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IMAGE FUSION TECHNIQUES FOR REMOTE SENSING 

APPLICATIONS 

Abstract 

Image fusion refers to the acquisition, processing and synergistic combination of information provided by various 

sensors or by the same sensor in many measuring contexts. The aim of this survey  paper is to describe three typical 

applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture 

Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the 

second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the 

same site acquired at different times, by using neural networks; the third one presents a processor to fuse 

multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman 

filter. Each study case presents also results achieved by the proposed techniques applied to real data. 

 

Keywords.-  Remote Sensing, Synthetic Aperture Radar (SAR), SAR Interferometry, Neural Networks, Discrete 

Wavelet Transform (DWT), Multiscale Kalman Filter 

1. Introduction 

Remote sensing [1] is a science with applications ranging from civilian to surveillance and military. Remote sensing 

systems measure and record data about a scene. Such systems have proven to be powerful tools for the monitoring of 

the Earth surface and atmosphere at a global, regional, and even local scale, by providing important coverage, mapping 

and classification of land cover features, such as vegetation, soil, water and forests. The degree of accuracy achieved in 

classification depends on the quality of the images, on the degree of knowledge possessed by the researcher, and on the 

nature of the cover types in the area. For instance, correlations can then be drawn among drainage, superficial deposits 

and topographic features, in order to show the relationships that occur between forest, vegetation and soils. This 

provides important information for land classification and land-use management. The sensors that acquire the images, 

are typically classified as airborne or space borne sensors, if they are placed, respectively, on an airplane or a satellite; 

furthermore, they can acquire information in different spectral bands on the basis of the exploited frequency, or at 

different resolutions. Therefore, a wide spectrum of data can be available for the same observed site. For many 

applications the information provided by individual sensors is incomplete, inconsistent, or imprecise [2,3,4]. Additional 
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sources may provide complementary data, and fusion of different information can produce a better understanding of the 

observed site, by decreasing the uncertainty related to the single sources [5,6,7]. Images may be provided by radars and 

by heterogeneous sensors. For instance, multitemporal radar images  [1,8,9] of the same scene are needed to detect 

changes that occur in the considered scene between two or more observations; multidimensional images, provided by 

radar and non radar sensors, facilitate the classification of scene segments because multispectral and multipolarization 

data increase the separation between the segments. In the interpretation of a scene, contextual information is important: 

in an image labeling problem, a pixel considered in isolation may provide incomplete information about the desired 

characteristics. Context can be defined in the frequency, space and time domains. The spectral dimension refers to 

different bands of the electro-magnetic spectrum. These bands may be acquired by a single multispectral sensor, or by 

more sensors operating at different frequencies. The spectral context improves the separation between various ground 

cover classes compared to a single-band image [1]. Furthermore, since the electromagnetic incident/backscattered wave 

depends also on the polarization, then the properties of the examined area can be studied by varying the polarization of 

the incident/backscattered wave. Therefore, complementary information about the same observed scene can be available 

in the following cases:  

− data recorded by different sensors (multisensor image fusion);  

− data recorded by the same sensor scanning the same scene at different dates (multitemporal image fusion);  

− data recorded by the same sensor operating in different spectral bands (multifrequency image fusion);  

− data recorded by the same sensor at different polarizations (multipolarization image fusion);  

− data recorded by the same sensor located on platforms flying at different heights (multiresolution image 

fusion).  

In this paper, three different fusion applications in remote sensing are presented:  

• the Synthetic Aperture Radar (SAR) interferometry [1,8,9,10] is proposed as a data fusion method 

that, by exploiting the data recorded by two different  antennas about the same scene, allows one to 

obtain an elevation map of the area;  

• multitemporal and multisensor experiments [11,12] are presented to describe a system that integrates 

information from different sensors (SAR and LANDSAT) acquired at different dates, by using neural 

networks;  

• multifrequency, multipolarization and multiresolution fusion [13-15] is described for data acquired by 

SAR sensors in different measuring contexts , based on the discrete wavelet transform (DWT) and 

multiscale Kalman filter (MKF).  
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The paper is organized into 5 Sections. Section 2 describes the SAR interferometry study case; the multisensor and 

multitemporal image fusion is presented in Section 3; Section 4 describes a multipolarization, multifrequency and 

multiresolution image fusion example, taking into account also the radiometric correction and spatial registration of the 

images. Conclusions are  drawn in Section 5. 

