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Abstract: Cardiac arrhythmias pose a significant danger to human life; therefore, it is of utmost
importance to be able to efficiently diagnose these arrhythmias promptly. There exist many tech-
niques for the detection of arrhythmias; however, the most widely adopted method is the use of
an Electrocardiogram (ECG). The manual analysis of ECGs by medical experts is often inefficient.
Therefore, the detection and recognition of ECG characteristics via machine-learning techniques have
become prevalent. There are two major drawbacks of existing machine-learning approaches: (a) they
require extensive training time; and (b) they require manual feature selection. To address these issues,
this paper presents a novel deep-learning framework that integrates various networks by stacking
similar layers in each network to produce a single robust model. The proposed framework has been
tested on two publicly available datasets for the recognition of five micro-classes of arrhythmias. The
overall classification sensitivity, specificity, positive predictive value, and accuracy of the proposed
approach are 98.37%, 99.59%, 98.41%, and 99.35%, respectively. The results are compared with
state-of-the-art approaches. The proposed approach outperformed the existing approaches in terms
of sensitivity, specificity, positive predictive value, accuracy and computational cost.

Keywords: feature extraction; cardiac arrhythmia; ECG classification; hybrid models; deep learning

1. Introduction

Cardiac arrhythmia is categorized as the irregular beating of the heart [1]. This
irregularity may either be a slow or fast heartbeat. A heart rate of over 100 beats per minute
(bpm) is categorized as tachycardia, while the instance of a pulse lower than 60 bpm is
alluded to as bradycardia. Global statistics reveal that a significant population suffers
from heart diseases which manifest in the form of heart attacks, strokes, etc.; furthermore,
these afflictions are one of the significant reasons for death all over the planet. Moreover,
treatment for heart diseases is too costly, and only a limited number of patients have the
luxury of affording it [2].

Electrocardiograms (ECGs) are designed to analyze arrhythmias. ECG is used to
monitor the functioning of the heart by capturing electrical activity [3]. ECG is based
on a wave-like feature that mainly includes the P, QRS, and T waves. Furthermore, it
accumulates 12 lead signals that are generated from the cords attached to the patient’s
body. These signals are divided into six limb-based electrodes configuration i.e., aVR, aVL,
aVF, I, II, III, and six chest-based electrodes configuration i.e., V1, V2, V3, V4, V5, V6. Each
electrode measures a stream of electrical signals generated by the heart from a different
angle covering both the horizontal and vertical planes [4].
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In the interim, progress, as far as accessible computational devices and algorithms
are concerned, has uncovered their use in automated detection techniques. As a result,
diagnosis of cardiovascular anomalies is on the ascent. As of late, attention to ECG beat
and rhythm characterization has also been on the rise [5]. ECG arrangement can be charac-
terized into segments that emphasize on tracking down viable feature-extraction strategies,
further improving the classification results, and use of machine-learning techniques (ML)
to improve the accuracy of these strategies such as Decision Trees (DT) [6–8], K-Nearest
Neighbor (KNN) [9–11], Linear Support Vector Machines (SVM) [12–15] and Random
Forest (RF) [16,17], etc.

The volume of data related to cardiac arrhythmias has expanded to an exceptional level,
in recent years, which had limited the improvements in feature-extraction results. To that
end, deep learning (DL) has managed to achieve vital outcomes in the domain of arrhythmia
detection. The key characteristic of deep neural networks involves the automated process
of feature detection and extraction in providing concise and accurate results, which thusly
delivered an allure in the space of heartbeat classification [18]. A plethora of techniques and
methods have been incorporated with state-of-the-art deep-learning algorithms to fully use
the potential of automated feature recognition and extraction. Such techniques are not only
based on uni-model frameworks but multi-model and hybrid frameworks as well. The
hierarchical layered structure in the deep neural network integrates multi-level features
and their transformation. This structure further helps in the refinement of features [19].

To accomplish the aforementioned tasks, neural networks such as Recurrent Neural
Networks (RNN) [20–22], Long Short-Term Memory (LSTM) [23,24], Convolutional Neural
Networks (CNN) [25–27], as well as hybrid models [28–31] etc., are being integrated to
overcome the hindrances of conventional machine-learning strategies that were subject to
manual and inaccurate selection of features that may incite inconvenient impacts for the
current applications. The drawbacks of the hybrid approaches accumulate the increasing
cost and lack of quality datasets which, however, can be considered negligible in some
viable cases because the precise classification of heartbeats along with the accurate detection
of arrhythmia requires a substantial amount of data to work with [32].

To address these issues at hand, this work proposes an ensemble of deep neural
networks that involves the designing and merging of two neural networks followed by
the training of the merged model in a simultaneous flow. The novel aspects highlight the
implementation of a multi-model framework that incorporates the ability to merge multiple
ML/DL models and produce a robust output. The proposed framework has shown superior
results in heartbeat detection and classification compared to state-of-the-art works.

The further sections have been segmented as follows: Section 2 gives an itemized
survey of the literature; Section 3 portrays the proposed methodology; Section 4 expresses
the trial examination and depicts the correlation of results with the modern approaches;
Section 5 concludes the following research work, and Supplementary Materials incorporates
the GitHub repository link for the source code of the proposed approach.

2. Related Works

The literature review has been partitioned into two subsections, (i) conventional
machine-learning approaches, and (ii) deep-learning/hybrid approaches.

