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Shallow groundwater processes may lead to ground deformation and even geohazards. With 

the features of day-and-night accessibility and large-scale coverage, time-series interferometric 

synthetic aperture radar (InSAR) has proven a useful tool for mapping the deformation over 

various landscapes at cm to mm level with weekly to monthly updates. However, it has limitations 

such as, decorrelation, atmospheric artifacts, topographic errors, and unwrapping errors, in 

particular for the hilly, vegetated, and complicated deformation patterns. In this dissertation, I 

focus on characterizing the ground deformation over landslides, aquifer systems, and mine tailings 

impoundment, using the designed advanced time-series InSAR strategy, as well as the 

interdisciplinary knowledge of geodesy, hydrology, geophysics, and geology. 

Northwestern USA has been exposed to extreme landslide hazards due to steep terrain, high 

precipitation, and loose root support after wildfire. I characterize the rainfall-triggered movements 

of Crescent Lake landslide, Washington State. The seasonal deformation at the lobe, with larger 

magnitudes than the downslope riverbank, suggests an amplified hydrological loading effect due 

to a thicker unconsolidated zone. High-temporal-resolution InSAR and GPS data reveal dynamic 

landslide motions. Threshold rainfall intensities and durations wet seasons have been associated 

with observed movement upon shearing: antecedent rainfall triggered precursory slope-normal 

subsidence, and the consequent increase in pore pressure at the basal surface reduces friction and 
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instigates downslope slip over the course of less than one month. In addition, a quasi-three-

dimensional deformation field is created using multiple spaceborne InSAR observations 

constrained by the topographical slope, and is further used to invert for the complex geometry of 

landslide basal surface based on mass conservation. 

Aquifer skeletons deform in response to hydraulic head changes with various time scales of 

delay and sensitivity. I investigate the spatio-temporal correlation among deformation, 

hydrological records and earthquake records over Salt Lake Valley, Utah State. A clear long-term 

and seasonal correlation exists between surface uplift/subsidence and groundwater 

recharge/discharge, allowing me to quantify hydrogeological properties. Long-term uplift reflects 

the net pore pressure increase associated with prolonged water recharge, probably decades ago. 

The distributions of previously and newly mapped faults suggest that the faults disrupt the 

groundwater flow and partition hydrological units. 

Mine tailings gradual settle as the pore pressure dissipates and the terrain subsides, and tailings 

embankment failures can be extremely hazardous. I investigate the dynamics of consolidation 

settlement over the tailings impoundment in the vicinity of Great Salt Lake, Utah State, as well as 

its associated impacts to the surrounding infrastructures. Largest subsidence has been observed 

around the low-permeable decant pond clay at the northeast corner. The geotechnical consolidation 

model reveals and predicts the long-term exponentially decaying settlement process. 

My studies have demonstrated that InSAR methods can advance our understanding about the 

potential anthropogenic impacts and natural hydrological modulations on various geodynamic 

settings in geodetic time scale. 
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CHAPTER 1 

INTRODUCTION 

 

Ground deformation and its associated geohazards, taking place in various geodynamic 

settings, are usually in essence a process of changes in pore (fluid) pressure and effective stress 

beneath the land surface. How the hydrology-driven ground deformation evolves is a question of 

fundamental importance in understanding the occurrence of the geohazards or landform 

alternations, and more importantly, mitigating the potential risks to lives. In this dissertation, I 

focus on using interferometric synthetic aperture radar (InSAR) data to characterize the ground 

deformation caused by both natural and anthropogenic activities, in the geodynamic settings of 

slow-moving landslide terrain, urbanized aquifer systems and mine tailings impoundment, and 

to decipher the triggering mechanisms based on geophysical models. 

1.1 InSAR methods 

Monitoring the spatio-temporal behavior of Earth’s surface deformation can advance our 

knowledge about underlying geodynamic processes. Interferometric synthetic aperture radar 

(InSAR) can measure centimeter to millimeter-level displacement with weekly to monthly 

updates. Different from optical sensors, the active SAR sensors transmit and receive 

electromagnetic microwaves regardless of weather conditions. SAR satellites have been one of the 

most well-recognized tools to routinely monitor geohazards through InSAR analysis [e.g., Lu and 

Dzurisin, 2014; Simons and Rosen, 2015]. SAR data, stored in the format of complex numbers, 

record the phase and amplitude information of backscattering and incoming radar echoes. The 
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phase represents the radar signal’s round-trip traveling distance between the sensor and ground 

target, as well as the interaction of the radar signal with ground targets, moduled by 2π. Therefore, 

a subsequent unwrapping procedure has to be applied to retrieve the continuous phase changes. 

The amplitude represents the intensity of the backscattered electromagnetic energy, which is 

primarily determined by the surface dielectric constant, surface roughness, and surface slope. 

When two SAR images from the identical vantage of repeating passes are available, the 

interferometric phase 𝜙, generated by the phase differential at each coregistered pixel, represents 

the difference in the round-trip traveling distance along the line-of-sight (LOS) direction during 

the time interval of those two acquisitions, assuming that the scattering phases remain the same 

(Figure 1.1).  

𝜙 = − !"
#
(𝑟$ − 𝑟%)                                                   (1.1) 

where 𝜆 is radar wavelength, and 𝑟$ − 𝑟% is the range difference. 
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Figure 1.1 Sketch of InSAR geometry (modified from Lu and Dzurisin, 2014) 

The phase difference ∆𝜙 between the two neighboring pixels is composed of the slant range 

difference 𝑠 and the height difference	ℎ (Figure 1.1). 

∆𝜙 = − !"
#

&!'
( )*+ ,

− !"
#

&!-
( ./+ ,

                                              (1.2) 

where 𝐵0 is the perpendicular baseline between the radar sensors, 𝑅 is the range distance, and 𝜃 

is the look angle. The first term can be removed according to SAR system parameters, and the 

remaining term is the flatten interferometric phase ∆𝜙1234. It can be used to extracted topographic 

elevation, assuming no surface deformation between those two acquisitions. 

∆𝜙1234 = − !"
#

&!-
( ./+,

                                                    (1.3) 
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On the other hand, if the phase derived from topography can be subtracted from the digital 

elevation model (DEM), the deformation of the ground target (if exists) during the time of 

acquisitions can be obtained from the differential interferometric phase.  

InSAR coherence is an affiliated product of interferometry, and it depicts the similarities in 

backscattering characteristics. The coherence map is generated by the cross-correlation of the 

coregistered SAR image pair in a moving window. 

𝛾 = 0∑6"6#
∗7%&'()*

8∑|6"|# ∑|6#|#
0                                                        (1.4) 

where 𝐶$ and 𝐶% are the backscattering coefficient, the superscript * denotes the performance of 

the complex conjugate, 𝑗  is the imaginary unit and is equivalent to 𝑠𝑞𝑟𝑡(−1) , 𝜙:74  is the 

deterministic phase due to the phase contributions by baseline, topography, atmosphere, and 

deformation. The loss of coherence is referred to as decorrelation. 

Conventional InSAR method as described above can provide meter-level topographic 

elevation and centimeter-level deformation when the coherence is good. However, it is limited by 

decorrelation, atmospheric artifacts, topographic errors, and unwrapping errors. 

Permanent scatterer InSAR (PS-InSAR) and small baseline subset (SBAS) InSAR are two 

representative time-series InSAR methods [Ferretti et al., 2000; Ferretti et al., 2001; Berardino et 

al., 2002; Hooper, 2006]. Instead of extracting information from each pixel of an interferogram, 

PS-InSAR and SBAS methods identify stable targets, i.e., PS points, from long time-series InSAR 

images. Additionally, the main concept of SBAS is the analysis of interferograms with small 

baselines to reduce the geometrical decorrelation and topographic error induced artifacts, for a 

more accurate monitoring of the temporal evolution of deformations. The solution of time-series 

phase values associated with the deformation for each selected PS point is given by 
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𝝓𝑵 = (𝑨<𝑨)=$𝑨<∆𝝓𝑴                                                    (1.5) 

where 𝝓𝑵 is the vector of the N unknown phase values associated with the cumulative deformation 

of N acquisitions in time series, ∆𝝓𝑴  is the vector of the M known phase values from M 

interferograms, and 𝑨 is an M by N sparse matrix [Berardino et al., 2002]. The solution can be 

simply given by the least-squares estimation (LSE) when the unwrapped interferograms are all 

connected and 𝐴 is full rank. Otherwise, the singular value decomposition (SVD) can provide a 

simple solution for this inverse problem when the interferograms are not connected and 𝐴 is rank 

deficient [Berardino et al., 2002]. 

Time-series InSAR methods aim to separate the interferometric phase components according 

to their characteristics in spatial and time domains. The interferometric phase ∆𝜙?1@  generally 

consists of the following components. 

∆𝜙?1@ = ∆𝜙:71 + ∆𝜙4ABAC + ∆𝜙34D + ∆𝜙AEFC + ∆𝜙GA?'7                       (1.6) 

where 

∆𝜙:71  is the phase change due to the deformation of the ground target in LOS direction. 

∆𝜙4ABAC  is the residual phase component due to DEM errors, and it is given by 

∆𝜙4ABAC = − !"
#

&!-+

( ./+ ,
                                                  (1.7) 

where ℎC  is DEM error. This equation states that the phase residuals due to DEM errors are 

proportional to the perpendicular baselines of different interferograms. 
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∆𝜙34D  is the phase component due to the difference in atmospheric delay between SAR 

acquisitions, and it is generally extracted by spatial-temporal filtering [Ferretti et al., 2000; Ferretti 

et al., 2001]. 

∆𝜙AEFC  is the phase component due to orbital error, and it is characterized by low-wavelength 

artifacts removed by fitting deconvolving low-order polynomials. 

∆𝜙GA?'7  is the noise term due to thermal noise and/or coregistration errors. Normally the noise 

is negligible and hence disregarded.  

The technical implementation of phase decomposition is discussed in more details in section 

2.3.1. 

1.2 Chapter summaries 

Chapters 2, 3 and 4 of this work are written for peer-reviewed publication. Chapter 2 includes 

my research published in two journals: Remote Sensing of Environment [Hu et al., 2016] and 

Geophysical Research Letter [Hu et al., 2018]. Part of Chapter 3 has been written as a manuscript 

and accepted by Journal of Geophysical Research: Earth Surface. Chapter 4 has been published 

in Remote Sensing of Environment [Hu et al., 2017]. For each associated publication there are 

multiple authors, and the author of this dissertation is the first author and primary researcher in all 

cases.  

Chapter 1: This chapter introduces the motivation of the dissertation research, briefly reviews 

the conventional InSAR method and the mainstream time-series InSAR methods, and describes 

the organization of the chapters. 

Chapter 2: Detection of slow or limited landslide movement within broad areas of forested 

terrain has long been problematic, particularly for Cascade landslide complex (Washington) 
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located along the Columbia River Gorge. Although parts of the landslide complex have been found 

reactivated in recent years, the timing and magnitude of motion has not been systematically 

monitored or interpreted. Here I apply time-series strategies to study the spatial distribution and 

temporal behavior of the ~4 km2 reactivated translational Crescent Lake landslide movement 

during 2007-2011 and 2014-2016. The temporal oscillation of the seasonal motion can be 

correlated with precipitation, implying that seasonal movement here is very likely hydrology-

driven. The seasonal motion also has a similar frequency of off-slide GPS-derived regional ground 

oscillations due to mass loading by stored rainfall and subsequent rebound but with much smaller 

magnitude, suggesting different hydrological loading effects. From the time-series SAR amplitude 

information on terrain upslope of the headscarp, I also re-evaluate the incipient motion related to 

the 2008 Greenleaf Basin rock avalanche. In addition, the combined application of on-slide GPS 

data with InSAR data can reveal much more about the complexity of large landslide movement. 

Results reveal the complex three-dimensional shape of the landslide mass, how onset of sliding 

relates to cumulative rainfall, how surface velocity during sliding varies with location on the 

topographically complex landslide surface, and how the ground surface subsides slightly in weeks 

prior to downslope sliding. 

Chapter 3: Characterizing subsurface aquifer systems is important not only to manage their 

long-term viability as a stable water source, but also to protect the residences and infrastructures 

at the surface. In particular, understanding how aquifer skeletons deform in response to hydraulic 

head changes requires hydrogeological parameters such as decay coefficient, storage coefficient 

and bulk compressibility. Quantifying these key aquifer properties often requires the analysis of 

limited water gauge and drilling data. Here I investigate the spatio-temporal correlation between 

the vertical ground deformation derived by ENVISAT ASAR and Sentinel-1A datasets and 
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available hydrological records in order to improve the aquifer characterization under Salt Lake 

Valley, Utah. InSAR results show a clear long-term and seasonal correlation between surface 

uplift/subsidence and groundwater recharge/discharge, with evidence for the net uplift of 15 mm/yr 

for an area southwest of Salt Lake City for six years. The long-term uplift, bounded by faults and 

contained within the water discharge area, reflects a net increase in pore pressure associated with 

prolonged water recharge, probably decades ago. The distribution of both previously mapped 

faults and newly mapped faults within the fields of deformation and the decay coefficient suggest 

that the faults disrupt the groundwater flow and partition the hydrological units. I also characterize 

anthropogenically and hydrologically induced deformation by the features of seasonality and the 

deviation from the exponentially decaying model. By improving our ability to characterize aquifer 

structures, InSAR analysis of surface deformation in combination with traditional hydrological 

monitoring data presents an opportunity to recognize and mitigate potential hazards. 

Chapter 4: Failures of tailings impoundment may lead to catastrophically fatal, environmental 

and financial consequences. Monitoring the stability of tailings facilities is therefore indispensable 

for sustainable mining development. Particularly, tailings experience gradual consolidation 

settlement as the pore pressure dissipates and the terrain subsides. However, field investigations 

and geotechnical analysis at tailings impoundment are limited by sparse field instrumentation due 

to high cost. InSAR can provide a full spatial view of settlement rate at millimeter-scale precision 

with bi-weekly or monthly updates. Here I integrate a large set of remotely sensed data including 

multi-temporal and multi-spaceborne SAR images of ENVISAT, ALOS PALSAR-1, and Sentinel-

1A, and SRTM DEM and LiDAR DEM, as well as water level data, to investigate the dynamics 

of consolidation settlement over the tailings impoundment area in the vicinity of Great Salt Lake, 

Utah. Results show that the reclaimed south pond is experiencing large quasi-linear settlements 
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with the highest rate of 200+ mm/yr around the low-permeable decant pond clay at the northeast 

corner during 2004-2011, and the rate decreases to 100+ mm/yr during 2015-2016. The nearly 

decadal InSAR measurements can be well-explained by a geotechnical consolidation model, which 

matches the long-term exponentially decaying settlement and predicts the settlement process in 

the near future. InSAR-derived displacement maps also highlight active motions of surrounding 

infrastructures, such as some highway segments. There is no clear evidence that the fluctuating 

deformation at those locations and seasonal varied water level are correlated. The results 

demonstrate that high-resolution surface displacement measurements from InSAR can 

significantly improve our understanding of tailings settlement process and facilitate the monitoring 

of dams/infrastructures stability. 

Chapter 5: This chapter provides a list of the highlights drawn in the studies in this 

dissertation, along with some future work. 
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CHAPTER 2 

MAPPING SLOWLY MOVING LANDSLIDES:                                                                          

A CASE STUDY OF THE CRESCENT LAKE LANDSLIDE, WA 

 

Hu, X., Z. Lu, T. C. Pierson, R. Kramer, and D. L. George (2018), Combining InSAR and GPS to 
determine transient movement and thickness of a seasonally active low-gradient translational 
landslide, Geophys. Res. Lett., 45, 1453–1462. 

Hu, X., T. Wang, T. C. Pierson, Z. Lu, J. W. Kim, and T. H. Cecere (2016), Detecting seasonal 
landslide movement within the Cascade landslide complex (Washington) using time-series 
SAR imagery, Remote Sens. Environ., 187, 49–61. 

 

2.1 Introduction 

Landslides are important geomorphic processes that sculpture landscapes by transporting large 

volume of sediment downslope through the fluvial system. Slope failures occur in response to the 

increased ratio of destabilizing shear stress to resisting shear strength. They are generally 

recognized as the physical responses to external triggers: heavy rainfall or rapid snowmelt 

(increased pore-pressure) [e.g., Iverson, 2000], ground shaking (earthquakes and volcanic 

eruptions) [e.g., Malamud et al., 2004], ecologic events (wildfires) [e.g., Cannon et al., 2001], 

atmospheric tides [e.g., Schulz et al., 2009], and anthropogenic activities (overdevelopment, 

mining, and deforestation) [e.g., Highland and Bobrowsky, 2008]. There are two general 

categories of landslide processes: one is characterized by a long period of dormancy followed by 

abrupt mass movement along with collapse of slopes and/or a large block of slumps, often causing 
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causalities [e.g., Petley, 2012; Kim et al., 2015]; the other exhibits relatively slow (<4 m/yr) 

motions along a large (>500 m long, >5 m thick) hillslope, behaving in a plastic or viscoplastic 

manner [e.g., Hilley et al., 2004; Mackey and Roering, 2011; Zhao et al., 2012; Handwerger et al., 

2013]. In the United States, landslides caused 25-50 causalities and over $3.5 billion (in 2005 

dollars) in damage each year with landslide sites primarily distributed in coastal and mountainous 

areas [Petley, 2010]. Recent extreme landslides in Oso, WA in 2014 [Iverson et al., 2015; Kim et 

al., 2015] and following the 2015 Gorkha earthquake in Nepal [Kargel et al., 2016] and 2016 

Kumamoto earthquake in Japan [Petley, 2016], have escalated the need to identify potential 

catastrophic sliding hazards in mountainous regions in order to further assess the associated risks. 

Detection of slow or limited landslide movement within broad areas of forested terrain has 

long been problematic, because slide motion may not disturb the forest enough to make the slides 

easily visible. Classic methods of landslide monitoring include both ground-based motion- and 

distance-detection sensors and the analysis of remote sensing imagery [Gili et al., 2000]. In-situ 

landslide monitoring subject to ground-based sensors, e.g., global positioning system (GPS), 

borehole inclinometers, strain gauges, and rock noise instruments, are spatially limited, logistically 

expensive and technically challenging. Aerial remote sensed images are also useful for landslide 

monitoring, but pre- or post-slide images are not always practically available on a large scale, and 

the image quality is heavily dependent on the condition of atmospheric water vapor, the extent of 

vegetative coverage, and the existence of identifiable features.  

Under inclement weather conditions, synthetic aperture radar (SAR) imagery may be the only 

effective method for detecting unmapped landslides and monitoring active sliding motion in rural 

regions. Since the early 1990s, Interferometric SAR (InSAR) techniques have measured cm- to 

mm-level deformation in various geodynamic settings [e.g., Simons and Rosen, 2015]. With the 
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capability of surveying large areas, during both day and night, SAR data have proven very useful 

for detecting and mapping large landslides in the northwestern USA [Zhao et al., 2012]. InSAR 

methods can provide critical information on landslide location, boundaries, and movement [e.g., 

Hilley et al., 2004; Calabro et al., 2010; Zhao et al., 2012; Kim et al., 2015]. 

2.2 Challenges in landslide monitoring 

2.2.1 Incompleteness of landslide inventory 

Landslide hazards can trigger downstream flooding and reactivate faults to further threaten 

human lives and properties. Particularly, the northwestern USA has been exposed to extreme 

landslide events due to natural and anthropogenic triggering mechanisms such as high precipitation 

during winter as well as deforestation. Although there exist some maps for historically active 

landslides in the northwestern USA, not all slides have been completely mapped due to either the 

lack of geological evidence or cartographic limitations (e.g., 

http://www.oregongeology.org/sub/slido/). In addition, it is unknown which landslides are actively 

deforming and the spatial extent of active landslides. Furthermore, due to the complicated 

triggering factors and the lack of pre-, co-, and post-slide observations, the mechanisms of 

landslides are still poorly understood.  

2.2.2 Limitations of SAR measurements in landslide study  

Previous InSAR studies have attempted to identify active landslides over the northwestern 

USA [Zhao et al., 2012]. However, the interpretation was based on a couple of interferogram(s) 

using ALOS-1 PALSAR-1 data expressed with localized fringes over the mountainous areas, and 

only large slides covering larger than 0.2 km2 were detected [Zhao et al., 2012]. The temporal 

behavior and the deformation velocity of the detected landslide has not been investigated, excepted 

for one site of the Boulder Creek landslide. Monitoring landslide-induced deformation using 
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InSAR has been limited by the following conditions. First, InSAR-based monitoring typically 

involves the inconsistency of scattering centers -- the three-dimensional (3D) position of the 

dominant scatterer that occupies the strongest electromagnetic echo within the pixel -- between 

radar echoes and various DEM data sources, such as Shuttle Radar Topography Mission (SRTM) 

and Light Detection And Ranging (LiDAR), as a result of different wavelengths of the 

electromagnetic waves. Second, InSAR measurements can be contaminated by atmospheric 

artifacts. And third, landslide movement may be non-linear in time. To overcome these limitations, 

specific strategies for time-series InSAR analysis need to be designed and implemented. 

2.2.3 Complexity of landslide basal geometry 

The 3D geometry and movement of landslides, particularly large landslides, can be complex 

and difficult to characterize. Conventional stability analyses [e.g., Rogers and Chung, 2016] 

require estimates of depth to the basal slip surface and material properties, which are usually 

obtained from field investigations at a few specific locations. Acquisition of such data typically 

involves expensive drilling or excavation at a limited number of locations, and properties between 

holes can only be interpolated. Furthermore, some landslide sites may be hazardous to work on 

and/or inaccessible.  

Existing non-contact methods for determining failure surface geometry and landslide volume, 

such as the balanced cross-section method [e.g., Bishop, 1999; Aryal et al., 2015], the dislocation 

model [e.g., Nikolaeva et al., 2014; Aryal et al., 2015], and the mass conservation approach [Booth 

et al., 2013; Delbridge et al., 2016; Huang et al., 2017], require only an analysis of 3D displacement 

maps. However, these methods vary in their accuracy based on the underlying model assumptions: 

the balanced cross-section method considers multiple cross sections independently without taking 

adjacent bodies into account, and the dislocation model largely simplifies the landslide 
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geometrically and physically, employing a linear elastic model and a single rectangle planar basal 

surface [Nikolaeva et al., 2014]. Alternatively, the mass conservation approach used to map glacier 

ice thickness [Farinotti et al., 2009; Morlighem et al., 2011] has been extended to landslide 

thickness inversions [Booth et al., 2013; Delbridge et al., 2016; Huang et al., 2017]. The accuracy 

of these non-contact methods is limited to the accuracy of the utilized 3D displacement fields.  

Spatially continuous 3D displacement fields can be constructed by geodetic methods such as 

differential digital elevation models (DEMs), pixel offset tracking using optical or SAR images 

and InSAR when three or more measurements of independent imaging geometries are available. 

Application of these methods still presents challenges.  

The differential DEM method requires repeat high resolution DEMs, such as bare-earth LiDAR 

DEMs, which are not commonly available for landslide areas. In addition, most long-active 

landslide areas move slowly at rates of millimeters to meters per year, but the precision of DEMs 

is usually at the level of several to tens of meters. Therefore, high-resolution DEM difference maps 

must span long time intervals in order to enhance the signal-to-noise ratio.  