2. The SAR Interferometry 

A Synthetic Aperture Radar (SAR) [1,8] is an active coherent imaging system that, combining the signals received by a 

moving radar antenna operating in the microwave region of the spectrum, estimates the relative reflectivity of a spatial 

distribution of scatterers. The resulting imagery has various possible uses such as in surveillance, oceanography, 

military applications and agriculture, since the obtained images have a high resolution, independent of the weather 

conditions. Furthermore, SAR data are used not only for monitoring applications, but also to obtain elevation maps of 

the observed scene [9,10].  A SAR gives an image of the phase and amplitude of the reflected radiation as a function of 

the azimuth and slant range coordinates, that is, of the coordinates parallel and perpendicular to the trajectory of the 

antenna. Observing a given scene from two SAR antennas with distinct trajectories (not necessarily at the same time) 

allows to perform a triangulation and, in principle, to determine the three-dimensional position of the scattering points, 

that is, the elevation map of the observed scene. If the two SAR images are co-registered, i.e.: if the corresponding 

pixels of the two SAR images pertain to the same points of the observed scene, the phase difference of the signals 

measured in the corresponding pixel of the two images is a very sensitive measure of the length difference of the paths 

traveled by the signals. From this difference and from the knowledge of the distance of the observed points from one of 

the SAR trajectories, the 3D position of the points is immediately calculated. Unfortunately, SAR interferometry fails 

when the scenes imaged by the two SAR systems are not really the same scene, due to a too large distance between the 

trajectories of the two SAR antennas, or to a too large time elapsed between the two surveys. In these cases, the two 

images may not be sufficiently correlated: the phase difference in the corresponding pixel of the two images is not 

useful to determine the distance difference of the scene from the SAR systems, and there is not coherence. Other 

limitations are given by the occurrence of layover and shadow phenomena. Layover takes place when more than one 

point of the observed scene is at the same distance from the trajectory of the SAR system; in this case, the signal in the 

pixel of the SAR image is an average of the signals corresponding to the different points. Shadow occurs when a point 

of the observed scene is not seen from the radar system because it is covered by other points; that point does not 

contribute to the measured signal.  

 



- 5 - 

2.1. Wrapped and Unwrapped Phases 

Each of the two SAR images gives only a measure of the phase of the received electromagnetic radiation modulo π2 . 

The phase difference modulo π2  can be calculated from the two images, while it is necessary to determine the whole 

phase difference of the signals in the two images to determine the 3D position of the corresponding points in the scene. 

Therefore, it is important to unwrap the available phase difference, that is, to reconstruct the available phase difference 

in the corresponding pixel of the two images from the knowledge of that difference modulo π2 . These two quantities 

are referred to as unwrapped and wrapped interferometric phases, respectively. In interefometric studies, high resolution 

images are processed; it can be supposed that the height difference between neighboring pixels is small: this assumption 

fails when the topography changes very rapidly in a restricted area. For this reason, all methods assume that the 

unwrapped interferometric phase in neighboring pixels differ by a quantity that is almost always less than π  in absolute 

value. This hypothesis is used to estimate from the wrapped interferometric phase the neighboring pixel differences, 

that is, the discrete gradient of the unwrapped interferometric phase. The unwrapped interferometric phase is then 

reconstructed, up to an additive constant, from the estimate of its discrete gradient. The additive constant is determined 

from a priori information on the scene, that is, the knowledge of the elevation of one point in the scene.  

 

2.2. The Unwrapping Algorithm 

The methods proposed differ in the way they overcome the difficulty posed by the fact that the neighboring pixel 

differences of the unwrapped interferometric phase may not be everywhere less than π . This can be due to noise, or to 

the fact that the observed scene becomes too steep, that is, nearly perpendicular to the view direction. Further challenges 

are posed by the occurrence of layover, shadow, or lack of coherence phenomena.  The phase unwrapping algorithm in 

[10] is based on the projection of a discrete vector field onto the linear subspace defined by the “irrotational property” 

of a discrete gradient vector field. A vector field is called irrotational when the curl of this vector field is 0. The 

projection onto the linear subspace characterized by the “irrotational property” of a discrete gradient vector field is a 

local operation in the Fourier space. Therefore, only ( )NNO log  elementary operations are required to project discrete 

vector field of N pixel, which is the computational complexity of the fast Fourier transform. Based on the proposed 

projection algorithm, the phase unwrapping can be obtained by projecting the estimated discrete gradient field onto the 

“irrotational” subspace and then “integrating” the resulting discrete gradient vector field. The points belonging to steep 

and layover regions are isolated by means of further information: a simple correction is performed on the estimate of the 

discrete gradient of the unwrapped interferometric phase, to reduce the systematic errors in the estimated unwrapped 

phase gradient. For greater details on the exploited algorithm, the reader is referred to [10]. The proposed phase 
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unwrapping algorithm is tested on a pair of ERS-1 and ERS-2 SAR images of the Etna’s volcano (Fig.1), acquired on 

September 1995. The elevation obtained is in qualitative agreement with the elevation reported in geographic maps. 

