interpretation

    Get PDF
    Time series interpretation aims to provide an explanation of what is observed in terms of its underlying processes. The present work is based on the assumption that the common classification-based approaches to time series interpretation suffer from a set of inherent weaknesses, whose ultimate cause lies in the monotonic nature of the deductive reasoning paradigm. In this thesis we propose a new approach to this problem, based on the initial hypothesis that abductive reasoning properly accounts for the human ability to identify and characterize the patterns appearing in a time series. The result of this interpretation is a set of conjectures in the form of observations, organized into an abstraction hierarchy and explaining what has been observed. A knowledge-based framework and a set of algorithms for the interpretation task are provided, implementing a hypothesize-and-test cycle guided by an attentional mechanism. As a representative application domain, interpretation of the electrocardiogram allows us to highlight the strengths of the present approach in comparison with traditional classification-based approaches

    Combining Synthesis of Cardiorespiratory Signals and Artifacts with Deep Learning for Robust Vital Sign Estimation

    Get PDF
    Healthcare has been remarkably morphing on the account of Big Data. As Machine Learning (ML) consolidates its place in simpler clinical chores, more complex Deep Learning (DL) algorithms have struggled to keep up, despite their superior capabilities. This is mainly attributed to the need for large amounts of data for training, which the scientific community is unable to satisfy. The number of promising DL algorithms is considerable, although solutions directly targeting the shortage of data lack. Currently, dynamical generative models are the best bet, but focus on single, classical modalities and tend to complicate significantly with the amount of physiological effects they can simulate. This thesis aims at providing and validating a framework, specifically addressing the data deficit in the scope of cardiorespiratory signals. Firstly, a multimodal statistical synthesizer was designed to generate large, annotated artificial signals. By expressing data through coefficients of pre-defined, fitted functions and describing their dependence with Gaussian copulas, inter- and intra-modality associations were learned. Thereafter, new coefficients are sampled to generate artificial, multimodal signals with the original physiological dynamics. Moreover, normal and pathological beats along with artifacts were included by employing Markov models. Secondly, a convolutional neural network (CNN) was conceived with a novel sensor-fusion architecture and trained with synthesized data under real-world experimental conditions to evaluate how its performance is affected. Both the synthesizer and the CNN not only performed at state of the art level but also innovated with multiple types of generated data and detection error improvements, respectively. Cardiorespiratory data augmentation corrected performance drops when not enough data is available, enhanced the CNN’s ability to perform on noisy signals and to carry out new tasks when introduced to, otherwise unavailable, types of data. Ultimately, the framework was successfully validated showing potential to leverage future DL research on Cardiology into clinical standards

    Electrocardiogram Signal Analysis and Simulations for Non-Invasive Diagnosis - Model-Based and Data-Driven Approaches for the Estimation of Ionic Concentrations and Localization of Excitation Origins

    Get PDF
    Das Elektrokardiogramm (EKG) ist die Standardtechnik zur Messung der elektrischen Aktivität des Herzens. EKG-Geräte sind verfügbar, kostengünstig und erlauben zudem eine nichtinvasive Messung. Das ist insbesondere wichtig für die Diagnose von kardiovaskulären Erkrankungen (KVE). Letztere sind mit verursachten Kosten von 210 Milliarden Euro eine der Hauptbelastungen für das Gesundheitssystem in Europa und dort der Grund für 3,9 Millionen Todesfälle – dies entspricht 45% aller Todesfälle. Neben weiteren Risikofaktoren spielen chronische Nierenerkrankungen und strukturelle Veränderungen des Herzgewebes eine entscheidende Rolle für das Auftreten von KVE. Deshalb werden in dieser Arbeit zwei Pathologien, die in Verbindung zu KVE stehen, betrachtet: Elektrolytkonzentrationsveränderungen bei chronisch Nierenkranken und ektope Foki, die autonom Erregungen iniitieren. In beiden Projekten ist die Entwicklung von Methoden mithilfe von simulierten Signalen zur Diagnoseunterstützung das übergeordnete Ziel. Im ersten Projekt helfen simulierte EKGs die Signalverarbeitungskette zur EKG-basierten Schätzung der Ionenkonzentrationen von Kalium und Calcium zu optimieren. Die Erkenntnisse dieser Optimierung fließen in zwei patienten-spezifische Methoden zur Kaliumkonzentrationsschätzung ein, die wiederum mithilfe von Patientendaten ausgewertet werden. Die Methoden lieferten im Mittel einen absoluten Fehler von 0,37 mmol/l für einen patienten-spezifischen Ansatz und 0,48 mmol/l für einen globalen Ansatz mit zusätzlicher patienten-spezifischer Korrektur. Die Vorteile der Schätzmethoden werden gegenüber bereits existierender Ansätze dargelegt. Alle entwickelten Algorithmen sind ferner unter einer Open-Source-Lizenz veröffentlicht. Das zweite Projekt zielte auf die Lokalisierung von ektopen Foki mithilfe des EKGs ohne die Nutzung der individuellen Patientengeometrie. 1.766.406 simulierte EKG-Signale (Body Surface Potential Maps (BSPMs)) wurden zum Trainieren von zwei Convolutional Neural Networks (CNNs) erzeugt. Das erste CNN sorgt für die Schätzung von Anfang und Ende der Depolarisation der Ventrikel. Das zweite CNN nutzt die Information der Depolarisation im BSPM zur Schätzung des Erregungsurpsrungs. Der spezielle Aufbau des CNNs ermöglicht die Darstellung mehrerer Lösungen, wie sie durch Mehrdeutigkeiten im BSPM vorliegen können. Der kleinste Median des Lokalisierungsfehlers lag bei 1,54 mm für den Test-Datensatz der simulierten Signale, bzw. bei 37 mm für Patientensignale. Somit erlaubt die Kombination beider CNNs die verlässliche Lokalisierung von ektopen Foki auch anhand von Patientendaten, obwohl Patientendaten vorher nicht im Training genutzt wurden. Die Resultate dieser zwei Projekte demonstrieren, wie EKG-Simulationen zur Entwicklung und Verbesserung von EKG-Signalverarbeitungsmethoden eingesetzt werden und bei der Diagnosefindung helfen können. Zudem zeigt sich das Potential der Kombination von Simulationen und CNNs, um einerseits die zumeist raren klinischen Signale zu ersetzen und andererseits Modelle zu finden, die für mehrere Patienten/-innen gültig sind. Die vorgestellten Methoden bergen die Möglichkeit, die Diagnosestellungen zu beschleunigen und mit hoher Wahrscheinlichkeit den Therapieerfolg der Patienten zu verbessern