2.1. Machine-Learning Approaches

AI assumes a crucial part in medical prediction and grouping in the clinical area. It
gives colossal assistance to the doctors to deal with an enormous measure of captured
clinical information. These strategies can assist with the early and better finding of illnesses
that can save the medicinal expenses and costly clinical trials [33]. Gupta et al. [34]
demonstrated the implementation of multiple machine-learning algorithms which included
naïve Bayes, random forest, SVM, etc. An implementation of the learner module using a
linear SVM and Random Forest was also proposed. The model was tested on the publicly
available MIT-BIH datasets and returned a classification accuracy of 77.4%. The proposed
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model not only showed slightly better classification results but a decreased training time
as well.

Luz et al. [35] implemented six feature-extraction models for the comparative analysis
of different performance metrics. An optimal path forest classifier (OPF) was designed,
which, in terms of accuracy, was not superior to a fine-tuned SVM; however, the overall
model training time was greatly reduced. Sarfraz et al. [36] used the Independent Com-
ponent Correlation (ICC) algorithm along with the generic functions of ECG for pattern
detection and recognition. The features extracted by the ICCA were divided into training
and testing tests. The accompanying methodology showed great outcomes regarding
accuracy and precision; however, due to the manual feature detection and extraction, it
proved costly and difficult to put into practical use.

Batra and Jawa [37] combined gradient boosting with SVM for the efficient detection
of arrhythmia from ECGs. The proposed approach was benchmarked with other machine-
learning algorithms such as random forest, gradient boosting, decision trees, etc. Before
the final training of models, the raw data had undergone extensive processing and feature
selection processes. The model achieved an overall recognition rate of 84.82%. Namrata
and Pradeep [38] came up with a novel feature selection technique that worked on the
principle of best-first selection. The three-filter feature selection (TFFS) approach filtered
out the subset of optimal features from the publicly available MIT-BIH dataset. The final
input was fed to three classifiers, namely JRip, SVM, and random forest. The comparative
results depicted the superior performance of random forest with a classification accuracy
of 85.58%.

Miquel et al. [39] proposed an Echo State Network (ESN) classifier for the classification
of heartbeats. The proposed model was capable of producing accurate results while needing
only a single ECG lead. A combination of multiple ensembles was also demonstrated which
exploited the parallelism for additional training speed. The proposed approach was tested
on two publicly available datasets and demonstrated the highest accuracy of 98.6% on lead
II. An extensive amount of preprocessing and data cleaning was involved in the overall
methodology which ultimately increased the cost of the proposed approach.

Therefore, this section concludes that even though machine learning has paved the
path for tremendous progress in the domain of medicine and health automation systems, the
traditional machine-learning algorithms still suffer from the problems of manual feature
recognition, the curse of dimensionality, and overfitting, etc. To that end, state-of-the-
art trends have shifted towards the automation of feature recognition by using deep
neural networks.

2.2. Deep-Learning/Hybrid Approaches

Over the last few years, deep learning has accomplished astounding outcomes in the
space of Artificial Intelligence (AI). One such aspect is the application of deep-learning
methods in healthcare. Providing medical centers with automated health-maintenance
technologies has revolutionized the field of health care by minimizing the cost while
increasing the efficiency of the services. A substantial amount of research has been done in
the domain of cardiac healthcare.

Gao et al. [40] proposed an effective LSTM-based approach to identify eight heartbeats.
Several condensed LSTM layers were stacked for the accurate detection of arrhythmias;
however, the proposed approach required a colossal pool of labeled data. Furthermore,
due to the deeply layered architecture, the model required a long time to train and produce
noteworthy results. Amrita and Kyung [41] classified the time-series sequence of ECG
data relating to the normal and abnormal beating of the heart. An exclusive LSTM layer-
based classifier was designed with an emphasis on design simplification. The classifier
successfully managed to recognize five arrhythmias with an accuracy of 95%. The paper
has not, however, discussed nor taken into consideration the overall training time of the
classifier which assumes a significant part in limiting the general expense of the approach.
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Hiriyannaiah et al. [42] provided a detailed analysis of multiple deep LSTM models
to capture temporal dependencies from ECG signals. The performance of four stacked
LSTM (3 LSTM, 1 BiLSTM) models was inter-compared. The benchmark statistics based
on publicly available datasets revealed that the bidirectional LSTM-based model achieved
the highest accuracy of 95% compared to all-LSTM stacked models. The training time per
epoch, however, was greatly increased on the implementation of bidirectional LSTM which
resulted in an increased computational cost of the approach.

Parvaneh et al. [43] reviewed the traditional deep-learning algorithms which in-
cluded CNN, RNN, Auto-Encoders, and Deep Belief Networks. The paper emphasized
the advancements and benefits of deep neural networks over shallow machine-learning
techniques. A statistical review regarding the most widely used neural network for heart-
beat and arrhythmia classification was also carried out. The statistics revealed that the
convolutional neural networks (CNN) had been integrated by most research works to date.
The paper additionally underscored the qualities of CNN that made it feasible for being
the most ordinarily used in sequence to label classification problems. Acharya et al. [44]
classified five different heartbeats with a deeply layered convolutional neural network. To
overcome the class imbalance problem in the original data, synthetic data were generated
based on a few resampling techniques. The experimental analysis revealed the model’s
ability to achieve a classification accuracy of 94% with noise removal and 93.5% without
any preprocessing.

