
1 
 

Shifting of wrapped phase maps in the 

frequency domain using a rational number 
Munther A. Gdeisat,1* David R. Burton,2 Francis Lilley 2, Miguel Arevalillo-Herráez 3, Ahmad Abushakra1, Maen 

Qaddoura1 
1*Colleges of Applied Sciences, Sohar, PO BOX 135, Post Code 311, Oman (e-mail: gdeisat@hotmail.com) 

2General Engineering Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK. 
3Departament d’Informàtica. Universitat de València, 46100. Burjassot, Valencia, Spain. 

Corresponding author: gdeisat@hotmail.com 

 

Abstract 

The number of phase wraps in an image can be either reduced, or completely eliminated, by 

transforming the image into the frequency domain using a Fourier transform, and then shifting 

the spectrum towards the origin. After this, the spectrum is transformed back to the spatial 

domain using the inverse Fourier transform and finally the phase is extracted using the 

arctangent function. However, it is a common concern that the spectrum can be shifted only by 

an integer number, meaning that the phase wrap reduction is often not optimal. In this paper we 

propose an algorithm than enables the spectrum to be frequency shifted by a rational number. 

The principle of the proposed method is confirmed both by using an initial computer simulation 

and is subsequently validated experimentally on real fringe patterns. The technique may offer in 

some cases the prospects of removing the necessity for a phase unwrapping process altogether 

and/or speeding up the phase unwrapping process. This may be beneficial in terms of potential 

increases in signal recovery robustness and also for use in time-critical applications. 
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1. Introduction  

 

Many signal recovery methods yield phase values that have 2π phase jumps within the recovered 

phase signal. This is called the wrapped phase, and the process of recovering a continuous form 

of the signal phase is called phase unwrapping [1].  

 

In many real world applications that measure the phase of a signal, phase unwrapping is an 

essential task. Some examples are MRI [2], [3], synthetic aperture radar (SAR) [4], [5], and 

interferometry [6]. The difficulty of the phase unwrapping problem has resulted in a large 

number of attempts to reach acceptable solutions and hundreds of algorithms have been proposed 

and published. Most of these techniques can be classified into three categories: 1) path 

independent methods that set branch cuts to prevent the unwrapping path from crossing 

discontinuities, noisy areas and under-sampled regions [7], [8], [9]; 2) path dependent methods 

that use quality maps [10]; and 3) minimum norm methods [1], [11]. 

 

The phase unwrapping procedure can be avoided altogether in some cases. For example, the 

phase information in a fringe pattern can be extracted using the Fourier transform profilometry 

method. In this technique, the fringe pattern is Fourier transformed. Then the frequency spectrum 

is shifted to the origin, and the inverse Fourier transform is computed. Finally the phase is 

extracted using the arctangent function. The spectrum shift generally contributes to reducing (or 

fully eliminating) the phase wraps, making this method especially attractive to measure objects 

that have small height, but complex shape variations, e.g. printed circuit boards [12]. The phase 

shift as a phase wrap reduction method has recently been extended to phase stepping [13]. 

However, the use of the discrete Fourier transform limits the shift to integer values in all cases. 

 

In this paper, we propose a method that allows non-integer shifts in the Fourier spectrum. This 

makes it possible to increase the resolution of the approach and eliminate phase wraps that in 

some cases cannot be removed by an integer shift. Also, this method can completely remove the 

tilt of an extracted phase map. The principle of the proposed method is first validated by using a 

computer simulation and then confirmed experimentally on real fringe patterns.  
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2. Computer simulation  

 

A computer-generated 3D object was produced by using the peaks function in MATLAB (see 

Eq. 1). The resulting object is shown in Fig. 1(a) and 1(b) as a 3D plot and a 2D intensity image, 

respectively. It consists of 512 × 512 pixels and contains regions with both slow and rapid phase 

variations. For these reasons it has become a popular benchmark object in the literature for 

testing the performance of different fringe analysis algorithms [14].  

 

∅(𝑥𝑥,𝑦𝑦) = 3(1 − 𝑥𝑥)2 exp(−𝑥𝑥2 − (𝑦𝑦 + 1)2) − 10 �𝑥𝑥
5
− 𝑥𝑥3 − 𝑦𝑦5� exp(−𝑥𝑥2 − 𝑦𝑦2) − 1

3
exp (−(𝑥𝑥 + 1)2 − 𝑦𝑦2)   (1) 

 

Where x and y are the sample indices for the x and y axes respectively.  

 

From this object, four fringe patterns have been generated by using Eq. (2). These are simulated 

patterns that represent the result obtained by projecting shifted patterns upon the virtual 3D 

object described by Eq. 1. One of the four simulated phase-modulated fringe patterns is depicted 

in Fig. 1(c) as a grey scale range image.  