 

 

Fig. 1.- Reconstructed elevation of the Etna’s volcano (courtesy of Dr. M. Costantini). 

3. Fusion of Multitemporal-Multisensor Remotely Sensed Images 

In several applications, the capability of SAR sensors to acquire images during day and night and with all weather 

conditions has proved to be precious. However, depending on the kinds of terrain cover types, the information provided 

by the SAR data alone may be not sufficient for a detailed analysis. A possible solution to this problem may derive from 

the integration of SAR data with optical data (or multisensor data) of the same site acquired at a different time 

[11,12,16,17].  Several methodologies have been proposed, in the scientific literature, for the purpose of multisensor 

fusion; they are mainly based on statistical, symbolic (evidential reasoning), and neural-network approaches. Among 

statistical methods, the “stacked-vector” approach is the simplest one [18]: each pixel is represented by a vector that 

contains components from different sources. This approach is not suitable when a common distribution model cannot 

describe the various sources considered. The Dempster-Shafer evidence theory [19] has been applied to classify 

multisource data by taking into account the uncertainties related to the different data sources involved [20,21,22]. 

Neural-network classifiers [11,12] provide an effective integration of different types of data. The non-parametric 

approach they implement allows the aggregation of different data sources into a stacked vector without need for 

assuming a specific probabilistic distribution of the data to be fused. Results, obtained by using different kinds of 

multisource data, point out the effectiveness of neural network approaches for the classification of multisource data. 

Concerning the classification process in a multitemporal environment, only a few papers can be found in the remote-
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sensing literature. Cascade classifiers [23] based on the generalization of the Bayes optimal strategy to the case of 

multiple observations have been proposed: multitemporal information has been used assuming that the behavior of these 

processes can be modeled by a first-order Markov model. Methods based on contextual classification that accounts for 

both spatial and temporal correlations of data, have been developed [24]: the feature vectors are modeled as resulting 

from a class-dependent process plus a contaminating noise process; the noise process is considered autocorrelated in 

both space and time domains.  

3.1. The “Compound” Classification 

The experiment summarized in this section has been presented in [12], to which the reader is referred for further 

information. A multitemporal and multisensor data set (Fig.2) has been considered for this  experiment,  referring  to  an 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 2.- Multitemporal and Multisensor data set consisting of: (a) SAR image (April 1994);  

(b) optical image (May 1994); (c) SAR image (May 1994). (from [12]) 

 

agricultural area in the basin of the Po River, in northern Italy. Such a data set consists of an image acquired by the 

ERS-1 SAR sensor in April 1994 and a pair of images acquired in May 1994 by the Landsat TM and the ERS-1 SAR 

sensors. These two latter images have been registered to the ERS-1 SAR April image. The LANDSAT Thematic 

Mapper (TM) is an advanced optical sensor (multispectral scanner) designed to achieve high spatial resolution 
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(30m×30m), sharp spectral separation (images are acquired simultaneously in seven spectral bands, from the 

wavelength of mµ45.0  to mµ35.2 ), high geometric fidelity, and good radiometric accuracy and resolution. Typically, 

TM Bands 4, 3, and 2 can be combined to make false-color composite images where band 4 represents red, band 3, 

green, and band 2, blue. This band combination makes vegetation appear as shades of red, brighter reds indicating more 

vigorously growing vegetation. Soils with no or sparse vegetation will range from white (sands) to greens or browns 

depending on moisture and organic matter content. Water bodies will appear blue. Deep, clear water will be dark blue to 

black in color, while sediment-laden or shallow waters will appear lighter in color. Urban areas will appear blue-gray in 

color. Clouds and snow will be bright white; they are usually distinguishable from each other by the shadows associated 

with the clouds.  

The approach presented in this section is based on the application of the Bayes rule for minimum error to the 

“compound” classification [25] of pairs of multisource images acquired at different dates. In particular, two multisource 

image data sets 1I  and 2I , acquired at two times 1t  and 2t , respectively, are analyzed to identify the land-cover classes 

present in the geographical area to which the data are referred. Each data set may contain images derived from different 

sources: in our case, the SAR and LANDSAT TM sensors. The input images are supposed to be co-registered and 

transformed into the same spatial resolution; each pair of temporally correlated pixels ( )21, xx , 11 Ix ∈  and 22 Ix ∈ , is 

described by a pair of feature vectors ( )21, XX . Let { }121 ,...,,
M

ωωω=Ω  be the set of possible land-cover classes at time 

1t , and let { }221 ,...,,
M

λλλ=Λ  be the set of possible land-cover classes at time 2t . The “compound” classification of 

each pair of pixels ( )21, xx  is aimed at  finding the pair of classes (ωm,λn) that have the highest probability to be 

associated with them. It is possible to prove that, under the simplifying hypothesis of class-conditional independence in 

the time domain, this task can be carried out according to the following rule [12]: 