Another approach [45] proposed a deep neural network (DNN)-based framework
to ameliorate the difficulties faced while detecting arrhythmias. The approach featured
a learning stage in conjunction with a robust feature-extraction protocol. The combined
subset of the most optimal features was aggregated with the help of a genetic algorithm.
The framework was designed as an analytic module for the detection of anomalies in
certain medical conditions. The methodology accomplished a 94.00% accuracy in the
classification of five arrhythmia super-classes. Chen et al. [46] classified nine arrhythmia
micro-classes using an ECG dataset with 12-lead signals. The approach accumulated a 1D
deep convolutional neural network that also secured the top spot in the China Physiological
Signal Challenge (CPSC). With relevance to the clinical observations and the data available,
the proposed model reported an average recognition rate of 97%. The benchmark against
the referenced approaches was carried out based on the F1 score which was calculated to
be 0.84.

In more recent work, Wu et al. [47] implemented a 12-layered deep 1D convolutional
neural network for the precise identification and extraction of five arrhythmia micro-classes.
The model achieved a classification accuracy of 97.40%; however, due to the deeply layered
architecture, the overall training time of the model increased to 120 min while requiring a
further 11 h for the ten-fold cross-validation to complete. The benchmark with the other
approaches was based on a few performance metrics such as accuracy, sensitivity, specificity,
etc. An excessive amount of preprocessing was carried out to organize the data for a
controlled supervised learning environment. The approach portrays no such drawbacks in
adaptation except the increased computational time which ultimately increases the cost of
the approach as a whole.

The rundown of the literature is depicted in Table 1. The corresponding section
sheds light on the advancements and progress, in the context of arrhythmia heartbeat
classification, with modern machine- and deep-learning strategies. The literature concludes
the importance of deep learning in applications where automated feature recognition
reduces the overall computational cost while providing increased accuracy and precision.
Toward the development of a scalable, robust, and efficient heartbeat classification model
that effectively handles large pools of data, this work proposes an ensemble of deep-
learning models. We designed two deep-learning models and merged them for enhanced
feature recognition and extraction to classify different types of arrhythmia heartbeats.
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Table 1. Literature Overview.

Approach Algorithm(s) Accuracy (%) Arrhythmias Recognized Limitations

[34] SVM + RF 77.40 5 A conventional hybrid
machine-learning model
with average accuracy
and high computational
cost

[35] OPF 90.09 5 An efficient classifier that
is used in conjunction
with other ML algorithms
but requires extensive
data preprocessing to pro-
duce optimal results

[36] ICCA + ANN 99.60 8 Achieved a very high ac-
curacy on the cost of ex-
ponentially longer train-
ing time

[37] SVM + GB 84.82 16 Portrayed average
accuracy on a redun-
dant dataset with only
500 records against 16
classes

[38] Random Forest + BFS 85.58 16 Redundant dataset used
with only 500 records
against 16 classes

[39] Echo State Network 98.60 16 Requires too much com-
putational resources lead-
ing to a high cost

[40] LSTM 95.80 8 Model requires longer
training time to produce
substantial results

[41] LSTM 95.00 5 Only accuracy consid-
ered to be a performance
metric, not enough to
benchmark an approach

[42] BiLSTM 95.00 5 A deep LSTM-BiLSTM
model which takes too
long to train thus increas-
ing the computational
cost

[43] CNN, RNN, Auto-Encoder, DBN - 16 A survey paper pro-
viding an outline with
respect to the deep-
learning models used in
heartbeat classification.
No such limitations

[44] Deep CNN 94.00 5 A deep layered CNN
with no such weakness
except a deep structure
that requires relatively
long time to train

[45] DNN 94.00 5 A DNN combined with
a genetic algorithm with
high computational cost

[46] Deep 1D-CNN 97.00 9 A deep CNN with high
accuracy but low F1 score

[47] DCNN + TFCV 97.40 5 Too much training time
required considering the
amount of preprocessing
performed on the dataset

3. Proposed Methodology

The proposed framework is an ensemble of two deep-learning models: CNN and
LSTM, as illustrated in Figure 1. The selection of both models for the ensemble was based on
their exceptional performance in automated feature extraction and recognition as depicted
in the literature. Since 1D CNNs are impervious to the time-step order, several hidden layers
are stacked to extract longer sub-sequences of data that enhance the recognition rate of the
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model. Meanwhile, since the used datasets accommodate complex ECG signals, LSTM
automatically extracts the timing characteristics of these signals which the CNN may miss.
Furthermore, the merging of the models requires at least two models in the architecture
which can be increased up to n number of networks, depending on the computational
resources available at hand. Once the models are designed and compiled, they are then
merged to form a single multi-layered structure. This methodology combines all the layers
in a hierarchical manner that effectively extracts the most optimal features from each layer,
fuses them, and forwards them to the next layer for further processing. Both models have
been integrated with batch normalization [48] to standardize and normalize the input of
each layer. This reduces the load on the neural network and avoids overfitting. After the
merged model is trained, the performance is evaluated on the publicly available dataset.
Further subsections incorporate the nuances of the proposed framework:

Figure 1. The Proposed Framework.

3.1. 1D—Convolutional Neural Networks (CNN)

The first model incorporated in the framework is a 1D CNN which is composed of
three hidden layers, one flattening layer, two dense layers (1 fully connected, 1 SoftMax),
and a batch normalization layer. The CNN takes as input a “n× 1” matrix. The detailed
architecture of the CNN is represented in Figure 2. All hidden layers are further comprised
of a convolution and pooling layer. There exist various pooling strategies such as min-pool,
maxpool, and average-pool, the choice of which depends on the type and quantity of data.
In the context of heartbeat classification, the most widely used is the average and maxpool
techniques. To that end, we too have adopted max-pooling in the implemented CNN which
extracts the largest element from each block of the feature map. Similarly, among various
activation functions, Rectified Linear Unit (ReLU) has been integrated into each hidden
layer to regularize the model and its parameters (τ).