The pixel offset tracking methods estimate deformation using pixel shifts, detected by 

searching for the cross-correlation peak between the matching patches of two images, one acquired 

before and the other after the occurrence of deformation [e.g., Scambos et al., 1992; Michel et al., 

1999]. The precision of pixel offset tracking is up to 1/20 of one single-look pixel when cross 

correlation is high [e.g., Hu et al., 2014; Wang and Jónsson, 2015]. Optical images can be used for 

pixel offset tracking, but landslides are generally located in vegetated hilly terrain, so that ground 

features are more difficult to distinguish with optical methods than with SAR. SAR 

electromagnetic waves can penetrate vegetation to a certain degree (depending on the wavelength 

and characteristics of canopies such as thickness and moisture), making SAR data better for pixel 
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tracking than optical data. However, spaceborne SAR data have large pixel spacings (several to 

dozens of meters). Pixel offset tracking is only applicable when the displacement exceeds ~1/10 

of the pixel spacing between two temporal acquisitions [Hu et al., 2014], such as for the 

Slumgullion landslide in Colorado, where movement is as high as ~2 cm/day [Delbridge et al., 

2016]. Thus, the deformation magnitude of slow-moving landslides, mostly less than tens of 

centimeters per year [e.g., Mackey and Roering, 2011], is generally too small for detection by pixel 

tracking and not appropriate for this study. 

InSAR methods determine deformation from the differential phase shift of reflected radar 

waves returning to the sensor in temporally spaced data acquisitions. But general limitations of the 

methods include the geometric distortion due to topographic relief and poor coherence due to 

vegetation [e.g., Hu et al., 2016]. Spaceborne InSAR is additionally limited by significant 

insensitivity to north-south motion due to LOS slant looking geometries of near-polar orbiting 

SAR satellites. Airborne InSAR methods (such as radar sensors mounted in unmanned aerial 

vehicles—UAVSAR systems) have the advantages of high-resolution detection (sub-meter to 

meter level) and they are not restricted to the fixed looking geometries (allowing the detection of 

north-south motion) [Delbridge et al., 2016]. However, airborne SAR data seldom cover large 

areas, and data availability is generally restricted due to agreements between service providers and 

clients. 

2.2.4 Complexity of rainfall triggers 

A decrease in effective shear strength along basal shear surfaces due to increased pore pressure 

from infiltrated rainwater (or snowmelt) is a major trigger of landslides [Iverson et al., 1997; 

Iverson et al., 2000]. The correlation of landslide movement with seasonal rainfall in the study 

area of the Crescent Lake landslide [Hu et al., 2016; Tong and Schmidt, 2016] indicates that it is 
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the operative trigger mechanism. But rainfall-triggered landslide movement, particularly the time 

of failure and extent of displacement and runout, is typically difficult to predict, because (a) the 

fluid pressure evolution is complex, owing to the combined effect of groundwater inflow and 

infiltration and to variations in subsurface flow paths due to the heterogeneous soil matrix at and 

above the basal slip surface [Iverson et al., 1997; Iverson, 2000]; (b) landslide movement is highly 

sensitive to the initial soil porosity and can result in contrasting dynamics upon shearing [Iverson 

et al., 1997; Iverson et al., 2000]; and (c) the time required for infiltration and pressure transmission 

to elevate the pressure head at the basal shear zone is uncertain [Iverson, 2000; Priest et al., 2011]. 

2.3 Study area 

The Washington side of the Columbia River Gorge is especially prone to landslides due to 

weak underlying volcaniclastic sedimentary units that dip toward the river at 2°–10°, a wet winter 

climate, and steep unbuttressed slopes [Palmer, 1977; Pierson et al., 2016]. Approximately two 

thirds of this terrain in the western Columbia Gorge comprises old or currently active, mostly 

translational landslides [Pierson et al., 2016]. The infiltration of winter rainfall and snowmelt 

elevates pore-water pressure and reduces frictional strength at a number of potential failure 

surfaces at different levels within the volcaniclastic units, resulting in landside reactivation 

[Mackey and Roering, 2011; Handwerger et al., 2015]. 

The ~36-km2 Cascade landslide complex (Figure 2.1), a translational landslide complex in 

Skamania County, Washington [Pierson et al., 2016], was originally mapped as four landslides: 

Carpenters landslide, Bonneville landslide, Red Bluffs landslide, and Mosley Lakes landslide 

[Wise, 1961]. More recent mapping [Randall, 2012] has shown that what was thought to be the 

Mosley Lakes landslide was a part of the Red Bluffs landslide. However, another part of the Red 

Bluffs landslide has reactivated within the last few decades, and is now mapped as the Crescent 
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Lake landslide [Pierson and Lu, 2009; Pierson et al., 2016]. Immediately east of the Cascade 

landslide complex is the newly recognized Stevenson landslide [Randall, 2012; Pierson et al., 

2016], which is in the City of Stevenson (population ~1,500).  

Landslides in the western Columbia River Gorge have occurred for at least tens to hundreds of 

thousands of years, but the landslides in the Cascade landslide complex are all less than 600 years 

old [Pierson et al., 2016]. The Bonneville landslide broke off from terrain near Table Mountain in 

the early 15th century and filled the Columbia Gorge with about 1 km3 of debris, dammed the river 

for a period of at least months, and formed a natural “bridge” across the Gorge that gave birth to 

the Native American legend of the Bridge of the Gods [Lawrence and Lawrence, 1958; Palmer, 

1977; O’Connor, 2004 and 2009; Pierson et al., 2016] (Figure 2.1b). After the natural dam was 

breached, the river channel was displaced about 1 km to the south. Morphologic features of the 

Carpenters Lake and Red Bluffs landslides suggest that they are both younger than the Bonneville 

landslide, and a radiocarbon date from the toe of the Red Bluffs landslide suggests that it could be 

as much as 200 to 300 years younger than the Bonneville landslide [Pierson et al., 2016]. 

Furthermore, reactivated parts of the Carpenters Lake and Red Bluffs landslides have been active 

within the last 20 years—the Hot Springs and Crescent Lake landslides, and at least the latter is 

currently active [Pierson and Lu, 2009]. In addition, the Greenleaf Basin rock avalanche (about 

375,000 m3—small in comparison to the other landslides making up the Cascade landslide 

complex) broke off from the western side of the headscarp of the Red Bluffs landslide on January 

3, 2008 [Randall, 2012]. 

All of the Cascade complex slides are composed of poorly sorted coarse landslide debris 

(blocks up to at least many tens of meters in diameter), derived from Quaternary lavas of andesite 

and basaltic andesite composition, thick lavas of the middle Miocene Columbia River Basalt 
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group, and lahar and coarse fluvial deposits (andesite and dacite particles) of the lower Miocene 

Eagle Creek Formation and the upper Oligocene Weigle Formation (informal name) [Wise, 1961; 

Palmer, 1977; Randall, 2012; Pierson et al., 2016]. The failure planes of these dominantly 

translational landslides occur in bedding-parallel, clay-rich weathering horizons developed 

throughout the lower parts of Eagle Creek Formation and the upper parts of Weigle Formation that 

dip from 2° to 10° southward toward the river [Waters, 1973; Palmer, 1977; Korosec, 1987; 

Randall, 2012; Pierson et al., 2016].  

The focus of the study is the ~4-km2 Crescent Lake landslide, with an average surface slope of 

10–11 percent (6°) facing southeast, a reactivated portion of the Red Bluffs landslide within the 

~36-km2 Cascade landslide complex. This landslide moves mainly during the winter, much of it 

at an average rate of 15–20 cm/yr [Hu et al., 2016; Tong and Schmidt, 2016], and it has been active 

for at least several decades [Braun et al., 1998]. The Crescent Lake landslide has not been drilled 

to determine thickness, but the adjacent Bonneville landslide (Figure 2.1) has a maximum 

thickness of about 150 m and an average thickness of about 76 m [Pierson et al., 2016], based on 

a cross section determined by drilling [Palmer, 1977]. 

Monitoring the movement of the landslides in this area is important due to their potential 

threats to the residents, roads, and infrastructure, which includes a natural gas pipeline, high-

voltage electric transmission lines, a major rail line, a commercial navigation channel in the river, 

two large tourist facilities, and Bonneville Dam. 
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Figure 2.1 Geographic maps of the Cascade landslide complex. (a) SAR data coverage; and (b) 
shaded relief map of the Cascade landslide complex [Pierson et al., 2016], with dashed outline of 
Crescent Lake landslide determined by geomorphic evidence and early InSAR interferograms. 
Solid black lines show other landslides within the complex. The shaded area (covered by the array 
of circles) encompasses the area of detected movements [Hu et al., 2016], downsampled to 100 m 
by 100 m grids for smoothness preservation; it is the area used for thickness inversion. The red dot 
marks the location of the continuous GPS station that provided the data for this study. Green square 
shows the location of the off-slide GPS campaign. 
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2.4 Methodology 

2.4.1 Time-series InSAR analysis 

The Crescent Lake landslide is covered with forest vegetation that is moderate to sparse in 

coverage density. This makes it compatible with SAR analysis, which can readily reveal creeping 

landslide motion in areas larger than 0.2 km2 with limited vegetation cover [Zhao et al., 2012]. 

Previous InSAR results of ALOS-1 PALSAR-1 data suggested a cumulative ~0.7 m slope-parallel 

displacement of the Crescent Lake landslide during 2007-2011 [Hu et al., 2016]. However, the 

basal geometry at depth and its movement timing had not been investigated in the prior study. To 

reveal details of ground deformation and to invert for landslide body thickness, I collected multiple 

spaceborne SAR data, including two ascending tracks (P218 and P219 data) and two descending 

tracks (P549 and P550 data) acquired by ALOS-1 PALSAR-1 from 2007 to 2011; one ascending 

track (P67 data) and one descending track (P170 data) acquired by ALOS-2 PALSAR-2, and one 

ascending track (P137 data) and one descending track (P115 data) acquired by Sentinel-1A from 

the end of 2014 to 2016 (Figures 2.1a and 2.2). For radar tracks with multiple images (e.g., ALOS-

1’s P218 and P219, and Sentinel-1A’s P137 and P115), LOS displacements are retrieved by a set 

of interferograms with small to moderate baselines [Hu et al., 2016]. For the other tracks with a 

limited number of images, such as, ALOS-1’s P549 and P550, and ALOS-2’s P67, LOS velocity 

is simply derived by the single interferogram 20061118-20081123 (Bprep = -450 m), 20061020-

20081025 (Bprep = -111 m), and 20150723-20141211 (Bprep = -85 m), respectively; additionally, 

LOS velocity of ALOS-2’s P170 is generated by averaging/stacking 4 interferograms: 20150413-

20150427 (Bprep = 192 m), 20150413-20160523 (Bprep = -102 m), 20150427-20160523 (Bprep 

= -293 m), 20160314-20160523 (Bprep = -152 m). The results from multiple images and thus 

dozens of interferograms are more credible than averaging/stacking from a single or merely 4 
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interferogram(s) as the artifacts have been largely suppressed during time-series analysis [Hu et 

al., 2016]. 

 
Figure 2.2 Image graph of interferometric pairs. 

In order to retrieve the temporal behavior of landslide motion, I carried out time-series InSAR 

analysis based on unwrapped interferograms. The processing can be divided into three sections 

(Figure 2.3): coherent target (CT) detection, topographic error (topo-error) removal and 

atmospheric phase screen (APS) removal. 
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Figure 2.3 Workflow of time-series InSAR processing. 
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2.4.1.1 Coherent target (CT) selection 

CT points are defined as pixels with high coherence and stable amplitude series in time. To 

separate CT points from water bodies, vegetated areas, and other sources with inconsistent 

scattering, I set thresholds on coherence and dispersion of amplitude (DA, the ratio between the 

standard deviation and the mean of the amplitude). For the case study of Cascade landslide 

complex, the pixels with DA less than 0.35, averaged coherence larger than 0.8, and each pixel 

with an individual coherence larger than 0.3 are chosen as CT points. The scarcity of CT points on 

the lower part of the Bonneville landslide deposit for both P218 and P219 can be explained by the 

existence of many lakes and dense forest vegetation. Because the study area is located on the far 

range of P219 swath (no data are available from P219 beyond this eastern boundary), the satellite 

antenna received backscattering with a lower signal-to-noise-ratio for this zone, thereby reducing 

the interferometric coherence. Hence, the CT points in P219 are even sparser than those in P218. 

To achieve spatial consistency for each interferogram, I set up a reference assuming no 

deformation during the observation period. The phase value of a few reference points might be 

contaminated by the atmospheric effects during some acquisitions, thereby biasing the 

measurements of all connected interferometric pairs. Therefore, I selected the CT points at two 

independent residential areas in North Bonneville and Stevenson (Figure 2.1b) as the reference, 

where the coherence is good and the interferograms do not show fringes, and subtracted their 

averaged phase value from all the CT points. Note that all the following data processing is based 

on these discrete CT points. 

2.4.1.2 Topographic error (topo-error) removal 

To remove the topographic phase component from each interferogram, a 10-m-posting DEM 

was generated by using a 5-m-resolution LiDAR bare-earth DEM [DNR, 2005] and filling out the 
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remaining area with a 30-m-resolution SRTM DEM to best utilize available DEM resources. The 

systematic error was corrected by minimizing the elevation difference of the overlapping regions 

(Figure 2.4a). However, the two DEMs are still inconsistent with a large elevation difference 

(Figures 2.4a and b). Interestingly, the DEM difference map seems to reflect the distribution of 

forest vegetation, suggesting that the origin of this inconsistency may be explained by the sensors’ 

different sensitivities to the vegetated terrain and the resulting difference in scatterer center height. 

SRTM used C-band radar data acquired in 2000, which is sometimes incapable of fully penetrating 

the tree crown in dense canopy. Therefore, SRTM-derived elevation could be situated at a level 

between canopy and ground surface containing (partial) tree height. On the other hand, LiDAR 

DEM corresponds to the bare-earth elevation in 2005. The misfits between two DEM sources can 

vary from pixel to pixel, and the effects are more notable in vegetated terrain. Most commonly, 

the differences of acquisition time, scattering centers, and the volumetric scattering effects, as well 

as the inaccuracy of geocoding and coregistration, contribute to such inconsistency. 
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The elevation difference between the SRTM and LiDAR DEMs represents their different 

scattering centers, but neither of the DEMs can precisely reflect the actual scattering center of the 

L-band ALOS-1 data for the time-series InSAR processing. I therefore need to estimate the topo-

errors before investigating the deformation signal. I first selected the interferograms (Figure 2.4) 

with temporal intervals within 92 days (i.e., two orbital cycles for ALOS-1 data) during dry seasons 

for which I assumed no deformation. Then I conducted Snaphu unwrapping on sparse CT points 

[Chen, 2001; Hooper, 2010], and estimated the topo-errors by analyzing the time-series unwrapped 

phase behavior with respect to the perpendicular baseline for each CT point. I encountered 

difficulty with phase unwrapping some decorrelated interferograms (e.g., the bridging data pairs 

of P219); in those cases, I applied manual corrections by adding or subtracting an integer number 

of phase cycle(s) at the phase discontinuity. 

The topo-error estimations from the P218 and P219 datasets are shown in Figure 2.4c. 

Interestingly, the localized bluish area at the toe of the Bonneville landslide, which is only covered 

by the SRTM DEM, corresponds to a clear-cut area. Historic aerial images show that the logging 

activities have been ongoing for decades. Without topo-error correction, the fringes will result in 

spurious subsidence signals, as the temporal and spatial baselines are correlated for ALOS-1 data 

(Figure 2.2) [Samsonov, 2010]. Similar phenomena also exist in other logged areas covered only 

by the SRTM DEM to the east side (out of the boundary) of the study area. On the other hand, the 

reddish area close to the north tip of Bonneville landslide, where I used the LiDAR DEM, 

corresponds to a vegetated hillslope facing east. Without topo-error correction, the estimation can 

be contaminated by spurious uplift signals. I removed the derived topo-error phase component on 

each CT from all the interferograms before phase unwrapping.  
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2.4.1.3 Atmospheric phase screen (APS) removal 

Based on the unwrapped interferograms, I used LSE to derive time-series deformation for each 

point, and applied the coherence as a weighting function during the inversion. However, the 

deformation signals here are likely to be contaminated by APS at low frequency in the spatial 

domain. Hence, I masked out the landslide body and conducted low-pass spatial filtering (linear 

interpolation) to extract the APS signals. Based on the APS estimated on the remaining scatterers, 

I applied an interpolation method (e.g., the Kriging interpolation) to interpolate APS on all the CT 

points for each acquisition [Ferretti et al., 2001]. After removing the APS from each interferogram 

and applying additional LSE, the time-series deformation map was produced. 

2.4.2 Mapping slope-parallel displacement using LOS measurements 

InSAR can only measure the projection of the three-dimensional ground motion along the radar 

LOS direction while the actual sliding is generally in the slope-parallel direction. Landslides in the 

Cascade landslide complex are dominantly translational landslides [Palmer, 1977; Pierson et al., 

2016]. For translational landslides, I can assume that the landslide basal failure planes and the 

surface slope are approximately parallel, so that the projection of the slope-parallel vector on the 

horizontal plane can be referred to as the slope aspect. Figure 2.5a illustrates two general situations 

given smooth slopes: one is on the slope facing the incoming radar pulses, the downslope motion 

corresponds to the slant range decrease; the other is on the slope facing away from the incoming 

radar pulses, the downslope motion corresponds to the slant range increase. In both cases, the 

magnitude of downslope sliding vector is always no less than that of the radar look vector. This 

amplification/scaling factor A of the LOS measurement when projected into the hillslope can be 

expressed as [Hilley et al., 2004], 

𝐴 = 1/(𝑙 ∙ 𝑠<)                                                        (2.1) 
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where 𝑙  is the radar look direction unit vector 𝑙 =

[−sin𝜑2AAH sin 𝛼-73: sin 𝜑2AAH cos𝛼-73: −cos𝜑2AAH], and 𝑠 is the downslope sliding unit 

vector 𝑠 = [cos 𝜎'2B cos 𝛽3'B cos𝜎'2B sin 𝛽3'B −sin 𝜎'2B], in which 𝜑2AAH  is the radar look 

angle, 𝛼-73: is the radar heading angle, 𝜎'2B is the slope angle, and 𝛽3'B is the slope aspect, 𝛼-73: 

and 𝛽3'B are positive when rotating clockwise from the north/zero orientation (Figures 2.5b and 

c). 

 
Figure 2.5 Implications of radar look angles. (a) Lateral view of the projection of radar look vector 
l into slope-parallel vector s. Projection corrections for (b) radar look vector and (c) slope-parallel 
vector in 3D space. The vectors are defined by the left-handed Cartesian coordinate system, where 
north, east and up directions are x, y and z axes respectively, and clockwise rotation from the axes 
indicates an increase in the angles. 

2.4.3 Mapping a quasi-3D creeping landslide using spaceborne InSAR observations 

The Crescent Lake landslide primarily moves to the southeast horizontally. However, 

spaceborne InSAR observations are largely insensitive to north-south motion, regardless of the 

orbit direction (ascending or descending). For InSAR available at the Crescent Lake landslide, the 

radar heading angle is ~-10° and the looking direction is ~80° for ascending data, which is nearly 

orthogonal to the slope aspect (~170°) at the lower southeast section of the landslide (Figure 2.6). 

Therefore, the motion in this part of the landslide is nearly undetectable.  
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Figure 2.6 Topography information over the area of interest: (a) elevation in meters, (b) slope in 
degrees, and (c) slope aspect in degrees. The approximation of the basal plane is based on 500 m 
by 500 m downsampled DEM (sources: 5-m-resolution 2005 LiDAR bare-earth DEM [DNR, 
2005] with voids filled by 30-m-resolution 2000 SRTM DEM). 

Four ascending/descending tracks of SAR data were used for each observation time period. 

The InSAR time-series processing method detailed in section 2.4.1 was used to process ALOS-1 

and Sentinel-1A datasets. For the other datasets with limited numbers of images, I used 

averaging/stacking to obtain their LOS velocity. Data from ascending tracks share one radar-

imaging geometry, and data from the descending tracks share another. Therefore, there are 

essentially two independent measurements for each time period, making it difficult to constrain 

the complete 3D displacement fields. I therefore assume that the long-term surface movement is 

exclusively downslope in the direction of slope aspect on the slope-parallel basal surface under the 

force of gravity, i.e., motion in the cross-slope direction (𝑣 ) is negligible (Figure 2.7). This 

assumption is supported by the observed GPS data, which indicate that 𝑣 is much smaller than 𝑢 

(Figure 2.15). Given this constraint, I can obtain the quasi-3D displacement fields.  
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Figure 2.7 Primed coordinate system that fits on the slope-parallel/perpendicular plane. 

InSAR LOS measurements 𝐿𝑂𝑆 are given in the unprimed coordinates (north, east and up) by  

𝑙 M
𝑁
𝐸
𝑈
Q = 𝐿𝑂𝑆                                                          (2.2) 

where	𝑙 is the radar look vector 𝑙 = [− sin 𝜑2AAH sin 𝛼-73: sin𝜑2AAH cos𝛼-73: −cos𝜑2AAH], 

𝜑2AAH  is radar look direction, and 𝛼-73: is satellite heading angle. 

Although I have four LOS measurements of two ascending passes and two descending passes, 

the look vectors of the same orbit direction are similar. Therefore, I essentially only have two 

independent measurements, which are insufficient to solve for the three unknowns of the 3D 

displacement vector.  
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To better explain the solution, I introduce the primed coordinate system that fits on the slope-

parallel/perpendicular plane (𝑢 is slope aspect that direct the largest topographic gradient, 𝑤 is 

outwardly perpendicular to the slope plane, and 𝑣 is the direction normal to 𝑢 and contained in the 

slope-parallel plane). I assume that there is no motion normal to slope aspect 𝑢 on the slope-

parallel plane, i.e., 𝑣 = 0. In other words, I add a constraint on the horizontal plane.  

⎣
⎢
⎢
⎢
⎡
𝑙3'I$
𝑙3'I%
𝑙:7I$
𝑙:7I%
𝑠J ⎦

⎥
⎥
⎥
⎤
M
𝑁
𝐸
𝑈
Q =

⎣
⎢
⎢
⎢
⎡
𝐿𝑂𝑆3'I$
𝐿𝑂𝑆3'I%
𝐿𝑂𝑆:7I$
𝐿𝑂𝑆:7I%

𝑣 ⎦
⎥
⎥
⎥
⎤
                                                 (2.3) 

where 𝑠J  is the unit vector of 𝑣 ’s projection on the unprimed coordinates and 𝑠J =

[	sin 𝛽3'B −cos𝛽3'B 0] , and 𝑣 is set to 0. 

