765 research outputs found

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Aiding phase unwrapping by increasing the number of residues in two-dimensional wrapped-phase distributions

    Get PDF
    In phase unwrapping residues are points of locally inconsistent phase that occur within a wrapped-phase map, which are usually regarded as being problematic for phase-unwrapping algorithms. Real phase maps typically contain a number of residues that are approximately proportional to the subsequent difficulty in unwrapping the phase distribution. This paper suggests the radical use of the discrete Fourier transform to actually increase the number of residues in 2D phase-wrapped images that contain discontinuities. Many of the additional residues that are artificially generated by this method are located on these discontinuities. For example, in fringe projection systems, such phase discontinuities may come from physical discontinuity between different parts of the object, or by shadows cast by the object. The suggested technique can improve the performance of path independent phase-unwrapping algorithms because these extra residues simplify the process of setting the branch cuts in the wrapped image based on the distance to the nearest residue. The generated residues can also be used to construct more reliable quality maps and masks. The paper includes an initial analysis upon simulated phase maps and goes on to verify the results on a real experimental wrapped-phase distribution

    A spatial algorithm to reduce phase wraps from two dimensional signals in fringe projection profilometry

    Get PDF
    © 2015 Elsevier Ltd. All rights reserved. In this paper, we present a novel algorithm to reduce the number of phase wraps in two dimensional signals in fringe projection profilometry. The technique operates in the spatial domain, and achieves a significant computational saving with regard to existing methods based on frequency shifting. The method works by estimating the modes of the first differences distribution in each axial direction. These are used to generate a tilted plane, which is subtracted from the entire phase map. Finally, the result is re-wrapped to obtain a phase map with fewer wraps. The method may be able to completely eliminate the phase wraps in many cases, or can achieve a significant phase wrap reduction that helps the subsequent unwrapping of the signal. The algorithm has been exhaustively tested across a large number of real and simulated signals, showing similar results compared to approaches operating in the frequency domain, but at significantly lower running times

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Shifting of wrapped phase maps in the frequency domain using a rational number

    Get PDF
    The number of phase wraps in an image can be either reduced, or completely eliminated, by transforming the image into the frequency domain using a Fourier transform, and then shifting the spectrum towards the origin. After this, the spectrum is transformed back to the spatial domain using the inverse Fourier transform and finally the phase is extracted using the arctangent function. However, it is a common concern that the spectrum can be shifted only by an integer number, meaning that the phase wrap reduction is often not optimal. In this paper we propose an algorithm than enables the spectrum to be frequency shifted by a rational number. The principle of the proposed method is confirmed both by using an initial computer simulation and is subsequently validated experimentally on real fringe patterns. The technique may offer in some cases the prospects of removing the necessity for a phase unwrapping process altogether and/or speeding up the phase unwrapping process. This may be beneficial in terms of potential increases in signal recovery robustness and also for use in time-critical applications

    Application of Differential and Polarimetric Synthetic Aperture Radar (SAR) Interferometry for Studying Natural Hazards

    Get PDF
    In the following work, I address the problem of coherence loss in standard Differential Interferometric SAR (DInSAR) processing, which can result in incomplete or poor quality deformation measurements in some areas. I incorporate polarimetric information with DInSAR in a technique called Polarimetric SAR Interferometry (PolInSAR) in order to acquire more accurate and detailed maps of surface deformation. In Chapter 2, I present a standard DInSAR study of the Ahar double earthquakes (Mw=6.4 and 6.2) which occurred in northwest Iran, August 11, 2012. The DInSAR coseismic deformation map was affected by decorrelation noise. Despite this, I employed an advanced inversion technique, in combination with a Coulomb stress analysis, to find the geometry and the slip distribution on the ruptured fault plane. The analysis shows that the two earthquakes most likely occurred on a single fault, not on conjugate fault planes. This further implies that the minor strike-slip faults play more significant role in accommodating convergence stress accumulation in the northwest part of Iran. Chapter 3 presents results from the application of PolInSAR coherence optimization on quad-pol RADARSAT-2 images. The optimized solution results in the identification of a larger number of reliable measurement points, which otherwise are not recognized by the standard DInSAR technique. I further assess the quality of the optimized interferometric phase, which demonstrates an increased phase quality with respect to those phases recovered by applying standard DInSAR alone. Chapter 4 discusses results from the application of PolInSAR coherence optimization from different geometries to the study of creep on the Hayward fault and landslide motions near Berkeley, CA. The results show that the deformation rates resolved by PolInSAR are in agreement with those of standard DInSAR. I also infer that there is potential motion on a secondary fault, northeast and parallel to the Hayward fault, which may be creeping with a lower velocity

    Generation of Earth’s Surface Three-Dimensional (3-D) Displacement Time-Series by Multiple-Platform SAR Data