The batch normalization technique has been adopted to normalize and standardize
the input to each layer in the CNN. The final feature matrices are flattened and fed to the
dense layer which is distributed into classes by the SoftMax layer. The convolution kernel
number in each layer is set as “κ” and the kernel sizes are configured to be “α, β and γ”,
respectively. The pooling filter size in each hidden layer is kept as “δ” and a consistent
stride of size “s” is adopted. To be able to cover the whole input matrix, the padding for
the convolution filter is kept as “same”. All the hyperparameters for the two datasets used
in this approach have been summarized in Table 2.

If the height of the convolution filter is considered to be FH , the width is FW and the
dimension is d, then the size of the output of the filter can be defined as (1):
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FM = (H − FH + 1)× (W − FW + 1)× 1 (1)

Figure 2. The Architecture of the CNN model.

Table 2. Hyperparameters for the CNN layers.

Parameter Value—D1 and D2

Input size n

Stride s

Kernel number κ

Kernel size—Conv1 α

Kernel size—Conv2 β

Kernel size—Conv3 γ

Pool size δ

Activation τ

Padding same

3.2. Long Short-Term Memory (LSTM)

The second network incorporated in the framework is an LSTM due to its exceptional
performance in the extraction of temporal and spatial features. The model is contrived
of an input layer, an exclusive LSTM cell, a hidden layer, a normalization layer, and a
classification layer as shown in Figure 3.

Figure 3. Architecture of the LSTM Cell.



Sensors 2022, 22, 5606 8 of 21

The LSTM cell is divided into smaller gated units where each gate propagates the
flow of information after performing some calculations. The input gate is represented by
Ct which is responsible for updating the state of the cell. A forget gate ( ft) controls the
flow of information by deciding whether the features are to be propagated in the forward
direction or to be removed from the input channel. “tanh and sigmoid (σ)” activations
are configured on the input and forget gates that normalize the information (adjusts the
values between −1 & 1 and 0 & 1, respectively) before letting them through the gate. The
current state of the cell is represented as Ct−1 which is updated concerning a certain time
frame. Point-wise addition and multiplication are completed between various cell states
and vectors. The newer hidden states are figured out by the output gate (Ot) and weights
W and U are assigned to each gate based on their respective configuration. The outputs of
the various gates can be represented as (2).

Ct = tanh (Xt ×UC + Ht−1 ×WC)

ft = σ(Xt ×U f + Ht−1 ×W f )

Ot = σ(Xt ×UO + Ht−1 ×WO)

(2)

The values for the common hyperparameters of LSTM and CNN have been kept the
same. The LSTM units in the LSTM cell are configured to be “ζ”. Adam optimizer has been
configured to handle the sparse gradient and to optimize the memory usage. “Categorical
Crossentropy” loss function has been used to evaluate the distinction between multi-class
probability distributions. LSTM hyperparameters are shown in Table 3.

Table 3. Hyperparameters for the LSTM layers.

Parameter Value—D1 Value—D2

n 1 × 50 1 × 200

ζ 64 64

τ LeakyReLu ReLu

Optimizer Adam Adam

3.3. Merger Module

After the models are defined and created, they are merged in the merger module. The
merger module takes two parameters as input from the models, the data to be fed to each
model circumspect of its dimensions (the input dimensions of both models should be the
same), and all the layers defined in both models. The number of epochs is configured to
be “ε”. The batch size is kept as “δ”. A graphical portrayal of the merger is depicted in
Figure 4. All the compilation parameters for the merged model are shown in Table 4.

Table 4. Parameters for the Merger.

Parameter Value—D1 Value—D2

ε 500 25

δ 25 180

Metric Accuracy Accuracy

Loss function Categorical Crossentropy Categorical Crossentropy

Optimizer Adam Adam
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Figure 4. Architecture of the Merger after Compilation.

The underlying layer in the merged model is the input layer which collects the pre-
processed information. The data are initially passed to the hidden layers extracted from
the CNN model which outputs the subsets of feature vectors. This subset of features is
again processed through the third convolutional layer and in a pipeline hierarchy, the
next layer should have been the third pooling layer. However, the output feature vector
is combined with the LSTM’s initial input vector in the LSTM input layer. The combined
features are then refined through the third max-pooling layer to avoid overfitting and
vanishing gradients. The max-pooled features are then processed through the LSTM cell
for the extraction of long-term temporal dependencies. The LSTM layer drops the low-level
features whereas the high-level features are extracted.

The final set of features is flattened and converted into a 1D array. The batch normal-
ization layer standardizes the input to every layer in the architecture. The matrix-vector
multiplication is carried out in the two dense layers (fully connected) and the features are
distributed into classes by the SoftMax layer. The working of the merger is represented in
Algorithm 1.

Algorithm 1: Merger Module
Require: X = CNN.compile
Require: Y = LSTM.compile
Ensure: CNN.inputDimension == LSTM.inputDimension
Require: data = CNN.LSTM.input

train, test = data.split
for X ← Y do

merger = Add()[X.output, Y.output]
mergedModel = Model([X.input, Y.input], merger)
mergedModel.compile(optimizer, loss, metrics)

end for
trainedModel = mergedModel.fit(train)

testModel = trainedModel.evaluate(test)

{testModel returns the evaluation of the merged model on the testing data}

return Classified Heartbeats
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4. Experimentation

This paper uses two publicly available datasets for the classification of cardiac ar-
rhythmias. Both datasets incorporate ECG recording against several subjects collected in
a controlled environment. Both datasets accumulate distinct feature sets and have been
separately accommodated in the experimentation. The details of each dataset are provided
in the following subsections:

4.1. UCI Arrhythmia Dataset—D1

The UCI Machine-learning repository-based arrhythmia dataset [49] incorporates
452 total instances against 13 types of heartbeats. The term ‘instances’ characterize the
records such that each instance represents a distinct record from a separate patient in this
particular dataset. Furthermore, 203 instances correspond to male patients whereas 249
are from female patients. Furthermore, a single instance accumulates 279 attributes which
include the respective subject’s heart rate, sex, age, PR interval, RR interval, etc., with the
last attribute being the type of heartbeat. The class-instance distribution is shown in Table 5.