The primed and unprimed coordinates can be correlated using the orthogonal matrix 𝑠 (𝑠=$ =

𝑠<), 

M
𝑁
𝐸
𝑈
Q = 𝑠 Z

𝑢
𝑤
𝑣
[   or   Z

𝑢
𝑤
𝑣
[ = 𝑠< M

𝑁
𝐸
𝑈
Q                                               (2.4) 

where  

𝑠 = \
cos𝜎'2B cos𝛽3'B sin 𝜎'2B cos𝛽3'B 	sin 𝛽3'B
cos𝜎'2B sin 𝛽3'B

−sin𝜎'2B
sin 𝜎'2B sin 𝛽3'B

cos 𝜎'2B
−cos𝛽3'B

0
], 

𝜎'2B is slope angle and 𝛽3'B is aspect angle. 

Another way to derive N, E and U measurements is by expressing 𝐿𝑂𝑆 measurements under 

the primed coordinate system. 
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𝑇 Z
𝑢
𝑤
𝑣
[ = 𝐿𝑂𝑆                                                          (2.5) 

where the transformation matrix 𝑇 is given by 

𝑇 = 𝑙 ∙ 𝑠                                                           (2.6) 

Under the condition of 𝑣 = 0, the third column of 𝑠 can be removed, and I can solve 𝑢 and 𝑤 

when I have two independent 𝐿𝑂𝑆 measurements. I can then obtain the N, E and U measurements 

using Equation (2.4). 

To prepare the input data for the inverse problem, I extract and sample all datasets covering 

the active Crescent Lake landslide (e.g., LOS displacements, local incidence angle, and heading 

angle of each radar pass) at the resolution of 100 m by 100 m grids. Assuming that the basal surface 

is smoother and less varied than the hummocky top surface, I also smooth the slope angle and 

aspect of the upper topographic surface. 

2.4.4 Landslide thickness inversion 

Landslide thickness can be determined from the governing equation for mass conservation, 

given the assumption of incompressibility, which requires the 3D velocity field to be divergence-

free (∇ ∙ 𝐕 = 0). By vertically integrating this equation between the basal slip surface and upper 

surface, and applying kinematic boundary conditions, a 2D governing equation is derived, 

K-
K4
+ ∇ ∙ (ℎ𝐯b) = 0                                                   (2.7) 

where ℎ is the landslide thickness, 𝑡 is time, and 𝐯b = c𝑣L , 𝑣Me is the depth-averaged horizontal 

velocity. This equation states that the horizontal mass flux divergence is balanced by the rate of 

thickness change. Calculating the approximate depth-averaged horizontal velocity, given only the 
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velocity at the upper surface, requires assumptions about the vertical variation of velocity through 

the depth of the landslide.  

Proposed velocity profiles are, in part, based on rheological assumptions. The depth-averaged 

horizontal velocity can be related to the surface horizontal velocity 𝐯𝒔𝒖𝒓𝒇 by: 𝐯b = 𝑓 ∙ 𝐯𝒔𝒖𝒓𝒇, where 

𝑓 depends on rheological assumptions and ranges from 0 to 1. I assume that the vertical profile of 

the landslide has a lower yield zone and an overlying plug region (Figure 2.7). In the yield zone, 

the stress equals the yield stress and the material is assumed to be deforming with a no-slip 

boundary condition at the basal surface, while in the plug region, the material is assumed to have 

little variation in velocity in the vertical direction.  

I further assume that the rheology of the landslide body is spatially uniform, yielding a constant 

𝑓 that can be expressed as 𝑓 = 1 − R
S(RUV)

, where 𝑌 and 𝑃 are the thickness of the lower yield zone 

and overlying plug region, respectively (Figure 2.7) [Delbridge et al., 2016]. For the case of a 

power law rheology, 𝑓 = 1/2  corresponds to a linear vertical velocity profile; 𝑓 = 2/3 

corresponds to Newtonian viscous flow, such that the entire depth has yielded and the plug region 

vanishes; 2/3 < 𝑓 < 1 indicates plug flow (with a thin yield zone); and 𝑓 = 1 implies a rigid 

sliding block with no yield zone [Booth et al., 2013]. While the inverted thickness is affected by 

the rheological parameter, the spatial pattern of thickness is unaffected by the uniform value of the 

parameter 𝑓 [Delbridge et al., 2016]. 

Assuming that the landslide basal surface does not change over the observation period, the rate 

of thickness change is equivalent to the vertical surface velocity, 𝑣X. Equation (2.7) can then be 

written as 

𝑣X = −𝑓∇ ∙ cℎ𝐯𝒔𝒖𝒓𝒇e                                                  (2.8) 



 

35 
 

I invert for ℎ  by using the non-negative least squares method [Booth et al., 2013; CVX 

Research, Inc., 2013]. I set the upper threshold as 150 m at this site based on the thickness of an 

adjacent landslide [Pierson et al., 2016]. The boundary condition is that the landslide thickness 

vanishes at its lateral boundaries.  

I discretize Equation (2.8) in the main text on a regular grid using finite difference 

approximations,	 

𝑣X(𝑖, 𝑗) = −
𝑓𝑣L(𝑖, 𝑗)
2∆𝑥 ∙ ℎ?U$,Z +

𝑓𝑣L(𝑖, 𝑗)
2∆𝑥 ∙ ℎ?=$,Z −

𝑓𝑣M(𝑖, 𝑗)
2∆𝑦 ∙ ℎ?,ZU$ +

𝑓𝑣M(𝑖, 𝑗)
2∆𝑦 ∙ ℎ?,Z=$ 

−𝑓 oJ,(?U$,Z)=J,(?=$,Z)
%∆L

+ J-(?,ZU$)=J-(?,Z=$)
%∆M

p ∙ ℎ?,Z                            (2.9) 

In matrix form,  

𝒗𝒛 = 𝑮 ∙ 𝒉                                                         (2.10) 

where 𝒗𝒛  is a vector of vertical velocity, 𝒉  is the unknown landslide thickness, and 𝑮  is a 

diagonally-dominant sparse matrix (with five separated diagonals) that is formulated using the 

spatial sampling interval, rheological parameter, and horizontal velocities. 

The thickness can be solved by minimizing the expression [Booth et al., 2013], 

‖	𝒗𝒛 − 𝑮 ∙ 𝒉‖𝟐 + 𝛼𝟐u𝛁𝟐𝒉u
𝟐
 

where 𝛼 is a smoothing factor, and the double brackets indicate the Euclidian norm. A higher 𝛼 

renders a smoother model. During the inversion, I set 𝛼 as 0.1. 

2.4.5 Analysis of landslide stability and mobility 

Critical to this analysis is the wetness and rainfall intensity. The wetness 𝑊 is given by the 

ratio of the water head above the basal surface/failure plane ℎ^  to the landslide thickness ℎ . 
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Assuming that the soil matrix is cohesionless, the infinite slope stability model states that the 

wetness is the proportion of the soil column that is saturated at instability: 

𝑊 = -.
-
= _/

_.
o1 − 43G ,

43G `
p                                            (2.11) 

where 𝜌'  is the bulk density of the soil, 𝜌^  is water density, 𝜃 is the local slope at the ground 

surface, and 𝜑 is the angle of internal friction of the soil mass at the basal surface. Analysis of the 

surface slope gradient and assuming a dry friction angle (~36 to 45°) can provide a map of 

maximum stable basal pore fluid pressures, relative to hydrostatic basal pore fluid pressure. The 

ratio is an approximation of the maximum pore fluid pressure that could be sustained without a 

failure.  

Under the conditions of no overland flow, no significant deep drainage, and no significant flow 

in the bedrock, the hydrologic model states that the wetness is determined by a hydrologic ratio 

and a topographic ratio 

𝑊 = -.
-
= a

<
· 3
F '?G ,

                                                 (2.12) 

where 𝑞 is the net rainfall rate,	𝑇 is the depth-integrated soil transmissivity when saturated, 𝑎 is 

the local upslope contributing area, and 𝑏  is the contour length of the lower bound. The 

contributing area per unit contour length can be resolved by the D-infinite algorithm [Tarboton, 

1997]. The critical steady-state rainfall is given by 

𝑞I =
<F '?G ,

3
· _/
_.
o1 − 43G ,

43G `
p                                           (2.13) 

Landslide mobility is an important index to characterize the relationships between volume, 

area, runout distance, fall height, and coefficient of friction. The best-known landslide mobility 
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index is	𝐿/𝐻, where 𝐿 is the runout distance and 𝐻 is the elevation from the head to the flat toe 

area. Figure 2.8 shows the index and various best power-law fit models for diverse landslides. 

Another mobility index is 𝐴/𝑉%/S, where 𝐴 is the planimetric area of the landslide. The resultant 

ratio of 20 is calibrated for rock and debris avalanches as well as non-volcanic debris flow. The 

third mobility index is given by 𝜌𝑔𝑉𝐻 , where 𝜌  is the bulk density and 𝑔  is gravitational 

acceleration. The landslide mobility indices have been empirically formulized so that I can 

constrain the unknown using the other known parameters. For example, I can derive the landslide 

thickness and thus the volume 𝑉 using the approaches mentioned in section 2.4.4, and I can also 

obtain 𝐻 from DEM, then I can estimate the potential maximum runout distance 𝐿 through the 

empirical upper-bound linear relationship between 𝐿/𝐻 and 𝑉. The estimate of maximum 𝐿 will 

greatly assist the decision-making process for landslide mitigation. In addition, I can evaluate the 

derived landslide mobility by comparing with other landslides worldwide. 

 
Figure 2.8 Landslide mobility index (L/H) graphs for diverse landslides, including worldwide data 
from Iverson, 1997; Legros, 2002; Zanchetta et al., 2004; Iverson et al., 2015. 
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2.5 Characterization of incipient motion of Greenleaf Basin rock avalanche 

The Greenleaf Basin rock avalanche was reported to have occurred at the headscarp 

conjunction of the Red Bluffs and Bonneville landslides on 3 January 2008 [Randall, 2012]. 

Nevertheless, phase information cannot be utilized to detect this rock avalanche because of the 

complete loss of coherence. Instead, I extracted the scatterers along the flow path of the avalanche 

in areas with relatively large amplitude dispersion (DA>1). The averaged time-series amplitude 

values of both P218 and P219 datasets on those scatterers show a sudden drop by ~15 decibel (dB) 

at the end of 2007, which may suggest the fractures might have initiated between 23 November 

2007 and 22 December 2007, close to a month earlier than the reported date of rapid collapse on 

3 January 2008. 
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Figure 2.9 Detection of the Greenleaf Basin rock avalanche. Averaged amplitude image of P218 
(a) and P219 (b) datasets. Red “X”s indicate pixels with DA larger than 1, consistent with the 
reported location of the Greenleaf Basin rock avalanche. Insets show the enlarged view of selected 
pixels. (c) Averaged time-series amplitude of those selected pixels. 

2.6 Spatio-temporal landslide motion  

2.6.1 Spatial pattern of landslide motion 

The landslide motion of the Crescent Lake landslide can be successfully detected using the 

InSAR processing strategy after DEM and atmospheric artifacts have been reduced. Figures 2.10a 

and b show the time-series deformation along the radar LOS, as estimated from two independent 

datasets P218 and P219. Although the radar geometry of these two datasets differs by 2 degrees, 

the temporal and spatial movement patterns are generally consistent. In general, there is subtle 

ground movement (~1-2 cm along LOS) in dry seasons, and the landslide moves the most (>10 
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cm along LOS) during the wet seasons from November to February with a precipitation greater 

than ~50 cm [Randall, 2012]. The motion is not spatially uniform within the landslide; the zone of 

greatest movement is in the upper and northeastern parts of the landslide. This movement has 

formed a steep-fronted landslide toe that terminates just upslope of the Mosely Lakes (Figures 2.1b 

and 2.10).  

Detectable ground motion also extends into the Greenleaf Basin upslope of the Red Bluffs 

landslide headscarp (Figures 2.1b and 2.10)—terrain that had previously been assumed to be 

stable. This could be the incipient movement leading to another rock avalanche. The results show 

that the moving area is more than 0.8 km2 with an averaged cumulative LOS movement of around 

200 mm, corresponding to approximately 300 mm slope-parallel movement from 2007 to 2011, 

and the movement mainly occurred during the wet seasons. Notably, the basin terrains relatively 

far from the headscarp show larger magnitude of movement than the near field, suggesting the 

bulk of the rock fragments may break away from a new segment in the basin, rather than along the 

existent headscarp like the 2008 rock avalanche. The potential avalanche could perhaps involve as 

much as 100 million m3, which could possibly reach important infrastructure downslope. 
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Figure 2.10 Time-series deformation along radar line-of-sight (LOS) from satellite track P218 
between June 21, 2007 and February 14, 2011 (a) and from satellite track P219 between February 
20, 2007 and October 16, 2010 (b). The color scale shows LOS deformation in millimeters, with 
areas having no deformation shown in color blue. The study area is located near the central range 
of P218, yet at very far range of P219. No data are available from P219 beyond this eastern 
boundary. The signal-to-noise ratio is lower at the far range than the central range, and thus lower 
interferometric coherence, resulting in a sparser CT points distribution of P219. All results are 
calibrated to the first acquisition on February 20, 2007. 

The deformation map derived from interferograms allows us relocate parts of the Crescent 

Lake landslide boundaries as defined by surface morphology [Pierson et al., 2016]. Namely, the 

northeast and southwest boundaries should be stepped back ~150 m southwestward. Furthermore, 

the clear deformation discontinuity on the boundary between the Crescent Lake and Bonneville 

landslides, combined with the compressional morphologic features indicated from the hillshading 

(Figure 2.1b) suggest two independent and resisting basal planes for these two slides. In contrast 

to the Crescent Lake landslide, coherent parts of Red Bluffs, Bonneville and Stevenson landslides 

have remained stable during the observation period. The activity of the Hot Springs landslide and 

the remaining part of Carpenters Lake landslide are still undetermined due to a lack of CT points. 
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2.6.2 Slope-parallel movement of Cascade landslide complex 

Generally, slopes in the Columbia Gorge directly face the Columbia River. Thus, the two 

opposite river banks have opposite aspects (Figure 2.11a). In the study region, the slope aspects 

reflect a divergent fan pattern from the main upland area toward the river, resulting in the angle 

between the aspect vector and radar look vector ranging from acute to obtuse, and therefore, the 

amplification factor can be either positive or negative (Figure 2.11b). When this angle reaches 90 

degrees, i.e. the radar look vector and slope are perpendicular to each other, the absolute value of 

amplification will result in an invalid infinite number. Therefore, the amplification factors are 

especially undetermined around the areas of transition from blue to red, such as along Rock Creek 

(Figure 2.1b), the sharp topographic relief in between the east-facing slope (deep blue), and the 

area of deep red within the Bonneville landslide. 

The study area is located in the middle range of P218, but it is on the far range of the P219 

swath. Thus, the radar look vectors for the same ground target in the P218 and P219 datasets are 

slightly different, but the slope-parallel vectors are identical. This results in different amplification 

values. At location P for example (Figure 2.11d), the incidence angle is 38.16° for P218 and 40.53° 

for P219, resulting in an amplification of 1.69 for P218 and 1.63 for P219. Given the same 

downslope movement of 100 mm, the corresponding LOS movement will be 59 mm for P218 and 

61 mm for P219. 

Figures 2.11c and d show the cumulative LOS movement from P218 and the derived slope-

parallel movement after applying the amplification correction pixel by pixel. Considering the 

possible divergence between the failure plane aspect and the surface slope aspect at any given 

point within the landslide, the surface slope aspect may not always point to the direction of sliding, 

which can lead to inaccurate amplification factors. To control the large deviations of slope-parallel 
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movement estimates, I culled out isolated pixels with absolute amplification values larger than a 

certain threshold (e.g., 5) to facilitate the interpretation. Consequently, the number of CT points in 

Figures 2.11c and d is less than that shown in Figure 2.11b. Nevertheless, the slope-parallel 

movement allows us to better identify the sliding body and improve the quantification of real 

motion. Besides the change in movement magnitude, the overall movement pattern after applying 

amplification also looks different from that of LOS measurements. Apart from the active area on 

the upper NE lobe of the Crescent Lake landslide, I see another area concentrated with increased 

movement in the upper SW part of the Crescent Lake landslide. The slope-parallel movement map 

suggests similar amount of total movement for the two areas. 
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Figure 2.11 Derived slope-parallel landslide motion in the study area. (a) Slope aspects (black 
arrows) superposed on topography with landslide boundaries delineated by white lines. The color 
scale shows the elevation in meters. The white arrow on the top left corner represents radar look 
vector, which is nearly constant for all scatterers in the study area. (b) Amplification factor A for 
each CT point of P218 dataset. The color scale shows the value of amplification. Only coherent 
targets with amplification from -5 to 5 are plotted. Cumulative apparent LOS movement (c) and 
cumulative slope-parallel movement (d) from 2007 to 2011. The color scales of c and d show the 
movement in millimeters with stable areas shown in color blue. P is a location with active 
movement that is used in the analysis. 
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2.6.3 Seasonal deformation in response to precipitation 

An advantage of data from ALOS-1 PALSAR-1 satellite passes occurring every 46 days is that 

correlations between landslide movement and the amount and timing of precipitation can be 

performed. I used singular value decomposition (SVD) [Berardino et al., 2002] to integrate time-

series deformation measurements of the P218 and P219 datasets. An example at point P (Figure 

2.11d) is shown in Figure 2.12, and the results from those two independent satellite tracks have 

good consistency. This active area is consistently moving away from the satellite between 2007 

and 2011. The cumulative movement is 400 mm along LOS converts to as much as 700 mm 

movement along the slope. The increased InSAR temporal sampling made possible by integrating 

these two tracks will allow us to better explore landslide behavior in response to rainfall. 
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Figure 2.12 Time-series InSAR-derived slope-parallel ground motion correlating with 30-day 
accumulated precipitation total. (a) InSAR-derived slope-parallel movement at location P (shown 
in Figure 2.11d) on the active Crescent Lake landslide. All CT points within 100 meters w.r.t. 
location P are considered in the calculation, and their averaged phase values are used for the 
integration of time-series deformation by P218 (red circles) and P219 (blue squares) using singular 
value decomposition (SVD). The error bars represent the standard deviation (up to 33 mm) of the 
measurements at the selected CT points. The linear regression showing the averaged movement 
rate is denoted with black dashed line (same to Figure 2.13a). (b) InSAR-derived non-linear slope-
parallel movement (black dashed line) compared with the precipitation records (green line). To 
investigate the slide motion in response to the start of rainfall season as well as rainfall volume, 
the residual movement (black circles) after the removal of linear component (using left Y axis 
from -200 to 100 mm) and the 30-day accumulated precipitation total (using right Y axis from 0 
to 600 mm) have been plotted together (same to Figure 2.13b). Black triangles depict the initiation 
of downslope motion, red arrows show the gaps between the initiation of downslope motion and 
the precipitation peak, gray bars indicate the sliding acceleration timespan that can be determined 
by the existing measurements, in which higher data sampling rate contributes to narrower bars and 
more precise estimation, and blue arrows show the gaps between the precipitation peak and the 
midpoint of sliding acceleration (same to Figure 2.13b).  
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Figure 2.13 GPS-derived slope-parallel ground motion correlating with 30-day accumulated 
precipitation total. (a) Regional movement of a nearby GPS station unaffected by landslides is 
projected into the slope-parallel direction at P to reflect the regional movement component along 
the slope at this location. (b) GPS-derived non-linear slope-parallel movement (black dashed lines) 
superposed on the low-pass filtered vertical deformation (gray line), and compared with the 30-
day accumulated precipitation total (green line). The difference between this plot and the one in 9 
B is that the initiation of downslope motion (black triangles) and the sliding acceleration timespan 
(gray bars) are determined by the vertical movement measured by GPS, rather than by the non-
linear slope-parallel movement obtained from InSAR. 

I obtained the daily precipitation records from the Bonneville Dam meteorological station, 

which span the entire SAR observation period. The temporal intervals of ALOS-1 satellite passes 

ranged from 17 to 138 days with an average of around 40 days. To synchronize the temporal 

resolution of precipitation and SAR observations, I compared the slope-parallel motions with the 

30-day accumulated precipitation total preceding the acquisition date (Figure 2.12b). To 
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investigate the seasonal kinemics of the landslide system, I removed the linear component (black 

dash line in Figure 2.12a) from the original InSAR-derived motion history. The positive values in 

Figure 2.12b mean the motion magnitude falls above the linear regression; similarly, the negative 

values mean the motion magnitude falls below the linear regression. The time-series deformation 

demonstrates clear seasonal variation, and strong correlation with the quasi-periodic 30-day 

accumulated precipitation total (Figure 2.12b). During the wet seasons, sufficient precipitation 

infiltrates and saturates the ground in the basal part of the landslide body. This saturation likely 

elevates the pore pressure, thereby reducing the effective stress on the skeletal matrix along the 

failure plane, decreasing grain-to-grain friction and effective shear strength. Meanwhile, the 

loading by the weight of the water in the matrix increases the gravitational driving force [Saar and 

Manga, 2003].  

The data show that the sliding motion tends to initiate shortly after the autumn rains begin in 

October or November (roughly when the 30-day accumulated precipitation total exceeds 300 mm), 

normally one to three months ahead of the arrival of the precipitation peak (red arrows). The gaps 

between the precipitation peak and the midpoint of sliding acceleration are typically within two 

months (blue arrows). Slope movement is triggered when the shear stress exceeds shear strength.  

Phenomena other than sliding also affect ground movement. During a dry season, the soil-

material matrix undergoes stress release and poroelastic rebound as the soil dries during the 

summer and early autumn, causing a slight regional uplift, which is similar to post-glacial or 

isostatic rebound [e.g., Cossart et al., 2014]. In addition, GPS can detect transient near-surface 

mass loading by precipitation, which contributes to seasonal vertical ground oscillation in wet 

regions of Washington and Oregon [Fu et al., 2015]. In particular, the elastic deformation of the 

ground in mountainous areas (e.g., the Cascade Range) occurs with larger amplitudes than in 
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valley/basin areas. This is because the total precipitation accumulated during the wet seasons in 

the mountains at higher elevation is larger than that in the valleys/basins at lower elevation. This 

phenomenon can be seen at GPS station P429 (green benchmark in Figure 2.1b) at Cascade Locks 

across the river from the landslide complex. Assuming that the positioning data of P429 exhibit 

the same regional movement as the landslide study area, I derived the slope-parallel movement 

from GPS measurements at each SAR acquisition date using the same geometry parameters of 

location P that applied to InSAR results (Figure 2.13a). The non-linear component of GPS-derived 

slope-parallel movement was superposed on the continuous low-pass filtered vertical movement 

measured by GPS, and was compared with the precipitation records (Figure 2.13b). As expected, 

the GPS-derived seasonal slope-parallel oscillations are mainly dependent on the vertical 

movement (gray line in Figure 2.13b) as shown by being in phase. Both measurements derived 

from GPS and InSAR data depict a lower-than-average seasonal oscillation in 2010, as would be 

expected in a drought year [Fu et al., 2015] with lower-than-average precipitation totals. In 

addition, I also found that the InSAR and GPS results show fluctuations that are in phase and at 

similar frequency. However, the magnitude of InSAR-derived non-linear peak-to-trough slope-

parallel movement (~120 mm) on the slide body is four times as large as that of off-slide GPS site 

(~30 mm). Inspired by the mechanism of the motion magnitude difference in mountainous and 

valley/basin areas [Fu et al., 2015], the exaggeration of the fluctuation magnitude on the landslide 

body can be explained by the fact that the GPS station at Cascade Locks site is next to the river 

(reservoir pool) and there is very little capacity for changes of shallow water storage under the 

condition of high water table; however, the landslide body has a much thicker unsaturated zone, 

and thus more capacity to soak up water in the winter, indicative of a magnified hydrological 

loading effect. 
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2.6.4 Validation of InSAR results using GPS data 

I have acquired partially continuous GPS data from a station located in the central part of the 

Crescent Lake landslide (red dot in Figure 2.1b) for two periods between late 2014 to mid-2016; 

data were missing during the summer months of 2015. The semipermanent GPS station [Dzurisin 

et al., 2017] is mounted in ~5-m block of rock “floating” in landslide debris and sits at an elevation 

of 260 m, where the landslide has a local average slope angle of 9° and a slope aspect of 100° 

(measured clockwise from 0° at the north; Figure 2.6 for slope gepmetry; Figure 2.14 for GPS 

measurements in north, east and up directions).  

