2,655 research outputs found

    Six Noise Type Military Sound Classifier

    Get PDF
    Blast noise from military installations often has a negative impact on the quality of life of residents living in nearby communities. This negatively impacts the military's testing \& training capabilities due to restrictions, curfews, or range closures enacted to address noise complaints. In order to more directly manage noise around military installations, accurate noise monitoring has become a necessity. Although most noise monitors are simple sound level meters, more recent ones are capable of discerning blasts from ambient noise with some success. Investigators at the University of Pittsburgh previously developed a more advanced noise classifier that can discern between wind, aircraft, and blast noise, while simultaneously lowering the measurement threshold. Recent work will be presented from the development of a more advanced classifier that identifies additional classes of noise such as machine gun fire, vehicles, and thunder. Additional signal metrics were explored given the increased complexity of the classifier. By broadening the types of noise the system can accurately classify and increasing the number of metrics, a new system was developed with increased blast noise accuracy, decreased number of missed events, and significantly fewer false positives

    Experiments in Aggregating Air Ordnance Effectiveness Data for the TACWAR Model

    Get PDF
    An interactive MS Access&trademark; based application that aggregates the output of the SABSEL model for input into the TACWAR model is developed. The application was developed following efforts to create a functional approximation of the SABSEL data using neural networks, statistical networks, and traditional statistical techniques. These approximations were compared to a look-up table methodology on the basis of accuracy, (RMS

    Uma abordagem baseada em redes neurais artificiais para computação de propriedades ópticas de cristais fotônicos

    Get PDF
    Orientadores: Hugo Enrique Hernández-Figueroa, Gilliard Nardel Malheiros SilveiraTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Esta tese aborda o emprego de processos baseados em redes neurais artificiais para computação de relações de dispersão e banda fotônica proibida de cristais fotônicos. A proposta objetiva prover um modelo de computação alternativo capaz de calcular rapidamente estas propriedades ópticas em relação às simulações eletromagnéticas convencionais. O modelo é baseado nas redes neurais artificiais Perceptron de Múltiplas Camadas e Máquinas de Aprendizado Extremo, que são projetadas para processarem dados geométricos e de materiais de cristais fotônicos e assim predizerem estas propriedades ópticas. Uma arquitetura simples de rede neural é proposta para permitir processos rápidos de treinamento. O modelo é testado em uma variedade de cristais fotônicos bi- and tri-dimensionais com arranjos, geometrias, e materiais diferentes, e sua capacidade de predição e desempenho de computação são avaliados em relação a um simulador eletromagnético bem estabelecido na comunidade de fotônicaAbstract: This thesis addresses the employment of Artificial Neural Network-based processes for computing dispersion relations and photonic bandgaps of photonic crystals. The proposal aims to provide an alternative computing model able to fastly calculate these optical properties regarding conventional electromagnetic simulations. The model is based on Multilayer Perceptron and Extreme Learning Machine Artificial Neural Networks, which are designed to process the geometric and material data of photonic crystals in order to predict such optical properties. A simple neural-network architecture is proposed for allowing fast training processes. The model is tested on a variety of bi- and tri-dimensional photonic crystals with different lattices, geometries, and materials, and its predicting capability and computing performance are evaluated in regard to a well-established electromagnetic simulator in photonic communityDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE

    Storage Capacity Estimation of Commercial Scale Injection and Storage of CO2 in the Jacksonburg-Stringtown Oil Field, West Virginia

    Get PDF
    Geological capture, utilization and storage (CCUS) of carbon dioxide (CO2) in depleted oil and gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery (EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be an economic approach to demonstration of commercial-scale injection and storage of anthropogenic CO2. Several critical issues should be taken into account prior to injecting large volumes of CO2, such as storage capacity, project duration and long-term containment. Reservoir characterization and 3D geological modeling are the best way to estimate the theoretical CO 2 storage capacity in mature oil fields. The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22 million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is the primary reservoir.;The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has produced over 22 million barrels of oil since 1895, are an ideal candidate for CO2 sequestration coupled with EOR. Supercritical depth (\u3e2500 ft.), minimum miscible pressure (941 psi), favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO 2-EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration of CO2 sources located along the Ohio River that could potentially supply enough CO2 for sequestration and EOR without constructing new pipeline facilities.;Permeability evaluation is a critical parameter to understand the subsurface fluid flow and reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is constructed to predict permeability using the model\u27s strong ability to recognize the possible interrelationships between input and output variables. Two commonly available conventional well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the slope of bulk density and Vsh were selected as input parameters and permeability was selected as desired output parameter to train and test an artificial neural network. The results indicate that the ANN model can be applied effectively in permeability prediction.;Porosity is another fundamental property that characterizes the storage capability of fluid and gas bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed kernels function (MKF) is utilized to construct the relationship between limited conventional well log suites and sparse core data. The input parameters for SVM model consist of core porosity values and the same log suite as ANN\u27s input parameters, and porosity is the desired output. Compared with results from the SVM model with a single kernel function, mixed kernel function based SVM model provide more accurate porosity prediction values.;Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial channel subunits. A 3-D geological model, which is used to estimate theoretical CO2 sequestration capacity, is constructed with the integration of core data, wireline log data and geological background knowledge. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated CO2 theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383 million metric tons. The estimation results of CO2 sequestration and EOR potential indicate that the Jacksonburg-Stringtown oilfield has significant potential for CO2 storage and value-added EOR