Table 5. UCI Arrhythmia Dataset (D1) Class-Instance Distribution.

Super-Class Annotations Total Instances

Normal heartbeat N 245

Ischemic Changes IC 44

Anterior Myocardial Infarction AM 15

Inferior Myocardial Infarction IM 15

Sinus tachycardia ST 13

Sinus bradycardia SB 25

Ventricular Premature Contraction V 3

Supraventricular Premature Contraction S 2

Left bundle branch block L 9

Right bundle branch block R 50

Left ventricle hypertrophy LV 4

Atrial Fibrillation or Flutter A 5

Other heartbeats Q 22

Feature Selection and Train-Test Split

Initially, the missing values in the original data were filled by calculating the mean
of all the values for that particular attribute. The attributes with more than 30% missing
values were discarded and the resultant features were standardized through a standard
scalar unit. The unique patterns (principal attributes) in the features were identified by the
Principal Component Analysis (PCA) module and high-level features were extracted as
input to the model.

After the feature reduction, the number of attributes was reduced to 50 whereas the
number of instances remained at 452. The data were then split into a 60–40 proportion
on a record-by-record basis, where a random 60% was separated for training and 40% for
testing. The class-instance distribution after the train-test split is shown in Table 6.
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Table 6. Training and Testing Data Division—D1.

Class No. Test Instances No. Training Instances

N 96 149

IC 14 30

AM 7 8

IM 4 11

ST 6 7

SB 12 13

V 2 1

S 1 2

L 2 6

R 24 26

LV 3 1

A 1 4

Q 9 13

4.2. MIT-BIH Arrhythmia Dataset—D2

This paper also and mainly uses the publicly available MIT-BIH Arrhythmia
dataset [50]. The dataset accumulates 30-min raw ECG recordings of 48 patients of
which 25 belong to female patients whereas 22 belong to males. Two records among
the 22 come from the same male subject. Each record is composed of dual lead signals
where the upper signal corresponds to modified limb lead II (MLII) obtained by the
placement of lead on the chest, whereas the lower signal is typically a modified lead V1,
in a few cases V2 or V5, and in a single case V4. In another two records, the upper signal
was replaced by the modified lead V5 due to surgical constraints that restricted the
placement of electrodes on the chest. Each record in the dataset is sampled at a 360 Hz
frequency. The upper signal MLII accommodates prominent QRS complexes and
the database is mainly divided into five arrhythmia super-classes and 15 sub-classes.
This paper classifies five arrhythmia sub-classes, i.e., Normal, Left bundle branch
block beat, Right bundle branch block beat, Atrial premature beat, and Premature
ventricular contraction. The classes are represented by the annotations N, L, R, A, and
V, respectively. The details about the sub-class distribution are provided in Table 7.

Furthermore, the original data in D2 reflects a high class imbalance and the presence
of noise against the targeted classes. To address these issues, the signals were initially
preprocessed through the denoising and resampling methods. The preprocessing details,
respectively, are provided in the subsequent sections.

Table 7. MIT-BIH Arrhythmia Dataset (D2) Sub-class Distribution.

Super-Class Annotations Sub-Classes

Normal heartbeat N e, j, N, L, R

Supraventricular ectopic heartbeat S a, A, J, S

Ventricular ectopic heartbeat V E, V

Fusion heartbeat F F

Unclassified heartbeat Q f, P, Q
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4.2.1. Noise Removal

The raw ECG signals in the dataset are accumulated with the EMG, power-frequency,
etc., interferences which are referred to as noise. For the precise detection of arrhythmia
heartbeats, the data must be free from such interferences. To that end, before feeding the
data to the model, the raw ECG signals have been de-noised through the Discrete-Wavelet-
Transform-based denoising technique [51]. The denoising filter reduces the signal distortion
in the QRS complex thus it can be more clearly expressed in the detection of RR intervals.

A sample from the raw ECG signals, before and after noise removal, has been depicted
in Figures 5 and 6, respectively.

Figure 5. Raw ECG Signal.

Figure 6. Denoised ECG Signal.

4.2.2. Data Resampling

Class imbalance can cause the model to be prejudiced regarding the predominant class
thus directing to a bad or average classification of the minority class. This exerts a crucial
impact on the classification accuracy and other performance metrics as well. The details
about the distribution of instances against each class in D2 are provided in Table 8. The
dataset employed also suffers from imbalanced instances against the target classes. For D2,
‘instance’ represents each observation against a record such that 74,011 instances of class N
refer to 74,011 samples present in the dataset for the following class. Moreover, it can be
observed that the total instances against the N class far exceed the combined instances of
all the other classes, whereas the A class accumulates the lowest number of instances. This
will cause the model to overfit and be more inclined towards the N class. To that end, the
proposed model endorses the Synthetic-Minority Oversampling Technique (SMOTE) [52].
SMOTE generates the synthetic-minority class examples and upsample the classes with
lesser instances while downsampling the majority classes. In this paper, we upsampled the
minority classes (L, R, A, and V) and downsampled the majority class N to 10,000 instances
each such that each class held a 25% distribution of the overall data as shown in Figure 7.
This biased and even distribution and resampling of the classes helped to maintain the
integrity of data and reduce the load on neural networks.