 
Figure 2.14 GPS displacements at the semipermanent GPS station (red dot location in Figure 2.1). 
(a)-(c) are measurements in N, E and U directions, respectively, along with pre-30-day and daily 
precipitation records. 
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Comparing the LOS displacements of Sentinel-1A data to that derived by GPS (Figures 2.15a 

and b), suggests good agreement with an average RMSD of 5.68 mm and 10.11 mm for P137 and 

P115, respectively. The orbit of P115 is descending, and the active lobe moves towards the satellite 

along the slant range, in contrast to the results of ascending orbit of P137. The high temporal 

resolution of Sentinel-1A data reveals a peculiar signal in the early part of the wet season (primarily 

November): apparent upslope or slope-normal downward motion, which is also seen in the GPS 

data, particularly in late 2015 (Figure 2.14).  

To further investigate this anomalous movement, I transform the GPS measurements to the 

slope-fit coordinates (see Figure 2.7 for the coordinate systems, and Figures 2.15c-e for GPS 

results). Generally, 𝑣  (normal to slope aspect and contained in the slope-parallel plane) is 

approximately northward,	𝑢 (slope aspect of the largest topographic gradient) is approximately 

eastward and	𝑤 (normal to slope plane) is approximately upward. The precursory motion doesn’t 

show in the 𝑢 component, indicating that there is no actual upslope motion; the phase change is 

detectable only in 𝑣 component. However, the magnitude is only around 10 mm, much less than 

what is expressed in LOS by nearly 50 mm. These results suggest that the early wet season signal 

must be the result of subsidence.  

The precursory slope-normal subsidence and the subsequent downslope movement of the 

landslide mass have been clearly captured by the descending Sentinel-1A satellite. This is because 

slope-normal subsidence corresponds to slant range increase (movement away from the satellite), 

and the downslope motion corresponds to slant range decrease (movement toward the satellite). 

The descending LOS measurements pick up the motions well, because the satellite LOS is looking 

nearly straight at the direction of oncoming landslide motion.  
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Figure 2.15 GPS displacements at the semipermanent GPS station (red dot in Figure 2.1b), 
projected onto the LOS direction in comparison with the Sentinel-1A measurements of (a) 
ascending track P137 and (b) descending track P115, along with pre-30-day precipitation total (30-
day cumulative precipitation before the assigned date) from a nearby weather station (Cascade 
Locks, Oregon). Light green shading under the pre-30-day precipitation curves shows the 
antecedent rainfall period, and the dark green shading corresponds to the period of slope-normal 
subsidence when the precipitation is more intense. The inset diagram shows how ground 
displacement is sensed by a right-looking satellite on a descending track. (c)-(e) GPS 
measurements with the corresponding components on 𝑢, 𝑣, and 𝑤 directions based on the slope-
fit coordinate system, along with pre-30-day and daily precipitation records. 



 

54 
 

2.6.5 Quasi-3D displacement fields 

Figure 2.16 shows the LOS deformation velocity over the active Crescent lake landslide for 

each radar path. The first row shows the results of ascending data and the second row is for 

descending data, so the area of interest is moving in opposite trend. 

 
Figure 2.16 LOS deformation velocity in mm/yr over the area of interest. The figures in the first 
row show the results of ascending data: (a) P218 of ALOS1, (b) P219 of ALOS1, (c) P67 of 
ALOS2 and (d) P137 of Sentinel-1A. The figures in the second row show the results of descending 
data: (e) P549 of ALOS1, (f) P550 of ALOS1, (g) P170 of ALOS2 and (h) P115 of Sentinel-1A. 
The left four figures, (a), (b), (e) and (f) correspond to the time period of 2007-2011, and the right 
four figures, (c), (d), (g) and (h) correspond to the time period of 2015-2016. 

I use the estimated LOS velocity of each dataset to define the quasi-3D displacement field 

(horizontal and vertical movement) for the Crescent Lake landslide (Figure 2.17). Horizontal 

motion over much of the landslide, shown by velocity vectors, is divergent away from the 

approximate center line of the landslide. Along the southwest margin of the slide, motion is 

primarily to the south and deviates nearly 45° from the average direction of movement. Along this 

margin the Crescent Lake landslide appears to be overlapping onto the older Bonneville landslide 

deposit, based on the morphologic appearance of this lateral margin [Pierson et al., 2016] and on 
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an abrupt change in landslide thickness along a lineament, where velocity changes direction and 

magnitude. Vertically, localized subsidence is clearly evident across the entire upper part of the 

landslide (particularly in 2007–2011), and along much of the southwest margin. Additionally, 

several localized zones near the mapped toe of the landslide exhibit some localized uplift. Uplift 

along the northeast margin during 2007–2011 (but with different vertical motion in 2014–2016) 

might reflect tilting of one or more large slide blocks.  



 

56 
 

                      Fi
gu

re
 2

.1
7 

Q
ua

si
-3

D
 d

is
pl

ac
em

en
t v

el
oc

ity
 m

ap
s 

in
 u

ni
t o

f m
m

/y
r d

ur
in

g 
(a

) 2
00

7-
20

11
, (

b)
 2

01
4-

20
16

 a
nd

 (c
) t

he
 a

ve
ra

ge
 o

f 
20

07
-2

01
1 

an
d 

20
14

-2
01

6 
of

 th
e 

sh
ad

ed
 z

on
e 

sh
ow

n 
in

 F
ig

ur
e 

2.
1b

. H
or

iz
on

ta
l v

el
oc

ity
 v

ec
to

rs
 in

di
ca

te
 d

ire
ct

io
n 

(e
ff

ec
tiv

el
y 

im
po

se
d 

by
 to

po
gr

ap
hi

c 
sl

op
e)

 a
nd

 m
ag

ni
tu

de
 o

f h
or

iz
on

ta
l d

is
pl

ac
em

en
ts

, a
nd

 c
ol

or
 sh

ow
s m

ag
ni

tu
de

 o
f v

er
tic

al
 d

is
pl

ac
em

en
ts

.  
Th

e 
so

lid
 li

ne
 sh

ow
s t

he
 m

ap
pe

d 
bo

un
da

ry
 o

f t
he

 C
re

sc
en

t L
ak

e 
la

nd
sl

id
e 

[P
ie

rs
on

 e
t a

l.,
 2

01
6]

. 

 



 

57 
 

2.7 Active landslide thickness 

The landslide thickness inversion model, derived from mass conservation, requires an inferred 

displacement field on the topographic surface, and it is based on the assumption that the motion 

occurs above a basal surface. The displacement velocity of each time period (2007-2011 and 2015-

2016) is derived from four LOS measurements, in which both time frames contain two LOS 

measurements from a limited number of interferograms of relatively lower coherence. Therefore, 

to minimize the uncertainty in the deformation measurements, I use the average displacement field 

from the two time periods.  

The inversion results indicate that Crescent Lake landslide is thickest (assumed up to 150 m) 

in a wide band across the middle of the landslide that strikes across the topographic surface slope 

(Figure 2.18). The area outside of the active slide on the southwest margin has been masked out 

(cross-hatched zone in Figures 2.18a-c). Within the boundaries of the mapped landslide (solid line 

in Figures 2.18a-c), the thick zone terminates abruptly against a southeasterly trending subsurface 

escarpment (immediately left of the dashed line). Longitudinally the landslide thins toward its head 

and its toe areas.  

Use of a larger 𝑓 value (more plug region and less yield zone) yields smaller thicknesses for 

the same displacement fields. The results render landslide volume estimates of 6.6´108, 7.8´108, 

and 8.2´108 m3 for 𝑓 value equals to 1, 1/2, and 2/3, respectively, and assuming a maximum 

thickness of 150 m and unbiased slope and aspect angles (Table 2.1). The results are on the same 

order as the estimated volume (6.5´108 m3) of the active part of the Red Bluff landslide (i.e., the 

Crescent Lake landslide) by Randall [2012]. The inversion-derived basal surface is hummocky 

(Figures 2.18d and e). This is realistic because most of the landslides in this area have slid onto 

hummocky deposits of older landslides [Pierson et al., 2016]. I obtain a longitudinal thickness 
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profile of the landslide (transect at dashed line) by determining the elevation of the basal surface 

as the smoothed surface elevation minus the derived thickness (Figure 2.18f). Surface slope aspect 

along this transect is fairly uniform. The dependence of basal surface depth on 𝑓  is more 

pronounced in the downslope part of the profile.  

 
Figure 2.18 Thickness variation of the Crescent Lake landslide, obtained by inversion of the quasi-
3D displacement field. Thickness is shown in meters when (a) 𝑓 = 1/2, (b) 𝑓 = 2/3, and (c) 𝑓 =
1, respectively. The solid line shows the mapped boundary of the Crescent Lake landslide [Pierson 
et al., 2016], and the cross-hatched zone marks the area outside of the southwest margin of the 
landslide. (d) Geometry of the smoothed landslide top surface and basal surface when 𝑓 = 2/3. 
Note that the boundaries of the topographic ground surface and the basal surface are superimposed, 
but the topographic ground surface is raised to better reveal the basal surface variations. (e) 
Elevation contours of the smoothed slope surface (gray lines and underlined digits) and the basal 
surface (colored lines and digits). (f) Profiles of surface elevation and landslide basal surface 
elevations along the dashed-line transect. 
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2.8 Landslide stability and mobility 

I assumed that 𝜌' = 1800 kg/m3, 𝜑 = 45°, 𝑇 = 65 m2/d. According to the daily precipitation 

data at the Cascade Locks, the rainfall rate 𝑞 was set as 1 mm/d, 50 mm/d and 100 mm/d to 

calculate the stability under different rainfall conditions. Some headscarp areas are unconditional 

unstable (red areas in Figure 2.19c). The other unstable areas (yellow areas in Figure 2.19c), 

expressing as irregular linear features, are concentrated in the most deforming central to upper 

lobes. 
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Based on the inversed results of landslide basal surface, the landslide volume 𝑉 ranges between 

7.1~8.4´108 m3 when 𝑓 = 2/3. I also know that the elevation difference 𝐻 between the head and 

toe is 550 m. Referring to the empirical upper-bound linear relationship between the landslide 

mobility index 𝐿/𝐻  and 𝑉  [Iverson, 2015], the maximum 𝐿  can reach 7150 m ignoring the 

bounding river, which is about 1000 m larger than the sum of the planimetric length of the landslide 

(5000 m) and the river width (1200 m) at the toe, suggesting that a highly mobile runout at this 

landslide could potentially block the river. 

2.9 Discussion and conclusions 

The Crescent Lake landslide is a moderately large (~4 km2), seasonally active, translational 

landslide in forested terrain, the motion of which would be difficult to characterize using standard 

geophysical methods. I implemented the specific time-series InSAR method to extract various 

artifacts contaminated the deformation fringes in landslide landscape. I have investigated the 

hydrologically driven landslide dynamics of Cascade Landslide Complex, WA. Results show that 

the active Crescent lake landslide has moved 700 mm along the slope from 2007 to 2011, while 

other slide bodies are generally stable. The pace and amplitude of the seasonal deformation can be 

quantitatively correlated with the intensity of precipitation, suggesting a hydrologically driven 

landslide dynamic. I also used spaceborne InSAR analysis to augment data from a semipermanent 

GPS station to track motion of the landslide over two wet seasons. InSAR analysis offers major 

advantages in characterizing kinematics of a complex landslide: (a) motion of the whole landslide 

can be evaluated, not just motion at a few points; (b) temporal and spatial resolution of variations 

in motion can be determined at a weekly or biweekly scale that allows the seasonal and transient 

movements to be captured; and (c) variations in landslide thickness can be determined by ground 
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displacement measurements at a scale that allows the complexity of the landslide basal surface to 

be characterized. 

Spatial variations in surface movement of the landslide are complex. The field of InSAR-

derived ground-surface movement is larger than the previously mapped area of the landslide, 

which was defined on the basis of geomorphic features visible in LiDAR imagery [Pierson et al., 

2016]. Variable amounts of subsidence during sliding occur primarily in the upper half of the 

landslide body, which correlates strongly with zones of accelerated horizontal movement. 

Accelerated sliding is also evident along the southwest lateral margin, where the landslide laps 

onto the older Bonneville landslide deposit and thins substantially. Horizontal surface motion 

vectors vary in magnitude from nearly zero to about 350 mm/yr and vary in direction by nearly 

90°. 

2.9.1 Biases in 3D displacements and thickness inversion 

I propose a method to derive quasi-3D displacement fields using two independent spaceborne 

InSAR measurements (ascending and descending) that could have applications for studying other 

deforming bodies (glaciers, volcanic cones, natural dams, etc.). Determination of displacement 

fields also allows variations in active landslide thickness to be approximated, based on mass 

conservation and assuming a homogeneous deforming mass. Depth-averaged horizontal velocities 

are approximated from surface velocities using the rheological parameter	𝑓. The assumption of 

downslope motion, taking as the reference for the derivation of quasi-3D displacements, is in 

essence based on the topography, or more specifically, the angles of slope and aspect at each target. 

Assuming that the uncertainty of slope and aspect is in +/-3 degrees, the consequent landslide 

average thickness and volume (e.g., 𝑓 = 2/3) can vary by about 8% (Table 2.1), yet the spatial 

patterns of landslide thickness are not changed much (Figure 2.20). In addition to the input 
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displacement maps, the thickness approximations depend on: (a) choice of the rheological 

parameter 𝑓 , which is essentially a scaling factor; (b) assigned landslide areas and boundary 

conditions, which assert that the landslide thickness and motion vanish at the lateral margins; and 

(c) a priori knowledge or estimation of maximum landslide thickness. The results show that the 

thickest part of Crescent Lake landslide is approximately in the middle and that there are abrupt 

changes in thickness, likely reflecting underlying topography.  

 

Table 2.1 Summary of 3D displacements, landslide thickness and volume due to the uncertainty 
in angles (+/-3°) of slope and aspect.  

Slope [°] Original +3 +3 -3 -3 
Aspect [°] Original +3 -3 +3 -3 

Avg. N [mm/yr] -28.6642 -31.0987 -25.2545 -31.6559 -25.7208 
Avg. E [mm/yr] 50.0668 46.8905 53.2843 47.5806 54.1703 
Avg. U [mm/yr] -11.1393 -14.2802 -14.2802 -8.1548 -8.1548 

𝒇
= 𝟏/𝟐 

Avg. thickness [m] 73.5706 73.1607 78.3534 68.1935 70.8567 
Volume [´108 m3] 8.1958 8.1501 8.7286 7.5968 7.8934 
Thickness/volume 
change w.r.t 
original 

 -0.56% 6.50% -7.31% -3.69% 

𝒇
= 𝟐/𝟑 

Avg. thickness [m] 69.8656 70.7487 75.4428 63.7134 65.3924 
Volume [´108 m3] 7.7830 7.8814 8.4043 7.0977 7.2847 
Thickness/volume 
change w.r.t 
original 

 1.26% 7.98% -8.81% -6.40% 

𝒇 = 𝟏 

Avg. thickness [m] 59.1270 62.4629 67.5616 47.8301 51.5556 
Volume [´108 m3] 6.5868 6.9584 7.5264 5.3283 5.7433 
Thickness/volume 
change w.r.t 
original 

 5.64% 14.27% -19.11% -12.81% 
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Figure 2.20 Biases in thickness inversion considering the uncertainty of +/-3° in slope and aspect 
angles. First three rows show quasi-3D displacement maps during 2007-2011, 2014-2016, and the 
average of the mentioned time periods, respectively. The last row shows the consequent landslide 
thickness with the rheological parameter 𝑓 = 2/3. Each column shows the estimates under the 
indicated angles of slope and aspect. 

2.9.2 Plausible mechanism for precursory subsidence 

Temporal variations in slide movement are also complex at the GPS station location in the 

middle of the landslide body. Under proper configuration between radar looking geometry and 

slope geometry, InSAR LOS observations may provide a unique perspective to better differentiate 

motions at different directions. Not only is the onset of seasonal downslope sliding detected using 

Sentinel-1A data, but a multi-week period of ground subsidence prior to the onset of sliding is also 

detected. Pronounced subsidence began early in the rainy season after ~140 mm of antecedent 
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rainfall accumulated. Once a total of ~270 mm of rain had accumulated, major downslope sliding 

began (Figure 2.15 and Table 2.2). 

Table 2.2 Time points of the start of rainfall season and incipient landslide motion, and the 
cumulative precipitation in between. 

  Rainfall season 
starts 

Incipient motion 
Slope-normal 

subsidence Downslope sliding 

2014-2015 
Dates 09/24/2014 11/06/2014 11/30/2014 

Cumulative 
precip. [mm] 

144.65  
 266.33 

2015-2016 
Dates 08/29/2015 11/01/2015 11/25/2015 

Cumulative 
precip. [mm] 

130.40  
 277.29 

 

The reason for the apparent pre-sliding surface subsidence is uncertain. It could be due to 

elastic loading in response to the accumulating mass of infiltrated rainfall [Fu et al., 2015; Hu et 

al., 2016], which from the InSAR data arguably could have started at the beginning of the fall rain 

in 2016. In loose soils subjected to shear stress, contractive soil behavior can occur during wetting 

or incipient motion [Iverson et al., 2000], and this can cause subsidence. Such contraction of 

saturated granular soil causes pore pressure at the failure surface to be rapidly elevated, and this if 

widespread within the mass, in turn, leads to abrupt decreases in shear strength that can trigger 

runaway acceleration [Iverson, 2005; Iverson et al., 2015]. But contractive soil behavior is unlikely 

in this case, because where subsidence was detected, the slip surface is deep and subject to high 

normal stress – 50 mm of slope-normal subsidence would reflect only an overall 0.051%-0.03% 

volume decrease in a landslide mass on the order of 100-150 m thick, which may be too little to 

significantly affect pore pressure at depth.  In addition, the soil material is chemically altered and 

clay-rich, and slip has been occurring intermittently for decades. Given these constraints, shear has 
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almost certainly reduced porosity and strength at the slip surface to a residual state in which further 

contraction is highly unlikely.  

The observed seasonal creep of this landslide argues for the opposite of contractive behavior—

dilatant soil behavior. Dilatant strengthening during shear in already compact granular material 

leads to slow, limited shear in landslides [Moore and Iverson, 2002; Iverson, 2005]. If critical–

state porosity is never reached during shear and if recompaction occurs during periods of no shear, 

episodes of slow shear can regularly recur, as observed at the Crescent Lake landslide. The 

observation that slip in this landslide occurs at its fastest rate initially, followed by a long period 

of deceleration (Figure 2.15), suggests that shear strength gradually increases during shear after 

the initial release. This mechanism would theoretically cause the ground surface to rise, not 

subside, so further investigation is needed to explain the direction and magnitude of observed 

ground-surface movement prior to the onset of downslope sliding. 

 

This study has shown that the combined application of continuous GPS data having high 

temporal resolution with spaceborne InSAR data having high spatial resolution can reveal much 

more about the complexities of large landslide 3D shape and movement than is possible with 

geodetic measurements tied to only a few specific measurement sites. It shows the variations in 

landslide thickness and the configuration of the basal slip surface. It allows timing of the onset of 

sliding and the rate of sliding to be linked with threshold intensities and durations of rainfall. It 

allows spatial variations in sliding direction and rate to be assessed. And it also allows interannual 

differences in landslide behavior to be assessed in light of year-to-year variations in rainfall and 

other climatic factors.  
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CHAPTER 3 

CHARACTERIZATION OF HYDRODYNAMICS OF SALT LAKE VALLEY, UTAH 

 

Hu, X., Z. Lu, and T. Wang, 2018, Characterization of hydrogeological properties in Salt Lake 
Valley, Utah using InSAR, J. Geophys. Res.: Earth Surf. (accepted) 

 

3.1 Introduction 

Aquifer systems play an important role as a stable water source, by storing rainfall and 

snowmelt underground during the recharge process and supplying rivers and/or lakes with water 

during the discharge process. This is certainly true in the Salt Lake Valley of Utah, where humans 

rely on groundwater for domestic and municipal uses [Wallace and Lowe, 2009]. While extreme 

changes in climate (e.g. decadal drought or sustained intense precipitation) can disrupt the normal 

seasonal groundwater balance held in aquifer systems, agricultural and industrial development, 

and other human activities (e.g., over-pumping and/or injection) are the primary threat to their 

stability. Changes in aquifer reservoir volumes may manifest as surface deformation, which can 

be observed using InSAR techniques. 

Water recharge and discharge modulates subsurface pore pressure and the effective stress that 

is usually accompanied by deforming an aquifer skeleton. For example, groundwater removal 

through pumping has been widely performed for domestic, municipal, industrial, and irrigational 

uses, which may lead to land subsidence at rates of tens of cm/year associated with the drastic 

decline of water level [Bell et al., 2002]. In addition to removing groundwater from aquifer 
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systems, artificial recharge, or pumping into an aquifer, is sometimes implemented as a technique 

to manage the long-term removal of water and/or to store water in anticipation of upcoming 

demand, which may exert regional uplift [Amelung et al., 1999; Lu and Danskin, 2001; Schmidt 

and Burgmann, 2003; Chaussard et al., 2014]. The resulting deformation can generally be 

classified as either elastic (recoverable) strain that is typically associated with cyclic compression 

and dilation of the aquifer skeleton, or inelastic strain that is often associated with irreversible 

subsidence following long-term discharge when the effective stress is larger than the 

preconsolidation stress [e.g., Casagrande, 1932; 1936; Galloway et al., 1999; Amelung et al., 1999; 

Miller and Shirzaei, 2015; Miller et al., 2017]. 

