1,034 research outputs found

    Authentication Scheme for Flexible Charging and Discharging of Mobile Vehicles in the V2G Networks

    Get PDF
    Navigating security and privacy challenges is one of the crucial requirements in the vehicle-to-grid (V2G) network. Since electric vehicles (EVs) need to provide their private information to aggregators/servers when charging/discharging at different charging stations, privacy of the vehicle owners can be compromised if the information is misused, traced, or revealed. In a wide V2G network, where vehicles can move outside of their home network to visiting networks, security and privacy become even more challenging due to untrusted entities in the visiting networks. Although some privacy-preserving solutions were proposed in the literature to tackle this problem, they do not protect against well-known security attacks and generate a huge overhead. Therefore, we propose a mutual authentication scheme to preserve privacy of the EV's information from aggregators/servers in the home as well as distributed visiting V2G networks. Our scheme, based on a bilinear pairing technique with an accumulator performing batch verification, yields higher system efficiency, defeats various security attacks, and maintains untraceability, forward privacy, and identity anonymity. A performance analysis shows that our scheme, in comparison with the existing solutions, significantly generates lower communication and computation overheads in the home and centralized V2G networks, and comparable overheads in the distributed visiting V2G networks

    QEVSEC: Quick Electric Vehicle SEcure Charging via Dynamic Wireless Power Transfer

    Full text link
    Dynamic Wireless Power Transfer (DWPT) can be used for on-demand recharging of Electric Vehicles (EV) while driving. However, DWPT raises numerous security and privacy concerns. Recently, researchers demonstrated that DWPT systems are vulnerable to adversarial attacks. In an EV charging scenario, an attacker can prevent the authorized customer from charging, obtain a free charge by billing a victim user and track a target vehicle. State-of-the-art authentication schemes relying on centralized solutions are either vulnerable to various attacks or have high computational complexity, making them unsuitable for a dynamic scenario. In this paper, we propose Quick Electric Vehicle SEcure Charging (QEVSEC), a novel, secure, and efficient authentication protocol for the dynamic charging of EVs. Our idea for QEVSEC originates from multiple vulnerabilities we found in the state-of-the-art protocol that allows tracking of user activity and is susceptible to replay attacks. Based on these observations, the proposed protocol solves these issues and achieves lower computational complexity by using only primitive cryptographic operations in a very short message exchange. QEVSEC provides scalability and a reduced cost in each iteration, thus lowering the impact on the power needed from the grid.Comment: 6 pages, conferenc

    ABRIS: Anonymous blockchain based revocable and integrity preservation scheme for vehicle to grid network

    Get PDF
    The upcoming development in vehicle to grid network (V2G) allows for the flow of energy from battery powered Electric Vehicle (EV) to grid as well as the exchange of information between them. However, during the information exchange, the EV's confidential information should be transferred from one charging station to another in a secure manner. Furthermore, the anonymity of the EV and charging station should be preserved. Despite the fact that many works on anonymous authentication and privacy preservation exist, there is an increase in computational cost in existing surveys. In this work, the new charging station authenticates the EV using blockchain technology without the involvement of a trusted entity, resulting in a reduction in computational time. Moreover, an efficient revoking mechanism is suggested to block the misbehaving charging station from the V2G network. In addition, security analysis section proves the resistant of our work against several possible well known attacks. Finally, to evaluate the performance of the work, the simulation is performed using CYGWIN platform and the results are proved to be noteworthy