 

maxωi, λj
{P(ωi / X1) P(λj / X2 ) P(ωi , λj ) / P(ωi ) P(λj )} (3.1) 

 

The available ground truth can be used to generate two training sets (one for each date) useful to estimate the a priori 

and the posterior probabilities of classes. In particular, the a priori probabilities ( )
i

P ω  and ( )jP λ  are estimated by 

computing the occurrence frequency of each class in the t1 and t2 training sets, respectively. The posterior probabilities 

of classes ( )1| XP
i

ω  and ( )2| XP jλ  are estimated by applying two multilayer perceptron neural networks, trained with 

the backpropagation algorithm, to single-date multisource images. The joint probabilities of classes ( )ji ,P λω , which 

model the temporal correlation between the two multisource images, are estimated by using the EM algorithm [26]. In 
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particular, it is possible to prove that the equation to be used at the k+1 iteration for maximizing the likelihood function 

is the following [12]: 
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where MN ⋅  is the total number of pixels to be classified in each image and Xk
q
 is the qth pixel of the image 

k
I . It is 

worth noting that in the initialisation step equal probabilities are assigned to each pair of classes. The algorithm is 

iterated until convergence. At convergence, the obtained joint probabilities are used in equation (3.1) together with the 

estimated a priori and posterior probabilities of classes to derive the land-cover maps. 

 

3.2. Experimental Results 

The four dominant land cover types in April for the study area have been considered, namely: wet rice fields, bare soil, 

cereals and wood. In May, an additional cover type (corn) has been included, increasing the size of the set of possible 

classes to five. For the May data set, 11 features have been considered: 6 intensity features from the Landsat TM image 

(corresponding to all bands but the infrared thermal one), 1 intensity feature from the ERS-1 SAR (C band, VV 

polarization) image and 4 texture features (entropy, difference entropy, correlation and sum variance) computed from 

the ERS-1 SAR image using the gray-level co-occurrence matrix. For the April image, only the above 5 features (1 

intensity and 4 texture features) derived from the ERS-1 SAR image have been utilized. For each date, a feedforward 

MLP neural network has been trained independently (Fig.3): a MLP to estimate the posterior class probabilities of the 

pixels of the April image (from single sensor data); a different MLP to estimate the analogous probabilities for the May 

image (from multisensor data). The number of input and output neurons corresponded, respectively, to the number of 

features and of classes defined for each date; one hidden layer of eight neurons has been considered in both cases. The 

EM algorithm has been applied and reached the convergence after six iterations to provide the estimate of the joint class 

probabilities.  

The classification results obtained for the April image independently (without fusion) and with data fusion by the 

proposed approach are illustrated in Table 1. They are expressed in terms of percent average accuracy  (i.e. the mean 

value of the accuracy over the different classes). 
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Fig. 3.- Block scheme of the “compound” classification technique. (from [12]) 

 

A significant improvement of the average accuracy (i.e. +17%) has been obtained thanks to data fusion, showing 

that classes which are poorly discriminated by the SAR sensor alone at a given date can be recovered by the use of the 

multisensor information related to another date. In this case, the improvement is mainly related to the class "cereals", 

with an increase of accuracy from 16.67% (without fusion) to 75.0% (with fusion). The early growth of this plant in 

April makes difficult its discrimination with the SAR sensor, only. The multisensor information, extracted from the 

May image, in which the discrimination of the class "cereals" is much easier (84.26% without temporal fusion), played 

a valuable role to recover this class. 

 

Area Without Fusion With Fusion 

Wet Rice Fields 98.54 99.46 

Baresoil 93.11 97.18 

Cereals  16.67 75.0 

Wood 92.32 97.0 

Average Accuracy 75.16 92.16 

 

Table 1.- Accuracy obtained for the test set of the April 1994 image  

with and without multitemporal-multisensor fusion. (from [12]) 
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4. Fusion of Multipolarization-Multifrequency-Multiresolution SAR Images 

Data fusion systems have also been developed to fuse information carried by multipolarization, multifrequency and 

multiresolution data acquired by the same sensor [5,6,27-30]. In the case of active microwave and radio sensors, the 

data consist of the reflection of the scattering properties of the surface in the microwave region [1,8,31]. A natural 

surface can be mathematically described as a series of backscatterers, that reflect the wave produced by the sensor. The 

reflected wave depends on three different aspects related to the local geometry and to the incident wave: incidence 

angle, polarization and frequency. At small angles, the backscattered return is dependent on the angle of incidence, and 

it provides information on the surface slopes distribution for topography at a scale significantly larger than the 

wavelength. At wide angles, the return signal provides information about the small-scale structure. Thus, when images, 

acquired by the same sensor at different incidence angles, are fused, since the received backscattered radiation is 

strongly depending on the angle and, thus, on the topography, it is necessary to apply radiometric corrections. This can 

be done by using a digital elevation model (DEM); a correction of the considered images can be exploited to obtain a 

real view of the observed scene [9,32,33].  