Spaceborne multi-temporal InSAR observations represent a useful method to quantify ground 

deformation due to water level changes with mm/yr accuracy. For example, vertical deformation 

and associated hydrological properties have been studied for cities built in the desert, such as Las 

Vegas [Amelung et al., 1999], Tucson [Kim et al., 2015; Miller et al., 2017] and Phoenix [Miller 

and Shirzaei, 2015], for valleys with rapid urban and industrial development, such as Santa Clara 

Valley, California [Schmidt and Burgmann, 2003], and in valleys with heavy agricultural 

production, such as San Luis Valley, Colorado [Reeves et al., 2014; and Chen et al., 2016]. In this 

study, I combine InSAR data with water level data to derive hydrogeological properties in Salt 

Lake Valley, Utah. Based on the spatio-temporal correlation between vertical ground deformation 

and the water discharge and recharge processes, I discuss both natural and anthropogenic triggers 

to the observed deformation in the valley.  

3.2 Study area 

Salt Lake Valley, Utah, which includes the state capital Salt Lake City, is the commercial, 

industrial, and financial center of the State of Utah. One-third of the State’s population (~3 million) 



 

76 
 

is concentrated in the valley. The basin is bounded on the west and east by the generally parallel, 

north-south trending mountain ranges, Oquirrh Mountains and Wasatch Range, respectively 

(Figure 3.1a). To the south, the west-east trending Traverse Mountains bound the valley. The 70-

km long Jordan River traverses the center of Salt Lake Valley, connecting two remnants of 

prehistoric Lake Bonneville (30,000-14,000 yr BP) – the Great Salt Lake and Utah Lake. The well-

known Wasatch fault zone (WFZ) is situated along the mountain front of the Wasatch Range, and 

the West Valley fault zone (WVFZ) is located within the valley. The basin-fill deposits (boundary 

outlined by the white line in Figure 3.1a) consist of the surficial and near-surficial unconsolidated 

Quaternary deposits by Lake Bonneville, and the underlying generally unconsolidated to semi-

consolidated Tertiary deposits [Arnow et al., 1970; Thiros et al., 2010]. The main basin-fill 

deposits are vertically stratified into both shallow aquifers and deeper aquifers, with the latter 

marked by discontinuous layers of fine-grained deposits that inhibit the downward movement of 

groundwater.  

3.2.1 Tectonic settings 

The 390-km long WFZ extends from Malad City, Idaho, to Fayette, Utah and shadows the 

western flank of the Wasatch Range. WVFZ has similar orientation but locates in the central axis 

of the basin. The East Great Salt Lake fault zone is submerged beneath the Great Salt Lake (Figure 

3.2). The fault segments underling Salt Lake City are believed to produce large earthquakes (M 

7.0+) every 1,300 to 1,500 years. The last large earthquake occurred about 1,400 years ago, which 

implies that another large event is likely [EERI, 2015]. A recent report by U.S. Geological Survey 

(USGS) [2016] suggests a 43% likelihood of at least one large earthquake of magnitude 6.75 or 

greater, and 93% likelihood of a moderate quake of magnitude 5 or greater in the next 50 years in 

the Salt Lake Valley—home to approximately half of Utah’s ~3 million residents. 
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3.2.2 Hydrogeologic settings 

Within the boundary of basin-fill sediments, the aquifer systems can be classified into three 

distinct areas: primary recharge area, secondary recharge area, and the discharge area (Figure 

3.1a). The primary recharge area is in the uplands along the mountain fronts where there is an 

absence of confining fine-grained deposits and a downward hydrologic gradient flow (Figure 

3.1b). The secondary recharge area, usually at a lower elevation from the primary recharge area, 

such as a mountain bench, contains both unconfined and confining layers in the subsurface. The 

hydraulic gradient is again downward and groundwater flows into deeper layers and/or towards 

the discharge area. Annual groundwater recharge to the aquifer systems is about 0.4 km3 [Lambert 

1995; Thiros et al., 2010]. Major sources of recharge include subsurface inflow from mountain 

streams (45%) and precipitation infiltration (21%) [Thiros et al., 2010]. In the discharge area, the 

hydraulic gradient is reversed, enabling groundwater to flow up into a confined area or to exit to 

the surface (Figure 3.1b). Naturally occurring discharge to the surface occurs under several 

circumstances: where the water table intersects the surface, discharge around the unconfined 

aquifer occurs into streams, canals, the Jordan River; where the surface elevation is low in the 

vicinity of the Great Salt Lake, discharge around the confined aquifer occurs at the northern part 

of the valley; finally, some water is lost through evapotranspiration. When there is sufficient 

natural pressure, water reaches the surface at artesian wells. Anthropogenic withdrawal of water 

from the systems may also be referred to as groundwater discharge, but a water well could be 

located in any of the three areas (primary recharge, secondary recharge, or discharge area) under 

the right conditions. The main components of groundwater discharge include seepage into streams 

(43%) and well withdrawal (33%) [Thiros et al., 2010]. 
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The confined aquifer consists primarily of Quaternary deposits (0 to over 600 m) of clay, silt, 

sand, and gravel. Above the confined aquifer is a confining layer composed of individual 

Quaternary deposits of fine-grained clay and/or silt that creates an impermeable layer (Figure 

3.1b). The confining layer is between 12 and 30 m thick with its top 15 to 46 m below the land 

surface. There might be a shallow unconfined aquifer overlying the confining layer, and it is 

sometimes hard to differentiate between them. The shallow unconfined aquifer is primarily 

composed of fine-grained sediments, and it has a maximum thickness of 15 m [Snyder and Lowe, 

1998; Wallace and Lowe, 2009]. This study focuses on the vertical ground deformation and the 

related hydrodynamics of the confined and semi-confined aquifers, mainly over the water 

discharge area and secondary recharge area. 

 
Figure 3.1 Locations and hydrogeologic architectures of groundwater discharge, primary recharge 
and secondary recharge areas in Salt Lake Valley, Utah. White lines delineate the boundary of 
basin-fill sediments, blue lines show the major river channels, and black lines show the known 
faults. The coverage of descending SAR tracks ENVISAT Track 41 (T41) and Sentinel-1A Path 
158 (P158; cropped) are marked with red dotted rectangles. Sketch of hydrogeologic architectures 
on the right are modified from Wallace and Lowe (2009) and Snyder and Lowe (1998). 
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3.3 Methodology 

3.3.1 Multi-temporal InSAR analysis 

Forty ENVISAT ASAR strip mode data (2004-2010) and twenty Sentinel-1A Interferometric 

wide swath mode data (2015-2016) were used to derive the deformation field over the study area 

based on multi-temporal InSAR analysis [e.g., Ferretti et al., 2001; Berardino et al., 2002; Hooper 

2008; Hu et al, 2016; Shirzaei et al. 2017]. ENVISAT’s heading and incidence angles were -

167.83° and 22.78°, and Sentinel-1A’s heading and incidence angles were -166.38° and 41.97°. I 

processed the ENVISAT data using GAMMA software. I processed the Sentinel-1A data burst by 

burst and then merged them into one interferogram. The phase discontinuity was corrected from 

burst-overlap interferometry [Jiang et al., 2017]. A set of 126 ENVISAT interferograms with 

perpendicular baselines less than 300 m and temporal intervals fewer than 500 days, and 82 

Sentinel-1A interferograms with perpendicular baselines less than 250 m and temporal intervals 

fewer than 180 days were chosen for time-series analysis (Figure 3.2). The topographic phase 

component of each interferogram was simulated by 2000 SRTM DEM. 

 
Figure 3.2 Image graph of the interferometric pairs: ENVISAT (a) and Sentinel-1 (b) datasets. 
Squares represent satellite images and connecting lines show the interferograms used to retrieve 
the time-series deformation, in which the red ones in (a) indicate the relatively large-baseline and 
short-interval interferograms used to estimate topographic error during ENVISAT data processing. 
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The urbanized basin terrain from Salt Lake City to Bluffdale maintains good InSAR coherence. 

However, it is mostly isolated by the mountainous areas to the west, east and south sides, as well 

as the wetland area in the vicinity to the Great Salt Lake to the east side, where the radar phase 

values are poorly correlated in time or incoherent in space (Figure 3.3). It results in very narrow 

channels (bounded by mountains) with decent coherence to connect the basin terrain to other urban 

areas to the north (e.g., North Salt Lake) and the south (e.g., Lehi). This spatial configuration of 

surface features may lead to phase jumps at the north and south mouths when using a general phase 

unwrapping routine. To address this issue, pixels with DA (see section 2.4.1.1) less than 0.35 and 

an averaged coherence larger than 0.5 were chosen as coherent targets (CT) for ENVISAT data. 

The corresponding thresholds were 0.15 and 0.7 for Sentinel-1A data. The window used to 

estimate the spatial coherence is 15 by 5 and 6 by 23 pixels for ENVISAT and Sentinel-1A data, 

respectively. Unwrapping was then performed exclusively on those CT points [Ferretti et al., 2001; 

Hooper, 2010; Hu et al., 2016]. Finally, the deformation signals were resolved by culling out the 

DEM errors, atmospheric phase screen and orbital artifacts inherent in each interferogram based 

on their spatial and temporal signatures [Hu et al., 2016]. 
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Figure 3.3 Mean coherence map of (a) ENVISAT and (b) Sentinel-1A. Brighter areas represent a 
higher coherence (maximum = 1; minimum = 0), suitable for time-series InSAR analysis. Both 
ENVISAT and Sentinel-1A datasets show coherence in a relatively narrow north-south channel, 
bounded by the mountain ranges. 

The inconsistency of DEM sources and/or DEM errors can introduce phase artifacts, which 

may be expressed as spurious deformation signals [e.g., Hu et al., 2016]. This is particularly the 

case for the ENVISAT dataset due to its varied baseline configurations. Therefore, ENVISAT 

interferograms (red connecting lines in Figure 3.2a) with relatively larger perpendicular baselines 

(>100 m) and smaller time spans (<180 days) were selected to isolate the DEM errors [e.g., 

Massonnet and Feigl, 1998; Lu and Dzurisin, 2014], assuming that the phase is dominated by the 

error in DEM rather than ground deformation. Interestingly, the map of DEM errors highlights a 

nearly 1-km2 area (40°45'52"N, 111°53'20"W) with an error of more than 15-m over downtown 

Salt Lake City; this observation is consistent with the anomaly in the differential DEM map 

between 2000 SRTM DEM and 2006 LiDAR DEM (Figure 3.4). Historic aerial photographs show 
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no visible change for the high-rise buildings clustered in downtown Salt Lake City. The agreement 

between these two independent estimations suggests that C-band SRTM radar data may contain 

height errors probably due to geometric artifacts and/or unwrapping errors associated with the 

urban landscape. 

 
Figure 3.4 Topographic error analysis. (a) Differential DEM of 2000 SRTM DEM and 2006 
LiDAR DEM (subtract LiDAR DEM from SRTM DEM). (b) Topographic errors estimated by 
ENVISAT dataset.  

I assume that the derived deformation in the basin is mainly vertical, because the basin 

accommodates classic normal faults with steep dip angles ~60-86°W [Black et al., 1996]. In 

addition, the burst-overlapping interferometry of Sentinel-1A data (~2 cm accuracy) [Jiang et al., 

2017], which is sensitive to deformation along the azimuth direction, also suggests no detectable 

horizontal deformation in the approximate north-south direction (Figure 3.5). All deformation 
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mentioned below, without specification, has already been projected into the vertical direction from 

the radar line-of-sight direction. 

 
Figure 3.5 Azimuth interferometry over Sentinel-1A overlapping bursts: 20151124-20150516 (a) 
and 20151124-20160510 (b). 

3.3.2 Separation of long-term and seasonal deformation signatures  

The long-term deformation velocity of an aquifer is often related to prolonged hydraulic head 

changes, in contrast to the seasonal deformation considered a short-term response to groundwater 

redistribution. To characterize the time-series deformation, I need to separate out the long-term 

deformation from seasonal fluctuations. I first fit the non-linear component of time-series 

deformation at each CT using harmonic series to roughly simulate the periodicity of deformation 

behavior. The merits of this method are that I can obtain the seasonal deformation signal agreed 

with given apparent frequency. On the basis of the observations that the processes of water 
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discharge (Figure 3.7) and recharge (Figure 3.8) take a period of one year, and that water levels 

are also annual (Figure 3.11), I consider the pixel with deformation seasonality feature of 

deformation when the derived deformation waveform contains 10 to 14 peaks or troughs during 

the six-year period from 2004 to 2010; otherwise, the pixel is flagged without seasonality. The 

more sinusoidal functions used, the better fit with the observation. However, here the purpose is 

to extract the apparent seasonality. If I use many independent sinusoidal functions, the fit results 

will capture the high-frequency wiggles in the time series, and introduce unexpected peaks or 

troughs. In the study area, using three independent sinusoidal functions best simulates the apparent 

seasonality. For pixels with the seasonality feature of deformation, the remainder after subtracting 

the harmonic series from the original time series is considered to be the long-term signature. Using 

a sinusoidal function of time to perform the InSAR time-series analysis is not new [e.g., Ferretti 

et al., 2000; Agram et al., 2013; Riel et al., 2014; Agram and Simons, 2015; Reinisch et al., 2016; 

Fattahi et al., 2017]. However, the method has two advantages: first, not all targets deform with 

seasonality so I testify if the time-series deformation contains the seasonality or not rather than 

force the deformation pattern of all targets exclusively using sinusoidal wave; and second, I allow 

year-by-year variations in amplitude and frequency using the superposition of three independent 

sinusoidal functions, but constrain the waveform within the desired apparent frequency. 

3.3.3 Estimation of aquifer properties from surface deformation and groundwater levels 

3.3.3.1 Decay coefficient 

The groundwater system in Salt Lake Valley’s basin-fill deposits includes a shallow aquifer 

that is separated from a deeper aquifer by discontinuous layers or lenses of fine-grained materials. 

The existence and different thickness of the embedded clay lenses with low hydraulic conductivity 

may result in various time scales of delay for the equilibration to hydraulic head changes. The 
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delayed response can be characterized by modeling the long-term vertical deformation as an 

exponential function of time [Chaussard et al., 2014; Miller and Shirzaei, 2015; Miller et al., 2017]: 

𝑑2AG@=47ED(𝑡) = 𝑀(𝑒H4 − 1)                                           (3.1) 

where 𝑑2AG@=47ED(𝑡) is long-term vertical deformation at time 𝑡, 𝑀 is the magnitude coefficient 

(𝑀 > 0 when net subsidence and 𝑀 < 0 when net uplift), and 𝑘 is the decay coefficient (between -

1 and 0), which is related to the compressibility and hydraulic conductivity of the aquifer-system 

skeleton and is used to simulate the decelerated deforming process. A smaller decay coefficient 𝑘 

(closer to -1) leads to a faster equilibration (leveling off), suggesting a faster response to a given 

hydraulic head change in a long-term view. 

The decay coefficient 𝑘, which is used to describe the decelerated deforming process, was 

estimated from six-years of deformation measurements of ENVISAT data (2004-2010) using a 

least-squares inversion technique. Although the Sentinel-1A dataset provides deformation 

measurements between 2015 and 2016, the limited observation interval was too short to constrain 

the decay coefficient. After removing the seasonal component (if any), the remaining long-term 

deformation component was used to derive the decay coefficient at each CT based on Equation 

(3.1). 

3.3.3.2 Storage properties and bulk aquifer compressibility 

Storage properties are also important hydrological parameters for water management. The 

specific storage coefficient 𝑆'  for a confined aquifer is the amount of water drained from the 

compressed aquifer systems with per unit decline in hydraulic head, per unit volume of the aquifer 

[Riley, 1969; Saar and Manga, 2003]:  

𝑆' = 𝜌𝑔(𝛼 + 𝑛𝛽)                                                      (3.2) 
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where 𝜌  is the water density, 	𝑔  is the gravitational acceleration, 𝛼  is the bulk aquifer 

compressibility (at constant vertical stress and zero lateral strain), 𝑛 is the porosity, and 𝛽 is the 

compressibility of water (4.6´10-10 m2/N). The bulk aquifer compressibility 𝛼  describes the 

relative volume change of the aquifer skeleton in response to a pressure change.  

The dimensionless storage coefficient for a confined aquifer characterizes the volume of water 

drained per unit decline in hydraulic head, per unit area of the aquifer. The storage coefficient 𝑆 is 

the vertical integration of the specific skeletal storage coefficient [Riley, 1969], assuming that the 

water compressibility is negligible with respect to the deformation of the aquifer systems,  

𝑆 = 𝑆'𝑏                                                           (3.3) 

where 𝑆' is the skeletal specific storage coefficient, and 𝑏 is the aquifer thickness [Riley, 1969; 

Chaussard et al., 2014].    

The storage coefficient can be classified into inelastic or elastic when the effective stress is 

larger or smaller than the preconsolidation stress, which is subject to the historical hydraulic head 

levels and ground deformation. The hydraulic head can be obtained from the water level 

measurement at piezometric wells when the piezometer bottom is fixed. I focus on characterizing 

the elastic storage coefficient because no long-term compaction has been observed in the study 

area (discussed in section 3.4.1). The elastic storage coefficient can be solved by the linear 

regression:  

𝑆 = ∆𝑑7/∆ℎ                                                         (3.4) 

where ∆𝑑7 is the elastic (seasonal) vertical deformation and ∆ℎ is the head change [Riley, 1969; 

Chaussard et al., 2014; Miller and Shirzaei, 2015; Chen et al., 2016; Miller et al., 2017].  
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Different from the decay coefficient, the estimation of storage coefficient (𝑆), specific storage 

coefficient (𝑆') and bulk aquifer compressibility (𝛼) require water level data in addition to the 

vertical deformation measurements. And more importantly, water level data with both a high 

sampling rate and a distinct peak-to-trough amplitude are highly desired for enhancing the signal-

to-noise ratio. 

 Deformation and water level measurements provide a straightforward method to solve for 

the storage coefficient: first, pick up the peaks and troughs in each water level time series and 

resample the deformation for the common dates; second, calculate the change between adjacent 

estimates to obtain seasonal variations; and third, fit the linear regression that pass through (0, 0), 

and then the slope corresponds to storage coefficient [Chaussard et al., 2014]. However, this 

method is only useful when the time-series ground deformation is in phase with water levels at a 

similar frequency, i.e., there is no phase delay for the surface movement in response to head 

changes. An alternative method is to find the optimal storage coefficient 𝑆 and time lag 𝜏 that 

minimize the objective function ‖𝑑:74E7G:(𝑡 + 𝜏) − 𝑆 × ℎ:74E7G:(𝑡)‖ [Chen et al., 2016], where 

𝑑:74E7G:(𝑡) and ℎ:74E7G:(𝑡) are the detrended ground deformation and water levels at time 𝑡, 

respectively. Time lags may occur and differ for the hydrologic units to equilibrate to the additional 

stress. The length of time lag depends on factors such as the specific storage, the thickness, and 

the vertical hydraulic conductivity of each stratum [Riley, 1969; Chen et al., 2016]. 

3.4 Results 

3.4.1 Spatial features of the deformation field 

The velocity map derived from ENVISAT data indicates six-year (2004-2010) net uplift 

southwest of downtown Salt Lake City at an average rate of 15 mm/yr (Figure 3.6a). The uplifting 

area of interest (UAOI) is constrained within the confined discharge areas, which to some extent, 
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confirms the validity of pre-defined aquifer boundaries. Nevertheless, subsidence occurs from 

April to August, 2016 according to Sentinel-1A results (Figure 3.6b) at the same location of the 

net uplift. The summer months’ deformation represents the seasonal amplitude. The similar spatial 

distribution of the deforming signatures derived from these two independent datasets suggests that 

the observed long-term uplift and seasonal oscillation originate from the same aquifer unit.  

The boundaries of the UAOI are also coincident with the locations of a few known faults, 

suggesting that these faults define and perhaps control the groundwater flow. I also identify a sharp 

discontinuity (black dashed line in Figures 3.6a and b) at the northern tip of the UAOI, and I 

suspect this indicates a blind fault orthogonal to the pre-existing ~30° northwest-trending fault 

west of downtown Salt Lake City, probably a step-over that bridges the parallel WFZ at the base 

of Wasatch Range and WVFZ to the west side of Jordan River.  

CT points exhibiting seasonal deformation (red points in Figure 3.6c) are concentrated around 

downtown Salt Lake City, bounded by inner-valley WVFZ and mountain-front WFZ, and the 

seasonal cluster contains the UAOI. Additionally, I have identified two localized subsiding sites 

shown without seasonality in North Salt Lake and Lehi (locations marked with black circles in 

Figure 3.6, see details in section 3.5.1 and Figure 3.15).  
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3.4.2 Time-series vertical deformation versus water discharge and precipitation 

The long-term trend from 2004-2010 indicates clear net uplift. Time-series InSAR analysis 

allows us to further discern the seasonal dynamics of the aquifer basin. The high frequency of 

Sentinel-1A data sampling improves our understanding of surface movement to less than one-

month scale (when I only consider highly coherent acquisitions) over this valley.  

To assess the correlation between groundwater and seasonal ground deformation, I collected 

water discharge time-series data at two gauges, D1 and D2 (squares in Figure 3.6), and 

precipitation time-series data at three gauges, M1 to M3 (triangles in Figure 3.6), and compared 

the gauge data to the InSAR-derived deformation of CT points coinciding with the gauge locations. 

Groundwater discharge into streams accounts for almost half of the total amount of discharge in 

Salt Lake Valley [Thiros et al., 2010], and can be approximated by hydrographs of streams at low 

elevations receiving the water discharge, such as the Jordan River. The two streamflow monitoring 

gauges (D1 and D2) are located around the boundary of the UAOI along the river. I observed a 

clear phase shift between ground deformation and the water discharge rate at the two gauges 

(Figure 3.7), prompting us to consider the modulation associated with the water recharge process, 

and specifically precipitation. Three meteorological monitoring gauges (M1, M2 and M3) are 

located in the discharge area: one (M3) is located in North Salt Lake, and the other two (M1 and 

M2) are equidistant to the axis of the Jordan River at two sides, with M1 on the west side located 

at the northern tip of the UAOI. Precipitation follows seasonal variation and peaks in winter 

(Figure 3.8). 
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Figure 3.7 Comparison between time-series ground deformation and water discharge monitoring 
gauge D1 (a) and gauge D2 (b) (location shown in Figure 3.6). Gray squares show the original 
deformation measured by ENVISAT dataset, and the underlying blue dashed lines show the 
corresponding linear regression. Error bars are the standard deviations of the deformation estimates 
within 700 m of the water discharge monitoring gauge. Blue squares show the non-linear 
deformation component. Green lines show the water discharge rate in cubic meters per second. 
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Figure 3.8 Comparison between time-series ground deformation and meteorological monitoring 
gauge M1 (a) and gauge M2 (b) (location shown in Figure 3.6). Gray triangles show the original 
deformation measured by ENVISAT dataset, and the underlying blue dashed lines show the 
corresponding linear regression. Error bars are the standard deviations of the deformation estimates 
within 700 m of the meteorological monitoring gauge. Only one target was located within the 700-
m radius of gauge M1, so no error bar has been given. Blue triangles show the non-linear 
deformation component. Red lines indicate the volume of precipitation in millimeters. 
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To better understand the dynamics of hydrologically driven deformation, I need to consider 

both water discharge and recharge processes. Extraction of the deformation measurements of the 

CT points near the water discharge monitoring gauge D1 reveals a net uplift averaging 15 mm/yr 

from 2004 to 2010 (Figure 3.9a). I also observed a seasonal ground oscillation with subsidence 

during the mid-spring and summer months (March/April to August) and uplift during fall and 

winter months, with the largest peak-to-trough magnitude of more than 40 mm (Figure 3.9b). I 

consistently observed such seasonal signature during both time intervals. Assuming that the 

meteorological monitoring gauge at M1 depicts the precipitation received by the gauge 6.8 km 

southward at D1, I quantitatively compared the seasonal deformation component with water 

discharge rate and precipitation by calculating their cross-correlation. To facilitate the 

interpretation, I constrained the time shift to one year, and calculated the cross correlation between 

time-series deformation and water discharge/precipitation. The ground uplift and subsidence seem 

related to hydrological processes (such as precipitation and water discharge); all exhibit seasonal 

signatures. The influx of water, such as the infiltration of precipitation into the subsurface, can 

elevate the pore pressure, thereby reducing the vertical effective stress on the skeletal matrix of 

the aquifer and exerting regional uplift [e.g., Schmidt and Bürgmann, 2003]; when the amount of 

precipitation declines, the water discharge (such as seepage to the lower elevation Jordan River 

and Great Salt Lake, and anthropological groundwater extraction) exceeds influx, resulting in an 

elastic response to the reduction of pore pressure and an increase of the vertical effective stress, 

expressed as regional subsidence through the settling of grains. 
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Figure 3.9 Time-series ground deformation (at location D1), water discharge (D1), and 
precipitation (M1). (a) InSAR-derived deformation (gray squares) and its linear fitting (dashed 
blue line). Error bars are the standard deviations of the deformation estimates within 700 m of 
gauge D1. (b) Linearly detrended/seasonal deformation (blue squares) and the spline fitting (solid 
blue line). In (a) and (b), the left panels are the results of ENVISAT (available for 2004-2010) and 
the right panels are the results of Sentinel-1A (available for 2015-2016). (c) Water discharge (green 
line). (d) Daily precipitation (red line, referring to the left Y axis) and 30-day cumulative 
precipitation (gray line, referring to the right Y axis).  