 

𝑔𝑔0(𝑥𝑥,𝑦𝑦) = cos (2𝜋𝜋𝑓𝑓𝑜𝑜𝑥𝑥 + ∅(𝑥𝑥,𝑦𝑦))    (2a)  

𝑔𝑔90(𝑥𝑥,𝑦𝑦) = cos (2𝜋𝜋𝑓𝑓𝑜𝑜𝑥𝑥 + ∅(𝑥𝑥,𝑦𝑦) + 𝜋𝜋
2

)    (2b)  

𝑔𝑔180(𝑥𝑥, 𝑦𝑦) = cos (2𝜋𝜋𝑓𝑓𝑜𝑜𝑥𝑥 + ∅(𝑥𝑥,𝑦𝑦) + 𝜋𝜋)    (2c)  

𝑔𝑔270(𝑥𝑥,𝑦𝑦) = cos (2𝜋𝜋𝑓𝑓𝑜𝑜𝑥𝑥 + ∅(𝑥𝑥, 𝑦𝑦) + 3𝜋𝜋
2

)    (2d)  

 

Where fo is the spatial frequency of the carrier and here this is set to a value of 1/32 fringes per 

pixel (i.e., there are exactly 32 pixels in each fringe). The number of fringes in the fringe pattern 

image is 512/32=16 exactly. For simplicity, it is considered here that there is no carrier 

frequency on the y-axis (i.e., the projected fringes lie exactly parallel to the y-axis). The phase 

information in the fringe pattern can be extracted using the four-frame phase stepping algorithm 

described by Eq. (3) [15].  

 

 𝜑𝜑𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2[𝑔𝑔0(𝑥𝑥,𝑦𝑦) − 𝑔𝑔180(𝑥𝑥,𝑦𝑦),𝑔𝑔270(𝑥𝑥,𝑦𝑦) − 𝑔𝑔90(𝑥𝑥,𝑦𝑦)]   (3) 
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Where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2[. ] is the four quadrant arctangent function which is named the atan2 function in 

MATLAB. The extracted phase 𝜑𝜑(𝑥𝑥, 𝑦𝑦) is shown in Fig. 1(d) and it contains 2π steps that should 

be removed by employing a phase unwrapping algorithm [1]. 

 

The phase unwrapping step might be avoided by using the Fourier transform method, proposed 

in [13], as follows. Initially, a complex array is constructed; 

 

𝜑𝜑𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑗𝑗𝜑𝜑𝑤𝑤(𝑥𝑥,𝑦𝑦)        (4) 

 

Where 𝑗𝑗 = √−1. The 2D Fourier transform of 𝜑𝜑𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦) is then calculated as shown in Eq. (5). 

 

Φ(𝑢𝑢, 𝑣𝑣) = 𝔽𝔽[𝜑𝜑𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦)]        (5) 

 

Where 𝔽𝔽[. ] is the 2D Fourier transform operator, and the terms 𝑢𝑢 and 𝑣𝑣 are the horizontal and 

vertical frequencies, respectively. The 2D Fourier transform of the wrapped phase map is 

calculated using Eq.’s (4) and (5). The magnitude of the Fourier transform is shown in Fig. 1(e). 

The peak in the frequency domain is located at the frequencies ∆𝑢𝑢 = 512
32

= 16 and ∆𝑣𝑣 = 0 .  

 

The location and number of phase wraps can be changed using the Fourier transform as follows. 

First, the 2D Fourier transform of the wrapped phase map needs to be shifted in the frequency 

domain towards the origin by ∆𝑢𝑢 and ∆𝑣𝑣 as shown in Fig. 1(e). Both ∆𝑢𝑢 and ∆𝑣𝑣 values can be 

chosen arbitrarily, here they are set here to 16 and 0 respectively. Then the inverse 2D Fourier 

transform 𝔽𝔽−1[. ] is calculated, as shown in Eq. (6).  

 

𝜑𝜑𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦) = 𝔽𝔽−1[Φ(𝑢𝑢 − ∆𝑢𝑢, 𝑣𝑣 − ∆𝑣𝑣)]      (6) 

 

After this, a new phase map can be generated by using Eq. (7). 

 

𝑎𝑎 =  𝔑𝔑[𝜑𝜑𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦)]         (7a) 
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𝑏𝑏 =  ℐ[𝜑𝜑𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦)]         (7b) 

𝜑𝜑𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑎𝑎, 𝑏𝑏)         (7c) 

 

Where ℐ[. ]represents the imaginary part, and 𝔑𝔑[. ] represents the real part of the complex 

array 𝜑𝜑𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦). The new phase map does not contain 2π phase jumps and it is shown in Fig. 

1(f) and 1(g).  