    Get PDF
    In this chapter, the recent advancements of differential synthetic aperture radar interferometry (DInSAR) technique are presented, with the focus on the DInSAR-based approaches leading to the generation of three-dimensional time-series of Earth’s surface deformation, based on the combination of multi-platform line-of-sight (LOS)-projected time-series of deformation. Use of pixel-offset (PO) measurements for the retrieval of North-South deformation components, which are difficult to be extracted from DInSAR data, only, is also discussed. A review of the principal techniques based on the exploitation of amplitude and phase signatures of sequences of SAR images will be first provided, by emphasizing the limitations and strength of each single approach. Then, the interest will be concentrated on the recently proposed multi-track InSAR combination algorithm, referred as minimum acceleration InSAR combination (MinA) approach. The algorithm assumes the availability of two (or more) sets of SAR images acquired from complementary tracks. SAR data are pre-processed through one of currently available multi-temporal DInSAR toolboxes, and the LOS-projected surface deformation time-series are computed. An under-determined system of linear equations is then solved, based on imposing that the 3-D displacement time-series have minimum acceleration (MA). The presented results demonstrate the validity of the MinA algorithm

    Characterization of Ground Deformation Associated with Shallow Groundwater Processes Using Satellite Radar Interferometry

    Get PDF
    Shallow groundwater processes maylead to ground deformation and even geohazards. With the features of day-and-night accessibility and large-scale coverage, time-series interferometric synthetic aperture radar (InSAR) has proven a useful tool for mapping the deformation over various landscapes at cm to mm level with weekly to monthly updates. However, it has limitations such as, decorrelation,atmospheric artifacts, topographic errors, andunwrapping errors, in particular for the hilly, vegetated, and complicated deformation patterns. In this dissertation, I focus on characterizing the ground deformation over landslides, aquifer systems, and mine tailings impoundment, using the designed advanced time-series InSAR strategy, as well as theinterdisciplinary knowledge of geodesy, hydrology, geophysics, and geology. Northwestern USA has been exposed to extreme landslide hazards due to steep terrain, high precipitation, and loose root support after wildfire. I characterize the rainfall-triggered movements of Crescent Lake landslide, Washington State. The seasonal deformation at the lobe, with larger magnitudes than the downslope riverbank, suggests an amplified hydrological loading effect due to a thicker unconsolidated zone. High-temporal-resolution InSAR and GPS data reveal dynamic landslide motions. Threshold rainfall intensities and durations wet seasons have been associated with observed movement upon shearing: antecedent rainfall triggered precursory slope-normal subsidence, and the consequent increase in pore pressure at the basal surface reduces friction and instigates downslope slip over the course of less than one month. In addition, a quasi-three-dimensional deformation field is created using multiple spaceborne InSAR observations constrained by the topographical slope, and is further used to invert for the complex geometry of landslide basal surface based on mass conservation. Aquifer skeletons deform in response to hydraulic head changes with various time scales of delay and sensitivity. I investigate the spatio-temporal correlation among deformation, hydrological records and earthquake records over Salt Lake Valley, Utah State. A clear long-term and seasonal correlation exists between surface uplift/subsidence and groundwater recharge/discharge, allowing me to quantify hydrogeological properties. Long-term uplift reflects the net pore pressure increase associated with prolonged water recharge, probably decades ago. The distributions of previously and newly mapped faults suggest that the faultsdisrupt the groundwater flow andpartition hydrological units. Mine tailings gradual settle as the pore pressure dissipates and the terrain subsides, andtailings embankment failures can be extremely hazardous. I investigate the dynamics of consolidation settlement over the tailings impoundment in the vicinity of Great Salt Lake, Utah State, as well as its associated impacts to the surrounding infrastructures. Largest subsidence has been observed around the low-permeable decant pond clay at the northeast corner.The geotechnical consolidation model reveals and predicts the long-term exponentially decaying settlement process. My studies have demonstrated that InSAR methods can advance our understanding about the potential anthropogenic impacts and natural hydrological modulations on various geodynamic settings in geodetic time scale

    Investigation of the ground displacement in Saint Petersburg, Russia, using multiple-track differential synthetic aperture radar interferometry

    Get PDF
    Abstract Global sea level rise and local land subsidence might exacerbate the risk of flooding in coastal plains. Among other cities, this is also the case for the high-latitude city of St. Petersburg, which has long been threatened by flood events. To protect the urban area from storm surges, the Union of Soviet Socialist Republics (USSR) in 1978 approved the construction of the 25 km long Flood Prevention Facility Complex (FPFC), which was completed in 2011. The risk of flooding in the city area of St. Petersburg is amplified by the fact that large sections of the coastal area have been reclaimed from the sea. In this study, we investigate the temporal evolution of the ground displacement in St. Petersburg. To this end, we perform an extended analysis based on the application of a simplified version of the differential interferometric synthetic aperture radar technique, known as the minimum acceleration (MinA) approach. The MinA algorithm is a multi-satellite/multi-track interferometric combination technique that allows working with multiple sets of SAR images. The method allowed generation of time series of two-dimensional (2-D) (i.e. East-West and Up-Down) deformation of the terrain by processing two sequences of Sentinel-1A/B (S-1A/B) SAR images acquired from 2016 to 2018, along the ascending and descending flight passes. The Small BAseline Subset (SBAS) algorithm was independently applied to the two sets of SAR data to generate the relevant Line-Of-Sight (LOS)-projected ground deformation time series. Subsequently, the LOS-projected deformation products were geocoded and jointly combined. The results indicate that the deformation in the city is predominantly vertical (i.e. it is subsiding) with a maximum subsidence rate of about 20 mm/year corresponding to the newly sea-reclaimed lands. Finally, the error budget of the retrieved 2-D deformation time series has also been addressed
    • …
    corecore