3.4.3 Long-term decay coefficient 

The decay coefficient describes the long-term delayed ground response to hydraulic head 

changes based on the exponential fitting of Equation (3.1). The characteristic time scale of the 

exponential decay can be taken from the absolute value of the inverse of decay coefficient. To 

enhance the robustness, I only considered those pixels with a Root Mean Square Error (RMSE) of 

the best fitting exponential regression of less than 0.8 cm. The distributions of fault systems on the 

maps of decay coefficient (Figures 3.10a and b) and deformation velocity (Figures 3.6a and b) 

suggest that the faults partition the hydrological units and control the deformation field. In 

particular, besides the ~60° northeast-trending fault unveiled by the deformation velocity map, I 

have also identified another previously unknown ~30° northwest-trending fault from the decay 
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coefficient map, all of which together provide a complete view of the fault configurations in the 

area of Salt Lake City. 

 Within the area exhibiting seasonal deformation (red dotted area in Figure 3.6c; yellow 

dotted-line area in Figure 3.10a), the northern and southern areas at the mountain front occupy a 

smaller decay coefficient, suggesting a faster response to a given hydraulic change than the central 

section (Figure 3.10a). The negative values of coefficient M suggest net uplift and the positive 

values suggest net subsidence (Figure 3.10b), which is consistent with the map of long-term 

deformation velocity (Figure 3.6a). The decay coefficient of the UAOI is mainly in the range 

between -0.1 and -0.01, suggesting a time constant of 10 to 100 years. This exponential fitting is 

designed to simulate the decaying process. Large RMSE (Figure 3.10c) accompanying the 

exponential fitting generally result from either substantially fluctuated deformation or the 

accelerated or quasi-linear trend of deformation, that I discuss further in section 3.5.1. 
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3.4.4 Storage coefficient and bulk compressibility 

Accurate derivation of the aquifer storage coefficient requires water level measurements. 

However, many long-term water leveling gauges in this region only record measurements once a 

year, and even worse, generally in the same season (February or March). Only four gauges 

(locations are indicated as crosses in Figure 3.6) provide frequent enough measurements to 

estimate the storage coefficient:  WL1, WL2 and WL3, with nearly daily measurements from the 

USGS throughout the entire InSAR acquisition timespan, and WL4 with nearly monthly 

measurements from the Utah Geological Survey during 2009-2010.  

The input detrended water level ℎ:74E7G:(𝑡) is simply the non-linear component. However, the 

parameterization of input detrended deformation 𝑑:74E7G:(𝑡)  depends on whether or not it 

includes a seasonal singal. If seasonality exists, the detrended deformation is considered to be the 

seasonal component simulated by the superposition of three sinusoidal functions; otherwise, the 

spline interpolation of the linearly detrended deformation was applied. Original time-series 

deformation and water level are shown as black crosses with error bars and orange line, 

respectively, in Figure 3.11. The water level data at WL2 and WL3 exhibit periodic seasonal 

variations (yellow lines in Figures 3.11b and c) and I identify targets deformed with seasonality in 

the vicinity of WL2 and WL3 (Figure 3.6c). Water level at WL1 does not show evident seasonal 

variation, and coincidently, no target around this gauge has been identified with seasonal 

deformation (Figure 3.11a). Nevertheless, WL4 only has one-year water level data and the 

existence of seasonality in deformation during this year has not been determined, so I use the spline 

interpolation of the linearly detrended deformation (Figure 3.11d).  
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Figure 3.11 Comparison between time-series ground deformation and water level monitoring 
gauges WL1 (a), WL2 (b), and WL3 (c) and WL4 (d) (locations shown in Figure 3.6). Black 
crosses show the original deformation measured by ENVISAT dataset, and the underlying blue 
dashed lines show the corresponding linear regression. Orange lines show the original water level 
measurements in meters, and the underlying yellow dashed line show the corresponding linear 
regression. Blue crosses and solid lines show the detrended ground deformation. Yellow solid lines 
show the detrended water level measurements. 
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Considering that the period of seasonal deformation and water level is around one year, I set 

the delay time 𝜏 from 0 to 365 days to avoid aliasing. The estimated storage coefficients from well 

data [Thiros, 2003] range between 0.0005 and 0.1, and are taken as the search window for the 

storage coefficient (𝑆). The best-fit results are shown in Table 3.1. WL2, in the central south of 

the valley, occupies the smallest storage coefficient (0.002), while WL4, in the wetlands near Great 

Salt Lake, has a greater storage coefficient (0.0668), suggesting a larger amount of groundwater 

communication at WL4 in response to given head change. The interpolated map of storage 

coefficient is shown in Figure 3.12a. 

WL4 occupies the smallest time lag of 43 days, while the time lags for WL1-3 range between 

120 and 306 days. A lengthy time lag may suggest slow infiltration and slow drainage of the clay 

lenses around the wells. Aquifer thickness, were approximated by the thickness of the 

unconsolidated and semi-consolidated deposits (digitized from the isopach map, Figure 3.12b) 

[Mattick, 1970; Arnow and Mattick, 1968], which includes the Quaternary and partial Tertiary 

deposits. The thickest (~1220 m) unconsolidated and semi-consolidated sediments are located in 

the northwest and northeast parts of the valley. It thins toward the central valley (~600 m) and 

thickens again gradually toward the south (~800 m). The thinnest (<300 m) part is located along 

the margins of the valley. I apply basin-wide porosity estimates (Figure 3.12d) ranging between 

0.06 and 0.25 from Starn et al. [2015]. In agreement with the compositions of unconsolidated to 

semi-consolidated clay, silt, sand, gravel, tuff, and lava of the Tertiary- and Quaternary-age basin-

fill deposits in Salt Lake Valley [Wallace and Lowe, 2009; Thiros et al., 2010], the derived specific 

storage coefficient 𝑆' (Figure 3.12c) and the bulk aquifer compressibility 𝛼 (Figure 3.12e) are in 

a reasonable range for these general sediment types [Domenico and Mifflin, 1965; Chaussard et 

al., 2014; Hanson, 1989; Nelson, 1982; Neuman and Witherspoon, 1972; Sneed, 2001; Sneed et 
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al., 2007]. The 𝑆' and 𝛼 of the UAOI southwest of Salt Lake City are 3.8´10-5 m-1 and 1.0´10-9 

m2/N, respectively. Given the biases due to the water compressibility, the resulting values for bulk 

aquifer compressibility 𝛼 are of the same order, which are mainly influenced by the values for the 

specific storage 𝑆' because the product of porosity and water compressibility is negligible. The 

map of aquifer hydrogeological properties can be enhanced if more monthly/seasonally-acquired 

water level data in this region become available. 

 
Figure 3.12 The derived hydrogeological properties. (a) Storage coefficient interpolated by four 
estimates at WL1-4. (b) Basin-wide estimates of aquifer thickness (digitized from the isopach map 
of unconsolidated and semi-consolidated sediments [Mattick, 1970; Arnow and Mattick, 1968]). 
(c) specific storage coefficient. (d) Porosity (from the interpolation of the estimates at pilot points 
[Starn et al., 2015]). (e) Bulk aquifer compressibility considering non-zero water compressibility.  
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Table 3.1 Hydrogeological properties at water level gauges (WL1-4). 

Site Lon 
W[°] 

Lat 
N[°] S 

t 
[day

s] 

Res. 
[mm] 

b 
[m] 

Ss 
[m-1] n 

a 
[m2/N] 
(negligi
ble 𝜷) 

a 
[m2/N] 
(non-

zero 𝜷) 
WL1 111.97 40.65 0.0116 306 4.0 631 2e-5 0.1187 2e-9 1.95e-9 
WL2 111.96 40.59 0.0022 239 3.0 879 3e-6 0.1392 2e-10 2.36e-10 
WL3 111.86 40.59 0.0047 120 1.9 614 8e-6 0.1493 7e-10 7.31e-10 
WL4 112.02 40.79 0.0668 43 5.8 706 9e-5 0.0799 9e-9 8.96e-9 
* S is the storage coefficient, t is the delay time between the detrended ground deformation and 
head changes, Res. is the residual of the optimal solution for ‖𝒅𝒅𝒆𝒕𝒓𝒆𝒏𝒅(𝒕 + 𝝉) − 𝑺 × 𝒉(𝒕)‖, b 
is the aquifer thickness that approximated by the thickness of unconsolidated and semi-
consolidated sediments, Ss is the specific storage, n is the porosity, a is bulk aquifer 
compressibility. The locations of the sites, b, and n are priori-knowns, and the other parameters 
are derived. 

 

3.4.5 Analytic modeling of the groundwater reservoir 

In the long time span, the reservoir in the area of interest produces tensile vertical shear stress 

due to upward hydraulic head, and exerts extensional strain and ground surface uplift. I simulate 

the long-term displacement field associated with deforming vertical shear zones using the analytic 

modeling of cuboid groundwater reservoir [Barbot et al., 2017]. To match the outstanding imprint 

at the surface, I assume the reservoir is by size of 9´6 km and striking at -20° to the north. The 

target reservoir is located in the water discharge area, where water sometimes reaches the surface 

at artesian wells. The shallow unconfined aquifer, if it exists in the top layer, has a maximum 

thickness of 15 m [Snyder and Lowe, 1998; Wallace and Lowe, 2009], and is negligible when 

considering the underlying several-hundred-meter confined part of the aquifer. The median depth 

to top of the well screen in the deeper part of aquifer of discharge area is 120 m and the median 

well depth is 285 m [Thiros, 2010], implying that the reservoir goes through the shallow alluvial 

aquifer, upper confining units, and deeper into the permeable aquifer by 285 m or more. The 

Poisson’s ratio in the half space is set to be 0.33. The thickness of the reservoir is approximated 
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by the thickness of unconsolidated and semi-consolidated sediments, which is around 500-600 m 

at this location.  

The cross-section profile (dashed line in Figure 3.13) in SAR observation of the deformation 

velocity field shows that the peak-to-trough amplitude is ~15 mm/yr along LOS direction, that is, 

~16 mm/yr in vertical direction. The model shows the surface deformation on radar LOS under 

the expansion of the regular cubic reservoir beneath the surface. The bulge is asymmetric - the 

eastern side of Jordan River has larger LOS displacement and a sharper boundary than the western 

side. This is because the eastern side is closer to the incoming radar pulse from the descending-

orbit and right-looking sensor, and thus has a smaller angle of incidence. However, the results of 

InSAR observation seem to show no significant difference between LOS displacements on the 

western and eastern sides of Jordan River. The difference suggests that the western side might 

contain a thicker reservoir and/or larger source strain.  

I first assume a uniform thickness for the cuboid reservoir. Minimizing the residual between 

the observation and the model, produces a solution with 2´10-5 isotropic source strain rate when 

the thickness of the reservoir is 500 m, i.e., a volume of 27-km3 reservoir skeleton, and the annual 

expansion rate is 5.4´105 m3/yr; a 1.7´10-5 isotropic source strain rate when the thickness is 600 

m, i.e., 32.4-km3 reservoir skeleton, and the annual expansion rate is 5.5´105 m3/yr. I further 

considered the effect of varied thickness by applying the quad-cuboid, and the distribution of the 

cuboid depends on the pattern of the displacement field. Given a homogeneous hydrologic unit 

with a uniform strain rate of 2´10-5, the best fit results reveal a much thicker shearing zone at the 

west side (600 m) than the east side (350-375 m), and the volume (30.7 km3) is in between the 

previous two situations, but the annual expansion rate is the largest (6.1´105 m3/yr). The residual 

of the quad-cuboid model is the least (Table 3.2). 
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Figure 3.13 Groundwater reservoir modeling of the annual uplifting area. (a) ENVISAT 
observation. (b) analytical solution when one single cuboid with the thickness (W) of 500 m. (c) 
quad-cuboid with varied thickness, and the numbers in the cuboids indicate the best-fit thickness. 
And (d) the comparison between the observation and model results along the dashed-line profile 
for a single cuboid (W = 500 or 600 m), and for a quad-cuboid with varied thickness. 

Table 3.2 Best fit results for the analytic modeling. 

 Thickness 
[m] 

Volume 
[km3] Strain rate Annual expansion 

rate [m3/yr] 
Residual 

[mm] 

Single cuboid 500 27 2´10-5 5.4´105 1.69 
600 32.4 1.7´10-5 5.5´105 1.68 

Quad-cuboids 350-600 30.7 2´10-5 6.1´105 1.54 
 

Based on the assumption of point-source dilatation in elastic half space, another simple 

approximation on the estimate of subsurface volume due to fluid injection is given by [Mogi, 1958; 

Shirzaei et al., 2016], 𝑑𝑣 = ∬ hij	:L:M01
%1
%($=l)22

, where 𝑙X is radar’s look vector in the vertical direction, 
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and n is the Poisson’s ratio. The long-term uplift of Salt Lake Valley shares a similar mechanism 

due to increased pore pressure and decreased effective stress. The displacement field is manifested 

by the distributed CT points; however, I expect spatially continuous estimates in order to calculate 

the total subsurface volume change over the area of interest. Since long-term averaged deformation 

is expected to be a low frequency 2D singal, I downsample the data points to further eliminate the 

potential outliers. The uniform downsampling algorithm uses a regular grid and has the trade-off 

between data reduction efficiency and deformation details preservation. Alternatively, spatially 

variant downsample methods, such as quadtree partitioning (quadtree algorithm) [Jónsson, 2002], 

can better resolve this problem. I can roughly estimate the overall strain rate by assuming multiple 

point-source dilatation in the reservoir, where the point sources can be projected at the center of 

each quadtree partitioning (Figure 3.14). I also assume that the reservoir layer is spatially 

homogeneous with the same Poisson’s ratio n (0.33). The annual volume change is estimated to 

be 5.4´105 m3, which is in agreement with the analytical modeling. 
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Figure 3.14 Quadtree representation of ENVISAT LOS deformation velocity. 

3.5 Discussion and conclusions 

3.5.1 Localized anthropogenic deformation and basin-wide hydrogeologic effects 

I observed two localized subsiding sites over the industrial fields in North Salt Lake and the 

foot of the Traverse Mountains in Lehi. Both sites are located in areas with no seasonal 

deformation and with large RMSE from the exponentially decaying model. The North Salt Lake 

site shows continuous quasi-linear subsidence at a rate of ~20 mm/yr, which accelerated during 

2015-2016 (Figure 3.15d) compared with the period of 2004-2010 (Figure 3.15a). One 

meteorological monitoring gauge (M3 in Figure 3.6) is located 2 km southeast of this site. 

However, I do not see a correlation between the non-linear ground deformation and precipitation 

(Figure 3.15b), suggesting the deformation here is less likely to be influenced by natural 

hydrological process. The aerial image shows a group of round-top infrastructures over the 
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subsiding site at North Salt Lake (Figure 3.15c), probably related to industrial production, 

suggesting that human activities are potentially responsible for the observed subsidence. I also 

observed an actively (throughout 2015-2016) subsiding site (Figure 3.15e) near an electronics 

manufacturing company in Lehi; however, such drastic subsidence has not been identified in the 

2004-2010 results. Surface fissures started to develop dramatically between 2010 and 2013 (Figure 

3.15f), and continued growing through July 2016 or afterwards. An aging of asphalt may be 

another reason for the fissures. 
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Figure 3.15 Localized subsidence in North Salt Lake (a)-(d) and Lehi (e)-(f). (a) and (d) 
Cumulative vertical deformation in North Salt Lake during 2004-2010 and 2015-2016, 
respectively. (b) Cumulative non-linear vertical deformation against precipitation. (c) Vertical 
deformation velocity in North Salt Lake during 2015-2016, with the area of subsidence enlarged. 
(e) Cumulative vertical deformation in Lehi during 2015-2016. (f) Vertical deformation velocity 
in Lehi during 2015-2016, with a subsiding site enlarged, to show the development of fissures. 
Error bars in panels a, d and e are the standard deviations of the deformation estimates within 200 
m of the selected target. 

The observed localized subsidence shows different deformation patterns compared with the 

time series over the confined aquifer. The temporal features of seasonality and the residuals of 

exponentially decaying model may be used to characterize the deformation related to both 

hydrological processes and industrial production. For example, the net uplift of the hydrological 
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unit highlighted by the high-resolution deformation map (Figure 3.6a) is marked by seasonality 

and large RMSE due to significantly fluctuating deformation, while the other hydrological units 

with no detectable motions are marked by no seasonality and small residuals. On the other hand, 

the industrial production is characterized by no seasonality and large RMSE due to accelerated or 

quasi-linear trend of deformation. 

3.5.2 Long-term deformation due to a delayed response to the prolonged head changes 

The aquifer skeletal response to changes in subsurface water levels is not instantaneous, and 

may take years to appear as surface deformation. According to a USGS report [Burden et al., 2005] 

on the groundwater conditions during 1975-2005 in Salt Lake Valley, water levels in the principal 

aquifer mostly declined, probably due to increased withdrawal and decreased precipitation. The 

greatest water level decline occurred south of Holladay and east of Midvale (grey shaded areas, 

Figure 3.16). The ground subsidence observed along the mountain front of the Wasatch Range and 

Jordan River banks, can be explained by this prolonged water level decline. Remarkably, ground 

water level has increased in the downtown area and the northwestern part of the valley (dotted area 

in Figure 3.16), which is consistent with the ground uplift derived from the ENVISAT data.  
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Figure 3.16 Map of ground water level changes from 1975 to 2005, digitalized from Burden et al., 
2005, superimposed on the long-term vertical deformation velocity derived from 2004-2010 
ENVISAT data. 

I infer that the uplift signature over the UAOI may result from the on-site water level increase. 

When the seasonal recharge of groundwater exceeds the amount of discharge over a long time 

span, the accompanying water level increase leads to net uplift of the surface when the vertical 

hydraulic conductivity is low enough to avoid rapid fluid diffusion [Miller et al., 2017]. This is 
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consistent with a large decay coefficient (-0.1 to -0.01) and thus slow equilibrium to the head 

changes at the heart of the UAOI. Interestingly, the water level change map of 1975-2005 shows 

that there is a small outstanding area with slight water level rise (0-5 feet or 1.5 meters) in Salt 

Lake City. However, the map for 1970-2000 [Burden et al., 2000] shows a border area with 

increased water level at the foot of the Wasatch Range. This area extends southwest to form an 

elliptical shape with its long axis oriented at an azimuth of approximately 45 degrees east of north 

in the water level change map of 1980-2010 [Burden et al., 2010], which is characterized with 

small water level decline (0-10 feet or 3 meters) in the most recent map of 1985-2015 [Burden et 

al., 2015]. A similar resemblance between the spatial patterns of groundwater level and 

displacement in a particular time interval, rather than the earlier or more recent time, has also been 

observed in Gulf Coast aquifers [Qu et al., 2015].  

I have shown that the net uplift at UAOI coincides with the area of net water level increase 

from 1975 to 2005, suggesting that the net uplift has a lagged response to the head increase, 

probably decades ago. However, the water level did not consistently increase during 1975-2005. 

According to the monthly-to-yearly recorded water level data since 1931 (Figure 3.17) at gauge 

#404506111523301 (40°45'06.68", 111°52'37.24") near the eastern boundary of the UAOI, the 

water level only increased during 1963-1982 (by ~2 m) and 1990-1995 (by ~1 m), while the water 

level mainly fluctuated for the time intervals of 1931-1963 and 1995 onwards. The timing and 

magnitude of the vertical strain for an aquifer also may depend on other parameters, including 

aquifer thickness, permeability, and storage states, which can change with lithology, or with 

seismic shaking [e.g., Chaussard et al., 2014]. 



 

111 
 

 
Figure 3.17 Water level of USGS gauge #404506111523301 in the ground uplifting area. 

The water-level-change map used in this study was based on an interpolation of measurements 

at about a dozen of gauges distributed in the aquifer basin, with a temporal sampling rate of only 

once per year [Burden et al., 2000; 2005; 2010; 2015]. Therefore, the contours of water level 

change may not be perfectly constrained due to the sparsely distributed gauges. On the other hand, 

because the ground deformation is approximately proportional to hydraulic head changes, the 

surface deformation map with estimates covering most of the aquifer, can improve the resolution 

of water level changes [e.g., Chen et al., 2016]. 

3.5.3 Salt Lake Valley, UT and Santa Clara Valley, CA: similarities and distinctions 

There are similarities in the aquifers below Santa Clara Valley, CA and Salt Lake Valley, UT. 

They are both located under densely populated areas and both systems possess faults that function 

as hydrologic barriers, disrupting the subsurface flow of groundwater and modulating the long-

term ground deformation [Schmidt and Bürgmann, 2003]. 