    Privacy preserving protocols for smart meters and electric vehicles

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2015Actualmente existe a tendência para se adicionar mais inteligência em vários pontos da rede elétrica, permitindo uma comunicação bidireccional entre a empresa fornecedora de energia eléctrica e as nossas casas. Ao longo dos próximos anos, os contadores de energia nas nossas casas serão gradualmente substituídos por um equipamento com mais capacidades, denominado medidor inteligente. Os medidores inteligentes podem colher informações sobre os gastos de energia em tempo real, e encaminhar os dados para o fornecedor. Além disso, podem receber comandos do fornecedor (ou outros intervenientes) e agir em conformidade, nomeadamente através da interacção com equipamentos locais (por exemplo, ar condicionado ou congelador) para ajustar o seu modo de operação, diminuindo temporariamente o consumo de energia. Os medidores inteligentes podem ainda apoiar a produção local de energia (com painéis solares ou geradores eólicos) e o seu armazenamento (através de um banco de baterias ou veículo eléctrico), sendo necessário haver coordenação entre a sua operação e as empresas fornecedoras de energia eléctrica. Estes medidores, quando coordenados de uma forma apropriada, podem permitir uma redução dos picos globais de consumo. Deste modo evitam investimentos na rede energética direccionados para lidar com estas condições extremas, que tendem a ocorrer durante o horário laboral. A evolução no uso de veículos eléctricos irá gerar também um grande consumo de energia. Caso todos os veículos se tornem eléctricos, a rede actual não tem capacidade para lidar com o enorme pico gerado. No entanto, estes veículos poderão também ter a capacidade de transferir para a rede parte da sua energia, o que significa que, poderão ser usados em caso de necessidade para colmatar flutuações no consumo de energia (juntamente com outras fontes alternativas de geração). Esta coordenação, quando eficiente, pode permitir grandes vantagens em situações limite, como por exemplo quando há um fornecimento reduzido de energia, em que os medidores podem desactivar total ou parcialmente os aparelhos domésticos, permitindo uma melhor distribuição de energia por todos, priorizando, se necessário, certos locais como por exemplo hospitais. Como esperado, este tipo de configuração é propenso a muitas formas de ataque, desde a espionagem de comunicações até à manipulação física dos medidores inteligentes. Por isso, é necessário desenvolver protocolos seguros que possam ser usados para proteger os dispositivos e aplicações que irão operar na rede eléctrica futura. Este projecto em particular, desenvolve uma solução que protege as comunicações entre o medidor inteligente e a empresa distribuidora de energia no que diz respeito aos ataques à privacidade. Nestes ataques, o adversário obtém informação sobre o que o utilizador está a fazer em sua casa, monitorizando em tempo real a informação que é transmitida pelo medidor inteligente. Nos últimos anos tem-se assistido igualmente a uma evolução rápida nas tecnologias de transferência de energia sem fios, existindo actualmente alguns protótipos em funcionamento, como o carregamento de baterias em autocarros eléctricos numa universidade da Coreia do Sul. Uma eventual utilização generalizada desta tecnologia obriga à definição de novas formas de pagamento, possibilitando que os veículos eléctricos se possam abastecer em movimento. Se existir um protocolo demasiado simples que faça esta tarefa, pode levar a que o condutor seja identificado quando e onde carregar as baterias do seu veículo, algo que não acontece com um tradicional abastecimento de combustível pago com notas ou moedas. Este projecto lida com duas vertentes relacionadas que tratam da aferição do consumo de energia. Uma é baseada nos contadores inteligentes das casas, e outra nos “contadores” em veículos (mais concretamente, a forma de pagamento da energia transferida sem fios para um veículo em movimento). Apresentam-se diferentes técnicas/algoritmos já propostos que podem contribuir para uma solução, mas que apesar disso não conseguem atingir todos os requisitos e funcionalidades pretendidas de forma isolada. Estabelece-se também uma relação com o trabalho já realizado que utiliza tais técnicas. É estudado um protocolo especifico, o Low Overhead PrivAcy (LOPA), que organiza vários medidores num grupo. Em cada grupo é gerada secretamente uma chave entre cada medidor do grupo, depois é criada a partir dessa chave uma outra chave, que é somada a cada medição que cada medidor envia para um agregador, sem que ninguém consiga ver o valor da medição individual (devido à chave). O agregador, ao somar todas as medições de todos os medidores de um grupo, obtém o valor total de consumo de todos os medidores. O agregador, no entanto, não consegue saber cada medição individual, devido ao modo como a chave é gerada, garantindo a privacidade de cada casa. Este protocolo é explicado em detalhe, implementado e avaliado. São propostos também três protocolos para o pagamento da transferência de energia, que permitem manter o anonimato de um veículo, evitando que se saiba quando ou onde este circula. Os protocolos também lidam com ineficiências de transmissão, assegurando uma rapidez, simplicidade e segurança adequadas para serem aplicados em carros em movimento a velocidades habituais de circulação. Um dos protocolos permite uma transferência de energia pós-paga, e os outros dois usam uma modalidade de pré-pagamento, um com contas temporárias e o outro com dinheiro digital. Estes protocolos baseiam-se num conjunto de mensagens que empregam técnicas como assinaturas digitais (para garantir a integridade e autenticação das comunicações), técnicas de cifra, dinheiro digital, ou entidades terceiras confiáveis para permitir a confidencialidade. Pretende-se que seja assegurada a segurança do pagamento, ao mesmo tempo que é permitido ao ponto de carregamento identificar o responsável pelo veículo, em caso de incumprimento. O dinheiro digital e o protocolo de perfis pseudo-anónimos foram implementados e avaliados em duas plataformas diferentes. Os resultados experimentais foram muito satisfatórios, dando indicações de que estes protocolos poderiam ser utilizados na prática.There is currently a trend to add more intelligence to various points of the electric grid, thus enabling a bidirectional communication path between the electrical utility company and our homes, by upgrading the existing components along the way. For example, the metering devices in our homes will be gradually replaced with a more capable equipment, called smart meter. Smart meters can collect information about energy spending in real-time, and forward this data to the utility. Moreover, they can receive information from the utility (or other operators) and act on it, for instance, by interacting with local equipments (e.g., air conditioner or refrigerator) to adjust their operation mode (e.g., make them decrease the energy use). Smart meters can also support local energy production (e.g., solar panels or windmills) and storage (e.g., batteries), by coordinating its operation with the utility companies. As expected, this sort of setting is prone to many forms of attack, ranging from eavesdropping on the communications to the physical tampering of the smart meters. Therefore, it is necessary to develop secure protocols that can be used to protect the devices and applications that will be operating in this future smart grid. In particular, in this project we study and evaluate a solution that protects the communications between the smart meter and the electrical company with respect to attacks on privacy. For instance, it addresses a form of attack where the adversary learns information about what a person is doing at home by monitoring the messages transmitted by the smart meter in real-time. In recent years there have been rapid developments in Wireless Power Transfer technology (WPT). There are currently some prototypes in operation, such as charging batteries in electric buses at a university in South Korea. In the event of a widespread use of this technology, it is required that new forms of accounting and payment of energy are established. This project proposes a protocol for the payment of energy transfer that ensures the anonymity of the vehicle, precluding attacks that attempt to determine where it circulates. The protocol also handles transmission inefficiencies, ensuring a fast, simple and adequate application in cars moving at normal speeds of movement

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version

    Privacy In The Smart Grid: An Information Flow Analysis

    Get PDF
    Project Final Report prepared for CIEE and California Energy Commissio
    corecore