Figure 8 depicts the aforementioned sample signal after noise removal, normalization,
and resampling.
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Figure 7. Class distribution (a) before resampling and (b) after resampling in the dataset D2.

Figure 8. Normalized ECG Signal.

Furthermore, for the precise assessment of the proposed approach, the preprocessed
dataset was divided into a 1:4 proportion where a random 20% of the data were separated
for testing and 80% for the training of the model. The dataset incorporates 48 records where
each record represents a different patient. The train-test split has been carried out against
the overall number of samples after preprocessing (50,000) instead of on a record-by-record
basis. The reason for this is that only a few records consume all the targeted arrhythmia
classes whereas most of the records accumulate instances against only 2 or 3 target classes.
To be biased towards each class, the records with a higher proportion of the dominant class,
such as N, were pruned. The distribution of resampled instances for training and testing of
the model is shown in Table 9.

Table 8. Imbalanced Instances in D2.

Class No. of Instances

N 75,011

L 8071

R 7255

A 2546

V 7129
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Table 9. Training and Testing Data Division—D2.

Class No. of Test Instances No. of Training Instances

N 2113 7887

L 2022 7978

R 1967 8033

A 1913 8087

V 1985 8015

4.3. Performance Metrics

Sensitivity, Specificity, Positive Predictive Value (PPV), and Accuracy have been used
to benchmark the performance of modern approaches with the proposed approach. Among
these, sensitivity represents the capability of a model to identify the true positives in the
data. However, speci f icity constitutes the capability of the classifier to identify the true
negatives among all the negatives. PPV figures out the proportion of the predicted positives
among all the actual positives. In addition, accuracy is the measurement that determines
whether the model is best at identifying patterns and extracting relations between multiple
classes on training and testing data. The formulas for each performance metrics are shown
in Equations (3)–(6), respectively.

sensitivity =
tn

tp + f n
(3)

speci f icity =
tn

tn + f p
(4)

Ppv =
tp

tp + f p
(5)

accuracy =
tp + tn

tp + tn + f p + f n
(6)

where tp, tn, f p, and f n correspond to the total true positives, true negatives, false positives,
and false negatives in the final classification.

4.4. Testing Environment

All the experiments in the following research work are performed on the following
hardware/software specifications: Intel Core i5-10th generation processor, NVIDIA GTX
1650ti GPU, 16GB Ram, Python 3.1, TensorFlow, and PyCharm 2021.

4.5. Model Training

For D1, a time sequence of size 1× 50 is fed to the input layer of the CNN and LSTM
in batches. Each record in the dataset accumulates 50 attributes, hence indicating the reason
for adopting such input sizes. The input is then processed in the initial two hidden layers
of the CNN. The reduced features are extracted in the form of a matrix and convoluted
in the third layer. Before being pooled for the third time, the merger takes in the initial
input again and merges the reduced features with it. The merged input is then pooled and
processed through the LSTM cells. The time-domain features are flattened and normalized
by the batch normalization layer. The final output is condensed in the two stacked dense
layers and heartbeats are classified by the SoftMax layer. The model executes for 500 epochs

For D2, the model takes a batch size of 200 as input. We adopted the batch size of
200 instances as we achieved the best results on it. After the reprocessing, a 1D sequence
of instances with size 1× 200 was fed to the first input layer which queues the data into
the model for the first hidden layer (conv1d−maxpool). 2 convolutional kernels of size
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1× 8 are applied to the input matrix and new sets of features are extracted. These features
are propagated to the first maxpool layer where they undergo pooling. The pooling filter
of size 1× 2 downsamples the feature set with a stride of 1 along its spatial dimensions
and the smaller subsets of high-level features are generated. The smaller subset of features
is reprocessed through another hidden layer. The merger breaks the third hidden layer
and only stacks the third convolution layer again to perform the final convolutions. The
output is then merged with the input of LSTM (1d vector of size 1× 200) in the second
input layer. The merged sets of features are then pooled in the third maxpool layer and
finally processed through the LSTM cell.

The LSTM layer outputs a refined 2D sequence of spatial and temporal features that
is converted into a 1D array of high-level features by the flattening layer. The batch
normalization layer standardizes the input to all the layers in the model. 2 fully connected
layers (dense layers) with 32 and 5 neurons condense the features, respectively. The SoftMax
layer predicts the multinomial probability distribution and classifies the heartbeats.

The model executes for 25 epochs and the training time per epoch is recorded to
benchmark the computational cost of the proposed approach. Adam optimizer is used to
regularize the model and auto-adjust the learning rate after each iteration. Categorical −
cross− entropy loss function is used to quantify the errors reported by the merged model.

4.6. Results on D1

The proposed approach was initially benchmarked on the UCI Arrhythmia dataset.
The accomplishment of the resultant metrics is shown in Table 10. It can be observed that the
proposed approach achieves an average sensitivity of 89.11%, specificity of 99.40%, PPV of
91.17%, and classification accuracy of 99.05%. The overall accuracy of the proposed model
is calculated to be 93.33%. The low average sensitivity is caused due to the availability
of only a few instances against some classes (in some cases only 2 to 4 instances). This
caused the network to lack in the ascertainment of patterns and relevance of features.
Table 11 shows the confusion matrix of the predicted and actual beats. It can be observed
that the label L accumulated only two instances in the testing data, whereas the model
predicted only one to be from the respective class whereas it incorrectly predicted the other
to belong to class AM. This caused the model to generate a sensitivity of only 50% in this
particular case. The availability of abundant instances against the minority classes would
have generated much better results. No oversampling methodology has been applied to
D1 due to the availability of very few overall instances.