 

 

(g) (f) (e) 

(d) (c) (b) (a) 

Fig. 1. (a) The 3D plot of the simulated object. (b) The 2D phase map of the object. (c) A fringe pattern. (d) The 
wrapped phase map. (e) The spectrum of the wrapped phase map and the new spectrum where the peak is shifted to 
the center. (f) The 3D plot of the unwrapped phase map. (g) The 2D phase map of the reconstructed object. 
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The success in the previous example contributes to the integer number of fringes in the image. In 

most of the real-world applications, the number of fringes in the image is arbitrary where phase 

unwrapping by the same method could bring the trouble. 

 

The computer simulation described above was subsequently repeated, but with the spatial carrier 

frequency set to 1/33 fringes per pixel. The number of fringes in this image is 512/33=15.5152. 

The wrapped phase map is generated using Eq. (3) and it is shown in Fig. 2(a). The Fourier 

transform of this wrapped phase map is calculated using Eq.’s (4) and (5). The frequency 

spectrum should be shifted towards the origin by a distance ∆𝑢𝑢 = 15.51 and ∆𝑣𝑣 = 0 in order to 

remove the phase jumps. As only integer shifts are normally possible, the spectrum is shifted 

here using the values ∆𝑢𝑢 = 16 and ∆𝑣𝑣 = 0. The inverse Fourier transform and the phase map 

are then calculated using Eq.’s (6) and (7) respectively. The resultant wrapped phase map is 

shown in Fig. 2(b), and it can be noticed that the 2π phase jumps have not been removed 

completely.  

 

In a second attempt to remove the phase wraps, the spectrum is shifted using the values ∆𝑢𝑢 =

15 and ∆𝑣𝑣 = 0. The resultant phase map is shown in Fig. 2(c). This figure reveals that the 2π 

phase jumps also have not been removed completely.  

 

The authors suggest increasing the resolution of the Fourier transform in order to remove the 

phase wraps. This can be achieved by padding the wrapped phase map with zeros. Suppose that 

we would like to shift the spectrum towards the origin by a frequency equivalent of the original 

sample step of 16. Then the image size should be set to 16 � 512
15.51

� = 528.175 ≅ 528. The 

wrapped phase image is then padded with zeros for both the horizontal and vertical directions in 

order to extend its size to 528×528 pixels. The padded image is shown in Fig. 2(d).  

 

The padded image is converted to a complex array using Eq. (4), which is then Fourier 

transformed using Eq. (5). The spectrum is shown in Fig. 2(e). The spectrum is shifted using the 

values ∆𝑢𝑢 = 16 and ∆𝑣𝑣 = 0 as shown in Fig. 2(e). The inverse Fourier transform is calculated 

using Eq. (6), and the phase map is calculated using Eq. (7), which is shown in Fig. 2(f). This 

image has the size of 528×528 pixels and it is then cropped to the size of 512×512 pixels in order 
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to extract the phase map. The cropped image is shown in Fig. 2(g). This figure reveals that the 2π 

phase jumps have been removed completely.  

 

The mathematical difference between the object shown in Fig. 1(a) and the unwrapped phase 

map shown in Fig. 2(g) is calculated and it is shown in Fig. 2(h). The root mean square of the 

sum of this difference is calculated and it has a value of 3.1×10-6 radians.  

 

 
  

(f) (g) (h) (e) 

(d) (c) (b) (a) 

Fig. 2 (a) A simulated wrapped phase map with the size of 512×512 pixels and with a spatial carrier frequency fo of 
1/33fringes per pixel. (b) A 2D intensity map for a wrapped phase map that is calculated by shifting the spectrum in 
the frequency domain with 16 steps towards the origin. (c) A 2D intensity map for a wrapped phase map that is 
calculated by shifting the spectrum in the frequency domain with 15 steps towards the origin. (d) Zero-padding the 
wrapped phase map image in (a). The size of the padded image is 528×528 pixels. (e) The spectrum of the padded 
image and the spectrum is shifted towards the center of the image by 16 steps. (f) The phase of the shifted spectrum is 
shown as a 2D intensity map. The phase has the size of 528×528 pixels. (g) The phase image is cropped to the size of 
512×512 pixels and it is shown as a 2D intensity map respectively. (h) The mathematical difference between the 
object shown in Fig. 1(a) and the unwrapped phase shown in Fig. 2(g).  

  

original 
spectrum 

 

 Spectrum shifted by 
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3. Experimental results 

In real-life applications, the number of fringes in a fringe pattern is, normally, not an integer 

number. Conventional methods shift the spectrum in the frequency domain using an integer 

number in order to unwrap the wrapped phase that is extracted from the fringe pattern. But this 

may not be able to remove the phase wraps even though the unwrapped phase does not exceed 

the 2π range [13].  