Santa Clara Valley had a subsidence history from 1916 to 1982 [Poland and Ireland, 1988], in 

contrast to later uplift from 1992 to 2011 due to water recharge [Schmidt and Burgmann, 2003; 
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Chaussard et al., 2014]. I have also observed an uplift signal in Salt Lake Valley from 2004 to 

2010, yet the reason behind the uplift could be different for the two aquifer systems. For Santa 

Clara Valley, the observed elastic strain is in response to anthropogenic withdrawal and later 

remedial actions of fluid injection. However, there is no evidence of consistent fluid injection 

before or during 2004-2010 in Salt Lake Valley, suggesting that the aquifer in Salt Lake Valley 

responds elastically to the natural hydrological process. Alarmed at the social and environmental 

problems caused by the uncontrolled groundwater withdrawal in Santa Clara Valley, particular 

attention needs to be paid on the prolonged water level decline in most areas of Salt Lake Valley 

(Figure 3.17) [Burden et al., 2000; 2005; 2010; 2015]. Once irreversible inelastic subsidence 

occurs it may cause critical damage to the roads and other infrastructures. Additionally, the valley 

may face the threat of saltwater intrusion and permanently contaminating the water source if 

subsidence were to be so pronounced as to allow the groundwater level near the Great Salt Lake 

to drop below the water level of the lake itself. 

3.5.4 Correlation between seismic hazards, seasonal deformation and hydrological process on a 

monthly scale 

Water discharge and recharge may disturb the stress field due to pore pressure changes and 

may trigger faulting and micro-earthquakes [e.g., Segall et al., 1994]. To investigate the 

relationship between seismicity and hydrology via the media of ground deformation, I compare 

the earthquakes, water discharge, precipitation records, and non-linear ground deformation using 

monthly binned averages, and fit the data with a single frequency sinusoid function (Figure 3.18). 

To reduce instrumental bias, I use natural earthquakes since 1962 (archive of University of 

Utah Seismograph Stations) above latitude 40.6° over the Salt Lake Valley with a minimum local 

magnitude of 1.25, over which the magnitude and total number of earthquakes obey the Gutenberg-
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Richter law [Lay and Wallace, 1995]. I picked main shocks and culled foreshock and aftershock 

sequences (occurring in consecutive days) to summarize the number of earthquakes for each 

month. A number of 186 earthquakes with magnitude up to 5.2 and depth ranging between 0.03 

and 14.04 km were selected. 

I use the water discharge data at gauge D1 and precipitation data at gauge M1 between 2004 

and 2015, where they both show regular seasonal oscillation. I use the averaged non-linear 

deformation over the net uplifting area of interests southwest of the Salt Lake City between 2004 

and 2010. Note that the deformation data used in Figure 3.14 include the monthly binned averaged 

deformation over the entire area of interest, rather than time-series deformation at gauge D1, so 

that the phase is slightly different from that in Figure 3.9. 

 The seismic hazard is approximated by the monthly cumulative number, monthly averaged 

magnitude and monthly averaged earthquakes depth (Figure 3.18a-c). March, July, and October-

November seem to have higher seismic hazard than other months, in which March shows the most 

consistent and profound expressions in the high seismic hazard in terms of large number of 

earthquakes, large magnitude and shallow depth. March has the most uplift (Figure 3.18d) when 

the rainfall and snowmelt infiltrate into the subsurface and hydraulic heads elevate; on the other 

hand, the ground surface compacts the most during August and September, which may be the 

reason for the least seismic hazard. July is the transit period from relaxation to compaction, and 

October-November corresponds to the opposite transit, and both periods witness large 

displacement gradient. However, the explanation of the displacement gradient does not work for 

March since the displacement gradient is small.  

The seasonal deformation is obviously influenced by the water recharge and discharge 

processes: all three have similar apparent frequency with a period of around one year, yet with 
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certain time lags (Figure 3.18e-f). Stream discharge (to Jordan river) has been increased from 

November through June with a significant peak from May to June due to snowmelt. Infiltration of 

precipitation shows two peaks in April and December, respectively. The apparent net water storage 

by removing the trend of the water discharge from that of the precipitation, modulates the seasonal 

deformation but with a few months’ delay due to low hydraulic conductivity.  

Nevertheless, the apparent wavelength of the monthly binned earthquake records is much 

shorter than that of the deformation and hydrologic records (Figure 3.18). This might be due to the 

fact that, under the normal faulting regime, pore pressure changes (either increase or decrease) can 

bring the effective stress closer to the failure envelope considering the coupling between the 

minimum horizontal stresses and pore pressures. Overall, there is insufficient evidence to support 

the correlation between seismic hazard and groundwater processes over the Salt Lake Valley. 

Worth noting is that the earthquake analysis is highly simplified. 
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Figure 3.18 Monthly binned histograms showing the number (a), magnitude (b) and depth (c) of 
tectonic earthquakes, non-linear deformation component of the area of interest (d), cumulative 
precipitation (e), and water discharge (f). The red lines show the apparent periodic waveform with 
the corresponding period indicated. The gray line in panel d show the simulated apparent net water 
storage by removing the trend of the water discharge from that of the precipitation. 

I have measured the ground deformation over two time intervals (2004-2010 and 2015-2016) 

over Salt Lake Valley using multi-temporal InSAR analysis. The InSAR-derived deformation 

maps highlight seasonal oscillating cycles of uplift and decline as well as a long-term net uplifting 

area southwest of downtown Salt Lake City. Spatially, the net uplifting area falls within the aquifer 

systems’ discharge area and is bounded by existing faults. The maps of deformation velocity, the 

seasonality and the decay coefficient help us better evaluate the existing boundaries of principal 

aquifers and identify some previously unknown fault segments, suggesting the embedded faults 
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disrupt the groundwater flow and partition the hydrological units. Temporally, the time-series 

deformation measurements provide insights into the time scale of groundwater exchanged. The 

cross-correlation with hydrological observations, such as precipitation and water discharge rate, 

reveals that the ground deformation is modulated by both water recharge and discharge processes. 

The large seasonal oscillations reflect the rapid redistribution of groundwater. In one location, the 

long-term uplift corresponds to the prolonged increase in hydraulic head and thus the pore 

pressure. In addition, two localized subsiding sites were identified through the analysis in North 

Salt Lake and Lehi, which are more likely due to anthropogenic activities rather than natural 

hydrological processes. WFZ is probably overdue for damaging earthquakes, and may threat 

nearly 80% of Utah’s population [USGS, 2016], and deserve our attention and contingency 

response. InSAR is a powerful monitoring tool that provides timely ground deformation 

measurements, which can help us better understand the complex kinetic chain associated with 

anthropogenic and natural activities, earthquake and groundwater processes. 
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CHAPTER 4 

CONSOLIDATION SETTLEMENT OF SALE LAKE COUNTY TAILINGS 

IMPOUNDMENT 

 

Hu, X., T. Oommen, Z. Lu, T. Wang, J. W. Kim, 2017, Consolidation settlement of Salt Lake 
County tailings impoundment revealed by time-series InSAR observations from multiple radar 
satellites, Remote Sens. Environ., 202, 199-209. 
 

4.1 Introduction 

Tailings impoundments/dams are built to accommodate the byproducts of mining operations 

after the separation of the valuable metals/minerals and the fine-grained waste (tailings), and they 

can usually be found at or near mine sites [Hudson-Edwards, 2016]. Since the mining industry 

produces enormous quantities of fine rock particles, ranging from a few millimeters down to as 

small as a few microns, the tailings embankment can reach several hundred meters in height and 

the impoundments can cover several square kilometers spatially [U.S. EPA, 1994]. Failures of 

tailings dams occur worldwide [e.g., Caldwell and Charlebois, 2010], with substantial triggering 

factors including, but not limited to, earthquakes, foundation/slope failures, liquefaction, and 

overloading. A catastrophic tailings dam failure can have significant fatal, environmental, and 

financial consequences [Hudson-Edwards, 2016]. The recent large collapse of mines and tailings 

dams in Hpakant, Kachin state, Myanmar on November 21, 2015 killed at least 113 people [WISE, 

2015]. These failures also contaminated the ground surface and groundwater with metals, and a 

large scale contamination can cost an average of $500 million to cleanup [Bowker and Chambers, 
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2015]. The safety of tailings facilities, for protecting life, environment, and property, is crucial to 

today’s mining operations [ICOLD, 2001]. Therefore, monitoring the stability of tailings 

impoundment is critical for sustainable mining development. However, the overwhelming spatial 

extent of the tailings impoundment often proves to be an engineering challenge to monitoring using 

traditional geotechnical measurement techniques. 

InSAR provides an excellent monitoring tool to evaluate the stability of man-made structures, 

such as tailings dams [e.g., Riedmann et al., 2013; Colombo, 2013; Necsoiu and Walter, 2015], by 

providing mm-scale deformation measurements with bi-weekly or monthly updates. The rate of 

settlement and its spatial distribution derived by InSAR can help determine if the desired 

consolidation is reached, if additional drainage needs to be performed, and where the drainage 

wells should be installed. It also can provide indications of any differential settlement occurring 

within the impoundment. However, recent InSAR studies on tailings impoundment in South Africa 

[Riedmann et al., 2013], Chile [Colombo, 2013], and New Mexico (USA) [Necsoiu and Walter, 

2015] have mainly focused on the dams’ slope stability, but their geotechnical mechanism, 

potential impacts to the surrounding area, and correlation with the hydrological processes have 

been less investigated [Riedmann et al., 2013; Colombo, 2013]. These analyses were limited by 

the availability of archived SAR images (e.g., short temporal period) and lacked validation 

[Necsoiu and Walter, 2015].  

The study presented here is the first that uses a combination of multi-temporal and multi-

spaceborne SAR observations, DEMs from SRTM and high-resolution LiDAR, and auxiliary 

water level data, to assess the stability of the Kennecott tailings impoundment in Salt Lake County, 

Utah, and the surrounding area. A set of 40 descending C-band ENVISAT ASAR images from 

Track 41 (T41) during 2004-2010, 13 ascending L-band ALOS PALSAR-1 fine beam mode 
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images from Path 202 (P202) during 2007-2011, and 18 descending C-band Sentinel-1A 

interferometric wide-swath (IW) images from Path 158 (P158, half of the imaging swath) during 

2015-2016 were used (Figure 4.1a). Utilizing a large dataset of SAR images can: a) improve the 

accuracy of deformation measurement through multi-interferogram processing by reducing 

various artifacts in individual interferograms; b) enhance the temporal resolution of the time-series 

products; c) allow for the retrieval of 2-dimensional (or even 3-dimensional) deformation vectors; 

and d) expand the time span of the investigation to better understand the long-term characteristics 

of the phenomenon (e.g., Lu and Dzurisin, 2014). The multi-temporal InSAR method assesses the 

stability of the embankments through mapping out drastic and gradually decelerated subsidence 

over the south pond, and various deformation behavior over the surrounding infrastructures and 

land disposal sites. InSAR-derived deformation is also compared with daily water level data. I 

show that InSAR observations can be well-explained by a consolidation settlement model, which 

allows us to differentiate the settlement process and foresee its development in the near future. 
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4.2 Study area and related hazards 

The east flank of Oquirrh Mountains at Salt Lake Valley, Utah, accommodates the Bingham 

Canyon mine managed by Kennecott Utah Copper Company and contributes a quarter of total US 

copper production. Tertiary-age igneous rocks intruded the Oquirrh Formation, forming deposits 

of copper and other metals that have been extracted from a depth of more than 970 meters [Pankow 

et al., 2014]. About 20 km north of the Bingham Canyon mine, Kennecott built a 37-km2 tailings 

impoundment to contain its uneconomic ore products, which has been in operation since 1906. 

Tailings in the impoundment are primarily composed of silica sand, with a slightly higher 

concentration of copper than the general soil in the western United States [Kennecott Utah Copper, 

2008]. 

Kennecott tailings impoundment, together with a mining refinery and a smelter, are in close 

proximity to the Great Salt Lake (Figure 4.1b). The tailings show a downward hydraulic gradient, 

equal to an average of 40% hydrostatic pressure [Klohn Leonoff, 1992]. The aquifer systems 

around the impoundment have concentrations of arsenic, selenium, and cadmium in excess of Utah 

Ground Water Quality Standards [Kennecott Utah Copper, 2011]. Currently, there is increasing 

public awareness of the extensive groundwater contamination and air pollution from mining 

production, and their impact to the fish and wildlife habitats in the Great Salt Lake and the 

residential community of Magna [EARTHWORKS, 2011]. 

Another big concern is the stability of the facility and the associated risk to public safety due 

to a potential earthquake induced failure [URS, 1999a; URS, 1999b; Tetra Tech, Inc., 2009]. 

Kennecott tailings impoundment has experienced failures in 1941, 1964 and 1998 [Kennecott Utah 

Copper, 1997; AGRA Earth and Environmental, Inc., 1998]. The deposition of fine particle tailings 

became fluid due to water intrusion, resulting in embankment failure. The impoundment is located 
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between the East Great Salt Lake fault zone to the west and the extended fault segments of the 

Wasatch fault system to the east [EERI, 2015]. Figure 4.1b illustrates the tectonic earthquakes in 

this valley mainly occurred at the terrain adjacent to tailings dams. The fluid pressure change in 

and around the settling impoundment may vary the stress field and trigger the seismicity [Amos et 

al., 2014], which in turn, may induce liquefaction and the associated dam failure and runout event. 

To upgrade the stabilization of the old south pond in the vicinity of Magna community, 

Kennecott began reducing the slope of the southeast corner and moved the tailings more than 800 

m away from the slope crest in the early 1990s [Kennecott Utah Copper, 2008]. In 1995, Kennecott 

added an adjacent 14-km2 north pond with seismic upgrade, and later in 1999, began transitioning 

from the south pond to the north pond [Kennecott Utah Copper, 2008] (Figure 4.1). Kennecott 

actively managed the suppression of dust at the north pond by keeping the center (where fine grain 

tailings are deposited) wet with tailings slurry and watering the outer embankments [UDEQ and 

EPA, 2014]. After terminating the tailings deposition on the south pond completely in 2001, 

Kennecott reclaimed the area by vegetating the slopes and top surface, which included a series of 

implementations of dewatering [UDEQ and EPA, 2014]. Around the perimeter of the 

impoundment, clarification canal and toe drains have been constructed to collect the water. A 

sedimentation pond (P5 in Figure 4.1b) to the east side of the south pond was used for further 

clarification of the drain-down water to reduce total suspended solids before directing the water to 

the process circuit [Kennecott Utah Copper, 2011]. Kennecott has spent over $500 million dollars 

in the past 20 years to upgrade the stability of the south tailings facility, and recently launched 

another $2 million pilot dewatering project to accelerate the stabilization process, which included 

the installation of more wells for water pumping [Kennecott Utah Copper, 2016]. 
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Even though enormous efforts have been put forth to mitigate the risk of failure [Kennecott 

Utah Copper, 1997; EARTHWORKS, 2011], there were no geodetic measurements to 

systematically monitor the settlement of tailings and the stability of the surrounding area. 

Persistent consolidation settlement due to the dissipation of pore pressure and the associated 

increase in effective stress during water drainage and extraction may pose a threat to the 

surrounding infrastructures, including a major railway line, Interstate Hwy I-80 and State Hwy 

201 (Figure 4.1). It is especially thus important to monitor the stability of the impoundment area 

in this tectonically active region. Utah Department of Environmental Quality (UDEQ) and 

Environmental Protection Agency (EPA) claimed that the south pond, the outer embankments of 

the north pond, and the surface soils along the south side of Hwy 201 appeared to be stable in their 

recent five-year review [2014]. However, the statement needs to be thoroughly investigated by 

long-term observations.  

4.3 Multi-temporal InSAR analysis 

I employ a multi-temporal InSAR data processing routine to derive the displacement field after 

removing the atmospheric phase screen and orbital artifacts inherent in each interferogram [e.g., 

Hu et al., 2016]. The topographic phase component in the interferograms is estimated using 2-m 

resolution bare-earth LiDAR DEM acquired in 2006. A total number of 105 ENVISAT ASAR 

interferograms (perpendicular baseline < ~300 m and temporal interval < ~450 days), 23 ALOS 

PALSAR-1 interferograms (perpendicular baseline < ~2,000 m and temporal interval < ~600 

days), and 66 Sentinel-1A interferograms (perpendicular baseline < ~250 m and temporal interval 

< ~180 days) are used for time-series analysis. Figure 4.2 shows the baseline configurations for 

these three datasets.  
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Figure 4.2 Image graph of the interferometric pairs: ENVISAT (a), ALOS-1 (b) and Sentinel-1A 
(c) datasets. All connecting lines indicate the interferograms used to retrieve the time-series 
deformation, in which the green lines in panel a represent the interferograms used to estimate the 
dominant deforming trend at the south pond. 

I jointly use the DA and averaged coherence to identify PS [Ferretti et al., 2000] or CT points 

[Hu et al., 2016]. The north pond completely loses coherence due to the moist surface for the 

purpose of enhanced dust control, and thus no CT point can be detected. The south pond has been 

reclaimed and well-vegetated at the surface and thus allows the identification of CT points. 

Although the south pond is no longer active for tailings deposition, it is still valuable to evaluate 

Kennecott’s commitment of reclamation and stabilization efforts, especially when the tailings may 

still have the potential to liquefy in this tectonically active region. The available ENVISAT and 

Sentinel-1A images are sufficiently large in number, and thus I exclude the data acquired during 

the winter season from December to February when the coherence is poor. Nevertheless, the 

available ALOS-1 images are limited, so I include all data running through different seasons. The 

south pond has been kept wet for the purpose of dust control, which means that the top layer is 

frozen in the winter so that SAR amplitudes are highly variable in time. Therefore, the DA of 

ALOS-1 over the south pond is significantly larger than that of the other two datasets, and its 

detected CT points at the south pond are more sparse than the surrounding area at given DA 

threshold. The disparity in density is less obvious for ENVISAT dataset and almost nonexistent 

for Sentinel-1A dataset. To achieve a general density equilibrium of CT points between the south 
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pond and the surrounding areas for ENVISAT and ALOS-1 datasets, I first applied ordinary 

thresholds (DA < 0.5 and averaged coherence > 0.35 for ENVISAT dataset, and DA < 0.4 and 

averaged coherence > 0.5 for ALOS-1 dataset) to obtain the initial CT points in the study area 

(Figures 4.3a and d), and then loosen the thresholds (DA < 1 and averaged coherence > 0.32 for 

ENVISAT dataset, and DA < 1 and averaged coherence > 0.4 for ALOS-1 dataset) to densify CT 

points within the south pond (Figures 4.3b and e). A merge of these two constitutes the ultimate 

CT points (Figures 4.3c and f) used for time-series analysis. Sentinel-1A images are regularly 

acquired over this study site with about a 24-day interval (the satellite repeat cycle is 12 days), 

leading to much larger coherence and smaller DA, and I use the same thresholds (DA < 0.45 and 

averaged coherence > 0.5) for the entire study area. The resultant averaged density is 1,200, 1,600 

and 1,350 CT points per km2 for ENVISAT, ALOS-1 and Sentinel-1A datasets, respectively. 
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Figure 4.3 CT points selection for ENVISAT (a-c) and ALOS-1 (d-f) datasets. (a) and (d) show 
the initial CT points detected in the study area, (b) and (e) show the densified CT points in the 
south pond by loosening the thresholds, and (c) and (f) show the ultimate CT points used in time-
series analysis by merging CT points in (a), (b) and (d), (e), respectively.  

As the study area is adjacent to the Great Salt Lake at the foot of Oquirrh Mountains, water 

vapor - in the air above the site - can produce artifacts in interferograms. Considered as low 

frequency signals in space, atmospheric artifacts and satellite orbital errors are estimated by first-

order polynomial fitting with respect to the range and azimuth position in radar coordinates as well 

as the elevation at the location of CT points. The actively moving south pond and poorly coherent 

mountainous areas are masked out when constraining the polynomial coefficients. 

The deformation gradient in the tailings impoundment based on initial interferograms is too 

large for the C-band ENVISAT dataset to be correctly unwrapped. To resolve the heavily 

condensed fringes in terms of interferograms, I first estimated the linear deformation velocity using 

19 interferograms with stringent baseline thresholds (perpendicular baseline < ~300 m and 
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temporal interval < ~90 days, green connecting lines in Figure 4.2a). The velocities for each CT 

point are further used to estimate the dominant deformation component, which is removed from 

the original wrapped phase for all the selected 105 interferogram. As a result, the fringes of the 

interferograms are greatly reduced which allows for correct phase unwrapping. Subsequently, the 

dominant deformation component is added back. This process is run iteratively, and the dominant 

deformation component is re-estimated from each iteration. In the study, two iterations are good 

enough to eliminate the phase jumps. The resultant 105 unwrapped interferograms are used to 

retrieve the time-series deformation at each CT point using LSE (e.g., Hu et al., 2016). Although 

Sentinel-1A dataset is also operated in the C-band, the temporal frequency (~9 acquisitions per 

year used in this study) is improved over ENVISAT (~6 acquisitions per year), so I have a 

sufficient number of interferograms with clearly distinguishable fringes and avoids the unwrapping 

problem. 

4.4 Data analysis and interpretation 

Assuming that there is no north-south movement on the south pond, I derive the 2D (vertical 

and east-west) displacement field (Figure 4.4) using the temporally overlapping measurements of 

ENVISAT and ALOS-1. The ground surface shows significant land subsidence, reaching a rate of 

200+ mm/yr at the northeast corner; which is a representation of the vertical settlement of the 

tailings impoundment during dewatering. Interestingly, the horizontal displacement map shows 

that the west and east motion of the south pond moves toward the center, though at a much smaller 

magnitude (<30 mm/yr). This might be due to the possible surface motion of the south pond 

towards the central north pond (greenish surface area in Figure 4.1b) that is currently in active 

tailings deposition. Considering the tailings fields are governed by the vertical motion, I retrieve 
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the vertical deformation by projecting the radar line-of-sight (LOS) deformation with the local 

incidence angle at each CT point in the following analysis. 

 
Figure 4.4 2D annual displacement (assuming no north-south movement) field of the south pond 
derived by ENVISAT and ALOS-1 measurements of overlapping period between 2007 and 2010. 
(a) Vertical displacement field. Negative values mean subsidence. (b) Horizontal east-west 
displacement field. Positive values mean eastward motion and negative values mean westward 
motion. 

4.4.1 Drastic settlement of the south pond 

The vertical deformation velocity of the study area (Figures 4.5a-c) and the deformation 

velocity measurements along two profiles AA’ and BB’ (Figures 4.5d-e, for CT points within a 

buffer of 100 m) suggest that the settlement has gradually decelerated throughout the entire south 

pond. Three independent InSAR datasets show good consistency with the compaction peak located 

at the northeast corner at a rate of 200+ mm/yr during 2004-2011 and 100+ mm/yr during 2015-

2016; the adjacent toe of the north slope just west of the northeast corner is where the statically-

induced flow liquefaction slide occurred in 1998 [AGRA Earth and Environmental, Inc., 1998]. 