    Modeling of complex nonlinear dynamic systems using temporal convolution neural networks

    Get PDF
    An increasingly important class of nonlinear systems includes the nonaffine hybrid systems, in particular those in which the underlying dynamics explicitly depends on a switching signal. When the inherent complexity is treatable and the phenomena governing the system dynamics are known an implicit model can be derived to describe its behaviour over time. Conversely, when these assumptions are not met the system dynamics can still be approximated by regression-based techniques, provided a dataset comprising inputs and outputs collected from the system is available. One approach to deal with data driven modelling relies on computational intelligent frameworks, in which artificial neural networks stand out as a prominent class of universal approximation black box models. This work aims to explore 1D Convolutional Neural Networks capabilities, in which the inputs are represented by regressors and structural configuration parameters, to modelling nonlinear hybrid dynamic systems. Moreover, in order evaluate the intrinsic ability to transparently approximate hybrid dynamics, this deep neural network architecture is compared to a shallow multilayer layer perceptron framework, in which each structural configuration is independently approximated.Uma classe de sistemas não lineares que tem vindo a ganhar cada vez mais importância é a dos sistemas híbridos não-afins, em particular aqueles em que a dinâmica subjacente depende explicitamente de um sinal de comutação. Quando a complexidade inerente é tratável e os fenómenos que controlam a dinâmica do sistema são conhecidos, é possível obter-se um modelo implícito para descrever seu comportamento ao longo do tempo. Por outro lado, quando essas suposições não são cumpridas, a dinâmica do sistema pode ainda ser aproximada por técnicas baseadas em regressão, desde que um conjunto de dados contendo as entradas e as saídas do sistema esteja disponível. Uma abordagem para lidar com o problema de modelação experimental recorrendo a técnicas de inteligência computacional, na quais as redes neuronais artificiais se destacam como uma das classes proeminentes de aproximadores universais. Este trabalho tem como objetivo explorar as capacidades de redes neuronais convolutivas 1D, onde as entradas são representadas por regressores e parâmetros de configuração estrutural. Além disso, para avaliar a capacidade intrínseca para a aproximação de dinâmicas híbridas, esta arquitetura de rede neuronal profunda é comparada a uma estrutura neuronal proactivas multicamada, na qual cada configuração estrutural é independentemente aproximada

    Compressão eficiente de sequências biológicas usando uma rede neuronal

    Get PDF
    Background: The increasing production of genomic data has led to an intensified need for models that can cope efficiently with the lossless compression of biosequences. Important applications include long-term storage and compression-based data analysis. In the literature, only a few recent articles propose the use of neural networks for biosequence compression. However, they fall short when compared with specific DNA compression tools, such as GeCo2. This limitation is due to the absence of models specifically designed for DNA sequences. In this work, we combine the power of neural networks with specific DNA and amino acids models. For this purpose, we created GeCo3 and AC2, two new biosequence compressors. Both use a neural network for mixing the opinions of multiple specific models. Findings: We benchmark GeCo3 as a reference-free DNA compressor in five datasets, including a balanced and comprehensive dataset of DNA sequences, the Y-chromosome and human mitogenome, two compilations of archaeal and virus genomes, four whole genomes, and two collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid improvement in compression over the previous version (GeCo2) of 2:4%, 7:1%, 6:1%, 5:8%, and 6:0%, respectively. As a reference-based DNA compressor, we benchmark GeCo3 in four datasets constituted by the pairwise compression of the chromosomes of the genomes of several primates. GeCo3 improves the compression in 12:4%, 11:7%, 10:8% and 10:1% over the state-of-the-art. The cost of this compression improvement is some additional computational time (1:7_ to 3:0_ slower than GeCo2). The RAM is constant, and the tool scales efficiently, independently from the sequence size. Overall, these values outperform the state-of-the-art. For AC2 the improvements and costs over AC are similar, which allows the tool to also outperform the state-of-the-art. Conclusions: The GeCo3 and AC2 are biosequence compressors with a neural network mixing approach, that provides additional gains over top specific biocompressors. The proposed mixing method is portable, requiring only the probabilities of the models as inputs, providing easy adaptation to other data compressors or compression-based data analysis tools. GeCo3 and AC2 are released under GPLv3 and are available for free download at https://github.com/cobilab/geco3 and https://github.com/cobilab/ac2.Contexto: O aumento da produção de dados genómicos levou a uma maior necessidade de modelos que possam lidar de forma eficiente com a compressão sem perdas de biosequências. Aplicações importantes incluem armazenamento de longo prazo e análise de dados baseada em compressão. Na literatura, apenas alguns artigos recentes propõem o uso de uma rede neuronal para compressão de biosequências. No entanto, os resultados ficam aquém quando comparados com ferramentas de compressão de ADN específicas, como o GeCo2. Essa limitação deve-se à ausência de modelos específicos para sequências de ADN. Neste trabalho, combinamos o poder de uma rede neuronal com modelos específicos de ADN e aminoácidos. Para isso, criámos o GeCo3 e o AC2, dois novos compressores de biosequências. Ambos usam uma rede neuronal para combinar as opiniões de vários modelos específicos. Resultados: Comparamos o GeCo3 como um compressor de ADN sem referência em cinco conjuntos de dados, incluindo um conjunto de dados balanceado de sequências de ADN, o cromossoma Y e o mitogenoma humano, duas compilações de genomas de arqueas e vírus, quatro genomas inteiros e duas coleções de dados FASTQ de um viroma humano e ADN antigo. O GeCo3 atinge uma melhoria sólida na compressão em relação à versão anterior (GeCo2) de 2,4%, 7,1%, 6,1%, 5,8% e 6,0%, respectivamente. Como um compressor de ADN baseado em referência, comparamos o GeCo3 em quatro conjuntos de dados constituídos pela compressão aos pares dos cromossomas dos genomas de vários primatas. O GeCo3 melhora a compressão em 12,4%, 11,7%, 10,8% e 10,1% em relação ao estado da arte. O custo desta melhoria de compressão é algum tempo computacional adicional (1,7 _ a 3,0 _ mais lento do que GeCo2). A RAM é constante e a ferramenta escala de forma eficiente, independentemente do tamanho da sequência. De forma geral, os rácios de compressão superam o estado da arte. Para o AC2, as melhorias e custos em relação ao AC são semelhantes, o que permite que a ferramenta também supere o estado da arte. Conclusões: O GeCo3 e o AC2 são compressores de sequências biológicas com uma abordagem de mistura baseada numa rede neuronal, que fornece ganhos adicionais em relação aos biocompressores específicos de topo. O método de mistura proposto é portátil, exigindo apenas as probabilidades dos modelos como entradas, proporcionando uma fácil adaptação a outros compressores de dados ou ferramentas de análise baseadas em compressão. O GeCo3 e o AC2 são distribuídos sob GPLv3 e estão disponíveis para download gratuito em https://github.com/ cobilab/geco3 e https://github.com/cobilab/ac2.Mestrado em Engenharia de Computadores e Telemátic