 

This paper suggests a new method to shift spectrum in the frequency domain using a rational 

number. This technique is able to unwrap an image completely if the corerect unwrapped phase 

does not exceed the 2π range. This is achieved by zero-padding the wrapped phase map as 

explained below.   

 

A computer keyboard is shown in Fig. 3(a) and this was measured using a fringe projection 

system. Four fringe patterns, with a phase shift of π/2 between each two consecutive fringe 

patterns, were projected sequentially onto the keyboard. Then four phase-modulated fringe 

patterns were captured using a camera. One of these fringe patterns is shown in Fig. 3(b) as grey 

scale range image. The wrapped phase map calculated according to Eq. (3) is shown in Fig. 3(c). 

All these images have the size of 512×512 pixels.  

 

The wrapped phase map shown in Fig. 3(c) was Fourier transformed using Eq.’s (4) and (5), and 

the result of this is shown in Fig. 3(d). The maximum magnitude value in the spectrum is located 

at ∆𝑢𝑢 = 5 and ∆𝑣𝑣 = 0. The spectrum is shifted towards the origin using these values, and the 

shifted spectrum is shown in Fig. 3(d). The resultant phase map was then calculated using Eq.’s 

(6) and (7) and is shown in Fig. 3(e). This figure reveals that the 2π phase jumps have not been 

removed completely.  

 

In a second attempt to remove the 2π phase jumps, the spectrum was shifted towards the origin 

using the values ∆𝑢𝑢 = 6 and ∆𝑣𝑣 = 0.  The resultant phase map is shown in Fig. 3(f) and. This 

figure reveals that the 2π phase jumps have also not been completely removed. 
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The number of fringes in Fig. 3(b) is five and a half approximately, which is a non-integer 

number. The spectrum should be shifted to the center using the values ∆𝑢𝑢 = 5.5 and ∆𝑣𝑣 = 0 

approximately.  This cannot be carried out without increasing the resolution of the Fourier 

transform by zero-padding the wrapped phase image.  

 

Suppose that we would like to shift the spectrum towards the origin by a frequency equivalent of 

the original sample step of 5.5. Then the image size should be set to 6 �512
5.5
� = 558.545 ≅ 558. 

The wrapped phase image is then padded with zeros for both the horizontal and vertical 

directions in order to extend its size to 558×558 pixels and it is shown in Fig. 3(g).  

 

This padded image is Fourier transformed using Eq.’s (4) and (5). The spectrum is then 

frequency shifted towards the origin, using shift values ∆𝑢𝑢 = 6  and ∆𝑣𝑣 = 0. The inverse Fourier 

transform is then calculated using Eq. (6). The phase is extracted using Eq. (7) and it is shown in 

Fig. 3(h) and it has the size of 558×558 pixels.  This image is cropped to the size of 512×512 

pixels in order to extract the required phase map and this is shown in Fig. 3(i). This figure 

reveals that the 2π phase jumps have been completely removed.  
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Fig. 3 (a) A keyboard object with the size of 512×512 pixels. (b) A fringe pattern. (c) The wrapped phase map 
calculated using the four frame phase-stepping algorithm. (d) The spectrum computed for the wrapped phase map and 
the spectrum is shifted towards the center of the image by ∆𝑢𝑢 = 5 and ∆𝑣𝑣 = 0. (e) The wrapped phase of the shifted 
spectrum object is shown as a as a 2D intensity image. (f) The wrapped phase of the shifted spectrum by ∆𝑢𝑢 = 6 and 
∆𝑣𝑣 = 0 shown as 2D intensity map. (g) The wrapped phase image is zero padded to have the size of 558×558 pixels. 
(h) The spectrum of the padded image is shifted to the center of the image by ∆𝑢𝑢 = 6 and ∆𝑣𝑣 = 0 and then the phase 
is calculated. (i) The image in (h) is cropped to the size of 512×512 and the cropped image is shown as a 2D intensity 
image.           

(h) (f) (g) (e) 

(d) (c) (b) (a) 

(i) 

original 
spectrum 

 

 Spectrum shifted by 
5 pixels 
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4. Conclusions 

The number of fringes in a real fringe pattern is normally not integer. In this case, conventional 

methods that use the Fourier transform in order to avoid the unwrapping step may not be able to 

remove all the phase steps. This is because these methods are able to shift the spectrum using 

integer numbers only. 

 

The authors propose a method to shift the spectrum using a rational number. The suggested 

method is able to remove all the phase wraps if the correct unwrapped phase is within the 2π 

range. This paper suggests padding the wrapped phase image with zeros and then calculating its 

Fourier transform. This has the effect of ‘increasing’ the resolution of the Fourier transform. 

After that, the spectrum is shifted to the origin using an integer number. But this has the effect of 

shifting the image by a rational number.  
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