    Heartbeat classification and arrhythmia detection using a multi-model deep-learning technique

    Get PDF
    Cardiac arrhythmias pose a significant danger to human life; therefore, it is of utmost importance to be able to efficiently diagnose these arrhythmias promptly. There exist many techniques for the detection of arrhythmias; however, the most widely adopted method is the use of an Electrocardiogram (ECG). The manual analysis of ECGs by medical experts is often inefficient. Therefore, the detection and recognition of ECG characteristics via machine-learning techniques have become prevalent. There are two major drawbacks of existing machine-learning approaches: (a) they require extensive training time; and (b) they require manual feature selection. To address these issues, this paper presents a novel deep-learning framework that integrates various networks by stacking similar layers in each network to produce a single robust model. The proposed framework has been tested on two publicly available datasets for the recognition of five micro-classes of arrhythmias. The overall classification sensitivity, specificity, positive predictive value, and accuracy of the proposed approach are 98.37%, 99.59%, 98.41%, and 99.35%, respectively. The results are compared with state-of-the-art approaches. The proposed approach outperformed the existing approaches in terms of sensitivity, specificity, positive predictive value, accuracy and computational cost

    Identification of cardiac signals in ambulatory ECG data

    Get PDF
    The Electrocardiogram (ECG) is the primary tool for monitoring heart function. ECG signals contain vital information about the heart which informs diagnosis and treatment of cardiac conditions. The diagnosis of many cardiac arrhythmias require long term and continuous ECG data, often while the participant engages in activity. Wearable ambulatory ECG (AECG) systems, such as the common Holter system, allow heart monitoring for hours or days. The technological trajectory of AECG systems aims towards continuous monitoring during a wide range of activities with data processed locally in real time and transmitted to a monitoring centre for further analysis. Furthermore, hierarchical decision systems will allow wearable systems to produce alerts or even interventions. These functions could be integrated into smartphones.A fundamental limitation of this technology is the ability to identify heart signal characteristics in ECG signals contaminated with high amplitude and non-stationary noise. Noise processing become more severe as activity levels increase, and this is also when many heart problems are present.This thesis focuses on the identification of heart signals in AECG data recorded during participant activity. In particular, it explored ECG filters to identify major heart conditions in noisy AECG data. Gold standard methods use Extended Kalman filters with extrapolation based on sum of Gaussian models. New methods are developed using linear Kalman filtering and extrapolation based on a sum of Principal Component basis signals. Unlike the gold standard methods, extrapolation is heartcycle by heartcycle. Several variants are explored where basic signals span one or two heartcycles, and applied to single or multi-channel ECG data.The proposed methods are extensively tested against standard databases or normal and abnormal ECG data and the performance is compared to gold standard methods. Two performance metrics are used: improvement in signal to noise ratio and the observability of clinically important features in the heart signal. In all tests the proposed method performs better, and often significantly better, than the gold standard methods. It is demonstrated that abnormal ECG signals can be identified in noisy AECG data

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs), although known for decades, have made a big career nowadays and are still in state of development. This book presents theoretical issues and a variety of HMMs applications in speech recognition and synthesis, medicine, neurosciences, computational biology, bioinformatics, seismology, environment protection and engineering. I hope that the reader will find this book useful and helpful for their own research

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods
    corecore