The settlement seems to be well constrained by the peripheral embankments. Although the time 

span of Sentinel-1A imagery is only about two years, the temporal resolution is high enough to 
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maintain good coherence, so the averaged velocity map can pinpoint the location of the compaction 

peak, where ENVISAT and ALOS-1 datasets failed due to the scarcity of CT points. In addition 

to the drastic subsidence, the entrapped water over the fine-grained tailings is another explanation 

for the scarcity of CT points at this location. The water used in the slurry transport of tailings on 

the south pond has been collected in a decant pond in the near vicinity of the northeast corner since 

1917 [Dunne et al., 1999]. 
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Figure 4.5 Vertical deformation velocity in the south pond derived from ENVISAT (a), ALOS-1 
(b) and Sentinel-1A (c) datasets. (d) and (e) show the deformation velocities of ENVISAT (red 
circles), ALOS-1 (blue squares), and Sentinel-1A (gray triangles) along cross-section profiles AA’ 
and BB’ (white dashed lines). The left Y axis represents the vertical deformation velocity in 
millimeters per year and the right Y axis represents the elevation in meters. 
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The 2006 LiDAR DEM, 2000 SRTM DEM and their difference over the study area are shown 

in Figures 4.6a-c. According to the DEM map, the impoundment areas are significantly higher 

(approximately 65 m) than the surrounding ground, consistent with the investigation conducted by 

the UDEQ and EPA [2014]. Additionally, the embankments confining the pond along the interstate 

Hwy I-80, and the tapered earthen berms next to the Magna neighborhood are also visible from 

the DEM difference map, suggesting they were built between 2000 and 2006: a linear structure 

with around 20-m increase of height along I-80 highlights the upgrade and construction of the 

embankments during this time period, and the linear features with more than 10-m decrease of 

height at the southeast corner probably correspond to the ditches bounded the tapered earthen 

berms (approximately 4.5 m in height) [Kennecott Utah Copper, 2008]. More importantly, the 

DEM difference map provides additional evidence of the emplacement of the compaction peak 

(Figures 4.6d and e). InSAR and DEM estimates are in good agreement that the compaction peak 

locations at 6.5 km along profile AA’ (from A) and 3.05 km along profile BB’ (from B).  

 



 

140 
 

 
Figure 4.6 DEM of the pond area: 2006 bare-earth LiDAR DEM (a), 2000 SRTM DEM (b), and 
the difference between those two (c). (d) and (e) show the elevation and their difference along 
profiles AA’ and BB’ respectively. 

The south pond was subdivided into some reclamation areas, and these areas were reclaimed 

in a systematic and sequential manner, while tailings continue to be deposited into the unreclaimed 

areas [URS, 1999a]. A series of reclamation dikes constructed across the surface of the 

impoundment isolate each of the reclamation areas and allow us to delineate the major reclamation 

areas (polygons outlined by black lines in Figures 4.1b, 4.3, 4.4, and 4.5a-c) according to the 

shaded relief map of LiDAR DEM and aerial imagery. 
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To better analyze the deformation patterns, I calculated the averaged cumulative deformation 

of each reclamation area. Figure 4.7 shows that the least subsidence is observed at reclamation 

areas 1 and 3 to the west and south, with more than twice the magnitude of deformation found at 

reclamation areas 2 and 4 to the north and east. The cumulative deformation from ALOS-1 is 

slightly larger than that from ENVISAT, which is more outstanding in reclamation area 4. This is 

because the density of CT points over the subsiding northeast corner is larger in ALOS-1 than in 

ENVISAT, so more significant values are included when taking the average. Another reason for 

the difference between ENVISAT and ALOS-1 estimates might be due to possible horizontal 

displacements because of the descending track from ENVISAT and the ascending track from 

ALOS-1 have different sensitivities to horizontal motions. Nevertheless, the difference in the 

cumulative deformation is small and can be ignored with respect to the total. Time-series 

deformation (Figure 4.7) also suggests that the settlement has been decaying. Take the reclamation 

area 4 for example, Sentinel-1A results depict a cumulative averaged subsidence of almost 100 

mm in less than two years from April 2015, indicative of a settling rate of ~50 mm/yr, around one 

quarter of that in previous years from 2004 through 2011 (an average of ~130 mm/yr as derived 

from ENVISAT and ALOS-1 results). I believe a couple of outliers in the time series are due to 

the localized atmospheric turbulence associated with the corresponding acquisitions. 
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Figure 4.7 Quasi-linear cumulative deformation of four reclamation areas within the south pond. 
Circles, squares, asterisks and crosses represent the results of reclamation areas 1 to 4, respectively. 
Red and blue annotations in panel a and gray annotations in panel b represent the measurements 
of ENVISAT, ALOS-1 and Sentinel-1A, respectively. 

4.4.2 Stability of the embankments and surrounding area 

The settlement in the tailings impoundment and the accompanying drastic surface subsidence 

may have an impact on the stability of the embankments and surrounding area, underlain by the 

low permeability Upper Bonneville Clay. Based on multi-temporal InSAR results, I have found 

the northeast embankments of the south pond are in active motion (Figure 4.8). Some long-term 

net subsiding sites can also be located: two segments along the Hwy I-80 (P1 and P3) and two 

wetlands and mitigation sites (P2 and P4), and the sedimentation pond (P5) and the land disposal 

site (P6). In contrast to the decaying settlement of the south pond, most of the highlighted sites 

seem to maintain the same level of deformation velocity through time. One segment of Hwy 201 

adjacent to the embankments at the southeast corner experiences relatively subtle subsidence (~20 

mm/yr), far less than that of the south pond, and the deformation boundary has retreated from the 

residential community of Magna according to the recent Sentinel-1A results.  
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Figure 4.8 Vertical deformation velocity surrounding the tailings impoundment derived from 
ENVISAT (a), ALOS-1 (b) and Sentinel-1A (c) datasets, respectively. The drastic settlement of 
south pond and the poorly coherent mountainous areas in the southwest of the study area are 
masked out so that I can highlight on the area of interest with a narrow range of color scale. 

To better interpret the behavior of the occurring deformation, I plot the time-series deformation 

at selected sites, and also compare them with the daily water level measurements at Saltair Boat 

Harbor in the vicinity of the Great Salt Lake (green square in Figures 4.1b and 4.8). The 

sedimentation pond P5 (Figure 4.9e) shows quasi-linear subsidence, which is similar to the south 

pond (Figure 4.7). Interestingly, the subsidence of P5 is at the same rate of decaying with respect 

to the settlement over the south pond. To be specific, the rate of subsidence of P5 has decreased 

from ~25 mm/yr during 2004-2011 to ~10 mm/yr during 2015-2016, similar to the decaying 

settling process (by around 60 percent) of the adjacent reclamation area 4 from ~130 mm/yr to ~50 

mm/yr. Therefore, I suggest that the subsidence of P5 is highly likely due to the settlement effect 

extending from the south pond. About 3 km northeast to the impoundment, site P4 (Figure 4.9d) 

seems to maintain a quasi-linear subsidence at a rate of 7 to 10 mm/yr. Site P7 (Figure 4.9g) at 

Magna shows fluctuations in displacement, but the net elastic deformation is almost zero. The 

other selected sites, including the Hwy I-80 segments P1 (Figure 4.9a) and P3 (Figure 4.9c), 

wetlands and mitigation site P2 (Figure 4.9b), and the land disposal site P6 (Figure 4.9f), exhibit 

net cumulative subsidence up to 60 mm with larger fluctuations from 2004 to 2011. The water 
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level follows the seasonal trend, reaching a peak in the late spring and then dropping to the bottom 

in the early winter, with an annual peak-to-trough magnitude of less than 1 m. The time-series 

deformation at P6, particularly for Sentinel-1A results, seems to be in phase with water levels, 

possibly suggesting an elastic response of the ground surface to the pore pressure change; however, 

no similar comparisons at other sites (e.g., P1-P5) can be found closer to the water level gage. 

Therefore, there is no clear evidence for correlation between deformation fluctuation and seasonal 

water level in this study site.  

I believe that the embankments do constrain the compaction of the impoundment to a large 

extent, but there are still some “leakages” that have occurred. Based on the observations, I make 

the following recommendations: (a) stabilization of embankments along the east half side of the 

impoundment; (b) monitoring of the tailings-related process near the water gage at Saltair Boat 

Harbor and the sedimentation pond around P5; (c) reinforcement of the foundation of Hwy I-80 

segments at the harbor around P1 and along the northern embankment around P3, as well as the 

Hwy 201 segment next to the southern part of the embankment, or a complete relocation of those 

highway segments; and (d) establishment of buffer zones around the south and east slope near 

Magna. 
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Figure 4.9 Cumulative vertical deformation surrounding the impoundment and water level 
measurements. (a)-(g) Time-series vertical deformation of the selected sites P1-P7 whose locations 
are marked in Figures 4.1b and 4.8. The measurements of ENVISAT, ALOS-1 and Sentinel-1A 
are denoted by the red circles, blue squares and gray triangles, respectively. (h) Daily water level 
measurements at Saltair Boat Harbor. 

4.5 Consolidation settlement modeling 

The tailings field can be vertically stratified into five layers from top to bottom – spigotted 

tailings, soft tailings clay, deep whole tailings, Upper Bonneville clay and interbedded sediments 

[URS, 1999a]. The surface is covered by the ~6-m thick spigotted tailings, similar to sandy beach 

deposits that belongs to the tailings, and I consider it as the final load on the tailings structure. 

Immediately beneath the spigotted tailings layer is the ~10-m soft tailings clay, which is fine-

grained and typically classifies as a low-to-medium plasticity silty clays, and the soft tailings clay 

around the northeast corner area is characterized as decant pond clay, which is in highly saturated 

and occupies the lowest elevation. The ~45-m layer of older deposits of deep whole tailings are 

highly interbedded and relatively coarse-grained in nature, and typically classified as a silty sand 

interbedded with silts and silty clays. The foundation of the tailings structure is composed of lake 

clays interbedded with lenses of sands. The Upper Bonneville clay is about 4 m in depth and 
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marked by Gilbert red beds, so called because of oxidation stains resulting in a reddish appearance. 

The tight clay strata are occasionally interrupted by sand beds, typically with less than 0.6-m 

thickness; generally, this layer effectively limits the seepage of process water into underlying 

foundation [Dunne et al., 1999]. Interbedded sediments with various interbedded clays and sands 

sitting at the bottom have a thickness of ~15 m. The deposits of soft tailings clay and deep whole 

tailings have an over-consolidation ratio (OCR) of 1.5, attributed to aging and chemical alteration 

of tailings over time. Underneath the embankment, the maximum OCR of the foundation layers of 

the Upper Bonneville clay and interbedded sediments can reach 4.0 in the free field. 

The settlement of overconsolidated tailings was analyzed using the software Rocscience 

Settle3D [2009] based on the InSAR-derived surface displacement field. Soil material properties 

(Table 4.1) are selected adequately based on Kennecott’s internal geotechnical reports [Dunne et 

al., 1999; URS, 1999a; URS, 1999b; Tetra Tech, Inc., 2009] and various documentations on soil 

properties [Carter and Bentley, 1991; Das, 2002; Das, 2008; Geotechdata info., 2013; Hough, 

1969; McCarthy, 1998; Spangler and Handy, 1982; Swiss Standard, 1999]. 
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Table 4.1 Soil material properties of tailings structure 

Soil layers Thickness* 
[m] 

Unit 
weight* 
[kN/m3] 

Immediate 
settlement Primary consolidation Secondary 

consolidation 
Es** 
[kPa] Cc** Cr** e0** OCR* K*,** 

[mm/yr] Cα** 

Spigotted 
tailings (load) 6 18.54 14000 0.36 0.050 0.8 1.2 3150 0.036 

Soft tailings 
clay 10 16.81 2700 0.56 0.074 1.2 1.5 1 0.056 

Deep whole 
tailings 45 18.22 14000 0.41 0.056 0.8 1.2 100 0.041 

Upper 
Bonneville clay 4 18.54 10000 0.36 0.055 0.8 2.5 20 0.036 

Interbedded 
sediments 15 20.26 32500 0.26 0.039 0.8 2.5 100 0.026 

Es: Young’s modulus 
Cc: compression index 
Cr: recompression index 
e0: initial void ratio 
OCR: over-consolidation ratio 
K: permeability 
Cα: secondary compression ratio 

Note: Soil material parameters are selected 
adequately based on Kennecott’s internal 
geotechnical reports (superscript *) and other 
documentations on soil mechanism (superscript 
**). 

 

Wick drains/prefabricated vertical drains could support a number of critical engineering 

requirements during the stability upgrade of the south pond and the construction of the expanded 

north tailings storage facility [Dunne et al., 1999]. Wick drains were installed around the existing 

dewatering wells to enhance the drain flows by providing vertical drainage between various 

tailings layers. Two principal wick drain programs were implemented around the southeast and 

the northeast corners of the south pond. At the southeast corner, wick drains mainly focused on 

the eastern reach of the south slope, where hydraulic conductivity was relatively low, and 

consequently, the flow rates of tailings in this area were relatively slow. The installation followed 

a triangle pattern with a spacing of 4 m and an averaged depth of 33 m, and most of them were 

installed between December 1997 and July 1998 [URS, 1999b]. At the northeast corner, the wick 
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drain program was initiated after realizing significantly lower shear strength than anticipated over 

the slope at the northeast side of the south pond in 1992 [Dunne et al., 1999]. The prompt field 

investigation suggested that the clay-sized soil materials in this area had not consolidated to a 

degree that can sustain the increasing overlying loads. The fine-grained nature of the tailings in 

this area had entrapped water and resulted in an increase of in situ pore pressures as new material 

deposition occurred. A series of wick drains were installed mainly at the embankment slope and 

beach area with a spacing of 2 m and an averaged depth of 60 m, which were believed among the 

deepest vertical drains installed in the world [Dunne et al., 1999], and the installation were 

completed between 1995 and 1998 [URS, 1999a].  

Wick drain programs have proven effective in controlling excess pore pressure and enhancing 

the drainage characteristics within the upstream tailings embankment [Dunne et al., 1999]. Since 

horizontal permeability is usually higher than vertical permeability so that horizontal flow is faster, 

I assume the ratio of horizontal to vertical permeability Kh/Kv is 2 for all layers. Settlement 

analyses are carried out using an average pressure (111 kN/m2) of the top spigotted tailings layer 

acting on the remaining tailings structure starting from 2000 (the middle time between the 

installation of wick drains and the abandon of tailings deposition to the south pond). The surface 

settlement is assumed to be the imprint of the deformation at the interface of spigotted tailings and 

the underlying soft tailings clay at a depth of 6 m. In addition, to represent the groundwater 

condition, I added 0-m piezometric line at the layer of soft tailings clay, and 1-m piezometric line 

at the underlying layers. Wick drains at the southeast corner is along the periphery slopes; however, 

the coverage at the northeast corner is not accessible from literatures [Dunne et al., 1999; URS, 

1999b], so I made assumptions based on InSAR-derived displacement field. 
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The total settlement is the sum of three components - immediate (elastic) settlement, primary 

consolidation, and secondary consolidation (creep) (Figures 4.10a and c-e). Immediate settlement 

occurs instantly after loads are applied and is measured as more than 500 mm at the center of the 

loads in the model (Figure 4.10c). Immediate settlement is assumed to be linear elastic, and only 

depends on the total stress, not effective stress. Therefore, pore pressure changes due to settlement 

have no effect on the immediate settlement. When a load is applied to a low permeability material, 

a period of primary consolidation is normally expected after load is applied due to dissipating 

excess pore pressure. Afterwards, continuing settlement, which is known as secondary 

consolidation, may occur even after a great deal of excess pore pressure has dissipated. The 

considerable amount of settlement suggests that the tailings structure around the northeast corner 

is undergoing secondary consolidation on the basis of the selected soil parameters. In the model, I 

assume that the secondary consolidation starts when the excess pore pressure of the soil drops to 

5% of the initial excess pore pressure. The secondary consolidation starts from different stages at 

different layers, which is determined by soil permeability – low permeability soils dissipate excess 

pore pressure slowly so that take long time to complete the primary consolidation; on the other 

hand, high permeability soils dissipate excess pore pressure fast so that the secondary 

consolidation is initiated at early stages. The model suggests that the impact of primary and 

secondary consolidation is mainly on the northeast corner with wick drains (Figures 4.10d and e), 

and their differences are mainly manifested in the temporal behavior. Taken a selected target at 

the northeast corner, (“x” in Figures 4.10a and c-e) for example, the primary consolidation at this 

location surges in the first year with more than 600 mm of deformation, followed by a gradual 

increase by almost 900 mm till 2020. The overall secondary consolidation at the near surface is 

increasing after placing the load at a steadily decelerated pace, accounting for ~1600 mm of the 



 

150 
 

~3600 mm total settlement. Figure 4.10b shows the total settlement of the selected target at 

different depths and stages, exhibiting as a long-term exponential decay as excess pore pressure 

gradually dissipates. I have also compared the total settlements estimated with the InSAR 

observations and the modeling results, which shows excellent agreement for all three overlapping 

time elapses of ENVISAT, ALOS-1 and Sentinel-1A datasets (Figure 4.10f), suggesting a 

cumulative settlement amount of ~1500 mm between 2004 and 2016. Furthermore, the model 

provide estimates of future settlement process, e.g., the annual settlement rate at the near surface 

in 2020 is expected to be around one quarter of the amount in 2004. 
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Figure 4.10 Decadal settlement modeling from 2000 to 2020. (a) Modeling of total settlement at 
near surface. (b) Settlement process at a selected target (“x” in panels a, c-e, with the amount of 
deformation indicated by the text below) throughout the tailings structure. (c)-(e)Three settlement 
components - immediate settlement, primary consolidation, and secondary consolidation. (f) 
Comparison of cumulative total settlement at the selected target between model and InSAR 
observations. 
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4.6 Discussion and conclusions 

I have deployed a multi-temporal InSAR method to investigate the nearly decadal deformation 

behavior of Salt Lake County tailings impoundment, Utah using multi-spaceborne SAR datasets. 

Despite varied land covers and deformation patterns, I have obtained an adequate density of CT 

points in the study area by applying adjustable thresholds considering the scattering characteristics 

of ground targets. I have also overcome the difficulty of phase unwrapping over areas with large 

deformation rates by “removing” the dominate deformation trend to “detrend” the fringes and later 

“adding” it back after the performance of phase unwrapping. 

The south pond is undergoing drastic consolidation settlement. Four reclamation areas 

dissected by the ditches are subsiding in a quasi-linear manner (through several years) at different 

rates. The displacement fields derived from InSAR and differential DEM enable us to pinpoint the 

compaction peak at the northeast corner. The maximum subsiding rate has decreased from 200+ 

mm/yr during 2004-2011 to100+ mm/yr during 2015-2016. I also identify some subsiding sites 

surrounding the impoundment, and most of them are moving non-linearly, yet there is no clear 

evidence to show the movements are modulated by water level variations. Particularly, the 

segments of Hwys I-80 and 201 have a net annual subsidence of ~10 mm. While the subsidence 

of the sedimentation pond east to the impoundment is decelerated, which is likely due to the 

settlement effect extended from the south pond. Furthermore, InSAR observations facilitate 

consolidation settlement modeling, which illustrates the settlement process in different soil layers. 

Overall, the settlement is undergoing long-term exponential decay, and the annual settlement rate 

in 2020 is expected to be less than half of the amount one decade ago. 
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CHAPTER 5 

CONCLUDING REMARKS 

 

The work presented in this dissertation is motivated by the desire to advance our understanding 

of the evolution of geohazards and landform alterations associated with hydrologically driven 

ground deformation in geodetic time scale, with a focus on the landslides, aquifer systems, and the 

mine tailings impoundment. 

This dissertation illustrates how the spaceborne remotely sensed InSAR images can be used to 

retrieve the spatio-temporal complexity of the ground deformation, and how the deformation 

products can further contribute to the understanding of the mechanisms, developments, and 

hydrological architectures of the targeted geodynamic settings, in the context of either 

anthropogenic or natural triggering. The highlights of the major chapters of this dissertation are 

summarized below. 

5.1 Highlights 

Chapter 2:  

o Map spatio-temporal landslide motions using the proposed time-series InSAR method, 

correcting the artifacts associated with the atmosphere and DEM errors. 

o Re-evaluate the incipient motion related to 2008 Greenleaf Basin rock avalanche, which is 

one month earlier than the reported date. 

o Recognize active motion at the mouth of Greenleaf Basin, which could be a precursor to 
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an extremely hazardous failure to the residences and facilities downslope. 

o Characterize the hydrology-driven seasonal landslide movement: the hydrological loading 

effects determine the movement magnitude in Cascade Range. 

o Reveal rainfall triggered precursory (slope-normal) subsidence before downslope sliding 

using high-temporal-sampling Sentinel-1A InSAR and on-slide GPS results. 

o Extract quasi-3D displacement field on slope plane using two independent spaceborne 

InSAR observations. 

o Invert for the thickness and basal geometry of the slow-moving landslide by applying the 

mass conservation on the spaceborne InSAR-derived displacement fields. 

Chapter 3:  

o Image of basin-wide spatio-temporal ground deformation over Salt Lake Valley, Utah from 

spaceborne InSAR data. 

o Characterization of hydrogeological properties using long-term and seasonal deformation 

observations and hydrological records.  

o Mapped tectonic faults from InSAR and discussed their role in disturbing groundwater 

flow and partitioning hydrological units. 

o Characterized and differentiated the ground deformation due to anthropogenic activities 

and natural hydrological processes. 

o Constrained the strain rate and the apparent geometry of subsurface groundwater 

reservoirs. 

Chapter 4:  

o Mapped tailings settlement process using InSAR and differential DEM. 

o Derived 2D displacement field and differentiated consolidation behavior in space. 



 

160 
 

o Modeled and predicted the exponentially decaying consolidation settlement. 

o Evaluated the stability of surrounding infrastructures such as highways. 

o Investigated the potential correlation between non-linear motions and water level changes. 

5.2 Future work 

The dynamics of landslides is important to the studies of geomorphologic evolution, climate 

change, and historic earthquakes. The case study of the Crescent Lake landslide, WA, has provided 

insights into spatio-temporal landslide mobility and basal complexity of a typical shallow 

translational landslide. Beyond that, I have been working on, and would like to further investigate 

the slowly moving landslides in the coastal bluffs in the northwestern Pacific region, United State. 

Figure 5.1 shows some preliminary results of mapping the slowly moving landslides over the 

national forests in northern California. With respect to InSAR technical improvements, I will focus 

on correcting the phase aliasing during unwrapping in areas with complicated spatio-temporal 

deformation. With respect to landslide mechanism investigations, I will derive the diffusivity 

based on diffusion equation using the cross-correlation between the precipitation-modulated 

transient pore-pressures at depth with time-series landslide motions. The systematical 

investigation of landslide dynamics can provide statistic data source for the landslide hazard 

planners during their probabilistic risk assessment. 
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Figure 5.1 Preliminary results of InSAR-mapped slowly moving landslides over the national 
forests in northern California. Orange shadows mark the areas prone to landsliding. The applied 
InSAR data are ALOS-1 PALSAR-1 spanning 2007-2011. 
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Along with the historic and popular spaceborne SAR images such as ERS-1/2, ENVISAR 

ASAR, ALOS-1 PALSAR-1, COSMO-SkyMed, TerraSAR-X, and RADARSAT-1/2, the newly 

acquired Sentinel-1A/B and ALOS-2 PALSAR-2 images, as well as the planned missions such as 

NASA-ISRO SAR, are enriching and enhancing the SAR data archive not only in the aspects of 

the length and coverage of observations, but also radar frequency, temporal sampling, spatial 

resolution, image mode and polarization. An increasing number of data, in no doubt, provide new 

opportunities to image the shallow solid earth system through the space. 
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