The backscatter cross section of natural surfaces also depends on the polarization of the incident wave; four 

different modes are usually considered: HH, horizontally polarized emitted, horizontally polarized received and 

similarly for HV, VV and VH. It is possible to show that the same scene has a different behavior at different 

polarizations: therefore, when data at different polarizations about the same scene are available, the information content 

about the observed region can be increased by fusing the multipolarization information. The same observation can be 

addressed for multifrequency data; particularly in this case, the operating frequency is a key factor in the penetration 

depth [1]: an L-band (20 cm wavelength) signal will penetrate about 10 times deeper than a Ku band (2 cm wavelength) 

signal thus providing access to a significant volumetric layer near the surface. In addition, the behavior of the 

backscatterer, as a function of frequency, changes on the basis of the surface types. Therefore, if the images acquired in 

many regions of the spectrum are fused, the output image will carry useful information about specific backscatterers 

otherwise visible just in single frequencies. More specifically, when a SAR sensor scans a scene, typically, data at many 

polarizations and at many frequencies are available; furthermore, the same scene can be observed by SAR sensors that 

are located on flying platforms  at different heights, and therefore, data at different resolutions are available.  

 

4.1. Radiometric Correction 

An important operation to be accomplished, before fusing the images, is the radiometric correction: this step is used to 

reduce the effects of the acquisition context on the recorded data; these effects are particularly evident in the case of 
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microwave and radio frequency sensors, where the topography of the scene significantly changes the reflection 

properties of the backscatterers [9,32,33]. Previous studies have shown that for SAR imagery from non flat terrain, the 

topography must be taken into account in the radiometric correction for pixel scattering area. In the SAR image, the 

pixel represents the intensity of the electromagnetic wave scattered by the observed surface: therefore, it is necessary to 

take into account the action of the topography on this scattered signal received by the antenna. In other words, it is 

important to compute for each pixel a normalization factor, depending on the slant-range pixel spacing in the range 

direction rδ , on the slant-range pixel spacing in the azimuth direction aδ , and on the local radar incidence angle in the 

range direction rη  (Fig.4).  

 

Fig. 4.- Imaging geometry in the range direction. (from [32]) 

 

The radiometric correction consists of the computation of this normalization factor, that, in its expression, contains the 

correction of the changes in the pixel intensity due to changes in the topography. The SAR image is acquired in a plane 

where the two axes are called azimuth and range: the azimuth direction is the line parallel to the flight line; the range 

direction is the line perpendicular to the flight line. The rδ  factor is the distance in the range direction between two 

points on the surface which can still be separable; the aδ  factor corresponds to the two nearest separable points along 

an azimuth line. It is possible to show that this normalization factor is [32,33]:  
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( )r

arA
η
δδ

sin

⋅
=  (4.1) 

To compute this normalization factor  A, the DEM of the area, that is a topographic representation of the observed 

scene, and the flight path of the platform on which the radar is located, are needed. Each pixel of the input SAR image 

is multiplied by the factor A: this operation corresponds to the normalization of the backscattering area, and, therefore, 

to the correction of the intensity of each pixel. Fig.4 describes the problem geometry in the range plane: the parameters 

depicted in the Figure are the ones used in the algorithm to compute the normalization factor, and it gives an 

explanation of the physical meaning of the symbols rδ , aδ and rη , above described. This algorithm, implemented in 

Matlab® code, has been used to radiometrically correct the input data, and to obtain a real view of the scene. 