Furthermore, the sensitivity of the approach can be improved by accommodating a
resampling strategy. However, since the classes in D1 are highly imbalanced, resampling by
duplication may cause overfitting thus reflecting an increase in sensitivity while decreasing
the accuracy.

4.7. Results on D2

The proposed approach was tested to benchmark the robustness of the classifier on
the MIT-BIH Arrhythmia dataset. The quantitative assessment was carried out using
the aforementioned performance metrics. The accomplishment of the resultant metrics
is shown in Table 12. It can be observed that the proposed model achieved an overall
classification sensitivity of 98.37%, specificity of 99.59%, a positive predictive value of
98.41%, and accuracy of 99.35%. The confusion matrix corresponding to the classified
heartbeats on testing data is shown in Table 13. It tends to be seen that 2019 instances of the
N class were accurately recognized by the model whereas three were incorrectly labeled as
belonging to L, 10 to R, 60 to A, and 21 to V. The rows represent the incorrectly predicted
instances against the actual classes in the Actual column such that: For the first row, three
instances were labeled as N; however, the actual label was L. Similarly, four instances were
predicted to belong to N; however, they belonged to class R and vice versa.
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Table 10. Evaluation of Performance Metrics on D1.

Heartbeat Sensitivity (%) Specificity (%) PPV (%) Accuracy (%)

N 98.95 97.65 97.22 98.33

IC 86.67 100.00 100.00 98.88

AM 83.33 98.85 71.43 98.33

IM 80.00 100.00 100.00 99.44

ST 100.00 99.42 83.33 99.44

SB 81.82 98.17 75.00 97.14

V 100.00 100.00 100.00 100.00

S 100.00 100.00 100.00 100.00

L 50.00 99.43 66.67 98.33

R 100.00 98.75 91.67 98.90

LV 100.00 100.00 100.00 100.00

A 100.00 100.00 100.00 100.00

Q 77.78 100.00 100.00 98.89

Average 89.11 99.40 91.17 99.05

Table 11. Confusion Matrix of the Classified Arrhythmia Heartbeats—D1.

Predicted

N IC AM IM ST SB V S L R LV A Q

A
ct

ua
l

N 94 1 0 0 0 0 0 0 0 0 0 0 0

IC 1 13 0 0 0 2 0 0 0 0 0 0 0

AM 0 0 5 0 0 0 0 0 1 0 0 0 0

IM 1 0 0 4 0 0 0 0 0 0 0 0 0

ST 0 0 0 0 5 0 0 0 0 0 0 0 0

SB 0 0 2 0 0 9 0 0 0 0 0 0 0

V 0 0 0 0 0 0 2 0 0 0 0 0 0

S 0 0 0 0 0 0 0 1 0 0 0 0 0

L 0 0 0 0 1 1 0 0 1 0 0 0 0

R 0 0 0 0 0 0 0 0 0 22 0 0 0

LV 0 0 0 0 0 0 0 0 0 0 3 0 0

A 0 0 0 0 0 0 0 0 0 0 0 1 0

Q 0 0 0 0 0 0 0 0 0 2 0 0 7
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Table 12. Evaluation of Performance Metrics on D2.

Heartbeat Sensitivity (%) Specificity (%) PPV (%) Accuracy (%)

N 98.54 98.82 95.55 98.76

L 99.56 99.91 99.65 99.84

R 99.13 99.73 98.88 99.61

A 96.03 99.70 98.75 98.98

V 98.60 99.81 99.24 99.57

Average 98.37 99.59 98.41 99.35

Table 13. Confusion Matrix of the Classified Arrhythmia Heartbeats—D2.

Predicted

N L R A V

A
ct

ua
l

N 2019 3 4 14 9

L 3 2015 0 1 5

R 10 0 1945 7 0

A 60 0 17 1889 1

V 21 4 1 2 1970

4.8. Comparison with Modern Approaches on D2

The comparison based on the model’s capability to classify arrhythmia heartbeats in
terms of accuracy has also been carried out with the state-of-the-art deep-learning works as
shown in Table 14. The approaches have been sorted in the earliest approach-first order.
The comparison with these approaches has only been carried out with accuracy as the
common performance metric. The reason for this is that not all these approaches had
benchmarked their performance on the variety of metrics used in this approach.

It very well may be seen that the Deep LSTM model acquired a 95.80% accuracy in
the classification of eight sub-classes of heartbeats; however, the model lacked stability
when dealing with unlabeled data. The approach required a deeply nested hierarchy
of LSTM cells to produce notable results. This ultimately slowed down the training
process and increased the computational cost of the approach. The exclusive time-series
LSTM classifier managed to classify five arrhythmias with a simple LSTM structure but
extensive preprocessing. The approach focused only on the simplicity of the model with
emphasis on accuracy (95.00%); however, the evaluation parameters such as sensitivity,
recall, specificity, etc., likewise assume a significant part in depicting the robust performance
of the classifier. The BiLSTM approach stacked several LSTM layers on top of a bidirectional
LSTM and compared the performance with three modified deep LSTM models. The BiLSTM
model outperformed the LSTMs in terms of accuracy (95.00%); however, at the cost of
considerably extended execution time per epoch. The practicality of the model has a
significant dependence on the execution time that cannot be neglected.