    An efficient implementation of lattice-ladder multilayer perceptrons in field programmable gate arrays

    Get PDF
    The implementation efficiency of electronic systems is a combination of conflicting requirements, as increasing volumes of computations, accelerating the exchange of data, at the same time increasing energy consumption forcing the researchers not only to optimize the algorithm, but also to quickly implement in a specialized hardware. Therefore in this work, the problem of efficient and straightforward implementation of operating in a real-time electronic intelligent systems on field-programmable gate array (FPGA) is tackled. The object of research is specialized FPGA intellectual property (IP) cores that operate in a real-time. In the thesis the following main aspects of the research object are investigated: implementation criteria and techniques. The aim of the thesis is to optimize the FPGA implementation process of selected class dynamic artificial neural networks. In order to solve stated problem and reach the goal following main tasks of the thesis are formulated: rationalize the selection of a class of Lattice-Ladder Multi-Layer Perceptron (LLMLP) and its electronic intelligent system test-bed – a speaker dependent Lithuanian speech recognizer, to be created and investigated; develop dedicated technique for implementation of LLMLP class on FPGA that is based on specialized efficiency criteria for a circuitry synthesis; develop and experimentally affirm the efficiency of optimized FPGA IP cores used in Lithuanian speech recognizer. The dissertation contains: introduction, four chapters and general conclusions. The first chapter reveals the fundamental knowledge on computer-aideddesign, artificial neural networks and speech recognition implementation on FPGA. In the second chapter the efficiency criteria and technique of LLMLP IP cores implementation are proposed in order to make multi-objective optimization of throughput, LLMLP complexity and resource utilization. The data flow graphs are applied for optimization of LLMLP computations. The optimized neuron processing element is proposed. The IP cores for features extraction and comparison are developed for Lithuanian speech recognizer and analyzed in third chapter. The fourth chapter is devoted for experimental verification of developed numerous LLMLP IP cores. The experiments of isolated word recognition accuracy and speed for different speakers, signal to noise ratios, features extraction and accelerated comparison methods were performed. The main results of the thesis were published in 12 scientific publications: eight of them were printed in peer-reviewed scientific journals, four of them in a Thomson Reuters Web of Science database, four articles – in conference proceedings. The results were presented in 17 scientific conferences

    Data Driven Sample Generator Model with Application to Classification

    Get PDF
    Despite the rapidly growing interest, progress in the study of relations between physiological abnormalities and mental disorders is hampered by complexity of the human brain and high costs of data collection. The complexity can be captured by machine learning approaches, but they still may require significant amounts of data. In this thesis, we seek to mitigate the latter challenge by developing a data driven sample generator model for the generation of synthetic realistic training data. Our method greatly improves generalization in classification of schizophrenia patients and healthy controls from their structural magnetic resonance images. A feed forward neural network trained exclusively on continuously generated synthetic data produces the best area under the curve compared to classifiers trained on real data alone

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique
    corecore