 

4.2. DWT and Salience Computation for Multifrequency-Multipolarization Image Fusion 

The next step is the fusion of the multipolarization and multifrequency images, that have been radiometrically 

corrected. Simple procedures to perform image fusion are the IHS method [34] and the method of principal components 

analysis (PCA) [27]. In the case of PCA, each pixel in the fused image is the weighted sum of the pixels in the input 

images, by using as weights the eigenvectors corresponding to the maximum eigenvalue of the covariance matrix. If 

there is a low correlation between the detailed surface structures in the input images to be fused, the PCA method does 

not preserve the fine details (similar problems arise also with the IHS method). Therefore, techniques that integrate the 

fine details of the input data in the fused image are preferred. This is the reason for which pyramidal methods are 

popular [15,28-30,35-38]: a pyramid is firstly constructed transforming each source image into the pyramid domain; 

then a fused pyramid is constructed, selecting the coefficients from the single pyramids, and the matched image is 

computed by an inverse pyramid transform. The manner in which the pyramid domain is constructed changes on the 

basis of the applied technique: when we fix the method to decompose the data, the pyramid domain consists of the 

decomposed data, that is, of the coefficients provided by the decomposing technique; since the decomposition 

coefficients represent the input data at different resolutions, and since the size of the data decreases at higher resolution, 

the structure of the transformed data can be represented by a pyramid. We are interested in the information carried by 

the full resolution data in the spatial domain: therefore, after the fusion step in the pyramid domain, it is necessary to 

transform the fused data in the original domain; this is accomplished by using an inverse transformation, based on the 

technique applied to transform data into the pyramid domain. The pyramid-based fusion techniques typically differ in 

the pyramid construction method, and in the technique used to select the coefficients from the images to be fused. 

Popular methods are based on laplacian and gradient pyramids [28], where the gradient technique guarantees improved 
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stability and noise immunity; recently, the wavelet transform has been shown as a powerful method to preserve the 

spectral characteristics of the multipolarization and multifrequency images [15], allowing decomposition of each image 

into channels based on their local frequency content. After the construction of the input pyramids, the coefficients can 

be fused on the basis of specific pattern selective techniques: an information measure extracts the information from the 

input pyramids, and the match measure is used to fuse the extracted information. The simplest methods are based on the 

selection of the higher value coefficients; other methods are based on  salience computation [28], that estimates the 

evidence of a pattern related to the information contained in the neighboring area. The technique, exploited throughout 

this paper, is based on the use of a pyramidal method that uses the discrete wavelet transform (DWT) [39,40]: it consists 

of a decomposition of an image in sub-images, that represent the frequency contents of the original image at different 

levels of resolution. Due to desirable properties concerning approximation quality, redundancy and numerical stability, 

the low pass and high pass filters, used to compute the sub-images, have been constructed on the basis of the 

Daubechies wavelet family. The images acquired by the same sensor at different frequencies or polarizations have been 

fused, by computing the wavelet pyramid and by linearly combining the wavelet coefficients. In order to acquire the 

information carried by each pyramid, the salience of each pattern has been considered [28]: it can be defined as the local 

energy of the incoming pattern within neighborhood p   

 

( ) ( ) ( )∑ ++=
','

2,,','',',,,
ji

lkijiijilkji DpS  (4.2) 

 

where: 

− S is the salience measure,  

− p is a window function with unitary value when ri ≤≤ '1  and qj ≤≤ '1 , and zero value elsewhere; this function is 

used as a local window on the wavelet pyramid  around the considered pixel (i,j); in the presented experiment, the 

value of parameters r and q is 5; this value has been fixed by using a trial and error technique, and they are related 

to the level of detail in the images being considered; 

− D is the pyramid, and ( )lkji ,,,  are the row and column sample position, level and orientation indexes inside the 

pyramid structure. When the salience of the coefficient ( )ji,  with level k  and orientation l is computed, the local 

window allows us to acquire the neighboring coefficients present in a window qr × pixels around the considered 

point. 

The salience of a particular component pattern is high if that pattern plays a role in representing important information 

in a scene; it is low if the pattern represents unimportant information, or if it represents corrupted image data.  
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 After this salience computation step, applied to the single pyramids A and B, of two images to be fused, a 

match measure has to be computed to combine the information carried by each pyramid; this match measure is defined 

on the basis of the salience measure, as the following [28]: 
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The combined pyramid can be computed by using the following expression: 
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if ( ) ( ) ( )
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wlkjilkjilkji =⇒≥ ,,,,,,,,, wSS  and ( )
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wlkji =,,,w  (4.7) 

else if ( ) ( ) ( )
MINABA

wlkjilkjilkji =⇒< ,,,,,,,,, wSS  and ( )
MAXB

wlkji =,,,w  (4.8) 

 

where α  is a threshold fixed by the Operator. The final step is to use the inverse discrete wavelet transform to obtain 

the fused image.  