The DCNN model used the traditional denoising and resampling techniques, very
much similar to the ones employed in the proposed approach, to handle five imbalanced
arrhythmia classes. The model trained on the preprocessed data classified the arrhyth-
mias with a 94.00% accuracy, whereas on raw data it showed an accuracy of 93.50%. A
lightweight LSTM could achieve the same results with lesser execution time, the approach
did not portray any other significant aspect of the classifier. Another approach DNN
stacked multiple layers of Artificial Neural Networks (ANN) and fused them with a fea-
ture learner module. The module extracted features from unlabeled data and the optimal
features were refined with the assistance of the genetic algorithm. The model classified
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five arrhythmia super-classes with a 94.00% accuracy but did not shed any light on the
increased computational cost due to the implementation of the learner module and the
genetic algorithm. The 1D-deep CNN achieved a relatively higher classification accuracy
of 97.00%, but with an average F1 score of 0.84 (84.00%).

Table 14. Overall Accuracy of the Proposed Approach and Referenced Deep-Learning Approaches
on D2.

Approach Overall Accuracy (%)

Deep LSTM [40] 95.80

LSTM [41] 95.00

BiLSTM [42] 95.00

DCNN [44] 94.00

DNN [45] 94.00

Deep 1D-CNN [46] 97.00

DCNN + TFCV [47] 97.40

Proposed Approach 99.35

A detailed comparison with the baseline approach, Deep CNN embedded with Ten-
Folds Cross-Validation technique (DCNN + TFCV), has been made in the proposed ap-
proach as shown in Table 15. The common benchmark parameters were considered to be
sensitivity, specificity, PPV, and accuracy. The proposed approach classified the same five
arrhythmia sub-classes as the Deep CNN approach and achieved 99.35% accuracy. For a
deep comparison, the classification sensitivity and specificity were likewise determined,
and the proposed model outclasses the referenced approach not only in average accuracy
but in other performance metrics as well. The overall sensitivity, specificity, and PPV of
the model after 60 epochs were calculated to be 97.05%, 99.35%, and 97.22%, respectively.
The proposed approach returned a 1.32% higher sensitivity rate, a 0.25% increased average
specificity, and a 1.19% increased PPV. The proposed approach also effectuated a 1.95%
increased accuracy compared to the baseline approach.

Table 15. Overall Results of the Performance Metrics on D2.

Performance Metric Deep CNN + TFCV The Proposed Approach

Sensitivity (%) 97.05 98.37

Specificity (%) 99.35 99.59

PPV (%) 97.22 98.41

Accuracy (%) 97.40 99.35

To address the issue of increased computational cost due to the excessively longer
training times, this paper likewise played out a comparative analysis of the overall execu-
tion time between the baseline and the proposed approach on D2. The baseline approach
expected roughly 120 min to be done with the training as expressed in the paper. It pre-
dicted an additional 11 h to finish the ten-fold cross-validation. In terms of functional
execution where real-time information is concerned and speed over accuracy is required,
a tedious model dismisses the criticality of data, which could be dangerous at times. To
beat such blemishes, the proposed approach engrossed, on average, 17 min to prepare the
data and classify the heartbeats (testing) as shown in Table 16. In this unique circumstance,
the execution time alludes to the time adopted by a strategy to produce the classification
results on the testing data, including the preprocessing and training phases.
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Table 16. Comparison of the Training Time with DCNN+TFCV Approach.

Approach Training Time (m)

DCNN + TFCV 120

Proposed Approach 17

5. Conclusions

Cardiovascular diseases pose a significant danger to human life and dealing with them
strongly relies on the accurate analysis of heartbeats via ECG. Manual analysis of ECG
signals by a medical expert is costly in terms of time and resources. To that end, the focus
has shifted from manual analysis to automated detection of irregularities in the beating
of a heart. This work proposed an efficient automated heartbeat classification framework
that accurately classified 13 and 5 arrhythmia heartbeats, from respective datasets, in
a cost-effective time. The framework used two deep neural networks in conjunction
and merged them in a hierarchical layered structure to form a single robust model. The
proposed approach was tested on the UCI Arrhythmia and MIT-BIH Arrhythmia datasets
and benchmarked with the state-of-the-art approaches. The comparison of the selected
evaluation metrics revealed the superior performance of the proposed approach over
modern approaches. A comparison in terms of the execution time was also carried out to
exhibit that the approach not only far outclasses the modern works in terms of accuracy,
sensitivity, and specificity, but overall model execution time as well. Since the input
to both models has been treated as a time series, Raw ECG sequences in the case of
D2 and PCA extracted features from D1, we have used CNN and LSTM due to their
exceptional performance in ECG classification as signified in the literature. The architecture
of the proposed model is general, and the novelty resides in the merger; therefore, the
neural networks embedded in the proposed architecture can be replaced by GRU or any
other model.

The main limitations of the method include the increased computational cost with
the addition of more networks. The method is most likely to fail due to the failure of
models incorporated with the merger. That being said, at least one model will produce
noteworthy results.

For future prospects, the proposed approach can be enhanced and tested to deal
with real-time data. Moreover, the model can be simplified to be deployed on embedded
systems. In the recent trends of TinyML [53], micro machine-learning models requiring
minimal resources can be deployed on the fog and edge nodes. Software libraries such as
“TensorFlowLite” are being used to shrink the deep-learning models to perform on-device
analytics without any additional cost.

Supplementary Materials: The datasets presented in this approach along with the source code are
publicly available on GitHub at: https://github.com/sidhunk/HCAADUMMDLT.git (accessed on
5 June 2022).
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