The data used in this Section consist of airborne and space borne images acquired over the San Francisco Bay 

area, courtesy of JPL, (Jet Propulsion Laboratory, CA, USA), (Figs.5-8). The polarimetric (POLSAR) dataset has been 

acquired in L-, C- and P- bands with the bandwidths 40.00 MHz and 20.00 MHz (CM5599 and CM5598 images) with 

different spatial resolution (6.662 m along range and 18.518 m along azimuth for the CM5599 image; 13.324 m along 

range and 18.518 m along azimuth for the CM5598 image).  The interferometry dataset has been acquired in L- and C- 

bands, with a spatial resolution of 10 m along range and 10 m along azimuth (TS0711). These first two datasets have 

been acquired during the JPL-AIRSAR Mission. The space borne image has been acquired during the SIR-C/X-SAR 

Mission, in L- and C- bands, with the HH and HV polarizations, with a spatial resolution of 25 m along range and 25 m 

along azimuth. 



- 16 - 

  

Fig.5.- JPL-AIRSAR POLSAR CM5598 C-band image. Fig.6.- JPL-AIRSAR POLSAR CM5599 C-band image. 

  

Fig.7.- JPL-AIRSAR POLSAR TS0711 C-band image. Fig.8.- SIR-C/X-SAR C-band HV-polarization image. 

 

4.3. Spatial Registration 

The images, output of the multifrequency and multipolarization fusion process, will be the input of the multiresolution 

fusion process. Since they are acquired in different geometries, they have to be co-registered to refer the data to a 

common regular grid; in this way, each pixel of each image will correspond to the homologous pixels of the remaining 

images [9]. For this reason, an automatic technique has been implemented in Matlab® code, and it matches two images 

to a common grid. We have chosen the CM5599 image as reference image, and we have matched the other images 

(CM5598, TS0711 and SIR-C) to the CM5599 image. The algorithm consists of the following steps: 

− three points, that are homologous, identical or corresponding image points, have to be manually identified in the 

two images; 

− a linear matching of the second image to the first image, based on three corresponding points, is applied; 
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− to improve the registration performance, the technique can be iterated by using as reference points more than three 

points. 

Resampling operations are necessary when one of the two images has a “small” size with respect to the second one: in 

this case, when the “small” image has to be co-registered to  the “large” image, new pixels have to be added to the 

“small” image; in our experiments, the value of the added pixels has been computed by interpolating the values of the 

neighboring pixels. Obviously, the information carried by the added pixels has not any radiometric fidelity, since the 

values reflect the radiometric information carried by the neighboring pixels: if the scene has not strong variations in the 

topography, then the added values can be considered a good approximation of the real changes in the radiometric 

information of the considered area. This algorithm has been used to obtain images that have the same size: these data 

will be processed by the following multiresolution fusion step.  

 
4.4. MKF Algorithm for Multiresolution Image Fusion 

After the spatial registration, the images are ready for the mu ltiresolution fusion process. Also in this case the pyramidal 

techniques can be utilized; other methods, recently proposed, consist of the use of scale-recursive models, based on 

multilevel trees (Fig.9). The key of this multiple scale filtering is to consider the scale as an independent variable as the 

time, such that the description at a particular scale captures the features of the process up to that scales that are relevant 

for the prediction of finer scale features; this algorithm is considered as an extension of the Kalman filter to the scale 

variable, and it is known as multiscale Kalman filtering [29,35-38]. An image can be decomposed from the coarse to the 

fine resolution: at the coarsest resolution, the signal will consist of a single value. At the next resolution, there are 4=q  

values, and, in general, at the mth resolution, we obtain mq  values. The values of the multiscale representation can be 

described by the index set ( )jim ,, , where m represents the resolution and ( )ji,  the location index. To describe the 

model, an abstract index λ  is used to specify the nodes on the decomposition tree; γλ  specifies the parent node of λ . 

The multiscale Kalman filtering technique is used to obtain optimal estimates of the state ( )λX  described by the 

multiple scale model using observations ( )λY  at a hierarchy of scales. This scheme proceeds in two steps: downward 

and upward [32-35]. The multiple scale downward (coarse-to-fine resolution) model is given by: 

 

( ) ( ) ( ) ( ) ( )λλγλλλ WBXAX ⋅+⋅=  (4.9) 

( ) ( ) ( ) ( )λλλλ VXCY +⋅=  (4.10) 
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Since ( )γλX  represents the state at a resolution coarser than ( )λX , ( ) ( )γλλ XA ⋅  can be considered as a prediction term 

for the finer level; ( ) ( )λλ WB ⋅  is the new knowledge that we add from one scale to the next. The noisy measurements 

( )λY  of the state ( )λX , the measurement Equation (4.10), combined with the Equation (4.9), form the state estimation 

problem. The covariance matrices of the state and of the measurements are computed by the following equations:  

 
( ) ( ) ( )][ λλλ T

X E XXP ⋅≡  (4.11) 

 

Corresponding to the above downward model, the upward (fine-to-coarse resolution) model is: 

 
( ) ( ) ( ) ( )λλλγλ WXFX +⋅=  (4.12) 

 
where  

( ) ( ) ( ) ( )λλγλλ 1−⋅⋅= X
T

X PAPF  (4.13) 

 
4.5. Experimental Results 

To evaluate the system performance, and to evaluate how the information flows from the input images to the output 

images, two different tests have been carried out on the considered datasets: a classification test and a straight line 

detection test, as in typical Automatic Target Recognition (ATR) applications in remote sensing. The classification test 

has been carried out by using a least square classifier. Three different areas have been considered to be present on the 

considered scene: urban, mountain and sea areas. The classifier has been applied to the input image and to the high 

resolution image (Fig.10) produced by the scheme depicted in Fig.11.  

  

Fig.9.- Multiscale signal representation by dyadic tree, 

where each level of the tree corresponds to a single scale. 

Fig.10.- Full resolution fused image. 
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Fig.11.- Block scheme of the fusion system. 

 
Table 2 shows the classification results in terms of: best percent classification accuracy, obtained without 

fusion, on the full resolution input images; percent classification accuracy, obtained with fusion, on the full resolution 

fused image. The results clearly show the usefulness of the proposed fusion scheme. 

Area Without Fusion With Fusion 

Urban Area 86.43 93.12 

Mountain Area 76.48 85.58 

Sea Area 89.98 96.87 

Average Accuracy  84.29 91.85 

 

Table 2.- Percent classification accuracy for the non-fused and fused images.  

  

Fig.12.- Hough transform of the CM5599 L-band image 

(the L-band is the band where the airport is more visible). 

Fig.13.- Hough transform of the full resolution fused image. 
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The second test has been carried out from another point of view: the Hough Transform (HT) has been 

computed on the full resolution input image CM5599 L-band, and on the full resolution fused image, to detect straight 

lines possibly present. The HT is a 2D non-coherent operator which maps an image to a parameter domain [41]. When 

the aim of the analysis is to detect straight lines in an image, the parameter of interest completely defines the straight 

lines. The equation: 

 

θθρ sincos ⋅+⋅= yx  (4.14) 

 

maps the point ( )yx,  into the parameters ( )θρ, , which represent a straight line passing through ( )yx, . Each pixel in 

the original image is transformed in a sinusoid in the ( )θρ,  domain. The presence of a line is detected by the location 

in the ( )θρ,  plane where more sinusoids intersect: a Constant False Alarm Rate (CFAR) detection algorithm has been 

applied in the Hough plane, to detect the correct peaks, and to reject the spurious peaks produced by the noise effects. In 

this case, it is more difficult to correctly evaluate the system performance, since just the area near the airport (upper part 

of the reference image CM5599) is characterized by the presence of straight lines. To overcome this problem, just the 

area near the airport has been processed; we found that in the fused image the regular structures can be detected with a 

lower probability of false alarm (Figs.12,13). More specifically, the average probability of false alarm requested to 

detect the straight lines present in the considered areas varies from 0.3, in the input image, to 0.2 in the fused image.  

5. Conclusions 

The topic of fusing SAR images or/and images provided by dissimilar sensors is relevant from an application 

viewpoint; it is also an arena to test existing signal processing algorithms and to develop brand new ones. In this paper, 

the problem of image fusion for remote sensing applications has been presented in terms of three study cases: 

− the SAR interferometry has been presented as an application where the joint use of images acquired by two 

different antennas allows an elevation map of the observed scene to be generated; 

− a multitemporal and multisensor image fusion processor has been described, by presenting an application 

where multitemporal SAR images and a LANDSAT image have been fused by using a neural network 

architecture; furthermore, the usefulness of the fusion technique has been evaluated by estimating the 

percentage of correctly classified pixels for the non-fused and the fused images; 
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− a multifrequency, multipolarization and multiresolution image fusion system has been presented; in this case, 

the problems of the radiometric calibration and of the spatial calibration have been considered; a technique 

based on the two-dimensional discrete wavelet transform and a technique based on the multiscale Kalman filter 

have been exploited to fuse respectively images acquired at different frequencies/polarizations and resolutions; 

the usefulness of the developed approach has been demonstrated by fusing SAR images, and by evaluating the 

correct classification percentages, as in multitemporal and multisensor study case, and by evaluating the 

evidence of straight lines in the fused image with respect to the input image. 

The described techniques are among the most advanced methods in the data fusion field; they have been selected to 

show, in quite different situations, the advantages that can be derived from the application of a data fusion approach. In 

the first study case, the fusion of two images provided by two different antennas is necessary to obtain a DEM, which 

cannot be computed if just one image is used. In the second and third study cases, the usefulness of the presented image 

fusion technique, in terms of improved accuracy, has been shown by exploiting the information flow from the input to 

the fused images.  
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